
Rocket Model 204
Application Development
Guide
Programmer’s Guide
Version 7 Release 4.0

May 2012
204-74-ADG-01

ii

Notices
Edition

Publication date: May 2012

Book number: 204-74-ADG-01

Product version: Rocket Model 204 Application Development Guide

Copyright

© Computer Corporation of America 1989-2012. All Rights Reserved.

Computer Corporation of America is a wholly-owned subsidiary of Rocket Software, Inc.

Trademarks

Rocket is a registered trademark of Rocket Software, Inc. For a list of Rocket registered
trademarks go to: www.rocketsoftware.com/about/legal. All other products or services
mentioned in this document may be covered by the trademarks, service marks, or product
names of their respective owners.

License agreement

This software and the associated documentation are proprietary and confidential to Rocket
Software, Inc., are furnished under license, and may be used and copied only in accordance with
the terms of such license.

Note

This product may contain encryption technology. Many countries prohibit or restrict the use, import,
or export of encryption technologies, and current use, import, and export regulation should be
followed when exporting this product.

Contact information

Web Site: www.rocketsoftware.com

Rocket Software, Inc. Headquarters
77 4th Avenue, Suite 100
Waltham, MA 02451–1468
USA
Tel: +1.617.614.4321
Fax: +1.617.630.7100

iii

Contacting Technical Support
If you have current support and maintenance agreements with Rocket Software and CCA,
contact Rocket Software Technical support by email or by telephone:

Email: m204support@rocketsoftware.com

Telephone :

 North America +1.800.755.4222

 United Kingdom/Europe +44 (0) 20 8867 6153

Alternatively, you can access the Rocket Customer Portal and report a problem, download an
update, or read answers to FAQs. You will be prompted to log in with the credentials supplied as
part of your product maintenance agreement.

To log in to the Rocket Customer Portal, go to:

www.rocketsoftware.com/support

 and click Rocket M204.

iv

Contents
About this Guide

Audience ... iii
Model 204 documentation set ... iii
Documentation conventions..iv

1 Model 204 Naming Conventions
In this chapter.. 1

Model 204 filenames .. 1
Data set names .. 2
Procedure names... 3
Fieldnames... 3
%Variables ... 4
Statement labels .. 4
Subroutines .. 6

Simple subroutines.. 6
Complex subroutines .. 6

Other naming convention considerations... 6

2 Recommended Coding Guidelines
In this chapter.. 7

Sample coding structure .. 8
Using comments .. 8
Using commands ... 9
Declaring %variables ... 9
Using $functions... 10
Using the IF statement ... 11

Formatting IF statements .. 11
Evaluating IF statements... 11
Using %variables in IF statements .. 12
Using the computed JUMP TO.. 12
ELSE IF vs. ELSEIF.. 13

Finding records efficiently .. 14
Committing records .. 17
Releasing records .. 17
Using the IN clause .. 17
Using lists... 18
Sorting records... 19
Using subroutines .. 19

Using %variables In complex subroutines... 20
Using dummy strings in subroutines ... 21

3 Managing Record Locking
In this chapter.. 23
Contents v

Locking conflict example .. 23
Types of record locks ... 24
Using ON units ... 25
Using FIND AND RESERVE.. 28
Coding RETRY counters.. 28
Ensuring file integrity.. 30
Controlling record locking problems... 31

Index
vi Model 204 Application Development Guide

About this Guide

This guide describes naming conventions and recommends coding guidelines
and locking management strategies to help you solve the problems inherent in
a multiuser environment.

This guide is not designed to replace any manual in the Model 204
documentation set, but to provide a supplement that helps you produce clearer,
faster applications. The information in this guide is not version-specific.

Audience

This guide is for system managers, file managers, and application
programmers who want to develop Model 204 User Language code that is
efficient, readable, and easy to maintain.

Model 204 documentation set

The complete commercially released documentation for the latest version of
Model 204 is available for download from the Rocket M204 customer portal.

To access the Rocket Model 204 documentation:

1. Navigate to:

http://www.rocketsoftware.com/m204

2. From the drop-down menu, select Products > Model 204 >
Documentation.

3. Click the link to the current release and select the document you want from
the list.

4. Click the .zip file containing the document.

5. Choose whether to open or save the document:

– Select Open and double-click the pdf file to open the document.

– Select Save as and select a location to save the zip file to.
Rocket Model 204 Application Development Guide iii

Documentation conventions

This guide uses the following standard notation conventions in statement
syntax and examples:

Convention Description

TABLE Uppercase represents a keyword that you must enter exactly as
shown.

TABLE tablename In text, italics are used for variables and for emphasis. In examples,
italics denote a variable value that you must supply. In this example,
you must supply a value for tablename.

READ [SCREEN] Square brackets ([]) enclose an optional argument or portion of an
argument. In this case, specify READ or READ SCREEN.

UNIQUE | PRIMARY KEY A vertical bar (|) separates alternative options. In this example,
specify either UNIQUE or PRIMARY KEY.

TRUST | NOTRUST Underlining indicates the default. In this example, NOTRUST is the
default.

IS {NOT | LIKE} Braces ({ }) indicate that one of the enclosed alternatives is
required. In this example, you must specify either IS NOT or IS
LIKE.

item ... An ellipsis (. . .) indicates that you can repeat the preceding item.

item ,... An ellipsis preceded by a comma indicates that a comma is required
to separate repeated items.

All other symbols In syntax, all other symbols (such as parentheses) are literal
syntactic elements and must appear as shown.

nested-key ::=
column_name

A double colon followed by an equal sign indicates an equivalence.
In this case, nested-key is equivalent to column_name.

Enter your account:

sales11

In examples that include both system-supplied and user-entered
text, or system prompts and user commands, boldface indicates
what you enter. In this example, the system prompts for an account
and the user enters sales11.

File > Save As A right angle bracket (>) identifies the sequence of actions that you
perform to select a command from a pull-down menu. In this
example, select the Save As command from the File menu.

EDIT Partial bolding indicates a usable abbreviation, such as E for EDIT
in this example.
iv About this Guide

1
Model 204 Naming Conventions

Establishing naming conventions at your site helps everyone involved in
reading, writing, or updating Model 204 code. Consistent naming conventions
makes interpretation of existing code easier for people other than the original
developer.

In this chapter

This chapter has the following sections:

• Model 204 filenames

• Data set names

• Procedure names

• Fieldnames

• %Variables

• Statement labels

• Subroutines

• Other naming convention considerations

Model 204 filenames

Filenames are limited to 8 characters (7 for DOS systems) and must begin with
a letter (A-Z).

The Model 204 restrictions are as follows:

• A filename cannot begin with any of the following:
Model 204 Naming Conventions 1

CCA
SYS
OUT
TAPE

• A filename must contain only alphanumeric characters (A-Z, 0-9).

• Filenames can either describe the file content or conform to local file-
naming standards. For example:

EMPLOYE
PER0001

Technical Support recommends that you adopt a file-naming standard for your
site. This standard should reflect data about the file contents, such as the file
number or file description, and link to specific entries in the DICTIONARY. For
example:

Model 204 files made up of multiple data sets or that are part of a group should
follow a consistent naming scheme. For example:

CREATE FILE EMPLOYE FROM EMP000l. EMP0002...
CREATE PERM GROUP ACCT FROM ACTPROC.ACTDATA

Data set names

Follow these rules when naming the physical data set, as it is known to the
operating system:

• Use an identifier to indicate that the file is a Model 204 file. Distinguish
between live and dump files.

• Use a name that incorporates the Model 204 filename.

• Where applicable, use a name that contains an application or data
identifier.

• Use a name that identifies whether the file is a test or a production file.

• To ease conversion from test to production systems, use the same Model
204 filename in all Model 204 copies at your site (for example, between test
and production copies). This also simplifies file maintenance.

• If your site has both data and procedure files, clearly distinguish between
the two.

Application ID: PER

Numeric File ID: 0001

File Description: Personnel Data

DDNAME/Model 204 Name: PER0001
2 Rocket Model 204 Application Development Guide

For example, your site uses these identifiers:

You then set up your file system based on the identifiers:

Procedure names

Procedure names can describe the business function that they support, such
as ADDPART, CHGPART, and so on, or they can meet standards already in
Place: XG2104, BA101A77, for example.

Document all procedure names in the DICTIONARY with appropriate entries.

If multiple subsystems share the same procedure file, use the subsystem name
as part of the prefix to distinguish among procedures from different
subsystems.

When using the application subsystem facility, you must use a prefix to
distinguish between precompiled and nonprecompiled procedures. Technical
Support recommends using P. and N. prefixes for precompiled and
nonprecompiled procedures. For example:

Fieldnames

Limit the length of fieldnames to 20 characters. This is long enough to allow a
meaningful name, but not so long as to be unwieldy. An advantage to having a
formal fieldname length limit is to simplify passing fieldnames in %variables
where you must declare the length of passed arguments. If a fieldname never
exceeds 20 characters, you can safely set the %variable length to 20 and not
worry about truncating the fieldname.

Department System within the Department

PER Personnel BEN Benefits

ACT Accounting GL General Ledger

M204 Filename Type Data Set Name

BEN0001 Live file (Test) PER.TEST.BEN0001.M204

GL00011 Live file ACT.PROD.GL00011.M204

BENDMP1 Dump file PER.PROD.BEN0001.DUMP

BENPRC1 Proc file PER.PROD.BENPRC1.M204

GLPRC3 Proc file ACT.PROD.GLPRC3.M204

P.DAILYAVG N.TABLESRT

P.DEL.REC N.OPEN.PROC

P.ADD.STORE N.PER.SETUP
Model 204 Naming Conventions 3

The recommended characters for fieldnames are A-Z, 0-9, period (.), and
underscore (_). Using any other special characters, especially spaces, makes
the fieldname more difficult to read and isolate within a program.

When possible, call the same field by the same name if it exists in more than
one file, especially if the files are likely to be grouped and used as a logical unit.

Never use reserved words in fieldnames. The reserved words in Model 204 are
listed in Table 1-1.

%Variables

Keep %variable names under 20 characters and make them understandable to
other users. For example:

%DATE = $DATE
%ACCT = Account number
%CLIENT.ID = Client ID number

When creating %variables to hold the values of global variables, use a G. prefix
followed by the name of the global variable. For example:

%G.CTL = $GETG (’CTL’)

Separate long or multipart names with periods. For example:

Statement labels

Limit statement labels to 20 characters and use them wisely. Use statement
labels rather than line numbers in new applications.

Table 1-1. Model 204 Reserved Words

AFTER END OR EQ

ALL FROM RECORD GE

AND IN RECORDS GT

AT IS TAB LE

BEFORE LIKE THEN LT

BY NOR TO NE

COUNT NOT VALUE

EACH OCC WHERE

EDIT OCCURRENCE WITH

Data Fieldname %Variable

Client number CLIENT.NO %CLIENT.NO

Client address CLIENT.ADDR %CLIENT.ADDR
4 Rocket Model 204 Application Development Guide

However, Technical Support recommends that you do not try to modify a
numbered application to include a mixture of statement numbers and statement
labels. If you mix statement labels and statement numbers, or incorrectly
modify an application, you might cause Model 204 to branch incorrectly.

To restrict the use of statement numbers at your site, set FOPT to X’80'. For
more information, see the Model 204 File Manager’s Guide.

Statement labels must:

• Start with an alphabetic character (A-Z)

• Contain only A-Z, 0-9, period (.), or underscore (_)

• End with a colon and space (:)

For example:

FD.MARKETS:
 FIND ALL RECORDS FOR WHICH...

CT.COMP.REC:
 COUNT RECORDS IN FD.COMP.REC...

DATE_MATCH:
 FIND ALL RECORDS...

Use consistent names throughout a procedure. Technical Support
recommends using standard prefixes for all applications such as FD. for FIND
statements, CT. for COUNT statements, and so on. For example:

Statement labels are required under the following conditions:

• A statement that is referred to by another statement within a procedure, as
in a COUNT RECORDS IN label statement.

• A statement that follows a FIND or STORE statement and does not have
an END statement. Technical Support strongly recommends, however,
using an END statement instead.

Although not required, statement labels may be useful in the following cases:

• FIND statements (except FIND ALL VALUES)

• FOR loops

• STORE

FD.WELL.NAME: FIND RECORDS

CT.WELL.NAME: COUNT RECORDS

SRT.WELL.NAME: SORT RECORDS

FDR.WELL.NAME: FIND AND RESERVE RECORDS
Model 204 Naming Conventions 5

• ON

• Subroutines

Subroutines

Begin subroutine labels with the prefix SUB or with the first three characters of
the subroutine name. Once your site picks a style, be consistent.

Simple subroutines

Begin the names of %variables unique to a subroutine with a %SUB prefix, or
with the first three characters of the subroutine name. For example:

%SUB.WELL.DATE
%WEL.DATE

Complex subroutines

To avoid conflicts in subroutine names, prefix all subroutines that reside in a
procedure file outside your current file with a name unique to the procedure file.
For example, if you have a procedure file containing various subroutines used
for printing out data and named PRTSUBS:

PRTSUBS.SALES
PRTSUBS.REGION

Distinguish between internal and external subroutines. Use, for example, an IN
and an EX prefix to differentiate between the two:

IN.WELL.DATE
EX.PRT.RECS

Other naming convention considerations

Make screen, menu, and report names reflect the business function performed.
For example, you may want to name a menu used to add employee information
EMP.INFO.MENU or a quarterly sales report QTR.SALES.RPT.

When using a record type field to distinguish between different record types
within the same file, abbreviate the rectype name, but keep it meaningful and
descriptive of the record's content. This helps make the data self-descriptive.

For example, in the Model 204 demonstration database, there are two types of
records in the CLIENTS file. They are RECTYPE = POLICYHOLDER, for the
records containing information about the holder of the insurance policy, and
RECTYPE = DRIVER for records about every driver listed on any insurance
policy.
6 Rocket Model 204 Application Development Guide

2
Recommended Coding
Guidelines

Model 204 provides you with a versatile set of application development tools.
This chapter provides suggestions on how to use Model 204 features to create
efficient applications.

In this chapter

This chapter has the following sections:

• Sample coding structure

• Using comments

• Using commands

• Declaring %variables

• Using $functions

• Using the IF statement

• Finding records efficiently

• Committing records

• Releasing records

• Using the IN clause

• Using lists

• Sorting records

• Using subroutines
Recommended Coding Guidelines 7

Sample coding structure

Table 2-1 lists and describes elements of User Language code.

Using comments

Use comments, but keep them concise. Comments must be preceded by at
least one asterisk (*) .

Note: Do not use symbols that can be misconstrued as
dummy strings (??, ?&, ?S), even within comments. If you do, Model 204 treats
them as dummy strings and gives you unexpected results. Also, do not end
comments with a hyphen, because this also comments out the line following the
comment.

The following formats for comments are suggested:

* INCLUDE VALIDATION SUBROUTINE FOR PART NUMBER *

IN PROCLIB INCLUDE SUB.PART.VAL

Or,

Table 2-1. Sample Coding Structure

Comments General description of program function

Commands If not precompiled; for example, UTABLE

BEGIN

Declare %Variables Declare all %variables

ON Units Control errors, attention, locking conflicts; may be an
INCLUDE statement

Screen definitions Define instream and included screens

Initialize %Variables Assign values, get globals

Dialog Control Read screen and input commands, process PF keys, get
input data, perform edits, make audit entries

Record Selection
Control

Process Finds, Sorts, Lists

File Update Logic Store, change, delete, add, commit

Exit Logic Set globals, jump to start of current procedure, advance to
next procedure, make audit entries

Subroutines Define instream subroutines

Includes Include non-instream subroutines and screen definitions

END
8 Rocket Model 204 Application Development Guide

/? INCLUDE VALIDATION SUBROUTINE FOR PART NUMBER ?/
IN PROCLIB INCLUD SUB.PART.VAL

Using commands

When using commands within procedures:

• Try to confine commands to the subsystem initialization procedure.

• Set UTABLE parameters in the login procedure; especially if most
procedures require the same general server size. Change individual
procedures as needed, but be sure to reset the parameters. Use the TIME
REQUEST command to obtain suggested values for table settings to help
optimize the performance.

• Keep track of any system-level parameters that you set; that is, RESET
MCPU, MBSCAN, ERMX. You can monitor system-level parameters from
the audit trail.

• If you change parameters before a program is executed, or before control
is transferred to another subsystem, remember to change them back
afterward (for example, UTABLE under the application subsystem facility).
This helps avoid runtime execution errors.

Declaring %variables

Although Model 204 allows you to implicitly declare %variables, Technical
Support strongly suggests that you declare all variables as one section of code
at the beginning of a procedure or standard subroutine. To ensure that all
%variables are declared, set VLEN to 0, or (for Version 2, Release 1.0 users)
specify VARIABLES ARE UNDEFINED.

Use declaration statements to specify:

• Type of %variable

• %variable length and number of decimal places

• Number of elements (array %variables)

• Use of the NO FIELD SAVE feature (optional)

For calculations other than basic integer arithmetic, we recommend specifying
numeric %variables as FLOAT.

When declaring array %variables, use index loops. Also, use the NO FIELD
SAVE option whenever possible to save space and to indicate that the
%variable will not be used as a fieldname. For example:

BEGIN
 VARIABLE %X IS FLOAT
 VARIABLE %NAME IS STRING LEN 20 ARRAY (10) NO FIELD
SAVE
 SCREEN SELECT
Recommended Coding Guidelines 9

 PROMPT 'NAME' LEN 10 INPUT NAME LEN 20
 END SCREEN FOR %X FROM 1 TO 10
 READ SCREEN SELECT
 %NAME (%X) = %SELECT:NAME
 END FOR
END

Using $functions

The $functions that are supported by Model 204 are documented in the Model
204 User Language Manual. Many other $functions are available through the
User Group and other sources. Test unsupported $functions thoroughly before
you use them.

Call $functions like $DATE only once per request. All $functions incur some
overhead, and because the date rarely changes during a run, it is more efficient
to establish the value once and, if you need to reference the value again, place
the result of the call in a %variable.

You can eliminate the need to use $SUBSTR to retrieve the first n characters
of a value by assigning the original value to a variable of the correct length. This
method makes the code more difficult to read and update, but it saves CPU
time. For example:

BEGIN
%A IS STRING LEN 2
%B IS STRING LEN 10
%B = '1234567890
 %A = %B
 PRINT '%A = ' WITH %A
END

%A = 12

If a situation involves repeated calls to a User Language $function, you can
save CPU time by resolving the $function to a %variable and then calling the
%variable. For example, recode the following statement:

IF $SUBSTR (MAKE.1.3) EQ 'FOR' OR $SUBSTR(MAKE 1.3)
EQ 'COM'...

to read:

%MAKE = S$SUBSTR (MAKE.1.3)
IF %MAKE EQ 'FOR' OR %MAKE EQ 'COM'...

This saves time both by referencing the $function, $SUBSTR, and the field,
MAKE, only once.
10 Rocket Model 204 Application Development Guide

Using the IF statement

When using IF statements, always use the IF...THEN...END IF format. That is,
always end the statement with an END IF, and always use the THEN. This
makes the statement easier for other people to read and update.

Formatting IF statements

Format IF statements as follows:

IF condition THEN
.

.

.

END IF

Use consistent operator syntax, that is, do not mix symbols and abbreviations.
For example:

IF AGE LT 25 AND WEATHER EQ 'RAINY' THEN

or

IF AGE < 25 AND WEATHER = 'RAINY' THEN

Indent the operational logic. For example:

IF %A EQ 'X' THEN
 PRINT %A
END If

Always use a continuation hyphen to segment compound conditionals. For
example:

IF %A EQ 'X' AND -
 %B EQ 'Y' THEN
 %C = %A
END IF

Keep your IF statements as simple as possible:

• Avoid unnecessary statement label branching.

• Avoid using negative logic.

Evaluating IF statements

The condition following the IF statement is always evaluated to zero or
nonzero. Therefore, it is more efficient to use the expression IF %N rather than
IF %N NE 0 and, conversely, IF NOT %N rather than IF %N = 0.
Recommended Coding Guidelines 11

If you are evaluating a number of not equal (or equal) comparisons against a
known set of values, (that is, IF %A NE 'A' and %A NE 'B'...), then use the
following syntax. This uses about half the CPU time as well as reducing the
amount of needed NTBL, QTBL, and VTBL:

IF NOT $ONEOF (%A, 'A/B/C/D','/') THEN...

Using %variables in IF statements

IF statement expressions are rendered more readable by using meaningful
%variable names, label names, or $functions such as $ONEOF or $INDEX to
describe the condition. For example, the sample IF statement in the previous
section is clearer when written as:

IF NOT $ONEOF (%VALID.DATA, 'A/B/C/D','/) THEN...

If you have a complex condition that is used several times in a procedure, you
can create a fixed %variable and refer to the entire condition under that
%variable name. For example:

CTRECS:
 COUNT RECORDS IN FDRECS
 IF NOT COUNT IN CTRECS THEN
 PRINT 'NO RECORDS FOUND'
 END IF
 .
 .
 .

 ** EVALUATE IF CONDITION *

 %VALID.DATA = (COUNT IN CTRECS) AND (%FLD = 'VAL')
 IF %VALID.DATA THEN
 .
 .
 .
 IF %VALID.DATA AND %1 = 5 THEN
 .
 .
 .

Using the computed JUMP TO

If an IF statement threatens to get too complex, think about using a computed
JUMP TO statement. Consider the next two examples.

Using ELSEIF without the JUMP TO:

%OPTION = OPT
 IF %OPTION EQ '1' THEN
12 Rocket Model 204 Application Development Guide

 JUMP TO OPT1
 ELSEIF %OPTION EQ '2' THEN
 JUMP TO OPT2
 ELSEIF %OPTION EQ '3' THEN
 JUMP TO OPT3
 END IF
OPT1: ... process option 1
OPT2: ... process option 2
OPT3: ... process option 3

Using the computed JUMP TO:

%OPTION = OPT
 JUMP TO (OPT1, OPT2, OPT3) OPT

 ** INVALID OPTIONS FALL TO HERE **

 PRINT 'INVALID OPTION'
 JUMP TO CHECKED
 OPT1: ... process option 1
 OPT2: ... process option 2
 OPT3: ... process option 3
 CHECKED: ... end of jump to

ELSE IF vs. ELSEIF

Model 204 uses both the ELSEIF and ELSE IF statements. The differences in
use are as follows:

• ELSE IF functions as a nested IF statement. Note that for ELSE IF, each IF
requires an END IF statement. For example:

IF A > B THEN
 A = A - 1
ELSE IF B > C THEN
 C = C + 1
END IF
END IF

• For ELSEIF, only one END IF is required. For example:

IF A > B THEN
 A = A - 1
ELSEIF A < B THEN
 A = A + 1

** ELSE A = B **

END IF
Recommended Coding Guidelines 13

Finding records efficiently

Use The Model 204 FIND statement to search for specified information in your
database. In general, use the FIND on fields that are defined as KEY or:

NUMERIC RANGE
HASHED
SORT KEY (SFGES. SFLS)
ORDERED

If you must search on a nonkey field, try to pair the FIND with a Boolean AND
using a key field as the other search criterion. The key field search is performed
first, which means (ideally) that there are fewer records in the set requiring a
Table B search. This helps minimize Table B access. You might also want to
consider redefining fields so that they meet the more efficient search criteria.

In the following example, NAME is nonkey and RECTYPE is key. The
RECTYPE = DRIVER records are evaluated first using the KEY indices; NAME
is then ANDed by performing a Table B search on each record in the RECTYPE
= DRIVER set.

FD NAME = JANSSEN AND RECTYPE = DRIVER

Think about other methods of shortening or eliminating Table B searches.
Among them:

• Keep the found set small if you are doing a scan.

• When building a system, if you know that a field will be used to find sets of
records, define the field as KEY or one of the types listed above.

• Like the nonkey search, pair IS PRESENT with a Boolean AND and a key
field when doing a FIND to minimize the number of records that require a
sequential Table B search

• Limit nonkey searches by setting the MBSCAN parameter.

Whenever possible, use the results of previous FIND statements. This
eliminates repeating I/O and CPU processing time already done for the first
FIND. The following statement shows how to access a previous FIND:

FIND ALL RECORDS IN label FOR WHICH fieldname = value

In situations where you perform FINDs using both %variables and constants,
put the constant terms (that is, terms without %variables or %%variables) into
a separate FIND that is only executed once. Let the %%variable FIND access
the previously found set. For example:

BEGIN
FD.MAKE:
 FIND ALL RECORDS WHERE MAKE = FORD
 END FIND
**
14 Rocket Model 204 Application Development Guide

** PROMPT FOR FIELDNAME =VALUE PAIR **
**
 %FIELD = $READ ('ENTER FIELDNAME:')
 %VALUE = $READ ('ENTER VALUE:')
FD.VALUE:
 FIND ALL RECORDS IN FD.MAKE FOR WHICH -
 %%FIELD = %VALUE
 END FIND
 FOR EACH RECORD IN FD.VALUE
 PRINT VIN
 END FOR
END

Field attributes that affect the way a file is accessed during a FIND are
described in Table 2-2.

The chart below can help you use FIND efficiently when you are writing
requests or creating fields. The FIND is performed on the value '12345'.

The codes are as follows:

• B = Table B Search

• C = Table C Index

• R = Numeric Range Index

• O = Ordered Index

Consult the following table.

Table 2-2. Field Attributes Affected by Searches

Field Attribute Description

Non-KEY,
non-ORDERED

• Table A for field code validation (during compilation

• Table B direct file search

KEY • Table A for field code validation (during compilation)

• Table C for information (hashed access)

• If not single record entry Table D for list or bit map

ORDERED • Table A for field code validation (during compilation)

• Table D or B for tree access

Table 2-3. FIND Statement Efficiencies

FIND syntax Key

Key
Ord
Char

Key
Ord
Num

NKey
Ord
Char

NKey
Ord
Num

Key
NR

NKey
NR

= C C C O O C B

IS (EQ) B B O B O R R
Recommended Coding Guidelines 15

IS GE B B O B O R R

IS LE B B O B O R R

IS GT B B O B O R R

IS LT B B O B O R R

IS BEFORE B O B O B B B

IS AFTER B O B O B B B

IS NUM B B O B O R R

IS NUM GT B B O B O R R

IS NUM
BEFORE

B B O B O R R

IS NUM AFTER B B O B O R R

IS IN RANGE B B O B O R R

IS NUM IN
RANGE

B B O B O R R

IS BETWEEN B B O B O R R

IS NUM
BETWEEN

B B O B O R R

(IS) LIKE B O B O B B B

IS ALPHA B O B O B B B

IS ALPHA GT B O B O B B B

IS ALPHA
BEFORE

B O B O B B B

IS ALPHA
AFTER

B O B O B B B

IS ALPHA IN
RANGE

B O B O B B B

IS ALPHA
BETWEEN

B O B O B B B

IS PRESENT B B B B B B B

Table 2-3. FIND Statement Efficiencies (Continued)

FIND syntax Key

Key
Ord
Char

Key
Ord
Num

NKey
Ord
Char

NKey
Ord
Num

Key
NR

NKey
NR
16 Rocket Model 204 Application Development Guide

Committing records

The COMMIT statement ends updating, commits the updated information to the
file, and allows a checkpoint. Commit your records at the end of completed
transactions.

The two forms of the COMMIT statement are:

If your site updates records frequently and in high volume, be sure that your
requests commit records at regular intervals. (Depending on the size of the
records, commit no less than every 500 records as a rule of thumb.)

Releasing records

The RELEASE statement relinquishes control of a found set of records.

Use RELEASE as soon as you no longer need a found set, sorted set, or list.

The two forms of the RELEASE statement are:

It is generally safer to use the RELEASE RECORDS IN label syntax to avoid
inadvertently releasing records that you are still processing.

Using the IN clause

The IN clause explicitly identifies the current file or group that is being
processed. The advantage of using the IN clause is that you can retain the
procedure file as the default file. In addition, using the IN clause helps clarify
User Language code by explicitly naming the file being processed.

Because the IN clause allows you to specifically name a file or group, Technical
Support recommends that you use this clause in:

• FIND statements

• INCLUDE statements

• LIST statements

• Commands

COMMIT Leaves lists and found sets of records intact. COMMIT can
be used within a FOR EACH RECORD loop.

COMMIT RELEASE Releases all found sets of records. You must use COMMIT
RELEASE outside of a FOR EACH RECORD loop.

RELEASE RECORDS IN label Releases records in the found set at the
specified statement label.

RELEASE ALL RECORDS Releases records in all found sets, sorted sets,
and lists.
Recommended Coding Guidelines 17

• STORE RECORD statements

• CLEAR LIST statements

Always use the IN clause when processing a multiple file application. For
example:

OPEN DAILY
OPENC CLIENTS
 password
OPENC CLAIMS83
 password
BEGIN
FD.CLAIM:
 IN CLAIMS83 FIND ALL RECORDS WHERE...

Using lists

Technical Support recommends using lists to process inquiry and report
procedures. Place the records on the list as soon as possible. If you are not
updating records on the list, release the found set as soon as you have
established the list using the RELEASE RECORDS statement.

Records placed on a list are not necessarily locked; and any lock associated
with the records results from their original found set. Nor does placing records
on a list unlock them (only a RELEASE RECORDS statement accomplishes
this). Therefore, if you place records on a list and then release the found set,
you can retain the list for future processing. In this case, however, you cannot
guarantee that the records will remain unchanged between the FIND and any
subsequent processing statements.

When processing multiple files, you must first clear the list using the IN filename
clause to establish list context and to prevent invalid cross-reference errors. For
example:

IN filename CLEAR LIST listname

Clear lists as soon as you are done processing them using one the following
statements:

Remove records from a list using:

REMOVE RECORDS IN label FROM LIST listname

REMOVE RECORDS ON listname 1 FROM listname2

RELEASE ALL RECORDS To clear all lists

COMMIT RELEASE To clear all lists

CLEAR LIST listname To clear a specified list

RELEASE RECORDS ON listname To clear a specified list
18 Rocket Model 204 Application Development Guide

Sorting records

When sorting records, keep the found set as small as possible. If you are
sorting large sets of records, think about using a sorted file structure,
ORDERED or FRV attribute, or even a sorting package.

When sorting numeric fields, you must specify the NUMERIC attribute. Try to
keep numeric fields under 64 significant digits.

Technical Support recommends that you always specify whether you want to
sort a field in ascending or descending order by specifying ASCENDING or
DESCENDING in the SORT syntax for each fieldname. This helps make the
code more explicit for future users.

You can sort records in found sets and on lists; however, records in a sorted set
cannot then be placed on a list. Also, you cannot directly update sorted records;
you must first perform a FIND or use the FOR RECORD NUMBER statement
within a FOR loop.

If you do want to update sorted records, you can use the SORT k RECORD
KEYS statement to generate a set of records sorted by specified keys. Because
these records contains record numbers, you can update records in this set via
the FOR RECORD NUMBER statement. For more information, see the Model
204 User Language Manual.

FOR processing begins with the current record in the sorted set.

Using subroutines

Use subroutines to separate frequently executed logic and to segment requests
for better readability. Simple subroutines are the most efficient way to segment
frequently executed code

Use comments within a subroutine to explain the purpose and function of the
subroutine, inputs and output, and to name the place(s) from which it is called.

Declare the %variables specific to a subroutine before the subroutine
statement to ease maintenance and readability.

To make the code easier to read and maintain, try not to nest subroutines; that
is, do not call one subroutine from within another.

Similarly, avoid including procedures that include other procedures, because
this makes locating all the source code virtually impossible. One exception to
this is for sets of subroutines that are often included together; in this case, you
can create a procedure that consists only of INCLUDE statements.

Table 2-4. Sample Subroutine Structure

Subroutine Element Description

SUBROUTINE
SUB.name (parameters)

Names a complex subroutine
Recommended Coding Guidelines 19

To make complex subroutines easier to read, place the subroutine name and
each %variable name on a separate line (except for the CALL statement).
Remember to end each continued line with a hyphen. For example:

SUBROUTINE BINARY.SEARCH (-
 %SRT.ARRAY IS STRING ARRAY (*)
 %VALUE IS STRING LEN 20
 %SUBSCRIPT IS FIXED OUTPUT)

Using %variables In complex subroutines

COMMON %variables, if properly used, can save NTBL and VTBL space.
When naming COMMON %variables, use the subroutine name in which the
%variable is first declared before each COMMON declaration. This helps to
ensure that the %variable is not used inadvertently in other routines. For
example:

DECLARE %PRINT.RECORDS.NRECS IS FIXED COMMON

When using string %variables in complex subroutines, follow these rules:

• For STRING SCALARS, always specify LEN rather than depending on the
VLEN setting.

• For STRING ARRAYS, do not specify LEN; the length of the calling routine
is always used.

• For arrays, if NO FIELD SAVE is specified on the formal parameter, then it
must also be specified on the actual parameter.

• When using screen or database variable name %variables, you must
convey the context to the subroutine through referencing (see below).

Note: Screen and Image items can be used as input into complex subroutines,
but they cannot be used for output.

label: subroutine Names a simple subroutine

Comments Describes functions including the name(s) of the calling
program(s)

Declare %variables Assigns %variables, gets globals

Process logic Specifies any User Language statements that are used
by multiple requests

Exit logic Sets globals, controls %variables and results of
computations, and so on

END SUBROUTINE Ends the subroutine

Table 2-4. Sample Subroutine Structure

Subroutine Element Description
20 Rocket Model 204 Application Development Guide

Using dummy strings in subroutines

For nonapplication subsystem facility subroutines that contain file or group-
specific statements such as FOR EACH RECORD, FOR EACH VALUE, or
FIND, but where the file or group can vary, use dummy strings on any line
where the filename is needed. The following example shows mixed use of both
?? and ?& dummy strings to prompt for a filename and then use that file within
the procedures. The use of dummy strings is governed by the SUB and
PROMPT parameters. See the Model 204 User Language Manual and the
Model 204 Parameter and Command Reference for more information about
using dummy strings in procedures and for information about the SUB and
PROMPT parameters.

This example consists of three procedures: SETNAME, which finds the
filename; MAKELIST, which places the desired records on a list; and
PRINT.REC, which prints the records.

The advantage of using dummy strings in this instance is that you can change
both the file and the field value easily (with modifications, this example can also
allow for changes in the fieldname).

** PROCEDURE SETNAME **

BEGIN

** SET GLOBAL TABLE WITH NAME OF FILE. IF FULL, QUIT **

SETGFT:
 IF SSETG ('FILE'.'??FILENAME') AND SSETG ('CON-
TINUE'.'Y') -
 THEN
 PRINT 'GLOBAL TABLE IS FULL'
 PRINT 'YOUR REQUEST HAS BEEN STOPPED'

 ENDIF
END MORE

** IF IT PASSES, GO TO MAKELIST **

IF CONTINUE = Y, MAKELIST

** PROCEDURE MAKELIST **

MORE
DECLARE LIST NAME.LIST IN FILE $&FILE

** PROMPT FOR NAME **

FDNAME:
Recommended Coding Guidelines 21

 IN $&FILE FD LASTNAME = ?$LASTNAME
END FIND

** PUT FOUND SET ON LIST **

 PLACE RECORDS IN FDNAME ON LIST NAME.LIST
**
** CALL SUBROUTINE TO PRINT RECORDS **
**
 CALL PRINT.RECORDS (LIST NAME.LIST)
 INCLUDE PRINT.REC

** PROCEDURE PRINT.REC **

SUBROUTINE PRINT.RECORDS (LIST NAME.LIST IN FILE ?&FILE)
FRPAI:
 FOR EACH RECORD ON LIST NAME.LIST
 PRINT ALL INFORMATION
 END FOR
END SUBROUTINE
22 Rocket Model 204 Application Development Guide

3
Managing Record Locking

Record locking controls the access and maintains the integrity of the data within
the record. A record-locking conflict occurs when multiple users try to access
the same records in a file for update.

This chapter discusses record-locking conflicts and how to prevent and
manage them.

In this chapter

This chapter has the following sections:

• Locking conflict example

• Types of record locks

• Using ON units

• Using FIND AND RESERVE

• Coding RETRY counters

• Ensuring file integrity

• Controlling record locking problems

Locking conflict example

The example below shows two requests that cause a record-locking conflict;
user #2 cannot update the record until user #1 releases it.

Request #1:

BEGIN
%NAME = 'HADRIAN WALL'
FD.NAME:
Managing Record Locking 23

 IN EMPLOYEES FIND ALL RECORDS FOR WHICH
 EMPLOYEE = %NAME
 END FIND
 FOR EACH RECORD IN FD.NAME
 PRINT JOB.TITLE AT 10 AND DIVISION AT 20
 END FOR
END

Request #2:

BEGIN
%NAME = 'HADRIAN WALL'
%JOB = 'HRD REP'
FD.NAME:
 IN EMPLOYEES FIND ALL RECORDS FOR WHICH
 EMPLOYEE = %NAME AND
 JOB.TITLE = %JOB
 END FIND
 FOR EACH RECORD IN FD.NAME
 CHANGE JOB.TITLE TO 'SR. HRD REP'
 END FOR
END

In the example shown above, user #2 receives the following message:

RECORD ENQUEUING CONFLICT
DO YOU WANT TO CONTINUE?

Types of record locks

Locking, or enqueuing, can occur in a variety of circumstances depending on
the type of file activity:

• A share lock (SHR) occurs for users with read access. All users can read a
record, but no user has update access to it.

• An exclusive lock (EXC) occurs for users who are updating records. When
records are exclusively locked, no other user has any access.

User Language statements create record locks as described in Table 3-1.

Table 3-1. User Language locks

UL Statement Non-TBO Files TBO Files

FIND SHR LOCK on found set Same

FIND AND PRINT COUNT SHR LOCK on found set Same

FIND AND RESERVE EXC LOCK on found set Same

FIND WITHOUT LOCKS No lock Same
24 Rocket Model 204 Application Development Guide

Using ON units

ON units, which allow you to perform an action on certain conditions, can be
used for a number of different purposes within Model 204 code.

Two ON unit statements can be used in situations where record-locking
conflicts might occur:

To help manage record-locking conflicts, include either an ON RECORD
LOCKING CONFLICT or an ON FIND CONFLICT unit in every request in which
you issue a FIND. If a procedure contains both ON RECORD LOCKING
CONFLICT and ON FIND CONFLICT units, the ON FIND CONFLICT
statement takes precedence for FIND conflicts.

If a FIND statement fails, that is, triggers an ON unit, no locks are held for that
statement. Therefore, if an ON FIND CONFLICT is triggered during a group
find, record locks are released for all files in the group.

ON RECORD LOCKING CONFLICT units can be reset throughout a program
to handle conflicts in different ways. Remember that the last executed ON unit
remains active until either the next ON unit is executed or the end of the request
is reached.

Use ON FIND CONFLICT or ON RECORD LOCKING CONFLICT to ensure
that any attempt by a FIND statement to get share access triggers the ON unit,

CHANGE fieldname
ADD fieldname
INSERT fieldname
DELETE fieldname

EXC LOCK on current
record in FOR loop until
end of current loop

Additional EXC LOCK
until COMMIT

DELETE RECORD EXC LOCK on current
record in FOR loop until
end of current loop

Additional EXC LOCK
until COMMIT

DELETE RECORDS IN EXC LOCK on found set
of records from the FIND

Same

STORE RECORD EXC LOCK on single
record

Additional EXC LOCK
until COMMIT

PLACE RECORDS ON LIST No lock Same

SORT RECORDS No lock Same

Table 3-1. User Language locks

UL Statement Non-TBO Files TBO Files

ON FIND CONFLICT Handles conflicts that occur during FIND or
FOR EACH RECORD statements when
used to retrieve records.

ON RECORD LOCKING
CONFLICT

Handles all types of conflicts that might arise
during an attempt to lock records.
Managing Record Locking 25

if the records desired are already held in exclusive status by some other user.
The records are held in share status during FOR EACH RECORD loop
processing unless they are updated, in which case the lock is changed to
exclusive. If the records are to be updated, Technical Support recommends that
you use an ON RECORD LOCKING CONFLICT unit, because ON FIND
CONFLICT is not triggered when the share lock is changed to exclusive.

In the following example, Model 204 places the found set of records in share
status but allows other users shared access as well. As a result, no one user
can gain the exclusive access needed for updating. This method guarantees
that data in these records cannot be changed while this procedure examines
and displays them. When using techniques, be sure to release the records as
soon as possible to allow access by other users.

BEGIN
 SET HEADER 1 'RECORD STATUS REPORT'
 SET HEADER 2
 NEW PAGE
.
.
.
ON FIND CONFLICT
 AUDIT 'LOCK CONFLICT WITH $RLCFILE $RLCUSR $RLCREC
 READ OFC

 ** WHERE OFC IS A SCREEN DEF **
 ** INCLUDED IN PROCESSING ABOVE **

 IF %OFC:ANSWER EQ 'Y' THEN
 RETRY
 ELSE JUMP TO FINISH
 END IF
END ON
FD.ACCT:
 FIND ALL RECORDS
END FIND
CT.ACCT:
 COUNT RECORDS IN FD.ACCT
 IF COUNT IN CT.ACCT EQ 0 THEN
 JUMP TO FINISH
 END IF
 FOR EACH RECORD IN FD.ACCT
 PRINT ALL INFORMATION
 END FOR
RELEASE RECORDS IN FD.ACCT
SKIP 2 LINES
PRINT 'END OF REPORT'
FINISH:
 END
26 Rocket Model 204 Application Development Guide

The next example still provides read-only access, but the records can be
deleted or field values changed between the time the FIND statement is issued
and the current time of processing. Note that the IF statement is used within the
FOR EACH RECORD loop to validate that the record has not been deleted and
that the original FIND criteria have not changed. If changes have occurred, then
the body of the IF statement is not processed.

BEGIN
.
.
.
ON FIND CONFLICT
AUDIT 'RECORD LOCKING CONFLICT CANCELLED' WITH -
 $RLCFILE $RLCUSR $RLCREC
JUMP TO PRT.ERROR
END ON
FD.ACCT:
 FIND ALL RECORDS FOR WHICH ACCT = '23643'
END FIND
CT.ACCT:
 COUNT RECORDS IN FD.ACCT
 IF COUNT IN CT.ACCT EQ 0 THEN
 PRINT 'NO RECORDS FOUND'
 JUMP TO FINISH
 END IF

 ** PUT RECORDS ON LIST **

 PLACE RECORDS IN FD.ACCT ON LIST ACCTS

 ** RELEASE THEM **

 RELEASE RECORDS IN FD.ACCT
 FOR EACH RECORD ON LIST ACCTS
 IF TYPE EQ 'BILLABLE' THEN
 PRINT NAME
 %CALC = %CALC + AMOUNT + 2
 PRINT %CALC TO 20
 END IF
 END FOR
 JUMP TO FINISH
PRT.ERR:
 PRINT 'YOUR REQUEST IS CANCELED'
 WITH 'DUE TO A RECORD LOCKING CONFLICT'
FINISH:
 END
Managing Record Locking 27

Using FIND AND RESERVE

FlND AND RESERVE locks the current set of records in exclusive mode and
is, therefore, recommended when executing update requests.

However, Technical Support recommends that you observe the following
prohibitions:

• Do not reserve records across terminal I/O (READ SCREEN, for example).

• Do not reserve records during single-threaded (batch) updating.

To update a large set of records without locking the entire set, place the records
to be updated on a list, and then issue a FIND AND RESERVE on each record
as you update it. Whenever you use the FIND AND RESERVE statement, be
sure to release the records with one of the following statements:

• RELEASE

• COMMIT RELEASE

Coding RETRY counters

If a FIND AND RESERVE statement encounters a locking conflict, the ON unit
can either retry or end the request. If you use RETRY, use it with a counter.
Increment the counter each time you retry, and cancel the request after a
certain number of times. This prevents an infinite retry loop.

If you use a RETRY counter more than once in a program, remember to reset
the counter to zero before each FIND AND RESERVE statement. If the FIND
is within an outer FIND loop, you must create a new counter to monitor these
iterations as well.

The following example shows the code for a screen that appears when Model
204 encounters a record-locking conflict. This example sets a RETRY counter
and cancels the RETRY after a specified number of attempts.

BEGIN

** IN CASE OF RECORD CONFLICT ASK USERS IF THEY WANT **
** TO TRY AGAIN. CANCEL AFTER 25 USER ATTEMPTS. **
** AUDIT EACH ATTEMPT TO THE JOURNAL. **
** ON RECORD LOCKING CONFLICT SCREEN **

SCREEN ORLC
TITLE 'UNABLE TO ACCESS REQUESTED RECORDS' AT 24 BRIGHT
SKIP 3 LINES
PROMPT 'CONFLICTING USER:' PROMPT USER
PROMPT ' FILE:' PROMPT FILE
PROMPT ' RECORD:' PROMPT RECORD
SKIP 2 LINES
PROMPT 'DO YOU WANT TO TRY AGAIN?' INPUT
28 Rocket Model 204 Application Development Guide

 TRY ONEOF Y,N DEFAULT 'N'
END SCREEN
ORLC:
 ON RECORD LOCKING CONFLICT

 ** WRITE LOG TO AUDIT TRAIL **

 %RECORD = $RLCREC
 %FILE = $RLCFILE

 %USER = $RLCUSR
 AUDIT = 'RECORD LOCKING CONFLICT DURING DEPT -
 PROCESSING' WITH %RECORD %FILE %USER

 ** SET COUNTER **

 %COUNTER = %COUNTER + 1

 IF %COUNTER EQ 25 THEN

 BACKOUT

 PRINT '**** REQUEST CANCELLED ****'
 %COUNTER = 0

 JUMP TO FINISH

 END IF

 ** ASK IF USER WANTS TO TRY AGAIN **

 %ORLC:RECORD = %RECORD
 %ORLC:FILE = %FILE
 %ORLC:USER = %USER
 READ SCREEN ORLC
 IF ORLC:TRY EQ 'Y' THEN
 RETRY
 ELSE
 PRINT '**** YOUR REQUEST HAS BEEN CANCELLED****'
 JUMP TO FINISH
 END IF
 END ON

 ** FIND ACCT RECORDS FOR EACH DEPT **

 FD.ACCT:
 FIND AND RESERVE ALL RECORDS FOR WHICH -
 DEPT = ACCOUNT
 END FIND
 PROCESS:
 FOR EACH RECORD IN FD.ACCT
 CHANGE CORRECTED TO 'YES'
 END FOR
FINISH:
 END

Managing Record Locking 29

Ensuring file integrity

If you are updating from records placed on a list, you can help ensure file
integrity, and maintain the logical consistency of your data, by keeping the user
ID of the person who performed the last update on record. Check to see that
no other user has updated the record while you are updating.

In the following example, one record at a time is displayed for update. After the
record is changed, the update ID is checked. If it is not the number expected,
an error message is issued.

BEGIN
.
.
.
FD.VIN:
 IN VEHICLES FD VIN = 123456789
 END FIND
IN VEHICLES CLEAR LIST VIN
PLACE RECORDS IN FD.VIN ON LIST VIN
RELEASE RECORDS IN FD.VIN

UPD.SCR: FOR 1 RECORD IN FD.VIN
 %UPDATEID = UPDATE ID

** FILL SCREEN HERE **

END FOR
IF $CHKTAG ('SCR.UPD.VIN') THEN
 REREAD SCREEN SCR.UPD.VIN
ELSE
 READ SCREEN SCR.UPD.VIN NO REREAD
END IF
.
.
.

** EDIT SCREEN HERE **

FDR.VIN:
 FDR VIN = 123456789
 END FIND
 FR FDR.VIN
 IF UPDATE ID = %UPDATEID THEN
 CHANGE UPDATE ID TO UPDATE ID + 1
 CHANGE ...(other record fields)
 .
 .
 .
30 Rocket Model 204 Application Development Guide

 ELSE
 %SCR.EMSG = 'RECORD CONCURRENTLY UPDATED' -
 WITH 'REDO UPDATES ON REFRESHED RECORD'
 IN VEHICLES CLEAR LIST VIN
 PLACE RECORDS IN FDR.VIN ON LIST VIN
 RELEASE RECORDS IN FDR.VIN
 JUMP TO UPD.SCR
 END IF
 END FOR
COMMIT RELEASE
END

Controlling record locking problems

To control record-locking problems, keep in mind the following guidelines:

• You can avoid many conflicts by releasing records as soon as you no
longer need them.

• Use a commit statement at the end of every update unit.

• If possible, keep update units within the same terminal I/O point.

• In a multi-request application, segregate updating functions from read-only
functions.

• To free pages in CCATEMP, use the CLEAR LIST statement when you no
longer need the records in a list.

• Perform REDEFINE, RENAME, and DELETE FIELD functions during off-
peak hours.

• When not using the application subsystem facility, set the ENQRETRY
parameter to control the number of retries before a message is generated.

• Place the records you need on a list, release the records, and process from
the list in situations where no updates are taking place or where updates
are known not to affect the data in question.

• Defer index updates whenever possible.

For more information, see the Model 204 File Manager’s Guide.
Managing Record Locking 31

32 Rocket Model 204 Application Development Guide

Index
Symbols

$Functions
using 10

%Variables
COMMON 20
declaring 9
in subroutines 19
naming conventions 4

A

Array %variables
declaring 9

C

CCATEMP file 31
CLEAR LIST statement 18, 31
Coding guidelines 7
Coding structure

code elements 8
Commands

within procedures 9
Comments 8

format of 8
in subroutines 19

COMMIT RELEASE statement 17, 18, 28
COMMIT statement 17

two forms of 17
COMMON %variables 20
Complex subroutines 20

naming conventions 6
using %variables in 20

Computed JUMP TO statement
using 12

D

Data sets
rules for naming 2

Declaration statements
 9

DELETE FIELD function 31

Dummy strings
in subroutines 21

E

ELSE IF statement 13
ELSEIF statement 13
ENQRETRY parameter 31
Exclusive lock (EXC) 24

F

Field attributes 15
Fieldnames

naming conventions 3
File integrity 30
FIND AND RESERVE statement 28

prohibitions 28
FIND loop 28
FIND statement 14, 21, 25, 27

table 15
Finding records 14
FlND AND RESERVE statement 28
FOR EACH RECORD loop 26, 27
FOR EACH RECORD statement 21
FOR EACH VALUE statement 21
FOR loop 19
FOR processing 19
FOR RECORD NUMBER statement 19

G

Global variables
naming conventions 4

I

IF statements 27
evaluating 11
formatting 11
using 11
using %variables in 12

IN clause 17
Index 33

with multiple file application 18
INCLUDE statements 19
Index loop 9
Index updates 31
Inquiry procedures

using lists to process 18

L

Lists 18
clearing 18

N

Naming conventions 1
%variables 4
complex subroutines 6
data sets 2
fieldnames 3
filename restrictions 1
filenames 1
file-naming standard 2
for multiple data sets 2
for screens, menus, and reports 6
global variables 4
procedures 3
simple subroutines 6
statement labels 4, 5
subroutines 6

NO FIELD SAVE option 9
NUMERIC attribute 19

O

ON FIND CONFLICT statement 25
ON RECORD LOCKING CONFLICT statement 25
ON units 25, 28

P

Procedure names
naming conventions 3

Procedures
standard prefixes for 5

PROMPT parameter 21

R

Read-only access 27
Record locking 23

guidelines for controlling 31
Record locks

exclusive lock (EXC) 24
share lock (SHR) 24
types 24

Record-locking conflicts 23
example 23
managing 25

Records
committing 17
finding efficiently 14
releasing 17
sorting 19

REDEFINE function 31
RELEASE ALL RECORDS statement 17, 18
RELEASE RECORDS IN statement 17
RELEASE RECORDS ON statement 18
RELEASE RECORDS statement 18
RELEASE statement 17, 28

two forms of 17
REMOVE 18
REMOVE RECORDS IN statement 18
REMOVE RECORDS ON statement 18
RENAME function 31
Report procedures

using lists to process 18
Reserved words 4
RETRY counters

coding 28
RETRY statement 28

S

Share lock (SHR) 24
Shared access 26
Simple subroutines

naming conventions 6
SORT k RECORD KEYS statement 19
SORT syntax 19
Statement labels

naming conventions 4, 5
using 5

STRING ARRAYS 20
STRING SCALARS 20
SUB parameter 21
Subroutines

dummy strings in 21
naming conventions 6
nesting 19
using 19

T

Table B searches
minimizing 14
34 Rocket Model 204 Application Development Guide

U

Update ID 30

V

Variables
naming conventions 4
Index 35

	Contents

	About this Guide
	1 Model 204 Naming Conventions
	In this chapter
	Model 204 filenames
	Data set names
	Procedure names
	Fieldnames
	%Variables
	Statement labels
	Subroutines
	Simple subroutines
	Complex subroutines

	Other naming convention considerations

	2 Recommended Coding Guidelines
	In this chapter
	Sample coding structure
	Using comments
	Using commands
	Declaring %variables
	Using $functions
	Using the IF statement
	Formatting IF statements
	Evaluating IF statements
	Using %variables in IF statements
	Using the computed JUMP TO
	ELSE IF vs. ELSEIF

	Finding records efficiently
	Committing records
	Releasing records
	Using the IN clause
	Using lists
	Sorting records
	Using subroutines
	Using %variables In complex subroutines
	Using dummy strings in subroutines

	3 Managing Record Locking
	In this chapter
	Locking conflict example
	Types of record locks
	Using ON units
	Using FIND AND RESERVE
	Coding RETRY counters
	Ensuring file integrity
	Controlling record locking problems
	Symbols
	A
	C
	D
	E
	F
	G
	I
	L
	N
	O
	P
	R
	S
	T
	U
	V

	Index

