
Rocket Model 204

Parallel Query Option/204

User’s Guide

Version 7 Release 5.0

September 2014
204–75–PQO-01

Notices
Edition

Publication date: September 2014
Book number: 204–75–PQO-01
Product version: User’s Guide

Copyright
© Rocket Software, Inc. or its affiliates 1989—2014. All Rights Reserved.

Trademarks

Rocket is a registered trademark of Rocket Software, Inc. For a list of Rocket registered trademarks go
to: www.rocketsoftware.com/about/legal. All other products or services mentioned in this document
may be covered by the trademarks, service marks, or product names of their respective owners.

Examples

This information might contain examples of data and reports. The examples include the names of
individuals, companies, brands, and products. All of these names are fictitious and any similarity to
the names and addresses used by an actual business enterprise is entirely coincidental.

License agreement

This software and the associated documentation are proprietary and confidential to Rocket Software,
Inc. or its affiliates, are furnished under license, and may be used and copied only in accordance with
the terms of such license.

Note: This product may contain encryption technology. Many countries prohibit or restrict the
use, import, or export of encryption technologies, and current use, import, and export regulations
should be followed when exporting this product.

Corporate Information
Rocket Software, Inc. develops enterprise infrastructure products in four key areas: storage,
networks, and compliance; database servers and tools; business information and analytics; and
application development, integration, and modernization.

 Website: www.rocketsoftware.com

Rocket Global Headquarters
77 4th Avenue, Suite 100
Waltham, MA 02451-1468
USA

Contacting Technical Support
If you have current support and maintenance agreements with Rocket Software and CCA,
contact Rocket Software Technical support by email or by telephone:

Email: m204support@rocketsoftware.com

Telephone :

 North America +1.800.755.4222

 United Kingdom/Europe +44 (0) 20 8867 6153

Alternatively, you can access the Rocket Customer Portal and report a problem, download an
update, or read answers to FAQs. You will be prompted to log in with the credentials supplied as
part of your product maintenance agreement.

To log in to the Rocket Customer Portal, go to:

www.rocketsoftware.com/support

iv

Contents
About this Guide

Audience ...xi
A note about User Language and SOUL ...xi
Rocket Model 204 documentation...xi
Documentation conventions...xii

1 Introduction to Parallel Query Option/204
Overview .. 1
Parallel Query Option/204 features.. 1

Communicating between versions of Parallel Query Option..................................... 2
Location transparency... 2

System requirements ... 2
Network communications ... 3
Basic setup and operation.. 4

2 Defining a Parallel Query Option/204 Network
Overview .. 7
Network configuration .. 7

Interrelated network elements ... 9
PQO DEFINE commands .. 12

Using the DEFINE LINK command ... 12
Using the DEFINE PROCESSGROUP command .. 14
Using the DEFINE PROCESS command.. 17

Runtime and user environment definition... 19
Setting the LOCATION parameter .. 20
Setting the NRMTFILE parameter... 20
Setting the NRMTLOCS parameter... 21
Setting the NSUBTKS parameter.. 21
Specifying IODEVs for PQO service threads .. 22

SNA Communications Server network definition ... 23
Components of SNA Communications Server definition... 24
Coding the APPL statements for the SNA Communications Server network.......... 24
Setting session parameters... 25

Two-node network example ... 26
Client input stream excerpt for SNA Communications Server network 27
Modifications for client input stream for TCP/IP network... 27
Server input stream excerpt for SNA Communications Server network.................. 28
Modifications for server input stream for TCP/IP network 28
APPLO statements required for only SNA Communications Server network 29

3 Managing the Parallel Query Option/204 Network
Overview .. 31
Controlling the network .. 31
Contents v

Using the LU 6.2 network administration commands.. 32
Using the BUMP command... 33

Monitoring network activity... 34
Using the DISPLAY GROUP command.. 35
Using the LOGWHO command... 35
Using the MONITOR command .. 37
Using the STATUS command ... 39
Using the VIEW command .. 39

Using the Model 204 audit trail... 41
Interpreting communications errors.. 41

Communications error display format.. 41
Using the status return codes ... 42
Using the Model 204 error message ... 42

4 Managing Files and Groups for Parallel Query Option/204
Overview .. 43
Defining file synonyms ... 43

DEFINE FILE command.. 44
Using the DEFINE FILE command.. 45
Redefining file synonyms for group members ... 45

Creating scattered groups.. 45
CREATE GROUP command... 46
CREATE GROUP example ... 47
Creating ad hoc scattered groups ... 48
File and group availability.. 49

Allowing access to remote files .. 49
Parallel Query Option and Large Object data ... 50
Defining transaction backout files.. 50
Setting the OPENCTL parameter.. 50
Record security for remote users—the PQOSYS parameter 51

Stopping and starting a remote file or scattered group .. 52

5 Working with Remote Files and Scattered Groups
Overview .. 55
Specifying a remote file.. 55

Using a remote file specification.. 56
Using a file synonym ... 57

Using Model 204 file and group commands... 57
Opening a remote file .. 58
Opening a scattered group.. 60
Closing a remote file ... 61
Using DEFAULT and DELETE GROUP.. 62

Referencing remote files in a SOUL request.. 62
SOUL example.. 62
Request continuation is not supported.. 64
Errors during compilation and evaluation .. 64
Using ON MISSING MEMBER and ON MISSING FILE units 65

DML statements in PQO .. 67
Using IN clauses ... 69
Using field names in expressions.. 69
vi Parallel Query Option/204 User’s Guide

Handling record locking conflicts... 69
Using PQO retrieval statements... 69

Using the FIND ALL RECORDS statement... 69
Using the FOR EACH RECORD statement .. 70
Using the FOR RECORD NUMBER statement... 71
Using the FOR EACH VALUE statement .. 71
Using RELEASE ... 72
Using the SORT RECORDS statement .. 72
Using LIST functions ... 72
Using the PRINT statement... 72
Using retrieval conditions .. 73

Using PQO update statements .. 74
Limitations to updating remote files... 74
PQOOPT and multiple-node updates.. 75
Updating unlocked record sets.. 75
Using ON FIELD CONSTRAINT CONFLICT $functions... 76
Using ADD, CHANGE, INSERT, and DELETE statements 76
Using BACKOUT... 76
Using COMMIT and COMMIT RELEASE ... 77
Using DELETE RECORDS ... 77
Using FILE RECORD ... 77
Using INSERT... 77
Using STORE RECORD ... 78
Using UPDATE RECORD... 78

Using $functions... 79
Using $CURFILE, $RLCFILE, $UPDATE, and $UPDFILE 80
Using $FDEF and $LSTFLD ... 80
Using $ITSOPEN ... 80
Using $ITSREMOTE ... 81
Using $UPDLOC .. 81
Using file and group availability $functions ... 81

Using the Host Language Interface.. 83
Use of IFSTRT calls is not supported.. 84

6 Parallel Query Option/204 and Scattered APSY Subsystems
Overview .. 85
Required system parameters ... 85
Client and service subsystems... 86

Node availability .. 86
File and group availability... 87

Member availability to APSY subsystems... 87
Member availability to subsystem users.. 87
Enabling a disabled subsystem file ... 88
Disabling a subsystem file .. 88

Trust ... 89
Why use a trust definition? ... 89
Where to create definitions .. 91

Subsystem command processing .. 92
START SUBSYSTEM command processing ... 92
STOP SUBSYSTEM command processing .. 93
Contents vii

Compiling and running procedures ... 94
Saving compilations .. 94
Loading saved compilations.. 95
New and missing nodes .. 95
Recompiling saved requests ... 96

SUBSYSMGMT overview .. 96
Defining a service subsystem .. 97

Subsystem Trust screen ... 97
Managing the trust definition ... 97
Subsystem Activity screen (service definition) ... 99
Subsystem File Use screen (service definition) ... 100
Operational Parameters screen (service definition) .. 100
Subsystem Classes screen (service definition) .. 101
Subsystem Class Users screen (service definition) .. 102

Defining a client subsystem ... 103
Subsystem Activity screen (client definition) .. 103
Subsystem File Use screen (client definition) .. 103
Operational Parameters screen (client definition) .. 104
Subsystem Classes screen (client definition) ... 106
Subsystem Class Users screen (client definition) .. 106

A Three-Node Network Example
Overview .. 107
Reporting application ... 107
Defining the network .. 110
Specifying DEFINE commands for System A .. 111

Defining the link for System A ... 111
Defining the processgroups for System A... 111
Defining the client process for System A... 113

Specifying DEFINE commands for System B .. 113
Defining the link for System B ... 113
Defining the processgroups for System B... 114
Defining the processes for System B .. 115

Specifying DEFINE commands for System C .. 116
Defining the link for System C... 116
Defining the processgroups for System C... 117
Defining the server process for System C... 118

Specifying the Online environment .. 118
Defining System A’s Model 204 Online environment .. 118
Defining System B’s Model 204 Online environment .. 119
Defining System C’s Model 204 Online environment .. 120

Specifying the SNA Communications Server environment .. 121
Defining the APPL statement for System A... 121
Defining the APPL statement for System B... 122
Defining the APPL statement for System C .. 122

Sample CCAIN input streams .. 122
System A input stream (z/OS environment) .. 122
System B input stream (z/OS environment) .. 123
System C input stream (z/OS environment).. 124
viii Parallel Query Option/204 User’s Guide

B Restricted Commands, $Functions, and DML Statements
Overview .. 127
Restricted Model 204 commands... 127
Restricted SOUL $functions... 128

Index
Contents ix

x Parallel Query Option/204 User’s Guide

About this Guide

This guide describes Parallel Query Option/204, a Model 204 distributed
processing facility. Previously, Parallel Query Option/204 was called
Distributed/204.

Audience

This guide is for all PQO administrators, managers, and programmers.
Familiarity with Model 204 installation and operation, including User Language
(SOUL) and application subsystems, is assumed.

A note about User Language and SOUL

Model 204 version 7.5 provides a significantly enhanced, object-oriented,
version of User Language called SOUL. All existing User Language programs
will continue to work under SOUL, so User Language can be considered to be
a subset of SOUL, though the name "User Language" is now deprecated. In
this manual, the name "User Language" has been replaced with "SOUL."

Rocket Model 204 documentation

To access the Rocket Model 204 documentation, see the Rocket
Documentation Library (http://docs.rocketsoftware.com/), or go directly to the
Rocket Model 204 documentation wiki (http://m204wiki.rocketsoftware.com/).

Additional documentation

Depending on your level of experience and familiarity with WebSphere MQ and
Model 204, you might need additional documentation. For WebSphere MQ
documentation, contact your IBM representative.

Rocket recommends the following IBM manuals:

• WebSphere MQ Application Programming Guide (SC34-6064)

• WebSphere MQ Application Programming Reference (SC34-6062)

• WebSphere MQ for z/OS Messages and Codes V5.3.1 (SC34-6056)

To obtain additional information on WebSphere MQ or to download the
WebSphere MQ manuals, access the IBM Web site. Their Web address is:

http://www-4.ibm.com/software/ts/mqseries/
About this guide xi

Documentation conventions

This guide uses the following standard notation conventions in statement
syntax and examples:

Convention Description

TABLE Uppercase represents a keyword that you must enter exactly as
shown.

TABLE tablename In text, italics are used for variables and for emphasis. In examples,
italics denote a variable value that you must supply. In this example,
you must supply a value for tablename.

READ [SCREEN] Square brackets ([]) enclose an optional argument or portion of an
argument. In this case, specify READ or READ SCREEN.

UNIQUE | PRIMARY KEY A vertical bar (|) separates alternative options. In this example,
specify either UNIQUE or PRIMARY KEY.

TRUST | NOTRUST Underlining indicates the default. In this example, NOTRUST is the
default.

IS {NOT | LIKE} Braces ({ }) indicate that one of the enclosed alternatives is
required. In this example, you must specify either IS NOT or IS
LIKE.

item ... An ellipsis (. . .) indicates that you can repeat the preceding item.

item ,... An ellipsis preceded by a comma indicates that a comma is required
to separate repeated items.

All other symbols In syntax, all other symbols (such as parentheses) are literal
syntactic elements and must appear as shown.

nested-key ::=
column_name

A double colon followed by an equal sign indicates an equivalence.
In this case, nested-key is equivalent to column_name.

Enter your account:

sales11

In examples that include both system-supplied and user-entered
text, or system prompts and user commands, boldface indicates
what you enter. In this example, the system prompts for an account
and the user enters sales11.

File > Save As A right angle bracket (>) identifies the sequence of actions that you
perform to select a command from a pull-down menu. In this
example, select the Save As command from the File menu.

EDIT Partial bolding indicates a usable abbreviation, such as E for EDIT
in this example.
xii Parallel Query Option/204 User’s Guide

1
Introduction to Parallel Query
Option/204

Overview

Parallel Query Option/204 (PQO) is a Model 204 distributed processing facility
that allows the sharing of data between two or more copies of Model 204.

Parallel Query Option/204 provides SOUL applications access to remote files.
A single SOUL transaction can read and/or update multiple remote files.

Parallel Query Option/204 features

Parallel Query Option/204 (PQO) allows a SOUL request to access data that is
owned by other copies of Model 204. You can use the same SOUL statement
syntax for remote files as for local files. You can horizontally partition your data.
You can access data physically stored on multiple nodes in the network as if
the data were contained in a single database on a single node.

In addition, PQO processing provides the following capabilities:

• Update access to remote data, limited to one node per transaction

• Read access to remote data in transactions that can read local data

• Access to remote data from ad hoc requests

• Access to remote data from application subsystems for precompiled and
non-precompiled requests

• Error handling and recovery

• Synonyms for data files

• Symbolic references to network location
Introduction to Parallel Query Option/204 1

System requirements
• File groups comprised of members from multiple copies of Model 204

• Scattered groups (file groups that include remote files)

• Application subsystem support for client and server applications

• Trust definitions for application subsystems, to control remote user access
by using definitions on the service node

PQO does not allow:

• Local access to or execution of SOUL procedures stored in a remote file

• Remote execution of updating data definition language (DDL), Model 204
commands that define or modify files or fields

Communicating between versions of Parallel Query Option

PQO V6R3.0 and later cannot communicate with PQO V6R1.0 or earlier. If you
attempt this, Model 204 issues the following message:

M204.2327: PQO VERSION INCOMPATIBILITY WITH REMOTE NODE:
location

Location transparency

Location transparency refers to the ability to access objects without knowledge
of their location. PQO offers two location transparency options for local or
remote files. You can define your own names for files and for the Onlines where
the files reside. Your names are called symbolic names in this guide. Using
them allows you to simplify your naming conventions and saves you from
having to update all your file references if PQO partners change names or
shift data.

• See “Specifying a remote file” on page 55 about using symbolic names for
file locations.

• See “Using a file synonym” on page 57 for information about using symbolic
file names that implicitly refer to a file name and location.

System requirements

Each system that participates in a PQO network must provide the necessary
support structure. The following components are required for PQO network
support:

• z/OS, z/VM, or z/VSE operating system

• TCP/IP or SNA Communications Server (formerly VTAM) for z/OS, z/VSE,
and SNA Communications Server and Inter-User Communication Vehicle
(IUCV) for z/VM

• Model 204 base product, Version 6 Release 1.0 or later
2 Parallel Query Option/204 User’s Guide

Network communications
• The LU 6.2 communications feature of Model 204’s Horizon facility,
Version 6 Release 1.0 or later

PQO is incorporated directly into the core of Model 204 by default. Using PQO,
application subsystem definitions and requests can refer to remote files or
scattered groups. You have the opportunity to try PQO without additional
expense. The number of threads is limited to two. If you want additional
threads, please notify Technical Support.

Network communications

To support a PQO network, you must set up an underlying communications
layer. This layer is governed by TCP/IP or the Systems Network Architecture
(SNA) logical unit (LU) session type 6.2 conversation rules. PQO uses the
Model 204 LU 6.2 interface provided with the Horizon facility. Chapter 2
describes how to define this layer.

In the PQO network, a node is typically synonymous with a Model 204 Online.
Communication is between two or more nodes: one client and at least one
server. The client issues the request to open a remote file or group. The server
responds to the client’s request and provides access to a file residing on the
server. If files on other nodes are involved in the request, those other nodes
become servers and provide access to the requested files.

Note: In the PQO network, a node can function as a client only, as a server
only, or as both a client and server.

An LU 6.2 conversation between client and server is started when a remote file
is opened. Figure 1-1 shows the basic components of PQO network
processing. System A is defined as a client and System B is defined as a server
in the network. A procedure that is stored on System A is executed. The
procedure references a file that resides on System B.
Introduction to Parallel Query Option/204 3

Basic setup and operation
When the OPEN FILE command is executed, the links connecting the two
nodes are activated and an LU 6.2 conversation is initiated.

Figure 1-1. PQO processing

Basic setup and operation

Perform these basic steps to set up and use a PQO network.

1. Set up the network:

– Prepare the PQO network definitions and CCAIN parameters for each
copy of Model 204 in the PQO network.

– Prepare the SNA Communications Server definition or allocate a
TCP/IP port number for each copy of Model 204 in the PQO network.

See Chapter 2 for details.

2. For each network location:

– Activate the SNA Communications Server definition, unless using
TCP/IP, and bring up the Model 204 Online to support PQO communi-
cations.

– Log in to Model 204.

– Open a PQO communications line. Each node must open its PQO com-
munications link (OPEN LINK).

3. A client system initiates communications in the network. At the application
level, from within a SOUL procedure:

Model 204Model 204

Client
System A

Server
System B

TCP/IP* or SNA

z/OS-z/VM-z/VSE

TCP/IP* or SNA

z/OS-z/VM-z/VSE

UL
proc

SNA
Network

 data
 file

*TCP/IP network service is currently available for only z/OS and z/VSE
4 Parallel Query Option/204 User’s Guide

Basic setup and operation
– Issue a command to open a remote file or files (OPEN FILE or OPEN
GROUP). This starts an LU 6.2 conversation between the client and
each server system that contains one of the files. It also starts a service
thread (IODEV=51) on each server that contains one of the files.

A second OPEN command for another file on a remote system involved
in the first OPEN uses that existing conversation and service thread.

– Begin a request that refers to the remote file(s).

– The request is compiled and execution begins.

– After a FIND statement is executed, a FOR EACH RECORD loop is
entered. A buffer full of found records is shipped from the server to the
client. The records are stored in the client’s CCATEMP file.

Each iteration of the FOR EACH RECORD loop gets the next record
from CCATEMP until all buffered records are exhausted. A call is made
to the service thread for another buffer of records.

– If the FOR EACH RECORD loop contains an update statement, the
records buffered at the client are updated, and a call is made to the
server to apply the same update to the records there.

– The request ends; other requests may follow.

– The client closes the remote file or group (CLOSE command). When
the last remote file is closed on a server, its service thread for that client
is logged out automatically, and that LU 6.2 conversation ends.
Introduction to Parallel Query Option/204 5

Basic setup and operation
6 Parallel Query Option/204 User’s Guide

2
Defining a Parallel Query
Option/204 Network

Overview

A Parallel Query Option/204 network must be defined before any PQO
application can run successfully.

The Model 204 system manager defines the PQO network
configuration and protocols to Model 204. The network systems
programmer sets up the SNA Communications Server definitions, if you
are using an SNA Communications Server for the network.

Finally, the Model 204 system manager sets Model 204 Online
environment parameters that are required for PQO.

Once the network is properly defined, its operation is transparent to the
SOUL application programmers.

Network configuration

The PQO network connects two or more copies of Model 204. The
Model 204 copies can be on the same physical machine or not, and
they can be in the same operating system or not. The copies
communicate through TCP/IP or SNA Communications Server over the
communications network. Both network types use the LU 6.2 interface
services of the Model 204 Horizon facility.

Each copy of Model 204 opens links that are either SNA logical units or
TCP/IP ports, and provides network access and services to its PQO
Defining a Parallel Query Option/204 Network 7

Network configuration
partners. Each node can accommodate two types of functions, or processes,
in Horizon terminology:

These are companion processes, paired in the network. A client on one node
initiates a conversation requesting access to a remote file. The corresponding
server on another node responds to the request.

In this guide, a node is often referred to in terms of the type of network process
that is active—a client node is the node on which the client program being
referred to is defined.

Figure 2-1 shows the physical configuration of a PQO network with one client
and one server. The direction of the control flow arrow shows the path of a
request for remote data in the PQO network where communication is initiated
by the client. The path is reversed when the data is returned.

Network characteristics:

• Two or more nodes: one is client; one or more are servers

• Two-way path, when links are activated

• Communication initiated by client

• Optional use of APSY subsystems

This process... Performs only this action...

Client Queries partner databases

Server Replies to database queries
8 Parallel Query Option/204 User’s Guide

Network configuration
Figure 2-1. Basic network configuration

Figure 2-1 illustrates a client/server relationship between two Onlines. An
Online may be configured as a client of any server Online and at the same time
as a server for any other client Online.

Interrelated network elements

Certain parameters in the Model 204 and the network definitions must be set in
relation to one another, as described in the sections that follow. Because the
definitions are mutually dependent, you might have syntactically valid
definitions that are not compatible. Such an error is not detected until you first
try to open a remote file.

data files

UL
proc

Client Server

z/OS-z/VM-z/VSE

LU 6.2
network
protocol

 z/OS-z/VM-z/VSE

Model 204 Model 204

LU 6.2
interface

LU 6.2
interface

Physical link

Logical link

Control flow

APSY

APSY
Compiled
IFAM

TCP/IP* or SNA TCP/IP* or SNA

TCP/IP network service is currently available for only z/OS and z/VSE operating systems
Defining a Parallel Query Option/204 Network 9

Network configuration
Table 2-1 on page 10 summarizes these interrelated elements for TCP/IP
service.

Table 2-1. Interrelated components of a PQO network for TCP/IP service

Model 204

DEFINE LINK DEFINE PROCESS-
GROUP

DEFINE PROCESS Model 204 Online

Each link requires a
SERVPORT specifying the
port number for this
connection.

LOCALID must specify the
dotted decimal address of
the TCP/IP on this operating
system

REMOTEID applid must
match LOCALID name on
remote LINK definition.

CONNECTIONS sets
maximum number of
concurrent sessions, plus
two, for a minimum of 50.

For a server, use MASK to
limit the range of addresses
that can connect to this port.
For a client, use PORT to
specify the port of the
server, which must match
SERVPORT of the server’s
DEFINE LINK.

Link definition name
identifies connection

LINK parameter name
matches DEFINE LINK
name

Processgroup definition
name identifies group

DESTINATION or FROM
name matches defined
processgroup name

LOGIN=TRUST specifies
password not required

SYSOPT
includes X‘10’ to require
login (server system)

INLIMIT sets maximum
number of concurrent
inbound conversations
(server)

NOTERM sets maximum
number of threads for
inbound conversations
(server)
10 Parallel Query Option/204 User’s Guide

Network configuration
Table 2-2 on page 11 summarizes these interrelated elements for SNA
Communications Server service. Only those items that have a corresponding
element in a related definition are shown in Table 2-2.

Table 2-2. Interrelated components of a PQO network for SNA Communications Server

SNA Model 204

Mode table APPL
statement

DEFINE LINK DEFINE
PROCESS-
GROUP

DEFINE
PROCESS

Model 204
Online

One APPL for
each link

Label identifies
LU application
node

Each link
requires an
APPL

LOCALID name
must match
APPL label

REMOTEID
applid must
match
LOCALID name
on remote LU

PARSESS=YES
enables support
for concurrent
sessions

SESSIONS sets
maximum
number of
concurrent
sessions

PRTCT specifies
password

PSWD enables
password
protection

Link definition
name identifies
connection

LINK parameter
name matches
DEFINE LINK
name

Processgroup
definition name
identifies group

DESTINATION
or FROM name
matches defined
processgroup
name

LOGIN=TRUST
specifies
password not
required

SYSOPT
includes X‘10’ to
require login
(server system)

INLIMIT sets
maximum
number of
concurrent
inbound
conversations
(server)

NOTERM sets
maximum number
of threads for
inbound
conversations
(server)

LU 6.2 mode
table for
Model 204

MODETAB
specifies LU 6.2
table

DLOGMOD
specifies entry in
table (optional)

MODENAME
specifies entry
in mode table
(optional)
Defining a Parallel Query Option/204 Network 11

PQO DEFINE commands
PQO DEFINE commands

For z/OS and z/VSE systems, TCP/IP may be used instead of SNA
Communication Server. The discussion in this chapter will point out where and
how you must define either type of network. You can also consult the Rocket
Model 204 documentaiton wiki
(http://m204wiki.rocketsoftware.com/index.php/DEFINE_LINK_command:_Ho
rizon_for_TCP/IP).

For each copy of Model 204 in the PQO network, you must define three types
of entities for each client or server application: a link, a processgroup, and a
process. These entities and their interdependencies form the network’s logical
layer.

In addition, some of the network entity definition parameters must be set
relative to the SNA Communications Server network definition, which is
described on page 23.

The PQO network definitions are closely parallel to those of Horizon, which are
described in the Model 204 Horizon: Intersystem Processing Guide. This
section presents the PQO DEFINE command syntax and describes the
parameter specifications that are modified or otherwise different from the
standard Horizon definitions. Examples of sample PQO network definitions are
provided in the section “Two-node network example” on page 26 and in
Appendix A.

Using the DEFINE LINK command

The DEFINE LINK command requirements have differing resource parameters
for TCP/IP or SNA, so the syntax for each varies a bit. In general TCP/IP and
SNA supply the following link definition:

• Specifies a name that identifies the Model 204 node to the SNA network

• Defines the physical communications transmission method (TRANSPORT)
and the logical conversation rules (PROTOCOL)

• Specifies resource parameters, which differ for TCP/IP and SNA. For
example, for TCP/IP, CONNECTIONS replaces SESSIONS for SNA. Use
the DEFINE LINK command syntax suitable for your site.

Although a single link can be shared by both PQO and Horizon conversations,
for performance reasons, Technical Support recommends against sharing
links.

A connection request for a link can succeed only if an OPEN LINK command
has opened the link. For more information about OPEN LINK, see Chapter 3.

DEFINE LINK command for TCP/IP

The TCP/IP-specific PQO syntax of the DEFINE LINK command is:
12 Parallel Query Option/204 User’s Guide

PQO DEFINE commands
Syntax DEFINE LINK name [LIKE previousname] WITH -
 SCOPE=SYSTEM -
 PROTOCOL=IP -
 TRANSPORT={TCPSE | TCPVSE} -
 CONNECTIONS=nnnn -
 INBUFSIZE=nn -
 LOCALID={address | ANY} -
 SERVPORT=nnnnn

Parameters PQO-specific comments and recommendations for TCP/IP service follow:

• PROTOCOL=IP is required and specifies the set of rules (SNA LU 6.2 on a
TCP/IP link) used to control communications.

• TRANSPORT must be set to TCPSE (for z/OS) or TCPVSE (for z/VSE).

• CONNECTIONS is required and specifies the maximum number of
concurrent connections that can be activated for the link, plus two. A
connection is activated when a conversation is initiated.

For PQO with TCP/IP service, a starting value of 50 is recommended with
adjustment upward as necessary to accommodate actual network traffic.
See “Usage notes on IODEV=51” on page 23 for information about the
relationship between the number of connections, the number of server
threads, and the number of remote users who can access remote files on a
particular node.

• INBUFSIZE is required and specifies the size of the buffer allocated for the
TCP/IP data transfer for each conversation. Technical Support
recommends that you set this to at least 4096, for efficiency.

• LOCALID is required and specifies the TCP/IP address that identifies this
system.

• SERVPORT must be set to a port number greater than 4096 and unique for
this link. It must match the PORT parameter of the DEFINE
PROCESSGROUP command of the client system.

DEFINE LINK command for an SNA network

The PQO syntax of the DEFINE LINK command for SNA network is

Syntax DEFINE LINK name [LIKE previousname] WITH -
 SCOPE=SYSTEM -
 TRANSPORT=VTAM -
 PROTOCOL=LU62 -
 SESSIONS=nn -
 INBUFSIZE=nn -
 LOCALID=applid -
 [PSWD | NOPSWD]
Defining a Parallel Query Option/204 Network 13

PQO DEFINE commands
Required for z/VM only:

 GCSID=vmid

Parameters PQO-specific comments and recommendations for SNA service follow:

• PROTOCOL=LU62 is required and specifies the set of rules (SNA LU 6.2)
used to control communications.

• SESSIONS is required and specifies the maximum number of concurrent
sessions, or connections between logical units, that can be activated for the
link. A session is activated when a conversation is initiated.

For PQO, a starting value of 3 is recommended with adjustment as
necessary to accommodate actual network traffic. See “Usage notes on
IODEV=51” on page 23 for information about the relationship between the
number of sessions, the number of server threads, and the number of
remote users who can access remote files on a particular node.

• INBUFSIZE is required and specifies the size of the buffer allocated for the
receive-any operation for the initial SNA Communications Server Request
Unit (RU) of each inbound conversation.

Set INBUFSIZE to the same value as the SNA Communications Server
logmode parameter RUSIZES (whose recommended setting for PQO is
2K). For more information about RUSIZES, see the Model 204 Horizon
Intersystem Processing Guide.

• LOCALID is required and specifies the LU name that identifies this
Model 204 application node to the SNA network. The LOCALID must match
the name in the SNA Communications Server APPL network definition. See
“Coding the APPL statements for the SNA Communications Server
network” on page 24 for a description of the APPL name definition.

Using the DEFINE PROCESSGROUP command

The DEFINE PROCESSGROUP command:

• Groups processes according to certain attributes, such as the maximum
number of concurrent conversations, to facilitate resource allocation by
applications

• Connects processes associated with each named group to a specific link

• Specifies a remote node with which the associated processes can
communicate

• Provides a pool of sessions to be used by multiple processes
14 Parallel Query Option/204 User’s Guide

PQO DEFINE commands
A Model 204 site can use different processgroup definitions to segregate
groups of processes, for example, to isolate groups that participate in PQO
network processing from Horizon network groups.

A single processgroup definition can be used by both PQO and Horizon
conversations.

DEFINE PROCESSGROUP command for TCP/IP service

The PQO syntax of the DEFINE PROCESSGROUP command for TCP/IP
service is:

Syntax DEFINE PROCESSGROUP name [LIKE previousname] WITH -
 SCOPE=SYSTEM -
 LINK=linkname -
 REMOTEID=address -
 INLIMIT={nnnn | 0}
 PORT=nnnnn
 GUESTUSE={ACCEPT | REJECT}
 LOGIN={TRUST | NOTRUST}
 MASK={dotted-decimal | 255.255.255.255}

Parameters PQO-specific comments and recommendations for TCP/IP service follow:

• name is used on DEFINE PROCESS commands to refer to this
processgroup. The length of the name must be eight characters or less.
ALL is a reserved word and cannot be used.

• LINK is required and associates the group with a locally defined link that
implies the transport type and conversation protocol. A linkname must
match the name used in a local DEFINE LINK command.

• REMOTEID is required and identifies the remote TCP/IP system with which
the group communicates. It must match the LOCALID parameter specified
in the DEFINE LINK command at the remote node.

• INLIMIT=nnnn and NOINLIMIT are mutually exclusive options that control
the allocation of conversations with the server.

INLIMIT sets the maximum number of client requests for conversations with
a server. To ensure that there are enough service threads to handle these
requests, specify an appropriate value for the IODEV line parameter
NOTERM (see “Specifying IODEVs for PQO service threads” on page 22).

NOINLIMIT or a nonzero INLIMIT value is required for the server in PQO.

Specifying NOINLIMIT is equivalent to specifying 32767; that is, as many
as 32,767 concurrent connections are allowed.

• OUTLIMIT=nnn and NOOUTLIMIT are mutually exclusive options that
control the allocation of conversations with the client. NOOUTLIMIT or a
nonzero OUTLIMIT value is required for the client in PQO.
Defining a Parallel Query Option/204 Network 15

PQO DEFINE commands
• PORT is required for the client system and specifies the remote server port
(SERVPORT) with which the client will establish a conversation. PORT is
not required in the DEFINE PROCESSGROUP command of the service
Online, unless that Online is also a client to another server.

• LOGIN indicates whether the local server process requires a password
from the remote client process at OPEN FILE time. Since there is no facility
for handling a password in PQO, TRUST is the required value for LOGIN.

The CCAD2S process logs in the incoming client user without a password
and assigns privileges from either the CCASTAT password table or an
external security package. The client user ID must be specified in
CCASTAT or in a security package on the server.

Both client and server must specify LOGIN=TRUST.

• MASK is used to limit the range of remote network addresses that may
connect to this system. MASK is used with REMOTEID to identify a range
of remote addresses that may connect to this server system.

For example, a REMOTEID of 12.120.0.0 and a MASK of 255.255.0.0 will
prevent connections from any network address that does not begin with
12.120. However, the last two bytes of the remote dotted decimal address
in this example can be any value, because the MASK has not selected this
part of the address for comparison.

DEFINE PROCESSGROUP command for SNA service

The PQO syntax of the DEFINE PROCESSGROUP command is:

Syntax DEFINE PROCESSGROUP name [LIKE previousname] WITH -
 SCOPE=SYSTEM -
 LINK=linkname -
 REMOTEID=applid -
 LOGIN=TRUST

Optional parameters:

 INLIMIT=nnnn | NOINLIMIT
 OUTLIMIT=nnnn | NOOUTLIMIT
 RETAIN=nnnn | RETAINALL
 MODENAME=modeentry
 GUESTUSE={ACCEPT | REJECT}

Parameters PQO-specific comments and recommendations for SNA service follow:

• LINK is required and associates the group with a locally defined link that
implies the transport type and conversation protocol. linkname must match
the name used in a local DEFINE LINK command.
16 Parallel Query Option/204 User’s Guide

PQO DEFINE commands
• REMOTEID is required and identifies the remote node with which the group
communicates. The applid value, the SNA Communications Server APPL
definition name of the remote node, must match the LOCALID parameter
specified in the DEFINE LINK command at the remote node.

• LOGIN indicates whether the local server process requires a password
from the remote client process at OPEN FILE time. Since there is no facility
for handling a password in PQO, TRUST is the required value for LOGIN.

The CCAD2S process logs in the incoming client user without a password
and assigns privileges from either the CCASTAT password table or an
external security package. The client user ID must be specified in
CCASTAT or in a security package on the server.

Both client and server must specify LOGIN=TRUST.

• INLIMIT=nnnn and NOINLIMIT are mutually exclusive options that control
the allocation of conversations with the server.

INLIMIT sets the maximum number of client requests for conversations with
a server. To ensure that there are enough service threads to handle these
requests, specify an appropriate value for the IODEV line parameter
NOTERM (see page 22).

NOINLIMIT or a nonzero INLIMIT value is required for the server in PQO.

• OUTLIMIT=nnnn and NOOUTLIMIT are mutually exclusive options that
control the allocation of conversations with the client.

NOOUTLIMIT or a nonzero OUTLIMIT value is required for the client in
PQO.

• MODENAME is optional and specifies a particular entry in the SNA
Communications Server mode table to be used when a SNA
Communications Server session is established for an outbound
conversation. For information about the SNA Communications Server
mode table, see the MODETAB parameter description on page 25.

• GUESTUSER depends on whether and/or which you have a third-party
external security package installed for Model 204.

– GUESTUSER=ACCEPT is required for PQO when RACF or TOP
SECRET is installed.

– GUESTUSER=REJECT, the default, is required for PQO when CA-
ACF2 is installed.

Using the DEFINE PROCESS command

There are two distinct types of PQO processes: client and server. The client
process, CCAD2C, is the network entity that initiates a conversation. The
server process, CCAD2S, accepts a remote communications request.

The DEFINE PROCESS command syntax is the same for TCP/IP and SNA.
Defining a Parallel Query Option/204 Network 17

PQO DEFINE commands
The DEFINE PROCESS command associates the process name with one or
multiple processgroups, each of which associates it with a link.

DEFINE PROCESS command for either TCP/IP or SNA service

The PQO syntax of the DEFINE PROCESS command is:

Syntax DEFINE PROCESS {CCAD2C | CCAD2S}
 [LIKE previousname] WITH SCOPE=SYSTEM
 [TIMEOUT=nnnn]

Required for the CCAD2C client process:

 DESTINATION=(pg1,sym1 [,pg2,sym2] •••)

Required for the CCAD2S server process:

 FROM= {processgroup | (pg1 [,pg2] •••)}

Client process DESTINATION parameter

The DESTINATION parameter is required for the CCAD2C client process.
DESTINATION associates the process with a locally defined processgroup or
set of processgroups.

DESTINATION is specified as a list of processgroups with associated symbolic
names.

DESTINATION=(pg1,sym1 [,pg2,sym2] • • •)

where:

• pg1 and pg2 specify the names of the local processgroups with which the
client process is associated.

• sym1 and sym2 are symbolic names, each from 1-8 characters in length.
Each symbolic name is associated with the corresponding processgroup
name in the pair.

A symbolic name defined here is used with AT in a remote file specification
to refer to a processgroup that is associated with a particular remote
location. “Specifying a remote file” on page 55 describes how symbolic
location names are used to reference a remote file.

Each processgroup must be paired with a symbolic name, and vice versa. If
not, the DEFINE PROCESS command is rejected or the opening of remote files
fail. See Appendix A for examples of DESTINATION parameter settings.

Server process FROM parameter

The FROM parameter is required for the CCAD2S server process and
associates it with a locally defined processgroup or set of processgroups. The
18 Parallel Query Option/204 User’s Guide

Runtime and user environment definition
FROM parameter can be specified as either a single processgroup or as a list
of processgroups:

FROM={processgroup | (pg1 [,pg2] • • •)}

where:

• processgroup specifies the name of a local processgroup with which the
server process is associated.

• pg1 and pg2 specify the names of the local processgroups with which the
server process is associated.

See Appendix A for examples of FROM parameter settings.

Client and server TIMEOUT parameter

TIMEOUT sets the time in seconds a process waits for a network transmission
to arrive from a partner. If the TIMEOUT limit is exceeded, the connection is
abnormally terminated. A PQO server process is likely often to be in protracted
waiting states (wait type 27) while clients process the data the server has just
sent.

Therefore, if you set the TIMEOUT value in a CCAD2S definition, make sure it
is sufficiently high to avoid frequent unintended timeouts. In agreement with the
client system manager, you can accept the default, TIMEOUT=0 (no server
timeout) for the CCAD2S definition and rely on the client to provide terminal
timeout checking with the Model 204 CCAIN TIMEOUT.

Runtime and user environment definition

In addition to specifying the network definitions, it is necessary to set up the
Model 204 Online environment to support the PQO network. This section
describes how to set the Model 204 environment parameters in the CCAIN
input stream for PQO.

The parameters listed in Table 2-3 and described in this section are required in
the client Online, the server Online, or both to support the PQO network.

Table 2-3. CCAIN parameters required for PQO

Parameter Required on client? Required on server?

LOCATION Yes Yes

NRMTFILE Yes No

NRMTLOCS Yes No

NSUBTKS Yes Yes

IODEV No Yes
Defining a Parallel Query Option/204 Network 19

Runtime and user environment definition
In addition to these parameters, you need to make sure that your settings are
correct for Model 204 storage requirements and for the following Model 204
parameters:

FIXSIZE
LFTBL, LQTBL, LRTBL, LSTBL, LVTBL
MINBUF
SPCORE

Setting the LOCATION parameter

The LOCATION parameter is a Model 204 User 0 parameter required for both
clients and servers. It identifies the Model 204 copy as a remote application site
within the PQO network.

The syntax of the LOCATION parameter is:

Syntax LOCATION=name

where:

name is required and specifies the locally known name of the PQO network
node. The name is a unique value, from 1-8 characters in length.

The LOCATION parameter is used internally, is displayed to identify client
users when a service thread issues a LOGWHO command, and is used with
BUMP SUBSYSTEM, MONITOR SUBSYSTEM, and STOP SUBSYSTEM
commands to identify a service subsystem by its associated client.

This LOCATION parameter value does not have to match the value specified
for any DEFINE FILE command LOCATION parameter or for any remote file
specification (filename AT location).

During the Online run, the current LOCATION parameter setting can be
displayed on the screen using the VIEW command.

LOCATION is nonresettable. See Appendix A for examples of LOCATION
parameter settings.

Setting the NRMTFILE parameter

The NRMTFILE parameter is a Model 204 runtime parameter that is required
for PQO clients. NRMTFILE determines the number of remote Model 204 files
that can be open concurrently to users on the client system.

The syntax of the NRMTFILE parameter is:

Syntax NRMTFILE=nnnnn

where:
20 Parallel Query Option/204 User’s Guide

Runtime and user environment definition
nnnnn is a numeric value that specifies the maximum number of remote file
save areas allocated by Model 204 for the client. For PQO, the value must be
at least one (for the client) in order to access remote files. The maximum value
is 16383. The default NRMTFILE value is zero.

A nonzero setting of NRMTFILE is required in the User 0 parameter line of all
Onlines that access remote files (all PQO clients). It is not required in an Online
that is exclusively a server.

During an Online run, the current NRMTFILE parameter setting can be
displayed on the screen using the VIEW command. See Chapter 3 for a
description of network monitoring commands.

NRMTFILE is nonresettable. See Appendix A for examples of NRMTFILE
parameter settings.

NRMTFILE functions like the NFILES parameter, except that NFILES allocates
file save areas for local files. See the Rocket Model 204 documentation wiki
(http://m204wiki.rocketsoftware.com/index.php/NFILES_parameter) for a
description of the NFILES parameter.

Setting the NRMTLOCS parameter

The NRMTLOCS parameter is a Model 204 runtime parameter that is required
for PQO clients. NRMTLOCS specifies the number of remote nodes that can
be accessed by client users.

The syntax of the NRMTLOCS parameter is:

Syntax NRMTLOCS=nnnnn

where:

nnnnn is a number from 0 to 2040. The default is 0.

A nonzero setting of NRMTLOCS is required in the User 0 parameter line of all
Onlines that access remote nodes (all PQO clients). It is not required in an
Online that is exclusively a server.

NRMTLOCS is nonresettable. During an Online run, you can display the
current NRMTLOCS setting using the VIEW command.

Setting the NSUBTKS parameter

The NSUBTKS parameter is required for LU 6.2 pseudo-subtasks. The syntax
of the NSUBTKS parameter is:

Syntax NSUBTKS=nnnnn

where:
Defining a Parallel Query Option/204 Network 21

Runtime and user environment definition
nnnnn is a number value that specifies the maximum number of pseudo-
subtasks that can be used in a Model 204 run. For PQO, this number must be
increased by two per link if running under z/OS, or by four per link if running
under z/VM.

For performance reasons, Horizon and PQO conversations should not share
links. However, if the NSUBTKS parameter was previously increased for
Horizon links and the PQO network is sharing link definitions with Horizon, it is
not necessary to increase NSUBTKS for PQO.

The NSUBTKS parameter is located in the User 0 parameter line in the client
and server Onlines. See the Rocket Model 204 documentation wiki
(http://m204wiki.rocketsoftware.com/index.php/NSUBTKS_parameter) for a
description of the NSUBTKS parameter.

See the Model 204 documentation wiki for a description of pseudo-subtasks:

http://m204wiki.rocketsoftware.com/index.php/Controlling_System_Operation
s_(SDN)

Specifying IODEVs for PQO service threads

In PQO, the server application processes the file locally and sends the data
back to the client. The server’s Online must provide the PQO service threads,
which are defined by a particular class of IODEV statements, to process client
requests.

Each IODEV=51 line in a server Online CCAIN stream defines a PQO service
thread. You must determine the number of IODEV=51 lines in each server
Online that optimally service your client demand.

The syntax of the IODEV parameter line is:

Syntax IODEV=51,NOTERM=nn

where:

• IODEV=51 is the required user parameter in the CCAIN for the PQO server
Online. Each IODEV statement defines a Model 204 user. The total number
of IODEV=51 lines determines the maximum number of PQO server
applications that can run concurrently.

• NOTERM is a parameter that is required on the first user parameter line
that specifies IODEV=51. The nn value specified indicates the total number
of threads allocated for PQO inbound conversations in the server’s Online.

Setting NOTERM close to the total of INLIMIT parameter values on the
DEFINE PROCESSGROUP commands for the server system avoids a
shortage of PQO inbound threads so that all incoming conversation
requests can be processed. See page 17 for a description of the INLIMIT
parameter.

See Appendix A for examples of IODEV statements for PQO.
22 Parallel Query Option/204 User’s Guide

SNA Communications Server network definition
Usage notes on IODEV=51

• IODEV=51 threads are required for a Model 204 Online only if it supports
PQO server applications. A client is supported by its local user threads and
requires no additional IODEV statements unless it also functions as a
server.

• The number of IODEV=51 statements limits the server threads only. In a
Model 204 Online supporting both client and server applications, the
number of IODEV=51 statements does not affect the number of concurrent
conversations that a client can initiate on other remote systems.

• A server Online allocates one IODEV=51 thread for each client user that
opens a server file or files. That thread services all the user’s requests of
that Online. When a client closes its last open file on a server node, the
service thread is logged out and made available for another client user.

• When a client is using an IODEV=51 thread, the USERID parameter of the
service thread is set to the USERID value of the client Horizon thread.
USERID must be specified in CCASTAT or external authorizers such as
ACF2, but it is not validated by a password. Client users are not prompted
for passwords.

• A Model 204 Online has a pool of IODEV=51 threads to share among all
nodes requesting access to files owned by that Online. The number of
remote users who can access files on a given node is limited by the number
of sessions that can be bound to the service node (the size of the pool) and
the number of service threads (NOTERM) that are allocated in the server
Online IODEV statement.

There is no way to explicitly allocate a particular number of service threads
to one or more specific client nodes. This capability is implicitly provided
through the processgroup entity (see “Using the DEFINE
PROCESSGROUP command” on page 14).

SNA Communications Server network definition

PQO communicates over an SNA network through SNA Communications
Server by using the LU 6.2 interface of the Model 204 Horizon facility. For z/OS
and z/VSE systems, PQO can alternatively communicate using TCP/IP,
although this still uses Horizon. See below for an example.

SNA Communications Server communications support must be in place to use
PQO. This section describes how to set up the SNA Communications Server
network definition with parameters that correspond correctly to the Model 204
network definitions.

The SNA Communications Server setup is similar to that required for Horizon
without PQO. See the Model 204 Horizon: Intersystem Processing Guide for
information about SNA Communications Server network support for Horizon.
Figure 2-1 on page 9 shows the basic PQO communications pathway.
Defining a Parallel Query Option/204 Network 23

SNA Communications Server network definition
Components of SNA Communications Server definition

The host copies of Model 204 used in PQO host-to-host communications are
SNA Communications Server application nodes. In a PQO session, both
partners (client and server) are SNA Communications Server application LUs.

The SNA Communications Server network definition for PQO includes:

• APPL (application) statement (for each PQO link)

• Mode table (for LU 6.2 session parameters for the network)

Figure 2-2 shows the basic components of the SNA Communications Server
definition for PQO. The PQO network shares the existing LU 6.2 table definition
(shown as mode table LU62 in the diagram) with the Horizon facility.

Figure 2-2. Components of the SNA Communications Server definition for PQO

Figure 2-2 on page 24 illustrates a SNA Communications Server definition for
two application nodes, one for non-PQO Horizon communications (HZN) and
one for Parallel Query Option/204 (PQO). The LU 6.2 mode table shown
(LU62) contains a single entry (M204) for Model 204 network session
parameters.

Coding the APPL statements for the SNA Communications Server network

In an SNA Communications Server network a separate APPL statement is
required for each PQO link entity defined with a Model 204 DEFINE LINK
command.

There are three parameters that you must specify in the APPL statement to
define SNA Communications Server support for PQO link entities. In addition,
there are three optional parameters that you can specify. Other parameters
exist for the APPL statement but, because they default to values appropriate
for PQO communications, they are not mentioned here.

VTAMLST

 HZN APPL
 MODETAB=LU62
 .
 .
 .
 PQO APPL
 MODETAB=LU62
 .
 .
 .

APPL statements

LU62 MODETAB
M204 MODEENT
.
.
.

LU62 MODEEND

Mode table
24 Parallel Query Option/204 User’s Guide

SNA Communications Server network definition
The required and optional parameters of the APPL statement used for PQO are
shown in the following syntax. These parameter settings are the same as those
recommended in the Model 204 Horizon: Intersystem Processing Guide for
typical Horizon connections. Only the MODETAB parameter for PQO requires
additional comment.

Syntax name APPL AUTH=ACQ,
 PARSESS=YES,
 MODETAB=tablename,
Optional:
 DLOGMOD=entryname,
 VPACING=5,
 PRTCT=password

MODETAB is a required parameter. It ties the APPL definition to the mode
definition that specifies the particular set of SNA protocols required for the
LU 6.2 session between two PQO LUs.

Since PQO uses Horizon protocols, no new table is created for the LU 6.2
session parameters. The MODETAB name for PQO must match the name of
the mode table used by the Horizon facility. See the LU 6.2 mode table example
on page 26.

Setting session parameters

The set of LU 6.2 session parameters (the mode definition) required for PQO
is stored in a mode table for each LU. The server LU’s APPL definition points
to the mode table, as is done in Horizon.

In PQO communications, the client LU acts as the primary partner in the
conversation. The client LU initiates a conversation and acquires a session with
the secondary partner, the server LU. The LU 6.2 session parameters are
obtained by the client LU from the entry defined for the server, and are then
sent to the partner server LU in the BIND message that establishes the session.
The client and server LUs share the common set of LU 6.2 rules required to
govern the session.

Each PQO link entity supports multiple sessions. A single link entity that
supports both client and server processes can act as the primary role partner,
or client, on one session and as the secondary role partner, or server, on
another session.

The mode table showing the basic set of LU 6.2 session parameters
recommended for both Horizon and PQO is shown in the following example.

See the MODETAB parameter remarks on page 25 for a description of the
APPL parameter used to reference this table. Refer to the Model 204 Horizon:
Intersystem Processing Guide for parameter descriptions and for information
about modifying the mode table parameters such as RUSIZES and SSNDPAC.
Defining a Parallel Query Option/204 Network 25

Two-node network example
Mode table
example

table name MODETAB
entry name MODEENT LOGMODE=entryname
 TYPE=X‘00’,
 FMPROF=X‘13’,
 TSTPROF=X‘07’,
 PRIPROT=X‘B0’,
 SECPROT=X‘B0’,
 COMPROT=X‘50B1’,
 RUSIZES=X‘8888’,
 SSNDPAC=X‘05’,
 PSERVIC=X‘060200000000000000102000’
.
. (additional table entries, if specified)
.
table name MODEEND

Two-node network example

This section provides sample network definitions for PQO including:

• Model 204 DEFINE commands

• Runtime and user environment parameters

• SNA Communications Server APPL statements, as needed

The sample PQO network supports a Model 204 reporting application for an
insurance company requiring communication between two offices in the Boston
area. The downtown office produces a policy report using data files from the
suburban office.

Each office system operates independently running under its own version of
Model 204 in an z/OS environment. The downtown office (Boston1) is the client
in the network, requesting information, and the suburban office (Boston2) is the
server, providing access to files.

Comparing network types

There are examples below for SNA Communications Server and for TCP/IP.
For TCP/IP systems the User 0 parameters and the DEFINE PROCESS
parameters are the same, The DEFINE LINK and DEFINE PROCESSGROUP
parameters are different as shown, and the APPL statements are not required.
26 Parallel Query Option/204 User’s Guide

Two-node network example
Client input stream excerpt for SNA Communications Server network

//CCAIN DD *
* User 0 parameters
.
.
.
 NRMTFILE=4,
 NRMTLOCS=1,
 NSUBTKS=4,
 LOCATION=BOSTON1
.
.
.
* Single link, single process network definition

DEFINE LINK LINK1 WITH SCOPE=SYSTEM LOCALID=DISUSR01 -
 TRANSPORT=VTAM PROTOCOL=LU62 INBUFSIZE=512 -
 SESSIONS=4

DEFINE PROCESSGROUP PGRP1 WITH SCOPE=SYSTEM -
 LINK=LINK1 OUTLIMIT=48 INLIMIT=0 -
 REMOTEID=125.20.34.9 LOGIN=TRUST
 PORT=7001 */the SERVPORT value in service Online/*

DEFINE PROCESS CCAD2C WITH SCOPE=SYSTEM -
 DESTINATION=(PGRP1,OFFICE1)
.
.
.
/*

Modifications for client input stream for TCP/IP network

The following DEFINE LINK and PROCESSGROUP definitions are for a
TCP/IP system. The other elements in the client input stream remain the same
as for the previous SNA Communications Server network.

DEFINE LINK LINK1 WITH SCOPE=SYSTEM -
LOCALID=125.20.34.16 -
TRANSPORT=TCPSE PROTOCOL=IP SERVPORT=7000 -
INBUFSIZE=4096 -
CONNECTIONS=50

DEFINE PROCESSGROUP PGRP1 WITH SCOPE=SYSTEM -
LINK=LINK1 OUTLIMIT=48 INLIMIT=0 -
REMOTEID=125.20.34.9 LOGIN=TRUST -
PORT=7001
Defining a Parallel Query Option/204 Network 27

Two-node network example
Server input stream excerpt for SNA Communications Server network

//CCAIN DD *
* User 0 parameters
.
.
.
 NSUBTKS=6,
 LOCATION=BOSTON2

* User parameter lines

IODEV=51,NOTERM=4
IODEV=51
IODEV=51
IODEV=51

* Single link, single process network definition

DEFINE LINK LINK2 WITH SCOPE=SYSTEM LOCALID=DISUSR02 -
 TRANSPORT=VTAM PROTOCOL=LU62 INBUFSIZE=512 -
 SESSIONS=4

DEFINE PROCESSGROUP PGRP2 WITH SCOPE=SYSTEM -
 LINK=LINK2 OUTLIMIT=0 INLIMIT=4 -
 REMOTEID=DISUSR01 LOGIN=TRUST

DEFINE PROCESS CCAD2S WITH SCOPE=SYSTEM -
 FROM=PGRP2
.
.
.
/*

Modifications for server input stream for TCP/IP network

The following DEFINE LINK and PROCESSGROUP definitions are for a
TCP/IP system. The other elements in the server input stream remain the same
as the previous SNA Communications Server network.

DEFINE LINK LINK2 WITH SCOPE=SYSTEM LOCALID=125.20.34.9 -
TRANSPORT=TCPSE PROTOCOL=IP SERVPORT=7001 -
INBUFSIZE=4096 -
CONNECTIONS=50

DEFINE PROCESSGROUP PGRP1 WITH SCOPE=SYSTEM -
LINK=LINK1 OUTLIMIT=0 INLIMIT=48 -
REMOTEID=125.20.34.0 LOGIN=TRUST -
MASK=255.255.255.0
28 Parallel Query Option/204 User’s Guide

Two-node network example
APPLO statements required for only SNA Communications Server network

Client APPL statement

The APPL statement for LINK1, coded in BOSTON1’s VTAMLST data set, is:

DISUSR01 APPL AUTH=ACQ,
 PARSESS=YES,
 MODETAB=LU62,
 VPACING=5

Server APPL statement

The APPL statement for LINK2, coded in BOSTON2’s VTAMLST data set, is:

DISUSR02 APPL AUTH=ACQ,
 PARSESS=YES,
 MODETAB=LU62,
 VPACING=5
Defining a Parallel Query Option/204 Network 29

Two-node network example
30 Parallel Query Option/204 User’s Guide

3
Managing the Parallel Query
Option/204 Network

Overview

After you have defined the Parallel Query Option/204 network as
described in Chapter 2, you need to be aware of certain tasks involved
in managing the daily operation of the network. These tasks are
performed by the network administrator, system administrator, or
system manager, and include:

• Controlling the network

• Monitoring network activity

• Using the Model 204 audit trail

• Interpreting communications errors

Controlling the network

You use the following types of Model 204 commands to control the
PQO network:

• LU 6.2 network administration commands

• BUMP system control command

These commands are described in the sections that follow.
Managing the Parallel Query Option/204 Network 31

Controlling the network
Using the LU 6.2 network administration commands

The basic set of network administration commands used to control the
operation of the PQO network are also used for Horizon. The commands
shown in Table 3-1 are useful for controlling utilization of resources in the
network.

Table 3-1. Network administration commands

The Model 204 network administration commands require User 0, system
manager, or system administrator privileges. See the Rocket Model 204
Horizon: Intersystem Processing Guide for information about using the LU 6.2
network administration commands. That volume serves as the primary
reference for the commands.

Using the OPEN LINK command

Use the OPEN LINK command to establish the connections for a PQO
conversation. Both the link on the client and the corresponding link on the
server must be opened before a client user can access remote server files. The
syntax of the OPEN LINK command is the standard Horizon network OPEN
LINK syntax. For information about using the OPEN LINK command, see the
Rocket Model 204 Horizon: Intersystem Processing Guide.

Table <x>-1.

Command Description

[OPEN | CLOSE] LINK Enables/disables the link specified in a DEFINE
LINK command (allocates/releases internal
resources).

If a link is closed after a service subsystem has
been successfully started, that subsystem remains
available to the client (although the link must be
reopened before the client can reaccess it).

[STOP | START] LINK Halts/resumes operation of the link specified in a
DEFINE LINK (deactivates/activates sessions).

[STOP | START]
PROCESSGROUP

Halts/resumes operation of a processgroup
specified in a DEFINE PROCESSGROUP
command (enables processgroup redefinition).

If a processgroup is stopped after a service
subsystem has been successfully started, that
subsystem remains available to the client
(although the processgroup must be restarted
before the client can reaccess it).

MODIFY PROCESSGROUP Modifies an operational PROCESSGROUP
definition (overrides current parameter settings).
32 Parallel Query Option/204 User’s Guide

Controlling the network
Using the BUMP command

Use the BUMP command to log out a PQO user or to log out all users of a
subsystem. For more information about the BUMP command, see the Rocket
Model 204 documentation wiki
(http://m204wiki.rocketsoftware.com/index.php/BUMP_command).

Bumping a user

The BUMP command operates differently depending on whether it is issued by
a client or a server system manager.

If the client issues a BUMP command for a user with an open remote file, the
client and service threads are freed in the following way:

If the server issues a BUMP command for a remote user with a server file open,
the service and client threads are freed in the following way:

Client

1. Soft restart processing for the user begins.

2. Files opened by the user are closed.

3. The user is logged out.

4. Soft restart processing for the user ends.

Server

1. The user’s service thread is logged out.

2. Soft restart processing for the user begins.

3. Local files opened by the user are closed.

4. The user is logged out.

5. Soft restart processing for the user ends.

Server

1. Soft restart processing for the user begins.

2. Local files opened by the user are closed.

3. The user is logged out.

4. Lost session message is issued.

5. Soft restart processing for the user ends.
Managing the Parallel Query Option/204 Network 33

Monitoring network activity
Bumping all users of a subsystem

To bump all users of a specified subsystem, use the SUBSYSTEM argument of
the BUMP command. The syntax is as follows:

Syntax BUMP SUBSYSTEM subsysname

Model 204 schedules all users in the subsystem to be bumped, except those in
nonbumpable states such as BACKOUT.

You can also BUMP all local users of a remote service subsystem. Use the
client LOCATION name with BUMP SUBSYSTEM. The syntax is as follows:

Syntax BUMP SUBSYSTEM subsysname FROM location

where:

location is the value of the client CCAIN LOCATION parameter (which is also
the value of the CLNT field in the LOGWHO command output), or is the
symbolic name specified by the process definition.

Monitoring network activity

The Model 204 commands used to check on the activity in the PQO network
are shown in Table 3-2.

Client

1. User query of the remote file receives lost session and communication error
messages.

2. User can open remote file again.

Table 3-2. Network monitoring commands

Command Description

DISPLAY GROUP Displays information about Model 204 groups

LOGWHO Identifies the users who are currently logged in to the
Model 204 system

MONITOR Provides usage statistics for each service thread
currently open in the network; also provides information
about active local and remote subsystems

STATUS Displays information about remotely opened Model 204
files

VIEW Specifies the current setting for the named parameter
34 Parallel Query Option/204 User’s Guide

Monitoring network activity
These commands can be used system-wide. These commands also provide
information that identifies users, files, groups, or settings that are particular to
the PQO network, as described in the sections that follow.

Using the DISPLAY GROUP command

The DISPLAY GROUP command can display the name and member files of
any or all locally created scattered groups. It does not display definitions for
groups that were created on other nodes.

The names of remote files displayed are their file synonyms or remote file
specifications (filename AT location).

In addition, the display might include:

• OPTIONAL (in parentheses) following each optional member.
MANDATORY is not displayed if the member is mandatory.

For more information about optional and mandatory group members, see
“Creating ad hoc scattered groups” on page 48.

• MAXFAIL parameter (CREATE GROUP command) value, if it has a value
other than asterisk (*).

• UPDTFILE parameter value, including the update file’s location if its
location was used in the CREATE GROUP definition.

Using the LOGWHO command

The LOGWHO command lists the users who are currently logged in to
Model 204. For PQO, the LOGWHO command operates differently depending
on whether it displays information for a client or a server system.

For each PQO user, LOGWHO shows the remote files currently open.
Model 204 includes the following LOGWHO information for a PQO user:

For example, the LOGWHO command displays the line below for a PQO user
on a client system. The user has two files open: a local file, DEMOINV, and a
remote file, SALES1, at the BOSTON location:

USER 5 SYSADM L3270621 DEMOINV SALES1 AT BOSTON

Client Displays the user ID and the name of the open remote file using the
full remote file specification (filename AT location)

Server Displays the client user number and user ID, and also displays name
of subsystem into which service thread is logged, if any
Managing the Parallel Query Option/204 Network 35

Monitoring network activity
The values in this example come from the following sources:

In the following example, a LOGWHO command is issued for a PQO service
thread. The display includes the following line for a client user. The line includes
the service thread’s originating client node, the user number of the client
thread, and the name of the subsystem into which the client user is logged.

USER 34 MGRXYZ XXXXXXXX SALES1 CLNT: 00005 ON CHICAGO
APSY: DEMOSALES

The values in this example come from the following sources:

The LOGWHO command requires system administrator privileges. See the
Rocket Model 204 documentation wiki

Value Source

USER 5 User thread number displayed in Model 204 journal/audit trail user
statistics (see the Rocket Model 204 documentation wiki:
http://m204wiki.rocketsoftware.com/index.php/Tracking_system_act
ivity_(CCAJRNL,_CCAAUDIT,_CCAJLOG))

SYSADM User’s Model 204 login user ID

L3270621 User’s SNA Communications Server Communications Server
(formerly VTAM) terminal ID or z/VM machine name

DEMOINV Name of a local file open on the client

SALES1 File’s name as specified in a Model 204 CREATE FILE command on
the server

BOSTON Node on which the remote file resides; a symbolic destination name
specified in a client DEFINE PROCESS command for CCAD2C

Value Source

USER 34 User thread number of service thread as displayed in
Model 204 journal/audit trail user statistics

MGRXYZ Client user’s Model 204 login user ID

XXXXXXXX Value of local DEFINE PROCESSGROUP command
REMOTEID parameter

SALES1 Name of a local file open on the server

CLNT: 00005 User number at the client thread that is currently using the
service thread MGRXYZ (only if user is a client)

ON CHICAGO Value of User 0 LOCATION parameter in the client’s
Model 204 CCAIN

APSY: DEMOSALES Name of APSY subsystem into which client thread is
logged (only if USER 34 is a service thread)
36 Parallel Query Option/204 User’s Guide

Monitoring network activity
(http://m204wiki.rocketsoftware.com/index.php/LOGWHO_command) for a
description of the LOGWHO command.

Using the MONITOR command

The MONITOR command can provide statistics on the current usage of a
network entity: link, processgroup, or process. MONITOR can also provide
information about active PQO subsystems. This section describes details
specific to the PQO output lines.

The MONITOR commands of particular interest for PQO are summarized in
Table 3-3.

The MONITOR command for network entities operates the same for PQO as it
does for the Horizon network. It requires User 0, system manager, or system
administrator privileges. See the Rocket Model 204 Horizon: Intersystem
Processing Guide for more information about MONITOR for network entities.

MONITOR SUBSYSTEM output reports whether subsystem members are
optional or mandatory, and it has an option (FROM location) that allows PQO
users to specify exactly the service subsystem monitored. Ordinary user
privileges are required.

MONITOR LINK statistics

Monitoring link activity in the PQO network produces the following difference in
the output lines compared to the Horizon statistics: The PROCESS term in the
detail line for PQO specifies CCAD2S for the server process or CCAD2C for
the client process.

The PROTO term in the summary line specifies LU 6.2 as the type of
communications protocol for PQO, the same as is used for Horizon.

MONITOR PROCESSGROUP statistics

Monitoring processgroup activity in the PQO network produces differences in
the detail output line compared to the Horizon statistics. The PROCESS term
in the detail line for PQO specifies:

Table 3-3. MONITOR commands

Command Displays...

MONITOR LINK Single summary line, and a detail line for each
bound session

MONITOR
PROCESSGROUP

Single summary line, and a detail line for each
active conversation

MONITOR PROCESS Detail line for each active conversation

MONITOR SUBSYSTEM List of active subsystems and information about
those subsystems
Managing the Parallel Query Option/204 Network 37

Monitoring network activity
• CCAD2S for an inbound conversation

• CCAD2C for an outbound conversation

MONITOR PROCESS statistics

Monitoring process activity in the PQO network produces differences in the
detail output line compared to the Horizon statistics. The CID (conversation ID)
term for a PQO conversation ID specifies:

• CCAD2S (for a server), with the FLGS term set for I (inbound)

• Concatenation of the processgroup REMOTEID and LINK values (for a
client), with the FLGS term set for O (outbound)

MONITOR SUBSYSTEM command

To display information about a PQO service subsystem, a server node user
specifies the client subsystem name and LOCATION name with the MONITOR
SUBSYSTEM command. The format is as follows:

Syntax MONITOR SUBSYSTEM (optionlist) subsysname FROM location

where:

• optionlist and subsysname are the standard Model 204 MONITOR
SUBSYSTEM variable arguments.

• location is the value of the client CCAIN LOCATION parameter (which is
also the value of the CLNT field in the LOGWHO command output), or is
the symbolic name specified by the process definition.

You can also use pattern matching:

MONITOR SUBSYSTEM (optionlist) LIKE ‘pattern’ FROM ‘loc-
pattern’

loc-pattern is used to match a client LOCATION parameter. An asterisk (*),
meaning all nonlocal locations, is a valid value for loc-pattern. If you use pattern
matching, you must specify a pattern for both the subsystem name and
location, and you can only match remote location names.

The MONITOR SUBSYSTEM display includes subsystem member locations (if
remote) and whether members are optional or mandatory. A client subsystem
display also includes items that are not relevant for the server, such as the
storage used for resident requests and whether client subsystem files and
groups are automatically or manually opened.

For example, this command produces the output that follows:

MONITOR SUBSYSTEM (ALL) SALES FROM BOSTON

SUBSYSTE NAME: SALES FROM BOSTON
38 Parallel Query Option/204 User’s Guide

Monitoring network activity
 SUBSYSTEM STATUS: ACTIVE
 NUMBER OF USERS: 1
 NUMBER OF PRECOMPILABLE PROCEDURES (SAVED): 1
 FILE: BUYERS
 STATUS=OPEN,NUSERS=1,DFRD UPDATE=N,MANDATORY
 FILE: REG1
 STATUS=OPEN,NUSERS=1,DFRD UPDATE=N,OPTIONAL
 FILE: REG2
 STATUS=CLOSED,NUSERS=1,DFRD UPDATE=N,OPTIONAL
 FILE: REG3
 STATUS=CLOSED,NUSERS=1,DFRD UPDATE=N,OPTIONAL
 FILE: TOTLS

Using the STATUS command

For PQO, the STATUS command displays recovery information about remote
Model 204 files that were opened during a client Online run.

A STATUS command issued by a client user displays a line with the following
format for a remotely opened file:

filename:(REMOTE FILE), LOCATION: name1 ONLINE: name2

where:

• filename is the actual (nonsynonym) name of the remote file.

• name1 is the symbolic name of the file’s remote location as specified in the
DESTINATION parameter of a local DEFINE PROCESS command.

• name2 is the value of the CCAIN parameter LOCATION in the server
Online.

For more information about location references, see “Client process
DESTINATION parameter” on page 18 and “Setting the LOCATION
parameter” on page 20. Refer to the Rocket Model 204 documentation wiki
(http://m204wiki.rocketsoftware.com/index.php/STATUS_command:_Listing_f
ile_recovery_information) for a description of the STATUS command.

Using the VIEW command

Use the VIEW command display the current settings of Model 204 parameters.
In PQO remote file contexts, the VIEW command is not reliable for all file
parameters.

In remote file context, reliable VIEW command results are guaranteed only for
the following parameters:

ASTRPPG
ATRPG
Managing the Parallel Query Option/204 Network 39

Monitoring network activity
CURFILE
CURLOC
FICREATE
FILEORG
FITRANS
HASHKEY
LOCATION
OPENCTL
RECSCTY
SORTKEY

Similarly, for VIEW FPARMS or VIEW TABLES in remote file context, correct
information is guaranteed only for the file parameters listed above.

The following examples are of remote file context VIEW command displays for
individual file parameters:

• VIEW LOCATION displays the value of the CCAIN LOCATION parameter
of the Model 204 copy to which the file you are in belongs.

For example, VIEW LOCATION in remote file context displays a line with
the following format:

LOCATION name D204 LOCATION

name is the value specified in the LOCATION parameter in the remote
Online’s User 0 input stream. See “Setting the LOCATION parameter” on
page 20 for a description of this parameter.

• VIEW CURFILE displays the name of the file you are currently in.

For example, VIEW CURFILE in remote file context displays a line with the
following format:

CURFILE name CURRENT FILE

name is the name given to the file when it was created. No file synonyms
or remote file specifications are displayed.

• VIEW CURLOC displays the current file’s location.

For example, VIEW CURLOC in remote file context displays a line with the
following format:

CURLOC name CURFILE LOCATION IF REMOTE

name is the symbolic name of the file’s remote location as specified in the
DESTINATION parameter of a local DEFINE PROCESS command.

If the current file is local, VIEW CURLOC displays a line with the following
format:

CURLOC name (LOCAL)
40 Parallel Query Option/204 User’s Guide

Using the Model 204 audit trail
Using the Model 204 audit trail

Technical Support recommends that PQO clients and servers run with a Model
204 audit trail activated. The audit trail can be printed directly by a Model 204
run without requiring a separate job step. It is invaluable for debugging
application programs and for analyzing system performance.

For your own diagnostic purposes or when reporting debugging problems to
Technical Support, set the Model 204 SYSOPT parameter on server nodes to
include audit trail RK lines. The RK lines record calls to Host Language
Interface functions, and PQO service threads make use of Model 204 HLI calls
to access data.

When you need to conserve audit trail space, turn off the RK lines.

For more information about the SYSOPT parameter, see the Rocket Model 204
documentation wiki
(http://m204wiki.rocketsoftware.com/index.php/SYSOPT_parameter).

Interpreting communications errors

When you use or attempt to use PQO communications, Model 204 generates
messages that track the network activity. Model 204 writes these messages to
the system’s audit trail.

If an error occurs involving PQO communications, conversation processing is
not started or is stopped, and Model 204 automatically displays status codes
and sometimes an error message on the client user’s terminal or server
operator’s console. Model 204 also writes the error message to the audit trail
of the client or server on which the error occurred.

PQO errors that involve the underlying communications layer are handled
differently from application level errors. For a description of error handling at
compilation and evaluation time, see “Errors during compilation and evaluation”
on page 64.

Communications error display format

Each PQO error condition involving the underlying communications layer is
displayed as one or two error messages. One of these messages contains the
status codes. The other line, if any, contains a Model 204 message that helps
to describe the condition that caused the error.

An error message that includes the status codes has the following format:

M204.nnnn: COMM[UNICATION] ERROR STATUS=nn, STATUSD=nn

The STATUS value refers to the status of the communications statement last
executed. This value is a number value greater than or equal to zero. A value
of two or greater indicates that a communications error occurred and identifies
the error as belonging to a particular category.
Managing the Parallel Query Option/204 Network 41

Interpreting communications errors
STATUSD is set to the return code that details the specific error condition within
a particular STATUS category.

STATUS and STATUSD refer to the SOUL $STATUS and $STATUSD function
values described in the Rocket Model 204 Horizon: Intersystem Processing
Guide.

Using the status return codes

The STATUS and STATUSD codes that correspond to PQO communications
errors are displayed for informational purposes only and cannot be
manipulated by the PQO user in a SOUL procedure.

This limitation on use of the status return codes applies only to communications
errors.

Using the Model 204 error message

The Rocket Model 204 messages documentation provides a description of
Model 204 errors associated with PQO error conditions. Wherever possible,
refer to this messages documentation for an explanation of the associated error
message.

If an error message is encountered for which no description is available,
contact Technical Support for assistance.
42 Parallel Query Option/204 User’s Guide

4
Managing Files and Groups for
Parallel Query Option/204

Overview

This chapter describes how to set up a symbolic file name definition for
client users and how to set permission to access a remote file at a
server location. These tasks are performed by the file manager.

The chapter also includes a description of how to define groups that
include remote files and how to stop and start remote files and scattered
groups.

For information about working with remote files and scattered groups in
application subsystems, see Chapter 6.

Defining file synonyms

Parallel Query Option/204 supports the use of symbolic names for
referencing a remote file. To use a symbolic file name, a file synonym
definition (DEFINE FILE command) is required.

The DEFINE FILE command maps a file synonym defined by a local
user against the actual name of a local or remote file, using the location
where the file resides.

Once the DEFINE FILE command has been issued, local users can
refer to the file using the synonym name, as described in “Using a file
synonym” on page 57.
Managing Files and Groups for Parallel Query Option/204 43

Defining file synonyms
DEFINE FILE command

The syntax of the DEFINE FILE command is:

Syntax DEFINE FILE name [LIKE previousname] WITH
 SCOPE=SYSTEM
 FILENAME=actualfilename
 LOCATION={locationname | ’=’}

where:

Parameters • name is required, and is the symbolic name (file synonym) assigned to the
file. The name must be from 1-8 characters in length. If name is already in
use as a file synonym for this copy of Model 204, DEFINE FILE name gives
name a new definition.

• LIKE is optional and gives the file synonym currently being defined the
attributes of the file referred to by previousname, where previousname is a
symbolic name that was previously defined.

If used, LIKE previousname assigns an additional file synonym, and the
FILENAME and LOCATION parameters are not required.

• SCOPE=SYSTEM is required and indicates that this definition is available
to all users of this copy of Model 204 for the entire length of the run.

• A FILENAME setting is required if LIKE previousname is not specified in the
definition. actualfilename is the file’s name as specified in a Model 204
CREATE FILE command on the node to which the file belongs.

• LOCATION is required if LIKE previousname is not specified in the
definition. locationname refers to the location of the node on which the
actual file resides.

An equal sign (=) between single quotation marks indicates that the location
is the client node: meaning, the file is local.

The location name also might be required to match a value that is specified
in the DESTINATION parameter of a local CCAD2C process definition: If
the CCAD2C DESTINATION name is specified in processgroup-symbolic
name format, locationname must match a specified symbolic name.

For example, corresponding to a CCAD2C process definition that includes:

DESTINATION=(PGRP1,BOSTON)

the system manager defines a synonym for a remote file by specifying the
following location name in a file definition:

LOCATION=BOSTON

For more information about the DESTINATION parameter, see page 18.
44 Parallel Query Option/204 User’s Guide

Creating scattered groups
Using the DEFINE FILE command

The DEFINE FILE command requires User 0 or system manager privileges,
and can be issued in any of the following ways:

• Inside the CCAIN input file in the User 0 stream of the client copy of
Model 204

• At the user terminal, with the necessary privileges

• Inside a SOUL procedure, with the necessary privileges

You may use DEFINE FILE to define multiple synonyms for the same file, and
you may reissue DEFINE FILE with the same name in the same Online or batch
run. However, you cannot use multiple synonyms for the same file in a group
or subsystem definition.

Redefining file synonyms for group members

Since Model 204 maps file synonyms when the first user opens a permanent
or temporary group, changes to file synonyms have no effect on permanent
groups previously opened in the run or temporary groups previously opened in
the session. If you want to redefine a file synonym for a member of an already
open group, you must:

1. Issue a new DEFINE FILE command.

2. Close the group.

3. Delete the group.

4. Issue a new CREATE GROUP command.

5. Open the group again.

Creating scattered groups

PQO supports file groups consisting of files residing on different nodes. A group
that contains remote files is a scattered group. Model 204 ad hoc, temporary,
and permanent groups can be scattered groups. With no additional
requirements, ad hoc groups allow remote file synonyms and remote file
specifications. With some additional parameter requirements, temporary and
permanent groups allow remote file synonyms and remote file specifications.

Availability, a file status that concerns scattered groups, refers to whether a
group member can be opened and, if not, whether the group can be opened.
See “File and group availability” on page 49.

Scattered group members are optional or mandatory. If a mandatory member
is unavailable, the group cannot open. You specify whether members are
optional or mandatory in the group definition. See “Creating ad hoc scattered
groups” on page 48.
Managing Files and Groups for Parallel Query Option/204 45

Creating scattered groups
A scattered group is a local entity—you cannot create a group for a remote
node, and you cannot refer to a group defined on a remote node. As for all
Model 204 groups, you define a scattered group with the CREATE GROUP
command or the SOUL IN clause. The authority required to define a scattered
group is no different from that required for a nonscattered group.

It is important to remember that before you create any Model 204 permanent
group, scattered or not, you must create a CCAGRP file with the CREATEG
command, as described in the Rocket Model 204 documentation wiki:

http://m204wiki.rocketsoftware.com/index.php/Storing_and_using_file_group_
definitions_(CCAGRP)

For more information on the CREATEG command, see:

http://m204wiki.rocketsoftware.com/index.php/CREATEG_command

CREATE GROUP command

The CREATE GROUP command syntax and scattered group parameter
options are described as follows:

Syntax CREATE [PERM | TEMP] GROUP groupname
 FROM {filename [OPTIONAL | MANDATORY]} ,...
 [PARAMETER parameter[=value] [, parameter[=value]] ...]
 [PARAMETER parameter[=value] [, parameter[=value]] ...]
.
.
.
END

where:

Parameters • If neither PERM nor TEMP is specified, the default TEMP is assumed.

• If you are specifying remote files, filename must include a remote location
(AT location) or be a defined file synonym.

You cannot specify multiple identifiers for the same file—you cannot include
two synonyms for the same file, and you cannot include a synonym and a
remote file specification for the same file. Duplicate identifiers for a local file
are detected when Model 204 tries to open the group. A Model 204
message tells you the name of file duplicates that result from using file
synonyms.

• OPTIONAL or MANDATORY indicates whether group operations can
proceed in the absence of the member. The default is MANDATORY. Valid
abbreviations are OPT and MAND. You cannot specify OPTIONAL for local
files.

If too many optional files are unavailable, group operations cannot proceed.
See the MAXFAIL parameter, below.
46 Parallel Query Option/204 User’s Guide

Creating scattered groups
You cannot open a group if a mandatory member is unavailable.

• parameter specifies Model 204 group parameters. Any number of
PARAMETER clauses can follow, and each can contain as many
parameters in any order as can fit on one input line.

Valid parameters are described in the Rocket Model 204 documentation
wiki
(http://m204wiki.rocketsoftware.com/index.php/CREATE_command:_Per
manent_group or
http://m204wiki.rocketsoftware.com/index.php/CREATE_command:_Tem
porary_group). All but PRIVATE, PUBLIC, and SEMIPUB must be followed
by a value.

PARAMETER clause PROCFILE parameter (if present) must refer to a
local file. You cannot access or use remotely stored procedures. If the
group is scattered, the value of PROCFILE cannot be an asterisk (*).

PARAMETER clause MAXFAIL parameter specifies the maximum number
of optional members that can be unavailable. If more than MAXFAIL files
are unavailable, the group fails to open or operations on the group are
aborted. The value of MAXFAIL must be one of the following:

– Integer between one and the number of optional group members.

– Asterisk (*), which is equivalent to the number of optional members in
the group. This setting means that the group can function without any
of its optional members. This is the default.

For ad hoc scattered groups, MAXFAIL is always set to the default.

The PARAMETER clause BLDGFT parameter is ignored for groups that
include remote members.

The PARAMETER clause UPDTFILE parameter can refer to either local or
remote files. If the update file you are naming is a remote file, you can
include its remote file specification (AT location).

CREATE GROUP example

The following CREATE GROUP command creates a permanent scattered
group with four local members and four remote members. Five members are
mandatory, and the MAXFAIL setting (*) is equivalent to MAXFAIL=3 (the group
has three optional members). The update file is a remote member.
Managing Files and Groups for Parallel Query Option/204 47

Creating scattered groups
CREATE PERM GROUP GRP1 -
 FROM INSURE89, OWNERS AT DALLAS(MAND), AUTOS AT DETROIT, -
 DETTMP1 AT DETROIT(OPT), DETTMP2 AT DETROIT(OPT), -
 DALTMP3 AT DALLAS(OPT), CLNTPROC(MAND), INSURE90, -
 PARAMETER PROCFILE=CLNTPROC, UPDTFILE=AUTOS AT DETROIT, -
 MAXFAIL=* -
END

Creating ad hoc scattered groups

You use the following IN clause syntax to create an ad hoc scattered group:

Syntax IN file [(OPTIONAL | MANDATORY)],
 {file [(OPTIONAL | MANDATORY)]} ,...

• If you are specifying remote files, file must include a remote location (AT
location) or be a defined file synonym.

You cannot specify multiple identifiers for the same file—you cannot include
two synonyms for the same file, and you cannot include a synonym and a
remote file specification for the same file.

• OPTIONAL and MANDATORY are the same as in “CREATE GROUP
command” on page 46.

In the ad hoc group created in the following example, CLIENTS is a local file,
CARS is a remote file synonym, and SALES AT DETROIT is a remote file
specification:

Example and discussion of an ad hoc scattered group

IN CLIENTS, CARS, SALES AT DETROIT (OPTIONAL)

If you want to refer to an ad hoc group you created earlier in a request, you must
repeat the earlier IN clause. Model 204 considers two ad hoc groups as
duplicates if all the following are true:

• Their IN clauses contain the same set of files.

• Their IN clauses list the files in the same order.

• Corresponding files in their IN clauses are both optional or both mandatory.

The following IN clause is issued later in the same request as the previous
example. Model 204 considers this ad hoc scattered group a new group,
because the SALES file below is mandatory (by default), not optional:

IN CLIENTS, CARS, SALES AT DETROIT

Because this group is not a duplicate, it requires extra server table space and
extra network traffic.
48 Parallel Query Option/204 User’s Guide

Allowing access to remote files
File and group availability

Unlike typical Model 204 file groups, scattered groups do not require that all
members of the group can be opened (available) at the time the group is
opened and for all subsequent operations. In the CREATE GROUP command,
you specify the members, if any, that are optional. With the MAXFAIL
parameter of CREATE GROUP command, you specify how many of the
optional files in the group can be unavailable before group processing is
stopped.

The terms in Table 4-1 describe file or group availability with respect to a user.
For more information about availability for files and groups that are members of
application subsystems, see Chapter 6.

Allowing access to remote files

Before users can access a remote file, the file must be defined as a transaction
backout (TBO) file, and it might require a new OPENCTL parameter setting.

This section also discusses using the PQOSYS parameter to generate record
security keys for remote users.

If the file is a member of a service application subsystem, the server system
manager must determine what kind of access to the file to allow. This is
discussed in Chapter 6.

Table 4-1. File or group status terms

Term Description

available The file is an open member of an open group.

closed The file or group is not currently open. If a CLOSE command is
issued for a disabled file, the file’s status is changed to closed to the
user.

disabled If communications with the user’s service thread fails, all remote
files on that node are disabled for the user.

If the MAXFAIL parameter for an open group is exceeded, or if a
mandatory member is unavailable, the group becomes disabled for
the user.

open When a remote file is opened in single file or group context, its
status is open.

unavailable If an optional file in an open group fails to open or becomes
disabled, the file is unavailable to the group for the user who has the
group open.

All group context operations behave as if the unavailable member
is not a part of the group, with the exception of ON units specifically
designed to handle such situations.
Managing Files and Groups for Parallel Query Option/204 49

Allowing access to remote files
Parallel Query Option and Large Object data

The Parallel Query Option does not support access to actual Large Object
data—neither BLOBs nor CLOBs. For PRINT ALL INFORMATION statements
of a remote record, the Table B portion of the Large Object field is displayed,
but not the data itself. In this way, you can identify remote records that have
Large Object fields, although you will need to access the file locally to work with
the Large Object data.

Defining transaction backout files

PQO allows only transaction backout files to be remotely accessed. Any
attempt to open a non-TBO file in remote context fails.

To enable the transaction backout mechanism for a file, turn off bit settings in
the file parameters FOPT and FRCVOPT, as described in the Rocket Model
204 documentation wiki
(http://m204wiki.rocketsoftware.com/index.php/Transaction_back_out#Transa
ction_back_out_file_parameter_settings).

Setting the OPENCTL parameter

For files that are not application subsystem members, PQO file security is the
same as Model 204 file security except for remote files that you do not want to
protect with a password.

For such files, public or semipublic, you must use a special setting of the
OPENCTL parameter. Otherwise, remote public files do not open and remote
semipublic files do not open without a correct password.

Normal Model 204 file security settings apply to remote private files. The
OPENCTL parameter is part of the file definition statement that specifies a
password option at file open time. It is set at the server node initially at file
creation. Its settings do not affect application subsystem files.

Use one of the OPENCTL settings in Table 4-2 for remote access of non-
subsystem public and semipublic files on a server.

Table 4-2. OPENCTL settings

Setting Meaning Password handling

X‘08’ File may be accessed
remotely (PQO)
without valid
password

If the file is public, no password is requested
and the file is opened remotely with default
privileges.

If the file is semipublic, a password is
requested. If the password is missing or invalid,
the user is granted default file privileges.

If the file is semipublic or private and a valid
password is presented, the file is opened only if
the X‘02’ bit is on.
50 Parallel Query Option/204 User’s Guide

Allowing access to remote files
OPENCTL can be reset after file creation.

OPENCTL is ignored when a file defined in an application subsystem is opened
within that subsystem. File privileges are specified in the subsystem definition.

The PQO remote access settings (X‘08’, X‘04’, X‘02’) have no affect on files
that are only accessed locally.

See the Rocket Model 204 documentation wiki
(http://m204wiki.rocketsoftware.com/index.php/OPENCTL_parameter or
http://m204wiki.rocketsoftware.com/index.php/File_design#File_security_level
s) for more information about the OPENCTL parameter.

Record security for remote users—the PQOSYS parameter

The new CCAIN SYSTEM parameter PQOSYS lets you direct Model 204 to
generate a special record security key for remote users.

PQOSYS has two settings:

• X‘00’ (the default)

Your system manager is responsible for assigning unique record security
IDs to all users and subsystems with remote access to files with record
security. If IDs are not unique, record security might fail to distinguish users
from different nodes with the same user ID (for example, SMITH from
BOSTON might access records stored by SMITH from CHICAGO).

• X‘80’

Model 204 provides a special record security key for remote users.

The STORE, FIND, and FOR RECORD NUMBER statements use a record
security key that is a concatenation of the user’s record security ID (either
their login user ID or their record security key from a subsystem definition)
with a period (.) followed by the value of the CCAIN LOCATION parameter
of the user’s node.

Trailing blanks are stripped from both the record security ID and the
LOCATION part of the record security key.

For local users, the record security key is the user’s usual record security
ID (without any concatenation).

X‘04’ File can be accessed
remotely (PQO) as
permanent group
member

No effect.

X‘02’ File can be accessed
remotely (PQO)
with a valid password

The user who specifies a valid password for the
private or semipublic file is allowed to open the
file remotely.

Table 4-2. OPENCTL settings (Continued)

Setting Meaning Password handling
Managing Files and Groups for Parallel Query Option/204 51

Stopping and starting a remote file or scattered group
Setting PQOSYS to X‘80’ requires extra disk space, because the value of each
record security key stored by the system includes the period sign and the
LOCATION parameter from the remote node. Setting PQOSYS to the default
minimizes disk space use.

PQOSYS is set in the User 0 part of the CCAIN stream on the node where the
file is located. It cannot be reset after the Model 204 run is initialized.

Explicitly stored record security keys

If you are explicitly storing an occurrence of the record security field (with
SOUL, HLI, or a File Load program) for a user who accesses the file remotely,
you need to append a period and the value of the LOCATION parameter of the
other user’s node to the usual record security ID (the user’s login user ID or the
record security key of the user’s application subsystem).

Record security fields with the BINARY or FLOAT attribute

If the record security field is BINARY or FLOAT and PQOSYS is X‘80’,
Model 204 stores as character strings the record security values stored by
remote users. If the file is also a NUMERIC VALIDATION file, remote users
cannot store records in this file and only those remote users who are allowed
to override record security can retrieve records from the file.

Record security keys stored by local users are stored in the BINARY or FLOAT
form.

Stopping and starting a remote file or scattered group

You can stop (prevent new opens of) a remote file by issuing the STOP FILE
command using the AT location clause or a file synonym. You can stop a
permanent scattered group with STOP GROUP.

A stopped file or group cannot be opened until it is restarted.

In remote as in nonremote contexts, a user can continue to reference a file or
group that was already open when a STOP FILE or STOP GROUP command
is issued.

This section describes the effect of STOP and START commands in remote
contexts.

• For complete information about STOP and START commands, see the
Rocket Model 204 documentation wiki
(http://m204wiki.rocketsoftware.com/index.php/STOP_command:_Making
_a_file_or_group_unavailable and
http://m204wiki.rocketsoftware.com/index.php/START_command:_Makin
g_a_file_or_group_available).

• For information about STOP SUBSYSTEM and START SUBSYSTEM, see
Chapter 6.
52 Parallel Query Option/204 User’s Guide

Stopping and starting a remote file or scattered group
Using STOP FILE on a server node

If a STOP FILE command issued on the server refers to a local file that was
opened remotely by a client, the file is stopped to all server and client users until
started. However, if the file is a mandatory member of an active subsystem
(service or nonservice), or a mandatory member of a group that is a mandatory
member of an active subsystem, the STOP command fails.

Model 204 frees all precompiled requests and any saved compilations for the
file that are on the local node or on the client node after all current users have
closed the file. If the file is being used by an active subsystem, it is marked
unavailable for future use.

Using STOP FILE on a client node

If STOP FILE issued on the client refers to a remote file, the file is stopped for
users on the client node only. However, if the file is a mandatory member of an
active subsystem or a mandatory member of a group that is a mandatory
member of an active subsystem, the STOP command fails.

If a stopped file was used by a client subsystem that locks its files, STOP
unlocks the file, and it can be opened by any user of this client Online after it is
started.

Model 204 does not free any compilations on the client or server nodes nor any
precompiled requests referring to the stopped file.

If a stopped remote file belongs to a subsystem, the file’s file save area is not
freed for reuse until after the subsystem is stopped. If the subsystem is not
stopped, subsequent starting and opening of the file uses an additional file save
area. Be sure to allocate enough file save areas (NRMTFILE is sufficiently
large) to avoid being prevented from opening remote files.

Using STOP GROUP

Since a group can be accessed only by local users, a STOP GROUP command
can be issued only for a locally defined group, which might be scattered. Also,
a STOP GROUP command cannot be used for a temporary scattered (or
nonscattered) group.

If a STOP GROUP command is issued for a local scattered group, the group is
stopped for all users, and Model 204 frees any compilations on the client or
server nodes that refer to the group after all current users have closed the
group.

If a scattered group is a member of a subsystem, STOP GROUP does not free
the file save areas of remote members of the group.
Managing Files and Groups for Parallel Query Option/204 53

Stopping and starting a remote file or scattered group
START FILE and START GROUP

START FILE and START GROUP commands reverse the effects of STOP FILE
and STOP GROUP commands, respectively. After a START FILE or START
GROUP command is issued, a remote file can be opened.

A START GROUP command cannot be used for a temporary scattered (or
nonscattered) group.
54 Parallel Query Option/204 User’s Guide

5
Working with Remote Files and
Scattered Groups

Overview

With Parallel Query Option/204, the user can access files that are
located on remote Model 204 systems. Special guidelines apply when
working with files in remote context.

This chapter describes the specific commands, statements, and
functions that are available to the Model 204 application programmer,
and the rules that apply when referencing files in remote context.

Unless otherwise specified, use these commands, statements, and
functions in PQO contexts the same as in typical Model 204 contexts.

Specifying a remote file

You can explicitly reference a remote file in a command or statement
using:

• Remote file specification

• File synonym

You can also implicitly reference a remote file by using the name of a
scattered group of which the file is a member. This section describes
explicit remote file specification.
Working with Remote Files and Scattered Groups 55

Specifying a remote file
Using a remote file specification

A command or statement that references a file by name and includes an AT
clause is a remote file specification. The AT clause references the node to
which the file belongs (where the file was created). This node can be local or
remote.

Remote file specification is valid with all the commands and statements that
reference local files except for the DEFINE DATASET command. Remote file
specification has the following syntax:

Syntax [command | statement] filename AT [location | =]

where:

• filename specifies the actual name of a Model 204 file on the node where
the file resides.

• location is the symbolic name (as many as eight characters) that refers to
the location of the node on which the file resides.

• An equal sign without quotation marks (=) specifies a client node, meaning
the file is local.

AT location matches DEFINE PROCESS destination

The remote file specification location name must match a symbolic destination
name specified in the DESTINATION parameter of a local DEFINE PROCESS
command for CCAD2C.

For example, if the definition of a CCAD2C process includes:

DESTINATION=(PGRP1,BOSTON)

the following OPEN FILE command using the AT clause is valid:

OPEN VEHICLES AT BOSTON

where VEHICLES is the name of a file residing at the remote location that is
identified by the symbolic name BOSTON. The DESTINATION parameter is
discussed on page 18.

AT location not required to match CCAIN parameter LOCATION

The remote file specification location name need not match the value of the
server node CCAIN parameter LOCATION. See “Setting the LOCATION
parameter” on page 20.

Using a dummy string in the AT clause

The location name in the AT clause can be coded as a dummy string inside a
SOUL procedure. At run time, the user can enter an equal sign (=) to specify
56 Parallel Query Option/204 User’s Guide

Using Model 204 file and group commands
that the location of the named file is the node on which the command or
statement is currently issued, the local node.

Using a dummy string allows the application programmer to code a single file
reference in the procedure, and to access different versions of the same file
(having the same name), either locally or remotely, at run time. See the Rocket
Model 204 documentation wiki
(http://m204wiki.rocketsoftware.com/index.php/Procedures#Dummy_strings_i
n_procedures) for a description of dummy strings in SOUL procedures.

Using a file synonym

Once a DEFINE FILE command has been issued for a particular remote file, a
user can refer to the file using the synonym name. The synonym is the symbolic
name assigned to the file and is available to local users. See “Defining file
synonyms” on page 43.

Even though a file synonym has been defined, you still can use the full remote
file specification, as described in “Specifying a remote file” on page 55. When
using a file synonym in a file command, the syntax of the command for a remote
file is the same as for local files. For example, the following DEFINE FILE
command specifies the synonym CARS for the file VEHICLES:

DEFINE FILE CARS WITH
 SCOPE=SYSTEM
 FILENAME=VEHICLES
 LOCATION=BOSTON

You can specify an OPEN FILE command, using the file synonym, as:

OPEN CARS

Using a file synonym provides name and location transparency in SOUL
applications. You can reference a file using only a locally assigned name. The
system manager maintains the file definition in keeping with any changes in the
network definition such as the location specification. Changes to the network
definition do not require changes to the application code.

Using Model 204 file and group commands

A remote file or group specification, using either the AT clause or a file
synonym, is syntactically valid in most of the same commands that are used to
refer to local files or groups. The Model 204 commands you can use to refer to
a remote file are shown in Table 5-1.

Table 5-1. Commands for remote files or scattered groups

Command Type of user

CLOSE (for a file or group) Any user

CREATE PERM GROUP System manager
Working with Remote Files and Scattered Groups 57

Using Model 204 file and group commands
These are the only file or group commands that support remote file
specification.

Supported in PQO but not included in Table 5-1 are BUMP, LOGWHO,
MONITOR, the network control and definition commands, and the subsystem
control commands. See Appendix B for a list of unsupported commands. Most
of the commands in Table 5-1 are described in Chapter 3 and Chapter 4. The
following commands are described in this section:

OPEN FILE
OPEN GROUP
CLOSE (for a file or group)
DEFAULT
DELETE GROUP

Opening a remote file

You open a remote file by issuing the OPEN FILE command using either the
AT location clause or a file synonym. You can also use an OPEN GROUP
command if the file is a member of a scattered group. See “Opening a scattered
group” on page 60 for a discussion.

Successful attempts to open

When you first successfully issue a command to open a remote file at a given
node, a conversation is initiated with that server and a service thread is

CREATE TEMP GROUP Any user

DEFAULT Any user

DEFINE FILE User 0 or system manager

DELETE PERM GROUP System manager

DELETE TEMP GROUP Any user

DISPLAY (for a field, group, or record) Any user

MONITOR SUBSYSTEM Any user

OPEN FILE Any user

OPEN GROUP Any user

START (for a file or group) System administrator

STATUS Any user

STOP (for a file or group) System administrator

VIEW Any user

Table 5-1. Commands for remote files or scattered groups

Command Type of user
58 Parallel Query Option/204 User’s Guide

Using Model 204 file and group commands
activated to support the conversation. If a conversation is already established
with that remote node and is available, the conversation continues and is used
for the request to open the file.

If a conversation is available, you are prompted to enter a password if the file
is private or semipublic. If the OPENCTL setting for the file allows remote
access, any password gains access to a semipublic file. Private files require the
correct password. Application subsystem files are protected by APSY security.
See “Allowing access to remote files” on page 49 for a description of the
OPENCTL parameter.

When a remote file is opened, Model 204 displays a confirmation message with
the file’s name (nonsynonym) and location, stating whether updates are
allowed.

Unsuccessful attempts to open

If a conversation cannot be allocated, Model 204 displays the error message:

M204.1984: COMMUNICATION ERROR ON REMOTE NODE PROCESSING
FILE filename AT location

If an OPEN FILE or OPENC FILE statement issued from within a SOUL request
fails, the $STATUS return codes indicate the error condition. A $STATUS value
of 2 is returned for an open failure. For more information about $STATUS return
codes, see the Rocket Model 204 documentation wiki
(http://m204wiki.rocketsoftware.com/index.php/Files,_groups,_and_reference
_context).

File context

You can open a file in single file context or in permanent group context. A file
open as a member of a temporary group is considered open in single file
context. You can open in a different context an already open file. Therefore, a
remote file can be open in any or all of the following contexts at the same time:

• Single file

• Permanent group

• Multiple permanent group

File locking behavior

The locking behavior of the OPEN FILE command for a remote file is identical
to that for a local file with regard to:

• Shared direct access storage devices (DASD)

• System level resources

• Application subsystems
Working with Remote Files and Scattered Groups 59

Using Model 204 file and group commands
For information about resource locking, see the Rocket Model 204
documentation wiki:

http://m204wiki.rocketsoftware.com/index.php/Defining_the_runtime_environ
ment_(CCAIN)#Resource_locking

Field definition is restricted

When the OPEN FILE command is successfully executed and a remote file is
opened, the status of the file is open. The remote file’s Table A is stored on the
client system for as long as the file remains open.

While a remote file is open to any remote user, the fields cannot be redefined,
deleted, or renamed on the server. Server Online users receive a message that
the file is in use. New fields, however, can be defined.

Opening deferred update data sets

A file that is not in deferred update mode can be opened remotely.

A file that is in deferred update mode can be opened remotely only when the
file is a member of a service application subsystem. If a remote deferred update
data set is specified in the OPEN FILE command, the open is rejected.

Opening a scattered group

You open a remote file that is a member of a scattered group by issuing the
OPEN GROUP command. OPEN GROUP for scattered temporary and
permanent groups has the same syntax as for nonscattered groups. Password
requirements and privileges for member files are also the same for scattered
and nonscattered groups.

In scattered group context, OPEN GROUP causes Model 204 to allocate
conversations with each of the nodes that contain members of the scattered
group, if such conversations do not already exist.

If scattered groups are defined to allow update privileges, all member files are
opened with the indicated privileges when the group is successfully opened.
For each remote file opened in group context, Model 204 displays a
confirmation message with the file’s name (nonsynonym) and location, stating
whether updates are allowed.

Unsuccessful attempts to open

If a mandatory member of a scattered group cannot be opened, the OPEN
operation fails for the entire group.

If an optional member of the group cannot be opened, an error message is
issued stating that the file is unavailable. The OPEN operation continues as if
the file were not included in the group definition. Storage is still allocated in
various internal data structures, however.
60 Parallel Query Option/204 User’s Guide

Using Model 204 file and group commands
If the CREATE GROUP command MAXFAIL parameter value is exceeded, the
group open fails and any successfully opened files are closed. An error
message is issued stating that more than MAXFAIL optional files cannot be
opened.

If all a scattered group’s files are optional and unavailable, a group open fails,
even if MAXFAIL is not exceeded. An error message is issued stating that the
open failed because all group members are missing.

Using an OPEN GROUP statement

If an OPEN GROUP command is issued as a SOUL statement (from within a
request), the result of the open operation is indicated with one of three
$STATUS values:

For more information about $STATUS, see the Rocket Model 204 Horizon:
Intersystem Processing Guide.

Closing a remote file

You can close a remote file by issuing the CLOSE command using the AT
location clause or a file synonym, using CLOSE ALL, or, if the remote file is the
default file, using CLOSE by itself. If the file is a member of a permanent
scattered group, you can close the files in the group with CLOSE GROUP.

When a CLOSE command for a remote file is successful, the file is closed on
the server node on which the file resides. Model 204 displays a message
confirming the close to the user on the client node. The message identifies the
file name and location.

If the file being closed is your last open file on the server node, the conversation
with the server is terminated.

A loss of communications with a remote node during or just prior to your
attempt to close a remote file results in the following:

• File is closed on your local node, and you receive a communications error
message. The service thread is restarted, which closes the file on the
server.

• If the file is a member of a scattered group and you issue CLOSE GROUP,
the file is closed on your local node, and Model 204 attempts to close as
usual the rest of the files in the group.

$STATUS Description

0 All members of the group were successfully opened.

1 One or more optional members could not be opened.

2 A mandatory member could not be opened, MAXFAIL members could
not be opened, or all members are missing.
Working with Remote Files and Scattered Groups 61

Referencing remote files in a SOUL request
• If the file was disabled for you prior to the CLOSE, the file is closed only on
your local node.

Using DEFAULT and DELETE GROUP

The Model 204 DEFAULT command, which establishes the current default file
or group, applies to remote file synonyms, remote file specifications, and
scattered groups.

The Model 204 DELETE GROUP command, which deletes an existing
permanent or temporary group, applies to scattered groups.

Referencing remote files in a SOUL request

SOUL compilation is initiated when Model 204 encounters a BEGIN command.
A request that refers to a remote file is compiled on both client and server
nodes. Model 204 initiates compilation on the remote server system when a
reference to a remote file is first encountered.

During compilation, as remote references are encountered, the client system
sends data manipulation language (DML) calls to the participating server node,
or nodes, to be compiled.

SOUL example

The following example shows an excerpt from a SOUL procedure that is
submitted locally and references a Model 204 file (named VEHICLES) residing
at a remote location (whose symbolic name is defined as BOSTON).

Prior to accessing a remote file, the following conditions must be met:

• You must define the PQO network on both the client and server systems.

• Model 204 system manager (or User 0) must successfully issue the OPEN
LINK command on both the client and server systems, so that the
connection for the PQO conversation is enabled.

DEFINE FILE CARS WITH SCOPE=SYSTEM -
 FILENAME=VEHICLES -
 LOCATION=BOSTON
OPEN CARS
.
.
.
BEGIN
.
.
.
FD: IN CARS FD
 MAKE=FORD
 END FIND
62 Parallel Query Option/204 User’s Guide

Referencing remote files in a SOUL request
.

.

.
FR: FR IN FD
 PAI
 END FOR
.
.
.
END

Input/output operations that involve network transmissions are entailed in using
the OPEN, FIND, and FOR statements to reference a remotely located file.
In the previous SOUL example:

• OPEN

– The user request to open a remote file (CARS) initiates activity at the
remote location (BOSTON) where the file resides.

– The server sends a copy of the Model 204 file information (Table A) to
the user’s (client) node so that compilation can proceed.

• FIND (FD)

– The client sends FIND criteria (FORD vehicle records) to the remote
location for evaluation.

• FOR EACH RECORD (FR)

– The client processes records using a FOR EACH RECORD loop.

– The server sends records from the found set to the user’s node, a page
at a time.

“SOUL example” on page 62 shows remote file references using a file
synonym. As an alternative, if no DEFINE FILE command is issued on the client
system, you can reference the remote file using a remote file specification (AT
clause).

For example, instead of OPEN CARS, you use:

OPEN VEHICLES AT BOSTON

Instead of IN CARS FD, you use:

FD: IN VEHICLES AT BOSTON FD

See “Defining file synonyms” on page 43 and “Specifying a remote file” on
page 55 for additional information.
Working with Remote Files and Scattered Groups 63

Referencing remote files in a SOUL request
Request continuation is not supported

Remote file reference is not supported in a SOUL request continuation. The
SOUL MORE and END MORE statements are not supported if the continued
request refers to a remote file.

Errors during compilation and evaluation

Compilation and evaluation errors in PQO applications are discussed in the
following sections. Both sections discuss how Model 204 handles non
communications errors and communications errors when a remote file is
referenced.

Compile time error handling

If a non communications error occurs during compilation when a client
application references a file on a server node:

• Model 204 prints on the client node the current line in the client procedure
and the error message that was generated on the server node.

• Compilation continues on the client node only, regardless of the number of
errors encountered on server nodes.

If a communications problem occurs during compilation, in any remote file or
group context:

• Compilation is terminated.

• All files at the referenced node are disabled for the client user.

Evaluation time error handling

Model 204 begins to execute a SOUL request even though that request
contains a reference to a remote file or group that was already made
unavailable to the request prior to evaluation. The action Model 204 takes
depends on the context of the file or group referenced in the request:

If a non communications error occurs on an already opened remote file, the
error message generated at the remote node is printed on the client node, and
the request is canceled.

In this context... Model 204 takes this action...

Remote single file ON MISSING FILE unit invoked

Scattered group ON MISSING FILE unit invoked

File member of scattered group ON MISSING MEMBER unit not invoked
64 Parallel Query Option/204 User’s Guide

Referencing remote files in a SOUL request
If you lose communications during evaluation with an already opened remote
file, all files at that node are disabled for you, and Model 204 makes one of
three responses:

• Takes no further action, if all of the following are true:

– File is in group context

– File is an optional group member

– MAXFAIL parameter setting in CREATE GROUP is not exceeded

– Node to which the file belongs has no uncommitted updates

• Invokes one of two ON units:

– ON MISSING MEMBER

– ON MISSING FILE

• Invokes the ON ERROR unit, if present, and cancels the request.

Using ON MISSING MEMBER and ON MISSING FILE units

The specific behavior of the ON MISSING MEMBER and the ON MISSING
FILE units is described below. For a code example with these ON units, see
“ON MISSING FILE unit example” on page 83.

Using the ON MISSING MEMBER unit

ON MISSING MEMBER handles errors involving the availability of scattered
group members. It obeys the same scoping rules as all other ON units. Its
format follows:

 ON MISSING MEMBER
 .
 .
 .
 END ON

ON MISSING MEMBER is invoked whenever the following are all true:

• Operation in group context fails against a remote optional member of the
group.

• Member was not previously unavailable to the request.

• MISSING FILE condition is not raised.

When ON MISSING MEMBER is invoked, these consequences follow for all
the user’s member files at that server node:

• Group member is made unavailable to the group, both during and after
request execution.

• Group member is considered disabled.
Working with Remote Files and Scattered Groups 65

Referencing remote files in a SOUL request
• Subsequent references to the group in the same request for files at that
server do not invoke ON MISSING MEMBER.

If an operation in group context fails against a remote optional member of a
group and no ON MISSING MEMBER unit is active, the member is made
unavailable to the group and the operation completes as if the member were
not part of the group definition.

When control is passed to an ON MISSING MEMBER unit, you can return
control to the request with a RETRY, CONTINUE, BYPASS, or JUMP TO
statement.

ON MISSING MEMBER units cannot be nested.

PQO supports use of a CLEAR statement for clearing of an ON unit for ON
MISSING MEMBER.

Communications failures during ON MISSING MEMBER

If a communications failure occurs while communicating with a different node
within an ON MISSING MEMBER unit, the ON ERROR unit is invoked or the
request is canceled.

If a communications failure occurs while receiving a new portion of records from
a remote node in a FOR EACH RECORD loop in group context, you can use
one of these statements to tell PQO how to proceed:

• CONTINUE—Causes the FOR loop to continue processing records from
the next available group member. All unavailable files are skipped, but the
remaining available files are processed.

• BYPASS—Exits the FOR loop, bypassing the remaining group files against
which the FOR loop would have run, and skips to the next instruction after
END FOR.

Using the ON MISSING FILE unit

ON MISSING FILE handles errors involving the availability of remote files in
single file context, and involving mandatory and MAXFAIL conditions of remote
files in group context. It obeys the same scoping rules as all other ON units. Its
format follows:

 ON MISSING FILE
 .
 .
 .
 END ON

ON MISSING FILE is invoked for any of the following circumstances:

• Operation in single file context fails against a remote file.
66 Parallel Query Option/204 User’s Guide

DML statements in PQO
• Operation has failed against a remote file when there was no specific file or
group context. This includes the following SOUL statements:

RELEASE ALL RECORDS

BACKOUT

• An operation in group context fails against a remote mandatory member.

• An operation in group context fails against a remote optional group member
and the number of missing members is greater than the MAXFAIL
parameter (CREATE GROUP), or all members of the group are now
missing.

When ON MISSING FILE is invoked, these consequences follow:

• File or group is made unavailable to the request.

• File or group is disabled for the user.

• All future references to the file or group in the same request cause the
request to be canceled.

If an operation that normally calls for an ON MISSING FILE unit fails, and no
MISSING FILE unit is active, the ON ERROR unit is invoked. If no ON ERROR
unit is active, the request is canceled.

When control is passed to an ON MISSING FILE unit, you can return control to
the request with a BYPASS or JUMP statement. RETRY is not allowed.

ON MISSING FILE units cannot be nested.

PQO supports use of the CLEAR statement for clearing of an ON unit for ON
MISSING FILE.

Communications failures during ON MISSING FILE

If a communications error failure occurs while communicating with a different
node within an ON MISSING FILE unit, the ON ERROR unit is invoked or the
request is canceled.

The special handling for BYPASS and CONTINUE in a FOR EACH RECORD
loop in group context described above for communication failures during ON
MISSING MEMBER does not apply to ON MISSING FILE units, because the
entire group is made unavailable.

DML statements in PQO

The SOUL statements and conditions in Table 5-2 comprise the PQO data
manipulation language (DML).

Only these statements and conditions can be used in reference to a remote file
or group.
Working with Remote Files and Scattered Groups 67

DML statements in PQO
Following the table are discussions of the use of these statements and
conditions in PQO, maintaining the classification (retrieval or update) in
Table 5-2.

Table 5-2. PQO DML statements and conditions

Retrieval
statements

Retrieval
conditions

Update
statements

CLEAR LIST FIND$ ADD

COMMIT RELEASE FILE$ BACKOUT

COUNT OCCURRENCES OF LIST$ CHANGE TO

COUNT RECORDS LOCATION$ COMMIT

FIND RECORDS POINT$ DELETE

FIND ALL RECORDS SFGE$ DELETE EACH

FIND ALL VALUES

FIND AND PRINT COUNT SFL$ DELETE RECORD

FOR EACH OCCURRENCE DELETE RECORDS

FOR EACH RECORD FILE RECORDS

FOR EACH VALUE

FOR k RECORDS INSERT

FOR k VALUES

FOR RECORD NUMBER STORE RECORD

NOTE fieldname UPDATE RECORD

OPEN

OPENC

PLACE RECORD ON LIST

PLACE RECORDS ON LIST

PRINT ALL INFORMATION

RELEASE ALL RECORDS

RELEASE RECORDS

REMOVE RECORD FROM LIST

REMOVE RECORDS FROM LIST

SORT RECORD KEYS

SORT RECORDS

SORT VALUES
68 Parallel Query Option/204 User’s Guide

Using PQO retrieval statements
Using IN clauses

A remote file specification (using either the AT clause or a file synonym) or a
scattered group is syntactically valid in the IN FILE or IN GROUP clause of
supported DML statements in remote context.

Also, you can use the following IN clause variations to refer to a remote file if
you are in scattered group context:

IN GROUP groupname MEMBER
IN $CURFILE
IN $UPDATE

Using field names in expressions

Fields in remote context can be used in the same ways as fields in local context
including the VALUE IN phrase, which refers to a label on a FOR EACH
RECORD IN ORDER statement.

Handling record locking conflicts

If a client request cannot complete because of a record-locking conflict on the
server system, the server automatically tries again to lock the record or set of
records. The server tries again until it succeeds or until it has tried as many
times as the value of the client thread ENQRETRY parameter. The value of the
ENQRETRY parameter that is specified on the server thread has no effect on
the number of retries.

If ENQRETRY attempts to lock a record or set of records do not succeed, the
server notifies the client about the conflict. If an ON RECORD LOCKING or ON
FIND CONFLICT unit is active, the unit is invoked. Otherwise, the client
receives a message that the locking failed, followed by a prompt asking if the
client wants to try again.

If the client enters N, the request is canceled. If the client enters Y, the server
repeats the locking attempt cycle, making as many as ENQRETRY attempts
before prompting again.

Using PQO retrieval statements

This section describes the individual SOUL retrieval statements and any usage
restrictions that you can use with a remote file or group.

Using the FIND ALL RECORDS statement

All forms of the FIND ALL RECORDS statement are supported in remote file
and scattered group context.

A FIND statement in remote context produces a record set on each of the
server nodes to which the statement refers.
Working with Remote Files and Scattered Groups 69

Using PQO retrieval statements
All record locks are maintained on the server nodes. If a record-locking conflict
occurs, partial found sets are dequeued (on several nodes if necessary), and
the normal FIND CONFLICT action is taken.

See the discussion of LOCATION$ on page 74 for information about restricting
group context FIND statements.

Using the FOR EACH RECORD statement

All forms of the FOR EACH RECORD statement are supported in remote file
and scattered group context except for the IN ORDER clause, which is not
supported in scattered group context.

Except for the following cases, when a FOR statement is executed, it retrieves
from each record only the fields that are referred to in the loop. Data is handled
differently by the server in the following cases:

• If the FOR loop references a field name variable, such as %%fieldname, or
if it contains a PAI statement, the entire record is transmitted from the
server node.

• If a subscripted field reference is used in a FOR loop, all occurrences of the
field are transmitted from the server node.

A CODED field is decoded before being transmitted from the server node.

OPTIMIZING FNV option

Use the OPTIMIZING FNV option with the FOR EACH RECORD statement to
optimize retrievals with field name variables.

You can use the OPTIMIZING FNV option (OPTIMIZING can be abbreviated as
OPT) to prevent FOR loop retrievals with field name variables from triggering
the retrieval of all fields and all occurrences.

To use the OPTIMIZING FNV option with the FOR EACH RECORD statement,
you must specify OPT FNV in one of the following places:

• Before the WHERE/WITH option and after all other options

• At the end of the FOR statement when the WHERE/WITH option is not
present

When you use OPTIMIZING FNV, only the initial value of the field name
variables at the start of the FOR loop are used to select the fields that are
retrieved and shipped to the client node. Therefore, the field name variable
must have the proper value at the time the FOR loop is first executed. Each
time the FOR loop is entered (after the loop has completed), the field name
variable values are reset.

If the field name variable is changed in the FOR loop to the name of another
field that was not explicitly referenced, the other field is not retrieved and a
default value of null is used for the field name variable.
70 Parallel Query Option/204 User’s Guide

Using PQO retrieval statements
Using the FOR RECORD NUMBER statement

All forms of the FOR RECORD NUMBER statement are supported in remote
file and scattered group context, although FOR RECORD NUMBER and FOR
RECORD NUMBER IN label might have different results if you are working with
records that are not locked.

FOR RECORD NUMBER IN label refers to a preceding FOR EACH RECORD
statement. In PQO, the records retrieved for the FOR EACH RECORD loop are
copied and sent to the client when the FOR EACH RECORD statement is
evaluated. If the records are not locked after the retrieval, by the time the FOR
RECORD NUMBER IN label statement is executed, the record copy to which
you are referring might no longer match the record at the server.

However, if you use FOR RECORD NUMBER without the IN label, Model 204
locks the record to which you are referring and sends a copy to the client during
FOR RECORD NUMBER execution. Only the fields referred to by FOR
RECORD NUMBER are sent.

OPTIMIZING FNV option

You can also use the OPTIMIZING FNV option with the FOR EACH RECORD
NUMBER statement.

If you do so, the information provided in “Using the FOR EACH RECORD
statement” on page 70 is valid, with this exception—you must specify the
OPTIMIZING FNV option at the end of the FOR RECORD NUMBER
statement.

Using the FOR EACH VALUE statement

All forms of the FOR EACH VALUE statement are supported in remote file and
scattered group context.

The FOR EACH VALUE statement initiates a loop that is executed once for
each unique value of the specified field. There are several variations of the
FOR EACH VALUE statement, as described in the Rocket Model 204
documentation wiki
(http://m204wiki.rocketsoftware.com/index.php/Value_loops).

You can use the FOR EACH VALUE statement to:

• Sort the retrieved values, using the IN ORDER clause

• Specify a range of values to be retrieved, using FROM value1 TO value2
clauses

• Specify a pattern to be used to retrieve values, using the LIKE pattern
clause

• Process a sample of values, using the k clause
Working with Remote Files and Scattered Groups 71

Using PQO retrieval statements
Using RELEASE

The RELEASE ALL RECORDS and RELEASE RECORDS IN/ON statements
are performed on the server system, releasing any remotely held found sets.

Using the SORT RECORDS statement

The SORT RECORDS statement is supported in remote file and scattered
group context.

Note: The SORT RECORDS k option is ignored. If you use SORT k
RECORDS, all the records referred to, not just the first k records, are sorted.

Sort operations for remote file data are executed on each affected server node
and the results are merged. Sort keys can include fields that are not defined in
all members of a scattered group.

Using LIST functions

List processing functions are supported in remote context. List operations for
remote file data are performed on the server node on which the file resides. For
scattered groups, a list is created on each node that contains a member of the
group.

The following segment of SOUL code has comments to show the resulting
conversation elements:

IN PARTS AT DETROIT BEGIN
CLEAR LIST XYZ (Send CLEAR LIST function to DETROIT)
A: FD PTYPE=’XYZ’ (Send FIND function to DETROIT)
B: FR A (Retrieve records)
 PLACE RECORD ON LIST XYZ (Send PLACE RECORD function to
 DETROIT)
 .
 .
 .

Note: PLACE RECORDS IN A ON LIST XYZ has the same effect, but requires
only one network operation.

Using the PRINT statement

The PRINT *ID statement cannot be used in remote file context. All other forms
of the PRINT statement can be used to print field values for remote files, with
the exception of Large Object Data. You can print the locator information stored
in Table B, but not the actual data stored in Table E.
72 Parallel Query Option/204 User’s Guide

Using PQO retrieval statements
Printing preallocated fields with a PAI statement

PAI or PAI INTO normally displays preallocated fields first in its output. In PQO,
however, some update operations store new preallocated field values at the
end of the record. This placement at the end of the record is displayed by PAI.

Fields in a remote file update are transferred to the local node in the
nonpreallocated format. Some updates to preallocated fields that take place
within a FOR loop (for instance, ADD) store new values at the end of the record.

If preallocated fields are not updated within a FOR loop, the output of the PAI
statement is the same as in the nondistributed case.

Using retrieval conditions

Except as described below for FILE$ and LOCATION$, retrieval conditions act
the same in remote context as they do locally. In scattered groups, retrieval
conditions can include fields that are not defined in all members of the group.

The following retrieval conditions are supported in remote context:

FILE$
FIND$
LIST$
LOCATION$
POINT$
SFGE$
SFL$

Using FILE$

The FILE$ condition is valid only in group context. It can accept remote file
specifications and remote synonyms. For example, the following FIND is
restricted to values in the STUDENTS file whose location is NYC:

IN GROUP STUDENTS FD FILE$ ‘STUDENTS’ AT NYC AND SEX = ’F’

Valid FILE$ argument formats for remote files are:

• Literal remote file specifications or file synonyms

• Literal remote file specifications or file synonyms following dummy strings

• Equal sign (=) to point to the node on which the request is running

Invalid FILE$ argument formats for remote files are:

• %Variables

• Remote file specifications enclosed entirely in quotes (for example,
‘STUDENTS AT NYC’ is not valid)
Working with Remote Files and Scattered Groups 73

Using PQO update statements
Using LOCATION$

You can use the LOCATION$ condition to restrict group context FIND
statements to a particular node. Used like FILE$, LOCATION$ is valid only in
group context.

The location referred to by LOCATION$ is the location name used in file
synonyms and remote file specifications—the symbolic name specified in the
DESTINATION parameter of a client DEFINE PROCESS command (described
on page 17 and page 56).

Valid LOCATION$ argument formats are:

• Literal location names

• Literal location names following dummy strings

• Equal sign (=) to point to the node on which the request is running

LOCATION$ arguments cannot be %variables.

If an optional member of a scattered group is unavailable, no records are found
for that file and processing continues.

Using PQO update statements

In PQO, you typically execute single-node updates; you update data on only
one node per Model 204 transaction. This is the default.

If the current transaction has updated a node, either local or remote, that is
different from the node referred to by another update statement within the
transaction, Model 204 displays an error message stating that you violated the
single-node update rule. The current transaction is backed out and the request
is canceled. This restriction is checked at evaluation time.

An application program must end the current transaction (either commit it or
back it out) before the application can update files on a different node (either
remote or local).

This section discusses the SOUL update statements that you can use with a
remote file or group and includes a discussion of updating records that are not
locked.

Limitations to updating remote files

• There is no support in Parallel Query Option for the date/time stamp
feature. If you attempt a remote open of a data/time stamp file
(FOPT=X’10), the following message is issued:

M204.1977: %F MAY NOT BE ACCESSED REMOTELY

• You cannot open a file remotely and update fields defined with the BLOB
or CLOB file attribute.
74 Parallel Query Option/204 User’s Guide

Using PQO update statements
PQOOPT and multiple-node updates

For the SOUL DELETE RECORDS and FILE RECORDS statements only, you
can enable multiple-node updates with the Model 204 parameter PQOOPT.

For more information about multiple-node updates, see “Using DELETE
RECORDS” on page 77 and “Using FILE RECORD” on page 77.

Updating unlocked record sets

In a typical PQO remote update, a client issues a FIND statement to retrieve a
set of records from a service node file. A client FOR EACH RECORD statement
triggers the transfer of a copy of the record set to the client node. The client
application loops through and updates the records on the service node and the
client node copy.

If the service node records are not locked (for example, you use FIND
WITHOUT LOCKS) during the update processing, other users can make
changes on the service node to the records in the copied set. Changes that
happen after the set is copied and before the update is finished might introduce
inconsistencies between the client copy and the actual server data. Such
changes make obsolete the client copy of the record set.

For example, some field-level operations depend on the current state of a
record: if there are three occurrences of a field, CHANGE fieldname(6) adds a
fourth occurrence. If there are six or more occurrences, the same statement
changes the sixth occurrence.

A client issues this CHANGE anticipating six or more occurrences. Before the
CHANGE is processed, users on the server delete all but three occurrences.
The CHANGE is processed and the service node file ends up with three
occurrences unchanged and four occurrences altogether; the client copy has
no deletions and a changed sixth occurrence.

If the client user prints the record information after the CHANGE but within the
same FOR EACH RECORD loop, the display shows the client’s view of the
record. The client does not detect that this view does not match the current
server data.

If the print of the record information is after the CHANGE but within a new FOR
EACH RECORD loop, the display is a refreshed view of the actual current
server record. The client can detect at this point that the expected result of the
CHANGE did not occur.

Though updates like CHANGE lock a record, they alone do not prevent
inconsistencies between the client’s view of the record and the actual state of
the record on the server. For unlocked record processing, you need to use FOR
RECORD NUMBER.
Working with Remote Files and Scattered Groups 75

Using PQO update statements
Lock a record before updating it

Always lock a record before updating it. If an unlocked record set or list is being
processed, use the FOR RECORD NUMBER statement to lock the record, as
shown next:

%X = $CURREC
FOR RECORD NUMBER %X

FOR RECORD NUMBER locks, copies, and sends the record to the client
when the FOR RECORD NUMBER statement is executed.

Using FOR RECORD NUMBER IN label is not sufficient, as explained in “Using
the FOR RECORD NUMBER statement” on page 71.

Using ON FIELD CONSTRAINT CONFLICT $functions

If a field constraint violation occurs on a remote node and there is an active ON
FIELD CONSTRAINT CONFLICT (ON FCC) unit, clients can issue the
$functions that report about the constraint (for example, $UPDSTAT,
$UPDOVAL).

For more information about ON FCC $functions, see the Rocket Model 204
documentation wiki
(http://m204wiki.rocketsoftware.com/index.php/Files,_groups,_and_reference
_context#Using_ON_FIELD_CONSTRAINT_CONFLICT_.24functions).

Using ADD, CHANGE, INSERT, and DELETE statements

The following update statements are supported in remote file and in scattered
group context with the limitations explained following the list:

ADD
CHANGE
DELETE
DELETE EACH
DELETE RECORD
INSERT

Using BACKOUT

The BACKOUT statement backs out a transaction against data on a remote
node if the current transaction is remote. In addition to backing out the
transaction on the remote node, BACKOUT processing includes backing out
the effects of the transaction on the local copy of the remote data.

A remote transaction is backed out automatically in the same situations in
which Model 204 backs out a local transaction.
76 Parallel Query Option/204 User’s Guide

Using PQO update statements
Using COMMIT and COMMIT RELEASE

The COMMIT statement commits a transaction on a remote node if the current
transaction is remote. A remote transaction is committed automatically in the
same situations in which Model 204 automatically commits a local transaction.

The COMMIT RELEASE statement commits a transaction on a remote node
and releases found sets on all nodes, local and remote.

Using DELETE RECORDS

The DELETE RECORDS statement is supported in remote file context and in
scattered group context. The functionality of this statement depends on the
setting of the PQOOPT parameter, which allows DELETE RECORDS to
perform multiple-node updates.

If PQOOPT is not set for multi-node updates, DELETE RECORDS can be used
in scattered group context only if either of the following conditions is true:

• All files in the group reside on the same remote node.

• Group found set to which either statement applies is restricted to a single
node—the found set was created by:

IN GROUP groupname MEMBER %var FIND ...

where:

%var specifies a particular file and %var is not an asterisk (*).

Using FILE RECORD

The FILE RECORDS statement is supported in remote file context and in
scattered group context. The functionality of this statement depends on the
setting of the PQOOPT parameter, which allows FILE RECORDS processing
to perform multiple-node updates.

If PQOOPT is not set for multi-node updates, a FILE RECORDS statement can
be used in scattered group context only if all group members reside on the
same node.

If PQOOPT is set for multiple-node updates and an optional member of a
scattered group is unavailable, it is skipped. The records are not filed on that
node and the old index entries for the targeted field name=value pair are not
deleted, but the statement processes successfully.

Using INSERT

The INSERT statement is not supported for Large Object fields.
Working with Remote Files and Scattered Groups 77

Using PQO update statements
Using STORE RECORD

All forms of the STORE RECORD statement are supported in remote file and
scattered group context.

Field=value pairs specified by statements that are between STORE RECORD
and END STORE statements are sent to and stored on the remote node.

After a record is stored on a remote node, you can access it by requests using
either FIND or FOR RECORD NUMBER statements.

Using $CURREC, you can extract the record number of the record you most
recently stored.

The file in a scattered group in which STORE RECORD processing stores
records might not be resolved until evaluation time, so the statement might
have to be compiled on multiple nodes. For storage files pointed to by the
following IN clauses, STORE RECORD is compiled on all nodes in the group;
at evaluation time, it is executed on one node only:

• IN GROUP groupname MEMBER, in temporary or permanent scattered
group context

• IN $CURFILE, in temporary or permanent scattered group context

• IN GROUP groupname (where the group update file is the implied storage
file), in temporary scattered group context

Using UPDATE RECORD

The UPDATE RECORD statement improves performance when you are
executing a set of field-level update operations against the current record.
UPDATE RECORD is allowed in remote and non-remote contexts.

The UPDATE RECORD syntax is:
78 Parallel Query Option/204 User’s Guide

Using $functions
Syntax UPDATE RECORD
field-level-operation-1
field-level-operation-2
.
.
.
field-level-operation-N
END UPDATE

where field-level-operation is one of the following:

• ADD fieldname = value

• DELETE fieldname [(subscript)] [= value]

• CHANGE fieldname [(subscript)] [= value] TO newvalue

• INSERT fieldname [(subscript)] = value

All field-level operations between the UPDATE RECORD and END UPDATE
statements are packaged and sent to the remote node in one call. Without
UPDATE RECORD processing, the same set of operations requires one call
per operation.

If there are no field-level operations between the UPDATE RECORD and END
UPDATE statements, Model 204 ignores the UPDATE RECORD statement.

Note: The DELETE EACH fieldname option is not allowed in an UPDATE
RECORD statement.

Usage

Model 204 handles errors that occur during UPDATE RECORD processing the
same as those that occur during STORE RECORD processing. For more
information about STORE RECORD error handling, see the Rocket Model 204
documentation wiki
(http://m204wiki.rocketsoftware.com/index.php/Data_maintenance).

If a field constraint violation occurs, the entire UPDATE RECORD statement is
backed out. The $UPDSTMT function returns the type of statement that caused
the conflict: ADD, CHANGE, or INSERT.

If an ON unit is invoked during the UPDATE RECORD processing and the ON
unit is exited with a BYPASS statement, the request execution continues with
the statement that follows the END UPDATE statement.

Using $functions

Except for the following functions, all file-related $functions that applied to local
files or groups now apply to remote files and scattered groups as well:

$LSTPROC
$RDPROC
Working with Remote Files and Scattered Groups 79

Using $functions
$VIEW (works only for certain remote file parameters)

$VIEW is valid in remote file context with the following file parameters:

ASTRPPG FITRANS
ATRPG HASHKEY
CURLOC LOCATION
CURFILE OPENCTL
FICREATE RECSCTY
FILEORG SORTKEY

If $VIEW is issued in remote file context with any other file parameter,
Model 204 processes the request but the result of $VIEW is unreliable.

If $LSTPROC or $RDPROC is coded in a SOUL statement that is in remote
context, Model 204 displays an error message at evaluation time.

This section describes $functions that are new or whose use in PQO requires
comment.

Using $CURFILE, $RLCFILE, $UPDATE, and $UPDFILE

The output of the $CURFILE, $RLCFILE, $UPDATE, and $UPDFILE functions
issued in remote context is the remote file specification (filename AT location).
Each of these functions returns the string:

filename AT location

where:

location is a name for the node where the remote file resides.

You can use $SUBSTR to extract the name or the location.

You can use $UPDLOC to determine the location of a file that is being updated.
See “Using $UPDLOC” on page 81.

Using $FDEF and $LSTFLD

You can use the $FDEF and $LSTFLD functions in local or remote file context.
They recognize the FILE and AT keywords in the filename argument string. You
also can use a file synonym.

Using $ITSOPEN

The $ITSOPEN function indicates whether the current file or group is open. Its
format is:

Syntax $ITSOPEN (name)

where:
80 Parallel Query Option/204 User’s Guide

Using $functions
name is a %variable or literal character string representing a file name, file
synonym, or group name. This argument string can include the keywords AT,
FILE, GROUP, PERM, or TEMP.

$ITSOPEN can be issued in any context. It returns 1 if the file is open; it returns
0 if the file is closed.

Using $ITSREMOTE

The $ITSREMOTE function indicates whether the current file or group is
remote or scattered. Its format is:

Syntax $ITSREMOTE (name)

where:

name is a %variable or literal character string representing a file name, file
synonym, or group name. This argument string can include the keywords AT,
FILE, GROUP, PERM, or TEMP.

$ITSREMOTE can be issued in any context. It returns 1 if the context is remote
file or scattered group; it returns 0 if the context is local.

Using $UPDLOC

Use the $UPDLOC function to determine the node location where an UPDATE
UNIT is in progress. If the file being updated is local, $UPDLOC returns the
word LOCAL. If the file being updated is remote, $UPDLOC returns an identifier
for the node location (in the form AT location). The $UPDLOC function takes
no arguments.

Using file and group availability $functions

The $functions in Table 5-3 on page 82 and Table 5-4 on page 82 provide
information about file and group availability. The $functions in Table 5-3 report
on scattered group members. The $functions in Table 5-4 are for files or groups
but are valid only in an ON MISSING MEMBER or ON MISSING FILE unit.

An example in which these $functions are used is shown on page 83.

The index parameter in some of the $functions in Table 5-3 and Table 5-4 is
assigned internally by Model 204 when those $functions are issued.
Unavailable files are assigned index numbers in the order in which the files are
listed in the CREATE GROUP command. For example, if unavailable fileA
appears earlier in the CREATE GROUP list of files than unavailable fileB, fileA
will have a lower index number than fileB. If fileA appears the earliest in the
CREATE GROUP list, it always has the index value 1 when it is unavailable.
And when fileA is available, another file will have 1.
Working with Remote Files and Scattered Groups 81

Using $functions
Scattered group $functions

You must use the $functions in Table 5-3 in group context or Model 204
cancels the request within which you issued the $function.

You can ensure the group context by specifying a group name (groupname in
syntax in Table 5-3) as an argument of the $function. If you do not specify a
group name, the context of the current statement is used. The index parameter
is an integer from one to the value of $GRNMISS. If index is less than one or
greater than $GRNMISS, Model 204 cancels the request.

ON MISSING unit $functions

The $functions in Table 5-4 are valid only in an ON MISSING MEMBER or ON
MISSING FILE unit. Any other use of these functions is treated as a compilation
error. The index parameter is an integer from one to the value of $MISNUM. If
index is less than one or greater than $MISNUM, Model 204 cancels the
request.

Table 5-3. $functions for groups

$function syntax Result

$GRNLEFT [(groupname)] Returns the number of remaining available
optional group members that can fail before
the MAXFAIL parameter value (CREATE
GROUP command) is exceeded. (MAXFAIL
specifies the maximum number of optional
members that can be unavailable.)

$GRNMISS [(groupname)] Returns the number of optional group
members that are unavailable to the request.

$GRMNAME (index [,groupname]) Returns the name of the missing
(unavailable) group member represented by
the index parameter.

$GRMLOC (index [,groupname]) Returns the location of the missing
(unavailable) group member identified by the
index parameter.

Table 5-4. $functions for ON MISSING units

$function Returns...

$MISGRUP String containing the name of the group, if the error that
invoked the ON unit occurred in group context. Otherwise,
it returns the null string.

$MISNUM Number of files in the group that are newly unavailable (that
have become unavailable since the last time the ON
MISSING unit was invoked).
82 Parallel Query Option/204 User’s Guide

Using the Host Language Interface
ON MISSING FILE unit example

This ON MISSING FILE unit example uses the $functions in Table 5-3 and
Table 5-4. The example works for an ON MISSING MEMBER unit as well.

ON MISSING FILE
 %C IS STRING LEN 255
 %D IS STRING LEN 255
 %C = $MISGRUP
 IF %C = '' THEN
 * This is file context because $MISGRUP returned nulls *
 %C = 'MISSING FILE ' WITH $MISNAME(1) WITH ' AT ' WITH $MISLOC(1)
 PRINT %C
 ELSE
 %GROUPNAME = %C
 %C = 'MISSING GROUP ' WITH %C WITH ' FILES FOLLOW: '
 FOR %JUNK FROM 1 TO $MISNUM BY 1
 %C = %C WITH $MISNAME(%JUNK) WITH ' AT ' WITH $MISLOC(%JUNK)
 END FOR
 %C = %C WITH ' ON STATEMENT ' WITH $MISSTMT
 PRINT %C
 %D = 'COMPLETE LIST OF MISSING FILES FOR' WITH $MISGRUP WITH ': '
 FOR %INDEX FROM 1 TO $GRNMISS BY 1
 %D = %D WITH $GRMNAME(%INDEX,%GROUPNAME) WITH ' AT '
 %D = %D WITH $GRMLOC(%INDEX,%GROUPNAME)
 END FOR
 PRINT %D
 END IF
 BYPASS
END ON

Using the Host Language Interface

A Host Language program that issues an IFDIAL call (IFREAD or IFWRITE)
can access remote data.

Any functionality that is supported for SOUL requests, as described in this
chapter, is supported for IFDIAL calls. There are no additional limitations or
functional differences between local and remote file access for IFDIAL calls.

$MISNAME (index) Name of the unavailable file identified by the index
parameter.

$MISLOC (index) String containing the location of the unavailable file
indicated by the index parameter.

$MISSTMT String containing the type of SOUL statement that failed,
for example, ‘DELETE ALL RECORDS’.

Table 5-4. $functions for ON MISSING units (Continued)

$function Returns...
Working with Remote Files and Scattered Groups 83

Using the Host Language Interface
Use of IFSTRT calls is not supported

A Host Language program that issues an IFSTRT call (IFFIND or IFGET)
cannot access remote data.

An IFOPEN call issued with a remote file specification causes Model 204 to
perform the following actions:

• Set the completion code to 260.

• Write an error message to the client system audit trail stating that IFOPEN
remote access is not allowed.
84 Parallel Query Option/204 User’s Guide

6
Parallel Query Option/204 and
Scattered APSY Subsystems

Overview

With Parallel Query Option/204, application subsystem definitions and
requests can refer to remote files or scattered groups.

This chapter explains how to manage, run, and maintain client and
service subsystems that run under the Application Subsystem Facility
(APSY). Emphasis is on features and concepts that are specific to
Parallel Query Option/204. Basic knowledge of Model 204 subsystem
management is assumed.

Required system parameters

The following parameter settings are required to run APSY subsystems
with distributed data:

• The SYSOPT=X'01' bit must be set on all nodes that the client
subsystem will access.

• The LGTBL parameter on the service thread should be reset to at
least 132 whenever a user is logged into a service subsystem. This
parameter is used to set the size of the Global Variable Table
(GTBL). GTBL contains name/value strings for global variables and
is used by procedures included by APSY to support subsystem
processing.
Parallel Query Option/204 and Scattered APSY Subsystems 85

Client and service subsystems
Client and service subsystems

PQO provides access to remote files under APSY by allowing the system
manager to define client and service subsystems:

• Client subsystem is the subsystem a user is running in when requesting
access to remote data.

• Service subsystem is the subsystem on a server node that a client user’s
service thread is logged in to.

A service subsystem definition is stored in the CCASYS file on each node that
the client subsystem accesses. The name of a subsystem must be the same at
each node. The location of the client node is included in the subsystem name
to uniquely identify it to the server node.

Node availability

A server node can be available or unavailable to a client APSY subsystem.

An APSY node is available if the service subsystem has been successfully
started. If the service subsystem has not been started, it does not have a
subsystem definition structure accessible to the client and is, therefore,
unavailable.

A node can be marked unavailable during start processing only if there are
mandatory members on a server node and the service subsystem cannot be
started. If this happens, start processing also fails on the client node.

Client subsystems attempting to access service subsystems that are not
started receive an error message from the server node.

A previously available node can become unavailable when:

• Resumption of communication fails after recovering from a system failure

• User attempts to log in to the service subsystem by logging in to the client
subsystem, the service subsystem definition is not found, and at least one
mandatory member resides on that node

• User attempts to open a file on a node where the user was not previously
logged in

The user is automatically logged in to all associated service subsystems when
entering a subsystem that contains remote files. If the service subsystem is
unavailable on a node, the user cannot be logged in.

For details on operational parameters that affect logon processing, see
“Operational Parameters screen (service definition)” on page 100.
86 Parallel Query Option/204 User’s Guide

File and group availability
File and group availability

The members of an APSY subsystem are files and permanent groups. With
PQO, members can be either automatic or manual:

• An automatic member is a subsystem group or file that is opened
automatically when the subsystem is started or when a user enters the
subsystem.

• A manual member is a group or file that must be opened explicitly by the
OPEN or OPENC command.

Members can also be either mandatory or optional:

• A mandatory member must be open in order to access a subsystem.
Mandatory members cannot be manual.

• An optional member is not required for subsystem access (start and login
processing can succeed without it).

At any given time a member can be open or closed to a subsystem or to a user
within a subsystem. The following sections explain the conditions under which
the different kinds of members are accessible to APSY subsystems and their
users.

Member availability to APSY subsystems

Automatic members of APSY subsystems are always opened by the START
SUBSYSTEM command or by SUBSYSTEM LOGIN. At the end of START
processing, each automatic member is open unless either the START or OPEN
failed.

Manual members of APSY subsystems are in the closed state at the
completion of START SUBSYSTEM processing and must be explicitly opened
by the user. Manual members become open to the subsystem if an OPEN or
OPENC operation succeeds. If OPEN or OPENC fails due to node
unavailability or for user-specific reasons (for example, if the user’s line goes
down) the member remains closed to the subsystem.

If a node becomes unavailable to a subsystem, all automatic subsystem
members and all open manual subsystem members residing on the
unavailable node are marked disabled.

If a STOP FILE or STOP GROUP command is issued for a manual member on
the client subsystem’s node, the member is closed to the client subsystem
when the last user closes it. If the member is located on the service subsystem
node, the file is closed to the service subsystem when either the STOP is
complete or the last user closes the file.

Member availability to subsystem users

When a user enters a subsystem, automatic subsystem members are opened.
Parallel Query Option/204 and Scattered APSY Subsystems 87

File and group availability
If a user LOGIN or OPEN operation fails for an optional member, the member
is left closed for the user but remains open to the subsystem. If a mandatory
member cannot be opened, the user is denied access to the subsystem.

If a user LOGIN or OPEN operation fails for an already open member, the
member is left disabled for the user but remains open to the subsystem.

If an automatic mandatory member is closed to the subsystem, new users are
not allowed to enter the subsystem.

Manual members of APSY subsystems are closed for a user within a
subsystem until the user issues an OPEN command or statement. In this case
it does not matter whether the member is open or closed to the subsystem.

If compilation and/or loading of a request fails due to a communications failure,
previously opened members on the failing node become disabled to the user.

A user can close optional members at any time by issuing the CLOSE
command.

Enabling a disabled subsystem file

If a file is marked as disabled to the subsystem, you can use the ENABLE
SUBSYSTEM FILE command to make the file available again. If necessary,
correct any communications problem. Then enter this command:

ENABLE SUBSYSTEM subsysname [FILE | GROUP] name -
 AT location

where:

• subsysname is the name of the client subsystem

• location is the value of the client CCAIN LOCATION parameter (which is
also the value of the CLNT field in the LOGWHO command output)

Note: You must specify the location; you cannot include local files in an
ENABLE SUBSYSTEM command.

Disabling a subsystem file

You can disable a subsystem file to keep the file itself, or the subsystem to
which it belongs, inaccessible for a short period of time, without shutting down
the subsystem by using the STOP SUBSYSTEM command.
88 Parallel Query Option/204 User’s Guide

Trust
To disable a subsystem file, use this command:

DISABLE SUBSYSTEM subsysname [FILE | GROUP] name
 AT location

where:

• subsysname is the name of the client subsystem

• location is the value of the client CCAIN LOCATION parameter (which is
also the value of the CLNT field in the LOGWHO command output)

The consequence of disabling a subsystem file depends on whether the file is
an optional or mandatory group member:

• If you disable a mandatory file, you effectively disable the subsystem,
because users attempting to access the disabled file cannot access the
subsystem.

• If you disable an optional file, users can log in to the subsystem, but cannot
access the disabled file.

Trust

As an alternative to the privilege settings normally available through the
Subsystem Management facility, each service subsystem manager can control
access by specifying that the client subsystem is trusted. If a client subsystem
is trusted, its definition is unmodified and used as is at the service node (with
possible maximum values specified for file privileges and field security).

Why use a trust definition?

Using full or partial trust relieves the system administrator from having to create
and maintain the file and SCLASS definitions for remote subsystems. (Full or
partial trust requires entries on just one screen, rather than the five screens
needed for a subsystem service definition.)

Trust information resides on the service node and is controlled by the service
subsystem manager or administrator. For example, the administrator of a
service node in Chicago creates and manages trust definitions for any client
nodes linked to the Chicago service node.

Parallel Query Option/204 offers four levels of trust:

Table 6-1. Parallel Query Option/204 trust levels

Level Meaning

Full trust Only the subsystem name, location, and status (active or
suspended) appear on the service node’s definition, which you
create on the Subsystem Trust screen.
Parallel Query Option/204 and Scattered APSY Subsystems 89

Trust
In Figure 6-1 on page 91, Subsystem D has no trust, because neither an active
trust definition nor a subsystem service definition for it exist on the service
node.

Partial trust Along with the subsystem name, location, and status, you can
specify maximum privileges. The client subsystem is trusted,
but the maximum file privileges and field level security levels
specified on the Subsystem Trust screen cannot be exceeded:

• If a user requests file privileges that would exceed the maximum,
the attempt to open the file fails.

• If a user requests a field level access that would exceed the
maximum, PQO automatically resets the request to the allowed
level (the maximum), and opens the file.

Restricted trust For a subsystem with restricted trust, the subsystem service
definition is based on entries you make on these five screens:

• Subsystem Activity

• Subsystem File Use

• Operational Parameters

• Subsystem Classes

• Subsystem Class Users

The client subsystem’s access is determined by the SCLASS,
user, and file privileges that you specify on these screens. For
a subsystem that has restricted trust, you do not make any
entries on the Subsystem Trust screen. You can specify full or
partial trust, or specify restricted trust.

No trust On the service node, if there is neither a subsystem service
definition nor a trust definition for the client subsystem. The
client subsystem cannot access any files on the service node as
subsystem files.

However, the files on the service node can be accessed from
within a client subsystem as individual, nonsubsystem files, if
the following criteria are met:

• PQO is installed at both sites, and there are link, processgroup,
and process definitions connecting the client node to the service
node.

• Horizon Interface is installed at both sites, and there are link,
processgroup, and process definitions connecting the client node
to the service node.

• OPENCTL parameter setting allows remote access for any given
file (with a setting of ‘08,’ ‘04,’ or ‘02’). For information about the
OPENCTL parameter, see the discussion “Allowing access to
remote files” on page 49, and consult the Rocket Model 204
documentation wiki
(http://m204wiki.rocketsoftware.com/index.php/OPENCTL_para
meter).

Table 6-1. Parallel Query Option/204 trust levels (Continued)

Level Meaning
90 Parallel Query Option/204 User’s Guide

Trust
Where to create definitions

For details on adding, modifying, suspending, and deleting trust definitions, see
“Managing the trust definition” on page 97.

Store trust definitions associated with remote users in the CCASYS file.

Figure 6-1. Subsystems and trust levels

To create a definition that has... Make entries on...

Full trust or Partial trust Subsystem Trust screen

Restricted trust Subsystem Activity screen

Subsystem File Use screen

Operational Parameters screen

Subsystem Classes screen

Subsystem Class Users screen

SERVICE NODE: CHICAGO

CLIENT NODE:

Subsystem A

full APSY
subsystem
definition

Trust definition for
Subsystem A

Full Trust

• subsystem name

• subsystem location

CLIENT NODE: CLIENT NODE:

Subsystem B

full APSY
subsystem
definition

Subsystem C

full APSY
subsystem
definition

BOSTON NEW YORK ATLANTA

CLIENT NODE:

Subsystem D

full APSY
subsystem
definition

SEATTLE

Trust definition for
Subsystem B

Partial Trust

• subsystem name

• subsystem location

• maximum privileges

Subsystem service definition
for Subsystem C

Restricted Trust

• subsystem name

• subsystem location

• SCLASS privileges

• user privileges

• file privileges

NO TRUST
Parallel Query Option/204 and Scattered APSY Subsystems 91

Subsystem command processing
Subsystem command processing

This section describes aspects of START and STOP SUBSYSTEM processing
that are unique to distributed applications.

The TEST SUBSYSTEM command works the same way with distributed and
nondistributed applications.

START SUBSYSTEM command processing

When a subsystem defined to support remote access is started, a service
subsystem of the same name is started when the first file on the node is opened
during automatic open processing. With the START request, each server node
receives all necessary subsystem definition information, such as a location ID
to uniquely identify it within the network.

If all remote file references on the client node are to manual members, the
service subsystem is not started until the first manual member is opened. If any
remote files need to be opened automatically on the server node, then the
following message is written to the server node audit trail for each service
subsystem that is successfully started:

M204.2330: SUBSYSTEM subsysname FROM location STARTED

CREATE GROUP command must precede the START command

If a CREATE GROUP command is required for an automatic and mandatory
group, the command must be issued before starting the subsystem. This is
necessary so that all remote nodes containing group members can be included
in START processing. Group definitions must be local, but files in a group can
be remote.

File privileges

User file privileges for remote files are partially determined by the SCLASSes
and PRIVDEF settings defined on the server node. Privileges defined on the
server node serve as the maximum privileges a client user can request. This
mechanism gives the service subsystem administrator control over maximum
privileges to ensure file security. If a client user requests more than the
maximum privileges defined on the server node, then the file open fails.

Procedure dictionary allocation

During START processing, an in-core procedure dictionary is allocated and
built on the client and on each server node. The size of the client procedure
dictionary is used for all server node dictionaries. There is no procedure file on
the remote node, but the procedure dictionary is allocated anyway to keep track
of saved compilations.
92 Parallel Query Option/204 User’s Guide

Subsystem command processing
File and group definitions

File synonyms, including those used indirectly through a group, and permanent
group definitions are locked in share mode once a subsystem is started. This
prevents the definitions from changing after a subsystem has been
successfully started at a remote node. If such a change is needed, the
subsystem must be stopped and restarted so that all the internal structures can
be rebuilt and retransmitted.

Automatic and optional members

During START processing, APSY tries to open subsystem automatic members.
If an automatic mandatory member cannot be opened, START processing is
terminated. If an automatic optional member cannot be opened, the member is
marked as disabled and START processing continues.

STOP SUBSYSTEM command processing

The STOP SUBSYSTEM command stops both client and service subsystems.

When a STOP command specifies a subsystem that uses remote files, the
following actions are taken:

• Subsystem definition on the client node is examined to determine whether
the user has STOP command privileges.

• If the user does not already have a conversation, a conversation is
established with each remote node on which the subsystem has been
started.

• If there are no remaining users in the subsystem, the service subsystems
are stopped.

• If there are remaining users in the subsystem, the service subsystems are
placed in a drain state and the usual message is produced on the client
node.

• If there is a communication failure with any node accessed by the client
subsystem, the client subsystem is stopped or placed in a drain state. The
following error message is produced for each failure:

M204.nnnn: SUBSYSTEM subsysname COULD NOT BE STOPPED AT
location.

• If the subsystem is not active on any of the nodes accessed by the client
subsystem, the following error message is produced for each node:

M204.nnnn: SUBSYSTEM subsysname NOT ACTIVE AT location

• If the service subsystem is placed in a drain state, then it is stopped when
the last user leaves the client subsystem. This happens either through
Parallel Query Option/204 and Scattered APSY Subsystems 93

Compiling and running procedures
normal exit conditions or through thread timeouts, which can occur
depending on the setting of the TIMEOUT parameter.

STOP SUBSYSTEM stops or places in a drain state the local subsystem and
all service subsystems with the same name on their nodes.

The following syntax is available for stopping only the service subsystems
associated with a specific client node(s):

STOP SUBSYSTEM subsysname FROM location

where:

• subsysname is the name of the subsystem being stopped.

• location is the value of the CCAIN LOCATION parameter of the client node
that activated the subsystem (which is also the value of the CLNT in the
LOGWHO command output), or is the symbolic name specified by the
process definition.

Stopping a subsystem from a remote node where a mandatory file resides
causes the node to become disabled to the subsystem.

When client users try to log in to the service subsystem after it has been
stopped, a remote START SUBSYSTEM call is sent if there are no mandatory
members on the node. If there are mandatory members, the user is not allowed
to enter the subsystem on the client until it is stopped and restarted on the
client.

Stopping a subsystem from a remote node requires system manager
privileges.

Compiling and running procedures

When a non-precompiled procedure that references remote files is invoked,
one or more remote nodes participate in the compilation and evaluation. When
a precompiled procedure is invoked, Model 204 loads the procedure on each
of the nodes that participated in the original compilation.

When a subsystem member becomes unavailable during evaluation, the
appropriate ON unit is activated.

Error messages associated with remote procedure processing while loading a
request have the prefix RMT in the global error variable.

Saving compilations

As part of the compilation process, a list of remote nodes referenced in the
request is generated with the compiled code. When compilation is complete,
the compilation is saved along with the list of nodes. Each remote node
referenced in the request is sent a signal to save the compilation.
94 Parallel Query Option/204 User’s Guide

Compiling and running procedures
If for any reason a compilation cannot be saved by a server node, the entire
save operation fails.

Loading saved compilations

At the client node, the saved remote node reference list is checked to see which
nodes are to load the request. When the request is loaded on the client, a signal
is transmitted to each referenced server node to load the compilation.

New and missing nodes

A temporary group can be changed so that a node is new (not previously
referenced) or missing (referenced but no longer available). Table 6-2 shows
how new and missing nodes affect recompilations and saves.

Table 6-2. Temporary groups with new and missing nodes

And there are missing
nodes...

And there are no missing
nodes....

If there are new nodes... Recompile the procedure,
do not save

Recompile and save again

If there are no new
nodes...

Just load and evaluate Just load and evaluate
Parallel Query Option/204 and Scattered APSY Subsystems 95

SUBSYSMGMT overview
Recompiling saved requests

Saved requests are always recompiled if a new node is introduced into a
temporary group. Recompilation can cause a noticeable delay in response
time.

In addition, the following changes in the composition of a subgroup also force
recompilation of a request. A subgroup is the group of files at a server node
referenced as a part of a group.

Recompilation is required when:

• Number of files in the subgroup has increased (for example, if a user’s
request includes a file that was unavailable to the previous user)

• Maximum number of segments in a subgroup has increased

The need to recompile a request is decided automatically.

SUBSYSMGMT overview

This section shows how to define server and client subsystems using the
SUBSYSMGMT interface. The screen examples show definitions for a
subsystem called SALES. The client system is in Boston; it accesses remote
files in Dallas.

The following changes to the SUBSYSMGMT interface are specific to PQO
application subsystems:

• To add, modify, suspend, or delete trust definitions, use the Subsystem
Trust screen, available from the Subsystem Management Menu screen.

• Several screens have From fields denoting location of client subsystems.
You enter a From value on the Activity screen when defining a service
subsystem; the From field is then prefilled on secondary screens.

• There are Location fields on the File Use and Subsystem Classes screens.
You enter them to indicate the location of remote files to be used by the
client subsystem.

• Fields on the File Use screen indicate automatic and mandatory subsystem
members.

• Operational Parameters screen has a field indicating whether a client
subsystem can access remote files.

The section “Parameters and login/logout processing” on page 104 explains
the effect of various parameters on login and logout processing in a distributed
environment.

For complete information on SUBSYSMGMT, see the Rocket Model 204
documentation wiki:
96 Parallel Query Option/204 User’s Guide

Defining a service subsystem
http://m204wiki.rocketsoftware.com/index.php/System_requirements_for_App
lication_Subsystems#Overview_of_the_SUBSYSMGMT_interface

Defining a service subsystem

Subsystem Trust screen

Use the Subsystem Trust screen to view or manage trusted subsystem
definitions. The Status field tells you the definition status:

• A = Active

• S = Suspended

Managing the trust definition

To manage trust definitions, you must have system manager privileges at the
service node.

Adding a trust definition

1. Enter A, for Add, in the ACT column. The line you choose might be blank
or it might already contain information for another definition.

2. Specify the subsystem name and location.

– If you are assigning full trust, stop here.

– If you are assigning partial trust, continue to step 3.

3. If necessary, specify maximum file privileges. For information about valid
PRIVDEF settings, see the Rocket Model 204 documentation wiki:

http://m204wiki.rocketsoftware.com/index.php/Establishing_and_maintaini
ng_security.

4. If necessary, specify maximum access levels. If you enter an access level
value, you must enter information in each of the access level fields.
Parallel Query Option/204 and Scattered APSY Subsystems 97

Defining a service subsystem
5. When you are finished entering trust definitions, press Enter or scroll in
either direction to update the file, and then use the END function (PF12
key) to return to the Subsystem Management Facility screen.

Modifying a trust definition

You can modify:

• Status, active or suspended

• File privileges

• Access levels

If you change the status of a trust definition to suspended, you temporarily
remove trust for the subsystem. The CCASYS trust definition is marked as
unavailable, and is not deleted from the CCASYS file. You cannot modify the
name or location of an existing definition—you must delete the old definition
and add a new one with the correct name and location for the subsystem:

1. Find the definition to be modified. If necessary, use the PF7 and PF8 keys
to scroll through the list.

2. Enter M, for Modify, in the ACT column.

3. Modify status, file privileges, and/or access levels.

4. When you are finished modifying trust definitions, press Enter to save your
work and then use the END function (PF12 key).

Deleting a trust definition

1. Find the definition to be deleted.

2. Enter D, for Delete, in the ACT column. Be sure to save your work before
exiting the screen with the END function (PF12 key).

The trust definition is deleted from the CCASYS file, for the subsystem name
and location specified. Because the trust definition is used only at subsystem
start, deletion does not affect a subsystem that is already started.

Handling errors

If PQO encounters an error, it displays a message and positions the cursor at
the line causing the error. All changes to lines preceding the one in error are
automatically saved and processed.
98 Parallel Query Option/204 User’s Guide

Defining a service subsystem
Subsystem Activity screen (service definition)

The Subsystem Activity screen is the primary SUBSYSMGMT screen, used to
access all SUBSYSMGMT functions.

The From fields specify the location of the client subsystem. If a From field is
specified, the Subsystem Name field might not be blank.

If you are going to the Subsystem Trust screen, the From and Subsystem
Name values are used to determine the starting position in the scrollable list of
trusted subsystems, which are listed in order by name and location.

The From field is prefilled on all the secondary screens and protected from
input.

To define the service subsystem:

1. Select Add on the Main Menu, specifying the subsystem name and the
From location.

2. Select the FILeuse, OPEration, SYSclass, and USErdef functions and fill
in the appropriate fields as shown in the following sections.
Parallel Query Option/204 and Scattered APSY Subsystems 99

Defining a service subsystem
Subsystem File Use screen (service definition)

The only definitions allowed when defining a service subsystem are file name,
deferred name, and ordered index name. All other fields are defined in the
client subsystem and protected from input when you are entering service
definitions.

Operational Parameters screen (service definition)

Selecting PF4 on the Activity screen brings up the Operational Parameters
screen. Use it to specify the operating parameters of the subsystem.

The From field specifies the location of the client node that the definition is
being created for. It is prefilled with the From value on the Main Menu and
protected from input.

Only the Status, Lock File/Groups, Account, Privileges, and Start Login
privileges fields can be modified for the service subsystem. All options that are
100 Parallel Query Option/204 User’s Guide

Defining a service subsystem
not allowed for service subsystem definitions are protected from screen input.
These fields are defined in the client subsystem.

Message Display is not modifiable on the server node, because messages are
not displayed on the service thread.

Subsystem Classes screen (service definition)

Command and file privileges are defined for each class of subsystem users on
the Subsystem Classes screen. Each class of user requires a separate screen.
User class privileges defined to the subsystem override settings for OPENCTL
and file privileges that reside in the password table.

The Location field is protected from input because there is no remote access
on the server node. The files shown here, CLIENTS and PRODUCTS, are local
(they reside on the service node).

Parts of this screen pertaining to procedure files are masked, because PQO
does not support remote procedure files.
Parallel Query Option/204 and Scattered APSY Subsystems 101

Defining a service subsystem
Subsystem Class Users screen (service definition)

User accounts assigned to a specific class are defined on the Subsystem Class
Users screen. A user can belong to only one class within a subsystem. If using
more than one subsystem, the user can belong to a different class (with
different privileges) in each subsystem.

Each user must be in the same class in the client and service subsystems.
Otherwise the login fails when the service subsystem login call is sent.

Duplicate account entries result in the display of the class in which the original
name resides.

The client and server nodes must have separate CCASYS files. Technical
Support recommends that CCASYS files not be shared by different Onlines.

If users have different SCLASSes on the client and server nodes, the following
error messages are generated:

M204.2314: Error on remote node <indamine>

M204.2309: User not defined in SCLASS <name>
102 Parallel Query Option/204 User’s Guide

Defining a client subsystem
Defining a client subsystem

Subsystem Activity screen (client definition)

To define a client subsystem that accesses remote files:

1. Select Add on the Main Menu. Do not specify a From input value for the
client.

2. Select the FILeuse, OPEration, SYSclass, and USErdef functions and fill
in the appropriate fields as shown in the following sections.

Subsystem File Use screen (client definition)

New flags indicate automatic and mandatory members. If the Automatic flag is
N, then the Mandatory flag must be N.
Parallel Query Option/204 and Scattered APSY Subsystems 103

Defining a client subsystem
The File Location field specifies the location of each file. If this new field is
omitted, then the file is assumed to be local. Specify location only for client
subsystems.

If you are referring to remote files by means of file synonyms, then it is not
necessary to specify remote location.

This example shows the remote files CLIENTS and PRODUCTS at location
DALLAS.

Operational Parameters screen (client definition)

When you are defining a client subsystem, you can modify any of the fields on
this screen. See the Rocket Model 204 documentation wiki for information on
parameters:

http://m204wiki.rocketsoftware.com/index.php/System_requirements_for_App
lication_Subsystems#Operational_Parameters_screen

The field Subsystem Can Access Remote Files is new. N is the default. Change
the value to Y if you want the subsystem to access remote files.

Parameters and login/logout processing

The following subsystem operational parameters affect the way users can log
into and out of a subsystem:

• Automatic start has no bearing on the service subsystem because the
service subsystem is started by Model 204 when the client starts.

• Specifying Automatic Login causes the user to be logged out of Model 204
(but not disconnected) and logged back in with a login ID equal to the
subsystem name.
104 Parallel Query Option/204 User’s Guide

Defining a client subsystem
Any remote files that the user had open prior to entering the subsystem are
closed and all the user’s service threads are logged out. The client
subsystem establishes new service threads for the user on the appropriate
remote nodes. The user’s logon privileges, account, and record security
key are reset to those specified for the subsystem. The user is then logged
in to the service subsystems associated with the client using the new
privileges, login ID, account, and record security key.

When the user leaves an Automatic Login subsystem, all local and remote
files are closed and the user’s service threads are logged out.

• Specifying Automatic Logout causes the user to be logged out of Model 204
and disconnected if the SYSOPT disconnect bit is on. Service threads are
logged out if the corresponding users were in a subsystem that accessed
remote files.

• If you specify Automatic Commit, the client node determines that a commit
is required due to execution of a SOUL statement, an end of request, or a
return to command level.

Locked files

If a remote file is opened by a subsystem that locks its files, the file is locked on
the client node (only users of this subsystem can use the file on this node).
Users of other nodes can also open and use the file.

If the service subsystem locks its files, the file is locked on the service node
(only users of the client subsystem can open and use it through the service
subsystem).

If a subsystem locks its files and an optional member of a subsystem group
cannot be locked because it is already open outside of the subsystem, the
group can still be opened provided that the number of unavailable group
members does not exceed the value of the MAXFAIL parameter.
Parallel Query Option/204 and Scattered APSY Subsystems 105

Defining a client subsystem
Subsystem Classes screen (client definition)

When you define a client subsystem, you can modify any of the fields on this
screen. In the client definition, the Location field value refers to the node where
a file is located. This example shows CLIENTS and PRODUCTS at location
DALLAS.

Subsystem Class Users screen (client definition)

Users whoare authorized to access remote files must be included in the same
subsystem class definitions for both the client and service subsystems.

The only difference in screen contents on the client side is that the From field
is not prefilled.
106 Parallel Query Option/204 User’s Guide

A
Three-Node Network Example

Overview

This appendix provides an example that demonstrates the use of the
network definitions for an expanded Parallel Query Option/204 network.
In the expanded network, communication is initiated in either direction.

This example is provided for illustrative purposes only. The options
shown apply to the sample application. When setting up your PQO
network, refer to Chapter 2 for a detailed description of the definitions
and their use.

Reporting application

The example is based on the insurance company reporting application
that requires communication between two field offices (Detroit and
Dallas) and one main office (Boston). Each office system operates
independently, running under its own version of Model 204 in an z/OS
environment.

In the example, the network definitions support one office location as a
client only, one office location as a server only, and one office as both
a client and a server. The main office produces a policy report based on
information from data files in the field offices.

The SOUL procedure that produces the policy report uses locally stored
customer data and accesses the remote files in Detroit and Dallas
containing vehicle data.

The Detroit office can produce a regional policy report using data files
from both Detroit and Dallas.
Three-Node Network Example 107

Reporting application
Figure A-1 on page 108 shows the physical configuration of the expanded
network.

Figure A-2 on page 109 shows the interrelationship of the network entities
defined for the expanded network.

Figure A-1. Physical configuration of expanded network

Network characteristics:

• Three nodes: one client-only, one server-only, one client/server

• Three two-way paths, when links are activated

• Communication initiated by client

SNA

Model 204

System A: Boston
 Client only

proc

z/OS

data files

SNA

Model 204

System C: Dallas
 Server only

z/OS

data files

SNA

Model 204

System B: Detroit
 Client/Server

proc

z/OS

data files

SNA
Network

Arrow points to files a client request may access
108 Parallel Query Option/204 User’s Guide

Reporting application

Figure A-2. Network entity relationships for System A

System B
Client/Server

LOCATION=DETROIT

System A
Client

LOCATION=BOSTON

 LINK LINK1
 LOCALID=DISUSR01

System C
Server

LOCATION=DALLAS

 PROCESSGROUP PG1BOS
 REMOTEID=DISUSR02
 LINK=LINK1

 PROCESSGROUP PG2BOS
 REMOTEID=DISUSR03
 LINK=LINK1

 PROCESS CCAD2C
 DESTINATION=(PG1BOS,
 DET,PG2BOS, DAL)

 LINK LINK2
 LOCALID=DISUSR02

 PROCESSGROUP PG1DET
 REMOTEID=DISUSR01
 LINK=LINK2

 PROCESSGROUP PG2DET
 REMOTEID=DISUSR03
 LINK=LINK2
 LOGIN=TRUST

 PROCESS CCAD2C
 DESTINA-
TION=(PG2DET,DAL)

 PROCESS CCAD2S
 FROM=PG1DET

 LINK LINK3
 LOCALID=DISUSR03

 PROCESSGROUP PG2DAL
 REMOTEID=DISUSR02
 LINK=LINK3

 PROCESSGROUP PG1DAL
 REMOTEID=DISUSR01
 LINK=LINK3

 PROCESS CCAD2S
 FROM=(PG1DAL, PG2DAL)
Three-Node Network Example 109

Defining the network
Defining the network

The steps required to define the expanded PQO network are listed in the
checklist in Table A-1. A detailed description of each step is provided in the
sections following the checklist.

Note: In an actual implementation, each site performs the steps appropriate for
each set of definitions. In this section, to show the interrelationships between

Table A-1. Defining the PQO network

Step Definition Page

Define the network to Model 204:

1. Define System A’s link.

2. Define System A’s processgroups.

3. Define System A’s client process.

4. Define System B’s link.

5. Define System B’s processgroups.

6. Define System B’s server process.

7. Define System B’s client process.

8. Define System C’s link.

9. Define System C’s processgroups.

10.Define System C’s server process.

LINK

PROCESSGROUP

PROCESS

LINK

PROCESSGROUP

PROCESS

PROCESS

LINK

PROCESSGROUP

PROCESS

111

111

113

113

114

115

116

116

114

118

Define the Online environment:

11.Set System A’s Model 204 runtime
and user parameters.

12.Set System B’s Model 204 runtime
and user parameters.

13.Set System C’s Model 204 runtime
and user parameters.

LOCATION
NRMTFILE
NRMTLOCS
NSUBTKS

LOCATION
NRMTFILE
NRMTLOCS
NSUBTKS
IODEV=51

LOCATION
NRMTLOCS
NRMTFILE
NSUBTKS
IODEV=51

118

119

120

Define the network to SNA Communications
Server:

14.Define System A’s SNA Communications Server
application.

15.Define System B’s SNA Communications Server
application.

16.Define System C’s SNA Communications Server
application.

APPL

APPL

APPL

121

122

122
110 Parallel Query Option/204 User’s Guide

Specifying DEFINE commands for System A
the systems, each set of definitions is presented for each system, first for
System A (Boston), then for System B (Detroit), and then for System C (Dallas).

The locations (Boston, Detroit, Dallas) are the values specified in the CCAIN
LOCATION parameter in the System A, B, and C Onlines, respectively.

The sample CCAIN input streams for the systems are provided in “Sample
CCAIN input streams” on page 122.

Specifying DEFINE commands for System A

Defining the link for System A

The first step is to set up the DEFINE LINK command on System A:

DEFINE LINK LINK1 WITH
 SCOPE=SYSTEM
 LOCALID=DISUSR01
 TRANSPORT=VTAM
 PROTOCOL=LU62
 INBUFSIZE=2048
 SESSIONS=6

This definition provides the following specifications:

Defining the processgroups for System A

The next step is to set up two processgroup definitions for System A: for
conversations with Detroit and for conversations with Dallas.

LINK1 Identifies LINK1 as System A’s connection to the SNA
network.

LOCALID The identity of the Boston office’s Model 204 system as an
application node in the SNA network is DISUSR01. The
LOCALID value matches the name specified in the APPL
statement label (see page 121).

TRANSPORT and
PROTOCOL

The transport type SNA Communications Server and the
protocol LU62 are used for communications.

INBUFSIZE The size of the “receive any” buffer for processing initial
inbound conversations requests is 2048 bytes. This
matches the mode table RUSIZES value. For more
information about SNA Communications Server mode
tables, see page 26.

SESSIONS A maximum of six sessions can be activated concurrently for
this link. Note that PARSESS=YES is specified in the APPL
statement for System A (page 121) to support concurrent
sessions.
Three-Node Network Example 111

Specifying DEFINE commands for System A
Defining the processgroup for conversations with Detroit

DEFINE PROCESSGROUP PG1BOS WITH
 SCOPE=SYSTEM
 LINK=LINK1
 OUTLIMIT=5
 INLIMIT=0
 REMOTEID=DISUSR02
 LOGIN=TRUST

This definition provides the following specifications:

Defining the processgroup for conversations with Dallas

DEFINE PROCESSGROUP PG2BOS WITH
 SCOPE=SYSTEM
 LINK=LINK1
 OUTLIMIT=5
 INLIMIT=0
 REMOTEID=DISUSR03
 LOGIN=TRUST

PROCESSGROUP,
LINK, and
REMOTEID

The processgroup PG1BOS provides for conversations with
System B at the Detroit office, known as DISUSR02, using
the LINK1 connection.

Notice the following:

• The LINK value matches the DEFINE LINK name specified in
the link definition on page 111.

• The REMOTEID value matches the LOCALID value specified
in System B’s DEFINE LINK command, on page 113.

OUTLIMIT PG1BOS allows a maximum of five concurrent outbound
conversations with Detroit (DISUSR02) for the local client
process.

INLIMIT System A is a client only. No inbound conversations are
serviced. System A’s Online parameters (see page 118)
include no IODEV=51 statements.

LOGIN For the local client process, the current user ID is shipped in
an outbound conversation request. TRUST, which is
required, specifies that no password is required when the
remote server system logs the user in. TRUST must also be
the LOGIN value specified in System B’s DEFINE
PROCESSGROUP command on page 115.
112 Parallel Query Option/204 User’s Guide

Specifying DEFINE commands for System B
The following specifications in this definition require comment:

Defining the client process for System A

The next step for defining network entities on System A is to set up the DEFINE
PROCESS command for the local client process:

DEFINE PROCESS CCAD2C WITH
 SCOPE=SYSTEM
 DESTINATION=(PG1BOS,DET,PG2BOS,DAL)

This definition provides the following specifications:

Specifying DEFINE commands for System B

Defining the link for System B

The first step for defining network entities on System B is to set up the DEFINE
LINK command:

DEFINE LINK LINK2 WITH
 SCOPE=SYSTEM
 LOCALID=DISUSR02
 TRANSPORT=VTAM
 PROTOCOL=LU62
 INBUFSIZE=2048
 SESSIONS=12

This definition provides the following specifications:

PROCESSGROUP,
LINK, and
REMOTEID

PG2BOS processes converse with System C at the Dallas
office, known as DISUSR03, using the LINK1 connection.

Notice the following:

• Both Boston processgroups use the same link.

• The REMOTEID value matches the LOCALID value specified
in System C’s DEFINE LINK command (see page 116).

PROCESS and
DESTINATION

The client process CCAD2C belongs to the local PG1BOS
processgroup, which directs conversations to the Detroit
office. The DET symbolic name is a reference to the remote
system specified by the REMOTEID parameter in the
PG1BOS definition. System A client remote file
specifications must specify AT DET.

LINK2 Identifies LINK2 as System B’s connection to the SNA
network.
Three-Node Network Example 113

Specifying DEFINE commands for System B
Defining the processgroups for System B

The next step is to set up two processgroup definitions for System B: for
conversations with Boston and for conversations with Dallas.

Defining the processgroup for conversations with Boston

DEFINE PROCESSGROUP PG1DET WITH
 SCOPE=SYSTEM
 LINK=LINK2
 OUTLIMIT=0
 INLIMIT=5
 REMOTEID=DISUSR01
 LOGIN=TRUST

This definition provides the following specifications:

LOCALID The identity of the Detroit office’s Model 204 system as an
application node in the SNA network is DISUSR02. The
LOCALID value matches the name specified in the APPL
statement label (see page 122).

TRANSPORT and
PROTOCOL

The SNA Communications Server transport type and the
LU 6.2 protocol are used for communications.

INBUFSIZE The size of the “receive any” buffer for processing initial
inbound conversations requests is 2048 bytes. This
matches the mode table RUSIZES value. For more
information about SNA Communications Server mode
tables, see page 26.

SESSIONS A maximum of 12 sessions can be activated concurrently for
this link. In the APPL statement on page 122, note that
PARSESS=YES is specified to support concurrent
sessions.

PROCESSGROUP,
LINK, and
REMOTEID

The processgroup PG1DET provides for conversations with
System A at the Boston office, known as DISUSR01, using
the LINK2 connection.

Notice the following:

• The LINK value matches the DEFINE LINK name specified on
page 113.

• The REMOTEID value matches the LOCALID name specified
in System A’s DEFINE LINK command on page 111.

OUTLIMIT PG1DET provides service to System A. No outbound
conversations are defined for the local client process.

INLIMIT PG1DET allows a maximum of five concurrent inbound
conversations (from Boston) for the local server process. In
System B’s Online parameters on page 120, note that
NOTERM specifies five threads.
114 Parallel Query Option/204 User’s Guide

Specifying DEFINE commands for System B
Defining the processgroup for conversations with Dallas

DEFINE PROCESSGROUP PG2DET WITH
 SCOPE=SYSTEM
 LINK=LINK2
 OUTLIMIT=5
 INLIMIT=0
 REMOTEID=DISUSR03
 LOGIN=TRUST

The following specifications in this definition require comment:

Defining the processes for System B

The last step for defining network entities on System B is to set up the DEFINE
PROCESS commands. System B is a server for System A and a client for
System C. Two process definitions are required.

Defining the server process

DEFINE PROCESS CCAD2S WITH
 SCOPE=SYSTEM
 FROM=PG1DET

LOGIN TRUST specifies that the local server process logs in an
incoming client user without a password and assigns
privileges from the CCASTAT password table. The SYSOPT
parameter is set to include a value of X‘10’.

PROCESSGROUP,
LINK, and
REMOTEID

PG2DET processes converse with System C at the Dallas
office, known as DISUSR03, using the LINK2 connection.

Notice the following:

• Both Detroit processgroups use the same link.

• The REMOTEID value matches the LOCALID value specified
in System C’s DEFINE LINK command (see page 116).

LOGIN For the local client process, the current user ID is shipped in
an outbound conversation request. TRUST specifies that no
password is required when the remote server system logs
the user in. TRUST must also be the LOGIN value specified
in System C’s DEFINE PROCESSGROUP command (see
page 117).
Three-Node Network Example 115

Specifying DEFINE commands for System C
This definition provides the following specifications:

Defining the client process

DEFINE PROCESS CCAD2C WITH
 SCOPE=SYSTEM
 DESTINATION=(PG2DET,DAL)

This definition provides the following specifications:

Specifying DEFINE commands for System C

Defining the link for System C

The first step for defining network entities on System C is to set up the DEFINE
LINK command:

DEFINE LINK LINK3 WITH
 SCOPE=SYSTEM
 LOCALID=DISUSR03
 TRANSPORT=VTAM
 PROTOCOL=LU62
 INBUFSIZE=2048
 SESSIONS=12

This definition provides the following specifications:

PROCESS and
FROM

The server process CCAD2S belongs to the local PG1DET
processgroup, which associates the process with internal
resource limits such as a maximum of five concurrent
inbound conversations when responding to client requests
from System A.

PROCESS and
DESTINATION

The client process CCAD2C belongs to the local PG2DET
processgroup, which directs the conversation to the Dallas
(System C) office. The DAL symbolic name is a reference to
the remote system specified by the REMOTEID parameter
in the PG2DET definition. System B client remote file
specifications must specify AT DAL.

LINK3 Identifies LINK3 as System C’s connection to the SNA
network.

LOCALID The identity of the Dallas office (System C) as an application
node in the SNA network is DISUSR03. The LOCALID value
matches the name specified in the APPL statement label
(see page 122).

TRANSPORT and
PROTOCOL

The SNA Communications Server transport type and the
LU 6.2 protocol are to be used for communications.
116 Parallel Query Option/204 User’s Guide

Specifying DEFINE commands for System C
Defining the processgroups for System C

The next step is to set up two processgroup definitions for System C: for
conversations with Boston and for conversations with Detroit.

Defining the processgroup for conversations with Boston

DEFINE PROCESSGROUP PG1DAL WITH
 SCOPE=SYSTEM
 LINK=LINK3
 OUTLIMIT=0
 INLIMIT=5
 REMOTEID=DISUSR01
 LOGIN=TRUST

This definition provides the following specifications:

INBUFSIZE The size of the “receive any” buffer for processing initial
inbound conversations requests is 2048 bytes. This
matches the mode table RUSIZES value. For more
information about SNA Communications Server mode
tables, see page 26.

SESSIONS A maximum of 12 sessions can be activated concurrently for
this link. Note that PARSESS=YES is specified in the APPL
statement on page 122 to support concurrent sessions.

PROCESSGROUP,
LINK, and
REMOTEID

The processgroup PG1DAL provides for conversations with
System A at Boston, known as DISUSR01, using the LINK3
connection.

Notice the following:

• The LINK value matches the DEFINE LINK name specified on
page 116.

• The REMOTEID value matches the LOCALID name specified
in System A’s DEFINE LINK command (see page 111).

OUTLIMIT PG1DAL provides service to System A. No outbound
conversations are defined for the local client process.

INLIMIT PG1DAL allows a maximum of five concurrent inbound
conversations (from Boston) for the local server process.
Note that NOTERM in System C’s Online parameters on
page 120 specifies ten threads: five for PG2DAL and five for
PG1DAL.

LOGIN TRUST specifies that the local server process logs in an
incoming client user without a password and assigns
privileges from the CCASTAT password table. The SYSOPT
parameter is set to include a value of X‘10’.
Three-Node Network Example 117

Specifying the Online environment
Defining the processgroup for conversations with Detroit

DEFINE PROCESSGROUP PG2DAL WITH
 SCOPE=SYSTEM
 LINK=LINK3
 OUTLIMIT=0
 INLIMIT=5
 REMOTEID=DISUSR02
 LOGIN=TRUST

The following specifications in this definition require comment:

Defining the server process for System C

The last step for defining network entities on System C is to set up the DEFINE
PROCESS command for the local server process:

DEFINE PROCESS CCAD2S WITH
 SCOPE=SYSTEM
 FROM=(PG1DAL,PG2DAL)

This definition provides the following specifications:

Specifying the Online environment

Defining System A’s Model 204 Online environment

To define the Model 204 Online environment to support the PQO network in
System A, set the runtime and user parameters.

1. Enter the User 0 runtime parameters in System A’s CCAIN, as follows:

PROCESSGROUP,
LINK, and
REMOTEID

PG2DAL processes converse with System B at the Detroit
office, known as DISUSR02, using the LINK3 connection.

Notice the following:

• The LINK value matches the DEFINE LINK name specified on
page 116.

• The REMOTEID value matches the LOCALID name specified
in System B’s DEFINE LINK command (see page 113).

OUTLIMIT PG2DAL provides service to System B. No outbound
conversations are defined for the local client process.

INLIMIT PG2DAL allows a maximum of five concurrent inbound
conversations (from Detroit) for the local server process.
Note that NOTERM in System C’s Online parameters on
page 121 specifies ten threads: five for PG2DAL and five for
PG1DAL.

PROCESS and
FROM

The server process CCAD2S belongs to both local
processgroups.
118 Parallel Query Option/204 User’s Guide

Specifying the Online environment
LOCATION=BOSTON

BOSTON specifies the unique symbolic name of System A’s Model 204
Online for the PQO network.

NRMTFILE=4

NRMTFILE=4 specifies that a maximum of four remote file save areas are
allocated by Model 204 for System A’s Online for the local client process.
No more than four remote Model 204 files can be open at the same time by
users on the local system.

NRMTLOCS=2

NRMTLOCS=2 specifies the number of remote nodes that can be
accessed by users on the client Online.

NSUBTKS=3

NSUBTKS=3 specifies the number of pseudo-subtasks for Model 204. Two
additional subtasks are added for the single PQO link that is used for the
client process running under z/OS in System A. Two added to the original
value of one makes the total equal to three.

2. No additional IODEV parameter lines are required for System A, because
it is exclusively a client. Only service threads require an additional
IODEV=51 statement.

Defining System B’s Model 204 Online environment

Define the Model 204 Online environment to support the PQO network in
System B. Set the runtime and user parameters:

1. Enter the User 0 runtime parameter in System B’s CCAIN, as follows:

LOCATION=DETROIT

DETROIT specifies the unique symbolic name of System B’s Model 204
Online for the PQO network.

NRMTFILE=2

NRMTFILE=2 specifies that a maximum of two remote file save areas are
allocated by Model 204 for System B’s Online for the local client process.
No more than two remote Model 204 files can be open at the same time by
users on the local system.

NRMTLOCS=1

NRMTLOCS=1 specifies the number of remote nodes that can be
accessed by users on the client Online.

NSUBTKS=3
Three-Node Network Example 119

Specifying the Online environment
NSUBTKS=3 specifies the number of pseudo-subtasks for Model 204. Two
subtasks are added for the PQO link running under z/OS. Two added to the
original value of one makes the total equal to three.

2. Enter the IODEV statements in System B’s CCAIN to support the local
server process. Enter the user parameter lines after the User 0 parame-
ters, as follows:

IODEV=51,NOTERM=5
IODEV=51
IODEV=51
IODEV=51
IODEV=51

IODEV=51 specifies a PQO service thread.

NOTERM=5 specifies that five threads are allocated for PQO inbound
conversations in System B’s Online, indicating that five server applications
can run concurrently.

Defining System C’s Model 204 Online environment

Define the Model 204 Online environment to support the PQO network in
System C. Set the runtime and user parameters.

1. Enter the User 0 runtime parameter in System C’s CCAIN, as follows:

LOCATION=DALLAS

DALLAS specifies the unique symbolic name of System C’s Model 204
Online for the PQO network.

NRMTFILE=0

NRMTFILE=0 (the default) specifies that no remote file save areas are
allocated by Model 204 for System C’s Online. System C is exclusively a
server and is not accessing any remote files.

NRMTLOCS=0

NRMTLOCS=0 (the default) specifies that no remote PQO nodes are
accessed by System C. System C is exclusively a server and is not
accessing any remote files.

NSUBTKS=3

NSUBTKS=3 specifies the number of pseudo-subtasks for Model 204. Two
subtasks are added for the PQO link running under z/OS. Two added to the
original value of one makes the total equal to three.

2. Enter the IODEV statements in System C’s CCAIN to support the local
server process. Enter the user parameter lines after the User 0 parame-
ters, as follows:
120 Parallel Query Option/204 User’s Guide

Specifying the SNA Communications Server environment
IODEV=51,NOTERM=10
.
.
.
IODEV=51

IODEV=51 specifies a PQO service thread.

NOTERM=10 specifies that ten threads are allocated for PQO inbound
conversations in System C’s Online, indicating that ten server applications
can run concurrently. This number exactly accommodates the maximum of
five threads specified by each of System C’s clients. This exact
accommodation is not required, however.

Specifying the SNA Communications Server environment

Defining the APPL statement for System A

The next step is to define the PQO network to SNA Communications Server.
An APPL statement is required for LINK1, which is defined on page 111. The
APPL statement is coded in System A’s VTAMLST data set to define it as an
LU in the network, as follows:

DISUSR01 APPL AUTH=ACQ,
 PARSESS=YES,
 MODETAB=LU62,
 VPACING=5

This definition provides the following specifications:

DISUSR01 Specifies the unique name that identifies System A as an LU
application node in this SNA network. This name matches
the name used for LOCALID in System A’s Model 204
DEFINE LINK command.

AUTH=ACQ Specifies that Model 204 is authorized to acquire sessions
with the remote conversation partner LU when initiating or
responding to a request for a conversation. This setting
authorizes SIMLOGON, the Model 204 SNA
Communications Server request.

PARSESS=YES Specifies SNA Communications Server parallel session
support between the System A LU and a partner. In the
sample network, this supports concurrent sessions between
System A and System B and between System A and System
C.

MODETAB=LU62 Points SNA Communications Server to an existing mode
table, called LU62, that contains the mode definition used by
System A’s Horizon facility. An entry in this mode table
specifies LU 6.2 session parameters for PQO.
Three-Node Network Example 121

Sample CCAIN input streams
Defining the APPL statement for System B

An APPL statement is required for LINK2, which is defined on page 113. The
APPL statement is coded in System B’s VTAMLST data set to define it as an
LU in the network, as follows:

DISUSR02 APPL AUTH=ACQ,
 PARSESS=YES,
 MODETAB=LU62,
 VPACING=5

This definition provides the same specifications as for System A except for the
APPL label name DISUSR02.

Defining the APPL statement for System C

To complete the SNA Communications Server definition for the sample
network, an APPL statement is required for LINK3, which is defined on
page 116. The APPL statement is coded in System C’s VTAMLST data set to
define it as an LU in the network, as follows:

DISUSR03 APPL AUTH=ACQ,
 PARSESS=YES,
 MODETAB=LU62,
 VPACING=5

This definition provides the same specifications as for Systems A and B except
for the APPL label name DISUSR03.

Sample CCAIN input streams

Excerpts from the sample CCAIN input streams for Systems A, B, and C are
provided in this section. These excerpts show the Model 204 Online
environment and network definitions for PQO.

System A input stream (z/OS environment)

//CCAIN DD *
* User zero parameters
.
.
.
 NRMTFILE=4,

VPACING=5 Specifies five messages for SNA Communications Server
pacing. This is the maximum number of chain elements
received by the System A LU during a session before an
acknowledgment is sent to the partner LU. An average
message length is assumed.
122 Parallel Query Option/204 User’s Guide

Sample CCAIN input streams
 NRMTLOCS=2,
 NSUBTKS=3,
 LOCATION=BOSTON

* User parameter lines

* Single link, multiple process network definition

DEFINE LINK LINK1 WITH SCOPE=SYSTEM LOCALID=DISUSR01 -
 TRANSPORT=VTAM PROTOCOL=LU62 INBUFSIZE=2048 -
 SESSIONS=12

DEFINE PROCESSGROUP PG1BOS WITH SCOPE=SYSTEM -
 LINK=LINK1 OUTLIMIT=5 INLIMIT=0 -
 REMOTEID=DISUSR02 LOGIN=TRUST

DEFINE PROCESSGROUP PG2BOS WITH SCOPE=SYSTEM -
 LINK=LINK1 OUTLIMIT=5 INLIMIT=0 -
 REMOTEID=DISUSR03 LOGIN=TRUST

DEFINE PROCESS CCAD2C WITH SCOPE=SYSTEM -
 DESTINATION=(PG1BOS,DET,PG2BOS,DAL)
.
.
.
/*

System B input stream (z/OS environment)

//CCAIN DD *
* User zero parameters
.
.
.
 NRMTFILE=2,
 NRMTLOCS=1,
 NSUBTKS=3,
 LOCATION=DETROIT

* User parameter lines

IODEV=51,NOTERM=5
IODEV=51
IODEV=51
IODEV=51
IODEV=51

* Single link, multiple process network definition
Three-Node Network Example 123

Sample CCAIN input streams
DEFINE LINK LINK2 WITH SCOPE=SYSTEM LOCALID=DISUSR02 -
 TRANSPORT=VTAM PROTOCOL=LU62 INBUFSIZE=2048 -
 SESSIONS=6

DEFINE PROCESSGROUP PG1DET WITH SCOPE=SYSTEM -
 LINK=LINK2 OUTLIMIT=0 INLIMIT=5 -
 REMOTEID=DISUSR01 LOGIN=TRUST

DEFINE PROCESSGROUP PG2DET WITH SCOPE=SYSTEM -
 LINK=LINK2 OUTLIMIT=5 INLIMIT=0 -
 REMOTEID=DISUSR03 LOGIN=TRUST

DEFINE PROCESS CCAD2S WITH SCOPE=SYSTEM -
 FROM=PG1DET

DEFINE PROCESS CCAD2C WITH SCOPE=SYSTEM -
 DESTINATION=(PG2DET,DAL)
.
.
.
/*

System C input stream (z/OS environment)

//CCAIN DD *
* User zero parameters
.
.
.
 NRMTFILE=0,
 NRMTLOCS=0,
 NSUBTKS=3,
 LOCATION=DALLAS

* User parameter lines

IODEV=51,NOTERM=10
IODEV=51
IODEV=51
IODEV=51
IODEV=51
IODEV=51
IODEV=51
IODEV=51
IODEV=51
IODEV=51
* Single link, multiple process network definition
124 Parallel Query Option/204 User’s Guide

Sample CCAIN input streams
DEFINE LINK LINK3 WITH SCOPE=SYSTEM LOCALID=DISUSR03 -
 TRANSPORT=VTAM PROTOCOL=LU62 INBUFSIZE=2048 -
 SESSIONS=12

DEFINE PROCESSGROUP PG1DAL WITH SCOPE=SYSTEM -
 LINK=LINK3 OUTLIMIT=0 INLIMIT=5 -
 REMOTEID=DISUSR01 LOGIN=TRUST

DEFINE PROCESSGROUP PG2DAL WITH SCOPE=SYSTEM -
 LINK=LINK3 OUTLIMIT=0 INLIMIT=5 -
 REMOTEID=DISUSR02 LOGIN=TRUST

DEFINE PROCESS CCAD2S WITH SCOPE=SYSTEM -
 FROM=(PG1DAL,PG2DAL)
.
.
.
/*
Three-Node Network Example 125

Sample CCAIN input streams
126 Parallel Query Option/204 User’s Guide

B
Restricted Commands,
$Functions, and DML Statements

Overview

The Model 204 commands and $functions that are not supported in
remote context for Parallel Query Option/204 processing are listed in
this appendix.

Restricted Model 204 commands

Some of the Model 204 commands that specify a file name, or that
operate on a default file or on a file specified in an IN clause, are not
supported in remote context for PQO processing.

The following commands cannot be used in reference to a remote file.
See Table 5-1 on page 57 for a description of the commands that can
be used to reference files in remote context:

ASSIGN (specifying a procedure alias)

BROADCAST FILE

CREATE FILE

DEASSIGN
DECREASE
DEFINE FIELD
DELETE PROCEDURE
DESECURE
DESECURE PROCEDURE
Restricted Commands, $Functions, and DML Statements 127

Restricted SOUL $functions
DISPLAY FILE
DISPLAY LIST
DISPLAY PROCEDURE
DUMP

EDIT
ENQCTL

FILELOAD
FLOD

INCLUDE
INCREASE
INITIALIZE

PROCEDURE

REDEFINE FIELD
REGENERATE
RENAME FIELD
RENAME PROCEDURE
REORGANIZE
RESET (file parameters)
RESTORE

SECURE
SECURE PROCEDURE

TABLEB
TABLEC
TRANSFORM

Z

Restricted SOUL $functions

The following SOUL $functions cannot be used in reference to a remote file:

$LSTPROC
$RDPROC

If either of these $functions is used in reference to a remote file, Model 204
displays an error message.

See “Using $functions” on page 79 for a description of the $functions whose
functionality or usage is different for PQO.
128 Parallel Query Option/204 User’s Guide

Index
Symbols

$CURFILE function 80
$CURREC function 78
$FDEF function 80
$functions

ON FIELD CONSTRAINT CONFLICT 76
unsupported 79

$GRMLOC function 82
$GRMNAME function 82
$GRNLEFT function 82
$GRNMISS function 82
$ITSOPEN function 80
$ITSREMOTE function 81
$LSTFLD function 80
$LSTPROC function 80
$MISGRUP function 82
$MISLOC function 83
$MISNAME function 83
$MISNUM function 82
$MISSTMT function 83
$RDPROC function 80
$RLCFILE function 80
$STATUS function 42, 59
$STATUSD function 42
$UPDATE function 80
$UPDFILE function 80
$UPDLOC function 81
$UPDOVAL function 76
$UPDSTAT function 76
$VIEW function 80
= (equal sign) option 44, 56

A

ad hoc groups 47, 48
ADD statement 76, 78, 79
alias, file. see synonym, file
APPL statement, VTAM

description 24 to 25
example 121

application node, VTAM 24
applid, VTAM

remote nodes 17

see also VTAM APPL statement
ASTRPPG parameter 40, 80
AT location clause 56, 69, 80
ATRPG parameter 40, 80
audit trail 41
AUTH parameter 121
automatic commit 105
automatic login 105
automatic logout 105
automatic member 87
availability

file or group 45, 49
node 86

B

BACKOUT statement 76
BINARY record security field 52
Bind message 25
BLDGFT parameter 47
BUMP command 31, 33
BYPASS statement 66, 67

C

CCAD2C process definition 17, 113, 116
CCAD2S process definition 17, 116, 118
CCAGRP file 46
CCAIN input file

example 122 to 125
parameters 19
TIMEOUT parameter 19

CCASTAT password table 17
CCASYS file 102
CHANGE statement 76, 79
CID (conversation ID) term 38
CLEAR LIST statement 68
client subsystem

definition of 86
SUBSYSMGMT definitions 103 to 106
see also subsystems

CLOSE FILE command 61
CLOSE GROUP command 61
CLOSE LINK command 32
Index 129

CODED field 70
commit

automatic 105
remote 77

COMMIT RELEASE statement 68
COMMIT statement 77
communications

error 41
host-to-host 24
pathway 8

compilation
APSY procedure 94
SOUL 62, 64

concurrent conversations 15, 17, 23
CONTINUE statement 66
conversation

inbound 14, 38
initiating 17, 59, 62
LU 6.2 3
outbound 38
protocol 15, 16

COUNT OCCURRENCES OF statement 68
COUNT RECORDS statement 68
CREATE GROUP command 46 to 48, 92
CREATEG command 46
CURFILE parameter 40, 80
CURLOC parameter 40, 80

D

DEFAULT command 62
deferred update file 60
DEFINE FILE command 43, 44, 57
DEFINE LINK command

description 12 to 14
example 111, 113, 116

DEFINE PROCESS command
description 17 to 19
DESTINATION parameter matches AT location

clause 56
example 113, 115, 118

DEFINE PROCESSGROUP command
description 14 to 15, 17
example 111, 114, 117
TCP/IP for Horizon 16

DELETE EACH statement 79
DELETE GROUP command 62
DELETE RECORDS statement 77
DELETE statement 76, 79
DESTINATION parameter

description 18
example 113, 116
for symbolic location 44, 56

DISABLE SUBSYSTEM FILE command 89
disabled files 49
DISPLAY FIELD command 58
DISPLAY GROUP command 35, 58
DISPLAY RECORD command 58
distributed processing 1
dummy string, SOUL 57

E

ENABLE SUBSYSTEM FILE command 88
END MORE statement 64
END UPDATE statement 79
ENQRETRY parameter 69
entities, defining 12 to 19
error

$STATUS function 59
communications 41
compilation 64
debugging 41
evaluation 65

F

FICREATE parameter 40, 80
field

decoding 70
subscripted reference 70
variable 70

field level security status 90, 97, 98
file

$functions 79
availability 49
deferred update 60
locking 59, 105
mandatory 45, 49
monitoring 35
non-transaction backout 50
optional 45, 49
parameters 39
privileges 90, 92, 97, 98
recovery information 39
remote. see remote file
security 92
specification, remote 56
status 49
symbolic names 2
synonym. see synonym, file
transaction backout (TBO) 50

FILE RECORDS statement 77
file save area 21, 53
file use

client 104
130 Parallel Query Option/204 User’s Guide

server 100
FILE$ condition 73
FILENAME parameter 44
FILEORG parameter 40, 80
FIND ALL RECORDS statement 63, 68, 69

see also LOCATION$ condition
FIND ALL VALUES statement 68
FIND AND PRINT COUNT statement 68
FIND RECORDS statement 68
FIND$ condition 73
FITRANS parameter 40, 80
FIXSIZE parameter 20
FLGS term, MONITOR statistics 38
FLOAT record security field 52
FOPT parameter 50
FOR EACH OCCURRENCE statement 68
FOR EACH RECORD statement 63, 66, 68, 70
FOR EACH VALUE statement 68, 71
FOR k RECORDS statement 68
FOR k VALUES statement 68
FOR RECORD NUMBER statement 68, 71, 76
FRCVOPT parameter 50
FROM parameter, DEFINE PROCESS 18, 116
full trust (subsystem)

adding a full trust definition 97
defined 89

functions, SOUL 79, 128

G

Global Variable Table sizing 85
groups, scattered

$functions 82
ad hoc 47, 48
defining 45
opening 60

GTBL sizing 85

H

HASHKEY parameter 40, 80
Horizon facility and Parallel Query Option 3, 7, 32
Host Language Interface (HLI)

function calls 41
program 83

I

IFDIAL calls, HLI 83
IFSTRT calls, HLI 84
IN $CURFILE clause 69, 78
IN $UPDATE clause 69
IN clause, ad hoc group 48

IN FILE clause, SOUL 69, 127
IN GROUP MEMBER clause 69, 77, 78
inbound conversation 14, 38
INBUFSIZE parameter

description 13, 14
example 111, 114, 117

INLIMIT parameter
and NOTERM 22
description 15, 17
example 112, 114, 117 to 118

INSERT statement 76, 79
IODEV statement 22, 120

J

JUMP TO statement 66, 67

L

Large Object data
Parallel Query Option 50

LGTBL parameter 85
link

shared 22
VTAM support 24

LINK parameter
description 15, 16
example 112 to 113, 114, 115, 117, 118

list processing, SOUL 72
LIST$ condition 73
LOCALID parameter

and REMOTEID 17
description 14
example 111, 114, 116

LOCATION parameter, CCAIN
description 20
example 119 to 120
in STATUS command display 39
with $VIEW 80
with BUMP SUBSYSTEM 34
with MONITOR SUBSYSTEM 38
with STOP SUBSYSTEM 94
with VIEW command 40

LOCATION parameter, DEFINE FILE 20, 44
location transparency 2, 57
LOCATION$ condition 74
location, symbolic

and STATUS 39
file 20, 44, 56, 74
Online 20

Lock File/Groups option 101
locked files 105
locking behavior
Index 131

file 59
record 70

logical unit (LU)
network commands 32
session type 6.2 3, 7

LOGIN parameter
description 17
example 112 to 115, 117

login, automatic 105
logout, automatic 105
LOGWHO command 20, 35
LU 6.2

interface, Horizon 3, 7, 23
keyword (LU62) 13, 14
mode table 25
session parameters 25

LU. see logical unit (LU)

M

mandatory files 45, 49
mandatory member 87, 89
MANDATORY parameter 35, 46, 48
manual member 87
Mask, internet address 16
MAXFAIL parameter 35, 47, 49, 61, 105
maximum field level security status 90, 97, 98
maximum file privileges 90, 97, 98
members, subsystem 87
MINBUF parameter 20
mode table, VTAM 17, 25
MODEEND table end 26
MODEENT table entry 26
Model 204 commands

supported 57
unsupported 127

MODENAME parameter 17
MODETAB parameter

description 25
example 121

MONITOR command 37
MONITOR SUBSYSTEM command 38
MORE statement 64
multiple-node updates 75, 77

N

network
administration commands 31
configuration 8
entities 12 to 19
entity definitions 12 to 19
interrelated nature of network elements 11

monitoring 37
operation 31
VTAM definitions 23

node
Parallel Query Option network 3, 8
single-node and multiple-node updates 74
VTAM application 14, 24

node availability 86
non-subsystem files 90
non-transaction backout files 50
NOOUTLIMIT parameter 17
NOTE statement 68
NOTERM parameter 22, 120, 121
NRMTFILE parameter 20, 53, 119, 120
NRMTLOCS parameter 21, 119
NSUBTKS parameter 21, 119 to 120
NUMERIC VALIDATION files and remote access 52

O

ON ERROR unit 65
ON FIELD CONSTRAINT CONFLICT unit 76
ON FIND CONFLICT unit 69
ON MISSING FILE unit 65 to 67, 82
ON MISSING MEMBER unit 65 to 66, 82
ON RECORD LOCKING CONFLICT unit 69
Online, Model 204 parameters 19
OPEN FILE command 4, 17, 63
OPEN FILE statement 59
OPEN GROUP command 60
OPEN GROUP statement 61
OPEN LINK command 12, 32, 62
OPEN statement 68
OPENC FILE statement 59
OPENC statement 68
OPENCTL parameter 40, 50 to 51, 59, 80, 90
operational parameters

client 104
server 101

Operational Parameters screen
client definition 104
service definition 100

OPTIMIZING FNV option
FOR EACH RECORD statement 70
FOR RECORD NUMBER statement 71

optional files 45, 49
optional member 87, 89
OPTIONAL parameter 35, 46, 48
outbound conversation 17, 38
OUTLIMIT parameter

description 17
example 112, 114, 117 to 118
132 Parallel Query Option/204 User’s Guide

P

PAI statement, SOUL 70
Parallel Query Option

Large Object data 50
upward incompatibility between versions 2

Parallel Query Option/204 (PQO)
features summary 1
location transparency 2
network communications layer and the Horizon

facility 3
single-node and multiple-node updates 74

parameters, file 39
PARSESS parameter 121
partial trust (subsystem)

adding a partial trust definition 97 to 98
defined 90

password
file 59
user 17

PLACE RECORD ON LIST statement 68
PLACE RECORDS ON LIST statement 68
POINT$ condition 73
PQOOPT parameter

DELETE RECORDS statement 77
FILE RECORDS statement 77

PQOSYS parameter 51 to 52
PRINT *ID statement 72
PRINT ALL INFORMATION statement 68, 73
PRINT statement 72
PRIVDEF parameter settings 92
privileges, subsystem 92, 97, 98
procedure dictionary 92
procedures

compiling 94
executing 94

process entity 17
PROCESS term, MONITOR statistics 37
processgroups 19, 32
PROCFILE parameter 47
PROTO term, MONITOR statistics 37
PROTOCOL parameter 13, 14
pseudo-subtasks 21, 119, 120
public file 50

R

record security keys 51 to 52
record set 69
RECSCTY parameter 40, 80
RELEASE ALL RECORDS statement 68, 72
RELEASE option, COMMIT statement 77
RELEASE RECORDS statement 68, 72

remote file
access 1
file synonym 57
limit, per client 20
specification 35, 56
synonym file 69
synonym. see synonym, file

Remote servers
defining 16

REMOTEID parameter 113, 115
description 17
in examples 112 to 118

REMOVE RECORD FROM LIST statement 68
REMOVE RECORDS FROM LIST statement 68
request unit (RU), VTAM 14
request, SOUL

cancellation 65
compilation 62
continuation 64

requirements, system 2
restricted trust (subsystem)

defined 90
RETRY statement 66, 67
return code, status 41, 59
RK line, audit trail 41
runtime parameters 19
RUSIZES parameter 14, 25

S

scattered groups
$functions 82
ad hoc 47, 48
defining 45
opening 60

SCLASS 102
security

file 92
password 17
trusting subsystems 89 to 90

security keys and the PQOSYS parameter 51 to 52
semipublic file 50
server table parameters 20
service subsystem

defined 86
SUBSYSMGMT definitions 97

service thread
activating 59
IODEV for 22

sessions
concurrent 14
establishing 25
parameters for 25
Index 133

pooled 14
SESSIONS parameter

description 14
example 111, 114, 117

SFGE$ condition 73
SFL$ condition 73
single-node updates 74
SNA (Systems Network Architecture)

and Parallel Query Option 7, 23
protocols 25

SORT RECORD KEYS statement 68
SORT RECORDS statement 68, 72
SORT VALUES statement 68
SORTKEY parameter 40, 80
SOUL

$functions 79, 128
and User Language xi
compiling and evaluating requests 64 to 65
continuing requests 64
dummy string 57
evaluating requests 64
list processing 72
ON ERROR unit 65
referencing remote files in requests 62
statements, supported 68
statements, unsupported 68
update statements 74

SPCORE parameter 20
SSNDPAC parameter 25
START FILE command 54
START GROUP command 54
START LINK command 32
START PROCESSGROUP command 32
START SUBSYSTEM command 92
statements, User Language. see SOUL
statistics, network 37
status

$STATUS function 41, 59
$STATUSD function 42
codes 41, 59
file 49

STATUS command 39
STOP FILE command 52
STOP GROUP command 52
STOP LINK command 32
STOP PROCESSGROUP command 32
STOP SUBSYSTEM command 93
STORE RECORD statement 78
subscripted field 70
SUBSYSMGMT 96 to 106
Subsystem Activity screen

client definition 103
service definition 99

Subsystem Class Users screen

client definition 106
service definition 102

Subsystem Classes screen
client definition 106
service definition 101

Subsystem File Use screen
client definition 103
service definition 100

Subsystem Trust screen 97 to 98
subsystems

accessing files as non-subsystem files 90
client and service subsystems, defined 86
creating and managing trust definitions 97 to 98
disabling a subsystem file 88
enabling a disabled subsystem file 88
members (files and permanent groups) 87
starting 92 to 93
stopping 93 to 94
trust levels 89 to 90

symbolic name
file 43, 56 to 57
in Parallel Query Option 2
location. see location, symbolic

synonym, file
defining 43
specifying remote files 69
using 57

SYSOPT parameter 41, 85
system requirements 2

T

Table A 60, 63
TEST SUBSYSTEM command 92
thread, service. see service thread
TIMEOUT parameter

DEFINE PROCESS command 18 to 19
service subsystem drain state 94

transaction backout (TBO) file 49
transactions, unsupported 74
transparency, location 2
TRANSPORT parameter 111, 114, 116
trusted subsystems

adding a trust definition 97 to 98
defined 89
modifying file privileges and access levels 98
suspending trust 98
trust levels (full, partial, restricted, none)

89 to 90
where to create trust definitions 91
134 Parallel Query Option/204 User’s Guide

U

unavailable files 49
unavailable node 86
update file, group 47, 78
UPDATE RECORD statement 78
update statements, SOUL 74
UPDTFILE parameter 35, 47
user ID, displaying 35
User Language. See SOUL
user zero parameters 19

V

VALUE IN phrase 69
VIEW command 20, 21, 39
Virtual Telecommunications Access Method. see

VTAM
VPACING parameter 122
VTAM

APPL statement 24 to 25
mode table 17, 25
network definition 23

VTAMLST data set 121

Z

z/VM operating system
parameter settings 14, 22
Index 135

136 Parallel Query Option/204 User’s Guide

	Cover
	Notices
	Corporate Information
	Contacting Technical Support

	Contents
	About this Guide
	Introduction to Parallel Query Option/204
	Overview
	Parallel Query Option/204 features
	Communicating between versions of Parallel Query Option
	Location transparency

	System requirements
	Network communications
	Basic setup and operation

	Defining a Parallel Query Option/204 Network
	Overview
	Network configuration
	Interrelated network elements

	PQO DEFINE commands
	Using the DEFINE LINK command
	Using the DEFINE PROCESSGROUP command
	Using the DEFINE PROCESS command

	Runtime and user environment definition
	Setting the LOCATION parameter
	Setting the NRMTFILE parameter
	Setting the NRMTLOCS parameter
	Setting the NSUBTKS parameter
	Specifying IODEVs for PQO service threads

	SNA Communications Server network definition
	Components of SNA Communications Server definition
	Coding the APPL statements for the SNA Communications Server network
	Setting session parameters

	Two-node network example
	Client input stream excerpt for SNA Communications Server network
	Modifications for client input stream for TCP/IP network
	Server input stream excerpt for SNA Communications Server network
	Modifications for server input stream for TCP/IP network
	APPLO statements required for only SNA Communications Server network

	Managing the Parallel Query Option/204 Network
	Overview
	Controlling the network
	Using the LU 6.2 network administration commands
	Using the BUMP command

	Monitoring network activity
	Using the DISPLAY GROUP command
	Using the LOGWHO command
	Using the MONITOR command
	Using the STATUS command
	Using the VIEW command

	Using the Model 204 audit trail
	Interpreting communications errors
	Communications error display format
	Using the status return codes
	Using the Model 204 error message

	Managing Files and Groups for Parallel Query Option/204
	Overview
	Defining file synonyms
	DEFINE FILE command
	Using the DEFINE FILE command
	Redefining file synonyms for group members

	Creating scattered groups
	CREATE GROUP command
	CREATE GROUP example
	Creating ad hoc scattered groups
	File and group availability

	Allowing access to remote files
	Parallel Query Option and Large Object data
	Defining transaction backout files
	Setting the OPENCTL parameter
	Record security for remote users-the PQOSYS parameter

	Stopping and starting a remote file or scattered group

	Working with Remote Files and Scattered Groups
	Overview
	Specifying a remote file
	Using a remote file specification
	Using a file synonym

	Using Model 204 file and group commands
	Opening a remote file
	Opening a scattered group
	Closing a remote file
	Using DEFAULT and DELETE GROUP

	Referencing remote files in a SOUL request
	SOUL example
	Request continuation is not supported
	Errors during compilation and evaluation
	Using ON MISSING MEMBER and ON MISSING FILE units

	DML statements in PQO
	Using IN clauses
	Using field names in expressions
	Handling record locking conflicts

	Using PQO retrieval statements
	Using the FIND ALL RECORDS statement
	Using the FOR EACH RECORD statement
	Using the FOR RECORD NUMBER statement
	Using the FOR EACH VALUE statement
	Using RELEASE
	Using the SORT RECORDS statement
	Using LIST functions
	Using the PRINT statement
	Using retrieval conditions

	Using PQO update statements
	Limitations to updating remote files
	PQOOPT and multiple-node updates
	Updating unlocked record sets
	Using ON FIELD CONSTRAINT CONFLICT $functions
	Using ADD, CHANGE, INSERT, and DELETE statements
	Using BACKOUT
	Using COMMIT and COMMIT RELEASE
	Using DELETE RECORDS
	Using FILE RECORD
	Using INSERT
	Using STORE RECORD
	Using UPDATE RECORD

	Using $functions
	Using $CURFILE, $RLCFILE, $UPDATE, and $UPDFILE
	Using $FDEF and $LSTFLD
	Using $ITSOPEN
	Using $ITSREMOTE
	Using $UPDLOC
	Using file and group availability $functions

	Using the Host Language Interface
	Use of IFSTRT calls is not supported

	Parallel Query Option/204 and Scattered APSY Subsystems
	Overview
	Required system parameters
	Client and service subsystems
	Node availability

	File and group availability
	Member availability to APSY subsystems
	Member availability to subsystem users
	Enabling a disabled subsystem file
	Disabling a subsystem file

	Trust
	Why use a trust definition?
	Where to create definitions

	Subsystem command processing
	START SUBSYSTEM command processing
	STOP SUBSYSTEM command processing

	Compiling and running procedures
	Saving compilations
	Loading saved compilations
	New and missing nodes
	Recompiling saved requests

	SUBSYSMGMT overview
	Defining a service subsystem
	Subsystem Trust screen
	Managing the trust definition
	Subsystem Activity screen (service definition)
	Subsystem File Use screen (service definition)
	Operational Parameters screen (service definition)
	Subsystem Classes screen (service definition)
	Subsystem Class Users screen (service definition)

	Defining a client subsystem
	Subsystem Activity screen (client definition)
	Subsystem File Use screen (client definition)
	Operational Parameters screen (client definition)
	Subsystem Classes screen (client definition)
	Subsystem Class Users screen (client definition)

	Three-Node Network Example
	Overview
	Reporting application
	Defining the network
	Specifying DEFINE commands for System A
	Defining the link for System A
	Defining the processgroups for System A
	Defining the client process for System A

	Specifying DEFINE commands for System B
	Defining the link for System B
	Defining the processgroups for System B
	Defining the processes for System B

	Specifying DEFINE commands for System C
	Defining the link for System C
	Defining the processgroups for System C
	Defining the server process for System C

	Specifying the Online environment
	Defining System A’s Model 204 Online environment
	Defining System B’s Model 204 Online environment
	Defining System C’s Model 204 Online environment

	Specifying the SNA Communications Server environment
	Defining the APPL statement for System A
	Defining the APPL statement for System B
	Defining the APPL statement for System C

	Sample CCAIN input streams
	System A input stream (z/OS environment)
	System B input stream (z/OS environment)
	System C input stream (z/OS environment)

	Restricted Commands, $Functions, and DML Statements
	Overview
	Restricted Model 204 commands
	Restricted SOUL $functions

	Index

