
Rocket Model 204 SQL Server

User’s Guide

Version 7 Release 5.0

September 2014
204–75–SQLUG-01

Notices
Edition

Publication date: September 2014
Book number: 204–75–SQLUG-01
Product version: Version 7 Release 5.0

Copyright
© Rocket Software, Inc. or its affiliates 1989—2014. All Rights Reserved.

Trademarks

Rocket is a registered trademark of Rocket Software, Inc. For a list of Rocket registered trademarks go
to: www.rocketsoftware.com/about/legal. All other products or services mentioned in this document
may be covered by the trademarks, service marks, or product names of their respective owners.

Examples

This information might contain examples of data and reports. The examples include the names of
individuals, companies, brands, and products. All of these names are fictitious and any similarity to
the names and addresses used by an actual business enterprise is entirely coincidental.

License agreement

This software and the associated documentation are proprietary and confidential to Rocket Software,
Inc. or its affiliates, are furnished under license, and may be used and copied only in accordance with
the terms of such license.

Note: This product may contain encryption technology. Many countries prohibit or restrict the
use, import, or export of encryption technologies, and current use, import, and export regulations
should be followed when exporting this product.

Corporate Information
Rocket Software, Inc. develops enterprise infrastructure products in four key areas: storage,
networks, and compliance; database servers and tools; business information and analytics; and
application development, integration, and modernization.

 Website: www.rocketsoftware.com

Rocket Global Headquarters
77 4th Avenue, Suite 100
Waltham, MA 02451-1468
USA

Contacting Technical Support
If you have current support and maintenance agreements with Rocket Software and CCA,
contact Rocket Software Technical support by email or by telephone:

Email: m204support@rocketsoftware.com

Telephone :

 North America +1.800.755.4222

 United Kingdom/Europe +44 (0) 20 8867 6153

Alternatively, you can access the Rocket Customer Portal and report a problem, download an
update, or read answers to FAQs. You will be prompted to log in with the credentials supplied as
part of your product maintenance agreement.

To log in to the Rocket Customer Portal, go to:

www.rocketsoftware.com/support

iv

Contents
About this Guide

Audience ...xi
A note about User Language and SOUL ...xi
Model 204 documentation set ...xi
Documentation conventions...xii

1 Introduction to the Model 204 SQL Server
Model 204 SQL processing configurations ... 1

How the SQL Server works within Model 204.. 2
SQL Server provides seamless operation... 2
SQL Server operates concurrently .. 3
SQL DML and SQL DDL may be executed simultaneously 3
SQL DDL and Model 204 DDL are independent ... 3
File preparation is minimal .. 3
Field attribute functionality is available.. 4
SQL processing adds to Model 204 Online requirements... 4
SQL processing relies on SQL security... 4

Model 204 SQL processing components .. 5
SQL Server components .. 7
SQL Server associated software... 7
SQL Server supporting tools ... 7
SQL intersystem processing interfaces... 8

Model 204 SQL standards .. 8
Model 204 SQL clients .. 9

SQL processing from the PC client .. 9

2 Model 204 SQL Catalog
Surveying the SQL catalog .. 11

Bridge to Model 204 data .. 11
Model 204 SQL catalog characteristics... 12

Using the SQL catalog ... 13
Populating the catalog ... 13
Reporting catalog contents ... 15
Monitoring catalog consistency .. 15

Maintaining the SQL catalog .. 16
Creating the CCACAT file ... 16
Including CCACAT in an Online.. 17
Ongoing CCACAT maintenance ... 18
CCACAT implementation for BLOB and CLOB data... 19

3 Mapping Model 204 Data to SQL
Representing Model 204 data in SQL .. 21

Changing existing Model 204 files .. 21
Contents v

SQL pattern search guidelines.. 23
Using Model 204 file data features.. 23
Using PRIMARY KEY table columns .. 25

Model 204 and SQL data extraction mismatches .. 26
Mapping multiply occurring fields to nested tables... 27

Understanding nested tables .. 27
Translating multiply occurring fields .. 28
Simulating normalization of Model 204 record data .. 28
Handling foreign keys.. 30
Handling primary keys... 31

Matching Model 204 and SQL data formats... 31
Compatibility of Model 204 and SQL data formats ... 31
Optimizing Model 204 data retrieval.. 32
Optimizing Model 204 data conversion ... 35
How Model 204 SQL processes dirty data ... 37
Handling NOT NULL, UNIQUE, and multiply occurring data 38
Handling mixed numeric and nonnumeric data ... 39
Observing data precision limits ... 39
Converting SQL data types for display.. 42
LOB fields in SQL statements ... 43

4 Model 204 SQL Data Definition Language
Model 204 SQL DDL statements ... 47

Model 204 SQL DDL extensions .. 49
Creating SQL objects ... 50

Authorization ID is equivalent to Model 204 user ID ... 50
Model 204 SQL table types... 50
Statement ordering is important .. 51
Naming SQL objects .. 51

Creating schemas .. 51
CREATE SCHEMA statement... 52
Indicating schema name and owner ... 53

Creating tables ... 53
CREATE TABLE statement... 54
Mapping table names to file names ... 55
Using CLOB or BLOB data ... 56

Defining columns.. 57
Column definition statement.. 57
Mapping columns to Model 204 fields... 58
Column naming and the SYSNAME extension .. 59
Specifying a multicolumn UNIQUE key .. 60

Creating nested tables ... 63
Nested table statements ... 64
Mapping multiply occurring groups ... 66
Nested tables require a foreign key .. 67
Nested tables require a referential constraint definition 67
CASCADE is the only referential triggered action ... 68
Using system-generated keys .. 69

Creating views ... 71
CREATE VIEW statement... 71
vi Rocket Model 204 SQL Server User’s Guide

Rules for updating views ... 72
Guideline for view definitions .. 73
Using SQL views in Model 204 SQL DDL... 73
Simulating file groups ... 74
Mapping files with mixed record types .. 74
Maintaining views.. 75
Querying views ... 76

Setting the schema and user context .. 76
Determining the default schema context ... 77
Prefixing the schema name to an SQL object .. 77
Using SET SCHEMA ... 77
Using SET USER .. 78

Altering SQL objects .. 79
ALTER TABLE statement ... 79
Using ADD column ... 80
Using DROP column ... 80
Using MODIFY column ... 80

Dropping SQL objects .. 81
Dropping tables .. 81
Dropping views ... 82
Dropping schemas .. 82

Granting privileges for SQL objects .. 82
GRANTs are for adding privileges .. 82
GRANT and REVOKE handle nearly all SQL security ... 83
GRANT statement ... 83
REVOKE statement .. 84
Granting and altering column UPDATE privileges .. 85
Column UPDATE examples.. 85

DDL statement-level security ... 87
Model 204 SQL view privileges... 90
SQL statement security example .. 91
Statement security example comments .. 95

SQL DDL processing ... 97

5 Creating DDL with the Table Specification Facility
Introduction to the Table Specification facility (TSF).. 100

DDL processing... 100
TSF processing sequence .. 100
DDL statements generated by the TSF... 101
Model 204 SQL DDL extensions generated by the TSF 102
SQL and Model 204 data consistency ... 102

Using TSF panels... 103
Panel conventions... 103
ENTER and PF key conventions .. 105
Logging in.. 105

Creating or modifying a base table (Main Menu panel) ... 106
Creating SQL objects in the context of a schema .. 106
Schema Authorization ... 107
SQL Table Name .. 107
Schema Name ... 108
Contents vii

Model 204 File Name and Password ... 108
Table Type .. 108
Primary Key... 109
Parent Table ... 109
Keeping or deleting the pending definition .. 109
Defining nested tables .. 110

Defining column names (Column List panel) .. 110
Model 204 field names .. 113
Changing the order of field names .. 114
Defining SQL column names... 114

Defining column attributes (Column Attributes panel).. 115
Specifying attributes.. 117
Nulls ... 117
Format .. 118
Len (length) .. 119
Prec (precision) ... 119
Scale ... 119
Usage note ... 119
Nonstandard PF key functions .. 120

Completing table definitions (Completion panel).. 120
Completion panel functions... 121
Selection ... 122
“USE” Cmd Arg ... 122
Error condition... 122

Defining multicolumn unique keys (Multi-Column Unique panel) 122
Specifying a multicolumn unique key .. 123
Model 204 Field... 124
Column Name(s) .. 125
Usage note.. 125

Specifying GRANT authority (Grant Authority panel)... 125
Authority .. 126
Column(s).. 126
User... 126
Grant option .. 127
Usage note.. 127

Viewing DDL at the terminal (Completion panel) .. 127
Generating DDL to an output file (Completion panel) .. 129

6 Getting Information from the SQL Catalog
SQL catalog reporting with CCACATREPT ... 131

Logging in.. 132
CCACATREPT Main Menu .. 132

Using the CCACATREPT panel .. 132
Selection field .. 133
Schema Name field ... 133
Authorization ID field ... 134
Table/View Name field .. 134
DDL Statement Type(s) field ... 134
Grantee field.. 134
“USE” Command Arg .. 135
viii Rocket Model 204 SQL Server User’s Guide

Report Selection 1: Generate DDL .. 135
Specifying report input parameters ... 135
Report input parameter examples ... 136
Ordering the DDL output ... 137
Sample of generated DDL... 137

Report Selection 2: Formatted Table/View report .. 138
Report input parameters ... 139
Contents of the report ... 139
Sample report.. 139

Report Selection 3: Privilege report by table/view.. 140
Report input parameters ... 140
Report display fields.. 141
Sample Privilege Report by table and view... 141

Report Selection 4: Privilege report by grantee .. 143
Report input parameter ... 143
Report display fields.. 143
Sample report.. 143

Querying the SQL catalog.. 144
Querying a CATALOG view .. 144
Rules for CATALOG queries... 146
SCHEMAS view ... 146
TABLES view .. 147
TABLE_COLUMNS view ... 148
COLUMNS view ... 149
VIEWS view ... 150
TABLE_CONSTRAINTS view... 151
KEY_COLUMN_USAGE view... 151
TABLE_PRIVILEGES view ... 152
COLUMN_PRIVILEGES view ... 153
ODBC_TYPES view.. 154
ODBC_SCALES view.. 155
CONST view ... 155
ODBC_COLUMNS view.. 156
ODBC_TABLES view.. 157
ODBC_SPECIAL_COLS view... 157
ODBC_TABLE_STATS view... 158
ODBC_KEY_STATS view... 159
ODBC_STATISTICS view... 160

7 Model 204 SQL Data Manipulation Language
Using Model 204 SQL DML ... 161

Maintaining data definition consistency .. 161
DML statement privileges.. 162
Setting SQL isolation level .. 162
Executing SQL DML and DDL simultaneously ... 163
Mixing SQL DML and DDL.. 163
Using SET SCHEMA and SET USER... 163

Using SQL DML against INVISIBLE fields ... 164
Using SQL columns mapped to INVISIBLE fields... 164

Using SQL DML against nested tables .. 167
Contents ix

Sample file and SQL mapping .. 167
DML example series.. 169
Retrieving a particular occurrence of a multiply occurring group 170
Retrieving a range or series of occurrences.. 170
Retrieving any or all occurrences based on a condition.. 171
Retrieving at least n occurrences based on a condition.. 171
Correlating a table and a nested table .. 172
Working with nested table constraints .. 172
Porting nested table applications ... 173

Options in the SELECT LIST statement... 173
Correlation name feature .. 173
Wildcard asterisk (*) for an individual table feature ... 173
CURRENT_TIME keyword.. 174
CURRENT_DATE keyword... 174
CURRENT_TIMESTAMP keyword ... 174
USER keyword.. 174
SQLVERSION keyword... 174
SQLERROR keyword.. 175
SQLSTATE keyword ... 175

SQL INNER JOIN features... 175
CROSS JOIN feature .. 175
NATURAL JOIN feature .. 175
ON clause feature ... 176
USING clause feature ... 176

SQL OUTER JOIN features ... 176
SQL outer join features expanded .. 177

A Model 204 SQL DDL Syntax
DDL syntax... 180
Notes for syntax display ... 183

B Model 204 SQL Reserved Words
Reserved words ... 186

C SQL DDL Mapping of the Demonstration Database
DDL stream .. 188

CLIENTS table .. 188
VEHICLES table.. 189
CLAIMS03 table .. 190
VIEWS against the CLIENTS table ... 191

Index
x Rocket Model 204 SQL Server User’s Guide

About this Guide

The Rocket Model 204 SQL Server User’s Guide contains file and system
management information for accessing a Model 204 database with Structured
Query Language (SQL) statements. The guide describes how to use the
Model 204 SQL catalog and the proprietary features of Model 204 SQL DDL
and DML.

Audience

This guide is primarily for users of Connect who are responsible for:

• Model 204 file and system management

• SQL DDL definition of Model 204 files

SQL DML application programmers might also find this guide useful.

Except where noted, ANSI SQL 1989 standard and some SQL 1992 standard
functionality and user knowledge of that functionality are assumed throughout
the guide. In addition, knowledge of standard Model 204 terminology and
functionality is assumed.

A note about User Language and SOUL

Model 204 version 7.5 provides a significantly enhanced, object-oriented,
version of User Language called SOUL. All existing User Language programs
will continue to work under SOUL, so User Language can be considered to be
a subset of SOUL, though the name "User Language" is now deprecated. In
this guide, the name "User Language" has been replaced with "SOUL."

Model 204 documentation set

To access the Rocket Model 204 documentation, see the Rocket
Documentation Library (http://docs.rocketsoftware.com/), or go directly to the
Rocket Model 204 documentation wiki (http://m204wiki.rocketsoftware.com/).
 About this Guide xi

Documentation conventions

This guide uses the following standard notation conventions in statement
syntax and examples:

Convention Description

TABLE Uppercase represents a keyword that you must enter exactly as
shown.

TABLE tablename In text, italics are used for variables and for emphasis. In examples,
italics denote a variable value that you must supply. In this example,
you must supply a value for tablename.

READ [SCREEN] Square brackets ([]) enclose an optional argument or portion of an
argument. In this case, specify READ or READ SCREEN.

UNIQUE | PRIMARY KEY A vertical bar (|) separates alternative options. In this example,
specify either UNIQUE or PRIMARY KEY.

TRUST | NOTRUST Underlining indicates the default. In this example, NOTRUST is the
default.

IS {NOT | LIKE} Braces ({ }) indicate that one of the enclosed alternatives is
required. In this example, you must specify either IS NOT or IS
LIKE.

item ... An ellipsis (. . .) indicates that you can repeat the preceding item.

item ,... An ellipsis preceded by a comma indicates that a comma is required
to separate repeated items.

All other symbols In syntax, all other symbols (such as parentheses) are literal
syntactic elements and must appear as shown.

nested-key ::=
column_name

A double colon followed by an equal sign indicates an equivalence.
In this case, nested-key is equivalent to column_name.

Enter your account:

sales11

In examples that include both system-supplied and user-entered
text, or system prompts and user commands, boldface indicates
what you enter. In this example, the system prompts for an account
and the user enters sales11.

File > Save As A right angle bracket (>) identifies the sequence of actions that you
perform to select a command from a pull-down menu. In this
example, select the Save As command from the File menu.

EDIT Partial bolding indicates a usable abbreviation, such as E for EDIT
in this example.
xii Rocket Model 204 SQL Server User’s Guide

1
Introduction to the Model 204
SQL Server

Model 204 now provides industry standard SQL access to Model 204
data through client-server technology. The Model 204 SQL Server
provides full SQL processing in the basic Model 204 address space or
virtual machine (ONLINE module) in the z/OS, z/VSE, and VM
operating systems. The client-server architecture allows the Model 204
SQL Server to service networked PC clients.

Model 204 SQL processing configurations

SQL processing for PC clients is provided by the Model 204 Connect
Suite. Figure 1-1 on page 2 illustrates the PC clients that can be
configured with the Connect 32-bit ODBC Model 204 driver, using a
TCP/IP connection to PC clients. SQL processing for PC clients is also
Introduction to the Model 204 SQL Server 1

How the SQL Server works within Model 204
provided by JDBC for Model 204 or .NET Framework. See Connect Suite
Installation and Programming.

Figure 1-1. Model 204 SQL Server and clients

How the SQL Server works within Model 204

Model 204 SQL processing is a Model 204 access method such as User
Language (SOUL) or the Host Language Interface (HLI). The SQL Server
invokes Model 204 DBMS operations and provides a combination of Model 204
and SQL database functionality. This section discusses some of the
characteristics of the SQL Server and Model 204 interaction.

SQL Server provides seamless operation

After installing Model 204 and bringing up the Model 204 Online, preparation
for SQL access requires only that you define a mapping of your Model 204 files
to the SQL catalog. SQL Server processing is activated automatically and
functions transparently to provide responses to client requests.

The typical sequence of tasks required to access the Model 204 SQL Server is
the following:

• Install Model 204, running the appropriate installation jobs for the type of
SQL client you are and the SQL utilities you require.

• Include in your Model 204 Online job the Model 204 SQL IODEV, RCL
IODEV, and CCAIN parameters, sizing requirements, catalog file, and
subsystems, and at least one TCP/IP thread definition.

Model 204Mainframe
operating
system

Model 204
SQL Server

TCP/IP
Interface

T
C

P
IP

PC

ODBC
JDBC
.NET
Framework
Driver

JAVA
application

Connect
direct
connection
client

TCP/IP
2 Rocket Model 204 SQL Server User’s Guide

How the SQL Server works within Model 204
• For SQL processing, populate the SQL catalog with SQL DDL definitions
for your Model 204 files.

• Issue SQL DML for SQL processing; issue SOUL commands, programs,
and procedures for RCL processing.

SQL Server operates concurrently

The Model 204 SQL Server may operate concurrently and may share data files
with SOUL and the Host Language Interface. Model 204 coordinates record
and resource locking among the three interfaces. The server takes advantage
of Model 204 indexing and file organization efficiencies.

SQL DML and SQL DDL may be executed simultaneously

While Model 204 SQL Data Manipulation Language (DML) is being issued
against Model 204 files, you can simultaneously run Model 204 SQL Data
Definition Language (DDL) against the SQL catalog. However, SQL DDL may
update only SQL objects that are not currently being accessed by SQL DML
statements.

SQL DDL and Model 204 DDL are independent

Model 204 SQL DDL maps Model 204 databases to SQL tables by creating
records in the SQL catalog. However, the SQL catalog is not active like a
dictionary: SQL DDL execution does not cause Model 204 DDL to execute.
Conversely, Model 204 DDL changes to files that are cataloged in the SQL
catalog are not automatically reflected in the SQL catalog.

File preparation is minimal

The task of preparing your Model 204 files for SQL processing is largely that of
defining your Model 204 files to the SQL catalog. Model 204 SQL processing
uses the standard Model 204 file system, and supports all Model 204 file types.

The lone requirement for files used in SQL processing is that they be
transaction backout (TBO) files. Model 204 automatically backs out incomplete
transactions for TBO files when problems prevent the completion of a request.
The TBO requirement guarantees that all uncommitted SQL updates can be
backed out and prevents confusing transaction restrictions.

SQL supports Model 204 file groups with limitations. An SQL table can map to
(and be as large as) at most a single Model 204 file. However, you can simulate
file groups with SQL views and retrieve (but not update) data through the
simulation. See “Simulating file groups” on page 74.
Introduction to the Model 204 SQL Server 3

How the SQL Server works within Model 204
Field attribute functionality is available

Model 204 fields are mapped to SQL columns in the SQL catalog. The
functionality of most Model 204 field attributes is available for Model 204 SQL
processing. You must properly define the SQL columns corresponding to the
Model 204 fields to make use of the attribute functionality. You can make use
of the following field attributes:

INVISIBLE fields are translated to SQL columns that can be used in certain
circumstances to select data but cannot themselves be updated by SQL
applications.

Only the first occurrences of multiply occurring OCCURS fields are accessible
in SQL if mapped normally to an SQL column. For complete access, however,
you can translate these fields into nested tables, a Model 204 SQL processing
extension to standard SQL DDL.

SQL processing adds to Model 204 Online requirements

To support Model 204 SQL processing, you must make changes to the job or
EXEC that brings up your Model 204 Online. These changes include the
following:

• Additional file definition statements for the SQL catalog and for utilities that
support the Model 204 SQL Server

• SQL and RCL IODEV thread definitions

• Adjustments to, and additional, CCAIN parameters

• SQL connection DEFINE commands for TCP/IP

• Model 204 SQL Server area size increase

SQL processing relies on SQL security

To access the Model 204 SQL Server, SQL processing clients must pass
Model 204 login security and any external security software that is in effect.
Two of the Model 204 SQL supporting utilities, CCATSF and CCACATREPT,
are protected by Model 204 Application Subsystem security.

Model 204 field and record security are not represented and not enforced
through the Model 204 SQL Server interface.

KEY STRING INVISIBLE

ORDERED FLOAT OCCURS

NUMERIC RANGE BINARY

DEFERRABLE CODED

UNIQUE LEN
4 Rocket Model 204 SQL Server User’s Guide

Model 204 SQL processing components
The primary security protection for issuing SQL DDL and DML is provided by
SQL GRANT and REVOKE statements and SQL views. GRANT and REVOKE
define who is allowed to perform a given operation on a given SQL object.
Views allow you to define subsets of the database to which you can selectively
grant access.

You can also replace Model 204 SQL security with privilege checking by an
external security package. You provide user exits to the security package in a
Model 204-defined format. For details, see the Rocket Model 204
documentation wiki pages on the Security interfaces:

http://m204wiki.rocketsoftware.com/index.php/Category:Security_interfaces

Model 204 SQL processing components

The Model 204 SQL Server integrates SQL processing into the core of
Model 204. The SQL Server processes SQL DDL and DML from workstation
interfaces.

The SQL Server works along with supporting software that provides data
definition, packaging, and transfer, and has optional tools that simplify client
use of the SQL Server.

The configuration of the SQL processing components when Model 204 is
running under z/OS, z/VM, or z/VSE is shown in Figure 1-2 on page 6.
Introduction to the Model 204 SQL Server 5

Model 204 SQL processing components
Note: Figure 1-2 illustrates the PC clients that can be configured with the
Connect Suite JDBC driver and the.NET Framework driver. Only a TCP/IP
connection to a PC client can be configured.

Figure 1-2. Model 204 SQL processing components

TCP/IP
network

Model 204

SQL
Comm
Interface

SSFE

DDL processor
DML processor

SQL
catalog

z/OS,
z/VM,
or z/VSE

Model
204

file data

CCACATREPTCCATSF

TCP/IP
S

Q
L

 E
n

g
in

e

TCP/IP

Client .NET
Framework
driver

TCP/IP

application

PC

PC

JDBC
Driver

JAVA
application

MS Windows

TCP/IP

PC

PC
6 Rocket Model 204 SQL Server User’s Guide

Model 204 SQL processing components
SQL Server components

The following are the principal components of the Model 204 SQL Server.
These components are typically transparent to a Connect client.

SQL Server associated software

The SQL Server works in conjunction with the following Model 204 software.
Except for the SQL catalog, this software is transparent to the client:

SQL Server supporting tools

The following Model 204 tools support SQL Server processing:

SQL Engine Includes the SQL Compiler, Optimizer, and Evaluator. The
Engine is responsible for compiling SQL syntax strings,
checking SQL semantics, optimizing database access,
generating code to accomplish SQL requests, and executing
the generated code. Each SQL statement generates data,
status information, or both for the requesting application.

SQL Server Front
End (SSFE)

The presentation level, or access layer to the SQL Engine.
Primarily, SSFE accepts client request packets, processes the
requests in each packet for the SQL Engine, and returns the
SQL processing results in the form of a result packet.
Performing corresponding functions to the SSFE is the SQL
Server Client Front End.

SQL catalog Houses the SQL catalog information for Model 204 files
defined with SQL DDL. The CCACAT system file is created
during installation of Model 204.

SQL
communications
interface

Receives SQL requests from TCP/IP and passes them to the
SQL Server Front End, and the interface receives result
packets from the SQL Server Front End and routes them back
to the client. This interface is a Model 204 module used only
for SQL processing.

SQL Client Front
End (SCFE)

Is the counterpart to the SSFE, described above. SCFE
groups and sends client requests and receives and distributes
results to the client. SCFE is platform independent: it is
available as a Model 204 module on the mainframe or
included as part of the Connect workstation installation
software.

Table
Specification
facility (TSF)

Provides an interactive, menu-driven facility for mapping
existing Model 204 files to SQL tables and columns. The TSF
generates a stream of DDL statements you can edit, transmit to
a workstation and submit to the Connect Visual Interface. The
TSF is available on the mainframe only.
Introduction to the Model 204 SQL Server 7

Model 204 SQL standards
The following PC tool supports SQL server processing.

SQL intersystem processing interfaces

Transport of the data between the SQL Server and its clients relies on TCP/IP.
Model 204 TCP/IP, along with IBM’s TCP/IP software on the mainframe,
enables a TCP/IP network connection from Model 204 to PC clients.

Model 204 SQL standards

This section describes the SQL standards adhered to in this Model 204 SQL
support.

ANSI SQL 1989 and 1992

Model 204 SQL provides all clients ANSI SQL 1989 support and some ANSI
SQL 1992 support for SQL DDL and DML. Unless otherwise specified,
references in this guide to standard SQL are to the ANSI SQL 1989 and
standards.

SQL Server DDL and DML support includes some extensions to and omissions
from the standard. These deviations from the syntax or functionality of the
standard are described in Chapters 4 and 7.

Federal Information Processing Standards

SQL DDL and DML supported by the Model 204 SQL Server are compliant with
the Federal Information Processing Standards (FIPS Pub 127-1).

Open Database Connectivity

Connect provides Level 1 compliance with Microsoft’s Open Database
Connectivity (ODBC) Interface. ODBC is a de facto industry standard, based
on the SAG standard for an SQL Call Level Interface, for inter-application
substitutability. The Connect ODBC feature lets Model 204 access data from

Catalog
Reporting facility
(CCACATREPT)

Provides a menu-driven facility for generating DDL from and
reports of the SQL catalog contents. With the CCACATREPT,
you can review your SQL object definitions, names, and
privileges or use DDL it generates to repopulate the SQL
catalog. CCACATREPT is available on the mainframe only.

Connect Visual
Interface

Submits SQL DDL streams to the SQL catalog and populates
the catalog with your valid DDL definitions.The Connect
Visual Interface is a component of the Connect Star Suite for
Model 204 and is available only on a PC workstation.
Note: Each DDL statement submitted to the CVI must terminate
in with a semicolon (;).
8 Rocket Model 204 SQL Server User’s Guide

Model 204 SQL clients
an ODBC-compliant Windows spreadsheet, application development, and
word processing packages.

The Model 204 JDBC driver incorporates JDBC 2.5 with no extended
functionality.

The Model 204 .NET Framework driver is .NET 2.0 compliant.

Model 204 SQL clients

This section provides brief overviews of the Model 204 SQL client
configurations.

For the specific current client hardware and software configuration
requirements for Model 204 SQL processing, see the Connect Suite and
SQL documentation.

SQL processing from the PC client

Connect Suite gives PC clients SQL and Remote Command Line (RCL)
access to Model 204 data.

PC clients

PC clients for Connect Suite must be using a workstation with a LAN
connection to the mainframe that supports TCP/IP communications software.

Connect Suite application program interface

For Connect application program interfaces, PC clients can use the
Model 204 32-bit ODBC driver, J204 JDBC driver, or Model204Client .NET
Framework data provider to support SQL application programs.
Introduction to the Model 204 SQL Server 9

Model 204 SQL clients
10 Rocket Model 204 SQL Server User’s Guide

2
Model 204 SQL Catalog

The Model 204 SQL catalog is a facility for storage, retrieval, and
modification of the data definition information for SQL objects and SQL
users. The SQL catalog contains the SQL schema, table, column, and
view definitions and privileges that map to the Model 204 file data
accessed with SQL applications.

Surveying the SQL catalog

Bridge to Model 204 data

The SQL catalog is an essential bridge between your SQL application
and Model 204 data. Figure 2-1 on page 12 shows the position and
function of the SQL catalog in Model 204 SQL processing. The catalog
is a Model 204 file that contains an SQL mapping of other Model 204
files.

Before you can run an SQL application against an existing Model 204
file, you must define the file’s field descriptions to the Model 204 SQL
catalog. The SQL catalog maps Model 204 files to SQL tables and
Model 204 fields to SQL columns. The catalog also stores SQL user
privileges.

When you issue an SQL query against the Model 204 file data, the
Model 204 SQL Server compiler and optimizer read the catalog and
translate the query into a physical data request against the Model 204
files. The retrieved records are returned as SQL rows.
Model 204 SQL Catalog 11

Surveying the SQL catalog
Figure 2-1. The SQL catalog is the CCACAT Model 204 file

Model 204 SQL catalog characteristics

The Model 204 SQL catalog has the following characteristics:

SQL
application

PC

SOUL
processing

Model 204

HLI
processing

SQL Engine

Mainframe

VEHICLES File

Record 1:
YEAR=2003
MAKE=FORD
COLOR=BLUE

Record 2:
YEAR=2004
MAKE=SAAB
COLOR=RED
 •
 •
 •

Tables: Columns:

VEHICLES YEAR
 • MAKE
 • COLOR
 • •

 •
 •

CLIEN

CCACAT

Model 204
 files SQL

catalog

VEHICLES

Model 204 SQL catalog is... Because...

Model 204 file (called CCACAT) As a Model 204 file, CCACAT is managed by
Model 204 system and file managers and
governed by Model 204 concurrency control and
recovery.

Singular Only one SQL system catalog is allowed per
Model 204 Online. You cannot designate an
alternate catalog or use multiple catalogs.
12 Rocket Model 204 SQL Server User’s Guide

Using the SQL catalog
Using the SQL catalog

The Model 204 SQL catalog contains the SQL definition of the Model 204 files
that can be accessed by SQL applications. The SQL catalog is loaded, or
populated, with this SQL description of Model 204 files through the Connect
Visual Interface utility (CVI). Other Model 204 SQL utilities are available to help
you create the DDL for the catalog and to help you monitor the catalog
contents.

Populating the catalog

You populate the SQL catalog by using the CVI utility to do the following:

• Define or update SQL objects in the catalog that map to Model 204 file data.

• Define views of, and the SQL security associated with, these objects.

Queriable SQL applications can access but not manipulate
the catalog data. Eighteen nonupdateable views
of the catalog data are available to all valid SQL
users.

Not an active dictionary-type file Changes you make to a cataloged Model 204
file are not automatically reflected in the SQL
catalog. You must make corresponding changes
to the SQL catalog to ensure that it is
synchronized with the Model 204 file.

Populated and maintained by the
Connect Visual Interface

Input into the CVI, a Connect workstation
utility is SQL DDL (data definition language) you
create or have generated.

Note: All DDL statements input to the CVI must
terminate with a semicolon(;).

Independent of the Model 204
Dictionary

You cannot create the SQL catalog with
Dictionary facilities; CCATSF helps do this. Nor
is SQL catalog information reflected in
Dictionary metadata. However, you can use the
Dictionary to operate on a Model 204 file that
has been cataloged for SQL applications.

Repository of SQL security
information.

You provide security definitions to the catalog
through SQL GRANT and REVOKE statements.
The SQL compiler reads the catalog security
information to check the privileges for use of
SQL objects.

Repository of SQL view
definitions.

A view is an SQL table that is defined in terms of
other SQL tables, columns, or views. These
view definitions are stored in the SQL catalog
and accessed like any other SQL object.

Model 204 SQL catalog is... Because...
Model 204 SQL Catalog 13

Using the SQL catalog
The CVI utility updates the SQL catalog through DDL statements. The DDL
used by CVI can come from the following sources:

• DDL that you generate with mainframe SQL utilities (the Table Specification
facility, TSF, or the catalog reporting utility, CCACATREPT)

• DDL that you prepare manually

CVI is available to PC clients as part of the Connect Suite.

Generating DDL with SQL utilities

The TSF is an interactive Model 204 subsystem that generates DDL
statements you can input to the CVI utility. Available to mainframe users, the
TSF displays the current Model 204 file definitions and simplifies your
specification of corresponding SQL characteristics. From these specifications,
the TSF generates DDL statements defining SQL objects that map to the
Model 204 files.

The TSF is described in detail in Chapter 5.

The CCACATREPT generates DDL statements from the SQL catalog that you
can submit to CVI. The CCATREPT is:

• Discussed in “Reporting catalog contents” on page 15

• Described in Chapter 6.

Preparing DDL manually

You do not have to rely entirely on SQL utilities for the DDL stream you submit
to the CVI utility. You can also prepare a DDL stream by:

• Modifying an SQL utility-generated DDL stream. For example, the Model
204 Table Specification facility (TSF) does not produce all DDL statements.
You must manually add DDL statements to the TSF-generated DDL stream
for certain operations.

• Writing your own stream of DDL statements.

Creating the DDL manually requires that you verify that the Model 204 file
definition is consistent with the DDL. You must make sure, for example, that the
file definition is current. In addition, you must ensure the proper mapping of
Model 204 field attributes to SQL column data types, and you must be aware
of proper Model 204 SQL DDL statement syntax and usage rules.

The TSF, however, reads the current data dictionary (Table A) information from
the Model 204 file and displays it to you so you can build the SQL definition.
Consequently, using the TSF is less likely to introduce inconsistencies between
the SQL catalog definition and the actual Model 204 file data.
14 Rocket Model 204 SQL Server User’s Guide

Using the SQL catalog
Reporting catalog contents

You can examine the contents of the Model 204 SQL catalog by:

• Querying the catalog directly

• Using CCACATREPT, the Model 204 SQL catalog reporting utility

The contents of the SQL catalog are represented in user accessible views that
are defined in the schema CATALOG in the SQL catalog. Eighteen non-
updateable views summarize the SQL catalog objects, naming the schemas,
tables, views, columns, constraints, and privileges. Any authorized SQL user
can access the views with an SQL query. For a description of each of the views
and their contents, see “Querying the SQL catalog” on page 144.

With CCACATREPT, you can produce an online or printed report that provides
information (including attributes and corresponding Model 204 file and field
names) for any SQL tables or views defined in the SQL catalog. CCACATREPT
also has reports for privilege information from the catalog. In addition,
CCACATREPT can display DDL generated from the SQL catalog data and in
the form of valid DDL syntax.

You can compare the CCACATREPT output to the Model 204 file definition
(DISPLAY command output) to determine the updates you need to make to the
SQL catalog to obtain consistency with the file. You can modify the report’s
generated DDL and use it to repopulate your SQL catalog.

For further description of CCACATREPT and how to use it, see Chapter 6.

Monitoring catalog consistency

SQL data definitions in the catalog must correspond to the Model 204 file data
they describe. Because the SQL catalog is not constructed to change
automatically when Model 204 files are changed, it might not be in sync with
the Model 204 file at the time an application is run. SQL DDL updates to the
SQL catalog may be required to maintain correspondence between the file and
the catalog definition.

The Model 204 TSF subsystem uses the Model 204 file definitions that are
current at the time you invoke it. If no changes are made to the file contents
before you submit the TSF DDL to the SQL catalog, you can be sure that the
catalog and the Model 204 file are consistent. The DDL that you create
manually, however, is not checked for consistency with the Model 204 file. The
person creating DDL manually must be aware of the current Model 204 file
definition.

When you run the CVI utility, it provides error messages for any syntax errors,
but it does not report data definitions that are inconsistent with the Model 204
file.

You are responsible for ensuring that if the Model 204 file definition changes,
the corresponding SQL definitions are updated. To monitor SQL catalog and
Model 204 SQL Catalog 15

Maintaining the SQL catalog
Model 204 file consistency, you can use direct SQL catalog queries or the
Model 204 SQL catalog reporting utility, CCACATREPT. Both resources
provide a display of the contents of the SQL catalog. Querying the catalog and
using CCACATREPT are both described in Chapter 6.

Maintaining the SQL catalog

Creation and maintenance of the SQL catalog (the CCACAT file) implies
responsibilities for both SQL-specific data management and Model 204-
specific data management.

As the SQL catalog, CCACAT must be populated and updated through SQL.

As a Model 204 file, CCACAT is subject to Model 204 file and system
management. CCACAT must be installed and created as part of Model 204
installation and must be maintained as part of the Model 204 system (including
recovery and security).

As both SQL catalog and Model 204 file, CCACAT is protected both by SQL
security and Model 204 security. SQL access to CCACAT is protected by
Model 204 login security and by SQL GRANT and REVOKE security. SOUL
and Host Language Interface access to CCACAT is protected by normal
Model 204 file security and by allowing only system managers to open
CCACAT.

Because CCACAT is a system file with the prefix CCA, you need system
manager privileges to create, open, or initialize it. Access to CCACAT for
purposes other than normal SQL installation, operation, and reporting, and
other than normal Model 204 operations like sizing, reorganizing, and recovery
is highly discouraged.

Note: SOUL statements or Model 204 file management commands must not
be issued against CCACAT when SQL processing is taking place. CCACAT is
a special Model 204 file not unlike CCASYS, for example. The integrity of your
SQL processing depends on the integrity of CCACAT.

The rest of this section describes what the Model 204 system manager and file
manager need to do to use and maintain the Model 204 file CCACAT.

Creating the CCACAT file

You create the CCACAT file as part of the mainframe installation of Model 204.
For information about installing CCACAT, see the Rocket Model 204
installation documentation for your operating system.

The procedure used in the CCACAT installation contains all the file parameter
settings and DEFINE statements necessary to create a working version of
CCACAT. The installation procedure does the following:

• Creates the Model 204 file CCACAT

• Defines fields in CCACAT
16 Rocket Model 204 SQL Server User’s Guide

Maintaining the SQL catalog
• Includes SOUL procedures that load into CCACAT the SQL catalog
definitions (schema, tables, views, columns) that are accessible to user
queries

Rocket Software recommends that you use the CCACAT file parameters as
installed. The reasons for some of the default parameter settings are discussed
on the following pages.

Including CCACAT in an Online

This section summarizes CCACAT file considerations that affect the setting up
of your Model 204 Online. For more complete information about Online job
requirements for Model 204 SQL processing, see the Rocket Model 204 SQL
Connectivity Guide.

Every Model 204 Online with Model 204 SQL applications must have exactly
one CCACAT file allocated to it. Two Onlines can share a CCACAT file, but only
in read-only mode. If CCACAT is shared, no user can update it with the SQL
catalog populating utility, CVI.

When an SQL thread is initialized, CCACAT is opened automatically for the
user. When the thread is terminated, CCACAT is closed. An explicit OPEN
command for CCACAT can be issued only by a user with system manager
privileges.

Job control requirements

Online job control must contain a DD statement or FILEDEF for the CCACAT
file. CCACAT cannot be allocated or freed dynamically.

File access and security

The CVI utility is the usual way to update CCACAT. CVI has its own privilege
mechanism, controlled by runtime parameters such as login ID.

The system manager can provide additional file security by resetting the
OPENCTL parameter and by entering passwords for the CCACAT file entries
in the password table (CCASTAT). The default value of the OPENCTL
parameter is X‘80’. CCASTAT maintenance is described in the Rocket Model
204 documentation wiki:

http://m204wiki.rocketsoftware.com/index.php/Storing_security_information_(
CCASTAT)

The default setting for PRIVDEF is X’BFFF’, which includes all privileges. The
recommended minimum settings for the PRIVDEF file parameter are X‘8441’
for the system administrator and X‘0441’ for the SQL user.
Model 204 SQL Catalog 17

Maintaining the SQL catalog
Consistency and recovery

CCACAT, like other Model 204 files, can participate in recovery and transaction
backout processing. If CCACAT is used in a run, it can be recovered by a
RESTART command.

The FRCVOPT (file recovery options) parameter for CCACAT can ensure that:

• File cannot be updated if ROLL FORWARD logging is not active.

• File cannot be updated if checkpoint logging is not active.

The parameter settings are distributed with the CREATE procedure. For more
file creation information, see the Rocket Model 204 documentation wiki:

http://m204wiki.rocketsoftware.com/index.php/Creating_a_file

For more about setting FRCVOPT, see the Rocket Model 204 documentation
wiki:

http://m204wiki.rocketsoftware.com/index.php/FRCVOPT_parameter

Ongoing CCACAT maintenance

This section describes CCACAT file maintenance issues that are most likely to
be post installation, ongoing considerations.

Backup and restore

Back up the CCACAT file frequently, certainly before making any major
changes to the catalog. Use the same backup, restore, and reorganization
procedures that you use for any Model 204 file.

File organization and sizing

CCACAT is distributed as an entry order file (FILEORG = X‘00’). With this
setting the CCACAT file might eventually become full even though there is
unused space due to deleted catalog entries. In this case, expand CCACAT as
you do any Model 204 file. Do not change the FILEORG to Reuse Record
Number, however, because the order of entries in the catalog is important for
the regeneration of DDL from an existing catalog.

The installation procedure also provides default settings for file parameters
such as BSIZE, CSIZE, DSIZE, BRECPPG and BRESERVE. The file manager
tunes these settings to conform with application requirements. The optimum
settings for file sizing parameters vary depending on factors such as the
number of tables and columns within tables, length of table names, complexity
of view definitions, the number of privilege records, and the number of users
(affects number of GRANTs).

In general, it is important to use the normal mechanisms provided for
maintaining CCACAT. Use CCACATREPT to view catalog contents, CVI to
18 Rocket Model 204 SQL Server User’s Guide

Maintaining the SQL catalog
update, and standard commands such as SQL DROP to delete catalog
definitions.

Large DDL updates

 If a CVI user submits a CREATE SCHEMA statement that is several pages
long, the system manager might have to increase the amount of space
allocated to CCACAT. It might also be necessary to increase the Model 204
SQLIQBSZ, SQLBUFSZ and LHEAP parameters so that there is a large
enough buffer available to process the update.

You might be able to avoid increasing these parameters by breaking up the
DDL into smaller statements (see Chapter 4 for further details). The need to
increase the amount of space allocated to CCACAT still remains.

CCACAT implementation for BLOB and CLOB data

Any new SQL Catalog that you create by following the SQL Installation
instructions in the Rocket Model 204 installation documentation will be
completely compatible with the Binary Large Object (BLOB) and (CLOB) data
types.

If you have an older, pre-v7.4 SQL Catalog, you can perform the procedure
below to use the catalog without recreating it. This saves the time required to
rerun all DDL to recreate the current tables.

To use your SQL catalog from a Model 204 release before Version 7 Release 4:

1. Back up the SQL Catalog.

2. OPEN CATPROC.

3. INCLUDE ODBCTABLES.INSTALL

This procedure updates the CCACAT file and installs the necessary SQL
data types, BLOB/CLOB, for use in your DDL processing.

4. To test this installation:

a) CREATE a table that includes BLOB or CLOB data types.

b) Run the following SQL SELECT statement:

SELECT type_name, data_type FROM CATALOG.ODBC_TYPES

This returns the following results showing the new BLOB/CLOB data types.

TYPE_NAME DATA_TYPE
CHAR 1
DEC 3
DOUBLE PRECISION 8
FLOAT 6
INT 4
NUMERIC 2
Model 204 SQL Catalog 19

Maintaining the SQL catalog
REAL 7
SMALLINT 5
BLOB 30
CLOB 40
20 Rocket Model 204 SQL Server User’s Guide

3
Mapping Model 204 Data to SQL

Successful SQL processing of the data in Model 204 files requires an
accurate SQL catalog definition of the files. Essential to the catalog
definition is knowing how to take advantage of Model 204 database
features in SQL. This chapter discusses how to work with Model 204
files in SQL: from preliminary file preparation to SQL accommodation of
Model 204 file features, data formats, and data handling.

Representing Model 204 data in SQL

This section describes what you need to do to your Model 204 files to
prepare for SQL processing and how certain Model 204 file features are
handled in SQL processing.

Changing existing Model 204 files

Model 204 SQL requires little, if any, manipulation of the Model 204 file
data before you catalog the data. This section describes the Model 204
SQL processing requirements that may necessitate changes to your
Model 204 files.

You might have to change file parameter settings, add or redefine fields
or field attributes, or update field values as follows:

• Files used in SQL processing must be transaction backout (TBO)
files.

A file manager can change non-TBO files to TBO files by issuing the
Model 204 RESET command. In addition, logging for TBO files
makes demands on CCATEMP file space. For more information
Mapping Model 204 Data to SQL 21

Representing Model 204 data in SQL
about transaction backout files, see the Rocket Model 204 documentation
wiki:

http://m204wiki.rocketsoftware.com/index.php/File_integrity_and_recovery

• SQL multicolumn unique constraints require addition of a new field.

To enforce an SQL multicolumn unique constraint, you must first define and
populate a special Model 204 UNIQUE field, which provides the constraint
index. See “Specifying a multicolumn UNIQUE key” on page 60.

• The following operations or SQL column definitions might require you to
add or redefine field attributes:

– INVISIBLE field values cannot be updated by SQL DML. To use SQL
DML to update columns mapped to Model 204 INVISIBLE fields, you
must redefine the fields to VISIBLE.

– Model 204 fields mapped to columns designated as primary keys must
have the UNIQUE and ORDERED field attributes.

– Multiply occurring groups of fields mapped to nested tables must have
the same number of occurrences.

– Model 204 field attributes must map to compatible SQL column data
types. Your choice of SQL data type determines the type of Model 204
storage index that is used to retrieve data. You might need to change a
Model 204 field definition to better fit the data type you select for the
corresponding SQL column.

• The following operations or SQL column definitions might require you to
check or update Model 204 data values:

– SQL operations against columns mapped to STRING fields containing
hexadecimal zeros are not reliable. Avoid storing hexadecimal zeros in
STRING fields.

– Empty character strings mapped to SQL character columns are find-
able in SQL with the WHERE clause:

WHERE columnname="

In SQL numeric operations, an empty string is interpreted as zero.

– SQL operations against CHARACTER columns mapped to fields con-
taining characters other than EBCDIC X ‘40’ through X ‘FE’ are not reli-
able. Model 204 SQL processing supports only printable characters
that sort higher than the blank character, that is, those equivalent to
EBCDIC X ‘40’ through X ‘FE’.

Characters outside this defined range cannot be entered using SQL. If
other than these values exist in a Model 204 file, SQL operations
involving character comparisons, sorting, or pattern matching might
have unexpected results.

– For joint SOUL and SQL access to a file: store data fields with no non-
blank characters as one blank; do not define the Model 204 PAD char-
acter as a blank; and note that SQL removes trailing blanks for fixed-
22 Rocket Model 204 SQL Server User’s Guide

Representing Model 204 data in SQL
length CHARACTER data while SOUL does not.

SQL pattern search guidelines

For single character SQL pattern searches to return correct results, the
ORDERED CHARACTER attribute is recommended.

Do not end an SQL search pattern with an underscore, the single character
substitution symbol. Instead, use %, for multiple character substitution.

Using Model 204 file data features

This section describes what you have to do to use the following Model 204 file
features in SQL processing.

File security

Model 204 files accessed for SQL processing are also available for SOUL and
Host Language Interface (HLI) use. These files are subject to both Model 204
security and SQL security.

The usual Model 204 security features are in effect for SOUL and HLI access.
SQL access to these files is protected by Model 204 login security and SQL
security from GRANT, REVOKE, and CREATE VIEW statements.

Model 204 field and record security are not directly applicable in the SQL
environment.

File groups

Model 204 file groups cannot be represented directly in SQL. However, you
can simulate file groups with a view, and you can retrieve (but not update) data
through the view. See “Simulating file groups” on page 74.

If there is a group file with filename1 and a file with filename1, Model 204 will
open the group file and try to process the SQL request against the group file.

Model 204 precedence algorithm tries to open a Group-file filename1 first. If
Group-file filename1 does not exist, Model 204 tries to open File filename1.
Take care when naming a group-file and a file, using the same name; the file
cannot be accessed directly through SQL because of the precedence
algorithm. See the Rocket Model 204 documentation wiki for a more detailed
explanation:

http://m204wiki.rocketsoftware.com/index.php/OPEN_FILE_command

Sorted or hash key files

If a Model 204 file is a sorted or hash key file, specify the sort or hash key as a
column in the table for the file. If the sort or hash key is required in the file
(Model 204 FILEORG parameter X’02’ option is set), define the column NOT
Mapping Model 204 Data to SQL 23

Representing Model 204 data in SQL
NULL. For more information about mapping SQL columns to sort or hash keys,
see “Defining columns” on page 57.

Files with multiply occurring fields

For full use of Model 204 multiply occurring fields, you must translate them into
SQL nested tables. The nested table feature is a Model 204 SQL extension
described in “Mapping multiply occurring fields to nested tables” on page 27.

Files with INVISIBLE fields

In Model 204, INVISIBLE fields are stored in the index portion of the file and not
in the data portion (Table B). They are typically used to assist in Table B data
retrieval operations but are not themselves printed or sorted. They generally
require special treatment for Model 204 file and field update operations.

In Model 204 SQL, columns mapped to INVISIBLE fields are available to
qualify searches but are not themselves retrievable. They also require special
treatment for the files they map to and have restrictions on their use in SQL
DML specifications.

In general, Model 204 files that contain INVISIBLE fields should be maintained
by SOUL or Host Language Interface applications and not by SQL applications.
This recommendation applies regardless of whether the fields are mapped to
SQL columns. It does not apply to files that only have INVISIBLE fields that are
mapped to multi-column unique constraints.

For example, you can remove an SQL row containing a column mapped to an
INVISIBLE field with SQL DELETE, but there is no way with SQL DML to
remove the INVISIBLE field from the Model 204 file index. Similarly, SQL
UPDATE can modify a visible SQL column but cannot affect any INVISIBLE
field values.

You can use an INVISIBLE field as a concatenation of the individual fields that
map to the SQL columns that comprise a multicolumn unique key. However, the
individual fields that map to these SQL columns might not be INVISIBLE.

Files with multiple record types

You must map all the data in each Model 204 file to a single non-nested SQL
table (plus optional nested tables). Consequently, SQL column attributes you
assign must apply to every record in a file. This might present a problem for files
that have multiple record types. A record type is a set of records having the
same collection of field names or formats and connected by the same value of
a record type field.

For example, a single file may have a set of driver records (with field RECTYPE
equal to DRIVERS) and a set of policyholder records (with field RECTYPE
equal to POLICYHOLDER). Many of the fields on the driver records are not
common to the policyholder records, and vice versa.
24 Rocket Model 204 SQL Server User’s Guide

Representing Model 204 data in SQL
To avoid retrieving unwanted driver information when you need only
policyholder information, your SQL queries against the file must list each of the
policyholder column names. Your queries grow lengthy and you have to keep
track of the fields associated with each record type.

In addition, files with multiple record types limit the use of the SQL NOT NULL
attribute. SQL column attributes must apply to all the records in the file,
regardless of record type. Only fields common to both driver and policyholder
records (with no empty-string values) can validly be mapped to a column
defined with NOT NULL.

The most efficient way to map multiple record types within the same file is to
use SQL views. After defining all the fields in each record type to the SQL base
table you are creating, you define a view for each record type. The view
definition contains a listing of the columns associated with the record type.

You can then execute simpler queries against the view, taking advantage of the
preselection of required columns in the view definition. For an example of views
defined for mixed record type files, see “Mapping files with mixed record types”
on page 74.

File data indexes

Model 204 data retrieval indexes (for example, NUMERIC RANGE and
ORDERED) might be ignored for SQL queries against the file, if you are not
careful about your SQL catalog mapping of SQL and Model 204 data types.

Model 204 data values inconsistent with the SQL attributes for a column might
not be usable by the SQL application or might be truncated upon conversion to
the specified SQL format. Compatibility between SQL and Model 204 data
formats is discussed in “Matching Model 204 and SQL data formats” on
page 31.

Using PRIMARY KEY table columns

Successful SQL processing of the data in Model 204 files requires an accurate
SQL catalog definition of the files. For example, mapping a Model 204 field to
a column designated as a PRIMARY KEY requires the use of UNIQUE and
ORDERED field attributes.

Some third-party, SQL compliant packages require a UNIQUE key in any table
or view that is to be updated.

To ensure that such products work with Model 204 data, the following
restrictions apply:

• The base table in question, either the table to be queried or the table
underlying the view to be queried, must be defined with a PRIMARY KEY.
This PRIMARY KEY can be either a system-generated key (that is, the
Model 204 record number) or a unique ORDERED INDEX. It must consist
of a single column.
Mapping Model 204 Data to SQL 25

Model 204 and SQL data extraction mismatches
• When you define a view that you want to update, it must be defined on one
of the following:

– Table with a PRIMARY KEY, with the PRIMARY KEY visible in the view
definition

– View conforming to a table with a PRIMARY KEY visible in the defini-
tion of the new view as well

Because a Model 204 nested table cannot have a PRIMARY KEY, any third-
party product that requires a PRIMARY KEY for updating cannot update nested
tables.

Model 204 and SQL data extraction mismatches

When you extract values in a Model 204 field that do not conform to a defined
SQL data type, you can get unexpected results. For example, if a Model 204
stored value 0.05 (which is not an integer) is mapped to an SQL integer data
type and you try to fetch that row with:

WHERE colname=0

There are no returned values. However, if you rewrite the request to:

WHERE colname>0 AND colname<1

SQL fetches the row and shows the column value as 0.

Model 204 extracts from the file all records qualifying for the selection criteria.
From that found set, the SQL engine flags as Dirty Data only those rows where
the data cannot be converted to the SQL data type.

You might see the following messages in the audit trail, which may affect the
outcome of your query:

M204.0554: DIVIDE BY ZERO

M204.0563: ARITHMETIC OVERFLOW

Message 0554 indicates that an arithmetic expression attempted to divide by
zero.

The SQL error message will be like the following:

SQL Error -802 DIVIDE BY ZERO exception has occurred
during INTEGER DIVISION processing.

or

SQL Error -802 DECIMAL OVERFLOW exception has occurred
during DECIMAL MULTIPLICATION processing.
26 Rocket Model 204 SQL Server User’s Guide

Mapping multiply occurring fields to nested tables
Mapping multiply occurring fields to nested tables

A nested table is a Model 204 SQL extension that makes Model 204 multiply
occurring fields available to SQL access. This section introduces the basic
design of the feature and includes explanation of a simple example.

For information about using Model 204 SQL DDL to define nested tables to the
SQL catalog, see “Rules for nested table columns” on page 65. For
information about creating nested tables with the Table Specification facility,
see “Defining nested tables” on page 110. For information about using SQL
DML to access nested tables, see “Retrieving a particular occurrence of a
multiply occurring group” on page 170.

Understanding nested tables

In the relational model, SQL tables must be normalized: at each row-column
position in a table, there can be only one value (or a null). Repeating, or
multiple, values are not allowed. This is not a requirement in Model 204
databases. In a single Model 204 record an individual field can have a set of,
or multiple, values. Such a field is called a multiply occurring field. A group of
multiply occurring fields is also allowed.

The Model 204 SQL nested table extension allows you to take advantage of
Model 204 multiply occurring fields. This extension permits the mapping of a
file with multiply occurring fields to a main (parent) SQL table plus one or more
subsidiary (nested) tables related to the parent. The nested tables contain only
columns that map to multiply occurring fields and a single key column that joins
the nested table to its parent.

The values of the nested table joining key column (nesting key, or foreign key)
are the same as those of the primary key in the parent table. These values must
be unique. If the nesting key is a composite of two or more columns, you can
have the Model 204 SQL Server generate and maintain a SYSTEM
primary key.

A nested table can have only one parent table and must belong to the same
SQL schema as the parent. A parent table, which must not be nested, can have
multiple nested tables.

The Model 204 SQL nested table extension is a DDL extension only. Once you
have defined repeating fields as nested tables in the SQL catalog, you can
issue standard SQL DML against these tables.
Mapping Model 204 Data to SQL 27

Mapping multiply occurring fields to nested tables
Translating multiply occurring fields

A simple example follows of a Model 204 SQL translation of Model 204 multiply
occurring fields. A Model 204 file has the following fields:

REV_DATE, SALARY, and TITLE are repeating groups that occur once each
salary review.

You can translate this Model 204 situation into one SQL parent table
(PEOPLE) with two columns (NAME and HIRE_DATE) and two nested tables
(REV_HIST and TASKS):

The parent table is linked to the nested tables by the common values of the
primary key NAME in the parent and the foreign key FNAME in the nested
tables. The values of NAME must be unique (NAME must have the Model 204
UNIQUE attribute). Each value of NAME or FNAME is the unique identifier the
SQL Server uses to locate the Model 204 record that contains the multiply
occurring values.

SQL updates to the primary key are propagated to the foreign key. You may
not directly update the foreign key.

Notice that nested tables may include only a foreign key and the columns that
map to Model 204 multiply occurring fields or multiply occurring groups.

This example is expanded on the next page.

Simulating normalization of Model 204 record data

The file in the preceding example contains the following two records:

Field Frequency of occurrence

NAME Once per record

HIRE_DATE Once per record

REV_DATE Multiply occurring group member

SALARY Multiply occurring group member

TITLE Multiply occurring group member

TASK Multiple times per record

PEOPLE

NAME
HIRE_DATE

REV_HIST

FNAME
REV_DATE
SALARY
TITLE

TASKS

FNAME
TASK

 Parent table Nested table Nested table
28 Rocket Model 204 SQL Server User’s Guide

Mapping multiply occurring fields to nested tables
 Record 1

Record 2

Using the Model 204 SQL DDL for nested tables discussed in “Creating nested
tables” on page 63, you map this file to the SQL parent table PEOPLE and the
nested tables REV_HIST and TASKS. Logically the data appears to the SQL
Server as follows:

NAME HIRE_DATE REV_DATE SALARY TITLE TASK

n1 n1HD n1RD1 n1S1 n1TI1 n1T1

n1RD2 n1S2 n1TI2 n1T2

n1T3

NAME HIRE_DATE REV_DATE SALARY TITLE TASK

n2 n2HD n2RD1 n2S1 n2TI1 n2T1

n2RD2 n2S2 n2TI2 n2T2

n2RD3 n2S3 n2TI3

Table Columns

PEOPLE NAME HIRE_DATE

n1 n1HD

n2 n2HD

Table Columns

REV_HIST FNAME REV_DATE SALARY TITLE

n1 n1RD1 n1S1 n1TI1

n1 n1RD2 n1S2 n1TI2

n2 n2RD1 n2S1 n2TI1

n2 n2RD2 n2S2 n2TI2

n2 n2RD3 n2S3 n2TI3
Mapping Model 204 Data to SQL 29

Mapping multiply occurring fields to nested tables
The nested table rows are ordered and retrieved by matching occurrence: the
first row is mapped to the first occurrences of the repeating field values, the
second row is mapped to the second occurrences of the repeating field values,
and so on. The rank of occurrence (first, second, and so on) is determined by
physical storage order in the file.

When you issue a query against a nested table, the query must specify either
the primary key of the parent table or the foreign key of the nested table. The
Model 204 SQL Server uses the unique value of the primary or foreign key in
the nested table row to locate the physical record with the repeating field
values.

Handling foreign keys

If a foreign key is defined twice, first with a REFERENCES clause and then with
a FOREIGN KEY clause, the statement is accepted only if the two clauses are
identical and reference the same column.

SQL error message -4703 is generated if a FOREIGN key is defined twice for
a nested table and the two keys do not reference the same column. For
example:

Acceptable: CREATE TABLE NESTEDINVENTOR2 NESTED USING PART_NO
 (PART_NO
 DECIMAL(8) NOT NULL
 REFERENCES INVENTORY,
 ON_HAND
 SYSNAME 'ON HAND'
 FLOAT(4) NOT NULL,
 LOCATION
 CHAR(255) NOT NULL,
 FOREIGN KEY (PART_NO) REFERENCES INVENTORY)

Returns SQL
error -4703:

CREATE TABLE NESTEDINVENTOR2 NESTED USING PART_NO
 (PART_NO
 DECIMAL(8) NOT NULL

Table Columns

TASKS FNAME TASK

n1 n1T1

n1 n1T2

n1 n1T3

n2 n2T1

n2 n2T2
30 Rocket Model 204 SQL Server User’s Guide

Matching Model 204 and SQL data formats
 REFERENCES INVENTORY,
 ON_HAND
 SYSNAME 'ON HAND'
 FLOAT(4) NOT NULL,
 LOCATION
 CHAR(255) NOT NULL,
 FOREIGN KEY (ON_HAND) REFERENCES INVENTORY)

Handling primary keys

SQL error message -6315 is now displayed if a column in a table is defined with
PRIMARY KEY SYSTEM and the SYSNAME clause. The following example
returns SQL error message -6315:

CREATE TABLE XYZ
 (COL1 INT,
 COL2 CHAR (25),
 F_KEY INT
 PRIMARY KEY SYSTEM
 SYSNAME 'INDEX')

Matching Model 204 and SQL data formats

The DDL you create to map SQL tables to Model 204 files specifies the data
types of SQL columns. Model 204 field attributes and SQL column attributes
place different restrictions on the type of data values that can be stored in a field
or column. This section discusses aspects of Model 204 data mapping you
need to consider when you are preparing SQL DDL to map the Model 204 file
data.

Compatibility of Model 204 and SQL data formats

Model 204 data typing is more informal than SQL data typing. Therefore,
Model 204 files can include data that meets the Model 204 data typing
definitions, but which might cause unexpected results when a Model 204 SQL
program is run that uses Model 204 data.

In general, Model 204 SQL returns data to an SQL application in the SQL
format requested, and stores data in the Model 204 format after conversion
from the defined SQL format. It is your responsibility to ensure that the SQL
format you define for a column is compatible with the format of the data stored
in the Model 204 file.
Mapping Model 204 Data to SQL 31

Matching Model 204 and SQL data formats
Data format compatibility between Model 204 and SQL affects the accuracy
and efficiency of data retrievals and data conversions. The broad levels of
compatibility between Model 204 and SQL data formats are:

Optimizing Model 204 data retrieval

Data retrieval is more efficient in Model 204 when you can use a variety of
numeric and nonnumeric indexes. Model 204 data indexes are defined with
Model 204 field attributes such as KEY, NUMERIC RANGE, and ORDERED.
SQL application programmers are responsible for understanding the effects of
these attributes and for tailoring their applications accordingly. Model 204 field
attributes are described in the Rocket Model 204 documentation wiki:

http://m204wiki.rocketsoftware.com/index.php/Field_design

Optimizing retrieval for SQL selections

When using a SELECT DISTINCT statement on an SQL column, define the
underlying Model 204 field as ORDERED or FRV to eliminate NULL column
values from the result.

The Model 204 SQL engine is specifically designed to handle Model 204 field
types. Rocket Software recommends that you define all fields that are used in
SQL DISTINCT or WHERE processing with the ORDERED attribute.
Performance improvements are noticeable.

Data retrieval
performance

This first level of compatibility is more general and requires that
you pair SQL numeric column data types with numeric
Model 204 data and nonnumeric types with nonnumeric data.
Failure to do so means that you cannot use Model 204 indexes
for that field to retrieve data, or certain data is not retrievable, or
both.

Data conversion This second level of compatibility extends the first and requires
Model 204 format and SQL data type combinations that result in
data conversions without loss of accuracy or precision.
32 Rocket Model 204 SQL Server User’s Guide

Matching Model 204 and SQL data formats
Figure 3-1 compares the paths taken when fields are not ORDERED or not
FRV with the path taken when fields are defined ORDERED or FRV.

Figure 3-1. SQL SELECT DISTINCT processing paths

You can preserve these Model 204 retrieval efficiencies in SQL by making sure
that you assign compatible SQL data types to the Model 204 fields you are
using. Usually you define an SQL numeric data type for numeric Model 204
data, and you define the SQL nonnumeric data type for nonnumeric data,
although not all cases are this straightforward.

Table 3-1 and Table 3-2 list compatible mappings. Table 3-1 shows permissible
mappings of Model 204 data format attributes and the Model 204 indexes that
are preserved or lost by such mappings. Table 3-2 on page 35 shows mappings

Select distinct
lastname from
table

Model 204
fields

Perform a Find
All (FD) and
send to a sort
process

Perform a Find
All Values (FDV)

Sort processing

Model 204

Not Ordered or
not FRV fields

Ordered or
FRV fields
Mapping Model 204 Data to SQL 33

Matching Model 204 and SQL data formats
that are not permitted, because they present serious data conversion
problems.

* Numeric types supported are:

INTEGER
SMALLINT
DECIMAL (precision, scale) with decimal precision and scale
NUMERIC (precision, scale) with decimal precision and scale
FLOAT (precision) with binary precision
REAL
DOUBLE PRECISION

** Key Index is used only for direct searches in SQL as in:

WHERE fieldname=value

Avoiding Table B searches

Not using Model 204 data indexes results in data retrievals that are much less
efficient and may require searches of the entire Table B of the file. For example,
you assign an SQL numeric column attribute, say INTEGER, to a Model 204
STRING field. If the field is also defined with the Model 204 KEY attribute,
which indexes the field’s values, your pairing of SQL and Model 204 attributes
prevents use of the KEY index. Retrievals involving this field search the file’s
Table B instead of using the KEY index.

Table 3-1. Model 204 indexes and data format mappings

Model 204
field attribute

SQL
data type

Indexes
preserved

Indexes
not usable

STRING CHARACTER Ordered character
Key**
Hash key

Numeric Range
Ordered numeric

STRING numeric* Numeric Range
Ordered numeric

Ordered character
Key
Hash key

BINARY
(except with
OCCURS NON-CODED)

CHARACTER Ordered character
Key**

Numeric Range
Ordered numeric

BINARY numeric* Numeric Range
Ordered numeric

Ordered character

Key

FLOAT numeric* Ordered numeric
Key**

none

CLOB CLOB N/A N/A

BLOB BLOB N/A N/A
34 Rocket Model 204 SQL Server User’s Guide

Matching Model 204 and SQL data formats
The KEY index is used only for equality data retrievals. Range retrievals
against a field having only a KEY index results in a Table B search of the entire
data file.

A more ambiguous example involves the ANNIV_DATE column, mapped to a
Model 204 field that has the STRING and ORDERED NUMERIC field
attributes. A sample field value is 0917. If you map the column to SQL
DECIMAL(4,0), you can use the Model 204 numeric ordered index in SQL
queries (as Table 3-1 on page 34 shows), but the essential leading zeros in the
data are not preserved. If you use SQL CHAR(4) to preserve the leading zeros,
you lose the benefit of the Model 204 numeric ordered index.

If the data type you assign to an SQL column would prevent the use of a
Model 204 index, the SQL Server issues a warning message when you issue
DML against that data. Successful DDL statement execution does not imply a
compatible mapping of Model 204 and SQL data types.

If a Model 204 field is defined with more than one index, the data type you
assign to your SQL column might prevent the use of one index but preserve
another.

Optimizing Model 204 data conversion

The previous section defined the combinations of Model 204 and SQL data
formats that allow use of the Model 204 indexes. Compatible combinations of
Model 204 and SQL data formats are also necessary to maximize the accuracy
of the conversions of the data from Model 204 format to SQL format.

Data is converted when you use SQL to insert values into the Model 204 fields
and when you use SQL to retrieve values from Model 204 fields. The SQL
Server ensures that data you insert is never truncated to fit Model 204 field
format requirements; you cannot execute requests with columns whose SQL
data types the Model 204 fields cannot fully accommodate. These incompatible
combinations of column-to-field mappings are listed in Table 3-2.

Table 3-2. Model 204/SQL data format incompatibilities

Model 204 attribute Incompatible SQL data type(s)

STRING (non-
preallocated)

None
Mapping Model 204 Data to SQL 35

Matching Model 204 and SQL data formats
Note: The following mappings are not prohibited by the rules shown in
Table 3-2, but they result in a Model 204 error (soft restart) if you attempt to
insert negative-valued data with p significant digits into these field and column
combinations.

STRING
(preallocated with
LENGTH n)

CHARACTER(L)

DEC(p, s)

 or

NUMERIC(p, s)

INTEGER

 SMALLINT

FLOAT

REAL

DOUBLE PRECISION

(If L>n, the preallocated length)

(If s=0 and p>n, or

 s=p and p> n-2, or

 0<s<p and p> n-1)

(If n<11)
(If n<11)

BINARY (preallocated
with NON-CODED)

CHARACTER

BINARY (non-
preallocated)

DEC(p, s)

NUMERIC(p, s)

FLOAT

REAL

DOUBLE PRECISION

(If s>0, or

 p>9 and s=0)

(If s>0, or

 p>9 and s=0)

BLOB all but CLOB

CLOB all but BLOB

FLOAT 4 CHARACTER

DEC(p, s)

NUMERIC(p, s)

INTEGER

SMALLINT

FLOAT(p)

DOUBLE PRECISION

(If p>6)

(If p>6)

(If p>21)

FLOAT 8
FLOAT 16

CHARACTER

Table 3-2. Model 204/SQL data format incompatibilities (Continued)

Model 204 attribute Incompatible SQL data type(s)
36 Rocket Model 204 SQL Server User’s Guide

Matching Model 204 and SQL data formats
For example, you cannot insert the value -0.1234 (4 significant digits) into a
DEC(4,0) column (s=0, p=4) mapped to a preallocated STRING LEN 4 field
(n=4). This is the first case shown below: s=0 and p=n.

Data mapping incompatibilities are validated for an SQL table at runtime when
a DML statement involves a reference to the catalog. Such incompatibilities
result in an SQL statement validation error, and the statement is not processed.

Even with compatible mappings of data formats, the SQL Server does not
guarantee that the actual Model 204 data you retrieve with SQL is convertible
to the defined SQL format without some modification or truncation. When
necessary, the SQL Server observes the following rules for data conversion:

• Whenever possible, Model 204 data is converted (with or without
modification) to your SQL specification. Data that the Model 204 SQL
Server cannot convert to the format you specify is called dirty data. See the
following “How Model 204 SQL processes dirty data”.

• Model 204 fields with character strings longer than the defined length for
SQL CHARACTER columns are accepted, but the values are truncated.
Trailing blanks are removed and leading blanks are preserved if such fields
are updated by SQL.

• Numeric data not matching the definition of the SQL data type is truncated,
rounded, or converted to match the SQL data type.

How Model 204 SQL processes dirty data

Model 204 data that cannot be converted to fit the defined SQL data type is
dirty data. What data is dirty data is influenced by the SQL data type:

• SQL CHARACTER specifications encounter no dirty data. All string and
non-preallocated binary data is convertible to this format. Empty strings, for
example, are converted to blanks. Empty strings in preallocated fields are
converted to blanks.

• For SQL numeric data types, any nonnumeric data is not convertible (dirty
data). Empty fields are interpreted as (numeric) zero.

For both SQL character and numeric data types, including nulls, a missing field
is interpreted as an SQL null and is not dirty data.

Model 204 attribute SQL data type

STRING (preallocated
with LENGTH n)

DEC(p, s)

NUMERIC(p, s)

(If s=0 and p= n, or

 s=p and p= n-2, or

 0<s<p and p= n-1)
Mapping Model 204 Data to SQL 37

Matching Model 204 and SQL data formats
Handling dirty data at runtime

At runtime, each time the Model 204 SQL Server gets data from a Model 204
record, the data type characteristics of each field being returned are validated:
if invalid (dirty) data is found in any field referenced in the query, the SQL
Server takes one of the following actions:

• Processing of the SQL statement stops, and a negative SQL code is
returned.

• The record is bypassed, and an SQL warning message is issued. If many
records are bypassed, you might still receive only one warning message.
Also, whether the record is included in a COUNT of selected data is
unpredictable. Processing of the SQL statement continues.

You might receive a dirty data warning even when your query results are
correct, that is, not affected by dirty data. Such a warning indicates that the
SQL Engine encountered dirty data while deriving the resultant set of
records.

• You will not receive a dirty data warning if the dirty data was detected in the
last record processed prior to EOF.

The system manager determines which of these actions the SQL Server takes
by the setting of the Model 204 SQLCNVER parameter.

SQLCNVER is described in the Rocket Model 204 SQL Connectivity Guide and
in greater detail in the Rocket Model 204 documentation wiki:

http://m204wiki.rocketsoftware.com/index.php/SQLCNVER_parameter

PC clients can override SCLCNVER by selecting alternative action for the Dirty
Data Treatment option.

In addition, whenever a conversion error due to dirty data occurs in the SQL
Engine, Model 204 error message 1296 is logged to the audit trail. This
message identifies the file, field, and record number of the field that
experienced the conversion error.

Handling NOT NULL, UNIQUE, and multiply occurring data

If an SQL column is defined as NOT NULL, the Model 204 SQL Server does
not allow SQL updates that result in a null value in the corresponding
Model 204 field.

Note: SOUL operations can introduce a null into a Model 204 field that is
mapped to a NON NULL column. These operations circumvent Model 204 SQL
NON NULL checking, which is enforced only for SQL operations. An SQL
SELECT against such a column would return the null value.

Except for nested table columns, the SQL Server does not inform you when null
values are found for a NOT NULL column. If a row of null values is found for a
nested table, the SQL Server issues a warning message, bypasses the record,
38 Rocket Model 204 SQL Server User’s Guide

Matching Model 204 and SQL data formats
and continues processing. If a row with some, but not all, null values is found
for a nested table, the SQL Server ends the processing of the statement with a
negative SQL code.

No retrievals or updates are allowed against an SQL UNIQUE column not
mapped to a Model 204 ORDERED UNIQUE field. The uniqueness of the data
in such mappings is guaranteed by Model 204 UNIQUE attribute checking. If
you redefine the Model 204 field to be not-UNIQUE, the SQL Server prevents
retrievals or updates against the corresponding UNIQUE column.

If the Model 204 multiply occurring fields mapped to the columns of a nested
table do not have the same number of occurrences, attempts to query, fetch,
or update rows with mismatched occurrences have unexpected retrieval results
and produce no error return code. Inserts of data into such fields are permitted;
they do not result in detection of the mismatches.

Handling mixed numeric and nonnumeric data

SQL data typing is not well suited for handling mixed numeric and nonnumeric
data, for example a Model 204 CODED BIN field. If this were the Model 204
field format, the best choice for SQL column type would be CHAR. Although
specifying CHAR allows only character operations with the data, at least the
data is convertible.

Rocket Software recommends that you examine the actual data stored in a field
before assigning an SQL data type. Match the physical data characteristics and
not simply the designated Model 204 data attribute.

Observing data precision limits

This section discusses discrepancies between the precision of the data stored
in Model 204 fields and the precision available to the data types of the SQL
columns mapped to those fields. Data precision considerations are discussed
for decimal integer data and then for floating point format.

Decimal integer

The Model 204 SQL Server treats data mapped to SQL DECIMAL and
NUMERIC the same. The SQL Server supports user-defined scale and
precision for DECIMAL and NUMERIC (where 0 ≤ scale ≤ precision) and
maintains both formats with a maximum precision of 15 decimal digits.

The SQL Server treats data mapped to SQL INTEGER and SMALLINT the
same. The SQL Server maintains both SQL INTEGER and SMALLINT column
formats with a maximum precision of four bytes (31 bits plus one bit for the sign:
the range from decimal -2147483648 to 2147483647). The 4-byte integer
precision limit is in effect for all operations involving this data, and any
operations that exceed this limit result in an error message.
Mapping Model 204 Data to SQL 39

Matching Model 204 and SQL data formats
Note: Remember that the Model 204 BINARY field attribute has at most 30 bits
of precision available. Mapping Model 204 fields to SQL DECIMAL, NUMERIC,
INTEGER, and SMALLINT columns is subject to the restrictions listed in Table
3-2 on page 35.

Floating point

Model 204 FLOAT (floating point) fields can be one of the following lengths,
reflecting the possible precision:

Model 204 SQL also defines SQL column precision available to the SQL
floating point data types. Data you attempt to store or extract that is longer than
the precision limit is truncated either before storage or before extraction:

As in Model 204 SOUL, 15 significant digits is the Model 204 SQL maximum.
You can still retrieve data stored in a FLOAT LEN 16 field, for example, but the
precision of the retrieved value will be no more than 15.

SQL processing floating point numbers

SQL processing of floating point values greater than the largest valid value in:

• An INSERT statement results in:

SQL error -103. ’7.237E75 is an invalid numeric lit-
eral.’

• A SELECT statement returns an SQL warning with:

’Invalid data was skipped by the SQL Engine.’

• A SELECT DISTINCT statement retrieves no data for such a value.

Mapping recommendations

The precision limits for Model 204 fields and SQL columns dictate the
recommended mappings shown in Table 3-3. These mappings are most

This precision... Is equivalent to...

4-byte floating point (FLOAT LEN 4) 6 decimal digits of precision

8-byte floating point (FLOAT LEN 8) 15 digits of precision

16-byte floating point (FLOAT LEN 16) 31 digits of precision

This precision... Is limited to...

REAL and FLOAT (binary precision ≤ 21) 6 decimal digits of precision

DOUBLE PRECISION and FLOAT
(binary precision > 21)

15 decimal digits of precision
40 Rocket Model 204 SQL Server User’s Guide

Matching Model 204 and SQL data formats
efficient in terms of space usage and precision preservation. For example, if
you map a FLOAT LEN 8 field to an SQL REAL column, you will lose some of
the precision of your stored data, or you will waste space by storing 6-
significant digit data in 15-significant digit fields, or both.

Remember, the actual precision of the data returned to an SQL application is
never greater than the precision of the stored data, which is always the
precision of the defined format of the Model 204 fields. To return the data
according to your SQL data type specification, the SQL Server converts
(rounds, truncates, expands) the field values.

You can’t specify a precision on the column that’s greater than that of the
Model 204 field, or at least it won’t work. If you have a Model 204 field defined
as FLOAT LEN 4, and you define the precision of the mapped SQL column as
FLOAT(53), then you will get an SQL error code (5518), or the row will be
skipped, depending upon the Dirty Data options.

If the SQL data type precision you specify does not match the precision of the
field data, the actual precision of the data returned to you has the lower
precision of the two. If you specify a lower precision than the stored data, the
data is truncated to give the lower precision you specify; if you specify a higher
precision than the stored data, the data is expanded to meet your specification,
but it retains the lower precision of its storage format.

To achieve the precision you specify for an SQL column, make sure the column
is mapped to the Model 204 FLOAT LEN that matches your specification. Also,
remember that your mappings are subject to the incompatibility restrictions
listed in Table 3-2 on page 35.

You can also map a Model 204 FLOAT field to an SQL DECIMAL or NUMERIC
column. The precision considerations are the same as above. For example,
mapping a DECIMAL 4 to FLOAT LEN 8 loses precision, wastes space, or
both.

In general, Model 204 SQL precision and conversion rules match those for
Model 204 SOUL. These rules are discussed in the Rocket Model 204
documentation wiki:

http://m204wiki.rocketsoftware.com/index.php/Floating_point_conversion,_ro
unding,_and_precision_rules

Table 3-3. Mapping floating point fields

Model 204
field attribute

Most compatible
SQL data type

Maximum precision
(decimal digits)

 FLOAT LEN 4 REAL
 FLOAT ≤ 21

 6

 FLOAT LEN 8 DOUBLE PRECISION
 FLOAT > 21

 15
Mapping Model 204 Data to SQL 41

Matching Model 204 and SQL data formats
For more information about Model 204 floating point fields, see the Rocket
Model 204 documentation wiki:

http://m204wiki.rocketsoftware.com/index.php/Field_design

Converting SQL data types for display

The preceding discussion of precision limits does not address the conversion
of retrieved data to the final display or print format for your application. These
conversions are from one SQL data type to another.

Model 204 SQL processing of client result packets converts data in SQL
columns to CHARACTER data.

These conversions primarily affect numeric data and might result in
unexpected truncation or rounding of data or loss of least significant digits. You
need to be aware of the following:

• In Model 204 SQL conversions to CHARACTER:

– If from FLOAT, results might be in scientific notation, and the number of
significant digits displayed is not under user control.

– Truncation and/or rounding rules might vary with the client platform. For
example, where 2 and 5 are the sixth and seventh digits, respectively,
of a retrieved value, Model 204 SQL might round up and display 3 for a
Connect client.

– Your data might be truncated (with a warning message) if the display
format is not long enough.

• In Model 204 SQL conversions from FLOAT:

– Conversions to any data type risk truncation and/or rounding.

– Truncation or rounding affects the least significant digits or characters
on the right. The leading digit and magnitude are always preserved.

– Truncation or rounding occurs without a warning message or notice.

– Conversions of 8-byte float to 4-byte float risk loss of least significant
digits, because 8-byte float holds more significant digits than 4-byte
float.

• Model 204 4-byte (and 8-byte) floating point numbers use IBM mainframe
floating point representation and can accommodate exponents as large as
75. IBM PC clients use IEEE floating point representation and are limited to
exponents as large as 38 for 4-byte floating point numbers. If you are an
IBM PC client and want to retrieve the full Model 204 4-byte floating point
range, you must request data type conversion to 8-byte float (DOUBLE or
FLOAT 22 or greater) or CHARACTER.
42 Rocket Model 204 SQL Server User’s Guide

Matching Model 204 and SQL data formats
LOB fields in SQL statements

The SQL Server supports the definition, update and retrieval of columns
containing CLOB (Character Large Object) and BLOB (Binary Large Object)
data.

CLOB/BLOB sizes

The maximum size LOB (Large Object) that may be transferred is dependent
upon the amount of storage available to allocate the SQLBUF and the
Universal Buffer. The SQLBUF and the Universal Buffer must be large enough
to hold the entire LOB. Model 204 v7.4 SQL supports a maximum size
CLOB/BLOB of up to 1 GB for UPDATE or INSERT and up to 2 GB for SELECT
depending on the amount of server memory available.

The CHAR_MAX_LENGTH in the SQL catalog is set to a non-zero value for
CLOB and BLOB fields. This value is for internal use only.

SQL statements supporting CLOB/BLOB data types

The CREATE TABLE, SELECT, INSERT, UPDATE, and DELETE SQL
statements have been enhanced to support the CLOB and BLOB data types.
See “Using CLOB or BLOB data” on page 56 for details on using large object
data in CREATE TABLE.

SELECT

To download a CLOB or BLOB column, specify the column name in the
SELECT statement as you would for any other column data type. However, you
cannot perform a search on a CLOB/BLOB column. In other words a CLOB or
BLOB column name cannot be specified in the WHERE clause.

For example, you can use the following SELECT statement to download the
User Language Manual from the MANUALS table defined above:

SELECT MANUAL FROM MANUALS
WHERE NAME = ‘User Language Manual’

INSERT

To insert a CLOB or BLOB column into a row, the INSERT statement specifies
the CLOB or BLOB column name as it would any other type of column. The
value of the CLOB or BLOB data must be specified as a parameter. INSERT
and UPDATE of LOB data through SQL requests can be CPU intensive.

Therefore, Rocket Software recommends that when inserting or updating very
large LOBs (over 100MB) or many small/medium size LOBs (0-100MB), Model
204 USER priority should be set to low for users doing such SQL requests, to
allow other users in the Online to process normally. If possible, such updating
should be done during non-peak hours. Normal single (or small number)
Mapping Model 204 Data to SQL 43

Matching Model 204 and SQL data formats
INSERT/UPDATE of small LOBs should not noticeably affect other users. We
recommend that each customer determine the CPU usage effects of SQL LOB
processing applications for each instance of the application before distributing
such applications to users.

UPDATE

To update a CLOB/BLOB field in a row, the UPDATE statement specifies the
CLOB or BLOB field name as it would any other type of field. The value of the
CLOB or BLOB data must be specified as a parameter.

DELETE

To delete a row containing a CLOB or BLOB column, use the DELETE
statement with its usual syntax.

Limitations

Following are the known limitations when using CLOB or BLOB fields in SQL
statements.

LOB values cannot:

• be key values

• be compared in predicates

• appear in any clause which will involve a data comparison, including but not
limited to:

– GROUP BY

– HAVING

– ORDER BY

– SELECT DISTINCT

– WHERE

– ON

– IN

– LIKE

Multiple CLOB/BLOB fields cannot be specified in an INSERT or UPDATE
statement. To store multiple CLOB/BLOB columns per row, you must execute
a separate UPDATE statement for each CLOB/BLOB. This limitation does not
apply to SELECT; you can specify multiple CLOB/BLOB columns in the
SELECT statement.
44 Rocket Model 204 SQL Server User’s Guide

Matching Model 204 and SQL data formats
ONLINE Parameter Considerations

The SQLBUFSZ parameter defines the length of the maximum incoming SQL
message. For more information on SQLBUFSZ, see the Rocket Model 204
documentation wiki:

http://m204wiki.rocketsoftware.com/index.php/SQLBUFSZ_parameter
Mapping Model 204 Data to SQL 45

Matching Model 204 and SQL data formats
46 Rocket Model 204 SQL Server User’s Guide

4
Model 204 SQL Data Definition
Language

This chapter describes the characteristics of the Model 204 SQL Data
Definition Language (DDL). DDL statements are SQL statements that
are used to maintain the SQL catalog by creating and altering table,
view, and column definitions that describe Model 204 file data. DDL
also includes SQL GRANT and REVOKE statements that define the
security associated with SQL tables, views, and columns.

Emphasis in this chapter is on the characteristics of Model 204 SQL
DDL that differ from the ANSI SQL 1989 standard DDL. Unless
otherwise specified, references to “the standard” in this chapter are to
the ANSI SQL 1989 standard.

The description of the Model 204 SQL DDL is organized by function
(creating, altering, dropping, and granting), including basic syntax for
the statements that perform each function.

A diagram of the entire Model 204 SQL DDL statement syntax is found
in Appendix A.

Model 204 SQL DDL statements

Table 4-1 on page 48 identifies the DDL statements that can be
processed against CCACAT, the SQL catalog file. Each statement is
discussed in this chapter.

The statements in Table 4-1 affect only the SQL catalog file. Model 204
database files other than CCACAT are never affected by these
statements.
Model 204 SQL Data Definition Language 47

Model 204 SQL DDL statements
The second column of Table 4-1 explains the effect of each of the statements
on the SQL catalog records. The catalog has the following record types:

• SCHEMA (S)

• TABLE
 TABLE (T)
 TABLE (V)

• PRIVILEGE (P)

• CONSTRAINT (C)

Note: TABLE has two subtypes: TABLE(T) for tables and TABLE(V) for views.

Table 4-1. Effects of DDL statements

DDL statement Effect on CCACAT

CREATE SCHEMA Adds a SCHEMA record if none is already present.

CREATE TABLE Adds a TABLE(T) record and possibly CONSTRAINT
records for multicolumn unique indexes, if present.

Adds PRIVILEGE records for the table owner.

CREATE VIEW Adds a TABLE(V) record and adds PRIVILEGE records for
the view owner.

GRANT

Adds or updates one or more PRIVILEGE records.

If no column list, number of records is:

no.-of-grantees * no.-of-privileges

If a column list, number of records is:

no.-of-grantees * (no.-of-privileges-
without-lists + no.-of-columns)

SET SCHEMA None.

SET USER None.

DROP SCHEMA Physically deletes SCHEMA record and all TABLE, VIEW,
PRIVILEGE, and CONSTRAINT records for objects
associated with this schema.

DROP TABLE Physically deletes TABLE(T) record and all PRIVILEGE and
CONSTRAINT records associated with this table.

If a parent table, it cannot be dropped before nested tables
associated with it are dropped.

No effect on TABLE(V) records that reference this table:
view definitions involving this table are left intact.

DROP VIEW Physically deletes the TABLE(V) record and all PRIVILEGE
records for the view.
48 Rocket Model 204 SQL Server User’s Guide

Model 204 SQL DDL statements
Model 204 SQL DDL extensions

In addition to the statements in Table 4-1, Model 204 SQL DDL includes the
extensions listed in Table 4-2 on page 49.

ALTER TABLE

 ADD

 DROP

 MODIFY

Cannot be used against views, so no effect on TABLE(V)
records.

Adds COLUMN occurrence group to existing TABLE(T)
record.

Deletes COLUMN occurrence group from existing
TABLE(T) record.
Deletes PRIVILEGE record(s) that reference this column.
No effect on CONSTRAINT records because DROP is not
allowed
for columns that are part of multi-column unique constraints.

Updates column occurrence group on existing TABLE(T)
record.
No effect on CONSTRAINT records, because MODIFY is
not allowed for constrained columns.

REVOKE Updates or deletes existing PRIVILEGE records.

Table 4-1. Effects of DDL statements (Continued)

DDL statement Effect on CCACAT

Table 4-2. DDL extensions

Extension Statement Description

NESTED USING
clause

CREATE
TABLE

Defines the table as nested within a parent
table and specifies the joining column. Used
for mapping Model 204 files with repeating
fields or repeating groups of fields.

REFERENCES
clause

CREATE
TABLE

Syntax as part of an optional referential
constraint definition is the same as defined
in the standard. Its extended functionality in
Model 204 SQL DDL is that it is required in
any nested table definition, it is ignored for
nonnested tables, and it implies a
CASCADE action.

SYSNAME clause CREATE
TABLE

Identifies the actual name of the Model 204
file or field associated with the SQL table or
column being defined. For more
information, see “Mapping table names to
file names” on page 55 and “Column
naming and the SYSNAME extension” on
page 59.
Model 204 SQL Data Definition Language 49

Creating SQL objects
Creating SQL objects

SQL objects (tables, columns, and views) are created with the CREATE
statement in the context of a schema. The Model 204 SQL syntax for CREATE
SCHEMA is shown on “Creating schemas” on page 51.

This section introduces the descriptions of the Model 204 SQL DDL statements
with which you define SQL objects:

CREATE SCHEMA
CREATE TABLE
CREATE VIEW

Note: The use and function of the DDL statements in this chapter conform to
the standard except where otherwise specified.

Authorization ID is equivalent to Model 204 user ID

You establish yourself as a valid SQL user by logging in to Model 204 with the
LOGIN command. You are verified as a valid SQL user by Model 204 login
security and any external security package that is in effect. The Model 204 user
ID you specify in the LOGIN command becomes the SQL user authorization ID
used by various DDL statements in a Model 204 SQL session. This Model 204
login ID is also the value returned when an SQL DML query specifies the SQL
keyword USER.

For more information about Model 204 login security, see the Rocket
Model 204 documentation wiki:

http://m204wiki.rocketsoftware.com/index.php/Storing_security_information_(
CCASTAT)

Model 204 SQL table types

Model 204 SQL DDL defines the following types of tables:

SYSTEM clause CREATE
TABLE

Used in column definition with the
PRIMARY KEY option to provide a system-
generated primary key. For more
information, see “Using system-generated
keys” on page 69.

SET USER statement Sets SQL authorization ID without affecting
Model 204 login ID, which allows a system
manager to create SQL objects for another
user without having to login as that user or
give that user system manager privileges.

Table 4-2. DDL extensions (Continued)

Extension Statement Description
50 Rocket Model 204 SQL Server User’s Guide

Creating schemas
• Base tables are SQL schema tables that map directly to Model 204 files
and fields. Such tables are not defined in terms of any other tables.

• Views are schema tables that map directly to SQL base tables or to other
views. Base tables are created by CREATE TABLE; views are created by
CREATE VIEW.

• Nested tables are base tables that have columns that map to Model 204
multiply occurring fields or groups of fields. A nested table is associated
with a single base table parent by a unique table column key that joins the
nested table to the parent table. Nested tables are a Model 204 SQL
extension.

Statement ordering is important

You must create objects before they are referenced by other objects. For
example, tables referenced by views must be created before the views that
reference them.

Rocket Software recommends that you organize statements in a CREATE
SCHEMA statement in the following order:

Naming SQL objects

The Model 204 SQL rules for naming SQL schemas, tables, views, and
columns are the same as the standard SQL identifier rules: SQL object names
can contain the characters A-Z, 0-9, or underscore, can have as many as 18
characters, and must begin with a letter. You cannot use embedded blanks or
SQL reserved words (see Appendix B).

Creating schemas

Like tables and columns, schemas exist as distinct records in the SQL catalog
that are created by CREATE SCHEMA. Unlike tables and columns, a schema
does not map directly to a Model 204 file.

This section focuses on the rules governing schema creation.

Order Statement Description

1. CREATE table
statements

Parent tables, which cannot be nested, referenced in a
NESTED clause must be defined before the nested
table being created.

2. CREATE view
statements

Views referenced in other views must be created
before the other views.

3. GRANT
statements (for
tables and
views)

Creating objects before objects that they reference
causes a semantic error during compilation.
Model 204 SQL Data Definition Language 51

Creating schemas
CREATE SCHEMA statement

Syntax CREATE SCHEMA {schemaname

 | AUTHORIZATION authorization-id

 | schemaname AUTHORIZATION authorization-id}

 [schema-element •••]

Parameters where:

• schemaname conforms to rules for an SQL identifier (see “Naming SQL
objects” on page 51). Does not have to be explicitly specified. Examples in
“Indicating schema name and owner” on page 53 show how you can
indicate the schema name.

• authorization-id conforms to the rules for a Model 204 login user ID (no
more than 10 characters and no underscore characters, must begin with an
alphabetic character and must not contain certain character combinations).
The authorization ID cannot be an SQL reserved word (see Appendix B).

• schema-element is one of the following:

table-definition | view-definition

| privilege-definition

– table-definition as described in “Creating tables” on page 53.

– view-definition as described in “Creating views” on page 71.

– privilege-definition as described in “GRANT statement” on page 83 and
“REVOKE statement” on page 84.

Syntax rules The CREATE SCHEMA syntax rules follow:

• Schema name must be unique within the SQL catalog.

• Default authorization ID is the Model 204 login user ID.

• If the schema name is not specified, the schema name defaults to the
authorization ID.

• Issuing CREATE SCHEMA for a schema that already exists is an error.

• Only a Model 204 system manager can issue CREATE SCHEMA.

• You can create schemas that have no tables, views, or privileges. Such an
empty schema can be defined first and populated later. For example, the
following sequence is valid DDL:

CREATE SCHEMA S
CREATE SCHEMA P
52 Rocket Model 204 SQL Server User’s Guide

Creating tables
CREATE SCHEMA SP

Indicating schema name and owner

Examples of schema creation with different CREATE SCHEMA formats follow.
These examples show different ways to indicate the schema name and owner.
You can choose whether to explicitly specify a schema name or to explicitly
specify an authorization ID.

In the following example, schema name is TED, schema owner is TED. If you
specify no name, the default name is your authorization ID.

CREATE SCHEMA AUTHORIZATION TED
 CREATE TABLE S (•••)
 CREATE TABLE P (•••)
 CREATE TABLE SP (•••)

In the following example, schema name is MATERIAL_CONTROL, schema
owner is MFTNG.

CREATE SCHEMA MATERIAL_CONTROL AUTHORIZATION MFTNG
 CREATE TABLE PARTS (•••)
 CREATE TABLE SHIPMENTS (•••)

In the following example, schema name is ACCOUNTS, schema owner
defaults to the authorization ID of the issuing user.

CREATE SCHEMA ACCOUNTS
 CREATE TABLE ACCOUNTS_PAYABLE (•••)
 CREATE TABLE ACCOUNTS_RECEIVE (•••)

The schema name determined by a CREATE SCHEMA statement remains the
default schema name, which is assigned to the SQL objects you define, until
the CREATE SCHEMA transaction completes. For information about setting
the default schema outside the context of a CREATE SCHEMA using the
Model 204 SQL extension SET SCHEMA, see “Using SET SCHEMA” on
page 77.

Creating tables

This section describes table creation syntax and considerations that apply
generally to both nested and non-nested SQL tables. Information that is
nested-table specific is presented in “Creating nested tables” on page 63. The
definition of columns for a table is described in “Defining columns” on page 57.

A slightly abridged version of the CREATE TABLE statement syntax that the
Model 204 SQL Server supports is shown below. See Appendix A for the
complete syntax.
Model 204 SQL Data Definition Language 53

Creating tables
CREATE TABLE statement

Syntax CREATE TABLE <tablename>
 [SYSNAME ’filename’ | NESTED USING columname]
 (<column-definition> | <table-constraint-definition>
 [,<column-definition> | <table-constraint-definition>]
 •••)

Parameters where:

• tablename conforms to rules for an SQL identifier (see “Naming SQL
objects” on page 51). See also “Prefixing the schema name to an SQL
object” on page 77 for prefixing schema name.

• SYSNAME ’filename’ maps a table to a physical file; see “Mapping table
names to file names” on page 55 for more detail.

• NESTED USING columname is an extension that identifies a nested table.
See “Creating nested tables” on page 63.

• column-definition has the following syntax as described in “Defining
columns” on page 57.

columname <datatype> [SYSNAME ’fieldname’]
 [<column-constraint> •••]

• table-constraint-definition has the following syntax:

{ UNIQUE | PRIMARY KEY [SYSTEM] } (<column-list>)
[SYSNAME ’<fieldname>’]
| FOREIGN KEY (columname) REFERENCES parent-table-
name
[<referential-triggered-action>]

– UNIQUE must map to a Model 204 ORDERED UNIQUE field. For dis-
cussion, see “Specifying a multicolumn UNIQUE key” on page 60.

– PRIMARY KEY [SYSTEM], where SYSTEM is an extension with which
you can have the Model 204 SQL Server generate and manage a
unique primary key, as described on “Using system-generated keys” on
page 69.

– SYSNAME ’fieldname’ maps a column to the named Model 204 field;
see “Column naming and the SYSNAME extension” on page 59.

– FOREIGN KEY and REFERENCES clauses for defining referential
integrity constraints are supported for nested tables only.

Syntax rules The CREATE TABLE syntax rules follow:

• Table name must be unique within a schema.

• A table must have at least one column defined.
54 Rocket Model 204 SQL Server User’s Guide

Creating tables
• CHECK table constraint is not supported in Model 204 SQL. If you include
a CHECK clause in your SQL DDL, it does not become part of the SQL
catalog definition, although you receive no syntax error.

Model 204 SQL does support the WITH CHECK OPTION for views,
however.

Mapping table names to file names

The SQL Server maps the table you define to a Model 204 file. Your CREATE
TABLE statement determines both the name of the SQL table and the name of
the Model 204 file to which the table is mapped. You can implicitly or explicitly
identify the Model 204 file to which the table is mapped, or you can have
Model 204 generate a unique file name.

Implicitly identifying the file means mapping the table you name in the CREATE
TABLE to a file with the same name. Explicitly identifying the file means
mapping the table you name to a file that you specify with the keyword
SYSNAME. Automatic system generation of the file name is based on your
CREATE TABLE specification and is invoked by setting the Model 204
parameter SQLFILE.

As shown in Table 4-3, you indicate which of these file-naming options you
want by whether you specify a SYSNAME clause in your CREATE TABLE
statement and by your setting of the Model 204 SQLFILE parameter.

The SYSNAME clause is an optional Model 204 extension. If you specify a
SYSNAME value, that value is the file name to which your table is mapped.
This is true regardless of the SQLFILE setting.

SQLFILE is a Model 204 CCAIN parameter whose default setting of zero turns
off system generation of file names. If the SQLFILE value is one, and no
SYSNAME clause is specified, Model 204 generates a unique file name for the
specified SQL table.

Processing file names

File names you provide explicitly or implicitly are subject to Model 204 file
naming rules.

Table 4-3. Naming the corresponding Model 204 file

Method Add SYSNAME filename to
CREATE TABLE tablename?

SQLFILE
setting

Resulting
file name

Implicit No 0 tablename

Explicit Yes 0 or 1 filename

System
generated

No 1 Uniquely determined by
Model 204
Model 204 SQL Data Definition Language 55

Creating tables
If you are implicitly naming a file (no SYSNAME, SQLFILE=0), the SQL table
name you specify is assumed to be the name of the Model 204 file. If this table
name does not conform to the Model 204 file naming rules, it is truncated
and/or compressed to satisfy the Model 204 rules. (Model 204 file names
cannot have more than eight characters, underscore characters, initial
numbers, or certain character combinations.)

This assumed name is recorded in the SQL catalog as the Model 204 file name.
If the assumed name does not match an existing Model 204 file name, you get
an error when your application queries the database with that file in the query.

For example, with no SYSNAME and SQLFILE=0, Model 204 SQL maps the
SQL table OUR_OLD_DATA to the Model 204 file OUROLDDA.

If you identify the file explicitly with a SYSNAME clause, the name processing
is simpler: if the name you specify in the SYSNAME clause is greater than eight
characters, it is truncated to eight characters and stored in the catalog as the
file name. Any violations of Model 204 file naming rules are not detected until
your application queries the database with that file in the query.

For more information about Model 204 file naming rules, see the Rocket Model
204 documentation wiki:

http://m204wiki.rocketsoftware.com/index.php/Creating_a_file

Using CLOB or BLOB data

The CREATE TABLE statement supports the Character Large Object (CLOB)
and Binary Large Object (BLOB) data types.

To define a column containing CLOB or BLOB data, specify the keyword
"CLOB" or "BLOB" for the data type in the CREATE TABLE statement.

The following example defines a TABLE called MANUALS that contains all of
the manuals for Model204. RECTYPE and NAME are CHARACTER columns
that identify the format and the name of the manual. MANUAL is a CLOB
column that contains the actual text of the manual.

CREATE TABLE MANUALS
(RECTYPE
CHAR(15),
NAME
CHAR(25)
MANUAL
CLOB)

The following example defines a table containing employee information and a
picture of the employee.

CREATE TABLE EMPLOYEE
(ID
CHAR(15),
56 Rocket Model 204 SQL Server User’s Guide

Defining columns
NAME
CHAR(20),
PICTURE
BLOB)

Defining columns

This section describes column definition syntax and considerations that apply
generally to both nested and non-nested SQL tables. Information that is
nested-table specific is presented in “Creating nested tables” on page 63.

Column definition statement

Syntax columname <datatype>
 [SYSNAME ’fieldname’]
 [<column-constraint> •••]

Parameters where:

• columname conforms to rules for an SQL identifier (see “Naming SQL
objects” on page 51).

• datatype is the column’s data format, the options for which are:

CHAR[ACTER] [(length)] | NUM[ERIC]
[(precision [,scale])] | DEC[IMAL]
[(precision [,scale])]
| INT[EGER] | SMALLINT | FLOAT [(precision)]
| REAL | DOUBLE PRECISION | CLOB | BLOB

For more information about choosing data types, see “Matching Model 204
and SQL data formats” on page 31.

• SYSNAME ’fieldname’ maps a column to a Model 204 field; see “Column
naming and the SYSNAME extension” on page 59.

• column-constraint specifies the following syntax:

[NOT NULL] [UNIQUE | PRIMARY KEY [SYSTEM]]
| REFERENCES parent-table-name
[<referential-triggered-action>]

– NOT NULL column maps to a Model 204 field that has a non-null, non-
empty value on every record in the Model 204 file. The Model 204 SQL
Server does not allow you to violate this rule in an SQL DML update. If
you add a NOT NULL column to an existing table, be sure the corre-
sponding Model 204 field has non-null, nonempty values in all the
records in the file. For more information about Model 204 SQL handling
of nulls, see “Handling NOT NULL, UNIQUE, and multiply occurring
data” on page 38.
Model 204 SQL Data Definition Language 57

Defining columns
– UNIQUE must map to a Model 204 ORDERED UNIQUE field. For dis-
cussion about multiple-column uniqueness, see “Specifying a multicol-
umn UNIQUE key” on page 60.

– PRIMARY KEY [SYSTEM], where SYSTEM is an extension with which
you can have the Model 204 SQL Server generate and manage a
unique primary key, as described on “Using system-generated keys” on
page 69.

– REFERENCES clause for defining a referential integrity constraint is
supported for nested tables only, as described on “Nested tables
require a referential constraint definition” on page 67.

Syntax rules Only one PRIMARY KEY clause is allowed per table. Specifying more than one
brings an error message.

A primary key call is based on a Model 204 field with unique and ordered
attributes.

Unlike the SQL standard, PRIMARY KEY is syntactically independent of NOT
NULL. Specifying PRIMARY KEY without NOT NULL is not a syntax error.
However, regardless of whether you specify NOT NULL, when you specify
PRIMARY KEY, the SQL Server includes NOT NULL checking by default.

Unlike the SQL standard, UNIQUE is independent of NOT NULL. If you specify
UNIQUE, NOT NULL is not implied.

The DEFAULT clause for column definition is not supported in Model 204 SQL.
If you include a DEFAULT clause in your SQL DDL, it does not become part of
the SQL catalog definition, although you receive no syntax error.

The CHECK column constraint is not supported in Model 204 SQL. If you
include a CHECK clause in your SQL DDL, it does not become part of the SQL
catalog definition, although you receive no syntax error.

Model 204 SQL does support the WITH CHECK OPTION for views, however.

Mapping columns to Model 204 fields

The following are requirements and recommendations for mapping SQL
columns to Model 204 fields:

• You cannot map two different columns in the same table to the same
Model 204 field.

• To ensure accurate and efficient data handling, you must map Model 204
fields to SQL columns that have compatible data types. For information
about specifying data types for selected columns, see “Compatibility of
Model 204 and SQL data formats” on page 31. See also “Specifying
attributes” on page 117 for additional data type requirements.

• You can map a Model 204 INVISIBLE field to an individual SQL column, but
the column’s usability in DML operations is restricted. For example, you can
58 Rocket Model 204 SQL Server User’s Guide

Defining columns
use the column in certain circumstances in the WHERE clause of a
SELECT statement but cannot use the column in the SELECT list. You can
use the column as the target of an INSERT, but cannot use it as the target
or in the source expression of an UPDATE.

For more information about restrictions on DML operations with columns
mapped to INVISIBLE fields, see “Using SQL DML against INVISIBLE
fields” on page 164.

You cannot map an INVISIBLE field to a column that serves as a primary
key nor to a nested table column. You can map an INVISIBLE field to a
multicolumn unique constraint key, but not to the individual columns that
comprise the key. For information about multicolumn unique keys, see
“Specifying a multicolumn UNIQUE key” on page 60 and, in the Table
Specification facility, “Defining multicolumn unique keys (Multi-Column
Unique panel)” on page 122.

• If a Model 204 file is a sorted or hash key file, specify the sort or hash key
as a column in the table for the file if the table is a parent or base table and
the Model 204 FILEORG parameter has the X‘02’ option (key required) set.
Failure to do so does not result in a DDL error message, but DML file insert
attempts fail.

Also for such files, you cannot update the sort or hash key with SQL DML.
SQL UPDATE statements fail if a column that maps to the sort or hash key
is included.

The Model 204 SQL Table Specification facility requires you to specify the
sort or hash key as a column. However, if you do not want to include a
column for the sort or hash key, you can edit the DDL generated by the TSF
(if you are setting up a read-only table or if the sort or hash key is not
required, for example).

• Model 204 UNIQUE fields are guaranteed to have unique values but are
not guaranteed to have no null values. When you map an SQL UNIQUE
column to such a field, the SQL NOT NULL constraint is not implied. This
decoupling of UNIQUE and NOT NULL is a Model 204 SQL extension to
the SQL standard.

If you include NOT NULL in an SQL UNIQUE column’s definition, the SQL
Server prevents updates that violate the NOT NULL condition, as well as
provides Model 204 uniqueness protection.

Column naming and the SYSNAME extension

Model 204 SQL maps the SQL column you name to a Model 204 field. Unless
you designate with the SYSNAME clause the Model 204 field you are mapping
to the SQL column, the SQL Server assumes the SQL column name is the
Model 204 field name. If your column name does not match the Model 204 field
name, you are notified of the error when you attempt a DML query involving the
column.
Model 204 SQL Data Definition Language 59

Defining columns
An SQL column name can contain as many as 18 characters (A–Z, 0–9, and
underscore), and it must have no embedded blanks. Model 204 field names
can have 255 characters, embedded blanks, and a variety of special
characters; only certain character combinations are restricted.

SYSNAME allows you to resolve any conflicts between existing Model 204
names and SQL naming rules. Any pre-existing SQL naming format you have
can be retained without modification.

For an example of using SYSNAME, see the next section, “Specifying a
multicolumn UNIQUE key”, which also describes how multicolumn key names
are modified and stored in the SQL catalog.

For more information about Model 204 field naming rules, see the Rocket
Model 204 documentation wiki:

http://m204wiki.rocketsoftware.com/index.php/Field_names

Specifying a multicolumn UNIQUE key

You can provide uniqueness checking for an SQL column by mapping it to a
Model 204 field that has the ORDERED UNIQUE field attribute. Any SQL
operation on such a column that violates its uniqueness in the table is not
allowed. To provide such a uniqueness constraint for the combination of the
values of two or more columns in a table, you can designate a multicolumn
unique key.

In Model 204 SQL DDL, a multicolumn unique key is a constraint key that has
no SQL name and is not queriable. You map such a key to a Model 204
UNIQUE index field that your Model 204 file manager must add to the
Model 204 file. This special field, which must be ORDERED CHAR, is a
concatenation of the fields that correspond to the SQL columns in the key.
Directions for defining and populating such a field follow.

Once the key is defined to the SQL catalog, SQL updates to any of the fields
automatically update the index field that was added to support the multi-column
unique definition. SQL INSERTs add values to the index, DELETEs remove
values, and UPDATEs modify values.

Defining the key

You can use the Table Specification facility (see Chapter 5) or manually define
the multicolumn unique key in the DDL you submit to the SQL catalog.

To manually define a multicolumn unique key:

• Make sure the definitions of the columns that are to comprise the key
include a NOT NULL specification.

• Include a UNIQUE constraint clause after the column definitions. Follow the
UNIQUE keyword with a parenthesized sequence of the names of the
columns forming the key. The order of the columns in parentheses
60 Rocket Model 204 SQL Server User’s Guide

Defining columns
determines the order in which they are concatenated to build the supporting
Model 204 UNIQUE index field.

In the following example, two columns are concatenated to form a unique key.

CREATE TABLE SITE
 (ORG_ID CHAR(8) SYSNAME ’ORG ID’ NOT NULL,
 SITE_ID CHAR(4) SYSNAME ’SITE ID’ NOT NULL,
 SITE_NAME CHAR(36) SYSNAME ’SITE NAME’ ,
 UNIQUE (ORG_ID, SITE_ID) SYSNAME ’ORG SITE ID INVIS’)

In this example, a SYSNAME clause is used in each column definition,
including the multicolumn unique key. Although using SYSNAME is optional for
the multicolumn unique key, remember that the Model 204 SQL Server
generates an assumed field name if you do not specify one with SYSNAME.

Without the SYSNAME clause following the UNIQUE clause in the example
above, the Model 204 SQL Server concatenates the individual names ORG_ID
and SITE_ID with an ampersand character (&) in between to get
ORG_ID&SITE_ID. This name is stored in the SQL catalog as the name of the
Model 204 index field.

The maximum number of columns you may concatenate depends on your data.
You cannot exceed the Model 204 limit of 255 characters for the combined
lengths of the concatenated field values. In addition, you cannot exceed the
255 characters for the key name (either the SYSNAME value for the Model 204
field or, if SYSNAME is not used, the concatenation of the SQL column names).

The Model 204 field that corresponds to the SQL multicolumn unique key is
normally INVISIBLE to save Table B space. The key’s constituent columns
(ORG_ID and SITE_ID in the example above) cannot be mapped to INVISIBLE
fields.

Populating the index field

Once the Model 204 index field and multicolumn unique key are defined, you
must populate the index. If you are defining a key for a table column that maps
to a new Model 204 file, Model 204 SQL automatically populates the index as
you insert records through SQL.

If the Model 204 file data already exists, you must populate the index with
values that are concatenations of the data values in the fields that are mapped
to the columns comprising the key. You can populate the index for an existing
file in two ways:

• Automatically, with an SQL UPDATE statement. Use this method if you are
maintaining the associated Model 204 file exclusively with SQL.

Issue an SQL UPDATE in which you SET one of the multicolumn unique
key columns equal to itself. This triggers an automatic building or rebuilding
of the index for any multicolumn unique key that includes the column. If the
Model 204 SQL Data Definition Language 61

Defining columns
column is a member of more than one multicolumn unique key, issuing
such an UPDATE triggers the rebuilding of all of them.

For example, you can issue the following UPDATE statement to populate
the index for the key (ORG SITE ID INVIS):

UPDATE SITE SET ORG_ID=ORG_ID

As a precaution, make a backup copy of the file before the UPDATE.

• Manually, with Model 204 SOUL or Host Language Interface manipulation.
Use this method if you are maintaining the associated Model 204 file with
SOUL or the Host Language Interface. You can use the algorithm
described in “Using the multicolumn unique key algorithm”.

If you allow updates to the Model 204 file with SOUL or the Host Language
Interface, you must ensure that you continue to manually maintain the index
field.

If you want or need to repopulate an index field, use either of the following
methods:

• If the field is INVISIBLE, delete the field (with the Model 204 DELETE
command), define it again (with the Model 204 DEFINE command), then
repopulate the field using the SQL UPDATE method.

• If the field is not INVISIBLE, flush the old index by redefining (with the
Model 204 REDEFINE command) the index field without the ORDERED
attribute. Then redefine the field again, this time with the ORDERED CHAR
attribute. Finally, repopulate the field using the SQL UPDATE method.

Using the multicolumn unique key algorithm

This algorithm defines for each column in the key the method for generating the
field value to be concatenated into the key. The algorithm is affected only by the
SQL column attribute; how the data is stored in Model 204 does not matter.
Each data value is individually generated as described in Table 4-4. The values
are then concatenated as described and stored in the index:

1. For each component field, define the data value to a variable according to
column data type, as shown in Table 4-4.

Table 4-4. Multicolumn unique key encoding rules

Column data type Encoding rules

CHARACTER Remove trailing blanks, then convert to counted
string (character string with one-byte prefix that
specifies the number of characters in the string).

INTEGER or SMALLINT Store as 4-byte IBM binary integer.
62 Rocket Model 204 SQL Server User’s Guide

Creating nested tables
2. Concatenate the generated variables, removing trailing blanks (X‘40’),
leaving embedded blanks, and keeping one blank if the length of the con-
catenated key after this processing is zero.

3. Store the concatenated value as your index value.

Algorithm example

Build an index value from the following columns and values:

COL1 is DECIMAL (7, 2) (sample value: 10.2)
COL2 is CHARACTER (6) (sample value: ’JOHN’)
COL3 is DOUBLE (sample value: 16.0)
COL4 is INTEGER (sample value: 1)

The concatenated value is:

Creating nested tables

A nested table is a base table with columns that map to Model 204 multiply
occurring fields or groups of fields. A nested table is associated with a single
base table parent by a unique table column key, which joins the nested table to
the parent table.

DECIMAL Convert to a right-justified string with length
dependent on scale:

scale=o: length=precision + 1

scale=precision: length=precision + 3

scale>precision: length=precision + 2

NUMERIC Same as DECIMAL.

REAL

DOUBLE

FLOAT

For floating point data, use the SQL UPDATE
method described on “Populating the index field” on
page 61. Model 204 SQL converts floating point
data according to proprietary rules that you cannot
reliably duplicate.

Table 4-4. Multicolumn unique key encoding rules

Column data type Encoding rules

 10.2 04 JOHN 42 10 00 00 00 00 00 00 00 00 00 01

 9 10 15 23
Model 204 SQL Data Definition Language 63

Creating nested tables
The NESTED USING clause is the optional clause in a CREATE TABLE
statement that identifies the table as a nested table. The abridged CREATE
TABLE syntax for a nested table below shows this NESTED clause extension.

Nested tables are Model 204 SQL DDL extensions. There are no extensions to
Model 204 SQL DML for using nested tables. For a DML query, nested tables
are logically represented like a typical SQL table. Querying nested tables is
discussed in Chapter 7.

This section describes the DDL coding rules and requirements for the creation
of nested tables. For information about creating nested tables with the TSF, see
“Defining nested tables” on page 110. For introductory information about
Model 204 nested tables, see Chapter 3.

Nested table statements

Syntax CREATE TABLE tablename NESTED USING columname
 (column-definition | table-constraint-definition
 [,column-definition | table-constraint-definition]•••
)

Parameters where:

• column-definition has the following syntax

columname datatype [SYSNAME ’fieldname’]
[column-constraint] •••

– column-constraint has the following syntax:

NOT NULL [UNIQUE]

| REFERENCES parent-table-name

[referential-triggered-action]

referential triggered action has the following syntax:

ON UPDATE CASCADE [ON DELETE CASCADE]

| ON DELETE CASCADE [ON UPDATE CASCADE]

• table-constraint-definition has the following syntax:

unique-constraint-definition
| referential-constraint-definition

unique-constraint-definition has the following syntax:

UNIQUE (columname) [SYSNAME ’fieldname’]

referential constraint definition has the following syntax:

[FOREIGN KEY (columname)

REFERENCES parent-table-name

[referential-triggered-action]]
64 Rocket Model 204 SQL Server User’s Guide

Creating nested tables
referential triggered action has the following syntax:

ON UPDATE CASCADE [ON DELETE CASCADE]

| ON DELETE CASCADE [ON UPDATE CASCADE]

Syntax rules Unless otherwise specified, all the rules that apply to tables apply also to
nested tables.

Rules for nested table columns

Only one column can be referenced by a NESTED clause, and only one
NESTED clause is allowed per table.

Nested table must have one foreign key column, and can have no more.

Nested table must have at least one column in addition to the foreign key
column.

All columns in a nested table must be defined as NOT NULL.

Column in a nested table cannot be mapped to a field with the Model 204 field
attribute INVISIBLE.

Column in a nested table may not be mapped to a field with the Model 204 field
attribute UPDATE AT END.

Multicolumn composite UNIQUE key is not allowed for a nested table.

Rules for PRIMARY KEY and FOREIGN KEY

Parent table that a foreign key refers to with the REFERENCES clause must
have a PRIMARY KEY. This PRIMARY KEY can be a system-generated key.

• A PRIMARY KEY must map to a Model 204 UNIQUE ORDERED field.

• PRIMARY KEY cannot map to a Model 204 INVISIBLE field.

If a foreign key is defined twice, first with a REFERENCES clause and then with
a FOREIGN KEY clause, the statement is accepted only if the two clauses are
identical and reference the same column.

SQL error message -4703 is generated if a FOREIGN key is defined twice for
a nested table and the two keys do not reference the same column. For
example:

Acceptable: CREATE TABLE NESTEDINVENTOR2 NESTED USING PART_NO
 (PART_NO
 DECIMAL(8) NOT NULL
 REFERENCES INVENTORY,
 ON_HAND
 SYSNAME 'ON HAND'
 FLOAT(4) NOT NULL,
Model 204 SQL Data Definition Language 65

Creating nested tables
 LOCATION
 CHAR(255) NOT NULL,
 FOREIGN KEY (PART_NO) REFERENCES INVENTORY)

Returns SQL
error -4703:

CREATE TABLE NESTEDINVENTOR2 NESTED USING PART_NO
 (PART_NO
 DECIMAL(8) NOT NULL
 REFERENCES INVENTORY,
 ON_HAND
 SYSNAME 'ON HAND'
 FLOAT(4) NOT NULL,
 LOCATION
 CHAR(255) NOT NULL,
 FOREIGN KEY (ON_HAND) REFERENCES INVENTORY)

Data type of the FOREIGN KEY of a nested table must match exactly (both in
type and length) the data type of the PRIMARY KEY of the referenced table.
Violation causes an error message to be issued.

When paired in a nested table relationship, PRIMARY KEY and FOREIGN KEY
can specify only single-column keys. For multicolumn primary key functionality,
use PRIMARY KEY SYSTEM.

For more information about foreign keys, see “Nested tables require a foreign
key” on page 67. Using system generated keys is discussed on “Using system-
generated keys” on page 69. For more information about multiple-column
primary keys, see “Simulating multicolumn primary keys” on page 70.

Rules for SYSTEM and SYSNAME

SYSTEM keyword is optional; but if SYSTEM is specified, PRIMARY KEY must
also be specified. The column associated with PRIMARY KEY SYSTEM must
have a data type of INTEGER.

SYSNAME cannot be specified with PRIMARY KEY SYSTEM. SYSTEM
causes the mapping of the column to a system-generated field. Specifying
SYSNAME, which implies a link to a Model 204 field name, conflicts with this
automatic mapping. Violation causes an error message to be issued.

Neither SYSTEM nor SYSNAME can be specified with the foreign key column
of a nested table. Violation causes an error message to be issued.

SYSTEM and SYSNAME are Model 204 SQL extensions. Using SYSTEM is
discussed in “Using system-generated keys” on page 69; using SYSNAME is
discussed on “Mapping table names to file names” on page 55 and on “Column
naming and the SYSNAME extension” on page 59.

Mapping multiply occurring groups

Nested table rows are ordered and retrieved by matching occurrence: the first
row is mapped to the first occurrences of the repeating field values, the second
66 Rocket Model 204 SQL Server User’s Guide

Creating nested tables
row is mapped to the second occurrences of the repeating field values, and so
on. The rank of occurrence (first, second, and so on) is determined by physical
storage order in the file. For an example showing this row-to-occurrence
mapping, see “Simulating normalization of Model 204 record data” on page 28.

To preserve the matching occurrence ordering, each member of a group of
multiply occurring values mapped to nested table columns must have the same
number of occurrences. Otherwise, retrievals of these columns are not reliable.
In addition, since null values invalidate matching occurrence ordering, nested
table columns must be NOT NULL.

If you want to add a new column to an existing nested table, the column must
have as many rows as the other table columns and must have a value for each
of the existing rows.

Nested tables require a foreign key

A nested table must have a foreign key column. A foreign key is equivalent to
its related primary key in the parent table. The unique values of the primary or
foreign key are used to locate the Model 204 records with the repeating field
values.

You cannot update the foreign key directly with SQL DML. Updates to the
primary key are propagated to the foreign key. You must specify the foreign key
in an SQL INSERT; it is used to locate the parent record.

Examples of specifying the foreign key in DDL follow.

Nested tables require a referential constraint definition

A referential constraint definition (REFERENCES clause) is required in
conjunction with the NESTED clause to define a nested table and its
relationship to its parent. This constraint protects SQL database integrity by
ensuring that all the values of a column in the nested table (the foreign key)
match all the values of the primary key of the referenced parent table.
Operations that violate a defined referential constraint are not allowed.

Only one referential constraint is allowed per table. If you specify two
REFERENCES clauses for a single table (one in a column definition and one
in a foreign key definition), the clauses must be the same and reference the
same column.

How you specify a referential constraint depends on whether you are using the
column definition or table constraint definition option of the Model 204 SQL
CREATE TABLE statement. Examples of each follow. In addition, the format
changes slightly if you are using a system-generated primary key. Examples
with system-generated primary keys are in “Using system-generated keys” on
page 69.
Model 204 SQL Data Definition Language 67

Creating nested tables
Table constraint format

There must be a FOREIGN KEY clause that refers to the column (the foreign
key) specified in the NESTED clause. The FOREIGN KEY clause must be
followed by a REFERENCES clause referring to the parent table. For
example:

 CREATE TABLE PEOPLE
 (NAME CHAR(60) NOT NULL PRIMARY KEY
 HIRE_DATE CHAR(8))

 CREATE TABLE TASKS NESTED USING FNAME
 (TASK CHAR (25) NOT NULL,
 FNAME CHAR (60) NOT NULL,
 FOREIGN KEY (FNAME) REFERENCES PEOPLE)

Column constraint format

The column that is specified in the NESTED clause must have a
REFERENCES clause referring to the parent table in the column definition. For
example:

 CREATE TABLE PEOPLE
 (NAME CHAR(60) NOT NULL PRIMARY KEY,
 HIRE_DATE CHAR(8))

 CREATE TABLE TASKS NESTED USING FNAME
 (TASK CHAR (25) NOT NULL,
 FNAME CHAR (60) NOT NULL REFERENCES PEOPLE)

CASCADE is the only referential triggered action

A referential triggered action is a delete rule (ON DELETE action) and/or an
update rule (ON UPDATE action) that governs what action a system takes if a
referential constraint is violated. A system can refuse to execute a constraint-
violating request, or it can cascade (that is, can automatically execute an
operation that compensates for the violation).

For example, if you change a value of the primary key of the parent table
referenced by a nested table, you violate the referential integrity
(REFERENCES clause) of the foreign key. A system can protect the referential
integrity by preventing you from changing the primary key value. Or a system
can cascade, automatically associating the nested table rows that refer to the
changed primary key value with the new primary key value. The Model 204
SQL Server uses only the cascade action; it does not prevent you from
changing the primary key value.

If you change a value of the primary key of the parent table from n1 to n2, the
Model 204 SQL Server changes all nested table foreign key references from n1
to n2.
68 Rocket Model 204 SQL Server User’s Guide

Creating nested tables
A referential triggered action is specified with a REFERENCES clause used in
a nested table definition. For the column in a nested table defined in the
NESTED clause, the only Model 204 SQL Server referential triggered action
that you can specify is the CASCADE action. Updates and deletes are
automatically cascaded.

If you do not specify an update or delete rule, the rule is set to CASCADE by
default.

Using system-generated keys

A primary key is a column that has values that uniquely identify each record in
the table. A nested table parent is required to have such a column. If no single
column is a unique identifier in a nested table parent, or if a combination of two
or more columns comprise the unique identifier, you must have the Model 204
SQL Server generate and manage a unique primary key.

This system-generated key is a nonupdatable, unique integer key automatically
assigned to each row occurrence by the system when the row is inserted. In
fact, this key is the Model 204 internal record number, and other than being
nonupdatable, it is like any other relational column. You can retrieve it with
SELECT and use it in predicates. You can give it any name you want.

In some queries, system-generated keys might be more efficient than specified
single-column keys, because they provide direct access to the data. However,
the system-generated values for SYSTEM keys are not necessarily preserved
across a file reorganization: after a reorganization, the value for a system-
generated column might change for any particular row occurrence. Because of
this impermanence, avoid operations with the value of this column if the result
of the operations is required for longer than the current session.

Defining system-generated keys

To define a system-generated key, specify the SYSTEM modifier to the
PRIMARY KEY constraint in the parent table column definition. The following
examples use the column constraint format of CREATE TABLE.

Example 1 - Primary key is not system-generated: Primary key is not
system-generated. This example is repeated from “Column constraint format”
on page 68. Here NAME is a unique identifier for each record in the parent
table.

 CREATE TABLE PEOPLE
 (NAME CHAR(60) NOT NULL PRIMARY KEY,
 HIRE_DATE CHAR(8))

 CREATE TABLE TASKS NESTED USING FNAME
 (TASK CHAR (25) NOT NULL,
 FNAME CHAR (60) NOT NULL REFERENCES PEOPLE)
Model 204 SQL Data Definition Language 69

Creating nested tables
The column name used for the primary key in the parent table is different from
its related foreign key in the nested table, but this is not a requirement in SQL.

Example 2 - Primary key is system-generated: Primary key is system-
generated. In this example, assume NAME and HIRE_DATE together form a
unique identifier for each record in the parent table. Such a composite key
requires you to use a system-generated primary key, because the primary key
for nesting must be a single column.

To define a system-generated key, specify a name for the system-generated
primary key in the parent table column definition, and follow the token
PRIMARY KEY with the modifier SYSTEM:

 CREATE TABLE PEOPLE
 (PKEY INTEGER NOT NULL PRIMARY KEY SYSTEM,
 NAME CHAR(60) NOT NULL
 HIRE_DATE CHAR(8))

 CREATE TABLE TASKS NESTED USING PKID
 (TASK CHAR (25) NOT NULL,
 PKID INTEGER NOT NULL REFERENCES PEOPLE)

Notice that the FNAME column definition included in example 1 is not included
in the definition in example 2. In example 1, FNAME is the foreign key, that is,
it is equivalent to the primary key NAME. In example 2, PKEY replaces NAME
as the primary key. A foreign key in TASKS equivalent to PKID must be
included.

For information about multicolumn keys for nonnested tables, see “Specifying
a multicolumn UNIQUE key” on page 60.

Simulating multicolumn primary keys

As stated in example 2, Model 204 SQL does not allow you to define a
multicolumn primary key in conjunction with a nested table foreign key. In such
a case, however, you can use a system-generated primary key to get the
functionality of a multicolumn primary key.

In addition to the definition of the system-generated primary key shown in
example 2, add a uniqueness constraint definition for the columns that together
form a unique identifier for each record in the parent table. (This constraint
requires designating HIRE_DATE as NOT NULL.)

 CREATE TABLE PEOPLE
 (PKEY INTEGER NOT NULL PRIMARY KEY SYSTEM,
 NAME CHAR(60) NOT NULL
 HIRE_DATE CHAR(8) NOT NULL
 UNIQUE (NAME, HIRE_DATE) SYSNAME ’HIRE ID’)

The system-generated key satisfies the Model 204 SQL requirement for a
single-column unique primary key. The multicolumn unique key definition for
NAME and HIRE_DATE preserves their uniqueness.
70 Rocket Model 204 SQL Server User’s Guide

Creating views
To SELECT the composite key columns (NAME and HIRE_DATE) and the
multiply occurring column (TASK), you need to use the following joined-table
SELECT instead of a simple non-joined SELECT:

SELECT NAME, HIRE_DATE, TASK
 FROM PEOPLE, TASKS
 WHERE PKEY=PKID

Inserts into tables with system-generated keys

You cannot insert column values into a table that has a system-generated key
unless you specify the target-column list. For example, the following insert into
table PEOPLE, whose primary key PKEY is system-generated, is valid.
Model 204 SQL automatically provides a value for PKEY:

INSERT INTO PEOPLE (NAME, HIRE_DATE)
 VALUES (‘CJDATE’,’10/01/90’)

SQL syntax rules dictate that inserts without a column list require you to provide
values for all the columns in the table. Because you cannot provide the primary
key value (because PKEY is system-generated and you cannot update a
system-generated key), removing (NAME, HIRE_DATE) from the example
above causes the insert to fail.

These rules for inserts into tables that have system-generated keys apply to
base and parent tables. For inserts into nested tables that have system-
generated keys, you must provide the primary key value from the parent table.

Creating views

Unlike tables and columns, views do not map directly to Model 204 files and
fields. A view is a selected set of columns and rows from one or more SQL
tables or views that can be displayed as a unit. A view contains no data but
instead is defined to access data in one or more tables.

The Model 204 SQL CREATE VIEW statement includes extended SELECT
functionality that enables the simulation of Model 204 groups.

For a discussion and detailed example of the DDL statement security
considerations affecting view creation and access, see “Model 204 SQL view
privileges” on page 90.

CREATE VIEW statement

Syntax CREATE VIEW <viewname> [(<column-list>)]
 AS <query-expression> [WITH CHECK OPTION]

Parameters where:

• viewname conforms to rules for SQL identifier.
Model 204 SQL Data Definition Language 71

Creating views
• column-list has the following syntax:

columname [,columname] •••

query-expression

• A query-specification or a UNION of query specifications, where query
specification is a SELECT statement (with no ORDER BY clause).

• WITH CHECK OPTION checks DML inserts and updates to ensure that
they do not violate view definition conditions.

Syntax rules The CREATE VIEW syntax rules are:

• Query specifications joined by the UNION operator may contain no joined
tables and cannot include GROUP BY or HAVING.

• Query specifications joined by the UNION operator cannot contain an
EXISTS clause.

Rules for updating views

The following rules govern whether you can update a particular view.

• The definition of the view cannot include the UNION keyword or the
DISTINCT keyword.

• You can refer to only one table in the FROM clause.

• If the CREATE VIEW statement includes a WHERE clause, the WHERE
clause cannot include a subquery.

• The CREATE VIEW statement cannot include a GROUP BY clause or a
HAVING clause.

• If the CREATE VIEW statement includes a SELECT clause, the SELECT
clause cannot contain expressions.

This means that DDL used to define a view cannot grant the privileges
UPDATE, INSERT, or DELETE to any view that ignores the “Rules for updating
views” on page 72. For example, the following view DDL generates an error.

SET SCHEMA DEMO
SET USER AGENT1
DROP VIEW TEST_VIEW
CREATE VIEW TEST_VIEW (TEST_ID, POLICY_NO)
 AS SELECT TEST_TABLE.TEST_ID, CLIENTS.POLICY_NO

 FROM TEST_TABLE, CLIENTS

GRANT SELECT, UPDATE, DELETE, INSERT ON TEST_VIEW TO ADMIN
72 Rocket Model 204 SQL Server User’s Guide

Creating views
Because you cannot update a view that is based on more than one table—
TEST_TABLE and CLIENTS—this DDL generates the following error:

SQL Error -551 AGENT1 does not have the privilege to per-
form operation GRANT on object DEMO.TEST_VIEW.

However the following GRANT SELECT clause is valid:

GRANT SELECT ON TEST_VIEW TO ADMIN

Only the updating clauses—UPDATE, INSERT, DELETE—are disallowed.

Guideline for view definitions

The following general rule for view definitions governs what is allowed in a view
definition and how you can select against that view:

• Query in a DML SELECT against a view is evaluated by substituting the
view definition for the references to the view in the DML SELECT. The
query that results from this substitution or translation process must always
be a valid SQL SELECT statement.

Using SQL views in Model 204 SQL DDL

Use SQL views for the following operations:

• To implement more efficiently your security strategy

Once a view is defined, the Model 204 SQL Server checks only the
privileges to access the view itself, not the privileges for each of the
elements of the view. For example, you might want to secure data by record
type in a mixed record type file. After defining the views by record type, you
can then limit access to each type of record by selectively granting
privileges to access each view.

For more information about privileges for views, see page 4-47.

• To provide security that is similar to Model 204 field level security

Using GRANT to selectively permit updates to individual columns of a table
can be degrading to DML processing performance. You can instead define
a view with these columns and grant limited access to the view. Such a view
is easier to define and maintain and is the only way to also grant SELECT
access to just those columns.

• To simulate Model 204 file groups

File groups are not directly supported in Model 204 SQL DDL. However,
you can use a Model 204 SQL CREATE VIEW extension to create views
that simulate Model 204 groups. See “Simulating file groups” on page 74.

• To map Model 204 files that contain mixed record types
Model 204 SQL Data Definition Language 73

Creating views
Define individual tables to the SQL catalog that map to files that have a
variety of types of records. You can isolate the individual record types by
defining a separate view for each one. See “Mapping files with mixed record
types” on page 74.

Simulating file groups

An SQL table cannot be mapped to a Model 204 file group. You can simulate
a group, however, by creating a view that is comprised of a concatenation of
tables that are mapped to the files in the group.

First, map an SQL table to each of the files in the Model 204 group. Then create
a view defined as a UNION (or UNION ALL) of SQL SELECT statements, each
of which selects all the rows in one of the tables mapped to the group. This
union of SELECT statements is extended functionality to the CREATE VIEW
statement.

The following example shows three table definitions and then a view definition
based on those tables that simulates a Model 204 file group:

CREATE TABLE POLICIES_89
 (POL_NO INTEGER, ACC INTEGER, STATE CHAR(2))

CREATE TABLE POLICIES_90
 (POL_NO INTEGER, ACC INTEGER, STATE CHAR(2))

CREATE TABLE POLICIES_91
 (POL_NO INTEGER, ACC INTEGER, STATE CHAR(2))

CREATE VIEW MA_POLICIES (POLICY_NO, ACCIDENTS) AS
 SELECT POL_NO, ACC FROM POLICIES_89 WHERE STATE = ’MA’
 UNION ALL
 SELECT POL_NO, ACC FROM POLICIES_90 WHERE STATE = ’MA’
 UNION ALL
 SELECT POL_NO, ACC FROM POLICIES_91 WHERE STATE = ’MA’

You can use SELECT statements against the view to query the “group” of
tables. However, you cannot update the file group through these views. An
example of a SELECT statement against the view is:

 SELECT POLICY_NO FROM MA_POLICIES WHERE ACCIDENTS > 5

Mapping files with mixed record types

An example of views defined for mixed record type files follows. The example
shows manually generated DDL that defines two views of the CLIENTS file
from the Model 204 demonstration database. After mapping all the fields
(regardless of record type) to a single base table, you define a view for each
record type:

CREATE SCHEMA AUTHORIZATION GEORGE
74 Rocket Model 204 SQL Server User’s Guide

Creating views
CREATE VIEW DRIVERS
 (DATE_OF_BIRTH, DRIVER_ID, FULLNAME, MARITAL_STATUS,
 POLICY_NO, SEX, STATE) AS
 SELECT
 DATE_OF_BIRTH, DRIVER_ID, FULLNAME, MARITAL_STATUS,
 POLICY_NO, SEX, STATE
 FROM CLIENTS
 WHERE RECTYPE = 'DRIVER'
GRANT ALL PRIVILEGES ON DRIVERS TO PUBLIC

CREATE VIEW POLICIES
 (ADDRESS, AGENT, ANNIV_DATE, CITY, DATE_OF_BIRTH,
 FULLNAME, POLICY_NO, POLICYHOLDER, STATE,
 TOTAL_PREMIUM, ZIP) AS
 SELECT
 ADDRESS, AGENT, ANNIV_DATE, CITY, DATE_OF_BIRTH,
 FULLNAME, POLICY_NO, POLICYHOLDER, STATE,
TOTAL_PREMIUM,
 ZIP
 FROM CLIENTS
 WHERE RECTYPE = 'POLICYHOLDER'
GRANT ALL PRIVILEGES ON POLICIES TO PUBLIC

For the sake of simplicity, these views do not include the CLIENTS nested table
columns. These columns map to multiply occurring Model 204 fields.

Maintaining views

You are responsible for ensuring that your views remain valid over time. The
Model 204 SQL Server does not warn you when a view is invalidated and does
not prevent you from issuing DDL that renders a view invalid.

The DDL statements you can use for views are:

CREATE VIEW
DROP VIEW
GRANT
REVOKE

You can change the roster of users that can access a view (with GRANT and
REVOKE), but you cannot change the view definition itself. Once a view is
defined, you can modify it only by deleting it (with DROP VIEW) and redefining
a new one (with CREATE VIEW).

You can modify objects that the view references, but the modifications are not
propagated to the view definition itself. For example, if you drop a table that is
referenced by a view, the change is not propagated to the view definition. The
view becomes invalid, yet the view definition remains in the catalog. You are
not notified that your view is invalid until the time of DML query validation.
Model 204 SQL Data Definition Language 75

Setting the schema and user context
The Model 204 SQL Server does not delete invalid views from the SQL catalog
unless you explicitly drop the view or drop the schema to which the view
belongs.

Querying views

Queries against views whose definitions contain UNION ALL, GROUP BY,
HAVING, or SELECT DISTINCT have the following restrictions.

Views defined with UNION ALL

SELECT statements in a query expression that contains the UNION operator
cannot reference any views that have definitions that contain the UNION
operator.

An SQL DML statement

• That references a view that has a UNION operator cannot itself use a
UNION operator.

• Cannot reference in a subquery a view that has a UNION operator.

• That references a view that has a UNION operator cannot use that view in
a join expression. That is, no other view or table can be specified in the
FROM clause of the query specification used in the DML statement.

An SQL SELECT statement

• That references a view that has a UNION operator cannot apply the
GROUP BY clause nor any of the aggregating functions (COUNT, AVG,
MAX, MIN, SUM).

Views defined with GROUP BY, HAVING, or SELECT DISTINCT

Query against a view defined with

• GROUP BY, HAVING, or both, can have no other views or tables in the
FROM clause, and cannot have a WHERE, GROUP BY, or HAVING
clause.

• SELECT DISTINCT can have no other views or tables in the FROM clause,
and cannot have a GROUP BY or HAVING clause. Such queries must
specify SELECT *.

• GROUP BY along with SELECT DISTINCT cannot have WHERE, GROUP
BY, or HAVING clauses.

Setting the schema and user context

This section describes how to determine, indicate, and change the schema and
user context, and introduces the SET SCHEMA and SET USER statements.
76 Rocket Model 204 SQL Server User’s Guide

Setting the schema and user context
Determining the default schema context

At the beginning of an SQL session, the default schema context (name) is the
Model 204 user ID established at login (with trailing blanks removed). The
default schema name is assigned to any SQL objects you indicate in your DDL
for the entire session, unless you specify another schema name. This default
context is in effect except when a CREATE SCHEMA transaction is active (see
“Indicating schema name and owner” on page 53). You can change the default
context with the SET SCHEMA statement.

Prefixing the schema name to an SQL object

After SQL objects are created, you may need to make adjustments to your
schemas to accommodate new users, changes to privileges, or new data. To
revise SQL objects already defined in the SQL catalog, you cannot use
CREATE SCHEMA, because it can be used only once per schema, that is,
when you initially create the schema. Issuing a CREATE SCHEMA that names
an existing schema is an error.

To selectively modify SQL objects that reside in different schemas, you need to
identify the schema to which the objects belong. You can do so by specifying
the schema name as qualification along with the name of the object (table,
view) you are adding or modifying. For example:

schemaname.tablename

You can qualify the name of a column with a table name or with a table name
and a schema name. For example:

schemaname.tablename.columname

If you do not specify the schema name along with the object, the schema name
assigned is the current default schema.

You can qualify a table or view name only with the schema name that is the
current default, if you are issuing CREATE TABLE or CREATE VIEW as part
of a CREATE SCHEMA transaction. This restriction does not apply to GRANT
statements in a CREATE SCHEMA transaction.

You can reset or change the current default schema by using SET SCHEMA.

Using SET SCHEMA

You can change the default schema name in SQL DDL or DML by using the
following Model 204 SQL extension statement:

SET SCHEMA schemaname

SET SCHEMA defines the current default schema context. Statements
following SET SCHEMA are assumed to apply to this schema. This default
Model 204 SQL Data Definition Language 77

Setting the schema and user context
remains in effect for the entire session or until reset by another SET SCHEMA
statement.

SET SCHEMA allows you to avoid continual specification of the schema name
with SQL objects you are modifying or using. If no schema name is appended
to an SQL object you add or modify after issuing SET SCHEMA, the schema
name of the object defaults to the current setting of SET SCHEMA.

Any user can issue SET SCHEMA, because it has no effect on a schema
definition other than establishing the context. Once the schema context is set,
however, permission to operate with DDL or DML on the SQL objects in the
schema depends on the individual statement. The privileges required to issue
individual Model 204 SQL DDL statements are summarized on “DDL
statement-level security” on page 87.

Using SET USER

In Model 204, authority to issue commands is based on the user role or type. A
system manager (determined by login ID) typically is the pivotal user with
greatest authority. In SQL, authority is based on object ownership, the
authorization ID of the schema to which an object belongs. Model 204 SQL
statement security combines these characteristics: to create schemas and
tables, you must be a system manager and your login ID must match the
authorization ID for the schema to which the object belongs.

However, this approach has the following drawback: to create a schema that
has an SQL authorization ID other than the system manager’s, the system
manager has to give system manager privileges to that SQL user. The
Model 204 SQL extension statement SET USER resolves this drawback.

SET USER, available to system managers only, changes the current SQL user
context. A system manager issues SET USER ABC and in effect acquires the
SQL authorization ID ABC and its associated SQL privileges. At the same time,
the system manager retains Model 204 login ID privileges.

SET USER thus enables a kind of superuser, who can issue SQL statements
for another SQL user without having to log in as that user or give that user
system manager privileges. The system manager gains immediate access to,
and authority to change, all defined SQL objects.

The SET USER syntax is:

Syntax SET USER authorization-id

SET USER can be used with SQL DML or DDL statements. For an example
showing how SET USER is used, see “SQL statement security example” on
page 91.
78 Rocket Model 204 SQL Server User’s Guide

Altering SQL objects
Altering SQL objects

ALTER TABLE allows you to change the definition of a table. New columns may
be added with the ADD clause. Existing columns may be modified with the
MODIFY clause. Columns may be removed using the DROP clause.

ALTER TABLE also lets you shift the relative positions of the columns in a table.
To protect against losing track of the column positions, you should always
specify the column names when issuing an SQL INSERT.

ALTER TABLE statement

Syntax ALTER TABLE tablename
 ADD column-definition
 | DROP columname
 | MODIFY column-parameters

Parameters where:

• column-definition has the following syntax:

columname <datatype> [SYSNAME ’fieldname’]
[<column-constraint>] •••

column-constraint has the following syntax

[NOT NULL] [UNIQUE | PRIMARY KEY [SYSTEM]]
| REFERENCES parent-table-name
[<referential-triggered-action>]

Individual parameters are described on “CREATE TABLE statement” on
page 54 and “Creating nested tables” on page 63.

• column-parameters has the following syntax:

columname [datatype] [SYSNAME ’fieldname’]
[[NOT] NULL | [NOT] UNIQUE]

• MODIFY is discussed in “Using MODIFY column” on page 80.

• NOT NULL column must map to a Model 204 field that has a non-null,
nonempty value on every record in the Model 204 file. The Model 204 SQL
Server does not allow you to violate this rule in an SQL DML update. If you
add a NOT NULL column to an existing table, be sure the corresponding
Model 204 field has non-null, nonempty values in all the records in the file.
For more information about Model 204 SQL handling of nulls, see “How
Model 204 SQL processes dirty data” on page 37.

Syntax rule As described on “Prefixing the schema name to an SQL object” on page 77, the
name of the table can be optionally specified along with the schema name as
qualification:
Model 204 SQL Data Definition Language 79

Altering SQL objects
schemaname.tablename

Using ADD column

ADD adds a column to a table but does not update any view definitions that
reference the table.

Use ADD for adding columns to a table when column position in the table is not
important.

With ADD, all columns are added to a table in the last position of the column
list. If you DROP a column and then ADD an updated version of that column,
the updated column occupies a different position in the table than it did before
you executed DROP and ADD. Such a change in order of the column data can
introduce errors into queries that use SELECT * or INSERT (without a column
list) and that depend on the correct position of the column data.

Using DROP column

Dropping a column deletes the column from the table and deletes any
privileges granted for this column. It has no effect on any view definitions that
reference this column.

Note: Because tables cannot be left empty, you cannot drop the last column in
a table. Because nested tables cannot be left with only a foreign key column,
you cannot drop the last nonforeign key column in a nested table.

If you want to drop a referenced primary key column, you must first drop the
nested table that contains the REFERENCES clause; if not, you receive an
error message.

You cannot DROP a column that is part of a multicolumn unique key.

Using MODIFY column

Use MODIFY for the following operations:

• To change the UNIQUE or NOT NULL status of a column.

• To change a column definition other than making an addition or a deletion,
use MODIFY instead of using DROP and ADD.

• To change a column’s data type or field mapping clause or attributes.

• When the position of the column data in a table must not be disturbed.

MODIFY affects only the column definition elements you specify; the rest of the
definition remains as is. For example, for a column originally defined as
INTEGER NOT NULL that you want to change to DECIMAL (11,2) NOT NULL,
specify only:

ALTER TABLE tablename MODIFY columname DECIMAL (11,2)
80 Rocket Model 204 SQL Server User’s Guide

Dropping SQL objects
You cannot ALTER or MODIFY an SQL object that does not already exist. You
cannot ALTER or MODIFY a column that is part of a multicolumn unique key.

Only modify the UNIQUE or NOT NULL status of a column if the table is empty.
If the UNIQUE or NOT NULL status of a column is modified on a nonempty
table, you must ensure that this definition is compatible with the data in the
existing Model 204 file. If it is not, an error might occur when processing an
SQL request against this file.

Note: If more extensive modification to a table definition is required, you can
drop the table and redefine it using CREATE TABLE as you did initially to set
up the table. Remember, the Model 204 SQL catalog is not active, so dropping
a table does not affect the actual file data.

Dropping SQL objects

You can delete SQL objects from the SQL catalog with the Model 204 SQL
DROP statements and clause listed below. These deletion statements are
discussed in turn in this section.

DROP TABLE <tablename>
DROP VIEW <view name>
DROP SCHEMA schemaname

Reminder : You can avoid an inadvertent or unanticipated loss of data due to
deletion of SQL objects by backing up CCACAT before executing a DROP or
by using the catalog reporting utility (CCACATREPT). With CCACATREPT you
can generate a copy of the catalog DDL before you execute a DROP.

CCACATREPT is discussed in Chapter 6. For more information about backing
up CCACAT, see “Backup and restore” on page 18.

Dropping tables

DROP TABLE causes the following actions to occur:

• Catalog entry for the table and its columns is deleted.

• Any privilege and constraint records that reference this table are deleted.

Once DROP TABLE eliminates all entries for a table from the SQL catalog, the
table no longer exists in the SQL catalog. However, the Model 204 file
associated with the table remains unaffected.

To avoid catalog data inconsistencies, drop SQL objects that depend on other
objects before you drop the objects that are depended upon. For example, you
must drop nested tables that reference a parent table before you drop the
parent. Otherwise, your DROP TABLE statement is rejected. Also, drop any
views associated with a table before you drop the table.

For convenience, you can qualify the table name by prefixing the schema
name.
Model 204 SQL Data Definition Language 81

Granting privileges for SQL objects
Dropping views

Views are permanent objects but do not map to Model 204 files or fields
directly. The view’s definition in terms of other tables or views is stored in the
catalog in the form of a view record.

When you drop a view, the view record and all privilege records (records of
users granted access to the view) associated with the dropped view are deleted
from the catalog. DROP VIEW has no effect on the base table(s) associated
with the view.

The only time the Model 204 SQL Server deletes a view from the SQL catalog
is when you explicitly drop it or drop the schema to which it belongs. You can
render a view invalid by deleting objects referenced by the view, but the invalid
view definition remains in the catalog. You are notified of the invalidity when
you next attempt to access the data files through this view.

For convenience, you can qualify the view name by prefixing the schema name.

Dropping schemas

Dropping a schema deletes the SCHEMA record in the catalog and all TABLE,
PRIVILEGE, and CONSTRAINT records that reference this schema.

Dropping a schema also deletes views belonging to the schema and all
PRIVILEGE records associated with them.

Granting privileges for SQL objects

To perform an operation on an SQL object, you must hold the necessary
privilege for that combination of operation and object. That privilege might
result from ownership of the object or from being granted that privilege by
another user (with the GRANT statement). You can change privilege
assignments by adding privileges with subsequent GRANT statements or by
deleting privileges with the REVOKE statement.

This section provides the statement syntax for GRANT and REVOKE and
discusses elements of their use that are special to Model 204 SQL.

GRANTs are for adding privileges

GRANT statements always and only add privileges. If you want to change
privilege assignments, you can add privileges with subsequent GRANT
statements. To delete or diminish the current level of privileges you must use
REVOKE, not GRANT. The Model 204 SQL Server allows a new GRANT for
an object to replace an earlier GRANT for that object only to the extent that the
new GRANT expands the current set of privileges.

For example, if you try to reduce the current privileges for an object by issuing
a new GRANT that allows fewer privileges, the new GRANT is ignored. To
reduce the scope of given privileges you must use REVOKE.
82 Rocket Model 204 SQL Server User’s Guide

Granting privileges for SQL objects
GRANT and REVOKE handle nearly all SQL security

SQL access to a Model 204 file is protected exclusively by Model 204 login
security and Model 204 SQL GRANT and REVOKE statements. Existing
Model 204 file access security is not enforced by the Model 204 SQL Server.

Since GRANT and REVOKE are the principal security sources, the final SQL
file access safeguard is SQL statement security. That is, you can permit only
certain users per SQL object to issue GRANT and REVOKE statements.

For more information about the privileges required for execution of the
individual Model 204 SQL DDL statements, see “DDL statement-level security”
on page 87.

GRANT statement

The GRANT statement is the privilege definition option of the CREATE
SCHEMA statement. The syntax is:

Syntax GRANT <privileges> ON <object-name>
 TO <grantee> [,<grantee>] •••
 [WITH GRANT OPTION]

Parameters where:

• privileges has the following syntax:

ALL PRIVILEGES | action [,action] •••

• action has the following syntax:

 SELECT | INSERT | DELETE
| UPDATE [(columname [,columname] •••)]

• object-name is the table or view name.

• grantee has the following syntax:

PUBLIC | authorization-id

Usage notes The privileges you can grant apply only to DML operations for specified SQL
objects or to defining which users can issue additional GRANT statements for
specified SQL objects. For information about privileges for issuing DDL
statements, see “DDL statement-level security” on page 87.

Model 204 SQL DDL has no REFERENCES privileges.

Unlike the other privileges, the UPDATE option can be applied to a specified
list of columns. If no column list is specified with UPDATE, by default it is
assumed that all columns in the table are included.
Model 204 SQL Data Definition Language 83

Granting privileges for SQL objects
You can use UPDATE to provide privileges for selective access to certain
columns in the database. However, using UPDATE with a column list typically
yields poorer performance than using a view of these columns and granting
selective access through the view.

You cannot grant UPDATE privileges on the columns of a system-generated
primary key, because such a key by definition cannot be updated.

Whether you specify UPDATE by itself or specify UPDATE followed by a list of
the columns in the table, you can affect subsequent privilege assignments. This
is discussed further in “Granting and altering column UPDATE privileges” on
page 85.

REVOKE statement

The REVOKE statement is a Model 204 SQL extension with which you can
revise the privileges given by the GRANT statement. A table’s owner can
REVOKE privileges for any authorization ID. Other users can REVOKE
privileges for those rights they were granted with the WITH GRANT OPTION.
The syntax is:

Syntax REVOKE [GRANT OPTION FOR] privileges
 ON object-name
 FROM grantee [,grantee] •••

Parameters where:

• privileges is the same as for the GRANT statement.

• object-name is the same as for the GRANT statement.

• grantee has the following syntax:

PUBLIC | authorization-id

Usage notes Each time you issue REVOKE, it revokes one of the following:

• Entire privilege (SELECT, UPDATE, INSERT, or DELETE) or list of
privileges

• Ability of the specified user or users to grant this privilege to another user

Revocation of privileges does not cascade. That is, if your privileges to grant
updates on a particular table are revoked, the update privileges for that table
you can have granted to other users are not revoked. For example, USERA
grants update privileges with grant option on TABLET to USERB, and USERB
grants the same privileges to USERC. If USERA later revokes USERB’S
TABLET privileges, USERC’s TABLET privileges are not affected.

Similarly, if USERB’s privileges to grant updates on TABLET are revoked, the
revoking action does not cascade to VIEWV, which references TABLET.
USERB can still use VIEWV, and USERC can still use VIEWV.
84 Rocket Model 204 SQL Server User’s Guide

Granting privileges for SQL objects
You receive an error message if you issue REVOKE against an unauthorized
user (or against an authorized user whose name is misspelled).

Granting and altering column UPDATE privileges

The REVOKE and ALTER TABLE statements in Model 204 SQL DDL allow for
changes over time to the columns of a table and to the privileges for updating
those columns. To avoid unwanted effects from such changes over time, you
need to understand how the Model 204 SQL Server handles grants of column
updating privileges.

The Model 204 SQL catalog stores your column UPDATE privileges for a table
in one of the following ways:

• Single marker that indicates you can update all the columns in the table

• List of the individual columns you can update

The method of storage depends on the form of the UPDATE clause used to
assign your privileges. The first method results from a GRANT statement
UPDATE clause that does not specify an individual column list. By default, all
columns in the table are included in the privilege. The second method results
from a GRANT statement UPDATE clause that specifies an individual
column list.

The storage method is significant, because subsequent changes to the table’s
columns or privileges can produce different outcomes depending on the initial
storage method.

Column UPDATE examples

This section has a series of examples showing how the effects on a user’s table
column privileges of subsequent ALTER TABLE, REVOKE, and GRANT
statements can depend on the format of the UPDATE clause of the initial
GRANT statement.

Effect of ADD and DROP in ALTER TABLE statement

Assuming table TABLEZ has columns COL_A, COL_B, and COL_C and
proper grant authorization, consider the following GRANT statements, both of
which grant UPDATE privileges to each of the columns in TABLEZ:

GRANT UPDATE ON TABLEZ TO JUAN

GRANT UPDATE (COL_A, COL_B, COL_C) ON TABLEZ TO MARIA

The Model 204 SQL Server stores this information approximately as follows,
where * means all columns, and GRANT OPTION, which refers to the WITH
GRANT OPTION of GRANT UPDATE, is N (no) unless specified in the GRANT
statement:
Model 204 SQL Data Definition Language 85

Granting privileges for SQL objects

Now, note the effect of the following statement on Juan and Maria’s UPDATE
privileges:

ALTER TABLE TABLEZ ADD COL_D

Juan’s stored UPDATE privilege information, though physically unchanged,
now includes the ability to update the newly added COL_D. However, Maria’s
unchanged privileges do not include the ability to update COL_D.

Continuing, note the effect of the following statements on Juan and Maria’s
UPDATE privileges:

ALTER TABLE TABLEZ DROP COL_A

ALTER TABLE TABLEZ ADD COL_A

Juan’s stored UPDATE privilege information remains physically unaffected,
and he can still update all the columns in TABLEZ: COL_A, COL_B, COL_C,
and COL_D. However, Maria’s UPDATE privilege for COL_A gets dropped
when COL_A is dropped from TABLEZ (see “Using DROP column” on page 80
for the additional actions propagated when a column is dropped). If COL_A is
added back to the table, Maria’s UPDATE privileges do not change and she can
update only COL_B and COL_C.

Effect of REVOKE

Continuing the conditions of the previous example, note the effect of the
following REVOKE statement. Remember, Juan can update all columns in
TABLEZ, namely, COL_A, COL_B, COL_C, and COL_D.

REVOKE UPDATE (COL_C) ON TABLEZ TO JUAN

The Model 204 SQL Server must change the storage format and store Juan’s
privilege information in list format:

USER PRIVILEGE COLUMNS GRANT OPTION

JUAN UPDATE * N

USER PRIVILEGE COLUMNS GRANT OPTION

MARIA UPDATE COL_A N
COL_B N
COL_C N
86 Rocket Model 204 SQL Server User’s Guide

DDL statement-level security

If the REVOKE statement had preceded the ALTER TABLE statements in the
example, Juan’s UPDATE privileges would have been affected like Maria’s
were. That is, instead of automatically expanding and contracting with changes
to the table, they would apply only to the explicitly named original columns, and
they could be dropped if a table column were dropped.

Effect of WITH GRANT OPTION

Return to the example situation for Juan after the first GRANT statements and
before the ALTER TABLE statements. Juan’s UPDATE privileges are stored as
follows:

Note the effect of the following statements on Juan’s UPDATE privileges:

GRANT UPDATE (COL_A) ON TABLEZ TO JUAN

GRANT UPDATE (COL_A) ON TABLEZ TO JUAN WITH GRANT OPTION

The first GRANT statement has no effect on Juan’s privileges, which already
include the privilege to update COL_A. But the WITH GRANT OPTION of the
second GRANT statement introduces information that Juan’s stored privileges
do not include. Consequently, the Model 204 SQL Server stores Juan’s
privilege information in list format as follows:

DDL statement-level security

Table 4-5 displays the privileges required for execution of the individual
Model 204 SQL DDL statements. These privilege requirements are checked
when you submit your DDL to the CVI utility.

USER PRIVILEGE COLUMNS GRANT OPTION

JUAN UPDATE COL_A N
COL_B N
COL_D N

USER PRIVILEGE COLUMNS GRANT OPTION

JUAN UPDATE * N

USER PRIVILEGE COLUMNS GRANT OPTION

JUAN UPDATE COL_A Y
COL_B N
COL_C N
Model 204 SQL Data Definition Language 87

DDL statement-level security
System manager privileges are determined by the Model 204 login user ID.

This section also contains a discussion of view privileges and an example
showing the application of statement security rules, especially for CREATE
VIEW and GRANT.

Note: You can replace Model 204 SQL statement security with privilege
checking by an external security package. You provide user exits to the security
package in a Model 204-defined format, as described in the Rocket Model 204
documentation wiki:

http://m204wiki.rocketsoftware.com/index.php/Category:Security_interfaces

The SQL Server passes to the user exit all the information necessary to
perform privilege checking identical to the Model 204 SQL privilege checking.
The extent of the checking done is an option of the user exit.

Table 4-5. DDL statement security

To issue... You must have... Comments

CREATE SCHEMA Model 204 system manager privileges

 AND

The schema authorization ID must
match the Model 204 login ID of the
user issuing the CREATE SCHEMA
statement

Ensure the match between login ID and
authorization ID by issuing SET USER
before CREATE SCHEMA.

If no authorization ID is specified in the
CREATE, the logon ID is used.

CREATE TABLE Model 204 system manager privileges

 AND

A Model 204 login ID that matches the
authorization ID for the schema
containing the table

Ensure the match between login ID and
authorization ID by using SET USER.

If CREATE TABLE is part of a CREATE
SCHEMA transaction, you may not
create a table that is qualified by a
schema name other than the schema
that is the current default.

The table owner (containing schema’s
authorization ID) automatically gets all
privileges (including WITH GRANT
OPTION) for the table.

The Model 204 file to which the table
maps is not opened during the
processing of the CREATE TABLE
DDL.
88 Rocket Model 204 SQL Server User’s Guide

DDL statement-level security
CREATE VIEW A Model 204 login ID that matches the
authorization ID for the view’s schema
and an authorization ID that matches
the authorization ID for every object
referenced in the view (that is, you own
the schema and all the objects
referenced in the view)

 OR

A Model 204 login ID that matches the
authorization ID for the view’s schema
and

the authorization ID for the view’s
schema has at least SELECT
privileges on every object referenced in
the view

You may not create a view that is
qualified by a schema name other than
the schema that is the current default.

The view owner (containing schema’s
authorization ID) automatically gets
view privileges that match the level of
privileges for the objects referenced in
the view.

If the view is not logically updateable,
the level of privileges the view owner
automatically gets may not exceed
SELECT privileges.

DROP SCHEMA Model 204 system manager privileges

 AND

A Model 204 login ID that matches the
authorization ID for the schema

Ensure the match between login ID and
authorization ID by issuing SET USER
before DROP SCHEMA.

DROP TABLE Model 204 system manager privileges

 AND

A Model 204 login ID that matches the
authorization ID for the schema
containing the table

The authorization ID of the schema that
contains the table must match the
Model 204 login ID of the user issuing
the DROP TABLE statement.

Ensure the match between login ID and
authorization ID by issuing SET USER
before DROP TABLE.

DROP VIEW A Model 204 login ID that matches the
authorization ID for the schema
containing the view

ALTER TABLE Model 204 system manager privileges

 OR

A Model 204 login ID that matches the
authorization ID for the schema
containing the table

Ensure the match between login ID and
authorization ID by issuing SET USER
before ALTER TABLE.

GRANT
(for a table)

A Model 204 login ID that matches the
authorization ID for the schema
containing the table on which the
privilege is being granted

 OR

By the WITH GRANT OPTION clause
of some previous GRANT statement,
that specifically granted the right to
GRANT privileges of the named type
for this table

You may GRANT privileges for a table
that is qualified by a schema name
other than the schema that is the
current default.

Table 4-5. DDL statement security (Continued)

To issue... You must have... Comments
Model 204 SQL Data Definition Language 89

DDL statement-level security
Model 204 SQL view privileges

View creation privileges are designed to uphold the security definition of the
base tables and columns referenced in the view. These base objects require
protection because privileges to use a view are checked when you issue a DML
statement against the view, while the privileges for objects referenced by the
view are checked when DDL is processed. Model 204 SQL DDL statement
security, therefore, prevents you from using a view to circumvent the privileges
for the base objects referenced by the view.

Three of the fundamental principles upheld by Model 204 SQL statement
security are:

GRANT
(for a view)

A Model 204 login ID that matches the
authorization ID for the schema
containing the view on which the
privilege is being granted, and also the
authorization ID for the view’s schema
must have the corresponding privilege
with WITH GRANT OPTION on all
tables and views referenced in any part
of the view definition

 OR

By the WITH GRANT OPTION clause
of some previous GRANT statement,
that specifically granted the right to
GRANT privileges of the named type
for this view

You may GRANT privileges for a view
that is qualified by a schema name
other than the schema that is the
current default.

REVOKE A Model 204 login ID that matches the
authorization ID for the schema
containing the object on which the
privilege is being revoked

OR

By the WITH GRANT OPTION clause
of some previous GRANT statement,
that specifically granted the right to
GRANT privileges of the named type
for this object

REVOKE only deletes privileges from
the object named in the REVOKE
statement. The revoking action does
not cascade to views that reference the
object.

SET SCHEMA Any Model 204 SQL user The DDL statements you can issue
within this schema context are
determined at the specific statement
level.

SET USER Model 204 system manager privileges Sets the current SQL authorization ID
for the duration of the user session or
until the next SET USER.

Table 4-5. DDL statement security (Continued)

To issue... You must have... Comments
90 Rocket Model 204 SQL Server User’s Guide

DDL statement-level security
• You can only create views that satisfy the following rule: the authorization
ID for the view’s schema must have at least SELECT privileges on every
object referenced in any part of the view definition. This rule holds whether
you are a system manager or the owner of the view.

• You can neither create nor grant privileges for a view that makes the view
base objects more accessible than your privileges for the base objects
allow. For example, you cannot grant update privileges for a view if you
have only the SELECT privilege on the objects referenced by the view.

• You can update a base object through a view only if you are the owner of
the object or if you are granted the privilege to update from the owner of the
object.

Since only the privilege records for the view and not for the base objects
referenced by the view are checked when a DML request is processed, a view
definition stands on its own. The view definition does not automatically reflect
any changes to its base objects that occur after the view is created. If a base
object referenced in a view is deleted, the view definition is not changed. You
are responsible for the integrity over time of your view definitions.

SQL statement security example

This section contains an example of a sequence of SQL DDL transactions and
CVI utility messages. Following the example are explanatory comments.

The example shows the effect of some of the basic rules governing DDL
statement security, especially for view definition and the granting of view
privileges. The example uses the demonstration database files (CLIENTS,
VEHICLES and CLAIMS03).

In the example, an INSURANCE schema is created containing:

• Three base tables

• Three views, one per base table

• Three schemas, corresponding to agents

• Privileges for each object

The following SQL objects, contained in the agent schemas, are defined by the
schema owners:

• Views against the base tables

• Views against other views

• Privileges for each object

MISMAN is the only system manager. MISDEPT and BOB are common users.
JOHN and MARY are agents. Transactions are followed by messages with
return codes indicating the validity of the transaction. Boldface numbers to the
Model 204 SQL Data Definition Language 91

DDL statement-level security
right of the example statements are used in the comments following the
example.

Example

User MISDEPT logs in (not a system manager):

1 CREATE SCHEMA INSURANCE AUTHORIZATION MISDEPT)

SQL Error -551: User MISDEPT does
not have the privilege to perform
operation CREATE on object SCHEMA.

System manager logs in (user MISMAN):

2 SET USER MISDEPT

Completion Code: 0

3 CREATE SCHEMA INSURANCE AUTHORIZATION MISDEPT
 CREATE TABLE CLIENTS •••
 GRANT SELECT ON CLIENTS TO BOB WITH GRANT OPTION
 CREATE TABLE VEHICLES •••
 GRANT SELECT ON VEHICLES TO BOB
 CREATE TABLE CLAIMS03 •••
 CREATE VIEW CLIENTS_V AS SELECT * FROM CLIENTS
 WHERE AGENT = USER
 GRANT ALL PRIVILEGES ON CLIENTS_V TO PUBLIC WITH GRANT
 OPTION
 CREATE VIEW VEHICLES_V AS SELECT * FROM VEHICLES
 WHERE AGENT = USER
 GRANT ALL PRIVILEGES ON VEHICLES_V TO JOHN WITH GRANT
 OPTION
 CREATE VIEW CLAIMS03_V AS SELECT * FROM CLAIMS03
 WHERE AGENT = USER
 GRANT ALL PRIVILEGES ON CLAIMS03_V TO MARY

Completion Code: 0

4 SET USER BOB

Completion Code: 0

5 CREATE SCHEMA AUTHORIZATION BOB

Completion Code: 0

6 SET USER JOHN

Completion Code: 0
92 Rocket Model 204 SQL Server User’s Guide

DDL statement-level security
7 CREATE SCHEMA AGENT_J16 AUTHORIZATION JOHN

Completion Code: 0

8 SET USER MARY

Completion Code: 0

9 CREATE SCHEMA AGENT_M05 AUTHORIZATION MARY

Completion Code: 0

User BOB logs in (not a system manager):

10 SET SCHEMA BOB

Completion Code: 0

11 CREATE VIEW YOUNG_DRIVERS AS SELECT *
 FROM INSURANCE.CLIENTS WHERE DATE_OF_BIRTH > 671231

Completion Code: 0

12 GRANT SELECT ON YOUNG_DRIVERS TO PUBLIC

Completion Code: 0

13 CREATE VIEW STOLEN_CARS AS SELECT *
 FROM INSURANCE.VEHICLES WHERE INCIDENT = 'ST’

Completion Code: 0

14 GRANT SELECT ON STOLEN_CARS TO PUBLIC

SQL Error -551: User BOB does not
have the privilege to perform
operation GRANT on object
STOLEN_CARS.

15 CREATE VIEW COLLISIONS AS SELECT *
 FROM INSURANCE.CLAIMS03 WHERE CLAIM_TYPE = 'C'

SQL Error -551: BOB does not have
the privilege to perform operation
SELECT on object CLAIMS03.

User JOHN logs in (not a system manager):

16 SET SCHEMA AGENT_J16

Completion Code: 0

17 CREATE VIEW MYVEHICLES AS SELECT *
Model 204 SQL Data Definition Language 93

DDL statement-level security
 FROM INSURANCE.VEHICLES

SQL Error -551: JOHN does not have
the privilege to perform operation
SELECT on object VEHICLES.

18 CREATE VIEW MYVEHICLES AS SELECT *
 FROM INSURANCE.VEHICLES_V

Completion Code: 0

19 GRANT SELECT ON MYVEHICLES TO MARY

Completion Code: 0

User MARY logs in (not a system manager):

20 SET SCHEMA AGENT_M05

Completion Code: 0

21 CREATE VIEW MYCLAIMS03 AS SELECT * FROM INSURANCE.CLAIMS03

SQL Error -551: MARY does not have
the privilege to perform operation
SELECT on object CLAIMS03.

22 CREATE VIEW MYCLAIMS03 AS SELECT *
 FROM INSURANCE.CLAIMS03_V

Completion Code: 0

23 GRANT SELECT ON AGENT_J16.MYVEHICLES TO JOHN

SQL Error -551: MARY does not have
the privilege to perform operation
GRANT on object MYVEHICLES.

24 CREATE VIEW MYCLIENTS AS SELECT * FROM INSURANCE.CLIENTS_V

Completion Code: 0

System manager logs in (user MISMAN):

25 SET USER MISDEPT

Completion Code: 0

26 DROP SCHEMA INSURANCE

Completion Code: 0

27 SET USER BOB
94 Rocket Model 204 SQL Server User’s Guide

DDL statement-level security
Completion Code: 0

28 DROP SCHEMA BOB

Completion Code: 0

29 SET USER JOHN

Completion Code: 0

30 DROP SCHEMA AGENT_J16

Completion Code: 0

31 SET USER MARY

Completion Code: 0

32 DROP SCHEMA AGENT_M05

Completion Code: 0

Statement security example comments

• Statement 1 fails because MISDEPT is not a system manager.

• Statement 2 allows the system manager, in effect, to log in as user
MISDEPT. This is necessary so the system manager can define the
INSURANCE schema to have owner MISDEPT. SQL objects can be
created only by their owners. That is, the login ID of the user issuing an SQL
CREATE must match the specified or implied authorization ID of the current
schema.

• Statement 3 makes MISDEPT the owner of the INSURANCE schema and
all the objects in the schema. Note that although system manager MISMAN
issued the CREATE SCHEMA for INSURANCE, the privileges to access
INSURANCE are automatically granted only to the object’s owner
MISDEPT. MISMAN cannot access INSURANCE unless the system
manager explicitly includes a GRANT of privileges to MISMAN for
INSURANCE.

• Statements 4, 6, and 8 allow the system manager to create schemas
owned by the specified users. Later in the example, the users define the
SQL objects that belong to their schemas.

• Unlike statements 7 and 9, statement 5 does not include a schema name
value, so the default name is the authorization ID, BOB.

• Statement 10 is necessary to change the schema context (from MARY to
BOB) so that BOB can add objects to his schema. Statements 16 and 20
are similar.
Model 204 SQL Data Definition Language 95

DDL statement-level security
• Statements 11 and 13 are valid, because view owner BOB was granted (by
MISMAN) the SELECT privilege for the tables referenced in his views.
BOB cannot create a view that references the CLAIMS03 table, for
example, because he does not have any privileges for that table (see
statement 15).

Statements 11 and 13 also show the use of the schema name,
INSURANCE, as a qualifier for the CLIENTS and VEHICLES tables.
Without the qualifier, CLIENTS is assumed to belong to the default schema,
BOB, and the statement fails.

• Statement 12 is valid, since BOB was granted the SELECT privilege WITH
GRANT OPTION on the referenced table (CLIENTS). The SELECT
privilege and WITH GRANT OPTION is implicitly granted to the
YOUNG_DRIVERS view owner (BOB). That is, the maximum privileges
available for the view are equal to those that the view owner has on the
object referenced by the view, and these privileges are also implicitly
granted to the view owner for the view.

• Statement 14 fails because the SELECT privilege on the referenced table
VEHICLES was granted to BOB not including WITH GRANT OPTION.
View STOLEN_CARS is created with only the SELECT privilege (not
including WITH GRANT OPTION) implicitly granted to the view owner.

STOLEN_CARS view is, therefore, viewable only by BOB. No one else
(including MISMAN) can SELECT this view, and no one (including BOB)
can update the view.

• Statements 15, 17, and 21 fail, because the view owners-to-be lack the
SELECT privilege for objects they want to reference in these views.

• Statement 18 creates MYVEHICLES, a view of a view. All privileges are
implicitly granted to the MYVEHICLES owner (JOHN), including WITH
GRANT OPTION, because MYVEHICLES is logically updateable and
JOHN has all privileges on the referenced view VEHICLES_V. If the view
were not logically updateable, the implicit owner privileges would be
SELECT WITH GRANT OPTION.

• Statement 19 succeeds because JOHN’s privileges for MYVEHICLES
(which equal his privileges for the referenced view VEHICLES_V) include
WITH GRANT OPTION.

• Statement 22 creates MYCLAIMS03, a view of a view. All privileges are
implicitly granted to the MYCLAIMS03 owner (MARY), not including WITH
GRANT OPTION, because MYCLAIMS03 is logically updateable and
MARY has all privileges on the referenced view VEHICLES_V.

• Statement 23 fails because MARY’s privileges for MYVEHICLES (granted
in statement 19) do not include WITH GRANT OPTION.

• Statement 24 creates MYCLIENTS, a view of a view. All privileges are
implicitly granted to the MYCLIENTS owner (MARY), including WITH
GRANT OPTION, because MYCLIENTS is logically updateable and all
96 Rocket Model 204 SQL Server User’s Guide

SQL DDL processing
privileges on the referenced view VEHICLES_V are granted to PUBLIC
WITH GRANT OPTION.

• Statements 25 through 32 show the system manager logging in as various
users and then deleting from the SQL catalog (with DROP) the schemas
owned by each user. This method is necessary because to drop a schema
you must be the schema owner and a system manager. That is, the login
ID of the user issuing an SQL DROP SCHEMA must match the specified or
implied authorization ID of the current schema; and the user issuing an SQL
DROP SCHEMA must be a system manager.

SQL DDL processing

Each DDL statement is committed upon successful execution without regard to
the SQL Auto Commit setting for the data source.
Model 204 SQL Data Definition Language 97

SQL DDL processing
98 Rocket Model 204 SQL Server User’s Guide

5
Creating DDL with the Table
Specification Facility

The Model 204 SQL Table Specification facility (TSF) looks at an
existing Model 204 file, reads its field names and their attributes, and
allows you to specify how to map the file to an SQL table. The TSF
provides an interactive, menu-driven facility that generates a subset of
DDL statements based on your specifications. You can use the
generated DDL as input to the CVI utility to define your SQL table to the
SQL catalog.

You use the TSF to create new tables, not to modify existing ones.

The TSF is the Model 204 subsystem CCATSF.
Creating DDL with the Table Specification Facility 99

Introduction to the Table Specification facility (TSF)
Introduction to the Table Specification facility (TSF)

DDL processing

Figure 5-1 shows the relationship between the Model 204 files, the TSF,
manually created DDL, the CVI utility, and the SQL catalog.

Figure 5-1. DDL processing overview

TSF processing sequence

Table 5-1 summarizes the general processing that goes on within the Table
Specification facility.

Model
 204
 file

Table
Specification

facility

CVI

DDL
file

User
DDL

CCACAT
SQL

 catalog

Model
 204
 file

Table 5-1. TSF processing

Stage Description

 1 You identify the name of the SQL table you are defining and the
Model 204 file to which the SQL table maps.
100 Rocket Model 204 SQL Server User’s Guide

Introduction to the Table Specification facility (TSF)
DDL statements generated by the TSF

Note: Currently the CCATSF subsystem does not generate DDL statement
delimiters, semicolons by default, which are required by the CVI utility. You can
add delimiters by hand or use another SQL utility that does not require DDL
delimiters. The Connect ODBC unsupported utilities, DDLWIN and CLIIVP,
are examples of utilities which expect DDL input lines without delimiters.

The TSF is designed for the initial definition of SQL catalog objects. It
generates the following DDL statements:

CREATE SCHEMA
CREATE TABLE
GRANT

Of course, you can also manually generate the DDL statements that the TSF
produces. You must manually prepare catalog operations that require the
following DDL statements:

ALTER TABLE DROP VIEW
CREATE VIEW GRANT (for view privileges and for existing tables)
DROP SCHEMA REVOKE
DROP TABLE SET SCHEMA

Besides convenience, the advantage of using the TSF is that it returns the
current state of the Model 204 file data. Relying on manual creation of DDL for
the catalog leaves you without this data consistency safeguard. Remember,
changes to a cataloged Model 204 file are not automatically reflected in the
SQL catalog. The person creating DDL manually is responsible for being aware
of the current definition of the Model 204 file.

 2 Table Specification facility reads Table A, the in-file dictionary, of the
Model 204 file and displays the existing Model 204 fields.

 3 You identify fields that are to be included in the SQL table and specify
SQL column names.

 4 For each column, you specify the SQL attributes.

 5 If necessary, you specify multi-column unique indices using special
panels.

 6 If necessary, you specify GRANT options using special panels.

 7 Table Specification facility generates SQL DDL and writes it to an external
sequential file.

Table 5-1. TSF processing (Continued)

Stage Description
Creating DDL with the Table Specification Facility 101

Introduction to the Table Specification facility (TSF)
Model 204 SQL DDL extensions generated by the TSF

The TSF-generated DDL includes the following Model 204 SQL extensions to
standard SQL. These extensions are described where appropriate in the
individual panel discussions in this chapter. For more information about these
extensions, see Chapter 4.

SQL and Model 204 data consistency

When you use the TSF, it displays the current Model 204 file definitions. With
these you specify SQL DDL mappings of the files and populate the SQL

Model 204 extension Provides...

SYSNAME filename or
fieldname

Aliasing of both table and column names. The SYSNAME
value is the actual name of the Model 204 file or field; it
does not have to comply with SQL table and column
naming rules.

The SYSNAME clause is required only if the SQL table or
column name (after any modification to meet Model 204
naming conventions) differs from the Model 204 file or
field name. The TSF automatically applies a name-
correcting algorithm to your SQL table and column names
to determine whether a SYSNAME clause is needed.

SYSTEM qualifier for
PRIMARY KEY

System-generated primary key in cases where no suitable
column is available or where two or more columns are
used as a composite primary key, for example, to link a
nested table to its parent table.

In the TSF, the system-generating action of SYSTEM is
available as a default on the Column List panel (TSF2).
TSF has no explicit prompt for SYSTEM.

NESTED USING
clause

Definition for the table as a nested table and indicates the
table column (foreign key) that links the nested table to its
parent table. This extension permits the mapping of
Model 204 multiply occurring fields to a set of columns in
a nested table.

If you designate a table as nested on the TSF Main Menu,
you must also specify the nested table linking or foreign
key.

REFERENCES parent
table name

Qualifier (and constraints) for the foreign key column of a
nested table.

The Model 204 SQL REFERENCES clause functionality
is nonstandard in that it is required for a nested table and
cannot be used in any other context.

The TSF has no explicit prompt for the REFERENCES
clause. If you designate a nested table Primary Key on the
TSF Main Menu, the generated DDL for the nested table
foreign key includes a REFERENCES clause in the
CREATE TABLE statement.
102 Rocket Model 204 SQL Server User’s Guide

Using TSF panels
catalog. If no changes were made to the file before you submitted this DDL to
the SQL catalog, you can be sure that the catalog and the Model 204 file are
consistent.

If you edit the TSF-generated DDL before using it to populate the SQL catalog,
you are responsible for ensuring that your edits are based on the current
Model 204 file definition.

Using TSF panels

Figure 5-2 on page 104 illustrates the order in which you would likely use the
TSF panels to define DDL. Each of these panels is discussed separately in the
following sections of this chapter.

You do not need to complete the entire table definition process in one session.
You can complete part of the process, log off, and return later to the TSF
subsystem and pick up where you left off.

The Model 204 files that you name during a TSF session are opened by TSF
processing. Make sure these files are available to the Model 204 Online run.

Panel conventions

The Table Specification facility has the following panel conventions:

• Panel number (for example, TSF1) appears in the upper left corner of the
panel. The panel title (for example, Main Menu) appears in the center of the
top line of the panel. The version number appears in the upper right corner
of the panel.

• Error messages appear at the bottom of the panel. Input areas that are in
error are tagged with an asterisk (*) and highlighted.

• Command line (===>) is near the bottom of the panel. Use the command
line to enter commands in lieu of PF keys. The minimum abbreviation for a
command is displayed in capital letters and is generally the first three
characters (for example, DEL for DELete).
Creating DDL with the Table Specification Facility 103

Using TSF panels
Figure 5-2. TSF panel map

Main Menu
panel

A Column Attributes panel

Column

List
panels

Completion
panel

(optional)

is presented for each column,
in the order you specified

Multi-Column
Unique
panels

Completion
panel

(optional)

You can choose
to view DDL at
a terminal

Completion
panel

DDL
file

Save DDL in
an external file

Column
Attributes

panels

 (optional)

START HERE

Grant
Authority
a. panels
104 Rocket Model 204 SQL Server User’s Guide

Using TSF panels
ENTER and PF key conventions

At the bottom of each TSF panel is a list of the PF keys that you can use on the
panel. Table 5-2 displays the TSF key conventions.

Logging in

Before you can log in to the TSF, the CCATSF subsystem must already have
been started (with the Model 204 START SUBSYSTEM command).

To log in to TSF, at your Model 204 Online prompt, type:

CCATSF

and press Enter.

The Table Specification facility Main Menu appears.

Table 5-2. Table Specification facility Enter and function keys

Key Performs this function...

Enter On menus, processes your selections; on update panels, edits the panel,
but does not store any updates

PF1 Accesses online help

PF2 Refreshes the screen without processing any updates

PF3 Leaves the current panel or application (if you are on the Main Menu)
without storing any updates

PF4 Moves screen left

PF5 Moves screen right, or stores definition and provides fresh panel (on
Grant Authority or Multi-Column Unique panels)

PF7 Scrolls back to the previous screen of data without storing updates, or
displays the previous data definition (on the Grant Authority or Multi-
Column Unique panels) after storing updates

PF8 Scrolls forward to the next screen of data without storing updates, or
displays the next data definition (on the Grant Authority or Multi-Column
Unique panels) after storing updates

PF9 Deletes the current Model 204 file definition

PF10 Takes you to the Completion panel

PF11 Takes you to the Column Attributes panel

PF12 Leaves the current panel or application (if you are on the Main Menu) and
commits all updates
Creating DDL with the Table Specification Facility 105

Creating or modifying a base table (Main Menu panel)
Creating or modifying a base table (Main Menu panel)

After you log in to TSF, the Table Specification facility Main Menu panel (TSF1)
is displayed.

This section includes a description of each of the panel fields and nonstandard
PF keys of the Main Menu, general usage notes for the panel, and information
about how to use the TSF to create nested tables.

The descriptions of the individual panel fields include directions for how to use
the panel, such as whether you immediately press Enter to record your entry or
whether you fill in other fields before you press Enter.

Figure 5-3 shows an example of the Main Menu with user entries in four of the
fields. These entries initiate the definition of Mark’s CLIENTS table, which is
mapped to the Model 204 demonstration database CLIENTS file. Examples in
subsequent sections follow this mapping to completion.

Figure 5-3. Main Menu panel

Press Enter, then fill in SCHEMA and Model 204 File name.

Creating SQL objects in the context of a schema

The TSF generates a stream of SQL DDL statements for creating or modifying
SQL tables and columns. Each such stream includes a CREATE SCHEMA
statement naming the schema to which the DDL applies.

The schema name must be unique within the SQL catalog, and issuing
CREATE SCHEMA for a schema that already exists is an error.

TSF1 MODEL 204 Table Specification Facility (TSF) 7.1.0
 Main Menu

 Schema Authorization: MARK______________
 SQL Table Name: CLIENTS___________

 Schema Name (optional): __________________
 MODEL 204 File Name: ________
 File Password:
 SQL Table Type: B (B=base P=parent N=nested)
 Primary Key (if TYPE=P or N): __________________
 Parent Table (if TYPE=N): __________________

 Identify SQL table to be defined (AUTHORIZATION & NAME)
 ===>

1=HELp 2=REFresh 3=QUIt
106 Rocket Model 204 SQL Server User’s Guide

Creating or modifying a base table (Main Menu panel)
Because the TSF does not validate each schema name against previous
schemas, you must review the DDL generated by the TSF and determine
whether to keep the schema name, delete it, or change it (using a SET
SCHEMA statement).

Schema Authorization

At the Schema Authorization prompt, enter an authorization ID. The default
authorization ID is the Model 204 login user ID. You must enter a value at this
prompt, and, because the TSF does not validate authorization IDs, you must
ensure that the value is a valid Model 204 login ID.

The authorization ID you enter becomes the owner of the tables you create.
The authorization is generated in the CREATE SCHEMA DDL that the TSF
produces for this table.

The authorization ID must follow the naming rules for a Model 204 login ID (no
more than 10 characters and no underscore characters, must begin with an
alphabetic character and must not contain certain character combinations).
The authorization ID cannot be an SQL reserved word (see Appendix B).

To see a list of pending authorization IDs, IDs from table definitions you have
not deleted from the TSF, place your cursor in the input area for this field and
press PF1.

SQL security is based on authorization IDs and granted privileges.

SQL Table Name

At the SQL Table Name prompt, enter the name of the SQL table that you are
defining. Multiple nested tables are allowed. You must enter a value at this
prompt.

The table name can contain up to 18 characters (A–Z, 0–9, and underscore).
No embedded blanks are allowed. Table names must begin with an alphabetic
character.

The TSF applies certain truncation and compression rules (described further
on “Mapping table names to file names” on page 55) to the SQL table name you
specify and compares the resulting name to the corresponding Model 204 file
name. If the resulting name does not match the Model 204 file name, the TSF
automatically adds a SYSNAME clause with the Model 204 file name to the
TSF-generated DDL.

To see a list of pending tables, names from table definitions you have not
deleted from the TSF, place your cursor in the input area for this field and
press PF1.

At this point, the other input areas are protected (unavailable for input). After
inputting the authorization and table name, press Enter.
Creating DDL with the Table Specification Facility 107

Creating or modifying a base table (Main Menu panel)
If this is a new table definition, the TSF displays a message to tell you that this
is a new definition. If a table definition exists, the TSF displays a message
telling you the definition is pending, and enables PF9, PF10, and PF11. To
delete the existing table definition, press PF9. To proceed to the Completion
panel (TSF4), press PF10. To proceed to the Column Attributes panel (TSF3),
press PF11.

At this point, the other input areas are unprotected and the authorization and
table name input areas are protected.

Schema Name

At the Schema Name prompt, enter the SQL schema name as you want it to
appear in the CREATE SCHEMA statement. If you do not specify a schema
name, Schema Name defaults to the authorization ID specified for Schema
Authorization.

Model 204 File Name and Password

At the Model 204 File Name prompt, enter the name of the Model 204 file that
you want defined as an SQL table. An entry for Model 204 File Name is
required.

If applicable, include the file password. The password you enter must give you
the authority to read the file and all the field names for which you want to set up
columns in the SQL table you will create.

Note: You cannot use Model 204 file groups, although you can use individual
files that may belong to a file group. Also, the Model 204 file to be used as an
SQL table must be defined as a transaction backout (TBO) file. For more
information about TBO files, see the Rocket Model 204 documentation wiki:

http://m204wiki.rocketsoftware.com/index.php/Transaction_back_out

Table Type

At the Table Type prompt, enter the appropriate table type: B (Base), P
(Parent), or N (Nested). The Table Type value is required.

Model 204 SQL base tables are SQL schema tables that map directly to
Model 204 files and fields. By contrast, views are schema tables that map
directly to SQL base tables or to other views. Base tables are created by
CREATE TABLE; views are created by CREATE VIEW.

A nested table is a base table with columns that map to Model 204 multiply
occurring fields or groups of fields. A nested table is associated with a single
base table parent by a unique table column key which joins the nested table to
the parent table.

If you designate a table as nested, the TSF-generated DDL for the table
includes the NESTED USING clause in the CREATE TABLE statement.
108 Rocket Model 204 SQL Server User’s Guide

Creating or modifying a base table (Main Menu panel)
For more information about creating nested tables with the TSF, see “Defining
nested tables” on page 110.

Primary Key

At the Primary Key prompt, enter the name of the primary key if the table type
is P (Parent) or N (Nested). The primary key is required and valid only for these
table types.

Note: To use the TSF to define a primary key in a B (Base) table, define the
table as a P (Parent) with no associated nested table.

This field identifies the SQL column name of the primary key in a parent or
nested table. (By definition, in Model 204 SQL DDL the nested table primary
key is also a foreign key: the values of the nested table primary key must match
the values of the parent table primary key.) Later (on the Column List panel) you
are asked to map this column name to an existing Model 204 field. If you do not
provide a Model 204 field at that time, by default TSF treats this as a system-
generated key.

The primary key must be mapped to a field that has unique values. The
corresponding Model 204 field must have the UNIQUE (and ORDERED)
attribute.

Do not enter the name of a column that maps to a Model 204 INVISIBLE field.

For more information about creating nested tables with the TSF, see “Defining
nested tables” on page 110.

Parent Table

At the Parent Table prompt, enter the name of the SQL table that each nested
table references. The parent table name is required for nested tables (Table
Type N).

Keeping or deleting the pending definition

The definition of the actual Model 204 database file that you are defining is
copied into a work record within the CCATSF subsystem only once, when the
specification process begins. This work record represents a frozen “snapshot”
picture of the Model 204 definition at the time you start the specification
process.

If you are modifying an existing definition, the CCATSF subsystem does not
read the Model 204 database file nor look at its most recent status; it instead
does all its processing from the work record already built. If significant changes
have been made to the definition of the Model 204 database file, then you might
want to delete the “pending” definition (using PF9) and begin again.

If you continue with the pending definition, you can use PF11 to go to the
Column Attributes panel (TSF3) where you can define SQL attributes for
Creating DDL with the Table Specification Facility 109

Defining column names (Column List panel)
columns already selected. Or you can use PF10 to go to the Completion panel
(TSF4) to build GRANT statements and multicolumn UNIQUE keys and to
generate DDL for the table.

Defining nested tables

If you are defining a nested table with the TSF, follow these guidelines:

• Map each column in a nested table (except the foreign key) to a Model 204
field that can multiply occur (that is, does not have OCCURS 1 or
AT-MOST-ONE field attribute).

• Make sure that the field mapped to the parent table primary key is defined
with the Model 204 field attributes UNIQUE and ORDERED.

• Be sure that each column in the nested table (except the foreign key)
occurs the same number of times on the Model 204 record to which the
occurrence group maps.

• Go through the TSF panels multiple times: once for the parent table, and
once for each nested table. Whether you define the parent table before or
after the nested table(s) does not matter.

• Specify a Primary Key value for parent and for nested tables. The nested
table primary key is really a foreign key, and its data values, although not
its name, must match the data values of the parent table primary key.

• Specify a Parent Table value for each nested table.

• Do not specify a multicolumn unique key for a nested table.

TSF rules

The TSF automatically enforces the following rules by limiting your panel
choices:

• Columns in each nested table must be NOT NULL.

• Column in a nested table (including the foreign key) must not be mapped to
a field with the Model 204 field attribute INVISIBLE.

For more information about using DDL to define nested tables, see “Creating
nested tables” on page 63. Using DML to access nested tables is discussed in
“Using SQL DML against nested tables” on page 167.

Defining column names (Column List panel)

After you specify the Model 204 file and the SQL table name and press ENTER
from the Main Menu, the Column List panel appears.
110 Rocket Model 204 SQL Server User’s Guide

Defining column names (Column List panel)
Figure 5-4, “Column List, second panel” on page 112, and “Column List, third
panel” on page 113, show a Column List panel with user column selections
filled in.

Figure 5-4. Column List panel

 TSF2 TSF Table Specification - Column List 7.1.0
 Table: CLIENTS MODEL 204 File: CLIENTS Field 1 of 26
 Type : BASE

 CMD Column Name (or "=") MODEL 204 Field Name
 --- ------------------ -----------------------------------
 _ __________________ ADDRESS
 _ __________________ AGENT
 _ __________________ ANNIV DATE
 _ =_________________ CITY
 _ BIRTHDAY__________ DATE OF BIRTH
 _ DRIVERID__________ DRIVER ID
 _ __________________ DUMMY
 _ __________________ FIELDA
 _ SORTKEY___________ FULLNAME
 _ __________________ INCIDENT

 M=Move B=Before A=After
WARNING: File contains invisible fields which are displayed as bright.
At page one.
===> <ENTER>=Validate
1=HELp 3=QUIt 4=LEFt 5=RIGht
7=BACkward 8=FORward 10=FINal 11=ATTribute 12=END
Creating DDL with the Table Specification Facility 111

Defining column names (Column List panel)
Figure 5-5. Column List, second panel

TSF2 TSF Table Specification - Column List 7.1.0

Table: CLIENTS MODEL 204 File: CLIENTS Field 11 of 26

Type : BASE

CMD Column Name (or "=") MODEL 204 Field Name

--- -------------------- ----------------------------------

 _ ___________________ INCIDENT DATE

 _ ___________________ LASTNAME

 _ __________________ MARITAL STATUS

 _ __________________ NAME SOUND

 _ POLNO_____________ POLICY NO

 _ __________________ POLICYHOLDER

 _ =_________________ RECTYPE

 _ __________________ RESTRICT.INDEX

 _ __________________ RESTRICTIONS

 _ __________________ SETKEY

M=Move B=Before A=After

WARNING: File contains invisible fields which are displayed as bright.

===> <ENTER>=Validate

1=HELp 3=QUIt 4=LEFt 5=RIGht

7=BACkward 8=FORward 10=FINal 11=ATTribute 12=END
112 Rocket Model 204 SQL Server User’s Guide

Defining column names (Column List panel)
Figure 5-6. Column List, third panel

Model 204 field names

The Column List panel displays the SQL table and Model 204 file name that
you entered on the Main Menu. The message at the upper right-hand corner
(for example, Field 1 of 21) denotes where you are in the list of Model 204 field
names.

The field names for the selected Model 204 file appear in the middle of the
panel. As described in “Defining SQL column names” on page 114, you select
the Model 204 fields you want defined as SQL columns by entering a column
name next to the associated field name.

After you specify the column names, you can press PF11 to go to the Column
Attributes panel to define the column attributes. Rocket Software recommends
that you define the attributes of each column before using the Completion panel
(TSF4) to request DDL generation. If you do not explicitly define attributes,
default SQL attributes are assigned to each column based on its Model 204
field attributes.

Because the complete MODEL 204 Field Name list might cover more than one
panel, use PF7 or PF8 to move panel by panel through the list. You can type
BAC n or FOR n on the command line and move backward or forward the
indicated number of lines on the panel. You can also type a number on the
command line and press PF7 or PF8 to move the indicated number of lines on
a panel.

TSF2 TSF Table Specification - Column List 7.1.0
Table: CLIENTS MODEL 204 File: CLIENTS Field 21
of 26
Type : BASE
CMD Column Name (or "=") MODEL 204 Field Name
--- ------------------ -----------------------------------
 _ =_________________ SEX
 _ __________________ SSN
 _ =_________________ STATE
 _ __________________ TOTAL PREMIUM
 _ __________________ VIN
 _ __________________ ZIP

M=Move B=Before A=After
WARNING: File contains invisible fields which are displayed as
bright.
On last page.
===> <ENTER>=Validate
1=HELp 3=QUIt 4=LEFt 5=RIGht
7=BACkward 8=FORward 10=FINal 11=ATTribute 12=END
Creating DDL with the Table Specification Facility 113

Defining column names (Column List panel)
Note as you scroll forward and backward through the panels, no selections are
permanently captured until you use PF10, PF11, or PF12. If you attempt to quit
without storing modifications, you receive a warning message and are asked to
reconfirm the quit.

To remove a column name, overwrite with spaces.

Note: If a field name is longer than 45 characters, you can use PF4 and PF5 to
scroll left and right to see the entire field name.

Changing the order of field names

Initially, the Model 204 field names appear in alphabetical order. Specify M, B,
or A in the CMD (command) column and press Enter to change the order of
column names and field names. M indicates the field to be moved. B (Before)
and A (After) indicate where the marked field is to be placed.

The columns in the DDL CREATE TABLE statement that the TSF generates
are listed according to the order of the columns on this panel. The exception to
this rule is that a primary key that you have the TSF generate is always listed
last in the DDL column definitions.

Defining SQL column names

Select the fields you want defined as SQL columns by entering a column name
next to its associated field name. To simplify the data entry process, enter an
equal sign (=) to make the column name the same as the Model 204 field name
(embedded blanks and periods are translated to underscores and field names
are truncated to 18 characters).

A valid column name contains the characters A–Z, 0–9, or underscore and has
a maximum length of 18 characters. Embedded blanks are not allowed. The
column name cannot be an SQL reserved word (see Appendix B).

The TSF compares the column name to the corresponding Model 204 field
name. If the SQL name does not match the Model 204 field name, the TSF
automatically adds a SYSNAME clause with the Model 204 field name to the
TSF-generated DDL. The SYSNAME value is the actual name of the
Model 204 field; it does not have to comply with SQL table and column naming
rules.

For more information about the SYSNAME extension, see “Column naming
and the SYSNAME extension” on page 59.

Note the following provisions:

• Model 204 INVISIBLE fields are displayed with bright highlighting. You can
select these fields as columns (for nonnested tables), but their SQL use is
restricted. For example, you cannot update such a column in SQL.
INVISIBLE field restrictions are described in “Using Model 204 file data
114 Rocket Model 204 SQL Server User’s Guide

Defining column attributes (Column Attributes panel)
features” on page 23 and on “Using SQL DML against INVISIBLE fields” on
page 164.

• You cannot select Model 204 fields that have the attribute AT-MOST-ONE
or OCCURS 1 (meaning that the field does not multiply occur) as SQL
columns in a nested table (the exception to this rule is the primary key field
which might be defined this way).

• If a file is a sorted or hash key file, you must select the sort or hash key as
a column if the SQL table type is Parent or Base and the Model 204
FILEORG parameter has the X‘02’ option (key required) set. In this case, a
default column name is automatically supplied to ensure that this field is
selected. Default column names (which you can change) are SORTKEY or
HASHKEY.

• You must select at least one column name.

• If you do not assign to any Model 204 field the SQL column you designated
(on the Main Menu) as the primary key, the TSF automatically includes a
system-generated key in the TSF output DDL. The DDL for the table has
PRIMARY KEY SYSTEM.

• If you change the names of columns or the selections of the columns in a
table after defining your GRANT and UNIQUE statements on the Grant
Authority and Multi-Column Unique panels, you receive an error message
when you attempt to generate DDL.

Defining column attributes (Column Attributes panel)

After you press PF11 on the Column List panel, one or more Column Attributes
panels appear with default attributes for the columns selected on the Column
List panel. On the Column Attributes panel, you define the SQL attributes you
want for the selected columns.

The top of the Column Attributes panel has the SQL table name and the
corresponding Model 204 file name. The listing below includes the SQL column
names, the TSF-supplied default SQL attributes, and the attributes
(abbreviated) of the associated Model 204 fields. See the Rocket Model 204
documentation wiki for descriptions of the Model 204 field attributes.

http://m204wiki.rocketsoftware.com/index.php/Field_design

If the string of Model 204 field attributes ends with two periods and an angle
bracket (..>), there are more attributes than can fit in the display area. Use PF4
and PF5 to scroll the panel to the left and right to view the attributes.
Creating DDL with the Table Specification Facility 115

Defining column attributes (Column Attributes panel)
Figure 5-7 shows a Column Attributes panel before any user modifications.

Figure 5-7. Column Attributes panel

TSF3 TSF Table Specification - Column Attributes 7.1.0

Table Name: CLIENTS MODEL 204 File: CLIENTS Col. 1 of 8

Column Name: Nulls? Format Len Prec Scale M204 Attributes
------------- ------ ---------- --- ---- ----- --------------------
CITY Y CHARACTER__ 255 __ __ STR REPT
BIRTHDAY Y CHARACTER__ 255 __ __ STR ORD-NUM ONE
DRIVERID Y ____________ ___ __ __ BIN COD OCC ORD-..>
SORTKEY Y CHARACTER___ 255 __ __ STR REPT
POLNO Y CHARACTER___ 6__ __ __ STR KEY OCC LEN=..>
RECTYPE Y CHARACTER___ 255 __ __ STR COD OCC ORD-..>
SEX Y CHARACTER___ 255 __ __ STR ORD-CHAR REPT
STATE Y CHARACTER___ 255 __ __ STR COD OCC ORD-..>

At page one.
===> <ENTER>=Validate
1=HELp 3=QUIt 4=LEFt 5=RIGht
7=BACkward 8=FORward 10=FINal 12=END
116 Rocket Model 204 SQL Server User’s Guide

Defining column attributes (Column Attributes panel)
Figure 5-8 shows the Column Attributes panel after user modifications.

Figure 5-8. Modified Column Attributes panel

Specifying attributes

The TSF automatically generates default SQL attributes for each selected SQL
column based on its Model 204 field attributes. If you make no revisions to
these default SQL column attributes, the TSF assigns them by default.
Otherwise, you can modify the selected values.

Note: Attributes that you supply must apply to all records in the Model 204 file,
regardless of record type.

Nulls

You must indicate whether or not nulls are allowed for each selected column.
Your choice determines whether the NOT NULL clause is built into the
generated DDL for each column.

If you know that a field cannot contain nulls or that a field always has a value
on a record, define a column as:

CHAR (n) NOT NULL

This results in more efficient queries and prevents generating different results
in Model 204 SOUL.

 TSF3 TSF Table Specification - Column Attributes 7.1.0

Table Name: CLIENTS MODEL 204 File: CLIENTS Col. 1 of 8

Column Name: Nulls? Format Len Prec Scale M204 Attributes
------------ ------ ------------ --- ---- ----- ---------------------
CITY Y CHARACTER__ 30_ __ __ STR REPT
BIRTHDAY Y CHARACTER__ 8__ __ __ STR ORD-NUM ONE
DRIVERID Y INTEGER____ ___ __ __ BIN COD OCC ORD-..>
SORTKEY Y CHARACTER__ 30_ __ __ STR REPT
POLNO N CHARACTER__ 6__ __ __ STR KEY OCC LEN=..>
RECTYPE Y CHARACTER__ 12_ __ __ STR COD OCC ORD-..>
SEX Y CHARACTER__ 1__ __ __ STR ORD-CHAR REPT
STATE Y CHARACTER___ 20_ __ __ STR COD OCC ORD-..>

At page one.
===> <ENTER>=Validate
1=HELp 3=QUIt 4=LEFt 5=RIGht
7=BACkward 8=FORward 10=FINal 12=END
Creating DDL with the Table Specification Facility 117

Defining column attributes (Column Attributes panel)
For example, when doing an index count, in SQL “not equal” (<>) is true only if
there is a value for the field on the record that is not equal to the search string.
In Model 204, if the field is not present on the record, the NOT NULL values are
included in the count using the index, because Model 204 does not keep an
index value NULL or NOT NULL. Once the NOT NULL count is established
using the index, the Model 204 SQL processor has to check every record in that
set to see whether or not there is a value for the field, and, for each record that
does not have a value, reduce the index count by one. This can be very costly
in terms of I/O and CPU consumption. Alternatively, if you define the column as
CHAR (n) NOT NULL, Model 204 SOUL simply does an indexed search to
evaluate the “not equal” query.

For more information about matching Model 204 and SQL data formats, see
“Matching Model 204 and SQL data formats” on page 31.

The NULL field defaults to Y (yes) except for the following cases in which it
defaults to N (no): all columns in a nested table, and the primary key of a parent
table.

Note: In some cases, TSF prevents you from changing the default value
displayed for this field. Typically, the field value area is protected when the
default is N.

Format

You must indicate the data type format of the column. Valid values are:

• DECIMAL or DEC

• NUMERIC

• INTEGER or INT

• SMALLINT

• FLOAT

• CHARACTER or CHAR

• REAL

• DOUBLE (for DOUBLE PRECISION)

Defaults, which you can change, are as follows:

SQL data type Model 204 field attribute

CHARACTER STRING

FLOAT FLOAT

INTEGER BINARY
118 Rocket Model 204 SQL Server User’s Guide

Defining column attributes (Column Attributes panel)
Specify INTEGER or DECIMAL for real numeric data only where leading and
trailing zeros of significance do not occur. If leading or trailing zeros have
significance (for example, in Social Security Numbers or dates), choose
CHARACTER.

Also specify CHARACTER if the data field can ever contain nonnumeric data
values.

For more information about matching Model 204 and SQL data formats, see
“Matching Model 204 and SQL data formats” on page 31.

Len (length)

You must specify a length if your data format is CHARACTER. Enter a length
between 1 and 255. This is the length of the string displayed to SQL requests
for this column. To prevent the display value from being truncated, enter a
length large enough to hold the maximum value the corresponding Model 204
field is likely to contain.

The default value is the Model 204 length; if the Model 204 field is not
preallocated or float, the default is 255.

For more information about Model 204 SQL data conversions, see “Optimizing
Model 204 data conversion” on page 35 and “Observing data precision limits”
on page 39.

Prec (precision)

If your data format is DECIMAL or NUMERIC, you must specify an integer
value between 1 and 15 for decimal digit precision.

If your data format is FLOAT, you must specify an integer value between 1 and
53 for binary precision (between 1 and 21 is equivalent to REAL; between 22
and 53 is equivalent to DOUBLE).

For more information about the precision available for Model 204 SQL
processing, see“Observing data precision limits” on page 39.

Scale

If your data format is DECIMAL or NUMERIC, you can optionally specify the
scale. The scale must be an integer value less than or equal to the specified
precision.

Usage note

The UNIQUE column attribute is automatically assigned or not assigned to a
column in the TSF-generated DDL based on the Model 204 attribute
ORDERED UNIQUE; therefore, it does not appear as an input option on the
panel.
Creating DDL with the Table Specification Facility 119

Completing table definitions (Completion panel)
Nonstandard PF key functions

PF7 (BACkward)

In addition to its standard usage (scrolling backward 12 lines, which returns you
to the previous page of data for the panel), you can use PF7 to scroll backward
a number of lines that you specify. If you type BAC and a number on the
command line, or if you type a number on the command line and press PF7,
the panel is scrolled backward that number of lines.

PF8 (FORward)

In addition to its standard usage (scrolling forward 12 lines, which takes you to
the next page of data for the panel), you can use PF8 to scroll forward a number
of lines that you specify. If you type FOR and a number on the command line,
or if you type a number on the command line and press PF8, the panel is
scrolled forward that number of lines.

Completing table definitions (Completion panel)

After defining your last column on the Column Attributes panel, Press PF10 to
access the Completion panel (TSF4). Or from the Column List panel
(Figure 5-4 on page 111), press PF10 to access the Completion panel (TSF4).
120 Rocket Model 204 SQL Server User’s Guide

Completing table definitions (Completion panel)
Figure 5-9 shows an example of a Completion panel with user specifications for
generating the DDL to the OUTDDL file.

Figure 5-9. Completion panel

Completion panel functions

The Completion panel selections perform the following functions:

TSF4 TSF Table Specification - Completion 7.1.0

Table Name: CLIENTS MODEL 204 File: CLIENTS

 1 Multi-Column Unique Definition

 2 Grant Authorization Screen

 3 View DDL at Terminal

 4 Generate DDL to Output File

 5 Return to Main Menu

Selection.....: 4
"USE" Cmd Arg: OUTDDGN__
 (Output file for Selection 4

 ===>
 1=HELp 3=QUIt

This Completion
panel selection...

Performs this action...

Multi-Column Unique
Definition

Takes you to panels to identify columns that combine
together to form a unique identifier for a row of data.

Grant Authorization
panel

Takes you to panels to specify the data needed to generate
GRANT statements for this schema.

View DDL at
Terminal

Allows you to view at a terminal the DDL generated.

Generate DDL to
Output File

Allows you to route DDL to a specified output location. You
can specify any valid argument for a USE command. For
example:

OUTxxxxx, PRINTER DALLAS, $PRINT ROUTE *

 If the output destination is an output file (OUTxxxxx), define
the output file with a disposition of MOD if you intend to
generate DDL several times before processing the output
file.
Creating DDL with the Table Specification Facility 121

Defining multicolumn unique keys (Multi-Column Unique panel)
Selection

At the Selection prompt, enter the number of the task you want and press Enter.

“USE” Cmd Arg

If you specify Option 4 (to generate DDL), you must also specify where the
output DDL is to be written. Enter a string of characters that make a valid
argument for the Model 204 USE command. For example:

OUTxxxxx
PRINTER DALLAS
$PRINT R *

Error condition

If you have changed the names of columns or the selections of the columns in
a table after defining your GRANT and UNIQUE statements, the following error
message appears when you attempt to generate DDL:

Column Names have been altered, revalidate GRANT & UNIQUE
definitions

Because the GRANT and UNIQUE definitions were edited with a
now-altered table definition, you must reedit these GRANT and UNIQUE
definitions before you can generate DDL. Select Options 1 and 2 from the
Completion panel (refer to Figure 5-9 on page 121) and then revalidate each
GRANT and UNIQUE definition by pressing PF8 for each definition to the last
definition, and then press PF12.

Defining multicolumn unique keys (Multi-Column Unique
panel)

If you select Option 1 from the Completion panel (Figure 5-9 on page 121), the
Multi-Column Unique panel is displayed. You can identify a set of columns that,
when concatenated together, form a unique constraint key for the rows in the
table. By preserving the uniqueness of the combination of the values of these
columns, you preserve the uniqueness of the combination of the Model 204
field values associated with the columns.

Figure 5-10 shows a Multi-Column Unique panel with the names filled in of the
SQL columns that combine to form a unique key, and with the name of the
Model 204 field (RECKEY) that is the concatenated index of the fields
associated with the indicated columns.

Return to Main Menu Enables you to define a new table.

This Completion
panel selection...

Performs this action...
122 Rocket Model 204 SQL Server User’s Guide

Defining multicolumn unique keys (Multi-Column Unique panel)
Note: The RECKEY field in Figure 5-10 is specified for example purposes only.
RECKEY is not defined in the Model 204 demonstration database. If you
attempt to reproduce this example, you receive an error message. For the
example to work, you must define and populate a special index field in the
demonstration database.

When you complete your definition, press PF5 to edit the panel, store the
updates, and provide an empty panel to generate a new multi-column unique
definition. Press PF7 or PF8 to move to the previous or to the next definition.

Figure 5-10. Multi-Column Unique panel

Specifying a multicolumn unique key

The Model 204 SQL Server supports multicolumn unique keys only if there is
an ORDERED CHAR UNIQUE field (which can be INVISIBLE) defined in the
Model 204 file that is generated by the concatenation of data in the individual
columns or fields. That is, a Model 204 DEFINE FIELD command must be
issued for this field before the multicolumn unique key is defined to the SQL
catalog.

TSF5 TSF Table Specification - Multi-Column Unique 7.1.0

Table Name: CLIENTS MODEL 204 File: CLIENTS

MODEL 204 Field:
RECKEY___

 Column Name(s): RECTYPE___________

 POLNO_____________

 SORTKEY___________

 Adding a new definition.

 ===> <ENTER>=Validate

 1=HELp 3=QUIt 5=ADDnew

 7=PREvious 8=NEXt 12=END

Creating DDL with the Table Specification Facility 123

Defining multicolumn unique keys (Multi-Column Unique panel)
The order in which you list the columns that compose the key determines the
order in which they are concatenated to build the supporting Model 204 index
field.

Once the Model 204 index field and multicolumn unique key are defined, you
must populate the index with data from its component fields. If you are
maintaining the associated Model 204 file exclusively with SQL, you can
populate the index automatically with an SQL UPDATE statement. If you are
maintaining the file with SOUL or the Host Language Interface, you can
manually apply the same algorithm the SQL Server uses for the automatic
population.

For more information about populating the multicolumn unique index, see
“Populating the index field” on page 61. For more information about manually
defining a multicolumn unique key, see “Specifying a multicolumn UNIQUE
key” on page 60.

Note: A multicolumn UNIQUE key is not allowed in a nested table.

Model 204 Field

The Model 204 field name must be the name of a field defined in the file with
the ORDERED CHAR UNIQUE attribute.

Using a multicolumn UNIQUE definition requires some modifications to the
existing Model 204 file that is being used. A field name must be added for the
concatenated data that results from a multicolumn UNIQUE definition. The field
must have the attribute of ORDERED CHAR UNIQUE. The field must be
populated with data for existing records. For more information about defining
such a field, see “Usage note” on page 125.

Once the table has been defined to the SQL catalog with the multicolumn
unique DDL clause, SQL updates or deletions of any of the columns
corresponding to the fields automatically update or delete keys from the index
field you added to support the multicolumn unique definition.

You might want to define the field as INVISIBLE in Model 204 to save duplicate
storage of data. However, if you do define the field as INVISIBLE, make sure
that the data in that field is not corrupted by SOUL programs (SQL programs
do not corrupt the data). If a SOUL program deletes any records in a file with
the Reuse Record Number option active, that program must also explicitly
delete any INVISIBLE fields associated with those records.

Refer to the Rocket Model 204 documentation wiki for information about the
INVISIBLE attribute:

http://m204wiki.rocketsoftware.com/index.php/Field_design

To get a list of fields defined in the file with the ORDERED CHAR UNIQUE
attribute, place the cursor on the input field and press PF1. On the help panel,
use any character to select the field value you need, and that value appears on
the panel in the input field when you return to the Multi-Column Unique panel.
124 Rocket Model 204 SQL Server User’s Guide

Specifying GRANT authority (Grant Authority panel)
Note: Due to physical panel size limitations, the Model 204 field name you
provide can be no longer than 58 characters. Ordinarily, Model 204 field names
can be as many as 255 characters. If you require more than 58 characters for
the field name, do not use the TSF to map this field. Manually include DDL
creating this key before submitting it to the CVI.

Column Name(s)

You must specify at least one column name; you cannot specify more than ten.
Each name must be a valid column name defined in this table.

The TSF concatenates the SQL column names you specify and compares the
resulting name to the corresponding Model 204 field name. If the resulting SQL
name does not match the Model 204 field name, the TSF automatically adds a
SYSNAME clause with the Model 204 field name to the TSF-generated DDL.
The SYSNAME value is the actual name of the Model 204 field.

To get a list of columns that can be selected, place the cursor on the field and
press PF1. On the help panel use any character to select the value(s) you need
and these value(s) appear on the panel at the Column Name input field(s) when
you return to the Multi-Column Unique panel.

You must not specify columns that are mapped to INVISIBLE fields.

For an example of how the SQL Server concatenates the SQL column names,
see “Using the multicolumn unique key algorithm” on page 62. For more
information about the Model 204 SQL SYSNAME extension, see “Column
naming and the SYSNAME extension” on page 59.

Usage note

Remember, if you are defining a multicolumn unique field for an existing
Model 204 file that contains data, you must take the following actions:

1. Define the field that is to be the concatenated index as ORDERED CHAR
UNIQUE (and preferably INVISIBLE).

2. Populate the new index with data from its component fields, as described
on “Populating the index field” on page 61.

Specifying GRANT authority (Grant Authority panel)

If you select Option 2 from the Completion panel (Figure 5-9 on page 121), the
Grant Authority panel appears. With the Grant Authority panel you can
generate GRANT statements for the schema in which the table is being
defined.

For more information about the Model 204 SQL implementation of GRANT, see
“Granting privileges for SQL objects” on page 82.

Figure 5-11 shows a Grant Authority panel with user specifications for granting
privileges for all four DML actions to all valid Model 204 SQL users. These
Creating DDL with the Table Specification Facility 125

Specifying GRANT authority (Grant Authority panel)
users can grant these privileges to others (“With grant option” clause of GRANT
statement is included).

Figure 5-11. Grant Authority panel

Authority

You must specify at least one authority value. Valid values are SELECT,
INSERT, DELETE, UPDATE, and ALL. If you specify ALL, do not specify any
other value.

Column(s)

Only if you specify UPDATE as the authority value can you optionally include
valid column name(s) defined in this table.

To access help information about columns, place the cursor on the field and
press PF1. On the help panel use any character to select the value(s) you need
and these value(s) appear on the panel in the Column input field(s) when you
return to the Grant Authority panel.

User

Specify at least one entry. Valid user names must be valid or plausible
Model 204 login IDs (having no more than 10 characters and no underscore
characters, initial numbers, or certain character combinations).

TSF6 TSF Table Specification - Grant Authority 7.1.0

 Table Name: CLIENTS MODEL 204 File: CLIENTS

 Authority Column(s) User
 Grant ALL____ for __________________ to PUBLIC____________
 _______ __________________ __________________
 _______ __________________ __________________
 _______ __________________ __________________
 __________________ __________________
 __________________ __________________
 __________________ __________________
 __________________ __________________
 __________________ __________________
 __________________ __________________
 __________________ __________________
 With grant option: Y (Y/N)

 Adding a new definition.
 ===> <ENTER>=Validate
 1=HELp 3=QUIt 5=ADDnew
 7=PREvious 8=NEXt 12=END
126 Rocket Model 204 SQL Server User’s Guide

Viewing DDL at the terminal (Completion panel)
Grant option

You must select either Y for Yes or N for No.

Usage note

When you complete your definition, press PF5 to edit the panel, store the
updates to the database, and provide a new empty panel to generate a new
GRANT definition. Press PF7 or PF8 to move to the previous or to the next
GRANT definition.

Viewing DDL at the terminal (Completion panel)

To view the generated DDL on the screen, select Option 3 from the Completion
panel (Figure 5-9 on page 121). The DDL generated by the Table Specification
facility appears.

To page through the output, press Enter. Pressing Enter at the last page of
output brings you back to the Completion panel.

An example of DDL displayed at a terminal is shown in Figure 5-12, which
continues onto the next page.

Note: The DDL at the bottom of the generated stream that defines the
multicolumn unique key is displayed for example purposes only. You cannot
generate such DDL using an unaltered version of the Model 204 demonstration
database. The demonstration database includes no field designed to serve as
a multicolumn unique key.

Figure 5-12. TSF-generated DDL
Creating DDL with the Table Specification Facility 127

Viewing DDL at the terminal (Completion panel)
CREATE SCHEMA DEMO AUTHORIZATION MARK
 CREATE TABLE CLIENTS
 (CITY
 CHAR(30),
 BIRTHDAY
 SYSNAME 'DATE OF BIRTH'
 CHAR(8),
 DRIVERID

 SYSNAME 'DRIVER ID'
 INTEGER,
 SORTKEY
 SYSNAME 'FULLNAME'
 CHAR(30),
 POLNO
 SYSNAME 'POLICY NO'
 CHAR(6) NOT NULL,
 RECTYPE
 CHAR(12),
 SEX
 CHAR(1),
 STATE
 CHAR(20),

 >
128 Rocket Model 204 SQL Server User’s Guide

Generating DDL to an output file (Completion panel)
Figure 5-13. TSF-generated DDL (continued)

Generating DDL to an output file (Completion panel)

To generate DDL into a specified output file, select Option 4 from the
Completion panel in Figure 5-9 on page 121).

You must either dynamically allocate or have your system manager define or
allocate this output file prior to your using it from the TSF. For best results under
z/OS (and comparably for VM and VSE), make sure that the following is
specified in the DD statement or ALLOCATE command for the output file (data
set):

• Data set name begins with OUT.

• DISP=MOD, if you intend to generate DDL several times before processing
the output file

• RECFM=FS, to prevent the printing to the file of carriage control characters

• LRECL=80, to facilitate the reading of the file by CVI

After generating DDL to an output file, you receive the following message:

**
* *
* WARNING: Generation of DDL to an output file causes this utility *
* to delete all work records generated by this utility. *
* If you do not wish to delete these work records at this time *
* respond “N” to the question below, and remember that the deletion *
* of these records will be a manual process under your control. *
* *
**

$$Proceed with delete (Y/N)?
>

Delete the work file records after you have stored the DDL from the TSF in an
output file.

You can use your editor to manually adjust or add to the DDL stream generated
by the TSF before you submit the DDL to the CVI.

As stated earlier, the CVI utility requires that the DDL input statement must
each be delimited, which the CCATSF utility currently does not generate. This

 UNIQUE (CLAIM_NO
 POLICY_NO
 SYSNAME ‘RECKEY’)

 GRANT ALL PRIVILEGES ON CLAIMS02 TO PUBLIC
 WITH GRANT OPTION
Creating DDL with the Table Specification Facility 129

Generating DDL to an output file (Completion panel)
delimit character, the semicolon (;), must be manually supplied by the user, if
the CVI utility is to be used.
130 Rocket Model 204 SQL Server User’s Guide

6
Getting Information from the SQL
Catalog

To review the current contents of the SQL catalog you can query the
catalog directly or you can use CCACATREPT, the SQL catalog
reporting utility. This chapter describes CCACATREPT and the
queriable views of the SQL catalog.

SQL catalog reporting with CCACATREPT

The CCACATREPT subsystem is a reporting mechanism for data in the
CCACAT SQL catalog file. CCACATREPT is a menu-driven utility that
produces both online and printed output. With CCACATREPT you can
produce a report that provides information about all SQL objects
defined in the SQL catalog.

Catalog administrators can compare the CCACATREPT output to the
Model 204 file data to determine the updates they need to make to the
SQL catalog to obtain consistency with the file. They can modify the
report’s generated DDL and use it to repopulate the SQL catalog. SQL
application programmers and SQL users can use the output to verify
valid table, view, column names and column attributes.

This section describes the CCACATREPT menu and provides
examples of each of the output formats. CCACATREPT produces the
following types of online and printed output:

• File of valid DDL syntax, which you can use to rebuild the catalog

• Fixed format report of a table or view

• Privilege report by table or view name
Getting Information from the SQL Catalog 131

CCACATREPT Main Menu
• Privilege report by user

As an Application Subsystem utility, CCACATREPT is subject to typical
Application Subsystem security, as described in the Rocket Model 204
documentation wiki:

http://m204wiki.rocketsoftware.com/index.php/System_requirements_for_App
lication_Subsystems

Logging in

Before you can log in to CCACATREPT, the CCACATREPT subsystem must
already have been started with the Model 204 START SUBSYSTEM
command. To log in to CCACATREPT, at your Model 204 Online prompt enter:

CCACATREPT

and press Enter.

The CCACATREPT Main Menu is displayed.

CCACATREPT Main Menu

The Main Menu of CCACATREPT in Figure 6-1 displays the four output
formats, their input parameters, and their output destination options.

Figure 6-1. CCACATREPT Main Menu

Using the CCACATREPT panel

After you make final panel field selections and generate a report,
CCACATREPT redisplays the panel with those selections.

You can enter an asterisk (*) in an input area to select all the items of a
particular category.

 7.1.0
132 Rocket Model 204 SQL Server User’s Guide

CCACATREPT Main Menu
The command line (===>) is at the bottom of the panel. Use the command line
to enter commands in lieu of PF keys. The minimum abbreviation for a
command is generally the first three characters, for example, REF for REFresh.
The minimum abbreviation appears in capital letters in the PF key display area.

The CCACATREPT main menu has the following PF keys:

Selection field

Using the Selection field you can generate output from any of the four reports
numbered one through four on the menu. Enter an integer from 1 through 4,
corresponding to the reports numbered on the menu. The report number you
choose determines the input parameter fields. Your must supply one of the
values that are listed below the Selection field. The report input parameter
fields are followed by a specification in parentheses of the reports for which a
value is required.

If you supply a value for a report that does not require it, you receive an error
message asking you to remove your incorrect value.

Schema Name field

You must specify an entry in this field if you entered 1, 2, or 3 in the Selection
field. Enter the name of a specific schema or enter an asterisk (*) for all
schemas.

If your Selection field entry requires an entry for this field and you do not enter
a value, by default CCACATREPT outputs all schemas.

Key Explanation

PF1 = HELp

You can access either general help information for the
panel or additional individual panel field help information.

Access general help information for this panel by placing
the cursor under the input area of any panel field except
Schema Name, Authorization ID, Table/View Name, or
Grantee, and press PF1.

Access individual panel field help information by placing
the cursor under the input area of Schema Name,
Authorization ID, Table/View Name, or Grantee. Put the
cursor anywhere in the input area of the field you want, and
press PF1. The current set of values in the SQL catalog for
this field is displayed. If you select one of these values by
entering any character on the line to the left of the value, it
is returned to the input area of the field in question.

PF2 = REFresh Refresh the screen, and do not process the current data on
the screen. The refreshed screen appears as it does when
you first entered the panel.

PF3 = QUIt Exit from CCACATREPT. Entries are not saved when you
use PF3.
Getting Information from the SQL Catalog 133

CCACATREPT Main Menu
Authorization ID field

You must specify an entry in this field if you entered 1 or 2 in the Selection field.
Enter the name of a specific authorization ID or enter an asterisk (*) for all
authorization IDs.

If your Selection field entry requires an entry for this field and you do not enter
a value, by default CCACATREPT outputs all authorization IDs.

Table/View Name field

You must specify an entry in this field if you entered 1, 2, or 3 in the Selection
field. Enter the name of a specific table or view to be reported or enter an
asterisk (*) for all tables and views.

If your Selection field entry requires an entry for this field and you do not enter
a value, by default CCACATREPT outputs all tables and views.

DDL Statement Type(s) field

You must specify an entry in this field if you entered 1 in the Selection field. The
output from Selection 1 is standard SQL DDL generated from the Model 204
SQL catalog. In the DDL Statement Type(s) field, you identify the DDL
statement types to be generated. Choose one or more of the following
identifiers:

If your Selection field entry requires an entry for this field and you do not enter
a value, by default CCACATREPT outputs all the DDL.

Grantee field

You must specify an entry in this field if you entered 4 in the Selection field.
Enter the SQL identifier of a specific grantee to be reported or enter an asterisk
(*) for all grantees. Privileges granted to PUBLIC are always reported.

If your Selection field entry requires an entry for this field and you do not enter
a value, by default CCACATREPT outputs privileges for all grantees.

Identifier Statement generated

T CREATE TABLE

V CREATE VIEW

G GRANT

T, V, or G CREATE SCHEMA or SET SCHEMA
CREATE TABLE, CREATE VIEW, and GRANT
134 Rocket Model 204 SQL Server User’s Guide

Report Selection 1: Generate DDL
“USE” Command Arg

Use this field to route output to a destination other than to the terminal. The
character string you enter in this field becomes the Model 204 USE command
argument that identifies the output destination device. You can enter any USE
command argument that is valid in your operating environment, for example,
PRINTER FOO or $PRINT *.

You can route your output to a file. Either dynamically allocate or have your
system manager define or allocate an output file prior to your using it from
CCACATREPT. For best results under z/OS (and comparably for VM and VSE),
make sure that the following are specified in the DD statement or ALLOCATE
command for the output file (data set):

• DD name begins with OUT.

• DISP=MOD, if you intend to generate multiple reports before processing
the output file

• RECFM=FS, to prevent the printing to the file of carriage control characters

• LRECL=80, to facilitate the reading of the file by CVI or other DDL utility

The Model 204 USE command is described in the Model 204 documentation
wiki:

http://m204wiki.rocketsoftware.com/index.php/USE_command:_Directing_out
put

Report Selection 1: Generate DDL

The first reporting option on the Main Menu is to generate the SQL DDL from
the existing SQL catalog (CCACAT file) data. This DDL is output in valid SQL
syntax that you can use to rebuild the catalog. You can also use it to report the
existing catalog data in a standard format familiar to SQL users.

Note: Currently the CCACATREPT subsystem does not generate DDL
statement delimiters. However, semicolons are required by the CVI utility. You
can add delimiters by hand or use another SQL utility that does not require DDL
delimiters. The Connect ODBC unsupported utilities, DDLWIN and CLIIVP,
are examples of utilities which accept DDL input lines without delimiters.

Specifying report input parameters

The required input parameters are:

Required parameter Enter...

Schema Name Specific name or “*”

Authorization ID Specific ID or “*”

Table/View Name Specific name or “*”
Getting Information from the SQL Catalog 135

Report Selection 1: Generate DDL
Report input parameter examples

The following examples describe how the report input parameters are used.

Example 1

Specifying the parameters in this example produces CREATE SCHEMA,
CREATE TABLE, CREATE VIEW, and GRANT DDL statements for all
CCACAT objects.

Schema Name = *
Authorization ID = *
Table/View Name = *
DDL Statement Types = tvg

Example 2

Specifying the parameters in this example produces SET SCHEMA and
CREATE TABLE DDL statements for all tables with the authorization ID of
USERXXX.

Schema Name = *
Authorization ID = userxxx
Table/View Name = *
DDL Statement Types = t

Example 3

Specifying the parameters in this example produces SET SCHEMA, CREATE
TABLE, and GRANT DDL statements for the table USERXXX.CLIENTS.

Schema Name = *
Authorization ID = userxxx
Table/View Name = clients
DDL Statement Types = tg

DDL Statement Types String of identifiers for the DDL statement
types to be generated

Options (enter one or more, without commas
or spaces) are:

 T=Table

 V=View

 G=Grant

Required parameter Enter...
136 Rocket Model 204 SQL Server User’s Guide

Report Selection 1: Generate DDL
Ordering the DDL output

The format of the DDL generated by this report option is the same as that
generated by the TSF.

To set the schema context, CCACATREPT always places the CREATE
SCHEMA or SET SCHEMA statement before the rest of the generated DDL. If
you plan to process the generated DDL against the SQL catalog, you might
have to change CREATE SCHEMA to SET SCHEMA, because issuing
CREATE SCHEMA for a schema that already exists is an error.

For more information about creating schemas, changing the default schema
context, and SQL DDL statement processing, see “Setting the schema and
user context” on page 76.

You must order statements correctly to avoid forward referencing problems
when the generated DDL is processed. For example, a view of a view must
reference an already created view. The generated DDL sort order follows:

1. Schemas in the order that they were originally input into the SQL catalog.

2. Within a schema, all base and parent tables in alphanumeric order, fol-
lowed by all nested tables in alphanumeric order. Privileges (GRANT
statements) for each table follow that table.

3. Views follow tables. They are in the order that they were originally input
into the SQL catalog. GRANT statements for each view follow that view.

4. Grants are ordered by privilege, column name, GRANT statement option,
and grantee.

Sample of generated DDL

The sample DDL stream in Figure 6-2 is generated by the following input
parameter specifications:

Schema Name = demo
Authorization ID = *
Table/View Name = clients
DDL Statement Types = tvg

Figure 6-2. Sample DDL output

SET SCHEMA DEMO

 CREATE TABLE CLIENTS
 (ADDRESS
 CHAR(40),
 AGENT
 CHAR(20),
 ANNIV_DATE
 SYSNAME 'ANNIV DATE'
Getting Information from the SQL Catalog 137

Report Selection 2: Formatted Table/View report
 INT,
 CITY
 CHAR(20),
 DATE_OF_BIRTH
 SYSNAME 'DATE OF BIRTH'
 INT,
 DRIVER_ID
 SYSNAME 'DRIVER ID'
 INT,
 FULLNAME
 CHAR(40) NOT NULL,
 MARITAL_STATUS
 SYSNAME 'MARITAL STATUS'
 CHAR(15),
 POLICY_NO
 SYSNAME 'POLICY NO'
 CHAR(6) NOT NULL,
 POLICYHOLDER
 CHAR(40),
 RECTYPE
 CHAR(15) NOT NULL,
 RESTRICTIONS
 CHAR(255),
 SEX
 CHAR(1),
 STATE
 CHAR(25),
 TOTAL_PREMIUM
 SYSNAME 'TOTAL PREMIUM'
 INT,
 ZIP
 CHAR(9),
 PID
 INT NOT NULL PRIMARY KEY SYSTEM)

 -- GRANT STATEMENTS FOR TABLE: CLIENTS

 GRANT DELETE ON CLIENTS TO PUBLIC
 GRANT INSERT ON CLIENTS TO PUBLIC
 GRANT SELECT ON CLIENTS TO PUBLIC
 GRANT UPDATE ON CLIENTS TO PUBLIC

Report Selection 2: Formatted Table/View report

The Formatted Table/View report has a fixed format that provides the same
information as the DDL generation report (except for granted privilege
information), but in a different format.
138 Rocket Model 204 SQL Server User’s Guide

Report Selection 2: Formatted Table/View report
Report input parameters

Input parameters for the report are:

• Specific schema name (or “*”)

• Specific authorization ID (or “*”)

• Specific table or view name (or “*”)

Contents of the report

The report provides the following information for tables (see the section
“Sample report”):

• Name of the SQL table

• Column names in the table

• SQL attributes of table columns

• Column names making up any multi-column unique columns

• Name of the corresponding Model 204 file

• Name of the corresponding Model 204 field

• Authorization ID

Note: The report does not provide information about views that reference a
given table.

The report provides the following information for views:

• Name of the SQL view

• View definition text

Sample report

In Figure 6-3 on page 139 the sample output is generated by the following input
parameter specifications:

Schema Name = demo
Authorization ID = userxxx
Table/View Name = clients

The output is a formatted table/view report of the DEMO.CLIENTS table.

Figure 6-3. Sample Table/View report

18 NOV 09 SQL SCHEMA, TABLE, VIEW REPORT

SCHEMA: DEMO AUTHORIZATION: USERXXX
Getting Information from the SQL Catalog 139

Report Selection 3: Privilege report by table/view
TABLE: CLIENTS TABLE-TYPE: PARENT PRIMARY-KEY: PID
M204-FILE: CLIENTS

SQL-COLUMN-NAME DATA-TYPE NULL UNQ MODEL-204-FIELD-NAME
ADDRESS CHAR(40) Y N ADDRESS
AGENT CHAR(20) Y N AGENT
ANNIV_DATE INT Y N ANNIV DATE
CITY CHAR(20) Y N CITY
DATE_OF_BIRTH INT Y N DATE OF BIRTH
DRIVER_ID INT Y N DRIVER ID
FULLNAME CHAR(40) N N FULLNAME
MARITAL_STATUS CHAR(15) Y N MARITAL STATUS
POLICY_NO CHAR(6) N N POLICY NO
POLICYHOLDER CHAR(40) Y N POLICYHOLDER
RECTYPE CHAR(15) N N RECTYPE
RESTRICTIONS CHAR(255) Y N RESTRICTIONS
SEX CHAR(1) Y N SEX
STATE CHAR(25) Y N STATE
TOTAL_PREMIUM INT Y N TOTAL PREMIUM
ZIP CHAR(9) Y N ZIP
PID INT N Y PID

Report Selection 3: Privilege report by table/view

The Privilege report by table/view displays the DML update privileges for each
table and view indicated by your input parameter specification. The update
operations permitted per table and view, including WITH GRANT OPTION, are
displayed for each grantee and for grants to PUBLIC.

The report has a fixed format. The sort order is by object name (schema name
and table or view name), within that by grantee, and within that by column
name, if applicable.

Report input parameters

Input parameters for the report are:

• Specific schema name (or “*”)

• Specific table or view name (or “*”)
140 Rocket Model 204 SQL Server User’s Guide

Report Selection 3: Privilege report by table/view
Report display fields

Table 6-1 lists the report display fields and their meanings.

Sample Privilege Report by table and view

The sample output in Figure 6-4 on page 141 is generated by the following
input parameter specifications:

Schema Name = demo
Table/View Name = *

The output is a privilege report for all the tables and views in the DEMO
schema.

Figure 6-4. Sample Privilege Report by table/view

18 NOV 09 SQL PRIVILEGE REPORT -- BY TABLE/VIEW PAGE: 1

TABLE/VIEW: DEMO.ACCIDENTS

GRANTEE SEL-OPT INS-OPT DEL-OPT UPD-OPT COLUMN-NAME
PUBLIC X N X N X N X N
USERXXX X Y X Y X Y X Y

TABLE/VIEW: DEMO.CLAIMS03

Table 6-1. Privilege report by table/view display fields

Field Meaning

TABLE/VIEW Name of the table or view for which indicated privileges are
valid.

GRANTEE User ID for which the privileges are granted.

SEL If X, privilege to issue DML SELECT statement.
If blank, no such privilege.

INS If X, privilege to issue DML INSERT statement.
If blank, no such privilege.

DEL If X, privilege to issue DML DELETE statement.
If blank, no such privilege.

UPD If X, privilege to issue DML UPDATE statement.
If blank, no such privilege.

OPT If Y, option to grant this privilege to others.
If N, no such privilege.

COLUMN-NAME For UPDATE only, specific columns for which the privilege is
granted. Asterisk (*) means all columns.
Getting Information from the SQL Catalog 141

Report Selection 3: Privilege report by table/view
GRANTEE SEL-OPT INS-OPT DEL-OPT UPD-OPT COLUMN-NAME
PUBLIC X N X N X N X N
USERXXX X Y X Y X Y X Y

TABLE/VIEW: DEMO.CLIENTS

GRANTEE SEL-OPT INS-OPT DEL-OPT UPD-OPT COLUMN-NAME
PUBLIC X N X N X N X N
USERXXX X Y X Y X Y X Y

TABLE/VIEW: DEMO.DRIVERS

GRANTEE SEL-OPT INS-OPT DEL-OPT UPD-OPT COLUMN-NAME
PUBLIC X N X N X N X N
USERXXX X N X N X N X Y

TABLE/VIEW: DEMO.INSURED_VINS

GRANTEE SEL-OPT INS-OPT DEL-OPT UPD-OPT COLUMN-NAME
PUBLIC X N X N X N X N
USERXXX X Y X Y X Y X Y

TABLE/VIEW: DEMO.OTHER_DRIVER

GRANTEE SEL-OPT INS-OPT DEL-OPT UPD-OPT COLUMN-NAME
PUBLIC X N X N X N X N
USERXXX X Y X Y X Y X Y

TABLE/VIEW: DEMO.POLICIES

GRANTEE SEL-OPT INS-OPT DEL-OPT UPD-OPT COLUMN-NAME
PUBLIC X N X N X N X N
USERXXX X N X N X N X Y

TABLE/VIEW: DEMO.VEHICLES

GRANTEE SEL-OPT INS-OPT DEL-OPT UPD-OPT COLUMN-NAME
PUBLIC X N X N X N X N
USERXXX X Y X Y X Y X Y
18 NOV 09 SQL PRIVILEGE REPORT -- BY TABLE/VIEW PAGE: 2

142 Rocket Model 204 SQL Server User’s Guide

Report Selection 4: Privilege report by grantee
Report Selection 4: Privilege report by grantee

The Privilege report by grantee displays the DML update privileges for each
grantee indicated by your input parameter specification. The update operations
permitted, including WITH GRANT OPTION, are displayed for each table or
view. Privileges granted to PUBLIC are displayed under GRANTEE=PUBLIC.

The report has a fixed format. The sort order is by grantee, within that by object
name (schema name and table or view name), and within that by column name,
if applicable.

Report input parameter

The required input parameter for the report is: Specific grantee (or “*”).

Report display fields

The report display fields have the same meanings as those for the Privilege
report by table and view, shown in Table 6-1 on page 141.

Sample report

A sample of this report appears in Figure 6-5, generated by the following input
parameter specification:

Grantee = userxxx

The output is a report of all the privileges granted to USERXXX or to PUBLIC.

Figure 6-5. Sample Privilege report by grantee

18 NOV 09 SQL PRIVILEGE REPORT -- BY GRANTEE PAGE: 1

GRANTEE: PUBLIC

TABLE/VIEW SEL-OPT INS-OPT DEL-OPT UPD-OPT COLUMN-NAME
DEMO.ACCIDENTS X N X N X N X N
DEMO.CLAIMS03 X N X N X N X N
DEMO.CLIENTS X N X N X N X N
DEMO.DRIVERS X N X N X N X N
DEMO.INSURED_VINS X N X N X N X N
DEMO.OTHER_DRIVER X N X N X N X N
DEMO.POLICIES X N X N X N X N
DEMO.VEHICLES X N X N X N X N

GRANTEE: USERXXX

TABLE/VIEW SEL-OPT INS-OPT DEL-OPT UPD-OPT COLUMN-NAME
DEMO.ACCIDENTS X Y X Y X Y X Y
DEMO.CLAIMS03 X Y X Y X Y X Y
Getting Information from the SQL Catalog 143

Querying the SQL catalog
DEMO.CLIENTS X Y X Y X Y X Y
DEMO.DRIVERS X N X N X N X Y
DEMO.INSURED_VINS X Y X Y X Y X Y
DEMO.OTHER_DRIVER X Y X Y X Y X Y
DEMO.POLICIES X N X N X N X Y
DEMO.VEHICLES X Y X Y X Y X Y

Querying the SQL catalog

You can directly query the Model 204 SQL catalog to obtain information about
the current catalog definitions. Any authorized SQL user can access (but not
update) any of 18 views of the catalog contents. You use a normal SQL query
and devise your own report format for information from the catalog views.

The SQL catalog contains a schema named CATALOG that is comprised of the
views of the catalog contents. The views are defined by SQL object. For
example, the schemas view in CATALOG contains all the schemas in the
catalog by name and by authorization ID.

The CATALOG views are listed here and described individually in the rest of
this section.

SCHEMAS (or SCHEMATA)
TABLES
TABLE_COLUMNS
COLUMNS (for tables and views)
VIEWS
TABLE_CONSTRAINTS
KEY_COLUMN_USAGE
TABLE_PRIVILEGES
COLUMN_PRIVILEGES
ODBC_TYPES
ODBC_SCALES
CONST
ODBC_COLUMNS
ODBC_SPECIAL_COLS
ODBC_TABLES
ODBC_TABLE_STATS
ODBC_KEY_STATS
ODBC_STATISTICS

Querying a CATALOG view

Authorized Model 204 SQL users can query any of the CATALOG views like
any other SQL object. However, the views display to you only the SQL objects
or information that you have the authority to see or that are granted to PUBLIC.

For example, USERXXX issues the following query against the Model 204
demonstration database:
144 Rocket Model 204 SQL Server User’s Guide

Querying the SQL catalog
SELECT * FROM CATALOG.TABLES

The result is a display of information about the tables USERXXX has the
authority to select or update. The query’s output is shown in Figure 6-6. The
format of the output depends on your application and is your responsibility.

The CATALOG.TABLES columns (described in “TABLES view” on page 147),
ordered from left to right, are:

TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, FILE_NAME,
TABLE_TYPE, COLUMN_CARDINALITY, PRIMARY_KEY, SYSTEM_KEY,
PARENT_TABLE_NAME, TIMESTAMP

This is the default display order, which derives from the order of the columns in
the individual CATALOG view definition.

Figure 6-6. SELECT * from CATALOG.TABLES

The output in Figure 6-6 is from two schemas: CATALOG and USERXXX. The
CATALOG schema contains the 18 views that describe the catalog contents
and is granted to PUBLIC. You can limit the output to the tables in schema
USERXXX by using the following SELECT statement:

SELECT * FROM CATALOG.TABLES WHERE TABLE_SCHEMA=’USERXXX’

CCACAT CATALOG SCHEMAS V 4 4 19920911000004

CCACAT CATALOG TABLES V 10 10 19920911000007

CCACAT CATALOG TABLE_COLUMNS V 11 11 19920911000010

CCACAT CATALOG COLUMNS V 8 8 19920911000000

CCACAT CATALOG VIEWS V 6 6 19920911000016

CCACAT CATALOG TABLE_CONSTRAINTS V 6 6 19920911000019

CCACAT CATALOG KEY_COLUMN_USAGE V 5 5 19920911000022

CCACAT CATALOG TABLE_PRIVILEGES V 8 8 19920911000025

CCACAT CATALOG COLUMN_PRIVILEGES V 9 9 19920911000028

CCACAT CATALOG ODBC_TYPES V 16 19981201142400

CCACAT CATALOG ODBC_SCALES V 2 19981201142400

CCACAT CATALOG CONST V 9 19981201142400

CCACAT CATALOG ODBC_COLUMNS V 17 19981201142400

CCACAT CATALOG ODBC_SPECIAL_COLS V 10 19981201142400

CCACAT CATALOG ODBC_TABLES V 5 19981201142401

CCACAT CATALOG ODBC_TABLE_STATS V 12 19981201142401

CCACAT CATALOG ODBC_KEY_STATS V 12 19981201142401

CCACAT CATALOG ODBC_STATISTICS V 12 19981201142401

CCACAT USERXXX DRIVERS V 9 19921117183249

CCACAT USERXXX POLICIES V 9 19921117183250

CCACAT USERXXX CLIENTS CLIENTS T 17 PID 1 19921117183251

CCACAT USERXXX ACCIDENTS CLIENTS T 3 PID 1 CLIENTS 19921117183253

CCACAT USERXXX INSURED_VINS CLIENTS T 2 PID 1 CLIENTS 19921117183254

CCACAT USERXXX VEHICLES VEHICLES T 19 VIN 0 CLIENTS 19921117183254

CCACAT USERXXX OTHER_DRIVER VEHICLES T 2 VIN 0 VEHICLES 19921117183256

CCACAT USERXXX CLAIMS03 CLAIMS03 T 13 VIN 0 VEHICLES 19921117183258
Getting Information from the SQL Catalog 145

Querying the SQL catalog
You can list specific columns for display instead of using SELECT *. For
example, the following statement results in the same display as that in
Figure 6-6:

SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,
 FILE_NAME, TABLE_TYPE, COLUMN_CARDINALITY,
 PRIMARY_KEY, SYSTEM_KEY, PARENT_TABLE_NAME,
 TIMESTAMP
FROM CATALOG.TABLES

The output in Figure 6-6 is grouped by schema, because that is how the DDL
used to populate the SQL catalog was organized. An unqualified SQL catalog
query returns data chronologically in the order in which the SQL objects were
defined or updated in the SQL catalog. As new tables are added to which
USERXXX is granted access, this convenient grouping is likely to be lost.

You can ensure that your output is appropriately ordered by sorting the rows by
column value with the ORDER BY clause. For example, the following statement
sorts the query output by table name, as shown in Figure 6-7:

SELECT * FROM CATALOG.TABLES WHERE TABLE_SCHEMA=’USERXXX’
ORDER BY TABLE_SCHEMA, TABLE_NAME

Figure 6-7. SELECT * with ORDER BY from CATALOG.TABLES

Rules for CATALOG queries

• A query against a table that does not exist returns an empty result.

• A query against a table that you do not have the authority to access returns
an empty result.

• You cannot issue update SQL DML against the CATALOG views.

SCHEMAS view

Table 6-2 lists the CATALOG.SCHEMAS view columns and their descriptions.
This view contains a row of identifying information for each schema whose
authorization ID is your login ID.

CCACAT USERXXX ACCIDENTS CLIENTS T 3 PID 1 CLIENTS 19921117183253

CCACAT USERXXX CLAIMS03 CLAIMS03 T 13 VIN 0 VEHICLES 19921117183258

CCACAT USERXXX CLIENTS CLIENTS T 17 PID 1 19921117183251

CCACAT USERXXX DRIVERS V 9 19921117183249

CCACAT USERXXX INSURED_VINS CLIENTS T 2 PID 1 CLIENTS 19921117183254

CCACAT USERXXX OTHER_DRIVER VEHICLES T 2 VIN 0 VEHICLES 19921117183256

CCACAT USERXXX POLICIES V 9 19921117183250

CCACAT USERXXX VEHICLES VEHICLES T 19 VIN 0 CLIENTS 19921117183254
146 Rocket Model 204 SQL Server User’s Guide

Querying the SQL catalog
SCHEMATA is an alias for SCHEMAS. You can query either SCHEMAS or
SCHEMATA.

The top-to-bottom order of the columns in Table 6-2 is the left-to-right order of
the columns in each row of output you receive from an unqualified SELECT *
query against the view.

TABLES view

Table 6-3 lists the CATALOG.TABLES view columns and their descriptions.
This view contains a row of descriptive information for each table or view you
have the authority to access.

The top-to-bottom order of the columns in Table 6-3 is the left-to-right order of
the columns in each row of output you receive from an unqualified SELECT *
query against the view.

Table 6-2. SCHEMAS view columns

Column name Data type Description

SCHEMA_CATALOG CHAR(18) Name of the catalog where the schema
is cataloged (CCACAT)

SCHEMA_NAME CHAR(18) Name of the schema

SCHEMA_OWNER CHAR(18) Authorization ID of the owner of the
schema

TIMESTAMP CHAR(14) Greenwich mean time when the schema
description was cataloged

Table 6-3. TABLES view columns

Column name Data type Description

TABLE_CATALOG CHAR(18) Name of the catalog in which the table is
cataloged (CCACAT)

TABLE_SCHEMA CHAR(18) Name of the schema to which the table
belongs

TABLE_NAME CHAR(18) Name of the table

FILE_NAME CHAR(8) Name of the Model 204 file to which the
table maps

TABLE_TYPE CHAR(1) Type of table: either T (table), or V (view)

COLUMN_CARDINALITY INTEGER Number of columns defined in the table
being described

PRIMARY_KEY CHAR(18) Name of any primary or nested key
column; otherwise, null
Getting Information from the SQL Catalog 147

Querying the SQL catalog
TABLE_COLUMNS view

Table 6-4 lists the CATALOG.TABLE_COLUMNS view columns and their
descriptions. This view contains a row of column definition information for each
column in each base or nested table you have the authority to access. The
TABLE_COLUMNS view contains column definition information not contained
in the COLUMNS view, for example, the name of the Model 204 field to which
the column maps.

The top-to-bottom order of the columns in Table 6-4 is the left-to-right order of
the columns in each row of output you receive from an unqualified SELECT *
query against the view.

SYSTEM_KEY CHAR(1) 0, if the primary or nested key column
 is not system-generated
1, if the primary or nested key column
 is system-generated

null, if there is no primary or nested key

PARENT_TABLE_NAME CHAR(18) Name of parent table if the table is
nested; otherwise, null

TIMESTAMP CHAR(14) Greenwich mean time when the table
description was cataloged

Table 6-3. TABLES view columns (Continued)

Column name Data type Description

Table 6-4. TABLE_COLUMNS view columns

Column name Data type Description

TABLE_CATALOG CHAR(18) Name of the catalog in which the table is
cataloged (CCACAT)

TABLE_SCHEMA CHAR(18) Name of the schema to which the table
belongs

TABLE_NAME CHAR(18) Name of the table

COLUMN_NAME CHAR(18) Name of the column

FIELD_NAME CHAR(25
5)

Name of the Model 204 field to which the
column maps

NUMERIC_PRECISION INTEGER Maximum numeric precision of the column
values

NUMERIC_SCALE INTEGER Numeric scale of the column values

CHAR_MAX_LENGTH INTEGER Maximum length of string values, if the
column data type is CHAR; otherwise,
zero
148 Rocket Model 204 SQL Server User’s Guide

Querying the SQL catalog
COLUMNS view

Table 6-5 lists the CATALOG.COLUMNS view columns and their descriptions.
The COLUMNS view contains a row of column definition information for each
column in each base table, nested table, or view you have the authority to
access.

Column information for views is limited to the column name. For more view
column attribute information, query the TABLE_COLUMNS view for the base
tables referenced in the view definition FROM clause.

The top-to-bottom order of the columns in Table 6-5 is the left-to-right order of
the columns in each row of output you receive from an unqualified SELECT *
query against the view.

DATA_TYPE CHAR(10) SQL data type of the column (not the
Model 204 field attribute)

NULL_ALLOWED CHAR(1) 1, if NULL values are allowed for the
column; otherwise, 0

COL_UNIQUE CHAR(1) 1, if the values in the column are unique;
otherwise, 0

Table 6-4. TABLE_COLUMNS view columns (Continued)

Column name Data type Description

Table 6-5. COLUMNS view columns

Column name Data type Description

TABLE_CATALOG CHAR(18) Name of the catalog in which the column’s
table is cataloged (CCACAT)

TABLE_SCHEMA CHAR(18) Name of the schema to which the column’s
table or view belongs

TABLE_NAME CHAR(18) Name of the column’s table or view

COLUMN_NAME CHAR(18) Name of the column

NUMERIC_PRECISION INTEGER Table columns: maximum numeric
precision of the table column values

View columns: 0 (not stored)

NUMERIC_SCALE INTEGER Table columns: numeric scale of the
column values
View columns: 0 (not stored)

CHAR_MAX_LENGTH INTEGER Table columns: maximum length of string
values, if the column data type is CHAR;
otherwise, zero
View columns: 0 (not stored)
Getting Information from the SQL Catalog 149

Querying the SQL catalog
VIEWS view

Table 6-6 lists the CATALOG.VIEWS view columns and their descriptions. The
VIEWS view contains a row of information including the view definition for each
view you have the authority to access.

Except for the view definition, CATALOG.VIEWS does not provide information
about tables or columns referenced by views you have the authority to access.

If a view definition has more than 255 characters, it is continued in the
VIEW_DEFINITION column on one or more additional rows. Except for the
view definition, the column values in these extra rows duplicate those in the row
with the beginning of the view definition.

The top-to-bottom order of the columns in Table 6-6 is the left-to-right order of
the columns in each row of output you receive from an unqualified SELECT *
query against the view.

DATA_TYPE CHAR(10) Table columns: SQL data type of the
column (derived for views from the
corresponding columns in the underlying
base tables)
View columns: UNAVAIL (not stored)

Table 6-5. COLUMNS view columns (Continued)

Column name Data type Description

Table 6-6. VIEWS view columns

Column name Data type Description

TABLE_CATALOG CHAR(18) Name of the catalog in which the view is
cataloged (CCACAT)

TABLE_SCHEMA CHAR(18) Name of the schema to which the view
belongs

TABLE_NAME CHAR(18) Name of the view

VIEW_DEFINITION CHAR(255) The view definition source string without the
CREATE VIEW viewname phrase; you may
want to include TABLE_SCHEMA and
TABLE_NAME in your query to help identify
the view definition output

CHECK_OPTION CHAR(1) 1, if WITH CHECK OPTION clause is present
in the view definition; otherwise, 0

UPDATABLE CHAR(1) 1, if data may be inserted, deleted, or updated
through this view; otherwise, 0
150 Rocket Model 204 SQL Server User’s Guide

Querying the SQL catalog
TABLE_CONSTRAINTS view

Table 6-7 lists the CATALOG.TABLE_CONSTRAINTS view columns and their
descriptions. The TABLE_CONSTRAINTS view contains a row of information
for each multi-column unique constraint in a base table you have the authority
to access.

This view displays only multi-column unique constraints; primary key and
foreign key constraints are not displayed. The names of the columns
participating in each multi-column unique key are displayed in the
KEY_COLUMN_USAGE view.

The top-to-bottom order of the columns in Table 6-7 is the left-to-right order of
the columns in each row of output you receive from an unqualified SELECT *
query against the view.

KEY_COLUMN_USAGE view

Table 6-8 lists the CATALOG.KEY_COLUMN_USAGE view columns and their
descriptions. The KEY_COLUMN_USAGE view contains a row of information
for each multicolumn unique constraint in each base table you have the
authority to access. The information includes the name of each column
participating in a multicolumn unique key.

This view is only for columns that participate in multicolumn unique constraints;
primary key and foreign key constraints are not displayed.

Table 6-7. TABLE_CONSTRAINTS view columns

Column name Data type Description

CONSTRAINT_CATALOG CHAR(18) Name of the catalog in which the
constraint table is cataloged
(CCACAT)

CONSTRAINT_SCHEMA CHAR(18) Name of the schema to which the
constraint table belongs

TABLE_NAME CHAR(18) Name of the table in which the
constraint was defined

CONSTRAINT_FIELD CHAR(255) Name of the UNIQUE Model 204 field
that is used to generate the Model 204
index and constraints

CONSTRAINT_TYPE CHAR(1) U, for unique

TIMESTAMP CHAR(14) Greenwich mean time when the table
constraint was cataloged
Getting Information from the SQL Catalog 151

Querying the SQL catalog
The top-to-bottom order of the columns in Table 6-8 is the left-to-right order of
the columns in each row of output you receive from an unqualified SELECT *
query against the view.

TABLE_PRIVILEGES view

Table 6-9 lists the CATALOG.TABLE_PRIVILEGES view columns and their
descriptions. The TABLE_PRIVILEGES view contains a row for each table and
view for which you have or have granted a DML update privilege.

The top-to-bottom order of the columns in Table 6-9 is the left-to-right order of
the columns in each row of output you receive from an unqualified SELECT *
query against the view.

Table 6-8. KEY_COLUMN_USAGE view columns

Column name Data type Description

CONSTRAINT_CATALOG CHAR(18) Name of the catalog in which the
constraint table is cataloged
(CCACAT)

CONSTRAINT_SCHEMA CHAR(18) Name of the schema to which the
constraint table belongs

TABLE_NAME CHAR(18) Name of the table in which the
constraint is defined

CONSTRAINT_FIELD CHAR(255) Name of the UNIQUE Model 204 field
that is used to generate Model 204
index and constraints

COLUMN_NAME CHAR(18) Name of a column that participates in a
multicolumn constraint; one row is
returned for each column used in a
multicolumn unique key

Table 6-9. TABLE_PRIVILEGES view columns

Column name Data type Description

GRANTOR CHAR(18) Authorization ID of the user giving the privilege

GRANTEE CHAR(18) Authorization ID, which may be PUBLIC (all
users), of the user given the privilege

TABLE_CATALOG CHAR(18) Name of the catalog in which the table or view
is cataloged (CCACAT)

TABLE_SCHEMA CHAR(18) Name of the schema to which the table or view
belongs

TABLE_NAME CHAR(18) Name of the table or view

PRIVILEGE CHAR(6) Type of privilege: SELECT, INSERT, DELETE,
or UPDATE
152 Rocket Model 204 SQL Server User’s Guide

Querying the SQL catalog
COLUMN_PRIVILEGES view

Table 6-10 lists the CATALOG.COLUMN_PRIVILEGES view columns and their
descriptions. The COLUMN_PRIVILEGES view contains a row for each DML
update privilege you have or have granted for a column.

The top-to-bottom order of the columns in Table 6-10 is the left-to-right order of
the columns in each row of output you receive from an unqualified SELECT *
query against the view.

GRANTABLE CHAR(1) 1, if the privilege includes WITH GRANT
OPTION; otherwise, 0

TIMESTAMP CHAR(14) Greenwich mean time when the table privilege
was cataloged

Table 6-9. TABLE_PRIVILEGES view columns (Continued)

Column name Data type Description

Table 6-10. COLUMN_PRIVILEGES view columns

Column name Data type Description

GRANTOR CHAR(18) Authorization ID of the user giving the privilege

GRANTEE CHAR(18) Authorization ID, which may be PUBLIC (all
users), of the user given the privilege

TABLE_CATALOG CHAR(18) Name of the catalog in which the table or view
is cataloged (CCACAT)

TABLE_SCHEMA CHAR(18) Name of the schema to which the table or view
belongs

TABLE_NAME CHAR(18) Name of the table or view

COLUMN_NAME CHAR(18) Name of a column from the list of columns for
which update privilege is granted; one row is
returned for each such column

PRIVILEGE CHAR(6) Type of privilege: SELECT, INSERT, DELETE,
or UPDATE

GRANTABLE CHAR(1) 1, if the privilege includes WITH GRANT
OPTION; otherwise, 0

TIMESTAMP CHAR(14) Greenwich mean time when the column
privilege was cataloged
Getting Information from the SQL Catalog 153

Querying the SQL catalog
ODBC_TYPES view

Table 6-11 lists the CATALOG.ODBC_TYPES and their descriptions. The
ODBC_TYPES view contains a row of information for each discrete data type
supported by the Connect drivers.

Table 6-11. ODBC_TYPES view columns

Column name Data type Description

TYPE_NAME CHAR(16) Name of a data type that can be used
for defining columns to be accessed
through ODBC

DATA_TYPE CHAR(15) Data type code number for the data
type, as specified in the ODBC API

PRECISION_VAL INTEGER(4) Maximum precision for this data
type. 0 is returned, if precision is not
applicable.

LITERAL_PREFIX CHAR(1) Character used to prefix a literal. For
example, a single quotation mark (’)
is used for CHAR data type literals.

LITERAL_SUFFIX CHAR(1) Character used to terminate a literal,
for example, a single quotation mark
(’) is used to terminal a CHAR data
type literal

CREATE_PARAMS CHAR(15) Description of the creation
parameters for this data type. For
example, LENGTH is specified for a
CHAR data type.

NULLABLE SMALLINT(2) Flag indicating whether columns with
this data type are nullable.
1 indicates yes
0 means null not allowed.

CASE_SENSITIVE SMALLINT(2) 1 means columns of this type are
case sensitive.
0 means they are not.

SEARCHABLE SMALLINT(2) 2 means columns of this type can be
used in a WHERE clause on a
SELECT, except with LIKE.
3 means they can be used also with
LIKE.

UNSIGNED_ATTRIBUTE SMALLINT 1 means the data type is unsigned. 0
means it is signed.

MONEY SMALLINT(2) 1 means a monetary data type. 0
means it is not.
154 Rocket Model 204 SQL Server User’s Guide

Querying the SQL catalog
ODBC_SCALES view

Table 6-12 lists the CATALOG.ODBC_SCALES view columns and their
descriptions.

CONST view

Table 6-13 lists the CATALOG.CONST view columns and their descriptions.

AUTO_INCREMENT SMALLINT(2) 1 means columns of this type are
automatically incremented (set to a
unique value when a new row is
inserted). 0 means they are not
automatically incremented.

LOCAL_TYPE_NAME CHAR(10) Localized name for this data type on
this data source, that is different from
the standard data type name

RADIX SMALLINT(2) Number base used for showing
numeric values for this data type. For
example, 10 means that decimal
values are shown.

MINIMUM_SCALE SMALLINT(2) Minimum scale associated with this
data type.

MAXIMUM_SCALE SMALLINT(2) Maximum scale associated with this
data type.

Table 6-11. ODBC_TYPES view columns (Continued)

Column name Data type Description

Table 6-12. ODBC_SCALES view columns

Column name Data type Description

CHAR_SCALE CHAR(4)

ODBC_SCALE SMALLINT(2)

Table 6-13. CONST view columns

Column name Data type Description

DOUBLE_NULL DOUBLE PRECISION(8)

INTEGER_NULL INTEGER(4)

REAL_NULL REAL(4)

SMALLINT_NULL SMALLINT(2)

CHAR1_NULL CHAR(1)

CHAR12_NULL CHAR(12)
Getting Information from the SQL Catalog 155

Querying the SQL catalog
ODBC_COLUMNS view

Table 6-14 lists the CATALOG.ODBC_COLUMNS view columns and their
description. The ODBC_COLUMNS view contains a row of information for each
discrete column defined to a catalogued table, and describes the type of data
that can be held in that column.

CHAR18_NULL CHAR(18)

CHAR128_NULL CHAR(128)

CHAR255_NULL CHAR(255)

Table 6-13. CONST view columns (Continued)

Column name Data type Description

Table 6-14. ODBC_COLUMNS view columns

Column name Data type Description

TABLE_QUALIFIER CHAR(18) Name of the catalog in which the
column’s table is catalogued
(CCACAT)

TABLE_OWNER CHAR(18) Name of the owning schema (or ID) to
which the column’s table belongs

TABLE_NAME CHAR(18) Name of the table containing the
column

COLUMN_NAME CHAR(18) Name of the column

DATA_TYPE SMALLINT(2) Integer code for the data type that is
defined for this column (as described
in the ODBC_TYPES view)

TYPE_NAME CHAR(16) Name of the data type used for this
column

PRECISION_VAL INTEGER(4) Maximum number of significant digits
available for values for this column

LENGTH INTEGER(4) Length in bytes of the data type used
for this column

SCALE CHAR(4) Number of digits available to the right
of the decimal point for values for this
column

RADIX SMALLINT(2) The number base used for numerical
values for this column. 10 indicates
decimal values.

NULLABLE SMALLINT(2) 1 means NULLS ALLOWED for this
column. 0 means NULLS are not
allowed.
156 Rocket Model 204 SQL Server User’s Guide

Querying the SQL catalog
ODBC_TABLES view

Table 6-15 lists the CATALOG.ODBC_TABLES view columns and their
descriptions. The ODBC_TABLES view contains a row of information for each
discrete catalogued table or view.

ODBC_SPECIAL_COLS view

Table 6-16 lists the CATALOG.ODBC_SPECIAL_COLS view columns and their
descriptions. The ODBC_SPECIAL_COLS view contains a row of information

REMARKS CHAR(254) General remarks on the column

TABLE_TYPE CHAR(14) Either TABLE for a base table, or
VIEW, for a view defined against a
table

SCOPE SMALLINT(2)

PRIMARY_KEY CHAR(18) The primary key for the column’s table,
if this table is a parent table

PARENT_TABLE_NAME CHAR(18) The parent table name, if the column’s
table is a nested table

SYSTEM_KEY CHAR(1) The name of the system generated
key used as a unique identifier, if the
column’s table is a parent table.

NON_UNIQUE

TYPE_CODE

SEQ_IN_INDEX

Table 6-14. ODBC_COLUMNS view columns(Continued)

Column name Data type Description

Table 6-15.

Column name Data type Description

TABLE_QUALIFIER CHAR(18) Name of the catalog in which the table
is catalogued (CCACAT)

TABLE_OWNER CHAR(18) Name of the owning schema (or ID) to
which the table belongs

TABLE_NAME CHAR(18) Name of the table or view

TABLE_TYPE CHAR(12) Either TABLE for base table or VIEW
for a view defined against a table

REMARKS CHAR(254) General notes on the table
Getting Information from the SQL Catalog 157

Querying the SQL catalog
for each discrete column that is used to uniquely identify rows within a table.
This view may also be used to show other specialized columns in the future.

ODBC_TABLE_STATS view

Table 6-17 lists the CATALOG.ODBC_TABLE_STATS view columns and their
descriptions. The ODBC_TABLE_STATS view contains a row of information for
each discrete catalogued table or view.

Table 6-16. ODBC_SPECIAL_COLS view columns

Column name Data type Description

TABLE_QUALIFIER CHAR(18) Name of the catalog in which the
column’s table is catalogued
(CCACAT)

TABLE_OWNER CHAR(18) Name of the owning schema (or ID) to
which the column’s table belongs

TABLE_NAME CHAR(18) Name of the table containing the
specialized column

SCOPE SMALLINT(2)

COLUMN_NAME CHAR(18) Name of the specialized column.
Typically this will be the name of the
primary key of a parent table

DATA_TYPE SMALLINT(2) Integer code for the data type that is
defined for this column (as described
in the ODBC_TYPES view).

TYPE_NAME CHAR(16) Name of the data type used for this
column

PRECISION_VAL INTEGER(4) Maximum number of significant digits
available for values for this column

LENGTH INTEGER(4) Length in bytes of the data type used
for this column

SCALE SMALLINT(2) Number of digits available to the right
of the decimal point for values for this
column

Table 6-17. ODBC_TABLE_STATS view columns

Column name Data type Description

TABLE_QUALIFIER CHAR(18) Name of the catalog in which the table
is catalogues (CCACAT)

TABLE_OWNER CHAR(18 Name of the owning schema (or ID) to
which the table belongs

TABLE_NAME CHAR(18) Name of the table or view
158 Rocket Model 204 SQL Server User’s Guide

Querying the SQL catalog
ODBC_KEY_STATS view

Table 6-18 lists the CATALOG.ODBC_KEY_STATS view columns and their
descriptions.

NON_UNIQUE SMALLINT(2)

INDEX_QUALIFIER CHAR(18)

INDEX_NAME CHAR(18)

TYPE_CODE SMALLINT(2)

SEQ_IN_INDEX SMALLINT(2)

COLUMN_NAME CHAR(18)

COLLATION CHAR(1)

CARDINALITY INTEGER(4)

PAGES INTEGER(4)

Table 6-17. ODBC_TABLE_STATS view columns (Continued)

Column name Data type Description

Table 6-18.

Column name Data type Description

TABLE_QUALIFIER CHAR(18) Name of the catalog in which the table is
cataloged (CCACAT)

TABLE_OWNER CHAR(18) Name of the owning schema (or ID) to
which the table belongs

TABLE_NAME CHAR(181) Name of the table

NON_UNIQUE SMALLINT(2) 1 means there is no unique identifier for
row in the table.
0 means there is a unique identifier.

INDEX_QUALIFIER CHAR(18)

INDEX_NAME CHAR(18) Name of primary index for the table, if the
table is a parent table

TYPE_CODE SMALLINT(2) Type of index

SEQ_IN_INDEX SMALLINT(2)

COLUMN_NAME CHAR(18) Name of column used as primary index for
the table

COLLATION CHAR(1) Collation sequence for rows in the table.
A = ascending
D = descending
’ ’ = not applicable
Getting Information from the SQL Catalog 159

Querying the SQL catalog
ODBC_STATISTICS view

Table 6-19 lists the CATALOG.ODBC_STATISTICS view columns and their
descriptions. The ODBC_STATISTICS view contains a row of information for
each discrete catalogued table or view, and is used to return statistics about the
table and its indexes.

CARDINALITY INTEGER(4) Number of rows in the table, or unique
values in the primary index

PAGES INTEGER(4) Number of pages used to store the index
or table.

Table 6-18. (Continued)

Column name Data type Description

Table 6-19.

Column name Data type Description

TABLE_QUALIFIER CHAR(18) Name of the catalog in which the table is
catalogued (CCACAT)

TABLE_OWNER CHAR(18) Name of the owning schema (or ID) to
which the table belongs

TABLE_NAME CHAR(180) Name of the table or view

NON_UNIQUE SMALLINT(2) 1 means there is no unique identifier for row
in the table or view.
0 means there is a unique identifier.

INDEX_QUALIFIER CHAR(18)

INDEX_NAME CHAR(18) Name of primary index for the table, if the
table is a parent table

TYPE_CODE SMALLINT(2) Type of index

SEQ_IN_INDEX SMALLINT(2)

COLUMN_NAME CHAR(18) Name of column used as primary index for
the table

COLLATION CHAR(1) Collation sequence for rows in the table.
A = ascending
D = descending
’ ’ = not applicable

CARDINALITY INTEGER(4) Number of rows in the table, or unique
values in the primary index

PAGES INTEGER(4) Number of pages used to store the index or
table.
160 Rocket Model 204 SQL Server User’s Guide

7
Model 204 SQL Data
Manipulation Language

An important goal of Model 204 SQL Data Manipulation Language
(DML) is to match the form and function of the ANSI SQL 1989 standard
and some of the ANSI SQL 1992 standard DML. Model 204 SQL
extensions mainly affect DDL. You should not need to alter your existing
SQL DML applications to access a Model 204 database.

This chapter describes the Model 204 SQL DML extensions as well as
ways to use SQL DML to access data stored in Model 204 INVISIBLE
fields, multiply occurring fields, and file groups.

Using Model 204 SQL DML

The Model 204 SQL Server supports all standard SQL DML. This
section has a reminder about data definition accuracy and information
about privileges for using SQL DML statements, setting SQL isolation
level, and restrictions on interspersing SQL DML and DDL.

Maintaining data definition consistency

The SQL data definition information stored in the Model 204 SQL
catalog for a Model 204 file is independent of the Model 204 Dictionary
metadata for that file. It is also independent of and unchanged by any
updates to the file’s Table A data, that is, the file’s fields and their
attributes.

Caution: If you run a Model 204 SQL application against a Model 204
file, you are responsible for ensuring consistency between the
Model 204 SQL Data Manipulation Language 161

Using Model 204 SQL DML
Model 204 SQL catalog entries and the Model 204 file’s Table A data. You must
ensure that if the Model 204 file definition changes, the corresponding SQL
definitions are updated. Reviewing the SQL catalog contents by direct query or
with the Model 204 SQL catalog reporting utility (CCACATREPT) can help you
to maintain the consistency between the SQL catalog and the Model 204 file.

DML statement privileges

To issue SQL DML query and update statements (SELECT, INSERT, DELETE,
and UPDATE) against an SQL catalog object, the object must have your
authorization ID or you must have been granted the privilege for the specified
operation and for the specified object. These privileges are specified with SQL
GRANT and REVOKE statements only.

For more information about GRANT and REVOKE and individual statement
security, see Chapter 4.

Setting SQL isolation level

Model 204 SQL supports the following levels of record locking in its statement
processing:

Isolation level 0 is not recommended for applications using the following:

• SQL nested tables

• SQL views that are used for record security

• Model 204 reuse record number (RRN) files

• Model 204 files that are being simultaneously updated with DELETE ALL
RECORDS statements in SOUL and with SQL DML

SQL 32-bit Connect PC clients indicate the isolation level of statement
processing by specifying an SQL Isolation Level option in the Model 204 ODBC
Driver - Configuration Data Source dialog box or in the connection string for
JDBC or .NET Framework connections.

Isolation level 3
(Serializable)

SQL standard requires that concurrently executing statements
be serializable, that is, the processing of the statements must
yield the same results as if the statements were executed
serially, one complete statement after another. Because it is
costly to performance, the serializability option is not
recommended.

Isolation level 1
(Cursor Stability)

A shared lock is obtained for a found set of records. After the
records are read, the lock is dropped. This is the same as FIND
statement processing in Model 204 SOUL.

Isolation level 0
(Dirty Read)

No locks are obtained for a found set of records. This is the
same as FIND WITHOUT LOCKS statement processing in
Model 204 SOUL.
162 Rocket Model 204 SQL Server User’s Guide

Using Model 204 SQL DML
Executing SQL DML and DDL simultaneously

Another user might issue SQL DDL against the SQL catalog at the same time
that you are issuing SQL DML against the Model 204 database or to query the
SQL catalog. However, the SQL DDL can update only SQL objects that are not
being accessed by SQL DML statements.

Mixing SQL DML and DDL

The Model 204 SQL Server allows SQL DML statements interspersed with
SQL DDL. An SQL DDL statement can follow an SQL DML statement only if
the DML statement has first been committed. Model 204 SQL DDL statements
result in an automatic Model 204 COMMIT.

• For JDBC and ODBC

When Autocommit, the default, is on, any DDL can follow an INSERT,
UPDATE, or DELETE statement without an intervening commit or rollback.
However, DDL after a SELECT statement without an intervening commit or
rollback will result in the following SQL error:

SQL Error -7342. DML transaction in progress. DDL dis-
allowed until COMMIT/ROLLBACK, for EXECIMM, in EXECUTE
completion routine.

• For .NET Framework

DDL statements may not be issued while a transaction is active.

Using SET SCHEMA and SET USER

SET SCHEMA and SET USER are Model 204 SQL extensions that can be
used with SQL DML or DDL statements.

SET SCHEMA allows any user to change the default schema name in SQL
DDL or DML. Statements following SET SCHEMA are assumed to apply to this
schema name. The SET SCHEMA syntax follows:

Syntax SET SCHEMA schemaname

For more information about SET SCHEMA, see “Altering SQL objects” on
page 79.

SET USER allows a system manager to set or modify the current SQL
authorization ID, in effect logging in as another SQL user without having to
enter a password. SET USER therefore gives the system manager access to
and authority to change all defined SQL objects.

The SET USER syntax follows:

Syntax SET USER authorization-id
Model 204 SQL Data Manipulation Language 163

Using SQL DML against INVISIBLE fields
For more information about SET USER, see “Altering SQL objects” on page 79.

Using SQL DML against INVISIBLE fields

Model 204 INVISIBLE fields are translated to SQL columns that have restricted
functionality: you can use them to qualify searches for data, but they are not
themselves retrievable. For example, you can use such columns in certain
circumstances in the WHERE clause of a SELECT statement, but not in a
SELECT list.

Note: Model 204 files that contain INVISIBLE fields not mapped to multicolumn
unique constraints should be maintained by SOUL or Host Language Interface
applications and not by SQL applications. This recommendation applies
regardless of whether the fields are mapped to SQL columns.

Using SQL columns mapped to INVISIBLE fields

The restrictions on SQL DML operations against columns mapped to
INVISIBLE fields are listed below for each DML statement. In this section, an
SQL column mapped to an INVISIBLE field is called an invisible column.

SELECT statement

You cannot use an invisible column in the SELECT list.

If there is an invisible column in a table against which a SELECT * operates,
the column is eliminated from the statement output, and you receive no warning
message. If the SELECT * is in an INSERT query, or in a query involving
UNION, the statement is rejected.

In the following examples, the PARTS table has invisible column INV_S; the
SUPPLIERS table has invisible column INV_IN. This SELECT fails, because
you cannot use an invisible column in the SELECT list:

SELECT PNO, INV_S FROM PARTS WHERE PNO=1234

These SELECT statements are acceptable, but you cannot connect them with
UNION:

SELECT * FROM PARTS WHERE PNO=’P1’

SELECT * FROM PARTS WHERE COLOR=’Red’

The use of invisible columns in a SELECT statement WHERE clause is limited.
See “WHERE clause” on page 165.

UPDATE statement

You cannot use an invisible column as the target of or in the source expression
of an UPDATE.
164 Rocket Model 204 SQL Server User’s Guide

Using SQL DML against INVISIBLE fields
For example, this UPDATE fails:

UPDATE PARTS SET INV_S=’Red’ WHERE PNO=1234

The use of invisible columns in an UPDATE statement WHERE clause is
limited. See the section “ORDER BY clause” on page 165.

INSERT statement

You can use an invisible column as the target column.

For example, you can issue this statement:

INSERT INTO PARTS (PNO,PNAME,INV_S)
 VALUES (’123’,’Widget’,’Red’)

Any SELECT query involved is subject to the limitations of the SELECT
statement (see “SELECT statement” on page 164).

DELETE statement

If you DELETE a row that contains an invisible column value, the invisible
column value is not deleted.

The use of invisible columns in a DELETE statement WHERE clause is limited.
See “ORDER BY clause” on page 165.

GROUP BY clause

You cannot use an invisible column as a column in a GROUP BY clause.

HAVING clause

You cannot use an invisible column in a HAVING clause unless the invisible
column is contained in a WHERE clause of a subquery contained in the
HAVING clause, in which case the use of the column is subject to the WHERE
clause rules.

ORDER BY clause

You cannot use an invisible column as a column in an ORDER BY clause.

WHERE clause

The restrictions on the use of invisible columns in WHERE clauses of SQL DML
statements are not easily generalized. Most cases are covered by the following
rules. The remaining more complicated rules are listed on “Additional
restrictions on WHERE clause comparisons” on page 167.

The use of invisible columns in WHERE clauses of SQL SELECT, INSERT,
UPDATE, and DELETE statements is subject to the following restrictions:
Model 204 SQL Data Manipulation Language 165

Using SQL DML against INVISIBLE fields
• You cannot use invisible columns if the WHERE clause is part of a view
definition that includes the WITH CHECK OPTION.

• You cannot use invisible columns in arithmetic expressions.

For example, the following statement fails:

SELECT SNO, STCODE FROM SUPPLIERS
 WHERE (STCODE = 20 * (INV_IN + 300) OR SNAME=’NUT’)

• In addition to the basic comparisons (<, <=, =, >, >=, ^=) you can use an
invisible column with the following SQL operators:

LIKE
BETWEEN
IN (but not the subquery form)

For example, the following statement fails (subquery form of IN):

SELECT PNO FROM PARTS WHERE INV_S IN
 (SELECT PNAME FROM PARTS P WHERE P.PNO=’S1’)

• If the INVISIBLE field has the KEY attribute, comparisons using the
following operators are not allowed:

<
<=
>
>=
LIKE
BETWEEN

• You can compare an invisible column to only the following:

– Literal

For example:

SELECT * FROM SUPPLIERS WHERE INV_IN > 20

– Parameter

For example, where ? is a parameter marker whose values are
substituted by a program at execution time:

SELECT SNO, SNAME FROM SUPPLIERS WHERE INV_IN=? AND

SNO=?

– An outer reference, in which a WHERE clause in a subquery refers to a
value from an outer query

For example:

SELECT SNAME FROM S

 WHERE ’P2’ IN

 (SELECT INV_IN FROM SP

 WHERE INV_IN=S.SNO)
166 Rocket Model 204 SQL Server User’s Guide

Using SQL DML against nested tables
– An expression of literals or parameters or outer references

For example:

SELECT * FROM SUPPLIERS

 WHERE INV_IN = 20 * (? + 300) AND SNO=’S1’

Additional restrictions on WHERE clause comparisons

The restrictions on the use of invisible columns in WHERE clauses include the
following additions to the rules for comparisons described previously:

• You can compare an invisible column to an uncorrelated (no outer
references) subquery, except the following types of quantified subqueries:

=ANY
=SOME
IN
^=ANY
^=SOME

For example, the following statement is valid:

SELECT PNO FROM PARTS WHERE INV_S > ALL
 (SELECT PNAME FROM PARTS P WHERE P.PNO=’S1’)

• If the invisible column is NOT NULL, comparisons with ̂ = or NOT LIKE are
restricted: the value compared to the invisible column cannot include
parameters, cannot be a subquery, and cannot include outer references if
these might yield the null value.

• If the invisible column is not NOT NULL, comparisons with ̂ = or NOT LIKE
are prohibited.

• If the WHERE clause is broken out into one or more comparisons
connected by OR (disjuncts), with NOTs factored down to the individual
comparison, each disjunct containing an invisible column comparison can
contain only comparisons (invisible or visible) that refer to the same parent
table and that satisfy all the preceding WHERE clause rules.

Using SQL DML against nested tables

The Model 204 SQL nested table design is an extension to standard SQL that
enables an SQL application to access Model 204 multiply occurring fields and
groups. Using SQL DML against Model 204 SQL nested tables is essentially
the same as using DML against typical nonnested SQL tables.

Sample file and SQL mapping

The DML examples in this section are based on the same sample file and SQL
catalog mapping used in the discussion of nested table DDL in Chapter 3.
Model 204 SQL Data Manipulation Language 167

Using SQL DML against nested tables
A Model 204 file has the following fields:

REV_DATE, SALARY, and TITLE are a repeating group that occurs once each
salary review.

For the purposes of the example series, we consider the following cases:

• NAME is a unique identifier and is mapped to the primary key column of a
parent table

• The NAME field is a unique identifier and is used as the primary key in the
parent table

Case 1

The file is mapped to one SQL parent table (PEOPLE) with two columns
(NAME and HIRE_DATE) and two nested tables (REV_HIST and TASKS):

The parent table is linked to the nested tables by the common values of the
primary key NAME in the parent and the foreign key FNAME in the nested
tables. The following DDL provides this mapping:

CREATE TABLE PEOPLE
(NAME CHAR(60) NOT NULL PRIMARY KEY,
 HIRE_DATE CHAR(8))

CREATE TABLE REV_HIST NESTED USING FNAME
(DATE INTEGER NOT NULL,
 SALARY DECIMAL (11,2) NOT NULL,
 TITLE CHAR (50) NOT NULL,

Field Frequency of occurrence

NAME Once per record

HIRE_DATE Once per record

REV_DATE Multiple times per record

SALARY Multiple times per record

TITLE Multiple times per record

TASK Multiple times per record

PEOPLE

NAME
HIRE_DATE

REV_HIST

FNAME
REV_DATE
SALARY
TITLE

TASKS

FNAME
TASK

 Parent table Nested table Nested table
168 Rocket Model 204 SQL Server User’s Guide

Using SQL DML against nested tables
 FNAME CHAR (60) NOT NULL REFERENCES PEOPLE)

CREATE TABLE TASKS NESTED USING FNAME
(TASK CHAR (25) NOT NULL,
 FNAME CHAR (60) NOT NULL REFERENCES PEOPLE)

Case 2

There is no unique identifier, so a system-generated key (PKID) is the parent
table primary key. The file is mapped to one SQL parent table (PEOPLE) with
three columns (PKID, NAME, and HIRE_DATE) and two nested tables
(REV_HIST and TASKS):

The parent table is linked to the nested tables by the common values of the
primary key PKID in the parent and the foreign key FKID in the nested tables.
The names PKID and FKID are user-chosen. The following DDL provides this
mapping:

CREATE TABLE PEOPLE
(PKID INTEGER NOT NULL PRIMARY KEY SYSTEM,
 NAME CHAR(60) NOT NULL,
 HIRE_DATE CHAR(8))

CREATE TABLE REV_HIST NESTED USING FKID
(DATE INTEGER NOT NULL,
 SALARY DECIMAL (11,2) NOT NULL,
 TITLE CHAR (50) NOT NULL,
 FKID INTEGER NOT NULL REFERENCES PEOPLE)

CREATE TABLE TASKS NESTED USING FKID
(TASK CHAR (25) NOT NULL,
 FKID INTEGER NOT NULL REFERENCES PEOPLE)

For more information about system-generated keys, see “Using system-
generated keys” on page 69.

DML example series

The examples in the series are presented by database operation and usually
have a sample query specification for Case 1 (primary key maps to database
field) and Case 2 (primary key is system-generated). The query specifications
represent SQL cursor-based SELECT statements.

PEOPLE

PKID
NAME
HIRE_DATE

REV_HIST

FKID
REV_DATE
SALARY
TITLE

TASKS

FKID
TASK

 Parent table Nested table Nested table
Model 204 SQL Data Manipulation Language 169

Using SQL DML against nested tables
Retrieving a particular occurrence of a multiply occurring group

The task is to select a particular occurrence of the repeating group of field
values that are mapped to the REV_HIST nested table. Each occurrence of the
group is a set of related values (one value from each of the members of the
group). The nested table definition in the example in this section maps each
row in REV_HIST to a particular occurrence of the group. Therefore, retrieving
a particular occurrence of the group translates to selecting a particular row from
REV_HIST.

Case 1

SELECT REV_DATE, SALARY, TITLE
FROM REV_HIST
WHERE FNAME=’JOHN SLOWFOOT’ AND REV_DATE BETWEEN 19900101
 AND 19900331

Case 2

The system-generated key (PEOPLE) qualifies the selection:

SELECT REV_DATE, SALARY, TITLE
FROM REV_HIST, PEOPLE
WHERE NAME=’JOHN SLOWFOOT’ AND REV_DATE BETWEEN 19900101
 AND 19900331 AND PKID = FKID

Retrieving a range or series of occurrences

The following example selects only some of the values per occurrence of the
group over a range of occurrences: the salaries of people who were senior
secretaries from 1989 through 1991.
170 Rocket Model 204 SQL Server User’s Guide

Using SQL DML against nested tables
Case 1

SELECT FNAME, SALARY
FROM REV_HIST
WHERE REV_DATE BETWEEN 19890101 AND 19911231 AND
 TITLE=’SR SECTY’

Case 2

SELECT NAME, SALARY
FROM REV_HIST, PEOPLE
WHERE REV_DATE BETWEEN 19890101 AND 19911231 AND
 TITLE=’SR SECTY’
 AND PKID = FKID

Retrieving any or all occurrences based on a condition

The following example selects the names of those for whom all occurrences
meet the condition, that is, all whose salary values are above 40,000. You can
replace ALL with ANY in the example and therefore select the names of those
who have any of their salary values above 40,000.

Case 1

SELECT NAME
FROM PEOPLE
WHERE 40000 < ALL (SELECT SALARY FROM REV_HIST
 WHERE FNAME = NAME)

Case 2

SELECT NAME
FROM PEOPLE
WHERE 40000 < ALL (SELECT SALARY FROM REV_HIST
 WHERE PKID = FKID)

Retrieving at least n occurrences based on a condition

The following example selects the names of those who have any of their salary
values above 40,000 only if at least three names qualify.

Case 1

SELECT NAME
FROM PEOPLE
WHERE 2 < (SELECT COUNT (*) FROM REV_HIST WHERE FNAME =
 NAME AND 40000 < SALARY)
Model 204 SQL Data Manipulation Language 171

Using SQL DML against nested tables
Case 2

SELECT NAME
FROM PEOPLE
WHERE 2 < (SELECT COUNT (*) FROM REV_HIST WHERE
 PKID = FKID AND 40000 < SALARY)

Correlating a table and a nested table

The examples in this section mix column selections from a nested table and its
parent table and use them for output like the following, where the NAME and
HIRE_DATE values for entries in the PEOPLE table are reported along with
their TASK values from the nested table TASKS:

Maria Pena
July 9, 1988
 New prod plan
 Budget

John Slowfoot
November 22, 1989
 Project A
 Project B

The method of deriving this output is fetching with a join query.

The following query selects from the nested table TASKS and its parent
PEOPLE. The ORDER BY clause guarantees the ordering of the data.

Case 1

SELECT NAME, HIRE_DATE, TASK
FROM PEOPLE, TASKS
WHERE NAME = FNAME
ORDER BY NAME, TASK

Case 2

SELECT NAME, HIRE_DATE, TASK
FROM PEOPLE, TASKS
WHERE PKID = FKID
ORDER BY PKID, TASK

Working with nested table constraints

Referential constraint checking is done per row.

The NOT NULL constraint, which prevents SQL applications from updates that
introduce null values into an SQL nested table column, is enforced only for
SQL. A SOUL application is not prevented from introducing nulls into the
172 Rocket Model 204 SQL Server User’s Guide

Options in the SELECT LIST statement
Model 204 fields mapped to SQL nested columns, although this introduction is
likely to invalidate queries involving these fields. Such an invalidation is an
example of why you must be careful, especially with nested tables, when you
use both SQL and SOUL to maintain file data.

Porting nested table applications

A Model 204 SQL nested table application is readily portable to other
environments if the application does not have system-generated primary keys
in the parent and if the environment ported to supports CASCADE for updates
and deletes.

Options in the SELECT LIST statement

Correlation name feature

The name in the SELECT LIST statement can be assigned to a new name by
either:

• AS keyword

• Equal sign (=) sign

• A white space.

If the name represents a column, the newly assigned name may be referred to
in other clauses. The following examples are supported:

SELECT COUNT(*) AS FILECOUNT FROM TABLE5

SELECT T1.TITLE TITLE, CHAPTER = T2.TITLE
 FROM BOOK T1, CHAPTERS T2
 WHERE TITLE = 'WWII' AND CHAPTER = 'US'

The following example is not supported:

SELECT DOUBLE_ADVANCE = (ADVANCE * 2)
 FROM PUBLISHERS
 WHERE DOUBLE_ADVANCE > 1000

Note: Correlation names may not carry over to a query at a different level of an
SQL statement.

Wildcard asterisk (*) for an individual table feature

SELECT T.TITLE, T.*, P.*
 FROM TITLES T, PUBLISHERS P
 WHERE T.ID = P.ID
Model 204 SQL Data Manipulation Language 173

Options in the SELECT LIST statement
CURRENT_TIME keyword

The CURRENT_TIME keyword is assigned as CHAR(11) in the form of
hh:mm:ss.tt, representing the local time at the time of the query execution.

SELECT CURRENT_TIME, COUNT(*) FROM TABLE5

10:05:24.38

Note: In this example query and those to follow, the COUNT(*) is added
merely for the purpose of generating a single row of output.

CURRENT_DATE keyword

The CURRENT_DATE keyword is assigned as CHAR(10) in the form of yyyy-
mm-dd to represent the date at the time of the query execution.

SELECT CURRENT_DATE, COUNT(*) FROM TABLE5

2001-03-08

CURRENT_TIMESTAMP keyword

The CURRENT_TIMESTAMP keyword is assigned as CHAR(22) in the form of
yyyy-mm-dd hh:mm:ss.tt, the time and the date at the time of the query
execution.

SELECT CURRENT_TIMESTAMP, COUNT(*) FROM TABLE5

2001-03-08 10:05:24.38

USER keyword

The USER keyword is assigned as CHAR(10). It represents the name of the
user who logged on to the thread.

SELECT USER, COUNT(*) FROM TABLE5

USER101

SQLVERSION keyword

The SQLVERSION keyword is assigned as CHAR(16). It represents the
version code of the RSQL module and the released date in the form: n.n.na
mm/dd/yy

SELECT SQLVERSION, COUNT(*) FROM TABLE5

7.1.0C 05/30/09
174 Rocket Model 204 SQL Server User’s Guide

SQL INNER JOIN features
This keyword is intended for diagnostic purposes.

SQLERROR keyword

The SQLERROR keyword is assigned as CHAR(5). It represents the last error
code detected and recorded in the RSQL module. Six locations are reserved to
store the last six error codes. For example:

SELECT SQLERROR, SQLERROR, COUNT(*) FROM TABLE5

+0000, -0206

The SQLERROR keyword is intended for diagnostic purposes.

SQLSTATE keyword

The SQLSTATE keyword is assigned as CHAR(32). It represents the significant
part of the last error message or the object name which caused the error, as
recorded in the RSQL module. For example, SQLSTATE will contain
’UNITCOST’, if the previous error was:

SQL Error -408. A value is not compatible with its object
column UNITCOST, for EXECIMM, in EXECUTE completion rou-
tine

The SQLSTATE keyword is intended for diagnostic purposes.

SQL INNER JOIN features

CROSS JOIN feature

The CROSS JOIN feature produces a cross-product of a table join in which no
join condition is specified. For example:

SELECT * FROM TITLES CROSS JOIN PUBLISHERS

The previous query is equivalent to the following example:

SELECT * FROM TITLES, PUBLISHERS

NATURAL JOIN feature

The NATURAL JOIN feature combines two tables on all columns that share the
same names. For example, if PUB_ID and AUTHOR are the only two columns
which are common to both tables, then the following query with the NATURAL
JOIN clause produces the same results as the query with the WHERE clause:

SELECT * FROM TITLES NATURAL JOIN PUBLISHERS

SELECT * FROM TITLES, PUBLISHERS
Model 204 SQL Data Manipulation Language 175

SQL OUTER JOIN features
WHERE TITLES.PUB_ID = PUBLISHERS.PUB_ID
 AND TITLES.AUTHOR = PUBLISHERS.AUTHOR

ON clause feature

The conditional join uses an ON clause to impose the join condition. It is
interchangeable with the WHERE clause. For example, the following query
uses an ON clause:

SELECT * FROM TITLES JOIN PUBLISHERS
 ON TITLES.PUB_ID = PUBLISHERS.PUB_ID

The previous query is equivalent to the following query which employs a
WHERE clause:

SELECT * FROM TITLES, PUBLISHERS
 WHERE TITLES.PUB_ID = PUBLISHERS.PUB_ID

USING clause feature

The NATURAL JOIN feature matches all column names in one table with the
same column names in a second table. If only some column names in one table
match those column names in a second table, you can explicitly specify those
columns with the USING clause, as follows:

SELECT * FROM TITLES JOIN PUBLISHERS
 USING (PUB_ID, AUTHOR)

The previous query is equivalent to a query in which the USING keyword is
replaced by the ON clause, such as

SELECT * FROM TITLES, PUBLISHERS
 ON (TITLES.PUB_ID = PUBLISHERS.PUB_ID
 AND TITLES.AUTHOR = PUBLISHERS.AUTHOR)

Note: The ON clause is not allowed to contain a subquery.

SQL OUTER JOIN features

Unlike the INNER JOIN feature, the OUTER JOIN feature preserves the
unmatched rows from one of the two tables, depending on the keywords LEFT
and RIGHT.

The following two equivalent queries are examples of a LEFT OUTER JOIN
clause.

SELECT * FROM TITLES LEFT OUTER JOIN PUBLISHERS
 USING (PUB_ID, AUTHOR)

SELECT * FROM TITLES LEFT OUTER JOIN PUBLISHERS
 ON (TITLES.PUB_ID = PUBLISHERS.PUB_ID
176 Rocket Model 204 SQL Server User’s Guide

SQL OUTER JOIN features
 AND TITLES.AUTHOR = PUBLISHERS.AUTHOR)

Note: The keyword OUTER in these queries is optional.

In these examples, each row in the first table, TITLES, in a LEFT OUTER JOIN
clause must be included in the result. If no matching value is found in the
second table, PUBLISHERS, the corresponding columns of PUBLISHERS are
filled with NULLs.

The RIGHT OUTER JOIN clause operates similarly to a LEFT OUTER JOIN
clause, except that the RIGHT or the second table is the parent table and its
rows are preserved. For example, the previous two LEFT OUTER JOIN queries
can be expressed as RIGHT OUTER JOIN queries.

SELECT * FROM PUBLISHERS RIGHT OUTER JOIN TITLES
 USING (PUB_ID, AUTHOR)

SELECT * FROM PUBLISHERS RIGHT OUTER JOIN TITLES
 ON (TITLES.PUB_ID = PUBLISHERS.PUB_ID
 AND TITLES.AUTHOR = PUBLISHERS.AUTHOR)

Note: The ON clause is not allowed to contain a subquery.

SQL outer join features expanded

SQL join expressions with join types LEFT, RIGHT, CROSS, and UNION are
supported where any table can be a base or a nested table or a viewed table.

Usage Notes • In a query a Left Outer Join and Right Outer Join can be combined in any
order.

• In a view definition a Left Outer Join and Right Outer Join can be combined
in any order.

• A nested table can be used in any place where a base table can be used.

• A view can be used in any place where a base table can be used,

• The ON clause can contain any columns from the joined tables.

• A subquery can contain a subquery.

In the following example Join can be either a Left or Right join.

SQL table
expression

T1 Join T2 ON Pred1 Join T3 ON Pred2 Join T4 ON Pred3

Model 204 evaluates the previous code in the following sequence of steps:

1. Table T1 joined with Table T2 by ON Pred1

2. The expression (T1 Join T2 ON Pred1) is joined with T3 by ON Pred2

3. The expression ((T1 Join T2 ON Pred1) Join T3 ON Pred2) is joined with
Model 204 SQL Data Manipulation Language 177

SQL OUTER JOIN features
T4 by ON Pred3
178 Rocket Model 204 SQL Server User’s Guide

A
Model 204 SQL DDL Syntax

This appendix outlines in complete detail the syntax of Model 204 SQL
DDL. Consult the American National Standards ANSI X3.135-1989
Database Language SQL document for syntax details not outlined here.
The notation conventions used in this appendix are listed at the end of
the Preface of this document.

The following rules apply to this syntax:

1. SQL object names (that is, schema name, table name, and so on)
conform to rules for an SQL identifier: a name must be 18 charac-
ters or less and it cannot be identical to an SQL keyword (the list of
keywords is detailed in the standard). Model 204 SQL Reserved
Words are listed in Appendix B.

2. End of line (newline) is implementation defined.

Note: The end of line character for use with DVI is the semicolon (;).

3. Numbers in parentheses to the right of some of the syntax lines are
keys to notes that appear at the end of the syntax diagrams.

4. Model 204 SQL DDL extensions to the standard are printed in bold
italics; statements or clauses that are not part of the ANSI SQL
1989 standard or the ANSI SQL 1992 standard, but that are antici-
pated to be part of the emerging standard are printed in italics.
Model 204 SQL DDL Syntax 179

DDL syntax
DDL syntax

tablename ::=
 [schemaname.] <table>

table ::=
 basetable | viewname

schema ::=
 CREATE SCHEMA <schema-authorization-clause>
 [schema-element • • •]

schema-authorization-clause ::=
 schemaname

1 | AUTHORIZATION authorization-id

1 | schemaname AUTHORIZATION authorization-id

schema-element ::=
 <table-definition>
 | <view-definition>
 | <privilege-definition>

table-definition ::=
 CREATE TABLE <tablename>
 [<file-mapping-clause> | NESTED USING <nested-key>]
 (<table-element> ,• • •)

file-mapping-clause ::=
 SYSNAME ’filename’

nested-key ::=
columname

table-element ::=
 <column-definition>
 | <table-constraint-definition>

2 column-definition ::=
columname <datatype>
 [<field-mapping-clause>]
 [<column-constraint> • • •]

datatype ::=

3 CHAR[ACTER] [(length)]

4 | NUM[ERIC] [(precision [,scale])]
 | DEC[IMAL] [(precision [,scale])]
180 Rocket Model 204 SQL Server User’s Guide

DDL syntax
 | INT[EGER]
 | SMALLINT

5 | FLOAT [(precision)]
 | REAL
 | DOUBLE PRECISION
 | BLOB
 | CLOB

field-mapping-clause:=
 SYSNAME ’fieldname’

6 column-constraint ::=
 NOT NULL

7 | <unique-specification>
 | <references-specification>

table-constraint-definition ::=
 <unique-constraint-definition>
 | <referential-constraint-definition>

unique-constraint-definition ::=
 <unique-specification> (<column-list>)

8 [SYSNAME ’fieldname’]

unique-specification ::=
 UNIQUE | PRIMARY KEY [SYSTEM]

9 referential-constraint-definition ::=
 FOREIGN KEY (columname)
 <references-specification

references-specification ::=

9 REFERENCES parent-table-name
 [<referential-triggered-action>]

referential-triggered-action ::=
 <update-rule> [<delete-rule>]
 | <delete-rule> [<update-rule>]

update-rule ::= ON UPDATE CASCADE

delete-rule ::= ON DELETE CASCADE

view-definition::=
 CREATE VIEW <viewname> [(<column-list>)]
Model 204 SQL DDL Syntax 181

DDL syntax
10 AS <query-expression> [WITH CHECK OPTION]

set user statement::=

11 SET USER authorization-id

set schema statement::=
 SET SCHEMA schemaname

drop schema statement::=

12 DROP SCHEMA schemaname

drop table statement::=

12 DROP TABLE <tablename>

drop view statement::=

12 DROP VIEW <viewname>

alter table statement ::=
 ALTER TABLE <tablename> <alter-table-action>

alter-table-action::=

13 ADD <column-definition>
 | DROP columname
 | MODIFY <column-parameters>

column-parameters::=

14 MODIFY columname
 [<datatype>]
 [<field-mapping-clause>]
 [<modify-attribute-list> • • •]

modify-attribute-list ::=
 [NOT] NULL
 | [NOT] UNIQUE

privilege-definition ::=
 GRANT <privileges> ON <object-name>
 TO <grantee> ,• • •
 [WITH GRANT OPTION]

privileges ::=
 ALL PRIVILEGES
 | <action> ,• • •
182 Rocket Model 204 SQL Server User’s Guide

Notes for syntax display
action::=
 SELECT
 | INSERT
 | DELETE

15 | UPDATE [(<column-list>)]

column list::=
 columname,• • •

object-name::=
 <tablename> | <viewname>

grantee::=
 PUBLIC
 | authorization-id

revoke statement ::=
 REVOKE [GRANT OPTION FOR] <privileges>
 ON <object-name>
 FROM <grantee> ,• • •

Notes for syntax display

The numbers for the comments below correspond to the numbers in bold in the
preceding syntax listing.

1. Since the AUTHORIZATION value maps to a Model 204 user ID, it can be
no longer than 10 characters.

2. The column definition DEFAULT clause is not supported in
Model 204 SQL.

3. Referred to as character string type in the standard. The default length
is 1.

4. NUMERIC, DECIMAL, INTEGER, and SMALLINT are referred to as exact
numeric types in the standard. The precision values are interpreted as
decimal precision.

5. FLOAT, REAL, and DOUBLE PRECISION are referred to as approximate
numeric types in the standard. The precision value is interpreted as binary
precision.

6. CHECK column constraint is not supported in Model 204 SQL.

7. Unlike the standard, UNIQUE is independent of NOT NULL. If you specify
UNIQUE, NOT NULL is not implied.

In addition, PRIMARY KEY is syntactically independent of NOT NULL.
Specifying PRIMARY KEY without NOT NULL is not a syntax error.
However, regardless of whether you specify NOT NULL, when you specify
PRIMARY KEY, the SQL Server includes NOT NULL checking by default.
Model 204 SQL DDL Syntax 183

Notes for syntax display
8. If the SYSNAME extension is omitted in a multicolumn unique key defini-
tion, by default the Model 204 SQL Server assumes a concatenation of the
constituent column names, separating the names with an ampersand (&)
character. For example, the default concatenation of (SSN, AGE, NAME)
is SSN&AGE&NAME.

9. REFERENCES and the referential constraint definition apply only to
nested tables. Specification of a REFERENCES clause in a context other
than for a nested table produces a warning message.

10. A query expression is a query specification or a UNION of query specifica-
tions, where query specification is a SELECT statement (with no ORDER
BY clause).

11. Modifies the current SQL authorization ID. System manager privileges are
required.

12. DROP SCHEMA physically deletes from CCACAT the definition of all
tables, views, and associated grant statements.
DROP TABLE deletes the table definition record from CCACAT and
deletes privileges and constraints associated with the table.
DROP VIEW deletes any subordinate views (that is, VIEWs of VIEWs)
from CCACAT as well as privileges granted for the view.

13. All columns are added to a table in the last position of the column list. If
you DROP a column and then ADD an updated version of that column, the
updated column might occupy a different position in the table than it did
before you issued DROP and ADD.

Such a change in order of the column data can introduce errors into queries
that use SELECT * or INSERT (without a column list) and that depend on
the correct position of the column data. Use MODIFY for changes to column
definitions other than deletions and additions.

14. The MODIFY columname clause supports all aspects of column definition
(see discussion in the previous note). Specify only the attributes being
modified. You also can modify the field mapping clause and data type.

15. Unlike the standard, no REFERENCES privileges are supported.
184 Rocket Model 204 SQL Server User’s Guide

B
Model 204 SQL Reserved Words

This appendix lists the Model 204 SQL reserved words, which are
words that you cannot use as names of SQL objects. This list includes
standard and emerging standard SQL reserved words and Model 204
SQL proprietary reserved words (in italics).
Model 204 SQL Reserved Words 185

Reserved words
Reserved words

ADD
ALL
ALTER
AND
ANY
AS
ASC
AUTHORIZATION
AVG

BEGIN
BETWEEN
BLOB
BY

CASCADE
CAST
CHAR
CHARACTER
CHECK
CLOB
CLOSE
COBOL
COMMIT
CONTINUE
COUNT
CREATE
CROSS
CURRENT
CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP
CURSOR

DEC
DECIMAL
DECLARE
DEFAULT
DELETE
DESC
DISTINCT
DOUBLE

DROP
END
ESCAPE
EXEC
EXISTS

FETCH
FLOAT
FOR
FOREIGN
FORTRAN
FOUND
FROM
FULL

GO
GOTO
GRANT
GROUP

HASH
HAVING

IN
INDEX
INDICATOR
INNER
INSERT
INT
INTEGER
INTO
IS

JOIN

KEY

LANGUAGE
LEFT
LIKE

MAX
MIN
MODIFY
MODULE

NATURAL
NESTED
NOT
NULL
NUM
NUMERIC

OF
ON
OPEN
OPTION
OR
ORDER
ORDERED
OUTER

PASCAL
PLI
POSITIONED
PRECISION
PRIMARY
PRIVILEGES
PROCEDURE
PUBLIC

REAL
REFERENCES
RESTRICT
REVOKE
RIGHT
ROLLBACK

SCHEMA
SECTION
SELECT
SET

SMALLINT
SOME
SORT
SQL
SQLCODE
SQLERROR
SQLSTATE
SQLVERSION
SUM
SYSNAME
SYSTEM

TABLE
TO
TYPE

UNCATALOG
UNION
UNIQUE
UPDATE
USER
USING

VALUES
VIEW

WHENEVER
WHERE
WITH
WORK

GE
LE
NE
186 Rocket Model 204 SQL Server User’s Guide

C
SQL DDL Mapping of the
Demonstration Database

This section displays DDL that maps the Model 204 demonstration
database files to Model 204 SQL tables. This sample DDL also includes
two views of one of the tables.

If you use this mapping at your site for test purposes, please note the
following:

• This DDL maps to the Version 6.1 demonstration database files.
Ensure that you have the correct set of files attached to your Online.

• You must supply a value for the placeholder xxxx in the DDL below
(for SCHEMA NAME).

After this cataloging of the demonstration database files, the query:

SELECT RECTYPE, FULLNAME, SEX, STATE FROM CLIENTS
 WHERE POLICY_NO = 100648

results in the following:

DRIVER BALDWIN, LEE D M CAL-
IFORNIA
DRIVER BALDWIN, MARY C F CAL-
IFORNIA
POLICYHOLDER BALDWIN, MARY C CAL-
IFORNIA
SQL DDL Mapping of the Demonstration Database 187

DDL stream
DDL stream

CLIENTS table

CREATE SCHEMA xxxx;
 CREATE TABLE CLIENTS
 (ADDRESS
 CHAR(40),
 AGENT
 CHAR(20),
 ANNIV_DATE
 SYSNAME 'ANNIV DATE'
 INTEGER,
 CITY
 CHAR(20),
 DATE_OF_BIRTH
 SYSNAME 'DATE OF BIRTH'
 INTEGER,
 DRIVER_ID
 SYSNAME 'DRIVER ID'
 INTEGER,
 FULLNAME
 CHAR(40) NOT NULL,
 MARITAL_STATUS
 SYSNAME 'MARITAL STATUS'
 CHAR(15),
 POLICY_NO
 SYSNAME 'POLICY NO'
 CHAR(6) NOT NULL,
 POLICYHOLDER
 CHAR(40),
 RECTYPE
 CHAR(15) NOT NULL,
 RESTRICTIONS
 CHAR(255),
 SEX
 CHAR(1),
 STATE
 CHAR(25),
 TOTAL_PREMIUM
 SYSNAME 'TOTAL PREMIUM'
 INTEGER,
 ZIP
 CHAR(9),
 PID INTEGER NOT NULL PRIMARY KEY SYSTEM);
GRANT ALL PRIVILEGES ON CLIENTS TO PUBLIC;
188 Rocket Model 204 SQL Server User’s Guide

DDL stream
ACCIDENTS table, nested under CLIENTS

CREATE TABLE ACCIDENTS NESTED USING PID
 (INCIDENT
 CHAR(2) NOT NULL,
 INCIDENT_DATE
 SYSNAME 'INCIDENT DATE'
 INTEGER NOT NULL,
 PID INTEGER NOT NULL REFERENCES CLIENTS);
GRANT ALL PRIVILEGES ON ACCIDENTS TO PUBLIC;

INSURED-VINS table, nested under CLIENTS

CREATE TABLE INSURED_VINS NESTED USING PID
 (VIN
 CHAR(12) NOT NULL,
 PID INTEGER NOT NULL REFERENCES CLIENTS);
GRANT ALL PRIVILEGES ON INSURED_VINS TO PUBLIC;

VEHICLES table

CREATE TABLE VEHICLES
 (BODY
 CHAR(4),
 COLLISION_PREMIUM
 SYSNAME 'COLLISION PREMIUM'
 INTEGER,
 COLOR
 CHAR(15),
 DEDUCTIBLE
 DECIMAL(3,0),
 GARAGING_LOCATION
 SYSNAME 'GARAGING LOCATION'
 CHAR(4),
 LIABILITY_LIMIT
 SYSNAME 'LIABILITY LIMIT'
 DECIMAL(4,0),
 LIABILITY_PREMIUM
 SYSNAME 'LIABILITY PREMIUM'
 INTEGER,
 MAKE
 CHAR(20),
 MODEL
 CHAR(20),
 OWNER_POLICY
 SYSNAME 'OWNER POLICY'
 CHAR(6),
 PRINCIPAL_DRIVER
 SYSNAME 'PRINCIPLE DRIVER'
SQL DDL Mapping of the Demonstration Database 189

DDL stream
 INTEGER,
 SURCHARGE
 SYSNAME 'SURCHARGE%'
 CHAR(2),
 TRANS
 CHAR(2),
 USAGE
 CHAR(60),
 VEHICLE_PREMIUM
 SYSNAME 'VEHICLE PREMIUM'
 INTEGER,
 VEHICLE_RATING
 SYSNAME 'VEHICLE RATING'
 CHAR(1),
 VEHICLE_USE_CLASS
 SYSNAME 'VEHICLE USE CLASS'
 CHAR(2),
 VIN
 CHAR(10) NOT NULL PRIMARY KEY,
 YEAR
 DECIMAL(4,0));
GRANT ALL PRIVILEGES ON VEHICLES TO PUBLIC;

OTHER_DRIVER table, nested under VEHICLES

CREATE TABLE OTHER_DRIVER NESTED USING VIN
 (OTHER_DRIVER
 SYSNAME 'OTHER DRIVER'
 CHAR(6) NOT NULL,
 VIN
 CHAR(10) NOT NULL UNIQUE REFERENCES VEHICLES);
GRANT ALL PRIVILEGES ON OTHER_DRIVER TO PUBLIC;

CLAIMS03 table

CREATE TABLE CLAIMS03
 (CLAIM_NO
 SYSNAME 'CLAIM NO'
 INTEGER NOT NULL UNIQUE,
 CLAIM_STATUS
 SYSNAME 'CLAIM STATUS'
 CHAR(15),
 CLAIM_TYPE
 SYSNAME 'CLAIM TYPE'
 CHAR(1),
 CLAIMEE
 CHAR(255),
 DRIVER_INVOLVED
 SYSNAME 'DRIVER INVOLVED'
190 Rocket Model 204 SQL Server User’s Guide

DDL stream
 INTEGER,
 LOCATION
 CHAR(4),
 MISC_CLAIM_DESC
 SYSNAME 'MISC CLAIM DESC'
 CHAR(100),
 POLICY_NO
 SYSNAME 'POLICY NO'
 CHAR(6),
 SETTLEMENT_AMOUNT
 SYSNAME 'SETTLEMENT AMOUNT'
 INTEGER,
 SETTLEMENT_DATE
 SYSNAME 'SETTLEMENT DATE'
 INTEGER,
 TIME
 CHAR(4),
 VIN_INVOLVED
 SYSNAME 'VIN INVOLVED'
 CHAR(10),
 WEATHER
 CHAR(20));
GRANT ALL PRIVILEGES ON CLAIMS03 TO PUBLIC;

VIEWS against the CLIENTS table

The following views of the CLIENTS table represent only one of many ways of
constructing a set of views for the table.

POLICIES view

CREATE VIEW POLICIES
 (ADDRESS, AGENT, ANNIV_DATE, CITY, DATE_OF_BIRTH,
FULLNAME,
 POLICY_NO, POLICYHOLDER, STATE, TOTAL_PREMIUM, ZIP) AS
 SELECT
 ADDRESS, AGENT, ANNIV_DATE, CITY, DATE_OF_BIRTH,
FULLNAME,
 POLICY_NO, POLICYHOLDER, STATE, TOTAL_PREMIUM, ZIP
 FROM CLIENTS
 WHERE RECTYPE = 'POLICYHOLDER';
 GRANT ALL PRIVILEGES ON POLICIES TO PUBLIC;

DRIVERS view

CREATE VIEW DRIVERS
 (DATE_OF_BIRTH, DRIVER_ID, FULLNAME, MARITAL_STATUS,
 POLICY_NO, SEX, STATE) AS
 SELECT
SQL DDL Mapping of the Demonstration Database 191

DDL stream
 DATE_OF_BIRTH, DRIVER_ID, FULLNAME, MARITAL_STATUS,
 POLICY_NO, SEX, STATE
 FROM CLIENTS
 WHERE RECTYPE = 'DRIVER';
GRANT ALL PRIVILEGES ON DRIVERS TO PUBLIC;
192 Rocket Model 204 SQL Server User’s Guide

Index
A

ADD clause, ALTER TABLE statement 80, 85
ALTER TABLE statement

effect on SQL catalog 49
privileges for 89
syntax and description 79

approximate numeric type 183
asterisk (*)

wildcard in SELECT list statement 173
AT-MOST-ONE field attribute 115
attributes

Model 204 field 22, 32, 35
SQL column 35

Audit trail messages
overflow data 26

authorization ID, SQL
as default schema name 53
determining 50
for TSF 107
in DDL statement security 78, 88
setting 90, 163

B

base table, SQL 51, 108
BINARY fields, Model 204

mapping 4, 34, 35
precision 40

BLOB data type 57
see also data types, SQL

C

CASCADE option 68
CATALOG schema 15, 144
CCACAT file

creation 16
file management 16 to 19
recovery 18
security 16, 17

CCACATREPT subsystem 132
CCACATREPT utility 8, 15, 131 to 144
CCAIN file parameters 4

CCATEMP file 21
CCATSF subsystem 7, 99, 105

see also TSF
CHARACTER data type 57, 119

see also data types, SQL
character string type 183
characters

non-printable 22
CHECK clause, CREATE TABLE statement 55, 58
CHECK column constraint 183
clients, Model 204 SQL 9
CLOB data type 57

see also data types, SQL
CODED fields, Model 204 4
Column Attributes panel, TSF 104, 115 to 120
column attributes, SQL 35
column definition

SQL catalog view of 148, 149
syntax and description 57 to 63

Column List panel, TSF 104, 110 to 115
column names, see names, SQL
column position 80
column updating privileges 85 to 87
COLUMN_PRIVILEGES view, SQL catalog 144,

153
columns

matching in NATURAL JOIN feature 175
COLUMNS view, SQL catalog 144, 149
Completion panel, TSF 104, 122, 127 to 129
conditional join feature

using an ON clause 176
Connect *

clients 9
processing components 5, 9
processing configuration 1

consistency, data
see data consistency

constraints
CHECK 55, 58, 183
column 57
FOREIGN KEY 54
nested table 172
NOT NULL, see NOT NULL clause
referential 102

see also REFERENCES clause
Index 193

table 54
UNIQUE, see UNIQUE clause

conversion, data
see data, Model 204 file

CREATE SCHEMA statement
description 51
effect on SQL catalog 48
in TSF output 106
privileges for 88
schema context 77
syntax 52

CREATE TABLE statement
description 53 to 56
effect on SQL catalog 48
privileges for 88
syntax 54
table types created 51

CREATE VIEW statement
effect on SQL catalog 48
privileges for 89, 90 to 97
syntax and description 71

CREATE.CCACAT procedure 16
CROSS JOIN feature

no join condition specified 175
CURRENT_DATE keyword

SELECT statement option 174
CURRENT_TIME keyword

SELECT statement option 174
CURRENT_TIMESTAMP keyword

SELECT statement option 174
CVI utility

introduction to 13

D

data consistency
CCACAT file 16, 18
SQL catalog definitions 14, 15, 161
TSF 101

Data Definition Language, Model 204 SQL
see DDL, Model 204 SQL

data length
for CHARACTER columns 119, 148, 149

Data Manipulation Language, Model 204 SQL
see DML, Model 204 SQL

data precision
see precision, data

data types, SQL
default, TSF 118
mapping 25, 31 to 42, 118
precision limits 39
SQL catalog view of 149, 150
syntax of 57

data, Model 204 file
conversion 35
dirty 37
features available to SQL 23
formats 31 to 42
precision, see precision
retrieval efficiency 32

DDL, Model 204 SQL
extensions 49, 102
function of 3
manually created 14, 101
mixing with SQL DML 163
statement security 87
syntax 179
updates, large 19
utility-generated 14, 129

DECIMAL data type 57, 119
see also data types, SQL

DEFAULT clause, CREATE TABLE statement 58,
183

DEFERRABLE fields, Model 204 4
DEFINE commands, Model 204 4
DELETE option

GRANT statement 83
REVOKE statement 84

DELETE statement 165
demonstration database, sample mapping of 187
Dictionary, Model 204 13
Dirty Data

migration issues 26
dirty data

see data, Model 204 file
DISTINCT option 76
DML, Model 204 SQL

for DML statements 162
function of 3
mixing with SQL DDL 163
privileges, see privileges, SQL
using 161 to 173

DOUBLE PRECISION data type 57, 119
see also data types, SQL

DROP clause, ALTER TABLE statement 49, 80, 85
DROP SCHEMA statement

effect on SQL catalog 48, 82
privileges for 89
syntax 81

DROP TABLE statement
effect on SQL catalog 48
privileges for 89
syntax and description 81

DROP VIEW statement
effect on SQL catalog 48, 82
privileges for 89
syntax 81
Index 194 Rocket Model 204 SQL Server User’s Guide

E

empty strings 37
error messages, TSF 103
exact numeric type 183
EXISTS clause 72
exponents, floating point 42
extensions

Model 204 SQL DDL 49, 102

F

field level security, Model 204 73
fields, Model 204

attributes of 22, 32, 35
names of 113
SQL mapping of 42

file groups, Model 204
in TSF 108
simulating 3, 23, 73, 74

FILEORG parameter 18, 23, 115
files, Model 204

data indexes, see indexes
hash key, see hash key files
identifying, in TSF 108
INVISIBLE fields in 164
mixed record type 73, 74
names for 55 to 56
sorted, see sorted files
transaction backout 3, 21
TSF pending definition for 109

FIPS 8
FLOAT data type 57, 119

see also data types, SQL
FLOAT fields, Model 204

mapping 4, 34, 35
precision 40

floating point data 40, 42
floating point numbers

SQL processing 40
floating point representation 42
FOREIGN KEY clause 65
foreign keys

defining in TSF 110
description of 27 to 30, 109
mapping examples 168
rules for 67

FRCVOPT parameter 18
FRV fields

SQL SELECT DISTINCT processing 32

G

Grant Authority panel, TSF 104
GRANT statement

effect on SQL catalog 48
for SQL security 5, 83
generating with TSF 122
privileges for 89, 90
syntax 83

GROUP BY clause 72, 76, 165
groups

file, see file groups
multiply occurring, see multiply occurring fields

H

hash key files 23, 59, 115
HASHKEY default 115
HAVING clause 72, 76

I

index field, multi-column unique 61, 124
indexes, file data 25, 32
INNER JOIN keywords

SQL features 175
INSERT option

GRANT statement 83
REVOKE statement 84

INSERT statement 165
INTEGER data type 57, 119

see also data types, SQL
INVISIBLE fields

in nested tables 65, 109, 110
SQL DML restrictions 164 to 167
TSF 115
usability 4, 24, 59
with multi-column unique 124

IODEV threads, SQL
required for ONLINE job 4

isolation level, SQL 162

K

KEY fields, Model 204 4, 34
KEY_COLUMN_USAGE view, SQL catalog 144,

151

L

LEN field attribute, Model 204 4
length, data
Index 195

see data length
locking, record 162, 163
LOGIN command 50
login security, Model 204

protecting SQL files 16, 23, 50
user ID rules 107

M

Main Menu panel, CCACATREPT 132
Main Menu panel, TSF 104, 110
Mapping

ODBC/SQL table to Model 204 data 25
mapping SQL data

recommendations 40
Migration issues

data extraction mismatches 26
Model 204

field definitions with SQL SELECT DISTINCT
32

SQL data extraction mismatches 26
Model 204 tables 25
Model 204 TCP/IP facility

brief description 8
Model 204 views 25
MODIFY clause, ALTER TABLE statement 49, 80
multi-column unique keys

generating with TSF 122, 122 to 125
INVISIBLE fields as 24
simulating 70
specifying 60 to 63
SQL catalog view of 151

Multi-Column Unique panel, TSF 104, 122 to 125
multiple record types, mapping 24
multiply occurring fields

definition of 110
mapped to nested tables 51
mapping 22, 28 to 30, 66
mapping examples 168
retrieving 170
updating 39

multiply occurring fields <singlepage>
multiply occurring groups 170

see also multiply occurring fields

N

names, SQL object
columns 60, 114, 125
multi-column unique keys 61
qualifying 77
schemas 53, 108
standard identifier rules 51

tables 55, 107
NATURAL JOIN feature

common columns 175
Nested tables 26
nested tables

constraints for 172
creating 63
description 27 to 30, 51
for multiply occurring fields 4, 24
porting applications with 173
SQL DML against 167 to 173
TSF 108, 110

NESTED USING clause
description 49
in syntax 63, 65
in TSF DDL 102, 108

nesting keys, see foreign keys
NOT NULL clause

data checking 38
for nested tables 65, 110, 173
in multiple record type files 25
in TSF 117
INVISIBLE field restrictions 167
mapping 57
modifying 81
reported in SQL catalog view 149
syntax rules 58
with UNIQUE 59

nulls, SQL
in TSF 117
missing fields as 38
retrieval of 39
see also NOT NULL

NUMERIC data type 57, 119
see also data types, SQL

NUMERIC RANGE fields, Model 204 4, 34

O

OCCURS field attribute, Model 204 4
see also multiply occurring fields

ODBC Driver, Connect * 9
ODBC/SQL compliant applications

updating tables 25
ON DELETE clause 68
ON UPDATE clause 68
Open Database Connectivity (ODBC) Interface 9
ORDER BY clause

for SQL catalog queries 146
ORDERED attributes

SQL WHERE processing 32
ORDERED field

in Model 204 table 25
Index 196 Rocket Model 204 SQL Server User’s Guide

ORDERED fields, Model 204
for primary keys 65, 110
for UNIQUE columns 119, 124
mapping 4, 22, 34

OUTER JOIN features
preserving unmatched rows 176

P

PAD character, Model 204 23
parent table, SQL 27, 108 to 110
pending definition, TSF 109
PF keys

CCACATREPT 133
TSF 105

precision, data 39, 119, 148, 149
PRIMARY KEY

application tables defined with 25
definition in SQL catalog 25

PRIMARY KEY clause
in TSF 115
syntax rules 54, 58, 65
with SYSTEM 50

PRIMARY KEY table columns 25
primary keys

description of 27 to 30
in TSF 109, 110, 115
mapping examples 168
system-generated 70, 84, 169
see also PRIMARY KEY

PRIVDEF parameter 17
privileges, SQL

changing 82
column updating 85
for DDL statements 87
granting, see GRANT
reporting 15, 134
SQL catalog view of 152, 153

PUBLIC option
GRANT statement 83, 134
REVOKE statement 84

Q

query expression
CREATE VIEW statement 72

query specifications
for views 72
see also SELECT statement

querying, SQL catalog
see SQL catalog

R

REAL data type 57, 119
see also data types, SQL

record locking 162, 163
recovery, CCACAT file 18
REFERENCES clause

description 49, 67
in syntax 30, 54, 58, 64, 65
in TSF 102
privileges for 83, 184
with referential triggered action 68

referential constraints 67
see also REFERENCES clause

referential triggered action 68
reserved words, Model 204 SQL 185
REVOKE statement

effect on SQL catalog 49
effect on UPDATE privileges 86
for SQL security 5
privileges for 90
syntax 84

S

scale, column 119, 148, 149
SCFE 7
SCHEMAS view, SQL catalog 144, 146
schemas, SQL

default context for 76, 77, 163
dropping, see DROP SCHEMA
names for 108
SQL catalog view of 146

SCHEMATA view, SQL catalog 144, 146
security, Model 204

field level 73
file 23
login, see login security, Model 204
subsystem 4

security, SQL
from GRANT and REVOKE 5, 13, 23
includes authorization ID 83, 107
see also GRANT statement

SELECT DISTINCT statement
Model 204 field definitions affected 32

SELECT LIST statement
assigning alias names 173

SELECT option
GRANT statement 83, 91
REVOKE statement 84

SELECT statement
against views 73, 76
defining views 76
Index 197

INVISIBLE field restrictions 164
SELECT statement options

CURRENT_DATE 174
CURRENT_TIME 174
CURRENT_TIMESTAMP 174
ON clause for conditional join 176
SQLERROR 175
SQLSTATE 175
SQLVERSION 174
USER 174

serializability, transaction 162
SERIALX parameter 162
SET SCHEMA statement

description 77
effect on SQL catalog 48
in CCACATREPT DDL 137
privileges for 90
with SQL DML 163

SET USER statement 48, 78, 90, 163
SMALLINT data type 57

see also data types, SQL
sorted files 23, 59, 115
SORTKEY default 115
SOUL

and User Language xi
SQL catalog

consistency, see data consistency
description 16
populating, see DDLUTIL
PRIMARY KEY definition 25
querying 13, 15, 144 to 159
record types 48
reporting, see CCACATREPT
views of 144

SQL Client Front End, see SCFE
SQL communications interface 7
SQL data

recommended mappings 40
SQL data extraction

dirty data 26
Model 204 messages 26
Model 204 mismatches 26

SQL Engine 7
SQL join features

INNER JOIN 175
NATURAL JOIN 175
ON clause 176
OUTER JOIN 176
USING clause 176

SQL pattern search
guidelines 23

SQL processing
floating point numbers 40

SQL security, see security, SQL

SQL SELECT DISTINCT statements
FRV fields 32

SQL Server Front End, see SSFE
SQL Server, Model 204

clients 1
components 7

SQL WHERE processing
Model 204 ORDERED fields 32

SQLERROR keyword
SELECT statement option 175

SQLFILE parameter 55
SQLSTATE keyword

SELECT statement option 175
SQLVERSION keyword

SELECT statement option 174
SSFE 7
standards, SQL 8
STRING fields, Model 204

hexadecimal zeros in 22
mapping 4, 34, 35

subsystem security 4
syntax

Model 204 SQL DDL statements 179
SYSNAME clause

description 49
for columns 59
for multi-column key 61
for tables 55, 107
in TSF 102, 114, 125
rules for 66

SYSTEM clause
description 50
in TSF 102, 115
rules for 66

system-generated keys
defining 69
in TSF 102, 109, 114, 115
INSERTs into tables having 71
see also SYSTEM clause

T

Table Specification facility, see TSF
TABLE_COLUMNS view, SQL catalog 144, 148
TABLE_CONSTRAINTS view, SQL catalog 144,

151
TABLE_PRIVILEGES view, SQL catalog 144, 152
Tables

nested 26
updating 25

TABLES view, SQL catalog 144, 147
tables, SQL

dropping, see DROP TABLE
Index 198 Rocket Model 204 SQL Server User’s Guide

names for 55 to 56, 107
nested, see nested tables
SQL catalog view of 147, 150
types of 108

TCP-IP software, IBM 8
Third-party application

tables 25
transaction backout files 3, 21
TSF

data length 119
description 7, 99 to 101
panels 129
parent tables 109
PF keys 105
processing 104
schema names 108
table names 107
table types 108
see also CCATSF subsystem

U

UNION operator 72, 76
UNIQUE clause

for multi-column keys, see multi-column unique
keys

in syntax 54, 58
in TSF 119
modifying 81
with NOT NULL 59

UNIQUE field
in Model 204 table 25

UNIQUE fields, Model 204
for primary keys 22, 65, 110
for UNIQUE columns 39, 119, 124

UNIQUE key
in ODBC/SQL table or view 25

updatability, view 96
UPDATE AT END field attribute 65
UPDATE clause

GRANT statement 83, 85
REVOKE statement 84, 86

UPDATE statement 164
Updating tables

in ODBC/SQL compliant applications 25
user ID, Model 204 50, 88, 107
USER keyword 50

SELECT statement option 174
User Language. See SOUL
USING clause feature

matching column names 176

V

Views 25
defined with a PRIMARY KEY 25
Model 204 25

VIEWS view, SQL catalog 144, 150
views, SQL

defining 71
description of 51, 108
dropping, see DROP VIEW
for mapping multiple record types 25
privileges for 90
querying 76

W

WHERE clause 165
wildcard

asterisk (*) 173
WITH CHECK OPTION clause, CREATE VIEW

statement 55, 58, 72, 150
WITH GRANT OPTION, GRANT statement

effect on UPDATE privileges 87
SQL catalog view of 153
Index 199

Index 200 Rocket Model 204 SQL Server User’s Guide

	Title page
	Notices
	Corporate Information
	Contacting Technical Support

	Contents
	About this Guide
	Introduction to the Model 204 SQL Server
	Model 204 SQL processing configurations
	How the SQL Server works within Model 204
	SQL Server provides seamless operation
	SQL Server operates concurrently
	SQL DML and SQL DDL may be executed simultaneously
	SQL DDL and Model 204 DDL are independent
	File preparation is minimal
	Field attribute functionality is available
	SQL processing adds to Model 204 Online requirements
	SQL processing relies on SQL security

	Model 204 SQL processing components
	SQL Server components
	SQL Server associated software
	SQL Server supporting tools
	SQL intersystem processing interfaces

	Model 204 SQL standards
	Model 204 SQL clients
	SQL processing from the PC client

	Model 204 SQL Catalog
	Surveying the SQL catalog
	Bridge to Model 204 data
	Model 204 SQL catalog characteristics

	Using the SQL catalog
	Populating the catalog
	Reporting catalog contents
	Monitoring catalog consistency

	Maintaining the SQL catalog
	Creating the CCACAT file
	Including CCACAT in an Online
	Ongoing CCACAT maintenance
	CCACAT implementation for BLOB and CLOB data

	Mapping Model 204 Data to SQL
	Representing Model 204 data in SQL
	Changing existing Model 204 files
	SQL pattern search guidelines
	Using Model 204 file data features
	Using PRIMARY KEY table columns

	Model 204 and SQL data extraction mismatches
	Mapping multiply occurring fields to nested tables
	Understanding nested tables
	Translating multiply occurring fields
	Simulating normalization of Model 204 record data
	Handling foreign keys
	Handling primary keys

	Matching Model 204 and SQL data formats
	Compatibility of Model 204 and SQL data formats
	Optimizing Model 204 data retrieval
	Optimizing Model 204 data conversion
	How Model 204 SQL processes dirty data
	Handling NOT NULL, UNIQUE, and multiply occurring data
	Handling mixed numeric and nonnumeric data
	Observing data precision limits
	Converting SQL data types for display
	LOB fields in SQL statements

	Model 204 SQL Data Definition Language
	Model 204 SQL DDL statements
	Model 204 SQL DDL extensions

	Creating SQL objects
	Authorization ID is equivalent to Model 204 user ID
	Model 204 SQL table types
	Statement ordering is important
	Naming SQL objects

	Creating schemas
	CREATE SCHEMA statement
	Indicating schema name and owner

	Creating tables
	CREATE TABLE statement
	Mapping table names to file names
	Using CLOB or BLOB data

	Defining columns
	Column definition statement
	Mapping columns to Model 204 fields
	Column naming and the SYSNAME extension
	Specifying a multicolumn UNIQUE key

	Creating nested tables
	Nested table statements
	Mapping multiply occurring groups
	Nested tables require a foreign key
	Nested tables require a referential constraint definition
	CASCADE is the only referential triggered action
	Using system-generated keys

	Creating views
	CREATE VIEW statement
	Rules for updating views
	Guideline for view definitions
	Using SQL views in Model 204 SQL DDL
	Simulating file groups
	Mapping files with mixed record types
	Maintaining views
	Querying views

	Setting the schema and user context
	Determining the default schema context
	Prefixing the schema name to an SQL object
	Using SET SCHEMA
	Using SET USER

	Altering SQL objects
	ALTER TABLE statement
	Using ADD column
	Using DROP column
	Using MODIFY column

	Dropping SQL objects
	Dropping tables
	Dropping views
	Dropping schemas

	Granting privileges for SQL objects
	GRANTs are for adding privileges
	GRANT and REVOKE handle nearly all SQL security
	GRANT statement
	REVOKE statement
	Granting and altering column UPDATE privileges
	Column UPDATE examples

	DDL statement-level security
	Model 204 SQL view privileges
	SQL statement security example
	Statement security example comments

	SQL DDL processing

	Creating DDL with the Table Specification Facility
	Introduction to the Table Specification facility (TSF)
	DDL processing
	TSF processing sequence
	DDL statements generated by the TSF
	Model 204 SQL DDL extensions generated by the TSF
	SQL and Model 204 data consistency

	Using TSF panels
	Panel conventions
	ENTER and PF key conventions
	Logging in

	Creating or modifying a base table (Main Menu panel)
	Creating SQL objects in the context of a schema
	Schema Authorization
	SQL Table Name
	Schema Name
	Model 204 File Name and Password
	Table Type
	Primary Key
	Parent Table
	Keeping or deleting the pending definition
	Defining nested tables

	Defining column names (Column List panel)
	Model 204 field names
	Changing the order of field names
	Defining SQL column names

	Defining column attributes (Column Attributes panel)
	Specifying attributes
	Nulls
	Format
	Len (length)
	Prec (precision)
	Scale
	Usage note
	Nonstandard PF key functions

	Completing table definitions (Completion panel)
	Completion panel functions
	Selection
	“USE” Cmd Arg
	Error condition

	Defining multicolumn unique keys (Multi-Column Unique panel)
	Specifying a multicolumn unique key
	Model 204 Field
	Column Name(s)
	Usage note

	Specifying GRANT authority (Grant Authority panel)
	Authority
	Column(s)
	User
	Grant option
	Usage note

	Viewing DDL at the terminal (Completion panel)
	Generating DDL to an output file (Completion panel)

	Getting Information from the SQL Catalog
	SQL catalog reporting with CCACATREPT
	Logging in

	CCACATREPT Main Menu
	Using the CCACATREPT panel
	Selection field
	Schema Name field
	Authorization ID field
	Table/View Name field
	DDL Statement Type(s) field
	Grantee field
	“USE” Command Arg

	Report Selection 1: Generate DDL
	Specifying report input parameters
	Report input parameter examples
	Ordering the DDL output
	Sample of generated DDL

	Report Selection 2: Formatted Table/View report
	Report input parameters
	Contents of the report
	Sample report

	Report Selection 3: Privilege report by table/view
	Report input parameters
	Report display fields
	Sample Privilege Report by table and view

	Report Selection 4: Privilege report by grantee
	Report input parameter
	Report display fields
	Sample report

	Querying the SQL catalog
	Querying a CATALOG view
	Rules for CATALOG queries
	SCHEMAS view
	TABLES view
	TABLE_COLUMNS view
	COLUMNS view
	VIEWS view
	TABLE_CONSTRAINTS view
	KEY_COLUMN_USAGE view
	TABLE_PRIVILEGES view
	COLUMN_PRIVILEGES view
	ODBC_TYPES view
	ODBC_SCALES view
	CONST view
	ODBC_COLUMNS view
	ODBC_TABLES view
	ODBC_SPECIAL_COLS view
	ODBC_TABLE_STATS view
	ODBC_KEY_STATS view
	ODBC_STATISTICS view

	Model 204 SQL Data Manipulation Language
	Using Model 204 SQL DML
	Maintaining data definition consistency
	DML statement privileges
	Setting SQL isolation level
	Executing SQL DML and DDL simultaneously
	Mixing SQL DML and DDL
	Using SET SCHEMA and SET USER

	Using SQL DML against INVISIBLE fields
	Using SQL columns mapped to INVISIBLE fields

	Using SQL DML against nested tables
	Sample file and SQL mapping
	DML example series
	Retrieving a particular occurrence of a multiply occurring group
	Retrieving a range or series of occurrences
	Retrieving any or all occurrences based on a condition
	Retrieving at least n occurrences based on a condition
	Correlating a table and a nested table
	Working with nested table constraints
	Porting nested table applications

	Options in the SELECT LIST statement
	Correlation name feature
	Wildcard asterisk (*) for an individual table feature
	CURRENT_TIME keyword
	CURRENT_DATE keyword
	CURRENT_TIMESTAMP keyword
	USER keyword
	SQLVERSION keyword
	SQLERROR keyword
	SQLSTATE keyword

	SQL INNER JOIN features
	CROSS JOIN feature
	NATURAL JOIN feature
	ON clause feature
	USING clause feature

	SQL OUTER JOIN features
	SQL outer join features expanded

	Model 204 SQL DDL Syntax
	DDL syntax
	Notes for syntax display

	Model 204 SQL Reserved Words
	Reserved words

	SQL DDL Mapping of the Demonstration Database
	DDL stream
	CLIENTS table
	VEHICLES table
	CLAIMS03 table
	VIEWS against the CLIENTS table
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Index

