
Rocket Model 204
MQ/204 Reference

Version 7 Release 4.0

May 2012
204-74-MQ-01

ii

Notices
Edition

Publication date: May 2012

Book number: 204-74-MQ-01

Product version: Rocket Model 204 MQ/204 Reference Version 7 Release 4.0

Copyright

© Computer Corporation of America 1989-2012. All Rights Reserved.

Computer Corporation of America is a wholly-owned subsidiary of Rocket Software, Inc.

Trademarks

Rocket is a registered trademark of Rocket Software, Inc. For a list of Rocket registered
trademarks go to: www.rocketsoftware.com/about/legal. All other products or services
mentioned in this document may be covered by the trademarks, service marks, or product
names of their respective owners.

License agreement

This software and the associated documentation are proprietary and confidential to Rocket
Software, Inc., are furnished under license, and may be used and copied only in accordance with
the terms of such license.

Note

This product may contain encryption technology. Many countries prohibit or restrict the use, import,
or export of encryption technologies, and current use, import, and export regulation should be
followed when exporting this product.

Contact information

Web Site: www.rocketsoftware.com

Rocket Software, Inc. Headquarters
77 4th Avenue, Suite 100
Waltham, MA 02451–1468
USA
Tel: +1.617.614.4321
Fax: +1.617.630.7100

iii

Contacting Technical Support
If you have current support and maintenance agreements with Rocket Software and CCA,
contact Rocket Software Technical support by email or by telephone:

Email: m204support@rocketsoftware.com

Telephone :

 North America +1.800.755.4222

 United Kingdom/Europe +44 (0) 20 8867 6153

Alternatively, you can access the Rocket Customer Portal and report a problem, download an
update, or read answers to FAQs. You will be prompted to log in with the credentials supplied as
part of your product maintenance agreement.

To log in to the Rocket Customer Portal, go to:

www.rocketsoftware.com/support

iv

Contents
About this Manual

Audience ... iii
Model 204 documentation set ... iii
Documentation conventions..iv

1 Working with MQ/204
In this chapter.. 1

Overview .. 1
WebSphere MQ architecture... 2
Types of WebSphere MQ implementation for z/OS .. 3
z/OS performance considerations ... 3

MQ/204 environment requirements.. 3
MQ/204 architecture... 4

Subtask management ... 4
Subtask allocation ... 5
Subtask freeing ... 6

MQ/204 queue management ... 6
Determining message destination ... 6
Determining message handling... 7
Rules for queue names ... 7
Model 204 support .. 7
Remote queue support.. 8
Default queue manager... 8
Local dynamic queue support ... 9
Reusing dynamic queue names.. 9
Rules of inheritance .. 9
Reply queue and reply queue manager options.. 11
Using runtime options ... 11

Parameters and task management .. 13
Parameters.. 13
Task management .. 14

Accessing queues and queue managers ... 14
MQ/204 security access control .. 15
WebSphere MQ API wait types access control... 15
Bumping users .. 15
Triggering .. 15

Queue security processing... 15
Data conversion ... 16

Data conversion formats ... 16
Data handling ... 17

Buffers for message data areas .. 17
Controlling message context information .. 18
Dealing with messages larger than one image ... 20
Contents v

WebSphere MQ transactions .. 21
Controlling MQ subtask release .. 21

Grouping messages ... 22
Supporting Java Message Service (JMS) ... 22
Environment requirements .. 22
Consulting IBM documentation ... 22

Message groups... 23
Messages grouped in logical order ... 23
Messages grouped, not in logical order .. 24
Messages not grouped.. 25

Searching for messages using the MATCH options .. 25
Before searching for and retrieving messages.. 25
Using index types with message groups... 26
Retrieving messages not grouped... 28

BROWSE options... 29
Special handling options .. 30

ALL_MSGS_AVAILABLE option ... 30
MSGTOKEN option... 30
NEW_CORREL_ID option... 30
SYNCPOINT_IF_PERSISTENT option... 30

Examples of writing messages and browsing groups .. 31
Example of writing messages to a group in logical order .. 31
Example of writing messages to a group out of sequence...................................... 31
Browsing a group of messages... 32
Supporting Java messages with the RFH2 keyword... 33
Updating the Version 2 message descriptor (MQMD V2) 34
MQRFH2 image format ... 35
MQMD version compatibility.. 36

Programming suggestions ... 36
Messages that cause errors.. 36
Removing messages that do not convert .. 36
Saving a permanent local dynamic queue name .. 37
Working with logically deleted queues .. 37
Tuning MQ/204 ... 38
Greenwich Mean Time and MQPUT, MQPUT1, and MQGET time 38
Increase in STBL for MQ/204 sites ... 38

MQ/204 sample application.. 38
MQ/204 restrictions .. 41

2 Monitoring and Troubleshooting
In this chapter.. 43

Overview .. 43
 Error handling with $STATUS and $STATUSD .. 43

$STATUS return codes ... 43
$STATUSD return codes... 49

Debugging aid .. 51
Audit trail ... 51

Wait types and statistics... 51
Measuring the throughput of the WebSphere MQ API.. 52
Measuring MQGET calls with the WAIT options ... 52
vi Model 204 MQ/204 Reference

3 MQ/204 Command Reference
In this chapter.. 53

Overview .. 53
BUMP QUEUEMANAGER: Disconnecting queue manager users 54
DEFINE QUEUE: Identifying a WebSphere MQ queue ... 54

Defining local dynamic queues.. 56
DEFINE QUEUEMANAGER: Identifying a WebSphere MQ queue manager.............. 56
MODIFY QUEUE statement... 57
MONITOR MQ: Monitoring MQ/204... 58
START QUEUEMANAGER: Making queues accessible ... 60
STOP QUEUEMANAGER: Put a queue manager in drain state 61

4 User Language Statement Reference
In this chapter.. 63

Overview .. 63
CLOSE QUEUE statement .. 64

Deleting local dynamic queues.. 65
MQ/204 CLOSE statement and the QUEUE keyword .. 65

MODIFY QUEUE statement... 66
MQBACK statement... 67
MQCMIT statement.. 68
MQGET statement ... 68

Analyzing an MQGET statement... 70
Using the BUFFER area.. 71
Error handling consideration ... 73
Handling an incoming message with an RFH2 header ... 74
Using RFH2 keyword with MQGET... 75

MQPUT statement ... 75
MQPUT and MQPUT1 processing.. 77
Usage notes for options .. 78
Managing BUFFER area... 78
Applying date and time-stamps to messages.. 79
Handling an outgoing message with an RFH2 header.. 80
Using RFH2 keyword with MQPUT... 81

MQPUT1 statement ... 81
OPEN QUEUE statement .. 83

MQ/204 OPEN statement and QUEUE keyword .. 85
Specifying a local dynamic queue name... 85
Opening a remote queue .. 85

Universal Buffer statements ... 86

5 MQ/204 Options for Commands and Statements
In this chapter.. 87

Overview .. 87
MQ/204 options.. 87

6 MQ/204 Functions Reference
In this chapter.. 107

Overview .. 107
Contents vii

$BUFFER_ functions ... 107
$MQ_FIND_QUEUE_ENTITY function.. 108
$MQ_FIND_QUEUEMANAGER_ENTITY function.. 109
$MQ_LAST_QUEUEMANAGER_ENTITY function ... 109
$MQ_MESSAGE_LEN function ... 110
$MQ_PENDING_UPDATES function .. 110
$MQ_QUEUENAME function... 111
$MQ_QUEUEMANAGERNAME function .. 111

7 Configuring MQ/204 for a Windows NT PC
In this chapter.. 113

Overview .. 113
Preinstallation... 114

Making the files site-specific.. 114
Installation considerations.. 114

Configuration requirements ... 114
Starting WebSphere MQ queue manager ... 114

Configuring WebSphere MQ queue manager to MQ/204 .. 115
DEFINE commands for MQ/204 queue manager ... 116

Configuring WebSphere MQ for Windows ... 117
File to run WebSphere MQ.. 117

Configuring TCP/IP .. 118
DEFINE commands for TCP/IP... 119

Initializing WebSphere MQ for Windows.. 120
Putting data on a queue ... 120
Retrieving data from a queue... 121
Trace information ... 122

Trace facility .. 122
How to use the trace table in Model 204... 123

Index
viii Model 204 MQ/204 Reference

About this Manual

This manual describes MQ/204, which permits a Model 204 Online or batch job
running under either z/OS to access the IBM z/OS WebSphere MQ software.

Audience

This manual is intended for WebSphere MQ and Model 204 application
developers, who want to deliver and accept Model 204 data using the Message
Queuing Middleware functionality of WebSphere MQ for program-to-program
communication. Familiarity with WebSphere MQ and Model 204 terminology
and functionality is assumed.

Model 204 documentation set

The complete commercially released documentation for the latest version of
Model 204 is available for download from the Rocket M204 customer portal.

To access the Rocket Model 204 documentation:

1. Navigate to:

http://www.rocketsoftware.com/m204

2. From the drop-down menu, select Products > Model 204 >
Documentation.

3. Click the link to the current release and select the document you want from
the list.

4. Click the .zip file containing the document.

5. Choose whether to open or save the document:

– Select Open and double-click the pdf file to open the document.

– Select Save as and select a location to save the zip file to.

Additional documentation

Depending on your level of experience and familiarity with WebSphere MQ and
Model 204, you might need additional documentation. For WebSphere MQ
documentation, contact your IBM representative.

Rocket recommends the following IBM manuals:

• WebSphere MQ Application Programming Guide (SC34-6064)

• WebSphere MQ Application Programming Reference (SC34-6062)
About this manual iii

• WebSphere MQ for z/OS Messages and Codes V5.3.1 (SC34-6056)

To obtain additional information on WebSphere MQ or to download the
WebSphere MQ manuals, access the IBM Web site. Their Web address is:

http://www-4.ibm.com/software/ts/mqseries/

Documentation conventions

This manual uses the following standard notation conventions in statement
syntax and examples:

Convention Description

TABLE Uppercase represents a keyword that you must enter exactly as
shown.

TABLE tablename In text, italics are used for variables and for emphasis. In examples,
italics denote a variable value that you must supply. In this example,
you must supply a value for tablename.

READ [SCREEN] Square brackets ([]) enclose an optional argument or portion of an
argument. In this case, specify READ or READ SCREEN.

UNIQUE | PRIMARY KEY A vertical bar (|) separates alternative options. In this example,
specify either UNIQUE or PRIMARY KEY.

TRUST | NOTRUST Underlining indicates the default. In this example, NOTRUST is the
default.

IS {NOT | LIKE} Braces ({ }) indicate that one of the enclosed alternatives is
required. In this example, you must specify either IS NOT or IS
LIKE.

item ... An ellipsis (. . .) indicates that you can repeat the preceding item.

item ,... An ellipsis preceded by a comma indicates that a comma is required
to separate repeated items.

All other symbols In syntax, all other symbols (such as parentheses) are literal
syntactic elements and must appear as shown.

nested-key ::=
column_name

A double colon followed by an equal sign indicates an equivalence.
In this case, nested-key is equivalent to column_name.

Enter your account:

sales11

In examples that include both system-supplied and user-entered
text, or system prompts and user commands, boldface indicates
what you enter. In this example, the system prompts for an account
and the user enters sales11.

File > Save As A right angle bracket (>) identifies the sequence of actions that you
perform to select a command from a pull-down menu. In this
example, select the Save As command from the File menu.

EDIT Partial bolding indicates a usable abbreviation, such as E for EDIT
in this example.
iv Rocket Model 204 MQ/204 Reference

1
Working with MQ/204

In this chapter

• Overview

• MQ/204 environment requirements

• MQ/204 architecture

• MQ/204 queue management

• Parameters and task management

• Accessing queues and queue managers

• Queue security processing

• Data conversion

• Data handling

• Programming suggestions

• MQ/204 sample application

• MQ/204 restrictions

• MQ/204 restrictions

Overview

MQ/204 is the Model 204 interface to a WebSphere MQ-enabled application.
User Language extensions allow you to send and receive messages and
process them using User Language operators and data structures, so that
Synchronous program-to-program communications may be established
Working with MQ/204 1

between Model 204 and any other WebSphere MQ-enabled application
running on the same or different CPU and using the same or different platform.

MQ/204 allows you to define and reference all WebSphere MQ objects using
internal names and spares User Language programmers from knowing details
of WebSphere MQ communications. Simple and effective MQ/204 command
and operator syntax resembles the WebSphere MQ mnemonics but free you
from internal details, so that minimal WebSphere MQ knowledge is required to
program MQ/204-based application. When MQ/204 defines a message queue
or a queue manager, it is actually referring to a previously defined WebSphere
MQ message queue or queue manager.

Using MQ/204, you can separate application programs so that the program
sending a message can continue processing without waiting for a reply from the
receiver. Messages are forwarded by WebSphere MQ agents, so that sending
and receiving programs are completely independent from each other and may
or may not be active at the same time.

WebSphere MQ architecture

The IBM WebSphere MQ product manages queues of messages. Like an e-
mail system, WebSphere MQ lets an application put and get messages on
WebSphere MQ queues; the sender and recipient do not have to be active at
the same time.

Figure 1-1 shows WebSphere MQ providing one or more queue managers that
are system processes. Each queue manager controls one or more queues. To
access a queue, connect to the appropriate queue manager, then open the
desired queue.
2 Rocket Model 204 MQ/204 Reference

Figure 1-1. WebSphere MQ architecture

Types of WebSphere MQ implementation for z/OS

Although the WebSphere MQ for z/OS also comes with a TSO and CICS
option, MQ/204 implements the z/OS batch option of the WebSphere MQ,
which has the following implications:

• The z/OS batch option supports multiple queue managers.

• The z/OS batch option does not support two-phase commits.

z/OS performance considerations

System programmers for z/OS may observe delayed release of CSA storage
by IBM WebSphere MQ.

MQ/204 environment requirements

The MQ/204 environment requires that you run the following minimum versions
of software:

• Model 204 Version 6 Release 1.0

• WebSphere MQ Version 5.x

• MQMD Version 2

z/OS operating system

WebSphere MQ application

Queue Manager 1

Queue A

Queue B

Queue C

Queue Manager 2

Queue X

Queue Y

Queue Z
Working with MQ/204 3

MQ/204 architecture

The z/OS WebSphere MQ provides one or more queue managers that are
system processes. Each queue manager controls one or more queues. To
access a queue, connect to the appropriate queue manager, then open the
desired queue.

Operating-system subtasks, as shown in Figure 1-2, issue WebSphere MQ API
calls for MQ/204.

Figure 1-2. Model 204 makes gets and puts to a WebSphere MQ applica-
tion via z/OS system subtasks

MQ/204 requires an z/OS subtask, because all calls to WebSphere MQ are
synchronous. Other Model 204 users can continue to work a set of z/OS
subtasks to perform all needed communications with WebSphere MQ, thus
isolating the Model 204 task to process other users.

Subtask management

WebSphere MQ API calls make use of a pool of operating-system subtasks to
communicate. The size of this pool is governed by the parameters MQINTASK
(initial size of subtask pool) and MQMXTASK (maximum size of subtask pool).
During system initialization, a pool of MQINTASK subtasks is allocated.
Additional subtasks are allocated dynamically as needed during Online
execution, up to a maximum of MQMXTASK subtasks.

z/OS operating system

WebSphere MQ application

Queue Manager 1

Queue A

Queue B

Queue C

Queue Manager 2

Queue X

Queue Y

Queue Z

Model 204

MQ/204
application

z/OS
subtask
4 Rocket Model 204 MQ/204 Reference

Each subtask can be in one of the following states:

Subtask allocation

When an application needs a connection to a new queue manager, MQ/204
utilizes the algorithm in Figure 1-3 to determine how to assign a subtask,

Figure 1-3. Algorithm used to assign a subtask

MQ/204 continues to allocate new subtasks according to this algorithm until
MQMXTASK subtasks are assigned. Once the maximum number of subtasks
is allocated, applications wait for up to MQWAIT milliseconds for an existing
subtask to become available. Either a subtask frees up before the wait time
expires, or a “no-subtasks-available” error is returned to the User Language
program in the $STATUS return code.

State Description

Free and unconnected Not being used, and not connected to a queue manager.

In use In use by a user thread.

Free and connected Available and connected to a queue manager. This state
permits keeping connections to queue managers active
over multiple uses of a subtask as a performance
optimization.

No

Yes

Yes

No Yes

Is any task free and unconnected?

Is any task free that is connected
to a different queue manager?

MQ/204 assigns
the subtask.MQ/204 allocates a new subtask.

No

Does a task already exist that is available and
already connected to the desired queue manager?
Working with MQ/204 5

Subtask freeing

When freeing a subtask, MQ/204 tries to keep its queue manager connection,
removing it from the in-use pool and adding it to the free-and-connected pool.
MQ/204 disconnects a subtask from the queue manager and adds it to the free-
and-unconnected pool only if the queue manager is stopped.

MQ/204 queue management

MQ/204 enables a Model 204 Online or batch job running under z/OS to access
the IBM z/OS WebSphere MQ communication facilities. All the queues and
queue managers available to MQ/204 are originally defined by the WebSphere
MQ software.

Determining message destination

When a WebSphere MQ application, such as MQ/204, sends a message,
WebSphere MQ must know the final destination of the message. The final
destination is identified by the combination of a queue manager name, called
the target queue manager, and a queue name, as one of the following
categories. WebSphere MQ determines which category a queue is in at the
time the queue is opened.

Local queues

An MQ/204 application delivers a message to a queue by connecting directly
to the target queue manager, that is, the queue manager that owns the target
queue. The queue is described as a local queue from the perspective of the
application sending the message. The MQ/204 application needs to know the
target queue manager name and the target queue name.

Remote queues

An MQ/204 application might send a message to a queue, but cannot connect
directly to the target queue manager; for example, the target queue manager is
running under a different OS on a different machine. In this case, the queue is
described as a remote queue from the perspective of the application sending
the message.

To deliver the message, the MQ/204 application connects directly to a local
queue manager, called the source queue manager, and requests that the
source queue manager pass the message to the target queue manager. The
MQ/204 application must know the source queue manager name, the target
queue manager name, and the target queue name. In MQ/204, the source
queue manager name is identified by the MQ/204 MQDEQMAN parameter.

Locally defined remote queues

As an alternative to remote queues, a queue manager can have queue
definitions that point to remote queues, that is, queues owned by another
6 Rocket Model 204 MQ/204 Reference

queue manager. To deliver the message, the MQ/204 application connects
directly to the local queue manager using the local name. From the point of
view of the MQ/204 application, the queue behaves as if it were local. The
MQ/204 application needs only the source queue manager name and the
source queue name; the source queue manager knows the target queue
manager name and the target queue name.

Cluster queues

Cluster queues are used in a similar way to locally defined remote queues, but
require reduced WebSphere MQ administration. A cluster queue is a queue
that is hosted by a cluster queue manager and made available to other queue
managers in the cluster. The cluster queue manager makes a local queue
definition for the queue, specifying the name of the cluster where the queue is
to be found.

Determining message handling

WebSphere MQ allows messages to be sent via an MQPUT statement to local,
remote, or locally defined remote queues, but allows messages to be received
only via MQGET from local queues.

Rules for queue names

MQ/204 determines whether a queue is opened as local or remote based on
the following rules for queue names:

• A queue name without an embedded colon (:) is an MQ/204 entity name
that refers to either a local queue or a local definition of a remote queue.

• A queue name with an embedded colon (:) is interpreted as
QueueManagerName:QueueName:

– If no default queue manager is specified by the MQDEQMAN parame-
ter, the open fails.

– Otherwise, the queue is opened as a remote queue using the value in
MQDEQMAN parameter as the local queue manager.

Model 204 support

MQ/204 has the following Model 204 support features:

• User 0 parameters within Model 204 allocate resources that support:

– Connections to queue managers

– Number of concurrent threads that can use this support

• Model 204 commands define queues and queue managers to Model 204
and control access to and monitoring of queue managers.
Working with MQ/204 7

Using MQ/204, you can refer to queues and queue managers as entities, that
is, by names that differ from their operating system level (external) names.
Also, the MONITOR command permits the system manager to track the use of
MQ/204. Commands and objects similar in syntax and function to the DEFINE
commands used for Horizon identify queue managers and queues to
Model 204.

Within User Language, the following additional features are implemented:

• You can open and close WebSphere MQ queues with extensions to the
OPEN and CLOSE statements, which is consistent with the Model 204
approach to interactions with external communication entities.

• You can reset defaults for open queues with an extension to the MODIFY
statement.

• You can easily map between WebSphere MQ and User Language,
because the statements that manipulate queues are named like the
WebSphere MQ API. For example:

Remote queue support

You can put a message on remote queues that do not have corresponding
DEFINE QUEUE commands in the Online. Remote queues might be owned by
any queue manager on the network and are typically not on the same
mainframe. Support for remote queues means that you can write MQ/204
applications that reply to any queues on the network, without issuing additional
DEFINE QUEUE commands in Model 204.

To put a message on a remote queue with WebSphere MQ, you must open a
remote queue using remote queue manager and remote queue names.
MQ/204 connects you to the default queue manager, which should have all
connections necessary to send your message to the remote queue. The next
MQPUT statement you make sends your message to a remote queue.

Default queue manager

To support remote queues, a default queue manager is employed, because
multiple queue managers can be defined to the Online. The default queue
manager is the one to which you put messages when the destination queue is

User Language statement WebSphere MQ action

MQBACK Backs out WebSphere MQ transactions

MQCMIT Commits WebSphere MQ transactions

MQGET Gets messages from a queue

MQPUT Puts messages on an open queue

MQPUT1 Puts one message on a not-yet-opened queue
8 Rocket Model 204 MQ/204 Reference

unknown to Model 204. The z/OS queue manager forwards the message to the
queue manager that contains the destination remote queue. If the destination
remote queue is unknown to the WebSphere MQ network, error information is
returned to the User Language program in $STATUS and $STATUSD return
codes.

Local dynamic queue support

Sometimes you want an application to create a queue on an as-needed basis,
which is called a local, dynamic queue. For example, if after a query the
application has data to send, it creates a local dynamic queue; if there is no
data to send, it does not create a queue. Also, when the queue is no longer
needed it is closed and deleted.

So that an MQ/204 application can create a local dynamic queue, the
WebSphere MQ system administrator defines and makes available a template
known as a model queue. MQ/204 can create a local dynamic queue that takes
the attributes of a WebSphere MQ model queue. You can request many
attributes to define a model queue for your application. Of special interest is
whether the preallocated model queue has specified DEFTYPE as permanent
or temporary.

Local dynamic queues, either permanent or temporary, are created in your
application by issuing an MQOPEN call with the name of a model queue.

Model queues can have one of the following DefinitionType attributes defined
for local dynamic use

• MQQDT_PERMANENT_DYNAMIC

• MQQDT_TEMPORARY_DYNAMIC

This type of queue is deleted according to the rules that govern WebSphere MQ
queues and queue managers. Please consult IBM WebSphere MQ
documentation for details.

Reusing dynamic queue names

You can reuse the internal Model 204 name of a dynamic queue, after you issue
a CLOSE QUEUE DELETE or CLOSE QUEUE DELETE_PURGE statement
for that queue name. For example, to reuse the dynamic queue name, CCA1,
issue the following statement:

CLOSE QUEUE CCA1 DELETE_PURGE

Rules of inheritance

The Model 204 commands, introduced in Chapter 3, and User Language
statements, introduced in Chapter 4, have many options that you can set. You
can set options in the following ways:
Working with MQ/204 9

• Set an option when you define a queue manager or queue. An option set at
this point applies to all users. In the following definition, responses to
messages are sent to QB, not back to the sending queue, QA:

DEFINE QUEUE QA WITH SCOPE=SYSTEM QUEUEMANAGER=QM1 -
REPLY_QUEUE=QB

• Change an option in individual MQ/204 statements on the fly. An option set
at this point applies to just the issuing user. For the following MQPUT
statement, the response to the message is sent to QC, not back to the
default reply queue, QB.

OPEN QA
MQPUT MQ_BUFFER REPLY_QUEUE=QC

• Modify an option after you have opened a queue. An option set at this point
applies to just the issuing user. If you frequently change the reply queue on
MQPUT statements, you can separately modify the reply queue before
issuing the MQPUT statements:

MODIFY QUEUE QA REPLY_QUEUE=QC

Figure 1-4 illustrates the rules of inheritance, showing how the options are
passed from the DEFINE QUEUE command to the OPEN and MQPUT1
statements. Options are then passed to the MQGET, MQPUT, and MODIFY
QUEUE statements or you can change them in the same statements.

Figure 1-4. Rules of inheritance for passing options

The options correlate directly to options found in WebSphere MQ. See Table 5-
1 on page 87 for a definition of each option and the command or statements
that support it.

DEFINE QUEUE command

OPEN MQPUT1

MODIFY QUEUE

MQGET

MQPUT

REPLY QUEUE= option is passed

REPLY QUEUE= option is passed

REPLY QUEUE=
option can be
changed

REPLY QUEUE=
option can be
changed
10 Rocket Model 204 MQ/204 Reference

Reply queue and reply queue manager options

In MQ/204 you can indicate the reply queue and the reply queue manager in a
DEFINE QUEUE command and OPEN QUEUE, MODIFY QUEUE, MQPUT,
and MQPUT1 statements in one of the following ways:

• Specify a reply queue and reply queue manager explicitly using
REPLY_QUEUE=queue-name and REPLY_QMGR=queue-manager-
name.

You can specify names as text strings, with or without quotation marks, of
up to 48 characters or as a %variable containing text strings for User
Language statements. Use only external (real) names, as opposed to
internal MQ/204 names that are specified in DEFINE QUEUE command
and OPEN QUEUE statement.

• Specify a reply queue internal name only, without using the REPLY_QMGR
option, to let MQ/204 find the real reply queue and reply queue manager
names. Define the internal reply queue name by issuing the DEFINE
QUEUE command for local queues, or the OPEN QUEUE statement for
remote queues. In this case, MQ/204 finds the corresponding external
queue and queue manager names and sets them in MQMD (message
descriptor) structure. You can achieve the same result using the
REPLY_QMGR option with a zero-length name, for example,
REPLY_QMGR = ''.

• Let WebSphere MQ resolve a queue manager name by setting the reply
queue manager name to one or more blanks and providing the external
queue name. If the reply queue name is a local definition of a remote queue:

Note: Never mix internal and external queue names in your applications—
either by explicitly specifying them or by inheriting and implicitly mixing them—
because, if the value of the REPLY_QMGR option is a name of nonzero length,
MQ/204 does not substitute the external reply queue name for the internal
name and sends the internal reply queue name instead of the external name.

Using runtime options

You can code MQ/204 statement options explicitly on a statement, in which
case they are parsed at compile time. Alternatively, you can code them as
runtime options, specified in syntax descriptions as ?%variable, which are
parsed each time the statement is evaluated. You can specify both explicitly

Then WebSphere
MQ sets the field… To name of…

Otherwise, this field is…

MQMD.ReplyToQ Remote queue Not changed.

MQMD.ReplyToQMgr Queue manager that
owns the remote queue

Set to the name of the
queue manager to which
your application is
connected.
Working with MQ/204 11

coded options and runtime options together in the same statement. The
following MQ/204 statements support ?%variables:

• CLOSE QUEUE

• MODIFY QUEUE

• MQGET

• MQPUT

• MQPUT1

• OPEN QUEUE

Runtime options are specified in the syntax descriptions as ?%variable. The
following “Rules that govern ?%variables” lists the features that apply to all
?%variables; see the individual statements in Chapter 4 for an explanation of
syntax.

Rules that govern ?%variables

• Any option that is valid if specified at compilation can be specified in a run-
time option variable.

• ?%Variable must be a string variable.

• At evaluation time, ?%variable:

– Can be null.

– Can contain multiple options.

– Can contain options of the form keyword=%variable, however, the
%variable must be a variable name in the program. It cannot be an
image or a screen item.

– Cannot contain keywords specified as %variables. For example, %key-
word=%variable is invalid, just as for options specified at compile time.

• You can specify up to three runtime option variables on a statement, but
each individual option specified at runtime must be wholly contained within
one ?%variable and cannot span multiple ?%variables.

• Options specified within the ?%variables must be consistent. If they are
inconsistent, a $STATUS code of 41 or 42 is returned.

Examples of inconsistent use of options specified with a ?%variable are:

– Using WAIT and NO_WAIT options together

– Using the MODEL keyword without using the DYNAMICQNAME key-
word.

• Options specified within the ?%variable override those specified on the
statement at compile time.
12 Rocket Model 204 MQ/204 Reference

 Example The following example illustrates using two runtime options in an MQPUT
statement:

%variable1 IS STRING LEN 255
%variable2 IS STRING LEN 255
%MSGTYPE IS STRING LEN 8

%variable1 = ‘MSGTYPE=REPORT’
%variable2 = ‘MSGTYPE=%MSGTYPE MSGID=DEF’

MQPUT ‘MESSAGE’ ON QUEUENAME MSGID=ABC ?%variable1
%MSGTYPE = ‘REQUEST’
MQPUT ‘MESSAGE’ ON QUEUENAME ?%variable2

Parameters and task management

Parameters allocate z/OS system subtasks and other system resources for
MQ/204.To use MQ/204, you must set MQINTASK to at least 1. However, more
tasks might be needed. For each concurrent user who accesses queues, you
need one task for each queue manager that the user accesses concurrently.

Parameters

While the Online is operating, you can view the MQ/204 parameters listed in
Table 1-1.

Table 1-1. MQ/204 parameters

Parameter Description Default Discussion
Setting can be
changed…

MQDEQMAN Identifies the
WebSphere MQ
default queue
manager.

System
default is
not set

If set, its value is the
name of the queue
manager to use as the
default queue
manager.

If not set, remote
queue support is
disabled; you must
enter the actual name.

Value must be the
name of a previously
defined queue
manager; can be reset
only to a previously
defined queue
manager.

By system manager
following a DEFINE
QM command
Working with MQ/204 13

Task management

When a user finishes using a task, the task remains connected to a queue
manager anticipating the next user, unless its queue manager is draining (see
“STOP QUEUEMANAGER: Put a queue manager in drain state” on page 61).
This technique optimizes performance for the common case where the next
user of the task requires the same queue manager. Often a system has only
one queue manager.

Accessing queues and queue managers

The WebSphere MQ administrator defines the queues and queue managers to
WebSphere MQ. A Model 204 programmer with system administrator
privileges can then issue the MQ/204 DEFINE QUEUEMANAGER and
DEFINE QUEUE commands. This may be done in the startup deck for Model
204.

MQINTASK Subtasks created
during system
initialization for
managing connections
to WebSphere MQ
queue managers.

0 Set the value of
MQINTASK to 1 (or
more) to use MQ/204.

At initialization time,
in CCAIN parameters

MQMXTASK Maximum number of
subtasks to use for
WebSphere MQ
connections.

Same as
MQINTAS
K

You can set it to a
greater value. If the
value is greater than
the value of
MQINTASK, additional
tasks are created as
needed.

At initialization time,
in CCAIN parameters

MQWAIT Milliseconds that an
OPEN QUEUE
statement or a START
QUEUEMANAGER
command waits for the
next available subtask.

0, meaning
do not wait
for tasks

The parameter applies
if no more subtasks
can be allocated
because MQMXTASK
subtasks are already
allocated.

At initialization time,
in CCAIN
parameters; or by a
system manager

UBUFSZ Initial bytes per buffer
that hold messages.

1024 bytes Buffers contain the
data portion of
messages, not the
MQMD message
descriptor.

Buffers are enlarged as
needed. No data buffer
is smaller than the
value of UBUFSZ.

At initialization time,
in CCAIN parameters

Table 1-1. MQ/204 parameters (continued)

Parameter Description Default Discussion
Setting can be
changed…
14 Rocket Model 204 MQ/204 Reference

An application can reply only to request messages that specify a queue and
queue manager defined by the system administrator to the Online, unless
remote queue support is in use or local dynamic queues are being used.

After a connection to a queue manager is established, the queue manager
enforces user ID based security when queues are opened. See “MODIFY
QUEUE statement” on page 66.

MQ/204 security access control

The security of MQ/204 is as follows:

• User Language programs can access a queue or queue manager after the
system manager does one of the following:

– Issues DEFINE commands

– Enables remote queue support by setting the MQDEQMAN option

– Defines the model queues required to support local dynamic queues.

• MQ/204 honors user-based security on queues that the WebSphere MQ
system administrator set up outside Model 204.

WebSphere MQ API wait types access control

The WebSphere MQ API wait types, MQAPI and MQGWT, distinguish between
waits for WebSphere MQ API execution and waits for a message to arrive on a
queue:

• MQAPI waits encompass just the execution of the WebSphere MQ API.

• MQGWT waits include both WebSphere MQ API execution time and time
spent waiting for a message to arrive on a queue.

Bumping users

A system manager can always displace a user who is waiting for a WebSphere
MQ operation to complete or for a subtask to become available. MQ/204 waits
are bumpable.

Triggering

Users can write their own trigger procedures by employing trigger queues and
MQ/204 operators.

Queue security processing

When you open a queue, you undergo a user name authorization process. By
default, with an z/OS batch WebSphere MQ connection, the job name is used.
However, the MQOPEN facility permits you to pass an alternate user ID: the
WebSphere MQ option MQOO_ALTERNATE_USER_AUTHORITY:
Working with MQ/204 15

• If your site uses an external security package with Model 204, such as
ACF2, Security Server (formerly RACF), or CA-Top Secret, then the Model
204 user ID is passed and the MQOO_ALTERNATE_USER_AUTHORITY
option is set.

• If no security package is present, then the default mode of using the job
name for security is used. The Model 204 user ID is not used unless it is
authenticated by an external security package.

• If the PASS_USER_CONTEXT option is used with an OPEN QUEUE
statement or an MQPUT1 statement, then the Model 204 user ID is passed
with the MQOO_ALTERNATE_USER_AUTHORITY option set.

Data conversion

Specify message data format attributes using one of the following WebSphere
MQ fields:

Data conversion formats

WebSphere MQ supports message data conversion through conversion exits
that are invoked during MQGET processing. A conversion exit is invoked if the
MQGMO_CONVERT option is specified on the MQGET call, and if the
MQMD.Encoding field or the MQMD.CodedCharSetId field of the received
message has a different value than was specified in the MQMD passed to
MQGET. The name of the conversion exit to invoke is specified in the
MQMD.Format field.

WebSphere MQ and MQ/204 can handle data conversion in the following ways.

Pass the data from the sender to the receiver

In this method, nothing is done to the data; it is simply passed from one
application to the other. Data conversion is handled by the sending or receiving
applications. The default value for WebSphere MQ MQMD.Format field is
MQFMT_NONE (blanks), which tells WebSphere MQ not to convert data, even
if there is a discrepancy in the character set or number encoding used.

WebSphere MQ field Indicates…

MQMD.Encoding Storage formats used for:

• Binary integers

• Packed decimal integers

• Floating point numbers

 MQMD.CodedCharSetId Character set used for string data
16 Rocket Model 204 MQ/204 Reference

Convert EBCDIC to ASCII

WebSphere MQ has built-in conversion for messages composed entirely of
character string data. To send a message between z/OS and any ASCII
machine and have character data automatically converted between EBCDIC
and ASCII, specify the MQFMT_STRING constant in the WebSphere MQ
MQMD.Format field of an MQPUT or MQPUT1 statement. This corresponds to
specifying FORMAT=’MQSTR’ on a User Language MQPUT or MQPUT1
statement. (MQFMT_STRING is a WebSphere MQ constant that equates to
‘MQSTR’.)

Convert data by calling a conversion exit

If you want to convert messages that combine character string and numeric
data in a single message, you must provide a data conversion exit for any
receiving machine that uses a different character set or number encoding. To
call the conversion exit, set the FORMAT option in the MQPUT or MQPUT1
statement:

FORMAT=conversion_exit_name

For all MQ/204 MQGET and MQPUT calls:

On all MQGET calls, the MQGMO_CONVERT option is specified by default.
This means that data conversion is controlled entirely through the FORMAT
keyword of the MQPUT and MQPUT1 statements. An application program
placing a message on the queue must specify:

• Message format.

• Name of the conversion exit required by the receiver of the message.

• If suppression of conversion is desired. If so, the NO_CONVERT option
must be specified on the MQGET statement. See “Removing messages
that do not convert” on page 36.

Data handling

Buffers for message data areas

Buffers are automatically allocated, initially at UBUFSZ value, and then
enlarged as needed. The size of a user’s buffer can be reset by issuing a
MODIFY BUFFER statement.

Value for Which provides… Is specified in…

MQENC_NATIVE Native number encoding MQMD.Encoding field

MQCCSI_Q_MGR Queue manager’s coded
character set identifier

MQMD.CodedCharSetId
Working with MQ/204 17

MQGET, MQPUT, and MQPUT1 statements need a buffer to hold the data area
of the message:

Enlarging the buffer

When the existing buffer is not large enough to hold the data area for MQPUT
or MQPUT1 statements, MQ/204 makes it larger while preserving the existing
buffer content. Once enlarged, the buffer remains the enlarged size until:

• MODIFY BUFFER statement with SIZE option is executed.

• MQPUT or MQPUT1 needs an even larger buffer.

• MQGET with BUFLEN indicates a larger buffer.

Controlling message context information

WebSphere MQ collects two kinds of message context information, each a set
of fields in the message description. See “MQPUT statement” on page 75 for a
greater understanding of the Descriptor field.

• Identity context identifies the following:

If message data is specified as… Then the buffer must be at least the size
of

%Variable or string constant Variable or string constant

Image Largest fixed (known at compile time) layout
of the image:

• Fixed layout of an image contains no
dependences or unknown items.

• If no layout of the image has a fixed size,
then the buffer must be at least the size
of the parameter UBUFSZ.

Descriptor field Stores…

UserIdentifier User who originally put the message on a queue

AccountingToken Accounting token associated with the application and/or
user that originally put the message on a queue

ApplIdentityData Information that is defined by the application suite to
provide additional information about the message or its
originator.

The queue manager treats this information as character
data, but does not define the format of it. If the
application does not define the value, the queue
manager generates this information as a blank.
18 Rocket Model 204 MQ/204 Reference

• Origin context identifies the following:

For a discussion of message context, see the WebSphere MQ Application
Programming Guide. See also the discussion of the following MQOPEN
options in the WebSphere MQ Application Programming Reference:

MQOO_PASS_ALL_CONTEXT

MQOO_PASS_IDENTITY_CONTEXT

MQOO_SAVE_ALL_CONTEXT

MQOO_SET_ALL_CONTEXT

MQOO_SET_IDENTITY_CONTEXT

Inheriting and passing context information

You can use the DEFINE QUEUE command and the MODIFY QUEUE,
MQPUT, MQPUT1, and OPEN QUEUE statements in application programs to
manage message context information.

To pass context information, specify a queue that is open for input and has the
SAVE_ALL_CONTEXT option.

The MQPUT, MQPUT1, and OPEN QUEUE statements have several options
that you can set to pass context information. The context queue can either be
specified on the statement that is passing context or be inherited. The
inheritance rules for passing context are as follows:

• MQPUT1 and OPEN QUEUE statements inherit from DEFINE QUEUE
command.

• MQPUT statement inherits from OPEN QUEUE statement.

Descriptor field Stores…

PutApplType Type of application that put the message on the queue.

PutApplName Name of the application that put the message on the
queue.

PutDate Date the message was put on the queue.

PutTime Time the message was put on the queue.

ApplOrginData Information that is defined by the application when it
puts the message. For example, ApplOrginData could
be set by suitably authorized applications to indicate
whether the identity data is trusted.

The queue manager treats this information as character
data, but does not define the format of it. If the
application does not specify a value, the queue
manager generates this information as a blank.
Working with MQ/204 19

If a context queue is not specified or inherited, then a statement attempting to
pass context fails with a nonzero $STATUS value.

Dealing with messages larger than one image

An image is the User Language equivalent of a data structure. When using a
single image for message data, you must have an image that can contain the
largest possible message you expect to retrieve or place. That is, space for the
largest possible message must be available in the user’s server, because
images are stored in either the full-screen buffer table, FSCB, or the global
table, GTBL.

Image lists help manage the space required by using multiple images to hold a
single message, so that you require a smaller Model 204 server.

Image lists

You can specify an image on MQGET, MQPUT, and MQPUT1 statements as a
source or target for the data area of a message. You can also specify the
source or target as a comma-separated list of up to ten images. For example:

MQGET image1, image2, image3 FROM queue_options

MQPUT image1, image2 ON queue_options

MQPUT1 image1, image2 ON queue_options

The images on the list are swapped in and processed serially. This provides
server relief if the images are not global, because FSCB can be sized at the
size of the largest image in the list instead of the largest message. The size of
the MQ/204 message buffer is based on the sum of the lengths of all the images
in the list.

On Get operations, the READLEN of each image is set. If the data runs out
before filling all the images, the READLEN is set to zero for any images without
data.

Alternatives to image lists

The MODIFY MQ_BUFFER, READ IMAGE, and WRITE IMAGE statements
with the POSITION option provide alternatives for dealing with the server size
issue; they can be used instead of image lists.

You can decide if you want to move messages out of the buffer
programmatically, or have the MQ/204 statements handle messages in the
buffer, so that the program never accesses the buffer. Directly manipulating the
MQ_BUFFER area is programmatically more complex, but provides a finer
level of access to message. For most applications, direct manipulation of the
MQ_BUFFER area is not necessary.
20 Rocket Model 204 MQ/204 Reference

WebSphere MQ transactions

Use MQCMIT and MQBACK statements to commit and back out WebSphere
MQ transactions, called SYNCPOINT updates, to queues that belong to
specific queue managers.

WebSphere MQ transactions are completely independent from Model 204 file
update transactions. In addition, WebSphere MQ transactions against different
queue managers are completely independent of one another.

Request cancellation and user restarts

If a cancellation or restart occurs, then all queues are closed, and any
incomplete WebSphere MQ transactions are backed out.

End-of-request processing

The following table describes how end-of-request processing is handled:

Leaving subsystems

When you leave a subsystem, end-of-request processing as described in the
previous End-of-request processing section is done first. If WebSphere MQ
transactions are active, which can happen if APSY AUTOCOMMIT=NO, those
WebSphere MQ transactions are then committed. Then all MQ/204 subtasks
are released.

A transfer to another subsystem is processed as a subsystem exit followed by
a subsystem entry. Therefore, a transfer to another subsystem commits all
active WebSphere MQ transactions and releases all MQ/204 substages. The
first MQ/204 MQGET or MQPUT command in the new subsystem initiates a
new WebSphere MQ transaction.

Controlling MQ subtask release

You can use the MQSUBREL parameter to control whether the MQ subtask is
released at the end of request processing in subsystems with
AUTOCOMMIT=N.

If the request is… Then…

Not part of a subsystem, or is part of an
APSY AUTOCOMMIT=YES subsystem

All open queues are closed, and any
uncommitted WebSphere MQ
transactions against all queue managers
that you are accessing are committed.

Part of an APSY AUTOCOMMIT=NO
subsystem

WebSphere MQ transaction status is
unchanged by end-of-request
processing.
Working with MQ/204 21

You can set the MQSUBREL parameter on User 0’s CCAIN line to affect all
users. Or, you can reset it for an individual user to affect only that specific user.
At login or a user restart the MQSUBREL parameter is returned to the value
specified by the User 0 CCAIN parameter line.

• A setting of 0 lets you retain the subtask and preserve pre-V7R1.0
behavior. Choose this setting when you expect the same user to use MQ
services soon after ending a request.

• A setting of 1 lets you release the subtask for another user. Choose this
setting when you expect that other users may be waiting for a free MQ
subtask.

Grouping messages

MQ/204 takes advantage of the new features IBM introduced for WebSphere
MQSeries, in particular the grouping of messages. The new fields in the MQMD
Version 2 are Group ID and status, sequence number and flags. The Group ID,
sequence number, and some of the flags determine whether a message is part
of a group. Now Model 204 users can control the grouping of messages.

The other fields that apply to segmentation are not covered, because the
segmentation options are not available for z/OS.

Supporting Java Message Service (JMS)

MQ/204 supports the predefined JMS protocol. MQ/204 now understands and
can talk to Java through the messaging services. The JMS protocol, when
sending MQ messages, expects to encode certain Java-specific fields into the
additional header known as the MQRFH Version 2 (MQRFH2) header. The
receiving mainframe application should expect to receive such a header, if it
knows that the source of the messages is a JMS application.

Because the MQRFH2 header carries JMS-specific information, always include
it in the message when you know that the receiving destination is a JMS
application.

Conversely, omit the MQRFH2 when sending a message directly to a non-JMS
application, because such an application does not expect an MQRFH2 in its
WebSphere MQ message.

Environment requirements

Minimum is Model 204 V7R1.0.

Consulting IBM documentation

Rocket recommends that you keep these documents handy:

IBM Application Programming Reference.
22 Rocket Model 204 MQ/204 Reference

IBM MQ manual, Using Java

Message groups

You can group messages together. Each message in a group has its own
sequence number and shares the group ID number. The sequence number is
assigned by system or by you, depending on whether you select the
LOGICAL_ORDER or NOT_LOGICAL_ORDER option on your command or
statement.

• The physical order of the messages in the group is the order in which the
messages were written and that order is retained using the
LOGICAL_ORDER option, so that the physical and logical order of the
messages in the group match.

• You can set the logical order of the messages in the group using the
NOT_LOGICAL_ORDER and the SEQUENCE option. The physical and
logical order of the messages in the group may differ, as you assigned the
sequence numbers.

In either case, the messages in the group are processed in ascending order
and the highest sequence number in the group is called the last logical
message.

When you use MQPUT to write messages, you have three options, which are
discussed in turn:

• Group messages in logical order

• Group messages, but not in logical order

• Do not group messages

Messages grouped in logical order

Grouping messages in logical order is the more simple way of writing
messages that are in a group.

1. On the first message you set the options:

– GSTATUS=’G’

– LOGICAL_ORDER

There is no need to set GROUPID or SEQUENCE, as the queue manager
automatically assigns these values.

2. Continue writing messages to the queue with GSTATUS=’G’ and
LOGICAL_ORDER options set until the last logical message

3. For the last message you set the options:

– GSTATUS=’L’.

– LOGICAL_ORDER
Working with MQ/204 23

Using this method, you can write messages to only one group at a time.

Message groups and MQPUT1

The LOGICAL_ORDER option is not allowed on the MQPUT1 statement,
although the GSTATUS, SEQUENCE, and GROUPID options are allowed, so
it is possible to write a message to a group using MQPUT1, but not in logical
order.

Messages grouped, not in logical order

If you need to group messages, but cannot use the LOGICAL_ORDER option
because either you need to write

• To two or more groups at the same time

• Messages where the physical sequence is not also the logical sequence
(You are not writing the messages in ascending order of sequence
number.)

Grouping messages, but not in logical order, is more complex to handle, but
gives you more flexibility.

1. On the first message you must set the options:

– GSTATUS to ’G’, unless this is the last logical message in the group—
the highest sequence number—in which case set GSTATUS to ’L’.

– NOT_LOGICAL_ORDER

– GROUPID to null or spaces

– SEQUENCE to the sequence number of this message within the group,
which must be greater than zero, although not necessarily one,
because the messages can be out of sequence.

2. When this first MQPUT to the queue completes, you must save the
GROUPID returned in the DESCRIPTOR field, because this is the Group
ID that the queue manager has assigned to this group. You will set this for
all subsequent messages in this group.

3. For all subsequent messages in the group set the options:

– GSTATUS=’G’, unless this is the last logical message in the group—the
highest sequence number—in which case set GSTATUS=’L’.

– GROUPID to the value returned from the first MQPUT (step 2)

– NOT_LOGICAL_ORDER

– SEQUENCE to the sequence of this message within the group.

If you write groups in this way, you can write to several groups at the same time.
Be careful to save all the Group ID values from the first MQPUT for each group.
24 Rocket Model 204 MQ/204 Reference

Messages not grouped

Messages not grouped was the only available behavior in MQ/204 V6R1.0 and
earlier. You can maintain previous behavior by omitting GSTATUS or setting it
to null or space (’ ’). The settings for SEQUENCE, GROUPID and
LOGICAL_ORDER options are ignored.

Searching for messages using the MATCH options

You can retrieve messages that match criteria that you specify. The new
options for the MQGET statement are:

MATCH_CORREL_ID or NOT_MATCH_CORREL_ID

MATCH_GROUP_ID

MATCH_MSG_ID or NOT_MATCH_MSG_ID

MATCH_MSG_SEQ_NUMBER

MATCH_MSG_TOKEN

Although these options are new, the behavior prior to MQ/204 V6R2.0 was to
match on any supplied CORRELID and MSGID. To avoid upward compatibility
issues, the MQ/204 V6R2.0 defaults are:

MATCH_CORREL_ID

MATCH_MSG_ID

There are no equivalent NOT_ options for the criteria of GROUPID,
SEQUENCE, and MSGTOKEN, because simply omitting these MATCH_
options reverses their effect.

Before searching for and retrieving messages

To search and retrieve messages using the MATCH options, you must know the
index type of the queue. The index type of the queue was set by the system
manager when the queue was defined.

The Table 1-2 lists the index types, their purpose, and usage.

Table 1-2. Index types and purpose

Index type Queue manager maintains For queues

CORRELID Correlation identifiers of the
messages on the queue.

Where the application usually
retrieves messages using the
correlation identifier as the
selection criterion on the MQGET
call.
Working with MQ/204 25

Using index types with message groups

Table 1-3 and Table 1-4 on page 27 list the search criteria you can used when
a queue is defined with particular index type(s). Since you can retrieve
messages in logical order (Table 1-4 on page 27) or not logical order (Table 1-
3), your MQGET statement can also include either the
NOT_LOGICAL_ORDER or LOGICAL_ORDER option.

GROUPID Group identifiers of the
messages on the queue.

Where the application retrieves
messages using the
LOGICAL_ORDER option on the
MQGET call.

MSGID Message identifiers of the
messages on the queue.

Where the application usually
retrieves messages using the
message identifier as the
selection criterion on the MQGET
call.

MSGTOKEN Message tokens of the
messages on the queue for
use with the workload
manager (WLM) functions of
z/OS.

That are WLM-managed queues;
do not specify it for any other type
of queue. Also, do not use this
value for a queue where an
application is not using the z/OS
workload manager functions, but
is retrieving messages using the
message token as a selection
criterion on the MQGET call.

No index No index. That are usually processed
sequentially, that is, without using
any selection criteria on the
MQGET call.

Table 1-2. Index types and purpose (continued)

Table 1-3. Index types and NOT_LOGICAL_ORDER option

Selection criteria
on MQGET call

Index type for nonshared queue Index type for shared
queue

None Any Any

Selection using one MATCH_ option

MSGID MSGID recommended None or MSGID

CORRELID CORRELID recommended CORRELID required

GROUPID GROUPID recommended GROUPID required

Selection using two MATCH_ options

MSGID +
CORRELID

MSGID or CORRELID
recommended

MSGID or CORRELID
required
26 Rocket Model 204 MQ/204 Reference

Table 1-4 lists the required index type when LOGICAL_ORDER is specified on
a shared or not-shared queue.

MSGID +
GROUPID

MSGID or GROUPID
recommended

Not supported

CORRELID +
GROUPID

CORRELID or GROUPID
recommended

Not supported

Selection using three MATCH_ OPTIONS

MSGID +
CORRELID +
GROUPID

MSGID or CORRELID or
GROUPID recommended

Not supported

Selections using group-related criteria

GROUPID +
SEQUENCE

GROUPID required GROUPID required

SEQUENCE
(must be at least
one)

GROUPID required GROUPID required

Selection using MSGTOKEN

For application
use

Do not index by MSGTOKEN Do not index by
MSGTOKEN

For Work Load
Management
(WLM) use

MSGTOKEN required Not supported

Table 1-3. Index types and NOT_LOGICAL_ORDER option (continued)

Selection criteria
on MQGET call

Index type for nonshared queue Index type for shared
queue

Table 1-4. Index type and LOGICAL_ORDER option

Selection criteria on
MQGET call

Index type for non-
shared queue

Index type for shared queue

None GROUPID required GROUPID required

Selection using one MATCH_ option
MSGID GROUPID required Not supported

CORRELID GROUPID required Not supported

GROUPID GROUPID required GROUPID required

Selection using two MATCH_ options
MSGID + CORRELID GROUPID required Not supported

MSGID + GROUPID GROUPID required Not supported
Working with MQ/204 27

Retrieving messages not grouped

If there is no current group or logical message, only messages that have
SEQUENCE=1 are eligible for return. In this situation, one or more of the
following match options can be used to select which of the eligible messages
is the one actually returned:

• MATCH_CORREL_ID

• MATCH_GROUP_ID

• MATCH_MSG_ID

If LOGICAL_ORDER is specified, and there is a current group, only the next
message in the group is eligible for return, and this cannot be altered by
specifying MATCH_ options.

Match options which are not applicable can still be specified, but the value of
the relevant field must match the value of the corresponding field in the
message to be returned.

One or more of the following match options can be specified.

CORRELID +
GROUPID

GROUPID required Not supported

Selection using three MATCH_ options
MSGID + CORRELID
+ GROUPID

GROUPID required Not supported

Table 1-4. Index type and LOGICAL_ORDER option (continued)

Selection criteria on
MQGET call

Index type for non-
shared queue

Index type for shared queue

Table 1-5. Using the MATCH options

MATCH_ option
Retrieves message
with specified Message retrieved must have

CORREL_ID Correlation identifier Correlation identifier that
matches the value of
CORRELID, as well as any other
matches that may apply, such as
message identifier.

If NOT_MATCH_ option is
specified, the CORRELID field is
ignored and any correlation
identifier will match.
28 Rocket Model 204 MQ/204 Reference

BROWSE options

For MQ/204 after V6R1.0, there are new options for browsing a queue.

BROWSE_MSG_UNDER_CURSOR, a new option on the MQGET statement,
lets you reread the same message. You can combine this option with the LOCK
or UNLOCK options.

• LOCK option lets you lock a message so that another thread cannot browse
it. The lock is automatically released at the end of the unit of work, even if
there is no explicit UNLOCK. The LOCK option is also valid with
BROWSE_FIRST and BROWSE_NEXT.

• UNLOCK option causes the message to be unlocked without retrieving the
message.

• Omitting both LOCK and UNLOCK options unlocks the message, but also
retrieves it again.

The following sequence of calls is an example:

GROUP_ID Group identifier Group identifier that matches the
value of GROUPID, as well as
any other matches that may
apply, such as correlation
identifier.

MSG_ID Message identifier Message identifier that matches
the value of MSGID, as well as
any other matches that may
apply, such as correlation
identifier.

If NOT_MATCH_ option is
specified, MSGID is ignored and
any message identifier will
match.

MSG_SEQ_NUMBER Message sequence
number

Message sequence number that
matches the value of the
SEQUENCE field, as well as any
other matches, such as group
identifier.

MSG_TOKEN Message token Message token that matches the
value of MSGTOKEN—only for
queues that have an index type
of MSGTOKEN. You cannot
specify other match options with
MATCH_MSG_TOKEN.

Table 1-5. Using the MATCH options (continued)

MATCH_ option
Retrieves message
with specified Message retrieved must have
Working with MQ/204 29

MQGET BROWSE_FIRST
MQGET BROWSE_NEXT
 /*until the required message is found
MQGET BROWSE_MSG_UNDER_CURSOR LOCK
 /* to reread the last message and lock it
MQGET BROWSE_MSG_UNDER_CURSOR UNLOCK
/* unlock the same message without retrieving it again

Special handling options

ALL_MSGS_AVAILABLE option

You can specify the new ALL_MSGS_ AVAILABLE option on the MQGET
statement, and you can set it as a default for the queue by specifying
ALL_MSGS_AVAILABLE on the DEFINE QUEUE command or MODIFY
QUEUE statement. The default setting is NOT_ALL_MSGS_AVAILABLE.

If ALL_MSGS_AVAILABLE is specified, a message that is part of a group
cannot be retrieved from the queue unless all messages in the group are
available for retrieval.

MSGTOKEN option

The 16-byte message token, like the message ID, identifies a message as
unique. However, unlike the message ID, the message token is not passed
between queue managers, so a message token changes as it passes from one
queue manager to another queue manager.

You can retrieve the MSGTOKEN %variable option on a MQGET statement. It
is also an input field on the MQGET statement, if you also specified the
MATCH_MSG_TOKEN option.

NEW_CORREL_ID option

The NEW_CORREL_ID option on the MQPUT and MQPUT1 statements tells
the queue manager to generate a new correlation ID for the message. The
CORRELID option should not be specified with this field, because the queue
manager generates a unique correlation identifier, rather than taking it from the
CORRELID field.

SYNCPOINT_IF_PERSISTENT option

The SYNCPOINT_IF_PERSISTENT option is like the SYNCPOINT option,
although the request is under transaction control (affected by MQCMIT and
MQBACK statements) only if the message is PERSISTENT. This option is valid
only on the MQGET statement.
30 Rocket Model 204 MQ/204 Reference

Examples of writing messages and browsing groups

Example of writing messages to a group in logical order

The following example writes messages to a group in logical order. Note that it
is unnecessary to specify SEQUENCE or GROUPID.

%QNAME IS STRING LEN 8
%MSG2 IS STRING LEN 100
%MSG1 IS STRING LEN 100
%MSGID IS STRING LEN 24
%COUNT IS FIXED
%LO = ’LOGICAL_ORDER’
%MSG1 = ’PUTS 4 MESSAGES IN A LOGICALLY ORDERED GROUP’
%COUNT = 0
%GSTAT = ’G’ /? group status for first four messages?/
OPEN QUEUE %QNAME OUTPUT
REPEAT 3 TIMES
 %COUNT = %COUNT + 1
 %MSG2 = %MSG1 WITH %COUNT
 MQPUT %MSG2 ON %QNAME GSTATUS %GSTAT LOGICAL_ORDER
 CALL PRINT.STATUS /? test return codes ?/
END REPEAT
%GSTAT = ’L’ /? group status for last message only ?/
%COUNT = %COUNT + 1
%MSG2 = %MSG1 WITH %COUNT
MQPUT %MSG2 ON %QNAME GSTATUS %GSTAT ?%LO
 /? logical order specified as runtime option ?/

Example of writing messages to a group out of sequence

The following example writes messages to a group out of sequence. Notice that
we specify NOT_LOGICAL_ORDER, and take care to set SEQUENCE,
GSTATUS, and GROUPID correctly.

%MSG1 = ’5 MESSAGES IN A GROUP OUT OF SEQUENCE’
%COUNT = 0
* imbed the image definition for the message descriptor
I MQMDV2
PREPARE IMAGE MQMD
%NLO = ’NOT_LOGICAL_ORDER’
* for the first physical PUT, the group must be null
%GRP = ’ ’
* GSTATUS must be L for the last logical message
%GSTAT = ’L’ /? group status for SEQUENCE = 5 ?/
OPEN QUEUE %QNAME OUTPUT
%SEQ = 5
* we can write the message with sequence number 5 first
Working with MQ/204 31

REPEAT 4 TIMES
 %COUNT = %COUNT + 1
 %MSG2 = %MSG1 WITH %COUNT
 * specify DESCRIPTOR to retrieve the GROUPID
 MQPUT %MSG2 ON %QNAME GSTATUS %GSTAT -
 SEQUENCE %SEQ /? this group in reverse order of sequence ?/ -
 NOT_LOGICAL_ORDER -
 GROUPID %GRP /? null for first PUT, then generated GROUPID ?/ -
 DESCRIPTOR MQMD /? needed to retrieve generated GROUPID ?/

 %SEQ = %SEQ - 1 /? next PUT will have lower SEQUENCE ?/
 CALL PRINT.STATUS /? always check the return code ?/
 * GSTATUS must be G for all other messages
 %GSTAT = ’G’ /? group status for SEQUENCE 1 to 4 ?/
 %GRP = $MQMD:GROUPID /? retrieve the generated GROUPID ?/
 PRINT ’Generated GROUPID IS: ’ WITH %GRP
END REPEAT
%COUNT = %COUNT + 1
%MSG2 = %MSG1 WITH %COUNT
MQPUT %MSG2 ON %QNAME GSTATUS %GSTAT -
 SEQUENCE %SEQ /? last PUT has SEQUENCE 1 in this example ?/ -
 ?%NLO GROUPID %GRP /? use generated GROUPID for last time ?/
CALL PRINT.STATUS

Browsing a group of messages

This example browses a group of messages. In this case we are using the
option MATCH_GROUP_ID to select messages in a certain group, and
LOGICAL_ORDER to ensure that we retrieve them in sequence number order.
The index type for this queue must therefore be GROUPID.

%QN IS STRING LEN 8
%MG = 'MATCH_GROUP_ID'
%GI = 'GROUPID %GRP'
%LO = 'LOGICAL_ORDER'
INCLUDE MQMD /? image definition of V2 message descriptor ?/
%COUNT IS FIXED
%TEXT IS STRING LEN 255
%GRP IS STRING LEN 24
%MSGID IS STRING LEN 24
%MSGTOKEN IS STRING LEN 16
%CORRELID IS STRING LEN 24
%GSTAT IS STRING LEN 1
%SEQ IS FIXED
* you can specify LOGICAL_ORDER on OPEN or MODIFY
OPEN QUEUE %QN BROWSE %LO
CALL PRINT.STATUS /? always check the return code ?/
%COUNT = 0
MQGET %TEXT FROM %QN NO_WAIT -
32 Rocket Model 204 MQ/204 Reference

 BROWSE_FIRST -
 DESCRIPTOR MQMD /? retrieve group ID ?/
CALL PRINT.STATUS
%GRP = %MQMD:GROUPID /? save these values from ?/
%SEQ = %MQMD:MSGSEQNO /? the message descriptor ?/
%MSGID = %MQMD:MSGID
%CORRELID = %MQMD:CORRELID
* NOW READ THE WHOLE QUEUE USING THE 'MATCH' KEYWORD
MQGET %TEXT FROM %QN NO_WAIT -
 BROWSE_FIRST ?%MG /? MATCH_GROUP_ID can be a runtime var ?/ -
 ?%GI /? GROUPID %GRP is another run-time variable ?/ -
 DESCRIPTOR MQMD
CALL PRINT.STATUS
%COUNT = %COUNT + 1
READ.NEXT:
MQGET %TEXT FROM %QN NO_WAIT -
 ?%MG ?%GI -
 BROWSE_NEXT -
 DESCRIPTOR MQMD GSTATUS %GSTAT
CALL PRINT.STATUS
IF $STATUS = 23 THEN
 JUMP TO END.LOOP /? end if no more messages in the group ?/
END IF
IF $STATUS = 12 THEN
 JUMP TO END.LOOP /? test for other errors ?/
END IF
%COUNT = %COUNT + 1 /? count messages in the group ?/
* It would also be possible to test for %GSTAT = 'L' to test for
* the end of the loop, as here:
IF %GSTAT = 'L' /? last message in the group ?/
 JUMP TO END.LOOP /? end if no more messages in the group ?/
END IF
JUMP TO READ.NEXT
END.LOOP:
* $STATUSD = 2247 if the Queue has wrong index type
IF $STATUSD = 2247 THEN
 AUDIT 'WRONG TYPE OF INDEX FOR MATCH'
ELSE
 AUDIT ' Messages in the group: ' WITH %COUNT
END IF
CLOSE QUEUE %QN

Supporting Java messages with the RFH2 keyword

The RFH2=(image | BUFFER) option of the MQGET and MQPUT statements
support Java messages and the MQRFH2 header. The following example
includes User Language statements using the RFH2 keyword.

WRITE IMAGE MQRFH2 ON BUFFER POSITION 1
Working with MQ/204 33

* the RFH2 header is now in the buffer
MQPUT DATA1 ON %QNAME GSTATUS %GSTAT -
 LOGICAL_ORDER RFH2 BUFFER -
 GROUPID %GRP DESCRIPTOR MQMD
* The following MQGET reads the RFH2 header into the
* image called MQRFH2, and the data into the %variable
* called %TEXT
MQGET %TEXT FROM %QNAME NO_WAIT -
 DESCRIPTOR MQMD -
 RFH2 MQRFH2

See “MQGET statement” on page 68 and “MQPUT statement” on page 75 for
syntax layout and more details.

Updating the Version 2 message descriptor (MQMD V2)

The image definition for the message descriptor, which you can retrieve using
the DESCRIPTOR option, is updated to include the new fields in MQMD
Version 2. The following sample image can be specified as target of the
WebSphere MQ MQGET DESCRIPTOR option. It matches the layout of the
WebSphere MQ MQMD data structure that is described in the WebSphere MQ
Application Programming Reference.

 IMAGE MQMD
* THIS IS THE VERSION 2 MQMD
STRUCID IS STRING LEN 4
* TYPE OF STRUCTURE
VERSION IS BINARY LEN 4
* VERSION NUMBER OF THE STRUCTURE
REPORT IS BINARY LEN 4
* OPTIONS FOR REPORT MESSAGES
MSGTYPE IS BINARY LEN 4
* THE TYPE OF MESSAGE
* (1=REQUEST, 2=REPLY, 4=REPORT, 8=DATAGRAM)
EXPIRY IS BINARY LEN 4
* MESSAGE LIFETIME
FEEDBACK IS BINARY LEN 4
* FEEDBACK CODE
ENCODING IS BINARY LEN 4
* DATA ENCODING
CODECHARSETID IS BINARY LEN 4
* CODED CHARACTER SET IDENTIFIER
FORMAT IS STRING LEN 8
* FORMAT NAME
PRIORITY IS BINARY LEN 4
* MESSAGE PRIORITY
PERSISTENCE IS BINARY LEN 4
* MESSAGE PERSISTENCE
MSGID IS STRING LEN 24
* MESSAGE IDENTIFIER
34 Rocket Model 204 MQ/204 Reference

CORRELID IS STRING LEN 24
* CORRELATION IDENTIFIER
BACKOUTCOUNT IS BINARY LEN 4
* BACKOUT COUNTER
REPLYTOQ IS STRING LEN 48
* NAME OF REPLY QUEUE FOR REQUESTS
REPLYTOMGR IS STRING LEN 48
* NAME OF REPLY QUEUE MANAGER FOR REQUESTS
USERIDENTIFIER IS STRING LEN 12
* USER IDENTIFIER
ACCOUNTINGTOKEN IS STRING LEN 32
* ACCOUNTING TOKEN
APPLIDENTITYDATA IS STRING LEN 32
* APPL DATA RELATING TO IDENTITY
PUTAPPLTYPE IS BINARY LEN 4
* TYPE OF APPLICATION THAT PUT THE MSG
PUTAPPLNAME IS STRING LEN 28
* ID OF APPLICATION THAT PUT THE MESSAGE
PUTDATE IS STRING LEN 8
* DATE WHEN MESSAGE WAS PUT
PUTTIME IS STRING LEN 8
* TIME WHEN MESSAGE WAS PUT
APPLORIGINDATA IS STRING LEN 4
* APPLICATION DATA RELATING TO ORIGIN
GROUPID IS STRING LEN 24
* GROUP ID
MSGSEQNO IS BINARY LEN 4
* MESSAGE SEQUENCE NUMBER WITHIN GROUP
OFFSET IS BINARY LEN 4
* OFFSET OF SEGMENT WITHIN MESSAGE
MSGFLAGS IS BINARY LEN 4
* MESSAGE FLAGS
ORGLEN IS BINARY LEN 4
* ORIGINAL LENGTH
END IMAGE

MQRFH2 image format

You can use the following image when there are no variable length fields.

IMAGE MQRFH2
* THIS IS THE RFH2 HEADER FOR JAVA
STRUCID IS STRING LEN 4
* TYPE OF STRUCTURE'RFH '
VERSION IS BINARY LEN 4
* VERSION NUMBER OF THE STRUCTURE - 2
LENGTH IS BINARY LEN 4
* LENGTH OF THE STRUCTURE (36)
ENCODING IS BINARY LEN 4
Working with MQ/204 35

* THE TYPE OF ENCODING
CHARSET IS BINARY LEN 4
* CODEDCHARSETID OF DATA
FORMAT IS STRING LEN 8
* FORMAT OF DATA FOLLOWING RFH2
FLAGS IS BINARY LEN 4
* FLAGS - SET TO 0
NAMEVALUECCSID IS BINARY LEN 4
* 1208, 1200, 13488, OR 17584
* CODEDCHARSETID OF VARIABLE PART
END IMAGE

MQMD version compatibility

MQ messages written with the MQ Message Descriptor (MQMD) Version 2
cannot be read by Model 204 V6R1.0, or earlier, Onlines. However, MQ
messages written with MQMD Version 1 can by read by Model 204 V6R3.0
Onlines.

The MQMD is a part of the MQ message. It is referred to as the message
header. An Online that uses Version 1 of the MQMD header, such as MQ/204
V6R1.0, cannot read messages from a Version 2 MQMD header, due to
additional fields in the message header. However, an Online that uses
Version 2 of the MQMD header, such as MQ/204 V6R3.0, can read messages
from a Version 1 MQMD header, because the Version 2 header new fields
provide default values.

Programming suggestions

Messages that cause errors

Occasionally a message taken from a queue causes an error; that is, the error
is in the message. When you back out and try to retrieve the message again,
the error recurs.

To break this back out loop, set the MARK_SKIP_BACKOUT option in a
subsequent MQGET statement. When this option is set, the message taken
from the queue under syncpoint control is not placed back on the queue when
a user or the Online issues an MQBACK statement.

Removing messages that do not convert

By default WebSphere MQ tries to perform a data conversion, for example from
EBCDIC to ASCII. If you issue an MQGET statement for a message that fails
to convert, the message becomes stuck on the queue.

To get the message off the queue, reissue the MQGET statement with the
NO_CONVERT option. The message can now be taken off the queue, because
the MQGET processing completes successfully, as in the following example:
36 Rocket Model 204 MQ/204 Reference

MQGET
IF $STATUS=12 $STATUSD=8
 THEN
 MQGET… NO_CONVERT
 %CONVERTED_FLAG=0

Saving a permanent local dynamic queue name

If your application creates permanent local dynamic queues that make use of
queue name patterns, you might want to save the name of the generated
permanent local dynamic queue in case the run comes down unexpectedly.

To save a permanent local dynamic queue name:

1. Issue an OPEN QUEUE statement with the MODEL and
DYNAMICQNAME options that specifies the permanent local dynamic
queue that you want to save.

2. Use the $MQ_QUEUENAME function to obtain the full external name of
the queue.

3. Store the full external queue name in a procedure that your run includes
when it comes up. Or, you can store it in a database so a procedure that
your run includes when it comes up can dynamically generate the DEFINE
QUEUE command to identify the queue.

When you decide to delete the queue, remove the queue name from the
procedure or database.

Working with logically deleted queues

On z/OS, until the last message and request are closed, the queue is logically
deleted but still exists. For example, you can still display the queue. However,
you cannot retrieve messages or put messages on a logically deleted queue.
During this state, any attempt to create a new queue, either local dynamic or
predefined, with the same name fails. In the case of a local dynamic queue, the
OPEN QUEUE statement fails with the reason code QRC_NAME_IN_USE.
This is true for the application that logically deleted the queue, as well as for
other applications.

After the last reference to the queue is closed, the queue is physically deleted;
you can now create a new queue with the same name. However, in the case of
a temporary local dynamic queue, if any corresponding unresolved units of
work are outstanding, the queue can be physically deleted only when the
application, which is holding the queue open, terminates.

Occasionally a logically deleted, permanent local dynamic queue has
uncommitted updates. In this case, the queue is physically deleted only after
resolving the corresponding units of work, as well as closing all the handles.
Working with MQ/204 37

Tuning MQ/204

Consider the following ways to improve the performance of MQ/204:

• Set the initial value of UBUFSZ accurately.

• Make sure that the number of MQ/204 subtasks is optimal. When this
setting is too low, the elapsed time for individual users might be higher than
necessary, because they must wait for a free subtask. Too many subtasks
may cause additional z/OS expenses to control subtasks.

• WebSphere MQ performance can be affected by message size.
WebSphere MQ performance tends to be relatively better when large
message sizes, above 4K, are used.

• Tune WebSphere MQ according to the recommendations of WebSphere
MQ system managers and documentation.

Greenwich Mean Time and MQPUT, MQPUT1, and MQGET time

WebSphere MQ uses Greenwich Mean Time (GMT) when storing messages,
because it is a transport tool that can pass messages across multiple time
zones. WebSphere MQ does not have a parameter that you can set to use local
time rather than Greenwich Mean Time.

If your site has chosen to reset the clock on your mainframe from Greenwich
Mean Time to your local time, rather than keeping the mainframe on Greenwich
Mean Time and calculating the local time offset, you might notice that the time-
stamp for MQPUT statements is offset from the time-stamps of WebSphere MQ
on PCs and other mainframes in your network.

See “Applying date and time-stamps to messages” on page 79 for a more
detailed discussion.

Increase in STBL for MQ/204 sites

In Model 204 V6R3.0 and later, the increased STBL requirement is because
MQ control blocks are kept in STBL, and they have increased in size by several
hundred bytes. The increase depends on how many MQPUT and MQGET
statements are compiled in any one transaction, so it will be the high water
mark for the largest User Language compilations.

MQ/204 sample application

The following annotated application sends and retrieves two messages.

Although omitted from the application to save space, do the following:

• Issue a SETGRC command to check that the DEFINE commands and
START command work.

• Check $STATUS and $STATUSD after opening and closing the queues.
38 Rocket Model 204 MQ/204 Reference

B
%X=$SETG('TIMES',2)
END

* The following commands define a queue manager, then a
queue,
* and launch the queue manager. You must define a queue
manager
* before you define a queue, because a queue cannot exist
(or be
* defined) without a queue manager.

DEFINE QM CCAQM1 WITH SCOPE=SYSTEM QMNAME=CSQ1
DEFINE Q CCAQM1Q1 WITH SCOPE=SYSTEM QM=CCAQM1 -
QNAME=DVCCA.TEST2.PS.Q01
START QM CCAQM1

*

BEGIN
VARIABLES ARE UNDEFINED
%MSGID IS STRING LEN 24
%MSGID=$SUBSTR($USER,1,8) WITH $SUBSTR($DATE(2,''),2)
WITH -
$SUBSTR($TIME,1,2) WITH -
 $SUBSTR($TIME,4,2) WITH -
 $SUBSTR($TIME,7,2)
 PRINT ’MESSAGE ID ="’ %MSGID '"'
 %X IS STRING LEN 4
 %X=$SETG(’MSGID’,%MSGID)
 %TEXT IS STRING LEN 255
 %INDEX IS FLOAT

* Within the SUBROUTINE…END SUBROUTINE statement, the
* PRINT.STATUS subroutine checks whether $STATUS or $STA-
TUSD is
* other than zero; if so, it prints the values. PRINT.STA-
TUS
* subroutine is called several times during this applica-
tion to
* provide queue information.

 SUBROUTINE PRINT.STATUS
 IF $STATUS NE 0 OR $STATUSD NE 0 THEN
 PRINT '$STATUS/$STATUSD=' WITH $STATUS WITH '/' WITH
$STATUSD
 SKIP 1 LINE
 END IF
RETURN
END SUBROUTINE
Working with MQ/204 39

* The following code opens a queue (CCAQM1Q1) and calls
the
* PRINT.STATUS subroutine. The FOR loop creates a message
and
* puts it on the queue (MQPUT statement).

OPEN QUEUE CCAQM1Q1 OUTPUT
CALL PRINT.STATUS
PRINT 'ADDING ?&TIMES MESSAGES'
FOR %INDEX FROM 1 TO ?&TIMES BY 1
*PRINT 'ABOUT TO ADD FOLLOWING MESSAGE TO THE QUEUE'
 %TEXT='!! THAT''S AMAZING AT ' WITH $TIME WITH ' !!' -
 WITH %INDEX WITH ' ' WITH %MSGID
 PRINT %TEXT
 MQPUT %TEXT ON CCAQM1Q1 MSGID=%MSGID
 CALL PRINT.STATUS
END FOR
CLOSE QUEUE CCAQM1Q1
CALL PRINT.STATUS
END

*

BEGIN
VARIABLES ARE UNDEFINED
%TEXT IS STRING LEN 255
%MSGID IS STRING LEN 24
%MSGID=$GETG('MSGID')
SUBROUTINE PRINT.STATUS
IF $STATUS NE 0 OR $STATUSD NE 0 THEN
 PRINT '$STATUS/$STATUSD=' WITH $STATUS WITH '/' WITH
$STATUSD
 SKIP 1 LINE
END IF
RETURN
END SUBROUTINE
OPEN QUEUE CCAQM1Q1
CALL PRINT.STATUS
PRINT 'ATTEMPT TO RETRIEVE ?&TIMES MESSAGES'

* The following REPEAT loop retrieves the messages.

REPEAT ?&TIMES TIMES
 MQGET %TEXT FROM CCAQM1Q1 NO_WAIT MSGID=%MSGID
 CALL PRINT.STATUS
 PRINT $TIME WITH ' MQGET: ' WITH %TEXT
END REPEAT
CLOSE QUEUE CCAQM1Q1
CALL PRINT.STATUS
END
40 Rocket Model 204 MQ/204 Reference

Sample output MESSAGE ID="00003980501121739"
ADDING 2 MESSAGES
!! THAT’S AMAZING AT 12:17:39 !!1 00003980501121739
!! THAT’S AMAZING AT 12:17:40 !!2 00003980501121739
ATTEMPT TO RETRIEVE 2 MESSAGES
12:17:40 MQGET: !! THAT’S AMAZING AT 12:17:39 !!1
00003980501121739
12:17:40 MQGET: !! THAT’S AMAZING AT 12:17:40 !!2
00003980501121739

MQ/204 restrictions

The WebSphere MQ API supports a set of features that permits many functions
to be performed with queues. The MQ/204 interface supports many, but not all
these features. The following features are not supported:

• MQINQ and MQSET, query and set attributes of objects.

• Direct access to the MQCONN and MQDISC calls or connection handles.

Connections to queue managers are handled internally by OPEN QUEUE
and CLOSE QUEUE statements. (See the WebSphere MQ documentation
for a discussion of connection handles.)

• Direct access to the WebSphere MQ control blocks (get message options,
put message options, and so on), except for the message descriptors on
MQGET statements.

MQ/204 is a higher level keyword based interface, which limits functions to
those within the keyword interface.

• WebSphere MQ API method of asynchronously fetching messages (the
WebSphere MQ option MQGMO_SET_SIGNAL).
Working with MQ/204 41

42 Rocket Model 204 MQ/204 Reference

2
Monitoring and Troubleshooting

In this chapter

• Overview

• Error handling with $STATUS and $STATUSD

• Debugging aid

• Wait types and statistics

Overview

This chapter discusses:

• Installation considerations particular to MQ/204

• Tools available within Model 204 to develop and debug MQ/204
applications

 Error handling with $STATUS and $STATUSD

$STATUS is the primary return code and $STATUSD is an ancillary or
secondary return code. Certain $STATUS return codes automatically generate
a $STATUSD return code. For other $STATUS return codes, the value of
$STATUSD is 0.

$STATUS return codes

Table 2-1 lists the $STATUS return code values and text that is used for all
MQ/204 User Language statements. See Chapter 4 for a detailed description
of each statement.
Monitoring and Troubleshooting 43

When an error can be returned by more than one statement, it has the same
$STATUS value for all statements that can raise that error. This practice allows
you to write a generic User Language routine that is an error handler for all
MQ/204 statements.

Table 2-1. $STATUS values for MQ/204 errors

$STATUS
Value Meaning Statement

1 Queue or queue manager was not found. CLOSE QUEUE

MODIFY QUEUE

MQBACK

MQCMIT

MQGET

MQPUT

MQPUT1

OPEN QUEUE

2 Reply queue not found. MODIFY QUEUE

MQPUT

MQPUT1

OPEN QUEUE

3 Queue manager is not started. MQPUT1

OPEN QUEUE

4 No WebSphere MQ interface subtasks are
available.

MQPUT1

OPEN QUEUE

5 WebSphere MQ A PI level MQCONN failed.
$STATUSD is set to the WebSphere MQ
reason code.

MQPUT1

OPEN QUEUE

6 Queue manager has been stopped. MQPUT1

OPEN QUEUE

7 Queue is already open. OPEN QUEUE

8 Storage allocation error. MODIFY
MQ_BUFFER

MQBACK

MQCMIT

MQGET

MQPUT

MQPUT1

OPEN QUEUE

READ IMAGE

WRITE IMAGE
44 Rocket Model 204 MQ/204 Reference

9 WebSphere MQ A PI level MQOPEN failed.
$STATUSD is set to the WebSphere MQ
reason code.

OPEN QUEUE

10 %Variable substitution error, consult
$STATUSD for more details. (See Table 2-3
on page 49.)

MODIFY QUEUE

MQGET

MQPUT

MQPUT1

OPEN QUEUE

11 Specified queue is not open. CLOSE QUEUE

MODIFY QUEUE

MQGET

MQPUT

MQPUT1

12 WebSphere MQ A PI level MQGET failed.
$STATUSD is set to the WebSphere MQ
reason code.

MQGET

13 Browse was attempted on MQGET, but the
queue was not open for browsing.

MQGET

14 Data truncation occurred on an MQGET.
The target image or variable for the data
area is too small.

MQGET

15 WebSphere MQ A PI level MQPUT failed.
$STATUSD is set to the WebSphere MQ
reason code.

MQPUT

16 WebSphere MQ A PI level MQPUT1 failed.
$STATUSD is set to the WebSphere MQ
reason code.

MQPUT1

17 MQPUT was attempted, and the queue was
not open for output.

MQPUT

18 WebSphere MQ A PI level MQCMIT failed.
$STATUSD is set to the WebSphere MQ
reason code.

MQCMIT

19 WebSphere MQ API level MQBACK failed.
$STATUSD is set to the WebSphere MQ
reason code.

MQBACK

20 WebSphere MQ API level MQCLOSE failed.
$STATUSD is set to the WebSphere MQ
reason code.

CLOSE QUEUE

Table 2-1. $STATUS values for MQ/204 errors (continued)

$STATUS
Value Meaning Statement
Monitoring and Troubleshooting 45

21 User is not connected to the queue
manager specified.

MQBACK

MQCMIT

22 Destructive get operation attempted, but the
queue was not open for input.

MQGET

23 MQGET was issued, but no message was
available.

MQGET

24 MQGET was issued with
MSG_UNDER_CURSOR option, but the
queue was not open for both input and
browse.

MQGET

25 Data does not fit in the buffer and has been
truncated.

MQPUT

MQPUT1

WRITE

26 No message is in the message buffer, so no
message was put.

MQPUT

MQPUT1

27 Statement tried to reference a remote
queue, but MQDEQMAN was not set.

CLOSE QUEUE

MODIFY QUEUE

MQGET

MQPUT

MQPUT1

OPEN QUEUE

28 An OPEN QUEUE statement was issued for
a remote queue, but the mode option
specified was not OUTPUT.

OPEN QUEUE

30 Context queue entity was not found. MODIFY QUEUE

MQPUT

MQPUT1

OPEN QUEUE

31 Context queue not specified or inherited
when it was needed, because a PASS
option was specified.

MQPUT

MQPUT1

OPEN QUEUE

32 Context queue not open for INPUT and
SAVE_ALL_CONTEXT.

MQPUT

MQPUT1

33 On PASS_USER_CONTEXT there was no
user ID to pass.

MQPUT1

OPEN QUEUE

34 Invalid value of SIZE on MODIFY
MQ_BUFFER.

MODIFY
MQ_BUFFER

Table 2-1. $STATUS values for MQ/204 errors (continued)

$STATUS
Value Meaning Statement
46 Rocket Model 204 MQ/204 Reference

35 LIBUFF too small while parsing runtime
options.

CLOSE QUEUE

MODIFY QUEUE

MQGET

MQPUT

MQPUT1

OPEN QUEUE

36 Invalid or unrecognized option found while
parsing runtime options.

CLOSE QUEUE

MODIFY QUEUE

MQGET

MQPUT

MQPUT1

OPEN QUEUE

37 Unexpected end of option string while
parsing runtime options.

CLOSE QUEUE

MODIFY QUEUE

MQGET

MQPUT

MQPUT1

OPEN QUEUE

38 Duplicate options found while parsing
runtime options.

CLOSE QUEUE

MODIFY QUEUE

MQGET

MQPUT

MQPUT1

OPEN QUEUE

39 While parsing runtime options,
keyword=%variable found, but %variable is
undefined, $STATUSD set. (See Table 2-3
on page 49.)

CLOSE QUEUE

MODIFY QUEUE

MQGET

MQPUT

MQPUT1

OPEN QUEUE

40 While parsing runtime options,
keyword=value found, but value invalid,
$STATUSD set. (See Table 2-3 on page 49.)

CLOSE QUEUE

MODIFY QUEUE

MQGET

MQPUT

MQPUT1

OPEN QUEUE

Table 2-1. $STATUS values for MQ/204 errors (continued)

$STATUS
Value Meaning Statement
Monitoring and Troubleshooting 47

%Variable substitution errors

Table 2-2 lists $STATUS values that indicate a %variable substitution error,
when the option was evaluated, and how the option was initially specified. You

41 While parsing runtime options, mutually
exclusive options found.

CLOSE QUEUE

MODIFY QUEUE

MQGET

MQPUT

MQPUT1

OPEN QUEUE

42 While parsing runtime options, invalid
combination of options found, $STATUSD
set.

CLOSE QUEUE

MODIFY QUEUE

MQGET

MQPUT

MQPUT1

OPEN QUEUE

43 Local dynamic queue, but null dynamic
queue name.

OPEN QUEUE

44 Local dynamic queue, but null model queue
name.

OPEN QUEUE

45 Local dynamic queue, but no model queue
entity.

OPEN QUEUE

46 Local dynamic queue, but dynamic queue
already exists.

 OPEN QUEUE

47 RFH2 expected but not received.

48 RFH2 imaged specified, but too small

49 Error moving data to image

50 Size error with multiple images on PUT(1)

51 GCORE error saving data with PUT(1) and
RFH2

52 BUFLEN specified too small for RFH2
header

Table 2-1. $STATUS values for MQ/204 errors (continued)

$STATUS
Value Meaning Statement
48 Rocket Model 204 MQ/204 Reference

specified the value of an option as a %variable. When the statement was
executed, the %variable contained an invalid value for the option in question.

To find out which $STATUS option had a problem, check the $STATUSD
values, as listed in Table 2-3 on page 49.

$STATUSD return codes

On all $STATUS return codes that indicate a failure of a WebSphere MQ API
level call, the value of $STATUSD is set to the WebSphere MQ reason code.
The values and meanings of the reason codes are described in applicable IBM
WebSphere MQ documents. For reason codes, see WebSphere MQ for z/OS
Messages and Codes V5.3.1, Appendix A.

To find out which option had a problem, check $STATUSD to determine which
option, as listed in Table 2-3.

Table 2-2. $STATUS values that indicate a %variable substitution error

$STATUS value Evaluated at Option initially specified as…

10 Compile time, as a
%variable

%Variable

39 Runtime, as a ?%variable %Variable

40 Runtime, as a ?%variable Literal

Table 2-3. Identifying invalid options by $STATUSD value

$STATUSD value Indicates invalid value for…

1 MSGTYPE

2 PRIORITY

3 REPLY_QUEUE

4 MSGID

5 CORRELID

6 EXPIRY

7 FEEDBACK

8 FORMAT

9 WAIT_TIME

10 CONTEXT

11 PUTAPPLTYPE

12 USERIDENTIFIER

13 ACCOUNTINGTOKEN
Monitoring and Troubleshooting 49

For all other values of $STATUS, $STATUSD is set to 0.

14 APPLIDENTITYDATA

15 PUTAPPLNAME

16 PUTDATE

17 PUTTIME

18 APPLORIGINDATA

19 MAXLEN

20 POSITION

21 BUFLEN

22 DESCRIPTOR

23 REPORT

24 MSGLEN

25 REPLY_QMGR

26 DYNAMICQNAME

27 MODEL

28 GROUPID

29 GSTATUS

30 Options that save context require queue to be open with an
input option

31 Options that allow and pass context require queue to be
open for output

32 APPLORIGINDATA, PUTAPPLNAME, PUTAPPLTYPE,
PUTDATE, and PUTTIME options that require the
SET_ALL_CONTEXT option

33 USERIDENTIFIER, ACCOUNTINGTOKEN, and
APPLIDENTITYDATA options that require
SET_IDENTITY_CONTEXT or SET_ALL_CONTEXT

34 DYNAMICQNAME and MODEL options that must be
specified together

35 MSGTOKEN

36 SEQUENCE

Table 2-3. Identifying invalid options by $STATUSD value (continued)

$STATUSD value Indicates invalid value for…
50 Rocket Model 204 MQ/204 Reference

Debugging aid

Information recorded in the audit trail aids in debugging MQ/204 applications.

Audit trail

Each MQ/204 statement executed is logged to the audit trail as RK lines. Each
RK line contains the following information:

• Current user ID

• Statement being executed, for example, OPEN QUEUE, MQGET, and so
on.

• Queue manager name

• If the call is queue specific, the queue name

• Completion code and reason code returned by the WebSphere MQ API call

For OPEN QUEUE statements, an additional RK line is logged including:

• External queue manager name

• External queue name

For MQCONN and MQDISC calls, which are made on behalf of the user but are
not strictly under the control of the User Language program, a different RK line
is logged containing the following information:

• Current user ID

• Function being performed, MQCONN or MQDISC

• Queue manager name

• External queue manager name

• Completion code and reason code returned by the WebSphere MQ API call

• Address of the associated subtask control block

Each of the RK lines has its own message number, so that each can be
controlled independently with Model 204 MSGCTL parameter.

Wait types and statistics

To ensure that the system manager has full information, wait types identify
waits that a user thread might perform when using MQ/204.

Wait type Value Used when a thread is waiting for …

MQAPI 41 WebSphere MQ operation to complete. The one exception
is for the MQGWT wait type.
Monitoring and Troubleshooting 51

Measuring the throughput of the WebSphere MQ API

The following statistics attempt to measure the throughput of the WebSphere
MQ API itself. To separate API execution time from time spent waiting within
the API, MQGET calls with the WAIT option specified are measured separately.
The following statistics measure all WebSphere MQ API calls except MQGET
with the WAIT option.

Measuring MQGET calls with the WAIT options

The following statistics measure MQGET calls performed with the WAIT option
and a finite WAIT_TIME value specified. MQGET calls with the WAIT option
and WAIT_TIME=UNLIMITED specified are intentionally excluded from these
measurements.

MQGWT 42 WebSphere MQ MQGET operations, where the WAIT
option has been specified.

MQTSK 40 Subtask to become available (the MQWAIT parameter
must be nonzero to have this type of wait).

Wait type Value Used when a thread is waiting for …

Statistic name Tracks…

MQAPICNT Number of MQAPI waits performed. See “WebSphere MQ API
wait types access control” on page 15.

MQAPITIM Elapsed time spent in MQAPI waits. See “WebSphere MQ API
wait types access control” on page 15.

Statistic name Tracks…

MQGWTCNT Number of MQGWT waits performed for MQGET calls with
the WAIT option and a finite WAIT_TIME value specified. See
“WebSphere MQ API wait types access control” on page 15.

MQGWTSUC Number of MQGET calls performed with the WAIT option and
a finite WAIT_TIME specified that succeeded; for example,
where a message was actually returned.

MQGWTTIM Elapsed time spent in MQGWT waits done for MQGET calls
with the WAIT option and a finite WAIT_TIME value specified.
See “WebSphere MQ API wait types access control” on
page 15.

MQGWTTSP Total WAIT_TIME specified on all MQGET calls performed
with the WAIT option and a finite WAIT_TIME value specified.
52 Rocket Model 204 MQ/204 Reference

3
MQ/204 Command Reference

In this chapter

• Overview

• BUMP QUEUEMANAGER: Disconnecting queue manager users

• DEFINE QUEUE: Identifying a WebSphere MQ queue

• DEFINE QUEUEMANAGER: Identifying a WebSphere MQ queue manager

• MONITOR MQ: Monitoring MQ/204

• START QUEUEMANAGER: Making queues accessible

• STOP QUEUEMANAGER: Put a queue manager in drain state

Overview

MQ/204 commands support the following tasks:

• DEFINE commands identify queue managers and queues with defaults for
various get and put options.

• The system manager uses the BUMP, START, and STOP commands to
control access to the queue managers.

If an MQ/204 command is issued but MQ/204 is not linked with Model 204, the
following error message is issued:

M204.1039: FEATURE NOT LINKED IN
MQ/204 Command Reference 53

BUMP QUEUEMANAGER: Disconnecting queue manager
users

Privileges System manager or User 0

Function Disconnects all users who have connections to the specified queue manager.

Syntax BUMP {QUEUEMANAGER | QM} name

Where name identifies a queue manager created with a DEFINE QUEUEMANAGER
command.

Usage When you want to disconnect users from a queue manager, follow these steps:

1. Issue a STOP QUEUEMANAGER command to prevent additional access
to the queue manager.

2. Issue a BUMP QUEUEMANAGER command. Any active WebSphere MQ
transactions for bumped users are backed out.

If the queue manager does not exist or has not been started, an error message
is issued.

DEFINE QUEUE: Identifying a WebSphere MQ queue

Privileges System manager or User 0

Function Identifies an z/OS-WebSphere MQ queue in a queue manager where
applications can put (MQPUT and MQPUT1) and get (MQGET) messages.
The queue must have been previously defined by the WebSphere MQ
administrator.

Syntax DEFINE {QUEUE | Q} name [LIKE previousname] WITH

SCOPE=SYSTEM {QUEUEMANAGER | QM}=qmanentityname

[{QUEUENAME | QNAME}=externalqueuename] [options…]

Where • name identifies the queue referred to in the Online. name must be:

– Unique, or an error is issued.

– 1-48 characters long and begin with a letter, followed by letters, num-
bers, periods, or underscores.

• QUEUEMANAGER (or QM) clause names the queue manager for the
queue, and must refer to a queue manager previously defined by the
WebSphere MQ administrator.
54 Rocket Model 204 MQ/204 Reference

Use the optional QUEUENAME (or QNAME) clause, if the external name
of the queue (as defined to WebSphere MQ) differs from the name you refer
to in the Online. External queue names can be up to 48 characters in length.
The external queue name is validated when the queue is actually opened.
If you omit QUEUENAME (or QNAME), the external name of the queue is
assumed to be name.

• options are default characteristics that are used to manipulate the queues.

• ACCEPT_TRUNCATED_MSG or NO_ACCEPT_TRUNCATED_MSG
(default)

• ALL_MSGS_AVAILABLE or NOT_ALL_MSGS_AVAILABLE (default)

• FAIL_IF_QUIESCING or NO_FAIL_IF_QUIESCING (default)

• CONTEXT

• EXPIRY

• FORMAT

• LOGICAL_ORDER or NOT_LOGICAL_ORDER (default)

• MSGTYPE

• PERSISTENT, NOT_PERSISTENT, or PERSISTENCE_AS_Q_DEF
(default)

• PRIORITY or PRIORITY_AS_Q_DEF (default)

• REPLY_QMGR

• REPLY_QUEUE

• REPORT

• SYNCPOINT (default) or NO_SYNCPOINT

• WAIT or NO_WAIT (default)

• WAIT_TIME

Usage The queue definition has system scope.

Note: Remote queues do not require a DEFINE QUEUE command. Local
dynamic queues require a DEFINE QUEUE command only if they were not
created by MQ/204 in the current Online job.

DEFINE QUEUE can be omitted if the MQDEQMAN keyword is supplied. (See
“Parameters and task management” on page 13 for a description of
MQDEQMAN.)

When a queue is known to the default queue manager, as specified by the
MQDEQMAN keyword, it is possible to omit an explicit DEFINE QUEUE
MQ/204 Command Reference 55

command. Instead MQPUT and MQGET processing can specify the external
queue name.

If MQDEQMAN is not specified or the supplied queue name is not valid, the
MQPUT or MQGET statement is rejected with the message:

M204.0630: IMPLICIT DEFINE COMMAND REJECTED

Defining local dynamic queues

When a local dynamic queue is created using an MQOPEN statement, it is
created with SCOPE=SYSTEM. Model 204 sets up control blocks as if you had
defined the queue using the DEFINE command.

If the Online is cycled and the permanent local dynamic queue still exists, to
access it in a subsequent run, you must issue a DEFINE QUEUE command
with the full name of the local dynamic queue, even if the queue manager
created the name when the local dynamic queue was originally defined.

Security considerations

Applications creating local dynamic queues via the OPEN QUEUE statement
cannot reference model queues unless the system manager defines the model
queues.

DEFINE QUEUEMANAGER: Identifying a WebSphere MQ
queue manager

Privileges System manager and User 0

Function Identifies an z/OS-WebSphere MQ queue manager that you want to connect to
from Model 204. The queue manager must have been previously defined by the
z/OS-WebSphere MQ administrator.

Syntax DEFINE {QUEUEMANAGER | QM} name [LIKE previousname]

 WITH SCOPE=SYSTEM

 [{QUEUEMANAGERNAME | QMNAME}=externalqmanname]

Where • name identifies the queue manager referred to in the Online. name must
be:

– Unique or an error is issued.

– 1-48 characters long and begin with a letter, followed by letters, num-
bers, periods, or underscores.

• Use the optional QUEUEMANAGERNAME (or QMNAME) clause if the
external name of the queue manager (as defined to WebSphere MQ) differs
56 Rocket Model 204 MQ/204 Reference

from the name you refer to in the Online. If you omit
QUEUEMANAGERNAME (or QMNAME), the external name of the queue
manager is assumed to be name.

Usage The external name of the queue manager is validated when a system manager
or User 0 issues a START QUEUEMANAGER command. The queue manager
has system scope.

You must define a queue manager before you define a queue.

MODIFY QUEUE statement

Function Alters the current default option(s) for an open queue for the issuing user.

Syntax MODIFY QUEUE {%variable | name |

 external_qmanager:external_queue}

 {[option...] [?%variable...]}

Where • Queue to operate on is specified as:

• option is one or more of the following options:

– ACCEPT_TRUNCATED_MSG or NO_ACCEPT_TRUNCATED_MSG

– ALL_MSGS_AVAILABLE or NOT_ALL_MSGS_AVAILABLE (default)

– CONTEXT

– EXPIRY

– FAIL_IF_QUIESCING or NO_FAIL_IF_QUIESCING

– FORMAT

– LOGICAL_ORDER or NOT_LOGICAL_ORDER (default)

– MSGTYPE

– PERSISTENT or NOT_PERSISTENT

– PERSISTENCE_AS_Q_DEF

– SYNCPOINT or NO_SYNCPOINT

– PRIORITY or PRIORITY_AS_Q_DEF

Queue as… Specifies

%variable Queue name

name Literal without quotation marks

external_qmanager:external_queue External name of a queue manager that
contains the remote queue to process
and the external name of the remote
queue
MQ/204 Command Reference 57

– REPLY_QMGR

– REPLY_QUEUE

– REPORT

– WAIT or NO_WAIT

– WAIT_TIME

• ?%variable specifies option(s) of the MODIFY QUEUE statement to
compile at evaluation time. For more information on ?%variables, see
Model 204 MQ/204 Reference Manual.

Usage Options that apply to MQGET, MQPUT, and MQPUT1 statements can be
specified in the DEFINE QUEUE command, and defaults for MQGET and
MQPUT statements can be specified in an OPEN QUEUE statement.

You can override defined options by specifying the desired options directly on
an MQGET, MQPUT, or MQPUT1 statement.

If you are repeatedly overriding DEFINE QUEUE command options, you might
prefer to alter the current options for an open queue using the MODIFY QUEUE
statement.

MONITOR MQ: Monitoring MQ/204

Privileges System manager or User 0

Function Aids the system manager in controlling an Online that is using MQ/204. The
MQ option provides information on the MQ/204 features.

Syntax MONITOR MQ [(QUEUEMANAGER | QM) qmanager_entity_name

 | (QUEUE | Q) queue_entity_name]

 [SUBTASKS] [SUMMARY] [EVERY n]

Where • QUEUEMANAGER (or QM) and QUEUE (or Q) can be used to filter the
output of MONITOR MQ:

– If a QUEUEMANAGER clause is specified, output is restricted to that
queue manager.

– If a QUEUE clause is specified, output is restricted to the specified
queue.

The QUEUEMANAGER, QUEUE, and SUBTASK clauses are mutually
exclusive. To monitor the clauses in succession, you must issue a separate
MONITOR MQ command for each clause.

• SUBTASKS produces a report of WebSphere MQ subtask activity. The
report includes the following numeric output about subtasks:

– Allocated
58 Rocket Model 204 MQ/204 Reference

– Currently in use

– Free, but connected to a queue manger

– Free and unconnected

This report also lists the queue managers to which subtasks are currently
connected and indicates how many are connected to each.

• SUMMARY limits the output produced by MONITOR MQ:

– If SUMMARY is specified, the list of users who have each queue open
is omitted from the report.

– If both SUBTASKS and SUMMARY are specified, the list of queue
managers and count of subtasks connected to each are omitted from
the subtask report.

• EVERY n clause provides the command refresh capability.

Usage Output from the MONITOR MQ command goes to USE output, if USE is active.

The MONITOR MQ command lists defined queue managers by both entity and
external name, and whether they have been stopped or started. After each
queue manager, a list of all queues for that queue manager is displayed, also
by entity and external name. After each queue name, a list of the current users
is displayed with the following data:

• User number.

• User name.

• Last WebSphere MQ API call made.

• CompCode and Reason display headings for the last call separated by a
slash (/) or the word PENDING, if the call has not yet completed.
CompCode and Reason values are returned by all WebSphere MQ API
calls.

• Number of bytes of data transferred on the last put or get.

Examples The following example shows output from a MONITOR MQ command:

> MONITOR MQ
QUEUEMANAGER: PRODUCTION
EXTERNAL NAME: SYS1.PRODUCTION
STATUS: STARTED

 QUEUE: INCOMING
 EXTERNAL NAME: INQUEUE.FOR.WORK

 USER USERID LASTCALL STATUS DATALEN
 ------ ---------- -------- ------- -------
 25 JOE MQGET 0/0 50
MQ/204 Command Reference 59

 QUEUE: OUTGOING
 EXTERNAL NAME: OUTQUEUE.FOR.WORK

 USER USERID LASTCALL STATUS DATALEN
 ------ ---------- -------- ------- -------
 25 JOE MQPUT 0/0 50
 56 FRED MQPUT1 PENDING 50

QUEUEMANAGER: TEST
EXTERNAL NAME: SYS1.TEST
STATUS: STOPPED

 QUEUE: INBOX
 EXTERNAL NAME: TEST.INBOX

 USER USERID LASTCALL STATUS DATALEN
 ------ ---------- -------- ------- -------
 15 SALLY MQGET 0/0 1000
 23 MIKE MQGET 2/2033 0

 QUEUE: OUTBOX
 EXTERNAL NAME: TEST.OUTBOX

QUEUEMANAGER: TEST2
EXTERNAL NAME: SYS1.TEST2
STATUS: DEFINED

 QUEUE: INBOX2
 EXTERNAL NAME: TEST2.INBOX

 QUEUE: OUTBOX2
 EXTERNAL NAME: TEST2.OUTBOX

>

START QUEUEMANAGER: Making queues accessible

Privileges System manager or User 0

Function Validates the existence of a queue manager and marks it available for use.

Syntax START {QUEUEMANAGER | QM} name

Where name identifies a queue manager created with the DEFINE QUEUEMANAGER
command.

Usage If the specified queue manager is already started, the command is ignored.

Once this command has been issued successfully, queues that belong to this
queue manager can be opened with the OPEN QUEUE statement described in
60 Rocket Model 204 MQ/204 Reference

“OPEN QUEUE statement” on page 83 or MQPUT1 statement described in
“MQPUT1 statement” on page 81.

STOP QUEUEMANAGER: Put a queue manager in drain state

Privileges System manager or User 0

Function Places a queue manager in a drain state.

Syntax STOP {QUEUEMANAGER | QM} name

Where name identifies a queue manager created with a DEFINE QUEUEMANAGER
command.

Usage If the queue manager does not exist, or has not been started, an error message
is issued. If it has already been stopped, the command is ignored.

Once issued, you cannot open any queues for this queue manager. Attempts
to open such queues fail with a $STATUS return code of six (6). However, any
current users with open connections to the queue manager are not impacted.
You can make the queue manager available again by issuing the START
QUEUEMANAGER command.
MQ/204 Command Reference 61

62 Rocket Model 204 MQ/204 Reference

4
User Language Statement
Reference

In this chapter

• Overview

• CLOSE QUEUE statement

• MODIFY QUEUE statement

• MQBACK statement

• MQCMIT statement

• MQGET statement

• MQPUT statement

• MQPUT1 statement

• OPEN QUEUE statement

• Universal Buffer statements

Overview

User Language supports MQ/204 as follows:

• OPEN and CLOSE statements support opening and closing queues.

• Set of statements have syntax that closely parallels the WebSphere MQ
API for getting and putting messages, and committing and backing out
WebSphere MQ transactions.
User Language Statement Reference 63

• MODIFY statement can change defaults on an open queue or alter the size
and contents of the data buffer.

• $Functions manipulate queues and queue managers.

• READ IMAGE and WRITE IMAGE statements can manipulate the data
buffer.

A User Language statement with a name that matches a WebSphere MQ API
function has a one-to-one correspondence between that User Language
statement and the API call.

To permit an application full flexibility in handling errors, MQ/204 User
Language statements set $STATUS and $STATUSD return codes. See “Error
handling with $STATUS and $STATUSD” on page 43.

CLOSE QUEUE statement

Function Closes a queue that was previously opened with an OPEN QUEUE statement.

Syntax CLOSE QUEUE {%variable | M204queue-name

 | external-qmanager:external-queue}

 [DELETE | DELETE_PURGE | ?%variable]

Where • Queue to operate on is specified as:

• DELETE or DELETE_PURGE and ?%variable are the delete options,
determined by the attributes assigned in the model queue. A queue with a
delete option accepts no more messages or requests and is closed as
follows:

Queue as… Specifies...

%variable Queue name.

M204queue-name Queue name as a literal without
quotation marks.

external-qmanager:external-queue External name of a queue manager that
contains the remote queue to process
and the external name of the remote
queue.

Delete option For local dynamic queue Deletes the queue…

DELETE Permanent When no more messages
are on the queue and no
uncommitted GET or PUT
requests are outstanding.
64 Rocket Model 204 MQ/204 Reference

Usage The CLOSE QUEUE statement performs an MQCLOSE call. If the queue
manager is in a drain state, it also performs an MQDISC call.

Deleting local dynamic queues

When a temporary local dynamic queue is closed, the queue is deleted, along
with any messages that may still be on it, regardless of the options parameter.
This is true even if uncommitted MQGET, MQPUT, or MQPUT1 calls, issued
using this or another handle, are outstanding against the queue; uncommitted
updates that are lost do not cause the unit of work of which they are a part to
fail.

After either a temporary or permanent local dynamic queue is deleted, any call
(other then a CLOSE QUEUE statement) that attempts to refer to that queue
fails with reason code MQRC_Q_DELETED.

When a CLOSE QUEUE statement is issued to delete a permanent local
dynamic queue, a security check is made to ensure that the user identifier is
authorized to delete the queue.

No check is made when a temporary local dynamic queue is deleted.

Reusing dynamic queue names

After you issue a CLOSE QUEUE DELETE or CLOSE QUEUE DELETE
PURGE statement for a queue name, you can reuse the queue name. For
example, to reuse the dynamic queue name, CCA1, issue the following
statements:

CLOSE QUEUE CCA1 DELETE_PURGE
OPEN QUEUE CCA1 DYNAMICQNAME=XNAME MODEL=XMODEL

MQ/204 CLOSE statement and the QUEUE keyword

MQ/204 has an upward compatibility issue that is caused by supporting the
keyword QUEUE on CLOSE statements. If you have a Model 204 file or group
named QUEUE and you issue the User Language CLOSE statement with it,
this might conflict with the CLOSE QUEUE statement, because the FILE and
GROUP keywords are optional on User Language CLOSE statements.

DELETE_PURGE Temporary Purges all outstanding
messages and requests.

?%variable Permanent or temporary At runtime, according to the
delete option selected. See
“Using runtime options” on
page 11.

Delete option For local dynamic queue Deletes the queue…
User Language Statement Reference 65

To address this issue, the parsing of the CLOSE statement identifies the case
of a file or group named QUEUE. If CLOSE is followed by the keyword QUEUE,
the system looks ahead for a token following the word QUEUE:

Note: If the MQ/204 feature is not linked in, CLOSE statement parsing is
unaffected.

MODIFY QUEUE statement

Function Alters the current default option(s) for an open queue for the issuing user.

Syntax MODIFY QUEUE {%variable | name |

 external_qmanager:external_queue}

 {[option...] [?%variable...]}

Where • Queue to operate on is specified as:

• option is one or more of the following options:

– ACCEPT_TRUNCATED_MSG or NO_ACCEPT_TRUNCATED_MSG

– ALL_MSGS_AVAILABLE or NOT_ALL_MSGS_AVAILABLE (default)

– CONTEXT

– EXPIRY

– FAIL_IF_QUIESCING or NO_FAIL_IF_QUIESCING

– FORMAT

– LOGICAL_ORDER or NOT_LOGICAL_ORDER (default)

– MSGTYPE

– PERSISTENT or NOT_PERSISTENT

– PERSISTENCE_AS_Q_DEF

If… The statement is assumed to be…

Token is found MQ/204 CLOSE QUEUE statement.

No token is found after the word
QUEUE

CLOSE for a file or group named QUEUE.

Queue as… Specifies

%variable Queue name

name Literal without quotation marks

external_qmanager:external_queue External name of a queue manager that
contains the remote queue to process
and the external name of the remote
queue
66 Rocket Model 204 MQ/204 Reference

– SYNCPOINT or NO_SYNCPOINT

– PRIORITY or PRIORITY_AS_Q_DEF

– REPLY_QMGR

– REPLY_QUEUE

– REPORT

– WAIT or NO_WAIT

– WAIT_TIME

• ?%variable specifies option(s) of the MODIFY QUEUE statement to
compile at evaluation time. For more information on ?%variables, see
“Using runtime options” on page 11.

Usage Options that apply to MQGET, MQPUT, and MQPUT1 statements can be
specified in the DEFINE QUEUE command, and defaults for MQGET and
MQPUT statements can be specified in an OPEN QUEUE statement.

You can override defined options by specifying the desired options directly on
an MQGET, MQPUT, or MQPUT1 statement.

If you are repeatedly overriding DEFINE QUEUE command options, you might
prefer to alter the current options for an open queue using the MODIFY QUEUE
statement.

MQBACK statement

Function Backs out pending WebSphere MQ transaction(s), called SYNCPOINT
update(s) by WebSphere MQ, on all queue managers or a particular queue
manager. This operation is independent of Model 204 file transactions.

Syntax MQBACK [queuemanentname | %qmvariable]

Where queuemanentname or %qmvariable specify to back out a particular queue
manager.

Usage The MQBACK statement operates on active WebSphere MQ transactions for
the issuing user only. Active WebSphere MQ transactions for other users are
not affected.

An MQBACK statement without a queue manager specified backs out all active
transactions for all queue managers, processing in alphabetical order by name.
You can back out a particular queue manager by specifying its name as a literal
without surrounding quotation marks or in a %variable.

If a failure occurs when processing multiple queue managers, the operation
stops at the queue manager that had the error. You can use the
$MQ_LASTQUEUEMANAGER_ENTITY function to determine which queue
manager had the error.
User Language Statement Reference 67

MQCMIT statement

Function Commits pending WebSphere MQ transactions, called SYNCPOINT update(s)
by WebSphere MQ, on all queue managers or a particular queue manager. This
operation is independent of Model 204 file transactions.

Syntax MQCMIT [queuemanentname | %qmvariable]

Where queuemanentname or %qmvariable specify to commit all updates to a
particular queue manager.

Usage The MQCMIT statement operates on active WebSphere MQ transactions for
the issuing user only. Active WebSphere MQ transactions for other users are
not affected.

You can limit the commit to a particular queue manager by specifying its name
as a literal without surrounding quotation marks or in a %variable.

MQCMIT statement without a queue name specified commits all active
transactions for all queue managers, processing in alphabetical order by name.

If a failure occurs when processing multiple queue managers, the operation
stops at the queue manager that had the error. You can use the
$MQ_LASTQUEUEMANAGER_ENTITY function to determine which queue
manager had the error.

MQGET statement

Function Retrieves a message from a currently open queue.

Syntax MQGET {(image[,image]...) | %variable | BUFFER

 | MQ_BUFFER}

 [RFH2=(image | BUFFER)]

 [FROM] {%qvariable | entname

 | external_queuemanager:external_queue}

 [BUFLEN={%bvar | n}]

 [MSGLEN=%mvar]

 [[option...] [?%variable...]]
68 Rocket Model 204 MQ/204 Reference

Where • image or %variable or BUFFER (formerly and still accepted MQ_BUFFER)
specifies the target into which the message data is placed. You can specify
up to 10 images.

• FROM clause identifies the queue to operate on as specified:

• BUFLEN can determine the destination size of BUFFER area in bytes, as
follows:

– If BUFLEN was specified and the size of your BUFFER area is less
than BUFLEN, BUFFER area is resized to the value of BUFLEN. Other-
wise BUFFER size is unchanged.

– If BUFLEN was not specified:

If the size of your BUFFER area is less than the destination size, the
existing BUFFER area is deleted and a new BUFFER area allocated,
with a size equal to the destination size.

• option is one or more of the following options; see Table 5-1 on page 87 for
a full discussion of each option:

– ACCEPT_TRUNCATED_MSG or NO_ACCEPT_TRUNCATED_MSG

– ALL_MSGS_AVAILABLE_ or NOT_ALL_MSGS_AVAILABLE (default)

If the target is… Then…

image Image item READLEN is filled in with the number
of bytes of message data read into the image

%variable Number of bytes read can be obtained with $LEN

BUFFER (formerly and still
accepted MQ_BUFFER)

Message is simply left in the Universal Buffer,
where is remains intact until the next MQ/204
statement is issued

RFH2=(image | BUFFER) Java RFH2 header can be accommodated.

Queue as… Specifies…

%qvariable Queue name

entname Literal without quotation marks

external_qmanager:external_queue External name of a queue manager that
contains the remote queue to process
and the external name of the remote
queue

Destination byte size for… Is…

String %variable Declared length of the %variable.

Image Maximum length of the image.

Multiple images Sum of the individual image sizes.
User Language Statement Reference 69

– BROWSE_FIRST

– BROWSE_MSG_UNDER_CURSOR

– BROWSE_NEXT

– CONVERT or NO_CONVERT

– CORRELID=value

– DESCRIPTOR=image

– FAIL_IF_QUIESCING or NO_FAIL_IF_QUIESCING

– GROUPID=%variable

– GSTATUS=%variable

– LOCK or UNLOCK

– LOGICAL_ORDER or NOT_LOGICAL_ORDER (default)

– MATCH_CORREL_ID (default) or NOT_MATCH_CORREL_ID

– MATCH_GROUP_ID

– MATCH_MSG_ID (default) or NOT_MATCH_MSG_ID

– MATCH_MSG_SEQ_NUMBER

– MATCH_MSG_TOKEN

– MARK_SKIP_BACKOUT

– MSGID=value

– MSGTOKEN=%variable

– MSG_UNDER_CURSOR

– NEW_CORREL_ID

– SEQUENCE=%variable

– SYNCPOINT or NO_SYNCPOINT or SYNCPOINT_IF_PERSISTENT

– WAIT or NO_WAIT

– WAIT_TIME=value

• ?%variable specifies option(s) of the MQGET statement to compile at
evaluation time. For more discussion of ?%variables, see “Using runtime
options” on page 11.

Analyzing an MQGET statement

When you issue an MQ/204 MQGET statement, the WebSphere MQ MQGET
is issued. WebSphere MQ places a message or part of a message in your
BUFFER area and returns:

– Actual length of the message that was retrieved or partially retrieved

– Completion code and reason code that qualifies the completion code
70 Rocket Model 204 MQ/204 Reference

• The length of the message is recorded as follows:

• If the completion code indicates successful completion:

$BUFFER_POSITION is set to the byte after the last byte copied.

• If the completion code indicates unsuccessful completion:

– $STATUS is set appropriately

– $STATUSD is set to the WebSphere MQ reason code

– $BUFFER_POSITION is set to 1

– No further processing is done

Using the BUFFER area

Data transfers between WebSphere MQ and Model 204 are performed via the
BUFFER area. You can perform all MQ/204 operations without directly
referencing the BUFFER area. However, for maximum flexibility, you can
directly manipulate the contents of the BUFFER area using the following
statement forms:

• MQGET BUFFER

• MQPUT BUFFER

• READ IMAGE FROM BUFFER

• WRITE IMAGE ON BUFFER

Each user thread of MQ/204 has only one BUFFER area, which is private to
that thread. BUFFER area resides in a separately allocated area of memory; it
does not occupy space in the user's server, nor in CCATEMP. BUFFER area is
allocated automatically for you when required, and deallocated when you
log off.

Argument or function Is set to…

$BUFFER_USED Length of the data retrieved into BUFFER area

$MQ_MESSAGE_LEN Actual length of the message

MSGLEN=%mvar Actual length of the message

If the destination is… Then…

BUFFER area $BUFFER_POSITION is set to 1.

Anything other than
BUFFER area

Message is copied from BUFFER area to the
destination.

Image or images Each READLEN is set.
User Language Statement Reference 71

When an MQGET statement retrieves a message from WebSphere MQ to a
%variable, image, or image list, the data is first moved from WebSphere MQ to
BUFFER area, and then copied to the %variable, image, or image list. When
an MQPUT or MQPUT1 statement sends a message from a %variable, image,
or image list to WebSphere MQ, the data is first copied from the %variable,
image, or image list to BUFFER area and then moved to WebSphere MQ.

Handling the end of a request

• Under the usual circumstances, at request end, the user's BUFFER area
remains allocated but its contents are cleared.

• In an APSY subsystem with AUTOCOMMIT=NO, the user’s BUFFER area
remains allocated and its contents are unchanged.

Usage Options in common with OPEN QUEUE and DEFINE QUEUE statements
inherit default values from the OPEN QUEUE statement, which in turn inherits
from the queue:

• If DESCRIPTOR=image is specified, the MQMD message descriptor is
returned, even if the MQGET failed. However, if the MQGET failed, the
contents of image may or may not be meaningful, depending on the nature
of the failure.

• After a get operation with BUFFER, the data can be loaded into an image
with an extension to the READ IMAGE statement. See “Universal Buffer
statements” on page 86.

• When a local dynamic queue is deleted, any MQGET statements with the
WAIT option that are outstanding against the queue are canceled and
reason code MQRC_Q_DELETED is returned.

Using the browse options

On queues open for browsing only, if neither BROWSE_FIRST nor
BROWSE_NEXT is specified, then the default operation of MQGET is
BROWSE_FIRST on the first MQGET after the OPEN QUEUE and
BROWSE_NEXT on all subsequent MQGET statements.

On queues open for both browsing and input, if neither BROWSE_FIRST nor
BROWSE_NEXT is specified, then, as the MQGET statement retrieves
messages, they are deleted from the queue. This is consistent with the
behavior of the WebSphere MQ API.

• On get operations, the READLEN item of each image is set. If the data runs
out before filling all the images, then READLEN is set to zero for the
remaining images.

• If BUFLEN is specified, BUFLEN is used to limit the number of bytes
retrieved from WebSphere MQ.

• MSGLEN is an output %variable; its value before the MQGET is irrelevant.
72 Rocket Model 204 MQ/204 Reference

Truncated messages

Truncation of messages can occur at two different points:

• When the data is moved from WebSphere MQ to the BUFFER area
($STATUS=12):

($MQ_MESSAGE_LEN > $BUFFER_USED)

• When the data is copied from the BUFFER area to the destination
($STATUS=14):

($MQ_MESSAGE_LEN = $BUFFER_USED)

If truncation occurs when the data is moved from WebSphere MQ to the
BUFFER area, the setting of the ACCEPT_TRUNCATED_MSG option
determines whether or not WebSphere MQ leaves the message on the queue;
or, if in browse mode, whether or not WebSphere MQ advances the browse
cursor.

Error handling consideration

MQGET statement processing always retrieves the message from WebSphere
MQ into the user’s BUFFER area.

• If the WebSphere MQ call fails, $STATUS is set to 12, $STATUSD is set to
the WebSphere MQ reason code, and the operation ends.

• If the call succeeds, the message is copied from the BUFFER area into the
target—%variable, image, or image list.

• If the target is not large enough to hold the message retrieved, $STATUS
is set to 14 to indicate truncation; otherwise, $STATUS is set to 0 to indicate
success.

Under some circumstances, the WebSphere MQ call can fail but still return a
message or part of a message. In those cases, $STATUS is set to 12,
$STATUSD is set to the WebSphere MQ reason code, but the operation
continues and the message is copied from the BUFFER area into the target.

If the target is not big enough to hold the message (or partial message)
retrieved, $STATUS is not reset to 14, but instead retains its original value. In
other words, $STATUS and $STATUSD always report the first error, and the
subsequent error is not explicitly reported.

The circumstances under which a WebSphere MQ MQGET statement can fail,
but still return a message or part of a message are:

WebSphere MQ reason
code

Message

2079 TRUNCATED_MSG_ACCEPTED
User Language Statement Reference 73

If an MQGET statement returns $STATUS=12 and $STATUSD=2079, or 2080,
or 2110–2120, and the target is a %variable, image or image list, then the
program must determine whether the message was truncated when copied to
the target. You cannot use $STATUS=14.

You can use the following after an initial error to determine if truncation also
occurred.

 IF ($BUFFER_POSITION LE $BUFFER_USED) THEN
* We truncated moving from the buffer to the %variable
* or image target
 ELSE
* We have $BUFFER_POSITION = $BUFFER_USED + 1
* We didn’t truncate moving the buffer to the %variable
* or image target
 END IF

Note: In the case of $STATUSD=2079 or 2080, the message was truncated
when moved from WebSphere MQ to the BUFFER area, but could not have
been truncated again when copied from the BUFFER area to the target.

Handling an incoming message with an RFH2 header

If you expect the incoming message to contain an RFH2 header, use the
RFH2=(image | BUFFER) option. You can specify an image into which the
header will be copied, or you can specify BUFFER, in which case the RFH2
header is left in the BUFFER, preceding the data.

The RFH2 header, if the target is an image, is copied from the buffer to an
image, but the RFH2 header is not removed from the buffer—it still precedes
the data.

• If the target for the RFH2 header specified BUFFER, the RFH2 header is
simply left at the beginning of the buffer.

• If the target of the data is specified as an image or %variable, the data is
copied from its position behind the RFH2 header (if present) to the image
or %variable.

• If the target of the data is specified BUFFER, it is left in place in the buffer
behind the RFH2 header.

In all cases where the RFH2 header is involved, the buffer after the operation
contains the RFH2 header followed by the data, and $BUFFER_POSITION
variable has the position (=offset+1) of the data, if the data is left in the buffer,

2080 TRUNCATED_MSG_FAILED

2110–2120 Various conversion errors

WebSphere MQ reason
code

Message
74 Rocket Model 204 MQ/204 Reference

or beyond the data if the data has been copied to an image, image list or
variable.

The $BUFFER_USED has the total length of RFH2 header and data.

Using RFH2 keyword with MQGET

In all cases of GET, MSGLEN is set to the length of the data received, excluding
the length of the RFH2 header if any.

MQPUT statement

Function Places a message on a currently open queue.

Syntax MQPUT {(image[,image1]...) | %variable | ’string’

 | BUFFER | MQ_BUFFER}

 [RFH2=(image | BUFFER)]

 [ON] {%qvariable | entname

 | external_qmanager:external_queue}

 [BUFLEN= {%bvar | n}]

 [[option...] [?%variable...]]

GET target RFH2 in image RFH2 in buffer

Data in
image or
%variable

$BUFFER_USED set to length of RFH2
header, plus length of data.

$MQ_MESSAGE_LEN set to length of
data.

$BUFFER_POSITION set to byte beyond
last byte of data copied.

RFH2 copied to image.

Data copied to image or %variable.

$BUFFER_USED set to length of RFH2
header, plus length of data.

$MQ_MESSAGE_LEN set to length of
data.$BUFFER_POSITION set to byte
beyond last byte of data copied.

Data copied to image or %variable.

Data in
buffer

$BUFFER_USED set to length of RFH2
header + length of data.

$MQ_MESSAGE_LEN set to length of
data.

$BUFFER_POSITION set to first byte of
data (the byte beyond the RFH2 header).

RFH2 copied to image.

$BUFFER_USED set to length of RFH2
header + length of data.

$MQ_MESSAGE_LEN set to length of
data.

$BUFFER_POSITION set to first byte of
data (the byte beyond the RFH2 header).
User Language Statement Reference 75

Where • image or %variable or BUFFER (formerly and still accepted MQ_BUFFER)
specifies the target into which the message data is placed. You can specify
up to 10 images.

• Queue to operate on is:

• BUFLEN specifies in bytes, %bvar or n, the size of BUFFER area.

• option is one or more of the following options:

– ACCOUNTINGTOKEN

– APPLIDENTITYDATA=value

– APPLORIGINDATA=value

– CONTEXT=value or NO_CONTEXT

– CORRELID=value

– DESCRIPTOR=image

– DEFAULT_CONTEXT

– EXPIRY=value

– FAIL_IF_QUIESCING or NO_FAIL_IF_QUIESCING

– FEEDBACK=value

– FORMAT=value

– GROUPID=%variable

– GSTATUS=%variable

– LOGICAL_ORDER or NOT_LOGICAL_ORDER (default)

If the target is… Then…

Image To swap images in and process serially. You can
specify up to 10 images.

%variable Current value of variable.

’string’ Literal with quotation marks.

BUFFER (formerly, and still
accepted as MQ_BUFFER)

Message is preloaded in the Universal Buffer
area.

RFH2=(image | BUFFER) Java RFH2 header can be accommodated.

Queue as… Specifies...

%qvariable Queue name.

entname Literal without quotation marks.

external_qmanager:external_queue External name of a queue manager that
contains the remote queue to process
and the external name of the remote
queue.
76 Rocket Model 204 MQ/204 Reference

– MSGID=value

– MSGTYPE=value

– PASS_ALL_CONTEXT

– PASS_IDENTITY_CONTEXT

– PERSISTENT or NOT_PERSISTENT

– PERSISTENCE_AS_Q_DEF

– PRIORITY=value or PRIORITY_AS_Q_DEF

– PUTAPPLNAME=value

– PUTAPPLTYPE=value

– PUTDATE=value

– PUTTIME=value

– REPLY_QMGR=name

– REPLY_QUEUE=name

– REPORT=options

– SEQUENCE=%variable

– SET_ALL_CONTEXT

– SET_IDENTITY_CONTEXT

– SYNCPOINT or NO_SYNCPOINT

– USERIDENTIFIER=’value’

?%variable specifies option(s) of the MQPUT and MQPUT1 statements to
compile at evaluation time.

Usage If an MQPUT or MQPUT1 statement sends a message from a %variable,
image, or image list to WebSphere MQ, the data is first copied from the
%variable, image, or image list to the BUFFER area, and then copied to
WebSphere MQ.

MQPUT and MQPUT1 processing

When WebSphere MQ MQPUT or MQPUT1 is issued, WebSphere MQ:

• Copies the message from the user’s BUFFER area

• Returns a completion code and reason code (qualifies the completion code)

Irrespective of the completion code:

• $MQ_MESSAGE_LEN is set to the length of the message

• $BUFFER_POSITION is set to 1

If the completion code does not indicate successful completion, $STATUS is
set appropriately, and $STATUSD is set to the WebSphere MQ reason code.
User Language Statement Reference 77

Usage notes for options

• Options in common with the DEFINE QUEUE command and the OPEN
QUEUE statement inherit default values from the OPEN QUEUE
statement, which in turn inherits from the queue.

• You can specify the following identity context options only if you also
specify the SET_ALL_CONTEXT or SET_IDENTITY_CONTEXT option:

– ACCOUNTINGTOKEN

– APPLIDENTITYDATA

– USERIDENTIFIER

• You can specify the following origin context parameters only if you also
specify the SET_ALL_CONTEXT option:

– APPLORIGINDATA

– PUTAPPLNAME

– PUTAPPLTYPE

– PUTDATE

– PUTTIME

• If DESCRIPTOR=image is specified, the MQMD message descriptor is
returned, even if the MQPUT or MQPUT1 failed. However, if the MQPUT or
MQPUT1 failed, the contents of image might or might not be meaningful,
depending on the nature of the failure.

• On each MQPUT statement, the message context is set by specifying one
of the following, mutually exclusive options.

– DEFAULT_CONTEXT

– NO_CONTEXT

– PASS_ALL_CONTEXT

– PASS_IDENTITY_CONTEXT

– SET_ALL_CONTEXT

– SET_IDENTITY_CONTEXT

If none of the previous options is specified, WebSphere MQ applies its own
default, which is DEFAULT_CONTEXT. For more information on message
context see “Applying date and time-stamps to messages” on page 79.

Managing BUFFER area

If the message source is BUFFER area:

If… Then…

$BUFFER_USED=0 Operation returns $STATUS=26
78 Rocket Model 204 MQ/204 Reference

If the source is anything other than BUFFER area, the source size is
determined:

If the size of the user’s BUFFER area is less than the message length, the
existing BUFFER area is deleted and a new BUFFER area allocated, with a
size equal to the message length.

The message is copied from the source to the BUFFER area.

$BUFFER_USED is set to the message length.

Applying date and time-stamps to messages

Each WebSphere MQ message is associated with two origin context fields
called PUTDATE and PUTTIME, which act as a date-stamp and time-stamp,
respectively, when a message is posted to a queue.

When a message is put on a queue, these fields are usually filled in. Any
WebSphere MQ-enabled program issuing a WebSphere MQ MQPUT
statement can explicitly set values for these fields, or alternatively (and most
commonly), the values can be set by the WebSphere MQ queue manager. In
MQ/204, you explicitly set values for these fields by specifying the option
PUTDATE and/or PUTTIME on the MQPUT and MQPUT1 User Language
statements. The queue manager sets values for those fields, if you do no
specify those options.

When a message is received from a queue, the values of these fields that were
set by the message originator are passed in the WebSphere MQ message
descriptor, MQMD. In MQ/204, you can obtain a copy of the message
descriptor by specifying option DESCRIPTOR=imagname on the MQGET User
Language statement. The MQMD is not available to you, if you do not specify
this option.

BUFLEN=%bvar was not specified Message length is $BUFFER_USED

BUFLEN=%bvar was specified Message length is the minimum of
$BUFFER_USED and %lvar

If… Then…

For Size is…

String %variable Current length of the %variable

Image Maximum length of the image

Multiple images Sum of the individual image sizes

If BUFLEN=%bvar was… Message length is…

Not specified Source size

Specified Minimum of the source size and %lvar
User Language Statement Reference 79

If you decide to set or inspect the values of the PUTDATE and PUTTIME fields
in your own application, read the IBM manual WebSphere MQ Application
Programming Reference to understand the format of these fields when their
values are set by a WebSphere MQ queue manager. In particular, according to
this manual:

“Greenwich Mean Time (GMT) is used for the PutDate and PutTime fields,
subject to the system clock being set accurately to GMT. On OS/2, the
queue manager uses the TZ environment variable to calculate GMT.”

If you set PUTDATE and PUTTIME in your own applications, WebSphere MQ
lets you use any date or time format, any time zone, or even invalid values.
Rocket strongly recommends, however, that you adhere to the default format
used by WebSphere MQ.

Handling an outgoing message with an RFH2 header

Use the RFH2 option if you want the outgoing message to include an RFH2
header.

You can specify an image from which the header will be copied, or you can
specify BUFFER, in which case the RFH2 header must be at the start of the
BUFFER (position = 1), ahead of the data if that is also sourced from the
BUFFER.

• If the RFH2 keyword is present, the FORMAT field will be set to MQHRF2.

• If the RFH2 keyword is present, but there is no valid RFH header in the
specified image or buffer, the statement will fail with $STATUS = 47.

The RFH2 header, if specified, is taken from an image and placed in the buffer,
or, if BUFFER is specified, is presumed to be at position 1 in the buffer (this will
be checked).

• The data, if sourced from an image or %variable, is copied to the buffer so
that it immediately follows the RFH2.

• If the data is sourced from the buffer, it is presumed to follow the RFH2 (if
the RFH2 header is also sourced from the buffer), or is copied so that it
follows the RFH2 header (if the RFH2 header is sourced from an image).

In all cases where the RFH2 header is involved, the buffer after the operation
contains the RFH2 header followed by the data.
80 Rocket Model 204 MQ/204 Reference

Using RFH2 keyword with MQPUT

In all cases of PUT:

• $BUFFER_POSITION is ignored, and set to 1 after the operation.

• $BUFFER_USED is set to the length of RFH2 header, plus the length of
data.

• $MQ_MESSAGE_LEN set to length of data.

• MSGLEN set to length of data.

• $BUFFER_POSITION set to first byte of data beyond the RFH2 header.

MQPUT1 statement

Function Places one message on a queue that is not currently open. The MQPUT1
statement is a combination of OPEN QUEUE, MQPUT, and CLOSE QUEUE.
It is the most efficient way to put a single message on a queue.

Syntax MQPUT1 {(image [,image1]…) | %variable | ’string’

 | BUFFER | MQ_BUFFER}

 [ON] {%qvariable | entname

 | external_qmanager:external_queue} [option …]

Where • image, %variable, ’string’ , or BUFFER (formerly, and still accepted,
MQ_BUFFER) area specified contains the message data. (See “Queue
security processing” on page 15.)

PUT source RFH2 from image RFH2 from buffer

Data from
image or
%variable

The RFH2 is copied to the buffer. Then the
data is appended to the RFH2 header in
the buffer.

The beginning of the buffer is checked for
a valid RFH2 header.

The data is appended to the RFH2 header
in the buffer.

Data from
buffer

The data is copied downwards in the buffer
to make way for the RFH2 header, which is
then copied to the beginning of the buffer.

The RFH2 is assumed to precede the data
in the buffer.

The beginning of the buffer is checked for
a valid RFH2 header.

This message source… Specifies…

image To swap images in and process serially. You
can specify up to 10 images.

%variable Current value of variable.
User Language Statement Reference 81

• Queue to operate on is specified as:

• option is one or more of the options.

Options are the same as those for MQPUT with one addition: the
PASS_USER_CONTEXT option. See the list in “MQPUT statement” on
page 75.

Also, LOGICAL_ORDER is not a permitted option for MQPUT1.

MQPUT1 inherits options directly from the queue, because it does its own
open and is completely independent from the OPEN QUEUE statement.

Usage • The security considerations discussed in “Queue security processing” on
page 15 apply to MQPUT1 as well.

• If the queue named in an MQPUT1 statement is already open, the
statement is processed regardless; there is no error.

• On each MQPUT statement, the message context is set by specifying one
of the following, mutually exclusive options.

– DEFAULT_CONTEXT

– NO_CONTEXT

– PASS_ALL_CONTEXT

– PASS_IDENTITY_CONTEXT

– SET_ALL_CONTEXT

– SET_IDENTITY_CONTEXT

If none of the previous options is specified, WebSphere MQ applies its own
default, which is DEFAULT_CONTEXT. For more information on message
context see “Applying date and time-stamps to messages” on page 79.

’String’ Literal with quotation marks.

BUFFER (or MQ_BUFFER) area Message is preloaded in the Universal
Buffer area.

This message source… Specifies…

Queue as… Specifies...

%qvariable Queue name.

entname Literal without quotation marks.

external_qmanager:external_queue External name of a queue manager that
contains the remote queue to process
and the external name of the remote
queue.
82 Rocket Model 204 MQ/204 Reference

OPEN QUEUE statement

Function Opens a previously defined queue.

Syntax OPEN QUEUE {%variable | entname |

 external_qmanager:external_queue}

 [[DYNAMICQNAME=%variable | literal]

 [MODEL=%variable | literal]]

 [[option...] [?%variable...]]

Where • Queue to operate on is specified as:

• DYNAMICQNAME keyword value is the internal Model 204 name from a
DEFINE QUEUE command of a preallocated WebSphere MQ model queue
that was defined with the WebSphere MQ
MQQDT_PERMANENT_DYNAMIC or
MQQDT_TEMPORARY_DYNAMIC attribute. See “Local dynamic queue
support” on page 9.

You can specify a DYNAMICQNAME value in one of the following ways:

– Give the fully qualified name. It will be placed in the DYNAMICQNAME
field of the WebSphere MQ MQOD structure.

– Specify a prefix of less than 33 characters for the name, followed by an
asterisk (*). The queue manager generates the rest of the name.

For example, you might want each user to use a certain prefix, or you
might want to give a special security classification to queues with a
certain prefix in their name.

– Let the queue manager generate the full name. To use this method,
specify an asterisk (*) in the first character position of the DYNAMIC-
QNAME field.

You must specify the DYNAMICQNAME and MODEL keywords together,
otherwise MQ/204 issues the following message:

M204.2516: MQ/204 OPTION ERROR: options REQUIRE options

Queue as… Specifies...

%variable Queue name.

entname Literal without quotation marks.

external_qmanager:external_queue External name of a queue manager that
contains the remote queue to process
and the external name of the remote
queue.
User Language Statement Reference 83

• MODEL keyword value is the internal, Model 204 name of the model queue.

When you specify the MODEL keyword you must also specify the
DYNAMICQNAME keyword, otherwise MQ/204 issues the following
message:

M204.2516: MQ/204 OPTION ERROR: options REQUIRE options

• option is one or more of the following options; see Table 5-1 on page 87 for
a full discussion of each option:

– ACCEPT_TRUNCATED_MSG or NO_ACCEPT_TRUNCATED_MSG

– ALL_MSGS_AVAILABLE or NOT_ALL_MSGS_AVAILABLE (default)

– ALLOW_PASS_ALL_CONTEXT

– ALLOW _PASS_IDENTITY_CONTEXT

– ALLOW_SET_ALL_CONTEXT

– ALLOW_SET_IDENTITY_ONTEXT

– BROWSE

– CONTEXT

– EXPIRY

– FAIL_IF_QUIESCING or NO_FAIL_IF_QUIESCING

– FORMAT

– INPUT_AS_Q_DEF (default for local queues) or INPUT_EXCLUSIVE
or INPUT_SHARED

– LOGICAL_ORDER or NOT_LOGICAL_ORDER (default)

– MSGTYPE

– OUTPUT (default for remote queues)

– PASS_USER_CONTEXT

– PERSISTENT or NOT_PERSISTENT or PERSISTENCE_AS_Q_DEF

– PRIORITY or PRIORITY_AS_Q_DEF

– REPLY_QMGR

– REPLY_QUEUE

– REPORT

– SAVE_ALL_CONTEXT

– WAIT or NO_WAIT

– WAIT_TIME

• ?%variable specifies option(s) of the OPEN QUEUE statement to compile
at evaluation time. For more discussion of ?%variables, see “Using runtime
options” on page 11.
84 Rocket Model 204 MQ/204 Reference

Usage The queue manager for the queue must already be started. If the queue is the
first queue that the user is opening for a queue manager, then MQ/204 attempts
to connect the user to the queue manager prior to opening the queue. This
statement performs a WebSphere MQ MQOPEN operation, and manages
connections to the queue managers as needed using MQCONN and MQDISC.

Simultaneous input and output are supported, as are browse and output.

MQ/204 OPEN statement and QUEUE keyword

MQ/204 has an upward compatibility issue that is caused by supporting the
keyword QUEUE on OPEN statements. If you have a Model 204 file or group
named QUEUE and you use the User Language OPEN statement with it, this
might conflict with the OPEN QUEUE statements, because the FILE and
GROUP keywords are optional on OPEN statements.

To address this issue, the parsing of OPEN statements identifies the case of a
file or group named QUEUE. If OPEN is followed by the keyword QUEUE, the
system looks ahead for a token following the word QUEUE:

Note: If the MQ/204 feature is not linked in, OPEN statement parsing is
unaffected.

Specifying a local dynamic queue name

The name of the model queue in the WebSphere MQ ObjDesc parameter is
replaced with the name of the local dynamic queue created when the call has
completed.

When a local dynamic queue is created via MQOPEN, Model 204 calls the
routines to set up control blocks as if the user had entered the DEFINE QUEUE
dynamic-queue command and is updated with the fully resolved name in the
instances where the local dynamic queue name ended with an asterisk.

When you issue an OPEN QUEUE statement that did not create the local
dynamic queue by referencing a model queue, a partially qualified name prefix
cannot compile.

Opening a remote queue

You can open a remote queue with only the remote queue default option,
OUTPUT, set. All other options are invalid.

If… The statement is assumed to be…

Token is found MQ/204 OPEN QUEUE statement.

No token is found after the word QUEUE OPEN for a file or group named
QUEUE.
User Language Statement Reference 85

Universal Buffer statements

The following statements that manage the size and contents of the Universal
Buffer are documented elsewhere:

• The MODIFY BUFFER statement, formerly MODIFY MQ_BUFFER, that
manages the size of the Universal Buffer and also keeps messages or
overwrites them with fill characters is documented in the Model 204 User
Language Manual.

• The READ IMAGE statement that reads data until the Universal Buffer is
exhausted is documented in the Model 204 User Language Manual.

• The WRITE IMAGE statement that loads data into the Universal Buffer prior
to a PUT operation that specifies BUFFER is documented in the Model 204
User Language Manual.
86 Rocket Model 204 MQ/204 Reference

5
MQ/204 Options for Commands
and Statements

In this chapter

• Overview

• MQ/204 options

Overview

The definition and activity of MQ/204 queue managers, queues, and messages
can be defined and changed using options. For review of how options are
changed and passed by MQ/204 statements and commands, see “Rules of
inheritance” on page 9.

MQ/204 options

The options in Table 5-1 apply to the commands and statements listed.

Note: You cannot use option=%variable in a DEFINE QUEUE command.

Table 5-1. Options for MQ/204 commands and statements

Option Purpose Discussion Can be set on…

ACCEPT_
TRUNCATED_MSG

If a message was truncated
because the target was too
small, removes it from the
queue; or, if browsing,
advances the browse
cursor.

Corresponds to the
WebSphere MQ option
MQGMO_ACCEPT_
TRUNCATED_MSG.

DEFINE QUEUE

MODIFY QUEUE

MQGET

OPEN QUEUE
MQ/204 Options for Commands and Statements 87

NO_ACCEPT_
TRUNCATED_MSG
(default)

Truncated message is not
removed from the queue;
the browse cursor is not
advanced.

This option is the alternate
to
ACCEPT_TRUNCATED_
MSG option.

DEFINE QUEUE

MODIFY QUEUE

MQGET

OPEN QUEUE

ACCOUNTINGTOKEN

=’value’

or =%variable

Sets the value of the
Accounting Token portion
of the identity context.

String from 1 to 32
characters long.

MQPUT

MQPUT1

ALL_MSGS_
AVAILABLE

Use on an MQGET call to
retrieve only messages
that belong to complete
groups, as well as
messages that do not
belong to a group.

DEFINE QUEUE
MODIFY QUEUE
MQGET
OPEN QUEUE

NOT_ALL_MSGS_AV
AILABLE (default)

Use on an MQGET call to
retrieve any message in
the queue, including partial
groups.

DEFINE QUEUE
MODIFY QUEUE
MQGET
OPEN QUEUE

ALLOW_PASS_ALL_
CONTEXT

Passes origin context
information on all
subsequent MQPUT calls.

Corresponds to
WebSphere MQ
MQOO_PASS_ALL_
CONTEXT.

Can be specified only if the
OUTPUT option is also
specified.

OPEN QUEUE

ALLOW _PASS_
IDENTITY_
CONTEXT

Passes identity context
information on all
subsequent MQPUT calls.

Corresponds to
WebSphere MQ
MQOO_PASS_IDENTITY
_
CONTEXT.

Can be specified only if the
OUTPUT option is also
specified.

OPEN QUEUE

ALLOW_SET_ALL_
CONTEXT

Sets origin context
information on all
subsequent MQPUT calls.

Corresponds to
WebSphere MQ
MQOO_SET_IDENTITY_
CONTEXT.

Can be specified only if the
OUTPUT option is also
specified.

OPEN QUEUE

Table 5-1. Options for MQ/204 commands and statements (continued)

Option Purpose Discussion Can be set on…
88 Rocket Model 204 MQ/204 Reference

ALLOW_SET_
IDENTITY_
CONTEXT

Sets identify context
information on all
subsequent MQPUT calls.

Corresponds to
WebSphere MQ
MQOO_SET_IDENTITY_
CONTEXT.

Can be specified only when
the OUTPUT option is also
specified.

OPEN QUEUE

APPLIDENTITYDATA
=’value’ or

=%variable

Sets the value of the
ApplIdentityData portion of
the identity context.

String from 1 to 32
characters long.

Defaults to blanks.

MQPUT

MQPUT1

APPLORIGINDATA
=’value’

or =%variable

Sets the value of the
ApplOriginData portion of
the origin context.

String from 1 to 4
characters long.

Defaults to blanks.

MQPUT

MQPUT1

BROWSE Examines messages
without removing them
from the queue.

Corresponds to
WebSphere MQ
MQOO_BROWSE.

Compatible with all other
access options.

OPEN QUEUE

BROWSE_FIRST First message is retrieved,
but not deleted from the
queue:

• If either MSGID or
CORRELID is
specified, the first
matching message on
the queue is browsed.

• If neither MSGID nor
CORRELID is
specified, then the first
message on the queue
is browsed.

Corresponds to
WebSphere MQ
MQGMO_BROWSE_FIRS
T; is mutually exclusive with
BROWSE_NEXT.

You can specify this option
only if the queue was
opened in browse mode.

MQGET

BROWSE_MSG_
UNDER_CURSOR

Reread the same message
again.

You would typically do this
to unlock a locked
message or vice versa.
See the LOCK and
UNLOCK options later in
this table.

MQGET

Table 5-1. Options for MQ/204 commands and statements (continued)

Option Purpose Discussion Can be set on…
MQ/204 Options for Commands and Statements 89

BROWSE_NEXT Next message, relative to
the current browse
position, is retrieved, but
not deleted from the queue:

• If either MSGID nor
CORRELID is
specified, the next
matching message on
the queue is browsed.

• If neither MSGID or
CORRELID is
specified, then the next
message on the queue
is browsed.

Corresponds to
WebSphere MQ
MQGMO_BROWSE_NEX
T; is mutually exclusive with
BROWSE_FIRST.

You can specify this option
only if the queue was
opened in browse mode.

MQGET

BUFLEN=n

or =%variable

Specifies the maximum
number of bytes to get or
put.

Resized according to size
of BUFFER (formerly and
still accepted
MQ_BUFFER) area.

MQGET

MQPUT

MQPUT1

CONTEXT=name

or =%variable

Passes name of a queue
entity from which context
information should be
passed.

Context can be passed
only from a queue that is
opened for input with the
SAVE_ALL_CONTEXT
option.

DEFINE QUEUE

MODIFY QUEUE

MQPUT

MQPUT1

OPEN QUEUE

CONVERT (default) Converts messages from
one system to another for
the convenience of the
recipient; from EBCDIC to
ASCII, for example.

Corresponds to
WebSphere MQ
MQGMO_CONVERT.

MQGET

CORRELID=’msgid ’

or =%variable

Value to place in the
correlation ID field of the
message. On a reply
message, the ID of the
request being replied to
(MQMD.MsgId) is often set
in this field. However, the
correlation ID might be set
on any message type.

String from 1 to 24
characters long containing
a correlation ID to use as
matching criterion.

Default is blanks.

Corresponds to
WebSphere MQ
MQMD.CorrelId.

You can specify the value
as a %variable.

MQGET

MQPUT

MQPUT1

Table 5-1. Options for MQ/204 commands and statements (continued)

Option Purpose Discussion Can be set on…
90 Rocket Model 204 MQ/204 Reference

DEFAULT_CONTEXT Message is put with the
default context information.

Corresponds to
WebSphere MQ option
MQPMO_DEFAULT_
CONTEXT.

Mutually exclusive with:

• NO_CONTEXT

• PASS_ALL_CONTEXT

• PASS_IDENTITY_
CONTEXT

• SET_ALL_CONTEXT

• SET_IDENTITY_
CONTEXT

MQPUT

MQPUT1

DELETE Deletes a permanent local
dynamic queue when there
are no more messages on
the queue and no
uncommitted MQGET or
MQPUT requests
outstanding.

Corresponds to
WebSphere MQ option
MQCO_DELETE.

CLOSE QUEUE

DELETE_PURGE Deletes a temporary local
dynamic queue and purges
all outstanding messages
and requests.

Corresponds to
WebSphere MQ option
MQCO_DELETE_PURGE.

CLOSE QUEUE

DESCRIPTOR=image
(optional)

Image in which to place the
message descriptor
(MQMD structure). (See
“MQPUT statement” on
page 75.)

A given application might
not need the message
descriptor. If the size of this
image is less than the size
of an MQMD, then the
MQMD is truncated.

MQGET

MQPUT

MQPUT1

DYNAMICQNAME

=name

or =%variable

Specifies the name of a
preallocated WebSphere
MQ model queue.

Must be set with the
MODEL option.

MQOPEN

EXPIRY=n

or =UNLIMITED

or =%variable

Expiration period of the
message in tenths of a
second.

Corresponds to
MQMD.Expiry field. The
default is UNLIMITED (no
expiration).

DEFINE QUEUE

MODIFY QUEUE

MQPUT

MQPUT1

OPEN QUEUE

Table 5-1. Options for MQ/204 commands and statements (continued)

Option Purpose Discussion Can be set on…
MQ/204 Options for Commands and Statements 91

FAIL_IF_QUIESCING Operation fails if the queue
manager is inactive.

Corresponds to the
WebSphere MQ
MQGMO_FAIL_IF_
QUIESCING option.

DEFINE QUEUE

MODIFY QUEUE

MQGET

MQPUT

MQPUT1

OPEN QUEUE

NO_FAIL_IF_
QUIESCING
(default)

Operation waits if the
queue manager is inactive.

This option is the alternate
to FAIL_IF_QUIESCING
option.

DEFINE QUEUE

MODIFY QUEUE

MQGET

MQPUT

MQPUT1

OPEN QUEUE

FEEDBACK=NONE
(default)

or =n

or =%variable

Feedback (or reason code)
that accompanies a
REPORT message.

This value is used only on a
REPORT. Valid values are:

• NONE

• Integers between
MQFB_APPL_FIRST
(65536) and
MQFB_APPL_LAST
(999999999)

• %variable

Corresponds to
WebSphere MQ
MQMD.Feedback.

MQPUT

MQPUT1

FORMAT=format

or =%variable

Name of the conversion
exit set.

String of 1 to 8 characters.

Conversion exit is invoked
when the received
message uses a different
character set or number
format than those specified
in the message descriptor.

Corresponds to
WebSphere MQ
MQMD.Format field.

There is no default
conversion exit set.

DEFINE QUEUE

MODIFY QUEUE

MQPUT

MQPUT1

OPEN QUEUE

Table 5-1. Options for MQ/204 commands and statements (continued)

Option Purpose Discussion Can be set on…
92 Rocket Model 204 MQ/204 Reference

GROUPID The GROUPID is a 24-byte
field that you specify when
writing messages that
belong to a group. You
must specify GROUPID as
a null string (or spaces) on
the first message of any
group.

For MQGET, MQPUT, and
MQPUT1 calls, the group
identifier of the message is
returned in the MQMD, not
in the GROUPID field,
which is always an input
field only.

On an MQGET call, this is
an input field when
MATCH_GROUP_ID is
specified.

MQGET
MQPUT
MQPUT1

GSTATUS
= [' ’ | 'G' | 'L']

The one-byte GSTATUS
field determines whether
the message is part of a
group. The possible values
are:

• ’G’ (all messages in a
group except the last
or only one)

• ’L’ (the last or only
logical message in a
group)

• Space or null (the
message is not in a
group)

On MQGET operations,
this is an output %variable.
If you are writing messages
that belong to a group but
are not in logical order, set
this to ’L’ for the message
that has the highest
sequence number.

The default, for MQPUT
and MQPUT1 operations,
is null—the message does
not form part of a group.

MQGET
MQPUT
MQPUT1

INPUT_AS_Q_DEF
(default for local
queues)

Gets messages with
shared or exclusive access
based on the default
selected when the queue
was created.

Corresponds to
WebSphere MQ
MQOO_INPUT_
AS_Q_DEF.

Mutually exclusive with:

• INPUT_EXCLUSIVE

• INPUT_SHARED

• BROWSE

OPEN QUEUE

INPUT_EXCLUSIVE Gets messages and
deletes them from the
queue, with exclusive
access to the queue.

Corresponds to
WebSphere MQ
MQOO_INPUT_EXCLUSI
VE.

Mutually exclusive with:

• BROWSE

• INPUT_AS_Q_DEF

• INPUT_EXCLUSIVE

OPEN QUEUE

Table 5-1. Options for MQ/204 commands and statements (continued)

Option Purpose Discussion Can be set on…
MQ/204 Options for Commands and Statements 93

INPUT_SHARED Gets messages and
deletes them from the
queue, with shared access
to the queue.

Corresponds to
WebSphere MQ
MQOO_INPUT_SHARED.

Mutually exclusive with:

• BROWSE

• INPUT_AS_Q_DEF

• INPUT_EXCLUSIVE

OPEN QUEUE

LOCK LOCK lets you browse a
queue and lock the current
message so that other
threads do not see it.

The default is not to lock
messages while browsing
them.

MQGET

UNLOCK UNLOCK lets you remove
a lock from a previously-
locked message.

When you specify
UNLOCK, the message
itself is not returned, it is
just unlocked.

MQGET

LOGICAL_ORDER Write one group at a time
and write messages in
sequential order, starting
at 1.

This is the simpler way of
writing a group of
messages. However, it is
not the default.

DEFINE QUEUE
MODIFY QUEUE
MQGET
MQPUT
OPEN QUEUE

NOT_LOGICAL_
ORDER (default)

This option gives you more
control over the writing of
groups, but requires that
you specify SEQUENCE
and GROUPID for each
message.

You can also use this
setting for messages that
are not a group.

DEFINE QUEUE
MODIFY QUEUE
MQGET
MQPUT
MQPUT1
OPEN QUEUE

MARK_SKIP_
BACKOUT

Messages taken from the
queue under syncpoint
control are not placed back
on the queue if the user or
the Online issues an
MQBACK.

Messages are placed back
on the queue, if the
MQBACK is issued by the
WebSphere MQ system
software.

Corresponds to
WebSphere MQ
MQGMO_MARK_SKIP_
BACKOUT.

This option can be useful to
prevent get, error, back out
loops. See “Messages that
cause errors” on page 36.

MQGET

MATCH_CORREL_ID
(default)

Retrieve messages that
match the specified
CORRELID.

If CORRELID is not
specified, this option is
ignored.

MQGET

Table 5-1. Options for MQ/204 commands and statements (continued)

Option Purpose Discussion Can be set on…
94 Rocket Model 204 MQ/204 Reference

NOT_MATCH_
CORREL_ID

Retrieve any message in
the queue, if CORRELID is
specified.

MQGET

MATCH_MSG_
GROUP_ID

Retrieve messages that
match the specified
GROUPID.

The queue must be
indexed by GROUPID.

MQGET

MATCH_MSG_ID
(default)

Retrieve messages that
match the specified
MSGID.

If MSGID is not specified,
this option is ignored.

MQGET

NOT_MATCH_
MSG_ID

Retrieve any message in
the queue, if MSGID is
specified.

MQGET

MATCH_MSG_
SEQ_NUMBER

Retrieve the message that
matches SEQUENCE for
the current group. If there is
no current group, the only
valid value of SEQUENCE
is 1.

The queue must be
indexed by GROUPID.

MQGET

MATCH_MSG_
TOKEN

Use this to retrieve
messages that match the
specified MSGTOKEN

The queue must be
indexed by MSGTOKEN.

MQGET

MODEL=name

or =%variable

Specifies the internal,
Model 204 name of the
local dynamic queue.

Must be set in the same
statement with the
DYNAMICQNAME option.

MQOPEN

MSG_UNDER_
CURSOR

Removes the message
under the current browse
position from the queue (a
real MQGET).

Corresponds to
WebSphere MQ
MQGMO_MSG_UNDER_
CURSOR.

Specify only if the queue is
in both browse and input
modes: cannot be
specified with
BROWSE_FIRST or
BROWSE_NEXT.

MQGET

Table 5-1. Options for MQ/204 commands and statements (continued)

Option Purpose Discussion Can be set on…
MQ/204 Options for Commands and Statements 95

MSGID=’msgid ’

or =%variable

Message identifier to use
as matching criterion.

Value is either a %variable
or a string from 1-24
characters that:

• You enter

or

• Queue manager
automatically
generates

Corresponds to
WebSphere MQ
MQMD.MsgId.

MQGET

MQPUT

MQPUT1

MSGLEN=%variable Specifies an output
variable in which to return
the actual message length.

Returned message length
is less in the event of
truncation.

MQGET

MSGTOKEN You can select messages
by 16-byte message token
(MSGTOKEN) by
specifying this field as an
input field on MQGET
statements with
MATCH_MSG_TOKEN.

This is also an output field,
retrieving the message
token that was assigned by
the queue manager. (On
the MQGET call, it can also
be an input field, if
MATCH_MSG_TOKEN is
specified.

MQGET
MQPUT
MQPUT1

Table 5-1. Options for MQ/204 commands and statements (continued)

Option Purpose Discussion Can be set on…
96 Rocket Model 204 MQ/204 Reference

MSGTYPE
=DATAGRAM (default)

or =REPLY

or =REPORT

or =REQUEST

or =%variable

or = application-
defined numeric value

Specifies the type of
message;
sets the MQMD.MsgType.

Types specified by
keyword are:

• DATAGRAM, a simple
message that needs
no reply; corresponds
to WebSphere MQ
MQMT_DATAGRAM
constant.

• REPLY, a response to
REQUEST;
corresponds to
WebSphere MQ
MQMT_REPLY
constant.

• REPORT, a message
that signifies an error
condition or exception
that is often requested
in the report field of
another message;
corresponds to
WebSphere MQ
MQMT_REPORT
constant.

• REQUEST, a message
that requires a reply;
corresponds to
WebSphere MQ
MQMT_REQUEST
constant.

DEFINE QUEUE

MODIFY QUEUE

MQPUT

MQPUT1

OPEN QUEUE

NEW_CORREL_ID This option on the MQPUT
statement tells the queue
manager to generate a new
correlation ID for the
message.

The CORRELID option
should not be specified
with this option, because
the queue manager
generates a unique
correlation identifier, rather
than taking it from the
CORRELID option.

MQPUT
MQPUT1

Table 5-1. Options for MQ/204 commands and statements (continued)

Option Purpose Discussion Can be set on…
MQ/204 Options for Commands and Statements 97

NO_CONTEXT Message is placed in the
queue without any context
information.

Corresponds to
WebSphere MQ option
MQPMO_NO_CONTEXT.

Mutually exclusive with:

• DEFAULT_CONTEXT

• PASS_ALL_CONTEXT

• PASS_IDENTITY_
CONTEXT

• SET_ALL_CONTEXT

• SET_IDENTITY_
CONTEXT

MQPUT

MQPUT1

NO_CONVERT Specifies to turn off
MQGMO_CONVERT.

Used in error-handling
code to remove messages
that did not convert from
within the User Language
application and are now
stuck on the queue.

See “Removing messages
that do not convert” on
page 36.

MQGET

OUTPUT
(default for remote
queues)

Puts messages. Corresponds to
WebSphere MQ option
MQOO_OUTPUT.

OPEN QUEUE

PASS_ALL_
CONTEXT

All context information is
passed through from an
input queue.

Corresponds to the
WebSphere MQ option
MQPMO_PASS_ALL_
CONTEXT.

Mutually exclusive with:

• DEFAULT_CONTEXT

• NO_CONTEXT

• PASS_IDENTITY_
CONTEXT

• SET_ALL_CONTEXT

• SET_IDENTITY_
CONTEXT

MQPUT

MQPUT1

Table 5-1. Options for MQ/204 commands and statements (continued)

Option Purpose Discussion Can be set on…
98 Rocket Model 204 MQ/204 Reference

PASS_IDENTITY_
CONTEXT

Identity context information
is passed through from an
input queue.

Corresponds to the
WebSphere MQ option
MQPMO_PASS_IDENTIT
Y_CONTEXT.

Mutually exclusive with:

• DEFAULT_CONTEXT

• NO_CONTEXT

• PASS_ALL_CONTEXT

• SET_ALL_CONTEXT

• SET_IDENTITY_
CONTEXT

MQPUT

MQPUT1

PASS_USER_
CONTEXT

Passes user context from
the queue identified in the
CONTEXT parameter.

UserIdentifier field value
from the last MQGET is
passed along with the
ALTERNATE_
USER_AUTHORITY
option. The queue is
opened according to the
authority granted.

MQPUT1

OPEN QUEUE

PERSISTENT Persistent message that
survives a restart of the
queue manager.

Corresponds to the
WebSphere MQ option
MQPER_
PERSISTENT of the field
MQMD.Persistence.

This option is an alternate
to NOT_PERSISTENT and
PERSISTENCE_AS_Q_D
EF.

DEFINE QUEUE

MODIFY QUEUE

MQPUT

MQPUT1

OPEN QUEUE

NOT_PERSISTENT Message that does not
survive restart of the queue
manager.

Corresponds to the
WebSphere MQ option
MQPER_NOT_
PERSISTENT of the field
MQMD.Persistence.

This option is an alternate
to PERSISTENT and
PERSISTENCE_AS_Q_D
EF.

DEFINE QUEUE

MODIFY QUEUE

MQPUT

MQPUT1

OPEN QUEUE

PERSISTENCE_AS_
Q_DEF
(default)

Persistence of the
message defaults to the
persistence selected when
the queue was defined.

Corresponds to the
WebSphere MQ option
PERSISTENCE_AS_
Q_DEF of the field
MQMD.Persistence.

This option is tan alternate
to PERSISTENT and
NOT_PERSISTENT.

DEFINE QUEUE

MODIFY QUEUE

MQPUT

MQPUT1

OPEN QUEUE

Table 5-1. Options for MQ/204 commands and statements (continued)

Option Purpose Discussion Can be set on…
MQ/204 Options for Commands and Statements 99

PRIORITY=n

or PRIORITY_AS_Q_
DEF
(default)

or =%variable

Priority of the message in
the range from 0 to 9; zero
is the lowest priority.

Default is priority for the
queue object as defined
within WebSphere MQ.

Corresponds to
MQMD.Priority field in a
WebSphere MQ control
block.

DEFINE QUEUE

MODIFY QUEUE

MQPUT

MQPUT1

OPEN QUEUE

PUTAPPLNAME
=’value’

or =%variable

Sets the value of the
PutApplName portion of
the origin context.

String from 1 to 28
characters long.

MQPUT

MQPUT1

PUTAPPLTYPE
=keyword

or =number

or =%variable

Identifies the type of
application that put the
message.

If the value is a %variable
or a number, it must be
within the range -1 to
999,999,999 inclusive.

Otherwise, the value is one
of the following keywords:

• AIX

• CICS

• CICS_VSE

• DEFAULT

• DOS

• GUARDIAN

• IMS

• IMS_BRIDGE

• z/OS

• NO_CONTEXT

• OS2

• OS400

• QMGR

• UNIX

• UNKNOWN

• VMS

• VOS

• WINDOWS

• WINDOWS_NT

• XCF

MQPUT

MQPUT1

PUTDATE=value

or =%variable

Sets the value of the
PutDate portion of the
origin context.

String from 1 to 8
characters long.

MQPUT

MQPUT1

Table 5-1. Options for MQ/204 commands and statements (continued)

Option Purpose Discussion Can be set on…
100 Rocket Model 204 MQ/204 Reference

PUTTIME=value

or =%variable

Sets the value of the
PutTime portion of the
origin context.

String from 1 to 8
characters long.

MQPUT

MQPUT1

REPLY_QMGR
=name

or =%variable

Name of queue manager
for remote queue to place
the reply in.

Used only on
MSGTYPE=REQUEST

No default.

Sets the value of
MQMD.ReplyToMGR.

String of up to 48
characters.

DEFINE QUEUE

MODIFY QUEUE

MQPUT

MQPUT1

OPEN QUEUE

REPLY_QUEUE
=name

or =%variable

Name of the queue to place
the reply in.

Used only on a
MSGTYPE=REQUEST.

Default is the name of the
queue that contained the
request.

Sets the values of
MQMD.ReplyToQ.

Set the value of
MQMD.ReplyToMGR if no
REPLY_QMGR option is
indicated.

String of up to 48
characters.

DEFINE QUEUE

MODIFY QUEUE

MQPUT

MQPUT1

OPEN QUEUE

Table 5-1. Options for MQ/204 commands and statements (continued)

Option Purpose Discussion Can be set on…
MQ/204 Options for Commands and Statements 101

REPORT
=option+option…

or =n

or =%variable (numeric
values only)

Report options, which
specify:

• What conditions you
want reported

• How to construct the
report message

Options are keywords that
you combine with plus
signs. The available option
keywords are the MQRO_
options.

• Keywords cannot be
specified in a
%variable.

• Keywords are
specified without the
MQRO_ prefix.

Alternatively, you can
specify a numeric value,
either as a literal or a
%variable.

See “Additional
documentation” in the
Preface for the
recommended WebSphere
MQ documentation, which
describes the acceptable
numeric values.

No default report options
are passed.

DEFINE QUEUE

MODIFY QUEUE

MQPUT

MQPUT1

OPEN QUEUE

SAVE_ALL_
CONTEXT

Saves context information
when messages are
retrieved with MQGET.

Corresponds to
WebSphere MQ
MQOO_SAVE_ALL_
CONTEXT.

Can be specified only if one
of the INPUT_* options is
also specified.

OPEN QUEUE

Table 5-1. Options for MQ/204 commands and statements (continued)

Option Purpose Discussion Can be set on…
102 Rocket Model 204 MQ/204 Reference

SEQUENCE
=%variable

For messages that are part
of a group and
NOT_LOGICAL_ORDER
is specified (or is the
default), this number
specifies the logical
position of the message
within the group, which
need not be the physical
sequence in which the
messages are written. The
logical first message is
message sequence 1.

On MQGET operations,
this is an input variable
used only with the
MATCH_MSG_SEQ_
NUMBER option.

On MQPUT and MQPUT1
operations, this is an input
variable that specifies the
logical position within the
group of the message
being written.

This is a fixed %variable.
To retrieve the logical
sequence of a message in
an MQGET operation, use
the DESCRIPTOR option
and get the sequence
number from the returned
MQMD image.

When using SEQUENCE
with the
MATCH_MSG_SEQ_
NUMBER option, you can
only match a SEQUENCE
greater than 1 within the
current group. You cannot,
for example, do a repeated
BROWSE_NEXT with
SEQUENCE 2 to jump
from one group to another.

MQGET
MQPUT
MQPUT1

SET_ALL_CONTEXT Origin context information
is set with values from the
APPLORIGINDATA,
PUTAPPLNAME,
PUTAPPLTYPE,
PUTDATE, and PUTTIME
options.

Corresponds to the
WebSphere MQ option
MQPMO_SET_ALL_
CONTEXT.

Mutually exclusive with:

• DEFAULT_CONTEXT

• NO_CONTEXT

• PASS_ALL_CONTEXT

• PASS_IDENTITY_
CONTEXT

• SET_IDENTITY_
CONTEXT

MQPUT

MQPUT1

Table 5-1. Options for MQ/204 commands and statements (continued)

Option Purpose Discussion Can be set on…
MQ/204 Options for Commands and Statements 103

SET_IDENTITY_
CONTEXT

Identity context information
is set with values from the
ACCOUNTINGTOKEN,
APPLIDENTITYDATA, and
USERIDENTIFIER fields.

Corresponds to the
WebSphere MQ option
MQPMO_SET
_IDENTITY_CONTEXT.

Mutually exclusive with:

• DEFAULT_CONTEXT

• NO_CONTEXT

• PASS_ALL_CONTEXT

• PASS_IDENTITY_
CONTEXT

• SET_ALL_CONTEXT

MQPUT

MQPUT1

SYNCPOINT
(default)

Get and put operations are
under transaction control.

Operates on updates for
MQCMIT and MQBACK.

DEFINE QUEUE

MODIFY QUEUE

MQGET

MQPUT

MQPUT1

OPEN QUEUE

NO_SYNCPOINT Get and put operations are
not under transaction
control.

Does not operate on
updates for MQCMIT and
MQBACK.

DEFINE QUEUE

MODIFY QUEUE

MQGET

MQPUT

MQPUT1

OPEN QUEUE

SYNCPOINT_IF_
PERSISTENT

This option on the MQGET
statement works like
SYNCPOINT, but is
effective only for persistent
messages.

MQGET

USERIDENTIFIER
=’value’

or =%variable

Sets the value of the User
identifier portion of the
identity context.

String from 1 to 12
characters long.

MQPUT

MQPUT1

WAIT Wait, if a message is
unavailable.

You can displace a wait.

This option is the alternate
to NO_WAIT option.

The maximum waiting time
is specified with
WAIT_TIME.

DEFINE QUEUE

MODIFY QUEUE

MQGET

OPEN QUEUE

Table 5-1. Options for MQ/204 commands and statements (continued)

Option Purpose Discussion Can be set on…
104 Rocket Model 204 MQ/204 Reference

NO_WAIT
(default)

Do not wait, if a message is
unavailable.

Corresponds to the
WebSphere MQ option
MQGMO_NO_WAIT.

DEFINE QUEUE

MODIFY QUEUE

MQGET

OPEN QUEUE

WAIT_TIME=n

or =UNLIMITED

or =%variable

Maximum time to wait, in
milliseconds, if the WAIT
option is specified.

Default is 0 milliseconds.

To wait forever, specify a
value of UNLIMITED,
which corresponds to
WebSphere MQ
MQWI_UNLIMITED.

DEFINE QUEUE

MODIFY QUEUE

MQGET

OPEN QUEUE

Table 5-1. Options for MQ/204 commands and statements (continued)

Option Purpose Discussion Can be set on…
MQ/204 Options for Commands and Statements 105

106 Rocket Model 204 MQ/204 Reference

6
MQ/204 Functions Reference

In this chapter

• Overview

• $BUFFER_ functions

• $MQ_FIND_QUEUE_ENTITY function

• $MQ_FIND_QUEUEMANAGER_ENTITY function

• $MQ_LAST_QUEUEMANAGER_ENTITY function

• $MQ_MESSAGE_LEN function

• $MQ_PENDING_UPDATES function

• $MQ_QUEUENAME function

• $MQ_QUEUEMANAGERNAME function

Overview

Functions make it possible to reply to requests that specify a reply to queue
and/or a reply to queue manager, and to aid in manipulating the MQ/204
entities. Since Model 204 entity names do not have to match their external or
system names, the following functions enable the user to find out the external
name of a Model 204 message queue or queue manager.

$BUFFER_ functions

These User Language functions return the current position, size, and use of the
Universal Buffer for individual users:

• $BUFFER_POSITION (formerly $MQ_BUFFER_POSITION)
MQ/204 Functions Reference 107

• $BUFFER_SIZE (formerly $MQ_BUFFER_SIZE)

• $BUFFER_USED (formerly $MQ_BUFFER_USED)

Code that uses the former function names with the MQ prefix has been retained
for compatibility with previous versions.

For more information about these functions, refer to the Rocket Model 204 User
Language Manual.

$MQ_FIND_QUEUE_ENTITY function

Function Returns the name of the queue entity that is associated with the reply to queue
and reply to queue manager. You can use this function when a request
message specifies a reply to queue manager and a reply to queue; these are
fields in the MQMD data structure.

Alias $MQ_FIND_Q_ENTITY

Syntax $MQ_FIND_QUEUE_ENTITY(extqueueman | %qvariable,

 extqueue | %variable)

Where • extqueueman or %qvariable is the external name of a queue manager,
which can be a literal string enclosed in single quotation marks or a
%qvariable.

• extqueue or %variable is the external name of a queue. which can be a
literal string enclosed in single quotation marks or a %variable.

Example %QUEUENAME = $MQ_FIND_QUEUE_ENTITY('extqueueman', 'ext-
queue'
IF (%QUEUENAME = '') THEN
 PRINT 'SOME ERROR MESSAGE'
 or
%QUEUENAME = $MQ_FIND_Q_ENTITY('extqueueman', 'extqueue')
IF (%QUEUENAME = '') THEN
 PRINT 'SOME ERROR MESSAGE'

Usage $MQ_FIND_QUEUE_ENTITY function determines if a queue is defined for the
specified queue and queue manager combination:

• If a queue is defined, $MQ_FIND_QUEUE_ENTITY returns its name.

• If no such queue has been defined, then a 0-length string is returned.

• If multiple queue entities are mapped to the specified combination, the first
one found that the user is accessing is returned, based on searching the
entities in the order that they were defined.
108 Rocket Model 204 MQ/204 Reference

• If the user is not accessing any of them, then the first matching entity found
is returned, based on searching them in the order of definition.

$MQ_FIND_QUEUEMANAGER_ENTITY function

Function Returns the name of the queue manager entity. Because the queue manager
names are defined by the system manager, they might not be known to the
application developers, who need to know them to code them on MQCMIT or
MQBACK.

Alias $MQ_FIND_QM_ENTITY

Syntax $MQ_FIND_QUEUEMANAGER_ENTITY(queueentname | %variable)

Where queueentname or %variable is the name of a queue to look up, as a literal string
enclosed in single quotation marks or a %variable.

Example %QUEUEMANAGERNAME=$MQ_FIND_QUEUEMANAGER_ENTITY('queueent-
name')

or

%QUEUEMANAGERNAME=$MQ_FIND_QM_ENTITY('queueentname')

Usage The name of the specified queue entity is looked up:

• If the queue does not exist, a null string is returned.

• If the queue exists, the name of its queue manager is returned.

$MQ_LAST_QUEUEMANAGER_ENTITY function

Function Returns the name of the queue manager most recently accessed.

Alias $MQ_LAST_QM_ENTITY

Syntax $MQ_LAST_QUEUEMANAGER_ENTITY

Example %QUEUEMANAGERNAME=$MQ_LAST_QUEUEMANAGER_ENTITY

or

%QUEUEMANAGERNAME=$MQ_LAST_QM_ENTITY

Usage If no queue manager has yet been accessed, the function returns a 0-length
string. This is most useful after a statement that processes multiple queue
managers returns an error (MQCMIT, MQBACK).
MQ/204 Functions Reference 109

$MQ_MESSAGE_LEN function

Function Returns the actual message length of the last MQGET from or MQPUT or
MQPUT1 to WebSphere MQ.

Syntax $MQ_MESSAGE_LEN

Where Message length can be greater than the size of the BUFFER area (if an
MQGET returned a truncated message). This is the same as the value returned
in MSGLEN=%mvar on an MQGET statement.

Usage Although WRITE IMAGE ON BUFFER changes the contents of the BUFFER
area, it does not involve an interaction with WebSphere MQ, and hence does
not change the value of $MQ_MESSAGE_LEN.

$MQ_PENDING_UPDATES function

Function Returns a Boolean result indicating whether a user has made SYNCPOINT
updates (controlled by MQBACK and MQCMIT statements) to a specified
queue manager.

Syntax IF ($MQ_PENDING_UPDATES('queuemanentname' | %variable))
THEN

or

IF ($MQ_PENDING_UPDATES) THEN

Where queuemanentname is a literal string enclosed in single quotation marks or
%variable specifying the name of a queue manager.

If… Value of $MQ_MESSAGE_LEN is…

MQ/204 is not linked in -1

At the start of a request -1

At the start of a request running in an
APSY subsystem with
AUTOCOMMIT=NO

Same as the value at the end of the
previous request (or -1, if this is the first
request).

Before a user performs any MQGET or
MQPUT/MQPUT1

-1

MQGET or MQPUT/MQPUT1 Set by the statement.

Other statements or commands Unchanged.

Last message failed 0
110 Rocket Model 204 MQ/204 Reference

Usage If the user has done syncpoint gets or puts that have not yet been committed
or backed out, the function returns true (1), otherwise it returns false (0).

If no argument is specified, then the Boolean result returned covers all queue
managers being accessed.

$MQ_QUEUENAME function

Function Returns the external queue name for a specified queue.

Alias $MQ_QNAME

Syntax %REALNAME=$MQ_QUEUENAME('queueentname' | %variable)

Where queueentname is a literal string enclosed in single quotation marks or a
%variable

Usage The $MQ_QUEUENAME function can be useful for:

• Reporting errors

• Retrieving the queue name that WebSphere MQ assigned to a local
dynamic queue when the input dynamicq ends with an asterisk (*) for the
OPEN QUEUE statement.

$MQ_QUEUEMANAGERNAME function

Function Returns the external queue manager name for a specified queue manager.

Alias $MQ_QMNAME(’queuemanentname’ | %variable)

Syntax %REALNAME=$MQ_QUEUEMANAGERNAME(’queuemanentname’ | %vari-
able)

Where queuemanentname is a literal string enclosed in single quotation marks or a
%variable.

Usage The $MQ_QUEUEMANAGERNAME function can be useful for error reporting.
MQ/204 Functions Reference 111

112 Rocket Model 204 MQ/204 Reference

7
Configuring MQ/204 for a
Windows NT PC

In this chapter

• Overview

• Installation considerations

• Configuring WebSphere MQ queue manager to MQ/204

• Configuring WebSphere MQ for Windows

• Configuring TCP/IP

• Initializing WebSphere MQ for Windows

• Putting data on a queue

• Retrieving data from a queue

• Trace information

Overview

You can use the sample files described in this chapter to successfully test the
connections between a Windows NT PC running WebSphere MQ for Windows
and z/OS platform running MQ/204 and Model 204.
Configuring MQ/204 for a Windows NT PC 113

Preinstallation

The files are part of the MQ/204 product distribution. Relocate the following files
to the following locations:

Making the files site-specific

The sample files that accompany this chapter use:

• CSQ5 as the identifier for the mainframe z/OS queue manager name. If the
queue manager on the mainframe at your site has a different name, change
all occurrences of CSQ5 to your site’s queue manager name in each
sample file.

• PLUTO as the name of the MQ/204 queue manager on the NT machine.
Rocket recommends that you accept this name to avoid changing it in many
places.

Installation considerations

Configuration requirements

The following software must be installed:

• Model 204 V5.1 or higher

• MQ/204

• WebSphere MQ for z/OS

• WebSphere MQ for Windows, on a Windows NT computer

Starting WebSphere MQ queue manager

You must include the MQ.SCSQAUTH library in the STEPLIB concatenation to
successfully start the queue manager. When //STEPLIB does not include a

File name Put the file in…

MQz/OS.TXT

MQNTMQD.TXT C:\Program Files \ WebSphere MQ for Windows \
Createmq.mqd

MQNTTST.TXT C:\Program Files \ WebSphere MQ for Windows \ Samples

MQULINIT.TXT

MQULPUT.TXT

MQULGET.TXT

z/OSTRACT.TXT
114 Rocket Model 204 MQ/204 Reference

reference to the IBM WebSphere MQ libraries, Model 204 displays the following
messages:

M204.2506: function USER=user-id COMP_CODE=completion-
code RSN_CODE=reason-code QM=queue-manager EXT_QM=exter-
nal-name TASK=mqtask-address

M204.2543: CONNECTION TO QUEUEMANAGER queue-manager-name
FAILED, REASON CODE reason-code

M204.2544: UNABLE TO START QUEUEMANAGER

Concatenate the following libraries with your STEPLIB when executing the
ONLINE Model 204 module.

JCL to concatenate libraries

//STEPLIB DD DISP=SHR,DSN=Your-favorite-V4.2-LOADLIB
// DD DSN=MQSERIES.SCSQAUTH,DISP=SHR
// DD DSN=MQSERIES.SCSQANLE,DISP=SHR

CCAIN settings for MQ/204

MQINTASK=010,MQMXTASK=150,MQWAIT=300000

CSQUTIL sample JCL

//* PARM='QUEUE MANAGER NAME'
//CSQUTIL EXEC PGM=CSQUTIL,PARM='CSQ5'
//STEPLIB DD DSN=MQSERIES.SCSQAUTH,DISP=SHR
// DD DSN=MQSERIES.SCSQANLE,DISP=SHR
//SYSPRINT DD SYSOUT=W
//OUTDEF DD SYSOUT=S
//SYSIN DD *
COMMAND DDNAME(SYSIN2) MAKEDEF(OUTDEF)
/*
//SYSIN2 DD *
DELETE QLOCAL (CLIQUE1) PURGE
DEFINE QLOCAL (CLIQUE1)
/*

Configuring WebSphere MQ queue manager to MQ/204

The CSQ5.z/OS file contains the sample z/OS definitions (internal reference
MQz/OS PLUTO) for:

• QLOCAL (’CSQ5.XMIT.TO.PLUTO’)

• PROCESS (’CSQ5.PLUTO.PROCESS’)

• QREMOTE (’PLUTO.BOUND.QUEUE.REMOTE’)
Configuring MQ/204 for a Windows NT PC 115

• CHANNEL (’CSQ5.TO.PLUTO’)

• CHANNEL (’PLUTO.TO.CSQ5’)

• QLOCAL (’CSQ5.BOUND.QUEUE.LOCAL’)

You must run these DEFINE commands against that queue manager on the
z/OS instance of WebSphere MQ that Model 204 connects to.

DEFINE commands for MQ/204 queue manager

**
* MQz/OS PLUTO - You might want to make this file a member *
* of the CSQ5.SCSQPROC PDS named PLUTO. *
**
* *
* You must change the value of the CONNAME argument in the *
* DEFINE CHANNEL commands to use the TCP/IP address and port or *
* if the default port is 1414, the IP address only, on which the *
* PC NT WebSphere MQ for Windows queue manager is running. *
* *
**
* *
* Run these DEFINE commands against queue manager CSQ5. *
* *
**
DEFINE QLOCAL(’CSQ5.XMIT.TO.PLUTO’) REPLACE +
 DESCR(’Local transmission queue’) +
 PUT(ENABLED) GET(ENABLED) TRIGGER TRIGTYPE(FIRST) +
 USAGE(XMITQ) INITQ(’SYSTEM.CHANNEL.INITQ’) +
 PROCESS(’CSQ5.PLUTO.PROCESS’)
DEFINE PROCESS(’CSQ5.PLUTO.PROCESS’) REPLACE +
 DESCR(’Process for sending messages to PLUTO’) +
 APPLTYPE(z/OS) +
 APPLICID(’CSQX START’) +
 USERDATA(’CSQ5.TO.PLUTO’) +
 ENVRDATA(’ ’)
DEFINE QREMOTE(’PLUTO.BOUND.QUEUE.REMOTE’) REPLACE +
 DESCR(’Remote queue defined on CSQ5’) +
 DEFPSIST(YES) +
 RNAME(’PLUTO.BOUND.QUEUE.LOCAL’) +
 RQMNAME(’PLUTO’) +
 XMITQ(’CSQ5.XMIT.TO.PLUTO’)
DEFINE CHANNEL (’CSQ5.TO.PLUTO’) CHLTYPE(SDR) TRPTYPE(TCP) +
 XMITQ(’CSQ5.XMIT.TO.PLUTO’) +
 CONNAME(’<PUT PC NT TCPIP ADDRESS HERE>’) +
 DISCINT(0) +
 DESCR(’Sender channel for messages to queue manager PLUTO’) +
 REPLACE
DEFINE CHANNEL (’PLUTO.TO.CSQ5’) CHLTYPE(RCVR) TRPTYPE(TCP) +
116 Rocket Model 204 MQ/204 Reference

 DESCR(’Requester channel for messages from queue manager PLUTO’)
+
 REPLACE
DEFINE QLOCAL(’CSQ5.BOUND.QUEUE.LOCAL’) REPLACE +
 DESCR(’Local queue’) +
 DEFPSIST(YES) +
 SHARE

Where You supply the site-specific PC NT TCP/IP address.

Configuring WebSphere MQ for Windows

The PLUTO.MQD file contains the sample NT definitions for:

ComponentType=QueueManager
Name=PLUTO
ComponentType=ChannelGroup
Name=PLUTOGroup
QueueManagerName=PLUTO
ComponentType=Connection
Name=PLUTO_Connection
QueueManagerName=PLUTO
ChannelGroupName=PLUTOGroup

After you make a backup copy of the "C:\Program Files\WebSphere MQ for
Windows\Createmq.mqd" PC file, replace its contents with those of this file.
When you reboot the NT machine, WebSphere MQ for Windows notices the
new Createmq.mqd file, and prompts you by asking if you want to replace the-
earlier-version.

Select the YES option.

File to run WebSphere MQ

**
* MQNTMQD PLUTO - Place this file on PC as *
* C:\Program Files\WebSphere MQ for Windows\Createmq.mqd *
* after saving a copy of the original file. *
* Reboot the PC to cause WebSphere MQ to run the file. *
**
[Component_1]
ComponentType=QueueManager
Name=PLUTO
Description=Queue manager to communicate with CSQ5
LoadUserMQSC_1=\Program Files\WebSphere MQ for Windows\Sam-
ples\PLUTO.tst
Replace=yes

[Component_2]
ComponentType=ChannelGroup
Configuring MQ/204 for a Windows NT PC 117

Name=PLUTOGroup
Description=Channel group to communicate with CSQ5
QueueManagerName=PLUTO
AllUserChannels=no
StartListener=yes
Channel_1=PLUTO.TO.CSQ5
Channel_2=CSQ5.TO.PLUTO
Replace=yes

[Component_3]
ComponentType=Connection
Name=PLUTO_Connection
Description=Connection to use on PLUTO machine
QueueManagerName=PLUTO
HasChannelGroup=yes
ChannelGroupName=PLUTOGroup
Replace=yes
Autostart=yes

Configuring TCP/IP

The PLUTO.TST file contains the sample NT definitions (internal reference
MQNTTST PLUTO) for:

• QLOCAL (’PLUTO.XMIT.TO.CSQ5’)

• QREMOTE (’CSQ5.BOUND.QUEUE.REMOTE’)

• CHANNEL (’PLUTO.TO.CSQ5’)

• CHANNEL (’CSQ5.TO.PLUTO’)

• QLOCAL (’PLUTO.BOUND.QUEUE.LOCAL’)

These definitions must be run on the NT WebSphere MQ for Windows that you
are testing. You may find it convenient to place this file in the "C:\Program
Files\WebSphere MQ for Windows\Samples” directory where other samples
are found. Start the PLUTO queue manager and run this MQSC file; the PC is
then be ready to conduct the test.

Usage notes When the test application places messages on a queue on PLUTO, the NT PC,
you must place the messages on the queue,
CSQ5.BOUND.QUEUE.REMOTE. WebSphere MQ for Windows moves the
message to the PLUTO.XMIT.TO.CSQ5 queue for transmission.

After WebSphere MQ transmits the message, you can find it on the z/OS side
CSQ5.BOUND.QUEUE.LOCAL queue. You can use the User Language
program MQGET to retrieve this message. (See “Retrieving data from a queue”
on page 121.)
118 Rocket Model 204 MQ/204 Reference

In the following test application you need to supply only your IP address in the
first DEFINE CHANNEL command that includes the CONNAME argument.

DEFINE commands for TCP/IP

**
* MQNTTTST PLUTO - You may find it convenient to place this file *
* in the "C:\Program Files\WebSphere MQ for Windows\Samples" *
* directory where other samples are found. *
* *
* You must change the value of the CONNAME argument in the *
* channel definition (DEFINE CHANNEL commands) to use the TCP/IP *
* address and port, or if the default port is 1414, the IP *
* address only, on which the CSQ5 queue manager is running. *
**
* *
* Run this sample MQSC file from queue manager PLUTO. *
* *
**
DEFINE QLOCAL(’PLUTO.XMIT.TO.CSQ5’) REPLACE +
 PUT(ENABLED) GET(ENABLED) +
 INITQ(’SYSTEM.CHANNEL.INITQ’) +
 DESCR(’Local transmission to CSQ5 queue’) +
 USAGE(XMITQ)
DEFINE QREMOTE(’CSQ5.BOUND.QUEUE.REMOTE’) REPLACE +
 DESCR(’Remote queue defined on PLUTO’) +
 DEFPSIST(YES) +
 RNAME(’CSQ5.BOUND.QUEUE.LOCAL’) +
 RQMNAME(’CSQ5’) +
 XMITQ(’PLUTO.XMIT.TO.CSQ5’)
DEFINE CHANNEL (’PLUTO.TO.CSQ5’) CHLTYPE(SDR) TRPTYPE(TCP) +
 XMITQ(’PLUTO.XMIT.TO.CSQ5’) +
 CONNAME(’<PUT CSQ5 TCPIP ADDRESS HERE>’) +
 DESCR(’Sender channel for messages to queue manager CSQ5’) +
 REPLACE
DEFINE CHANNEL (’CSQ5.TO.PLUTO’) CHLTYPE(RCVR) TRPTYPE(TCP) +
 DESCR(’Receiver channel for messages from queue manager CSQ5’) +
 REPLACE
DEFINE QLOCAL(’PLUTO.BOUND.QUEUE.LOCAL’) REPLACE +
 DESCR(’Local queue for messages from CSQ5’) +
 DEFPSIST(YES) +
 SHARE

Where You supply the CSQ5 TCP/IP address in the previous DEFINE CHANNEL
command.
Configuring MQ/204 for a Windows NT PC 119

Initializing WebSphere MQ for Windows

The ULINIT.TXT file contains the sample definitions (internal reference
MQULINIT PLUTO) and the test.

* MQPUT TEST TO COMMUNICATE WITH WebSphere MQ for Windows on PLUTO
* INITIALIZATION
DEFINE QM WELQM5 WITH SCOPE=SYSTEM QMNAME=CSQ5
DEFINE Q CREMOTE WITH SCOPE=SYSTEM QM=WELQM5
QNAME=PLUTO.BOUND.QUEUE.REMOTE
DEFINE Q CLOCAL WITH SCOPE=SYSTEM QM=WELQM5
QNAME=CSQ5.BOUND.QUEUE.LOCAL
START QM WELQM5
MONITOR MQ SUBTASKS

Putting data on a queue

The ULPUT.TXT file contains a sample MQPUT program that reads a
procedure, translates it into ASCII, and places the messages on the
PLUTO.BOUND.QUEUE.REMOTE.

From there, WebSphere MQ moves them to the (’CSQ5.XMIT.TO.PLUTO’)
queue for transmission. When they arrive on PLUTO, the messages are in the
PLUTO.BOUND.QUEUE.LOCAL. You can browse the messages using the
AMQSBCGW.EXE sample application, or you can retrieve them using the
AMQSGETW.EXEC application.

These applications are found in the C:\Program Files\WebSphere MQ for
Windows\Samples\C\ directory

* MQPUT TEST TO COMMUNICATE WITH WebSphere MQ for Windows on PLUTO
BEGIN
%PROC IS STRING LEN 255
PRINT ’ENTER FILENAME AND PROCEDURE NAME TO XMIT TO PLUTO’
%FILE = ’??FILENAME’
%PROC = ’??PROCNAME’
SUBROUTINE PRINT.STATUS:
IF $STATUS NE 0 OR $STATUSD NE 0 THEN
 PRINT ’$STATUS/$STATUSD = ’ WITH $STATUS WITH ’/’ WITH $STATUSD
 SKIP 1 LINE
END IF
RETURN
END SUBROUTINE
*** MAINLINE ***
%TEXT IS STRING LEN 100
PRINT ’ABOUT TO OPEN QUEUE ...’
OPEN QUEUE CREMOTE OUTPUT
CALL PRINT.STATUS
* READ THE PROC AND SEND EACH LINE TO PLUTO
PRINT ’ATTEMPTING TO SEND ’ %PROC ’ IN ’ %FILE
 %CTLID = $RDPROC(’OPEN’,%FILE,%PROC)
120 Rocket Model 204 MQ/204 Reference

 IF $STATUS THEN
 JUMP TO BAILOUT
 END IF
 %RDSTAT = $STATUS
 REPEAT WHILE NOT %RDSTAT
 %TEXT = $RDPROC(’GET’,%CTLID)
 %RDSTAT = $STATUS

*PRINT ’ABOUT TO ADD FOLLOWING MESSAGE TO THE QUEUE’
 PRINT %TEXT
* TRANSLATE TO ASCII FOR NT PC
 %TEXT = $ASCII(%TEXT)
 MQPUT %TEXT ON CREMOTE
 CALL PRINT.STATUS
 END REPEAT
BAILOUT:
PRINT ’COMMITING’
 MQCMIT
CALL PRINT.STATUS

PRINT ’ABOUT TO CLOSE QUEUE ...’
CLOSE QUEUE CREMOTE
CALL PRINT.STATUS

END

Retrieving data from a queue

The ULGET.TXT file contains a sample MQGET program that obtains
messages from the CSQ5.BOUND.QUEUE.LOCAL queue, translates them
from ASCII to EBCDIC, and displays them on the terminal or writes them to the
USE data set.

To test getting messages on the CSQ5.BOUND.QUEUE.LOCAL queue, run
the AMQSPUTW.EXE application in the C:\Program Files\WebSphere MQ for
Windows\Samples\C\ directory on the NT PC. (If you do this locally, you are not
testing the configuration.) With this program put one or more messages on the
CSQ5.BOUND.QUEUE.REMOTE. From here, WebSphere MQ moves the
messages to the (’PLUTO.XMIT.TO.CSQ5’) queue for transmission.

When they arrive on the CSQ5 z/OS side, run this MQGET User Language
procedure to retrieve them.

* MQGET TEST TO COMMUNICATE WITH WebSphere MQ for Windows on PLUTO
BEGIN
%TEXT IS STRING LEN 255
SUBROUTINE PRINT.STATUS
IF $STATUS NE 0 OR $STATUSD NE 0 THEN
 PRINT ’$STATUS/$STATUSD = ’ WITH $STATUS WITH ’/’ WITH $STATUSD
 SKIP 1 LINE
END IF
Configuring MQ/204 for a Windows NT PC 121

RETURN
END SUBROUTINE

*** MAINLINE ***
PRINT ’ABOUT TO OPEN QUEUE ...’
OPEN QUEUE CLOCAL
CALL PRINT.STATUS
PRINT ’ATTEMPT TO RETRIEVE MESSAGE’
%TEXT = ’NO TEXT RECEIVED’
 MQGET %TEXT FROM CLOCAL NO_WAIT
 CALL PRINT.STATUS
* text is in ascii
 PRINT $TIME WITH ’ MQGET: ’ WITH $EBCDIC(%TEXT)

PRINT ’ABOUT TO CLOSE QUEUE ...’
CLOSE QUEUE CLOCAL
CALL PRINT.STATUS
END

Trace information

The TRACE.TXT file contains information about the WebSphere MQ
debugging information available on the mainframe in the Model 204 internal
trace table.

Trace facility

The following levels of trace information are added to the wrap-around trace
table, if one is allocated, and the MQ/204 trace options are activated. The trace
options are:

RESET DBGBIT X’00001700’

which represents the separate bits:

Hex
setting

Trace
option Traces

X’01’ MQ Information identical to that included in the RK audit trail
lines. Trace entries are made for all WebSphere MQ API
calls, including MQCONN and MQDISC.

X’02’ MQM MQMD (message descriptor) control block. Trace entries are
made only for MQGET, MQPUT, and MQPUT1.

X’04’ MQO For MQPUT and MQPUT1, traces the MQPMO (put
message options) control block. For MQGET, traces the
MQGMO (get message options) control block.

X’08’ MQD First 100 bytes of message data. Trace entries are made
only for MQGET, MQPUT, and MQPUT1.
122 Rocket Model 204 MQ/204 Reference

How to use the trace table in Model 204

Setting the TRACESIZ parameter

Set the TRACESIZ parameter in the CCAIN stream of the ONLINE or
BATCH204 job. The value of the TRACESIZ parameter determines how many
bytes of storage to allocate to the wrap around trace table:

TRACESIZ=50000,
X

Activating the trace

Choose the proper *ZAP command for the version of Model 204 that you are
running to customize this component.

* BY Default, when Model 204 is delivered, the trace facility is dis-
abled
* These *ZAPs enable tracing
* STAR ZAP FOR VERSION V4.2.0
* ZAP PARM X’4C94’ X’E55C’ X’E4B4’
* STAR ZAP FOR VERSION V4.1.1
* ZAP PARM X’47D4’ X’E55C’ X’E4B4’
* STAR ZAP FOR VERSION V4.1.0
* ZAP PARM X’4520’ X’E55C’ X’E4B4’
RESET DBGBIT X’00001700’
RESET TRACEFLG 2
* Now that TRACESIZ, TRACEFLG and DBGBIT are set, MQ/204 Trace entries
should
* appear in the trace table.

Viewing the trace table

Once you think that you have entries in the trace table, you can examine them.
The following examples illustrate viewing the trace table using *LOOK and
*SNAP:

* Look at entries 5 through 10 in the trace table
*LOOK TRACETBL 5 10

* Look at all the entries in the trace table
*LOOK TRACETBL 0 9999 (however many 9’s needed at your
site)

X’10’ MQA Entire message. Trace entries are made only for MQGET,
MQPUT, and MQPUT1.

Hex
setting

Trace
option Traces
Configuring MQ/204 for a Windows NT PC 123

* The *SNAP command prints the entire trace table
* in the formatted snap
*SNAP

* Star zap for version 4.2.1
*’Zap parm X’4C8C’ x ’E55C’ x ’E4B4’
124 Rocket Model 204 MQ/204 Reference

Index
Symbols

$BUFFER_ functions
purpose of 107

$MQ_FIND_QUEUE_ENTITY function
replying to queues and queue managers 108

$MQ_FIND_QUEUEMANAGER_ENTITY function
identifying queue manager 109

$MQ_LAST_QUEUEMANAGER_ENTITY function
most recently accessed queue manager 109

$MQ_LASTQUEUEMANAGER_ENTITY function
tracing commit processing 68
tracing MQBACK processing 67

$MQ_PENDING_UPDATES function
tracking SYNCPOINT updates 110

$MQ_QUEUEMANAGERNAME function
identifying external queue manager 111

$MQ_QUEUENAME function 111
saving permanent local dynamic queues 37

$STATUS function
and ?%variables 12
error code values 43

$STATUSD
WebSphere MQ 73

$STATUSD function
WebSphere MQ reason codes 49

%Variables
substitution errors 48

?%Variables
and $STATUS codes 12
CLOSE QUEUE statement 65
definition of 11
MQGET statement 70
OPEN QUEUE statement 84
rules governing use 12

A

ACCEPT_TRUNCATED_MSG option
definition of 87
handling truncated data 73
OPEN QUEUE statement 84

AccountingToken context field
identifying original application or user 18

ACCOUNTINGTOKEN option 78, 88
$STATUSD value 49

ACF2 security package
MQOO_ALTERNATE_USER_AUTHORITY

option 16
ALL_MSGS_AVAILABLE option 88

retrieving grouped messages 30
ALLOW _PASS_IDENTIFY_CONTEXT option

definition of 88
OPEN QUEUE statement 84

ALLOW_PASS_ALL_CONTEXT option
definition of 88
OPEN QUEUE statement 84

ALLOW_SET_ALL_CONTEXT option
definition of 88
OPEN QUEUE statement 84

ALLOW_SET_IDENTITY_CONTEXT option
definition of 89
OPEN QUEUE statement 84

ApplIdentityData context field
tracking application of origin 18

APPLIDENTITYDATA option
$STATUSD value 50
definition of 89
MQPUT statement 78

ApplOrginData context field
tracking message origin 19

APPLORIGINDATA option
$STATUSD value 50
definition of 89
MQPUT statement 78

Architecture
subtasks issuing calls 4

ASCII
converting from EBCDIC 17

ASPY subsystems
and BUFFER area 72

Audit trail
debugging MQ/204 51
RK lines 51

B

Back out loops
Index 125

definition of 36
Backing out

WebSphere MQ transactions 67
BROWSE option

definition of 89
OPEN QUEUE statement 84

BROWSE options 29
BROWSE_FIRST option

definition of 89
MQGET default behavior 72

BROWSE_MSG_UNDER_CURSOR option 89
BROWSE_NEXT option

definition of 90
browsing groups of messages

examples 31
BUFFER area

and APSY subsystems 72
managing 78
sizing as a destination 69
transferring messages 71
user thread allocation 71

Buffers
for message data 18
for MQ/204 17

BUFLEN option
$STATUSD value 50
message byte specified 90

BUMP QUEUEMANAGER command
disconnecting users 54

Bumping users
BUMP QUEUEMANAGER command 54
in MQ/204 15

C

CLOSE QUEUE statement
closing open queues 64
definition of and syntax 64
delete options 64
meaning of $STATUS return codes 44
MQCLOSE call 65
MQDISC call 65
reusing dynamic queue names 9

Committing updates
MQCMIT statement 68
specifying queues 68

Context information 18
passing 19
setting the origin 88

CONTEXT option 90
$STATUSD value 49
OPEN QUEUE statement 84

Conversion exits

invoking 16
MQGET processing 16

CONVERT option
definition of 90

CORREL_ID
correlation ID 28

CORRELID index type
retrieving messages with correlation identifier

25
CORRELID option

$STATUSD value 49
definition of 90

CSA storage release
delayed by WebSphere MQ 3

D

Data conversion
character string and numeric 17
handling problems 36
not done 16
suppressing 17

Debugging aids
audit trail 51

Default queue manager
definition of 8

DEFAULT_CONTEXT option
definition of 91

DEFINE QUEUE command
reference description 54

DEFINE QUEUEMANAGER command
definition of and syntax 56
identifying an

WebSphere MQ queue manager 56
DELETE option

CLOSE QUEUE statement 64
description of 91
permanent local dynamic queues 64

Delete options
CLOSE QUEUE statement 64

DELETE_PURGE option
CLOSE QUEUE statement 65
description of 91
temporary local dynamic queues 65

DESCRIPTOR option
$STATUSD value 50
described 91

Drain state
putting a queue manager in 61

dynamic local queues
defining 56
security considerations 56

Dynamic queues
126 Rocket Model 204 MQ/204 Reference

reusing names 9, 65
Dynamic queues. See Local dynamic queues
DYNAMICQNAME option

definition of 91

E

EBCDIC 17
End-of-request processing

closing open queues 21
Entity names

using 8
error handling

in MQ/204 73
error messages

MQGET 73
Errors

handling with $STATUS and $STATUSD return
codes 43

EXPIRY option
$STATUSD value 49
definition of 91
OPEN QUEUE statement 84

F

FAIL_IF_QUIESCING option
definition of 92
OPEN QUEUE statement 84

FEEDBACK option 92
$STATUSD value 49

FORMAT option
$STATUSD value 49
definition of 92
OPEN QUEUE statement 84

FSCB (full-screen buffer table) 20
and images 20

G

GROUP_ID
group identifier 29

GROUPID index type
retrieving messages with group identifier 26

GROUPID option 93
setting for not-in-logical-order 24

GSTATUS option 93
set for not-in-logical-order 24
setting for logical groups 23

GTBL (Global table)
and images 20

I

IBM
WebSphere MQSeries 22

IBM documentation
recommended manuals 22

Identity context
definition of 18

Image lists
alternative to 20
using to manage space 20

Images
definition of 20

index type not defined
retrieving messages sequentially 26

index types
CORRELID 25
for queues 25
GROUPID 26
LOGICAL_ORDER option 27
MSGID 26
MSGTOKEN 26
no type defined 26
NOT_LOGICAL_ORDER option 26
search criteria combinations 26
with message groups 26

INPUT_AS_Q_DEF option
definition of 93
OPEN QUEUE statement 84

INPUT_EXCLUSIVE option
definition of 93
OPEN QUEUE statement 84

INPUT_SHARED option
definition of 94
OPEN QUEUE statement 84

J

Java Message Service (JMS)
supporting 22

Java messages 33

L

Local dynamic queues
creating in MQ/204 9
deleting 65
MODEL keyword 84
MQGET statements 72
MQRC_Q_DELETED reason code 72
naming 85
trying to access after deleting 65
WebSphere MQ model queues 9
Index 127

Local queues
definition of 6

LOCK option
discussed 94
for browsing 29

LOGICAL_ORDER option
discussed 94
messages grouped in logical order 23

Logically deleted queues
handling messages 37
OPEN QUEUE statement 37

M

Managing BUFFER area
setting options and function values 78

MARK_SKIP_BACKOUT option
definition of 94
getting messages out of queue 36

MATCH options
CORREL_ID 28
GROUP_ID 29
locating messages with 25
MSG_ID 29
MSG_SEQ_NUMBER 29
MSG_TOKEN 29

MATCH_CORREL_ID option
reference 94

MATCH_MSG_GROUP_ID option
reference 95

MATCH_MSG_ID option
reference 95

MATCH_MSG_SEQ_NUMBER option
reference 95

MATCH_MSG_TOKEN option
reference 95

MAXLEN option
$STATUSD value 50

Message context information
definition of 18
inheritance rules 19
passing 19

Message data
as a source 20
as a target 20
buffers for 18
truncated 73

message groups 23
an example of browsing 32
option setting when not grouped 25
retrieving not-in-a-group 28
using index types 26
writing in logical order example 31

writing out of sequence example 31
Messages

applying a date-stamp 19
applying a time-stamp 19
delivered to a local queue 6
determining destination 6
how WebSphere MQ handles 7
size affecting WebSphere MQ performance 38
tracking the origin of 19

messages
index type of queue 25
updating descriptor for Version 2 example 34

messages grouped
in logical order 23
not in logical order 24

Model 204
required version 3

Model 204 commands
DEFINE QUEUE 54

MODEL keyword
accessing local dynamic queues 84

Model queues
as a template queue 9
creating local dynamic queues 9

MODIFY QUEUE statement
reference description 57, 66

MODIFY QUEUE statements
meaning of $STATUS return codes 44

MONITOR MQ command 58
definition of and syntax 59
examples 59
monitoring MQ/204 58

MQ Message Descriptor
upward incompatibility 36

MQ/204
$STATUS and $STATUSD values 43
application example 38
backing out transactions 21
definition of function 2
described 6
handling restarts and cancellations 20
Model 204 support 7
obtaining entity names 107
options and WebSphere MQ 10
parameters 13
passing options 9
performance tuning 38
security 15
use of parameters 13
using z/OS system subtasks 13

MQ/204 applications
and remote queues 8
monitoring 58

MQ/204 buffer
128 Rocket Model 204 MQ/204 Reference

sizing 20
MQ/204 commands

BUMP QUEUEMANAGER 54
DEFINE QUEUEMANAGER 56
MONITOR MQ 58
START QUEUEMANAGER 60
STOP QUEUEMANAGER 61

MQ/204 options
ALL_MSGS_AVAILABLE 88
BROWSE_MSG_UNDER_CURSOR 89
GROUPID 93
GSTATUS 93
LOCK 94
LOGICAL_ORDER 94
MATCH_CORREL_ID 94
MATCH_MSG_GROUP_ID 95
MATCH_MSG_ID 95
MATCH_MSG_SEQ_NUMBER 95
MATCH_MSG_TOKEN 95
MSGTOKEN 96
NEW_CORREL_ID 97
NOT_ALL_MSGS_AVAILABLE 88
NOT_LOGICAL_ORDER 94
NOT_MATCH_CORREL_ID 95
NOT_MATCH_MSG_ID 95
SEQUENCE 103
UNLOCK 94

MQ/204 parameters
MQBUFSZ 14
MQDEQMAN 13
MQINTASK 14
MQMXTASK 14
MQWAIT 14
using 13

MQ/204 requirements
minimum version of Model 204 22

MQ/204 sites
increase in STBL 38

MQ/204 statements
CLOSE QUEUE 64
MQBACK 67
MQCMIT 68
MQGET 68
MQPUT 75
MQPUT1 81
OPEN QUEUE 83

MQAPI waits
types of 51
WebSphere MQ 15

MQAPICNT statistic name
total number of waits 52

MQAPITIM statistic name
elapsed time 52

MQBACK statement

backing out WebSphere MQ transactions 67
definition of 8
meaning of $STATUS return codes 44
specifying queues 67
syntax and usage 67
tracing processing 67

MQBUFSZ parameter
definition of 14
message data buffer 18

MQCCSI_Q_MGR option
character set identifier 17

MQCLOSE call
CLOSE QUEUE statement 65

MQCMIT statement
committing WebSphere MQ transactions 68
definition and syntax 68
definition of 8
meaning of $STATUS return codes 44

MQCONN calls
audit trail 51

MQDEQMAN parameter
definition of 13
used to name queues 7

MQDISC call
CLOSE QUEUE statement 65

MQDISC calls
audit trail 51

MQENC_NATIVE option
native number encoding 17

MQGET statement
?%variable 70
analyzing 70
definition of 8
deleting local dynamic queues 72
error handling 73
logically deleted queues 37
MATCH options 25
meaning of $STATUS return codes 44
MQMD message descriptor 72
REH2 keyword 33
retrieving messages 68
runtime options 70
syntax and usage 68
wait options 52

MQGET statement options
BROWSE_MSG_UNDER_CURSOR 29

MQGMO_CONVERT option
invoking a conversion exit 16
MQGET default 17

MQGWT wait type 52
used for 15

MQGWTCNT statistic name
tracking waits for MQGET statements 52

MQGWTSUC statistic name
Index 129

tracking returned messages 52
MQGWTTIM statistic name

tracking elapsed time 52
MQGWTTSP statistic name 52
MQINTASK parameter

definition of 14
minimum value 13
subtask pool size 4

MQMD message descriptor
and MQGET failure 72
MQPUT and MQPUT1 failure 78

MQMD Version 2
upward incompatibility 36

MQMD.CodedCharSetId field
WebSphere MQ storage formats 16

MQMD.Encoding field 16
specifying character set 16

MQMD.Format field
EBCDIC to ASCII conversion 17

MQMD.ReplyToQ WebSphere MQ field
naming a remote queue 11

MQMD.ReplyToQMgr WebSphere MQ field
owner of a remote queue 11

MQMXTASK parameter
definition of 14
subtask pool size 4

MQOPEN calls
creating local dynamic queues 9

MQPUT and MQPUT1 statements
failure 78

MQPUT statement
definition of 8
logically deleted queues 37
meaning of $STATUS return codes 44
putting messages on queues 75
REH2 keyword 33
syntax and usage 75

MQPUT1 statement
definition of 8
meaning of $STATUS return codes 44
message groups 24
putting a single message on queue efficiently 81
queue already opened 82
syntax and usage 81

MQQDT_PERMANENT_DYNAMIC attribute
creating local dynamic permanent queues 9

MQQDT_TEMPORARY_DYNAMIC attribute
creating local dynamic temporary queues 9

MQRC_Q_DELETED reason code
deleting local dynamic queues 65, 72
MQGET statements 72

MQRFH
Version 2 22

MQRFH2

image format 35
MQRFH2 header

Java 22
MQTSK wait type 52
MQWAIT parameter

definition of 14
MSG_ID

message identifier 29
MSG_SEQ_NUMBER

message sequence number 29
MSG_TOKEN

message identifier 29
MSG_UNDER_CURSOR option 95
MSGCTL parameter in User Language

controlling RK lines 51
MSGID index type

retrieving messages with identifier 26
MSGID option 96

$STATUSD value 49
MSGLEN option

$STATUSD value 50
MSGTOKEN index type

retrieving messages with message token 26
MSGTOKEN option

compared to message ID 30
reference 96

MSGTYPE option 97
$STATUSD value 49
OPEN QUEUE statement 84

N

Native number encoding
MQENC_NATIVE option 17
specifying MQENC_NATIVE value 17

NEW_CORREL_ID option
compared to CORRELID option 30
reference 97

NO_ACCEPT_TRUNCATED_MSG option
definition of 88
OPEN QUEUE statement 84

NO_CONTEXT option 98
NO_CONVERT option

definition of 98
taking messages out of queue 36

NO_FAIL_IF_QUIESCING option
definition of 92
OPEN QUEUE statement 84

NO_SYNCPOINT option
definition of 104

NO_WAIT option
definition of 105
OPEN QUEUE statement 84
130 Rocket Model 204 MQ/204 Reference

NOT_ALL_MSGS_AVAILABLE option 88
NOT_LOGICAL_ORDER option

reference 94
set for not-in-logical-order 24

NOT_MATCH_CORREL_ID option
reference 95

NOT_MATCH_MSG_ID option
reference 95

NOT_PERSISTENT option
definition of 99
OPEN QUEUE statement 84

O

OPEN QUEUE statement
?%variable 84
authorization check 65
definition of and syntax 83
logically deleted queues 37
meaning of $STATUS return codes 44
opening a queue 83
runtime options 84

Options
changing on the fly 10
for reply queue managers 11
for reply queues 11
modifying 10
passing to MQPUT1 statement 82
rules of inheritance 10

options
for browsing 29

Origin context
definition of 19

OUTPUT option
definition of 98
OPEN QUEUE statement 84

P

Parameters
for MQ/204 13
MQBUFSZ 14
MQDEQMAN 13
MQINTASK 14
MQMXTASK 14
MQWAIT 14
use in MQ/204 13

PASS_ALL_CONTEXT option
definition of 98

PASS_IDENTITY_CONTEXT option
definition of 99

PASS_USER_CONTEXT option
definition of 84, 99

MQPUT1 statement 82
passing security authorization 16

Passing context information
rules of inheritance 19

Performance considerations
delayed CSA storage release by WebSphere

MQ 3
tuning MQ/204 38

Permanent local dynamic queues
DELETE option 64
deleted with uncommitted updates 37
saving 37

PERSISTENCE_AS_Q_DEF option
definition of 99
OPEN QUEUE statement 84

PERSISTENT option
definition of 99
OPEN QUEUE statement 84

Placing messages
MQGET statement 70

Placing single messages
MQPUT1 statement 81

POSITION option
$STATUSD value 50

PRIORITY option
$STATUSD value 49
definition of 100
OPEN QUEUE statement 84

PRIORITY_AS_Q_DEF option
definition of 100
OPEN QUEUE statement 84

PutApplName context field
Identify application placing message 19

PUTAPPLNAME option
$STATUSD value 50
definition of 100
MQPUT statement 78

PutApplType context field
identifying type of message application 19

PUTAPPLTYPE option
$STATUSD value 49
definition of 100
MQPUT statement 78

PutDate context field
applying a date-stamp to a message 19

PUTDATE option 78, 100
$STATUSD value 50

PutTime context field
applying a time-stamp to a message 19

PUTTIME option
$STATUSD value 50
definition of 101
MQPUT statement 78
Index 131

Q

QRC_NAME_IN_USE reason code
logically deleted queues 37

QUEUE keyword
upward incompatibility 65, 85

Queue manager
and security 15
coded character set 17
defined first 57
definition of 4
freeing subtasks 6
multiple instances 3
replying to 15

Queue managers
$MQ_LAST_QUEUEMANAGER_ENTITY

function 109
$MQ_QUEUEMANAGERNAME function 111
character set identifier 17
identifying external name 111

Queue names
and message destination 6

Queues
backing out MQSeries transactions 67
end-of-request processing 21
logically deleting 37
making accessible 60
reusing names of dynamic queues 9, 65
rules for naming 7

queues
defining dynamic local queues 56
index types 25

Queues already open
MQPUT1 statement 82

R

READLEN item
image sizing 20

Reason codes
MQRC_Q_DELETED 65, 72
QRC_NAME_IN_USE 37

reason codes
$STATUSD 73

Remote queues
connection to source queue manager 6
defined locally 6
definition of 6
MQMD.ReplyToQ WebSphere MQ field 11
owner specified 11

Reply queue managers
$MQ_FIND_QUEUEMANAGER_ENTITY func-

tion 109

options for 11
resolved by WebSphere MQ 11
specifying explicitly 11

Reply queues
$MQ_FIND_QUEUE_ENTITY function 108
options for 11
specifying explicitly 11
specifying internal name only 11

REPLY_QMGR option
$STATUSD value 50
definition of 101
OPEN QUEUE statement 84

REPLY_QUEUE option
$STATUSD value 49
definition of 101
OPEN QUEUE statement 84

REPORT option
$STATUS value 50
definition of 102
OPEN QUEUE statement 84

Retrieving messages
MQGET statement 68

Return codes
%variable substitution errors 48
primary and secondary codes 43

RFH2 keyword
MQGET statement 33
MQPUT statement 33, 81
using with MQGET 75

RK lines
in the audit trail 51
unique message numbers 51

Rules
for ?%variables 12
for inheriting options 9
for named queues 7

Rules of inheritance
defining queue managers first 57
definition of 9
passing context information 19

Runtime options
as ?%variables 11
MQGET statement 70
OPEN QUEUE statement 84
rules governing use 12

S

SAVE_ALL_CONTEXT option
definition of 102
OPEN QUEUE statement 84

Saving permanent local dynamic queues
using $MQ_QUEUENAME function 37
132 Rocket Model 204 MQ/204 Reference

search criteria combinations
and index type(s) 26
in-logical-order 27
not-in-logical-order 26

Security
and Model 204 user ID 16
checking OPEN QUEUE authorization 65
in MQ/204 15
OPEN QUEUE processing 15
packages 16

Security Server (formerly RACF)
setting MQOO_ALTERNATE_USER_ AU-

THORITY option 16
SEQUENCE option

reference 103
set for not-in-logical-order 24

SET_ALL_CONTEXT option
definition of 103

SET_IDENTITY_CONTEXT option
definition of 104

Source queue manager
definition of 6

START QUEUEMANAGER command
making queues accessible 60

STBL increase
MQ control blocks 38

STOP QUEUEMANAGER command
putting a queue manager in drain state 61

Subsystems
leaving 21

Subtasks
allocating for MQ/204 5
allocation algorithm 5
management 14
pool of operating system 4
releasing 6
tuning MQ/204 38
various states 5

SYNCPOINT option
definition of 104

SYNCPOINT updates 21
MQBACK statement 67
tracking with $MQ_PENDING_UPDATES func-

tion 110
SYNCPOINT_IF_PERSISTENT option

compared to SYNCPOINT option 30
reference MQ/204 options

SYNCPOINT_IF_PERSISTENT 104
System requirements

minimum software versions 3

T

Target queue managers
definition of 6

Temporary local dynamic queues
closing 65
DELETE_PURGE option 65
deleted with unresolved units of work 37

Tracing
commit processing 68

Transaction back out
cancellations and restarts 21

Transferring
messages 71

Triggers
processing queues 15

Truncating messages
leaving on queue or browsing 73
when occurs 73

Two-phase commits
z/OS limitation 3

U

UBUFSZ parameter
tuning MQ/204 38

Units of work
deleting permanent local dynamic queues 37
temporary local dynamic queues 37

UNLOCK option
for browsing 29
reference 94

USE output
MONITOR MQ command 59

User Language
CLOSE statement 65
MQ/204 support 8
OPEN statement 85

User threads
BUFFER allocation 71

User-based security
and WebSphere MQ 15

UserIdentifier context field
identifying the original user 18

USERIDENTIFIER option 78
$STATUSD value 49

W

WAIT option
definition of 104
OPEN QUEUE statement 84

Wait types 51
Index 133

WAIT_TIME option
$STATUSD value 49
definition of 105
OPEN QUEUE statement 84

WebSphere MQ
and MQ/204 options 10
and user-based security 15
description of function 2
handling messages 7
local dynamic queues 9
model queues 9
reason codes 73
required version 3
resolving reply queue managers for MQ/204 11
specifying character set 16
storage formats 16
z/OS batch option 3

WebSphere MQ API calls
CompCode values 59
measuring throughput 52
MQGET and delete 72
reason values 59

WebSphere MQ options
MQOO_ALTERNATE_USER_AUTHORITY 15

WebSphere MQ queue
DEFINE QUEUE command 54

WebSphere MQ system administrator
creating model queues 9
local dynamic queues 9

Websphere MQSeries
grouping messages 22

workload manager (WLM)
using MSGTOKEN 26

writing messages
examples 31

Z

z/OS batch option
two-phase commit limitation 3

z/OS operating system
batch option 3
queue manager 9
134 Rocket Model 204 MQ/204 Reference

	Contents

	About this Manual
	1 Working with MQ/204
	In this chapter
	Overview
	WebSphere MQ architecture
	Types of WebSphere MQ implementation for z/OS
	z/OS performance considerations

	MQ/204 environment requirements
	MQ/204 architecture
	Subtask management
	Subtask allocation
	Subtask freeing

	MQ/204 queue management
	Determining message destination
	Determining message handling
	Rules for queue names
	Model 204 support
	Remote queue support
	Default queue manager
	Local dynamic queue support
	Reusing dynamic queue names
	Rules of inheritance
	Reply queue and reply queue manager options
	Using runtime options

	Parameters and task management
	Parameters
	Task management

	Accessing queues and queue managers
	MQ/204 security access control
	WebSphere MQ API wait types access control
	Bumping users
	Triggering

	Queue security processing
	Data conversion
	Data conversion formats

	Data handling
	Buffers for message data areas
	Controlling message context information
	Dealing with messages larger than one image
	WebSphere MQ transactions
	Controlling MQ subtask release

	Grouping messages
	Supporting Java Message Service (JMS)
	Environment requirements
	Consulting IBM documentation

	Message groups
	Messages grouped in logical order
	Messages grouped, not in logical order
	Messages not grouped

	Searching for messages using the MATCH options
	Before searching for and retrieving messages
	Using index types with message groups
	Retrieving messages not grouped

	BROWSE options
	Special handling options
	ALL_MSGS_AVAILABLE option
	MSGTOKEN option
	NEW_CORREL_ID option
	SYNCPOINT_IF_PERSISTENT option

	Examples of writing messages and browsing groups
	Example of writing messages to a group in logical order
	Example of writing messages to a group out of sequence
	Browsing a group of messages
	Supporting Java messages with the RFH2 keyword
	Updating the Version 2 message descriptor (MQMD V2)
	MQRFH2 image format
	MQMD version compatibility

	Programming suggestions
	Messages that cause errors
	Removing messages that do not convert
	Saving a permanent local dynamic queue name
	Working with logically deleted queues
	Tuning MQ/204
	Greenwich Mean Time and MQPUT, MQPUT1, and MQGET time
	Increase in STBL for MQ/204 sites

	MQ/204 sample application
	MQ/204 restrictions

	2 Monitoring and Troubleshooting
	In this chapter
	Overview
	Error handling with $STATUS and $STATUSD
	$STATUS return codes
	$STATUSD return codes

	Debugging aid
	Audit trail

	Wait types and statistics
	Measuring the throughput of the WebSphere MQ API
	Measuring MQGET calls with the WAIT options

	3 MQ/204 Command Reference
	In this chapter
	Overview
	BUMP QUEUEMANAGER: Disconnecting queue manager users
	DEFINE QUEUE: Identifying a WebSphere MQ queue
	Defining local dynamic queues

	DEFINE QUEUEMANAGER: Identifying a WebSphere MQ queue manager
	MODIFY QUEUE statement
	MONITOR MQ: Monitoring MQ/204
	START QUEUEMANAGER: Making queues accessible
	STOP QUEUEMANAGER: Put a queue manager in drain state

	4 User Language Statement Reference
	In this chapter
	Overview
	CLOSE QUEUE statement
	Deleting local dynamic queues
	MQ/204 CLOSE statement and the QUEUE keyword

	MODIFY QUEUE statement
	MQBACK statement
	MQCMIT statement
	MQGET statement
	Analyzing an MQGET statement
	Using the BUFFER area
	Error handling consideration
	Handling an incoming message with an RFH2 header
	Using RFH2 keyword with MQGET

	MQPUT statement
	MQPUT and MQPUT1 processing
	Usage notes for options
	Managing BUFFER area
	Applying date and time-stamps to messages
	Handling an outgoing message with an RFH2 header
	Using RFH2 keyword with MQPUT

	MQPUT1 statement
	OPEN QUEUE statement
	MQ/204 OPEN statement and QUEUE keyword
	Specifying a local dynamic queue name
	Opening a remote queue

	Universal Buffer statements

	5 MQ/204 Options for Commands and Statements
	In this chapter
	Overview
	MQ/204 options

	6 MQ/204 Functions Reference
	In this chapter
	Overview
	$BUFFER_ functions
	$MQ_FIND_QUEUE_ENTITY function
	$MQ_FIND_QUEUEMANAGER_ENTITY function
	$MQ_LAST_QUEUEMANAGER_ENTITY function
	$MQ_MESSAGE_LEN function
	$MQ_PENDING_UPDATES function
	$MQ_QUEUENAME function
	$MQ_QUEUEMANAGERNAME function

	7 Configuring MQ/204 for a Windows NT PC
	In this chapter
	Overview
	Preinstallation
	Making the files site-specific

	Installation considerations
	Configuration requirements
	Starting WebSphere MQ queue manager

	Configuring WebSphere MQ queue manager to MQ/204
	DEFINE commands for MQ/204 queue manager

	Configuring WebSphere MQ for Windows
	File to run WebSphere MQ

	Configuring TCP/IP
	DEFINE commands for TCP/IP

	Initializing WebSphere MQ for Windows
	Putting data on a queue
	Retrieving data from a queue
	Trace information
	Trace facility
	How to use the trace table in Model 204
	Symbols
	A
	B
	C
	D
	E
	F
	G
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W
	Z

	Index

