
Rocket Model 204 Fast/Unload

Release Notes

Version 4.6 (Jul 2012)

November 2014
FUN-0406-NF-03

Notices
Edition

Publication date: November 2014
Book number: FUN-0406-NF-03
Product version: Version 4.6 (Jul 2012)

Copyright
© Rocket Software, Inc. or its affiliates 2012-2014. All Rights Reserved.

Trademarks

Rocket is a registered trademark of Rocket Software, Inc. For a list of Rocket registered trademarks go
to: www.rocketsoftware.com/about/legal. All other products or services mentioned in this document
may be covered by the trademarks, service marks, or product names of their respective owners.

Examples

This information might contain examples of data and reports. The examples include the names of
individuals, companies, brands, and products. All of these names are fictitious and any similarity to
the names and addresses used by an actual business enterprise is entirely coincidental.

License agreement

This software and the associated documentation are proprietary and confidential to Rocket Software,
Inc. or its affiliates, are furnished under license, and may be used and copied only in accordance with
the terms of such license.

Note: This product may contain encryption technology. Many countries prohibit or restrict the
use, import, or export of encryption technologies, and current use, import, and export regulations
should be followed when exporting this product.

http://www.rocketsoftware.com/about/legal

Corporate Information
Rocket Software, Inc. develops enterprise infrastructure products in four key areas: storage,
networks, and compliance; database servers and tools; business information and analytics; and
application development, integration, and modernization.

 Website: www.rocketsoftware.com

Rocket Global Headquarters
77 4th Avenue, Suite 100
Waltham, MA 02451-1468
USA

Contacting Technical Support
If you have current support and maintenance agreements with Rocket Software and CCA,
contact Rocket Software Technical support by email or by telephone:

Email: m204support@rocketsoftware.com

Telephone :

 North America +1.800.755.4222

 United Kingdom/Europe +44 (0) 20 8867 6153

Alternatively, you can access the Rocket Customer Portal and report a problem, download an
update, or read answers to FAQs. You will be prompted to log in with the credentials supplied as
part of your product maintenance agreement.

To log in to the Rocket Customer Portal, go to:

www.rocketsoftware.com/support

http://www.rocketsoftware.com
http://www.rocketsoftware.com/support
mailto:support@rocketsoftware.com

——
 Contents
——

———————
 Contents

 Proprietary Notices

 Contents

 Chapter 1: Introduction . 1

 Differences between versions 4.5 and 4.6 . 1
 z/OS or z/CMS required . 2

 Chapter 2: Maintenance and Support . 3

 Improved error messages . 3
 Documentation . 3
 Contrasting User Language and FUEL comparisons 3
 FUEL does not imply numeric comparison for FLOAT fields 3
 Comparisons involving approximately equal float values 4
 PUT statement . 7

 Chapter 3: New Features . 9

 Support for FILEORG X'100' files - summary 9
 Record structure in FILEORG X'100' files, context and other fieldgroup
 concepts . 10
 Nested fieldgroups and FG * . 12
 FOR FIELDGROUP blocks . 14
 Statements which cannot reference fieldgroup members 15
 References to fieldgroup members not in fieldgroup context 15
 First occurrence . 16
 EXACTLY-ONE fields . 17
 Most field constraints, all field derivations ignored by ADD, DELETE,
 CHANGE . 18
 Handling of DEFAULT-VALUE fields . 18
 Handling of missing AT-MOST-ONE fields 19
 Nested FOR FIELDGROUP blocks . 20
 Nested fieldgroups . 21
 Support for V7R4 . 22
 New or changed program parameters . 23
 New or changed FUEL statements . 23
 FOR FIELDGROUP fgrpName[(occ)] . 23
 FOR FIELDGROUP fgrpName = id . 24
 FOR EACH FIELDGROUP fgrpName 25
 LEAVE FIELDGROUP . 27

——
Fast/Unload Release Notes Version 4.6

——
Contents
——

 [NO]UNLOAD[C] FIELDGROUP . 27
 PAI . 28
 New or changed #functions and special variables 29
 #FIELDGROUPID . 29
 #FIELDGROUPOCCURRENCE . 29
 #DELWORD, #WORD, and #WORDS now have delimiter argument . . . 30
 #QUOTE: Wrap string in quote character, and double embedded
 quotes . 30
 #SHADIGEST: SHA-1 digest ("hash") of string 31
 Other FUEL changes . 32
 Reference to the number of occurrences of a fieldgroup 32
 #IF FIELDGROUP fieldgroup DEFINED 32
 Asterisk in PUT statement syntax . 32
 Revised syntax for the PUT statement 34
 MISSING and ERROR clauses . 35
 Pre-4.5 defaults for the MISSING and ERROR clauses 38
 Additional PUT examples . 39
 Comparisons in IF/ELSEIF statements 39
 IF/ELSEIF examples . 41
 Statistics improvements . 43
 FSTATS for FILEORG X'100' files . 43

 Chapter 4: Compatibility/Fixes . 45

 Backwards compatibility with Fast/Unload 4.4 and 4.5 45
 Considerations for compatibility issues 45
 Detect PUT syntax error immediately after FIXED/DECIMAL/ZONED . . . 46
 Disallow PUT constant>255 AS FIXED(1) 46
 Handle quotes in MISSING clause of UAI SORT 46
 Revised description of UAI MISSING 47
 #IF errors which are now detected . 48
 Only constant entities previously implied comparison type 48
 Float comparison of FLOAT fields now uses rounded value 49
 IS FLOAT/FIX disallowed for operands of numeric types 50
 #IF/#ELSEIF now syntax error with nonsense field names 50
 Round %var or float constant to 15 digits for ZONED format 50
 Backwards compatibility with Fast/Unload 4.5 51
 Differences in PUT ONE DV fields with no MISSING constant 51
 Other compatibility issues with Fast/Unload 4.5 52
 Fixes in Fast/Unload 4.6 but not in 4.5 . 52
 UAI of EXACTLY-ONE fields . 52
 PUT of ONE DV xx field AS non-STRING with no MISSING clause 52
 [NO]UNLOAD of outer EXACTLY-ONE field 53
 References to AT-MOST-ONE fieldgroup members 53
 DEFAULT-VALUE for AT-MOST-ONE field in UAI SORT 53
 Bug in PAI if fieldgroup present and outer field added 53
 Preventing illegal access to UTF8 fields 53
 Handling of fieldgroup IDs greater than 2**31 - 1 54

——
 Fast/Unload Release Notes Version 4.6

——
 Contents
——

 Fixes in Fast/Unload 4.6 but not in 4.4 . 54
 Allow MISSING or ERROR immediately after
 FIXED/DECIMAL/ZONED in PUT 54
 Long string access to FLOAT LEN 4 field 55
 Separate extension record stats for each file in group 55
 Fixes to #IF . 55
 Properly handle '=' in field name in ADD and CHANGE statements 56
 IS FLOAT/FIX unpredictable for operands of numeric types 56
 #IF/#ELSEIF allowed nonsense field names 56
 Version co-requisites . 57

——
Fast/Unload Release Notes Version 4.6

——
Contents
——

——
Fast/Unload Release Notes Version 4.6

——
 Introduction
——

——————
CHAPTER 1 Introduction

 This document lists the enhancements and other changes contained in the newest
 release of Fast/Unload: version 4.6, which was released in July, 2012. The previous
 generally released version of Fast/Unload, 4.4, was released in October, 2007, and an
 interim version., 4.5, was released in May, 2010.

 1.1 Differences between versions 4.5 and 4.6

 Much of the information in these, the "Version 4.6 Release Notes", also applies to
 changes which were made in the interim version 4.5 of Fast/Unload. Changes listed in
 these release notes which do not apply to version 4.5, are listed in this section.

 Version 4.5 does not support the following statements:

 ● FOR FIELDGROUP fgrpName = id on page 24

 ● FOR EACH FIELDGROUP fgrpName on page 25

 ● LEAVE FIELDGROUP on page 27

 ● [NO]UNLOAD[C] FIELDGROUP on page 27

 In addition, although the FOR FIELDGROUP fgrpName[(occ)] statement (on page
 23) is allowed in version 4.5, it has little practical use. In 4.5 it does not establish context
 for fieldgroup members; it only establishes context for #FIELDGROUPID (on page 29).

 Other differences between version 4.5 and version 4.6 are:

 1. Version 4.5 does not support the #FIELDGROUPOCCURRENCE (on page 29)
 special variable.

 2. In version 4.5, the UAI output for a record with any EXACTLY-ONE field which is not
 physically present will contain the default value (either the DEFAULT-VALUE or, if
 none, the null string). In 4.6, only physically present EXACTLY-ONE occurrences
 are output for UAI. This is primarily a performance and file size issue, but also, as
 described in “UAI of EXACTLY-ONE fields” on page 52, there are some UAI/LAI
 bugs fixed by this change.

 3. Asterisks in the syntax of the PUT statement (see “Asterisk in PUT statement
 syntax” on page 32) are not available in 4.5.

——
Fast/Unload Release Notes Version 4.6 1

——
Introduction
——

 4. Although the DEFAULT-VALUE of an AT-MOST-ONE field serves as the value for
 PUT of the first occurrence, if it is missing and there is no MISSING clause, the
 other handling of missing AT-MOST-ONE DEFAULT-VALUE fields (as specfied in
 “Handling of missing AT-MOST-ONE fields” on page 19) is not performed in version
 4.5.

 5. The FIELDGROUP keyword is not used in a fieldgroup occurrence count in version
 4.5, in which the following example is the correct syntax for a fieldgroup named GRP:

 FOR I FROM 1 TO GRP(#)

 In version 4.6, the following is the correct syntax:

 FOR I FROM 1 TO FIELDGROUP GRP(#)

 6. The FIELDGROUP keyword is not used in the #IF/#ELSEIF statements in version
 4.5, in which the following example is the correct syntax for a fieldgroup named GRP:

 #IF GRP DEFINED

 In version 4.6, the following is the correct syntax:

 #IF FIELDGROUP GRP DEFINED

 Finally, in addition to the above functional differences, bugs were fixed in version 4.6 that
 have not been fixed (that is, via zaps) in version 4.5; these are listed in “Fixes in
 Fast/Unload 4.6 but not in 4.5” on page 52.

 1.2 z/OS or z/CMS required

 Starting with version 4.6, Fast/Unload must be running under z/OS or z/CMS.

——
2 Fast/Unload Release Notes Version 4.6

——
 Maintenance and Support
——

——————
CHAPTER 2 Maintenance and Support

 These enhancements to Fast/Unload do not affect its intrinsic functionality, but rather
 affect the way maintenance and support for the product are delivered.

 2.1 Improved error messages

 The following Fast/Unload error messages have been improved:

 Improved I/O error message
 Error message FUNL0042 now contains the ending page number, if the read
 is for multiple Table B pages (for example, a track of pages when
 SBBUF=1). In that case, the last page number in the group of pages being
 read is shown after the first page being read. This may be of assistance in
 diagnosing the problem in the file.

 Line number on PUT condition error message
 Error message FUNL0052 now contains the line number being executed in
 the FUEL program when a PUT condition (for example, PUT ... ERROR
 CANCEL) cancels Fast/Unload.

 2.2 Documentation

 2.2.1 Contrasting User Language and FUEL comparisons

 In addition to the changes to comparisons in Fast/Unload, described in “Comparisons in
 IF/ELSEIF statements” on page 39, there are some differences between User Language
 and Fast/Unload comparisons, whose documentation will be changed as described here.

 2.2.1.1 FUEL does not imply numeric comparison for FLOAT fields

 Given the following setup of a FLOAT field occurrence:

 IN SOMEFIL INITIALIZE
 IN SOMEFIL DEFINE FIELD FLT (FLOAT LEN 8)
 IN SOMEFIL begin
 store record
 FLT = 10
 end store
 end

——
Fast/Unload Release Notes Version 4.6 3

——
Maintenance and Support
——

 In User Language, a comparison involving this field occurrence will implicitly use a
 numeric (float) comparison:

 begin
 %s is string len 2
 %s = 3
 frn 0
 if FLT < %s then print '10 < 3'
 else print '10 >= 3'
 end if
 end for
 end

 The result of the above User Language request is 10 >= 3. In FUEL, a field
 occurrence in a comparison does not imply the comparison type:

 FOR EACH RECORD
 %S = 3
 IF #RECIN EQ 1
 IF FLT < %S
 PUT '10 < 3'
 ELSE
 PUT '10 >= 3'
 END IF
 OUTPUT
 END IF
 END FOR

 Because the default comparison type is string, the result of the above FUEL program is
 10 < 3. To force a float comparison of a field occurrence, use the '+' coercion operator:

 IF +FLT < %S

 2.2.1.2 Comparisons involving approximately equal float values

 In User Language, two float values are considered equal if they differ by less than a very
 small amount (.28764219523228867 E-92). In Fast/Unload, however, comparison of
 float values is done using the value rounded to the nearest 15 significant digits decimal
 number. As a consequence of this difference in comparison rules, some values which
 User Language considers different are considered equal by Fast/Unload, and some
 values which User Language considers equal are considered different by Fast/Unload.

 For example, the following User Language fragment:

 %x = 3
 %x = 1/%x
 %y = %x + 0
 if %x eq %y then print '1/3 eq 1/3 + 0'
 else print '1/3 ne 1/3 + 0'
 end if

——
4 Fast/Unload Release Notes Version 4.6

——
 Documentation
——

 produces 1/3 ne 1/3 + 0 as the result, whereas this FUEL fragment:

 %X = 3
 %X = 1/%X
 %Y = %X + 0
 IF %X EQ %Y
 PUT '1/3 eq 1/3 + 0'
 ELSE
 PUT '1/3 ne 1/3 + 0'
 END IF
 OUTPUT

 produces 1/3 eq 1/3 + 0 as the result.

 This example is based on the fact that (in both User Language and Fast/Unload) adding
 0 causes decimal rounding, and it exhibits one case in which:

 ** Fast/Unload considers the values to be equal;
 ** User Language considers the values to be different.

 There are a large number of such values.

 There is is also a large number of values in the obverse case, that is:

 ** Fast/Unload considers the values to be different;
 ** User Language considers the values to be equal.

 Even though there is a large number of such values, they are probably less likely to
 occur in applications. Typically, the most direct way to obtain such values is using
 Images in User Language (if they are stored in FLOAT fields the values can be
 accessed in Fast/Unload), or using FLOD or IFAM to store values into float fields.

——
Fast/Unload Release Notes Version 4.6 5

——
Maintenance and Support
——

 For example:

 IN SOMEFIL INITIALIZE
 IN SOMEFIL DEFINE FIELD FLT (FLOAT LEN 8)
 begin
 image fltIm
 flt1 is float len 8
 str1 is string len 8 at flt1
 flt2 is float len 8
 str2 is string len 8 at flt2
 end image
 prepare image fltIm
 %fltIm:str1 = '402000000018C0A5':x
 %fltIm:str2 = '402000000018C0BC':x
 store record
 FLT = %fltIm:flt1
 FLT = %fltIm:flt2
 then continue
 printText {~= FLT(1) }
 printText {~= FLT(2) }
 if FLT(1) eq FLT(2) then print 'UL considers them equal'
 else print 'UL considers them different'
 end if
 end store
 end

 The above produces the following result:

 FLT(1) = 0.125000000022512
 FLT(2) = 0.125000000022513
 UL considers them equal

 But with Fast/Unload:

 OPEN SOMEFIL
 FOR EACH RECORD
 PUT 'FLT(1) = '
 PUT FLT(1)
 OUTPUT
 PUT 'FLT(2) = '
 PUT FLT(2)
 OUTPUT
 IF +FLT(1) EQ FLT(2) THEN
 PUT 'FUEL considers them equal'
 ELSE
 PUT 'FUEL considers them different'
 END IF
 OUTPUT
 END FOR

——
6 Fast/Unload Release Notes Version 4.6

——
 Documentation
——

 The above produces the following result:

 0.125000000022512
 0.125000000022513
 FUEL considers them different

 Note: The float comparison behavior for %variables has always been as described here;
 for FLOAT fields, however, as stated in “Float comparison of FLOAT fields now uses
 rounded value” on page 49, prior to version 4.6 of Fast/Unload, float comparison of
 FLOAT fields used the exact (that is, unrounded) value of the field.

 Also note that the above FUEL code uses the + coercion operator in IF +FLT(1) EQ
 FLT(2) to force comparison of the (float) numeric value of the fields; otherwise the
 comparison would be done using the string value of the fields. This is not necessary in
 User Language; this difference is explained in “FUEL does not imply numeric
 comparison for FLOAT fields” on page 3.

 Also see “IS FLOAT/FIX disallowed for operands of numeric types” on page 50 for
 another compatibility issue involving the IF statement.

 2.2.2 PUT statement

 The changes to the documentation of the PUT statement, described in “Revised syntax
 for the PUT statement” on page 34, apply to Fast/Unload prior to versions 4.6 and 4.5,
 except for those aspects which are new, namely:

 ● the "asterisk placeholder" (STRING(*), MISSING *, and ERROR * — it also is an
 "override" for ERROR);

 ● the treatment of AT-MOST-ONE DEFAULT-VALUE fields.

——
Fast/Unload Release Notes Version 4.6 7

——
Maintenance and Support
——

——
8 Fast/Unload Release Notes Version 4.6

——
 New Features
——

——————
CHAPTER 3 New Features

 All new features in version 4.6 of Fast/Unload are presented in the subsections of this
 chapter.

 3.1 Support for FILEORG X'100' files - summary

 This version of Fast/Unload supports files with FILEORG X'100', which were introduced
 in version V7R2 of Model 204. The various aspects of this support are:

 UAI UAI FUEL programs may be used to unload FILEORG X'100' files, for
 reloading with Fast/Reload.

 PAI The PAI statement in FUEL supports FILEORG X'100' files; see “PAI” on
 page 28.

 FSTATS The field statistics produced by the FSTATS option or statement include
 information about fields and fieldgroups in a FILEORG X'100' file, including
 the new field attributes. See “FSTATS for FILEORG X'100' files” on page
 43.

 FOR FIELDGROUP blocks
 New FUEL statements are provided to establish a fieldgroup context for
 processing members of the fieldgroup. An overview of these statements is
 provided in “FOR FIELDGROUP blocks” on page 14.

 Other references to fieldgroups
 In addition to FOR FIELDGROUP blocks, you can refer to fieldgroups by
 name (always preceded by the FIELDGROUP keyword) in the following
 FUEL constructs:

 Reference to the number of occurrences of a fieldgroup
 Corresponding to references to the number of occurrences of a
 field as an entity in a FUEL program, you can also refer to the
 number of occurrences of a fieldgroup, by coding the
 FIELDGROUP keyword, followed by the fieldgroup name,
 followed by the “#” token in parentheses:

 FOR I FROM 1 TO FIELDGROUP PAYMENT.INFO(#)

——
Fast/Unload Release Notes Version 4.6 9

——
New Features
——

 [NO]UNLOAD[C] FIELDGROUP
 The ability to unload a single field, as performed by the UNLOAD
 fieldname[(occ)]statement, has been extended to allow
 unloading a fieldgroup occurrence, as described in
 “[NO]UNLOAD[C] FIELDGROUP” on page 27.

 #IF FIELDGROUP fieldgroup DEFINED
 The #IF preprocessor statement has been extended to allow
 testing for the presence in the file being unloaded (or any of the
 files in a group being unloaded), of a fieldgroup. For example:

 #IF FIELDGROUP PAYMENT.INFO DEFINED

 Occurrences of EXACTLY-ONE and AT-MOST-ONE fieldgroup members
 You may refer to occurrences of non-nested, non-FG-*, non-REPEATABLE
 fields without an enclosing FOR FIELDGROUP block. This facility is
 explained in “References to fieldgroup members not in fieldgroup context” on
 page 15.

 EXACTLY-ONE fields
 EXACTLY-ONE fields are new in V7R2; their handling in FUEL is explained
 in “EXACTLY-ONE fields” on page 17.

 Handling of DEFAULT-VALUE fields
 This is explained in “Handling of DEFAULT-VALUE fields” on page 18. Also,
 for PUT of an AT-MOST-ONE DEFAULT-VALUE field which is MISSING,
 see “Handling of missing AT-MOST-ONE fields” on page 19.

 Handling of missing AT-MOST-ONE fields
 This is explained in “Handling of missing AT-MOST-ONE fields” on page 19.

 There are many other field attributes introduced in FILEORG X'100' files, and they do
 not have any impact on version 4.6 of Fast/Unload. For example, Fast/Unload does not
 enforce the DATETIME format restriction in the ADD or CHANGE statement.

 3.2 Record structure in FILEORG X'100' files, context
 and other fieldgroup concepts

 A record in a Model 204 file with FILEORG X'100' consists of a sequence of field and/or
 fieldgroup occurrences; these occurrences are called outer occurrences. A fieldgroup
 occurrence consists of a seqence of field and/or fieldgroup occurrences; these
 occurrences are called member occurrences. Each fieldgroup occurrence has a
 numeric ID, which is different from all other fieldgroup occurrence IDs in the same
 record.

——
10 Fast/Unload Release Notes Version 4.6

——
 Record structure in FILEORG X'100' files, context and other fieldgroup concepts
——

 A fieldgroup is defined in a file by using the DEFINE FIELDGROUP command. Note
 that this is different from the FIELDGROUP attribute which can be specified on either the
 DEFINE FIELD or DEFINE FIELDGROUP command. Note also that the FIELDGROUP
 attribute can be abbreviated as FG, which is how we will refer to it in this document.

 The DEFINE command for a field or fieldgroup can specify that it is a member of a
 specific fieldgroup by using the FG attribute with the name of the fieldgroup. When a
 field or fieldgroup is defined as a member of a specifc fieldgroup, that field or fieldgroup
 can only occur as a member within some occurrence of the fieldgroup named in its FG
 attribute.

 Fields and fieldgroups defined without the FG attribute cannot occur within a fieldgroup,
 so when they occur in a record, they occur as outer occurrences.

 These features are powerful and enable definition of a straightforward approach to
 repeating field groups, as shown in this example:

 DEFINE FIELD OUTFLD
 DEFINE FIELDGROUP GRP
 DEFINE FIELD EXOMEM WITH FG GRP
 DEFINE FIELD EXOMEM2 WITH FG GRP
 DEFINE FIELD REPMEM WITH REPEATABLE FG GRP

 An example PAI of a record in a file with these defintions is:

 OUTFLD = OUT01
 OUTFLD = OUT02
 \GRP = 20
 EXOMEM = MEM01
 EXOMEM2 = MEM02
 /GRP = 20
 OUTFLD = OUT03
 \GRP = 5
 EXOMEM = MEM03
 EXOMEM2 =
 REPMEM = REPMEM01
 /GRP = 5
 OUTFLD = OUT07

 Notes:

 ● The order of fieldgroup IDs, as in this example (20 and 5) need not correspond to
 the order of the fieldgroups in the record. The ID of a fieldgroup is assigned when it
 is added to the record, and is equal to one more than the highest fieldgroup ID
 which had been used in the record (even if the fieldgroup with that ID has been
 deleted).

 ● The default repeatability for (non-FG *) fieldgroup member fields is EXACTLY-ONE.
 In the second occurrence of GRP above, whether or not EXOMEM2 has been

——
Fast/Unload Release Notes Version 4.6 11

——
New Features
——

 cannot be determined; it is treated in all respects as if it had been stored with a
 value of the null string.

 In order for Fast/Unload to operate on an occurrence of a fieldgroup member, the
 fieldgroup containing the member must be identified. This is obtained in either of two
 ways:

 ● by referring to the member of the fieldgroup within a FOR FIELDGROUP block
 which identifies an occurrence of the fieldgroup — this fieldgroup occurrence is the
 fieldgroup context for the fieldgroup member;

 ● for an AT-MOST-ONE or EXACTLY-ONE non-FG * field member of a non-nested
 fieldgroup, a reference outside the context of the fieldgroup implicitly identifies the
 fieldgroup occurrence; see “References to fieldgroup members not in fieldgroup
 context” on page 15.

 The following FUEL program explains both cases of fieldgroup member reference,
 assuming that the record shown in the above PAI output is the current record:

 FOR EACH RECORD
 FOR FIELDGROUP GRP(1)
 PUT EXOMEM /* In context of GRP(1): MEM01
 END FOR
 FOR FIELDGROUP GRP(2)
 PUT EXOMEM /* In context of GRP(2): MEM03
 PUT REPMEM /* In context of GRP(2): REPMEM01
 END FOR
 PUT EXOMEM(1) /* Out of context: MEM01
 PUT EXOMEM(2) /* Out of context: MEM03
 * REPMEM illegal here; it requires a fieldgroup context
 END FOR

 In addition to fieldgroup context:

 ● Record context is always available for fields and fieldgroups defined without the
 FG attribute.

 3.2.1 Nested fieldgroups and FG *

 Two advanced aspects of the fieldgroup feature, not explored in “Record structure in
 FILEORG X'100' files, context and other fieldgroup concepts” on page 10, are:

 1. The DEFINE FIELDGROUP command allows the FG attribute, which indicates that
 an occurrence (or more, if AT-MOST-ONE is not specfied) of the fieldgroup being
 defined may be contained within an occurrence of the fieldgroup specified in the FG
 attribute. A fieldgroup occurrence contained within another fieldgroup is called a
 nested fieldgroup occurrence.

——
12 Fast/Unload Release Notes Version 4.6

——
 Record structure in FILEORG X'100' files, context and other fieldgroup concepts
——

 2. The FG attribute of the DEFINE FIELD or DEFINE FIELDGROUP command can
 specify FG *; this indicates that the field or fieldgroup can occur either or both as an
 outer occurrence or as a member of any occurrence of any fieldgroup in a record. A
 field or fieldgroup defined with the FG * attribute is called a FG * field or fieldgroup,
 respectively.

 Here is a contrived example illustrating the possibilities using the FG attribute:

 DEFINE FIELD OUTFLD
 DEFINE FIELD STARFLD WITH FG *
 DEFINE FIELDGROUP STARGRP WITH FG *
 DEFINE FIELD INSTAR WITH FG STARGRP
 DEFINE FIELDGROUP GRP
 DEFINE FIELD INGRP WITH FG GRP
 DEFINE FIELDGROUP NEST WITH FG GRP

 An example PAI of a record in a file with these defintions is:

 OUTFLD = OUT01
 OUTFLD = OUT02
 STARFLD = STAROUT01
 STARFLD = STAROUT02
 \STARGRP = 15
 INSTAR = INSTAR01
 STARFLD = STARMEM01
 STARFLD = STARMEM02
 \STARGRP = 30
 INSTAR =
 STARFLD = STARMEM03
 STARFLD = STARMEM04
 /STARGRP = 30
 /STARGRP = 15
 STARFLD = STAROUT03
 OUTFLD = OUT03
 \GRP = 20
 INGRP = MEM01
 STARFLD = STARMEM05
 \STARGRP = 35
 INSTAR =
 STARFLD = STARMEM06
 STARFLD = STARMEM07
 /STARGRP = 35
 /GRP = 20
 \GRP = 5
 INGRP = MEM02
 /GRP = 5

 Note that since FG * fields and fieldgroups can exist as both outer and member
 occurrences, that a reference to fstar, where fstar is defined with FG *, will be to the
 occurrence of fstar within the fieldgroup occurrence established by the closest containing

——
Fast/Unload Release Notes Version 4.6 13

——
New Features
——

 FOR FIELDGROUP block, or to the outer occurrence of fstar if there is no enclosing
 FOR FIELDGROUP block. For example, if the current record is the one described by
 the above PAI output:

 FOR EACH RECORD
 PUT STARFLD /* In record context: STAROUT01
 FOR FIELDGROUP GRP /* In record context: ID=20
 PUT STARFLD /* In fieldgroup context: STARMEM05
 FOR FIELDGROUP STARGRP /* In fieldgroup context: ID=35
 PUT STARFLD /* In fieldgroup context: STARMEM06
 END FOR
 END FOR
 END FOR

 See “Nested fieldgroups” on page 21 for futher discussion of nested fieldgroups.

 3.3 FOR FIELDGROUP blocks

 Three new statements, all with syntax "FOR ... FIELDGROUP ...", create FOR
 FIELDGROUP blocks, which are terminated by END FOR. Within each block, a
 fieldgroup occurrence (one for each iteration, in the case of FOR EACH FIELDGROUP) is
 used as the context for references to its members. These statements are described in
 the following sections:

 ● FOR FIELDGROUP fgrpName[(occ)] on page 23

 ● FOR FIELDGROUP fgrpName = id on page 24

 ● FOR EACH FIELDGROUP fgrpName on page 25

 In addition, within any of the above blocks there is a new statement for terminating
 execution of the block (LEAVE FIELDGROUP on page 27), a new special variable for
 obtaining the fieldgroup ID of a fieldgroup occurrence (#FIELDGROUPID on page 29),
 and a new special variable for obtaining the occurrence number of a fieldgroup
 occurrence (#FIELDGROUPOCCURRENCE on page 29).

 Note that in addition to this new syntax for referencing fieldgroup members, some
 fieldgroup members can also be referenced outside FOR FIELDGROUP blocks in
 certain circumstances, as described in “References to fieldgroup members not in
 fieldgroup context” on page 15.

——
14 Fast/Unload Release Notes Version 4.6

——
 Statements which cannot reference fieldgroup members
——

 3.4 Statements which cannot reference fieldgroup
 members

 For a field in the context of an occurrence of its fieldgroup (established by a containing
 FOR FIELDGROUP block), or for a fieldgroup member which can be used outside its
 fieldgroup context (as described in “References to fieldgroup members not in fieldgroup
 context”), that field can be used in any FUEL statement, except the following:

 ● in the UNLOAD[C] <field> or NOUNLOAD <field> statement

 ● in the DELETE[C] <field> statement

 ● in the sort or hash specification of the SORT or UAI statement

 3.5 References to fieldgroup members not in
 fieldgroup context

 A fieldgroup member can always be referenced within the context of an occurrence of its
 fieldgroup established by a FOR FIELDGROUP block, as described in “FOR
 FIELDGROUP blocks” on page 14 (although, as listed in “Statements which cannot
 reference fieldgroup members”, certain statements may not reference fieldgroup
 members).

 In addition to the fieldgroup context established by FOR FIELDGROUP blocks, you may
 make references to certain fieldgroup members without a containing context. A
 fieldgroup member can only be referenced outside its fieldgroup context if it is
 EXACTLY-ONE or AT-MOST-ONE, and it is non-FG *, and its containing fieldgroup is
 not nested.

 Stated another way, the following references are only allowed within fieldgroup context
 for fieldgroup members or, for non-fieldgroup members, within record context:

 ● REPEATABLE member of fieldgroup

 ● FG * field

 ● Field in nested fieldgroup

 ● Nested fieldgroup

 For fieldgroup members which allow it, an "out of context" reference to an occurrence is
 actually a reference to occurrence number 1 of that field within the specified occurrence

——
Fast/Unload Release Notes Version 4.6 15

——
New Features
——

 of its containing fieldgroup. For example, consider the following field definitions and
 FUEL program:

 DEFINE FIELDGROUP GRP
 DEFINE FIELD FOO WITH FG GRP
 ...
 //FUNIN DD *
 OPEN ...
 FOR EACH RECORD
 PUT FOO(10)
 OUTPUT
 END FOR

 In the above, FOO(10) is a reference to occurrence number 1 of FOO within occurrence
 number 10 of fieldgroup GRP.

 Further, an "out of context" reference to the occurrence count of an EXACTLY-ONE (or
 AT-MOST-ONE, as well) member is actually a reference to the occurrence count of its
 containing fieldgroup. For example (assuming the same definitions as above), consider
 the following FUEL fragment:

 FOR I FROM 1 TO FOO(#)
 ...
 END FOR

 In the above fragment, the FOR loop is a executed as many times as the occurrence
 count of fieldgroup GRP.

 3.5.1 First occurrence

 In many discussions of EXACTLY-ONE and AT-MOST-ONE fields, the term first
 occurrence is used. This refers to any of the following:

 ● occurrence number 1 of an outer EXACTLY-ONE or AT-MOST-ONE field.

 ● occurrence number 1 of an EXACTLY-ONE or AT-MOST-ONE fieldgroup member,
 in the context of the containing fieldgroup.

 ● any occurrence n of an EXACTLY-ONE or AT-MOST-ONE fieldgroup member, not
 in the context of the containing fieldgroup, if occurrence n of the fieldgroup exists.

 Hence, given the following definitions within a file:

 DEFINE FIELD OUTER WITH AT-MOST-ONE
 DEFINE FIELDGROUP GRP
 DEFINE FIELD INNER WITH AT-MOST-ONE FG GRP
 DEFINE FIELD BOTH WITH AT-MOST-ONE FG *

——
16 Fast/Unload Release Notes Version 4.6

——
 References to fieldgroup members not in fieldgroup context
——

 Then the following FUEL program contains comments illustrating which references are
 to the first occurrence (all of the comments are also true if any AT-MOST-ONE above is
 changed to EXACTLY-ONE):

 FOR EACH RECORD
 PUT OUTER /* This is first occurrence
 PUT OUTER(3) /* This is NOT first occurrence
 PUT BOTH /* This is first occurrence
 PUT BOTH(3) /* This is NOT first occurrence
 PUT INNER /* This is first occurrence, if fieldgroup
 /* GRP has at least one occurrence
 PUT INNER(3) /* This is first occurrence, if fieldgroup
 /* GRP has at least three occurrences
 FOR FIELDGROUP GRP
 PUT BOTH /* This is first occurrence
 PUT BOTH(3) /* This is NOT first occurrence
 PUT INNER /* This is first occurrence
 PUT INNER(3) /* This is NOT first occurrence
 END FOR
 END FOR

 3.6 EXACTLY-ONE fields

 One of the new field attributes in Model 204 V7R2 is the EXACTLY-ONE "repeatability"
 attribute, which designates that there is one and only one occurrence of the field, either
 within its containing fieldgroup occurrence or within the record:

 ● An EXACTLY-ONE field which is a fieldgroup member occurs exactly once in every
 occurrence of that fieldgroup.

 ● An EXACTLY-ONE field which is not a fieldgroup member (that is, an outer field)
 occurs exactly once in every record in the file.

 EXACTLY-ONE is the default repeatability attribute for a field defined as a member of a
 (specific) fieldgroup. EXACTLY-ONE is not allowed in combination with FG *, nor is it
 allowed on the DEFINE FIELDGROUP command. The other repeatability attributes are
 REPEATABLE, AT-MOST-ONE, and OCCURS. For fieldgroups, fields which are not
 fieldgroup members, and FG * fields, REPEATABLE is the default repeatability attribute.

 Fast/Unload handling of EXACTLY-ONE fields is straightforward:

 ● The DELETE statement is not allowed with an EXACTLY-ONE field.

 ● The ADD statement is not allowed with an EXACTLY-ONE field (note that the
 analogous constraint for AT-MOST-ONE fields, which is enforced in User
 Language, is not enforced in FUEL).

——
Fast/Unload Release Notes Version 4.6 17

——
New Features
——

 ● The first occurrence (see “First occurrence” on page 16) of an EXACTLY-ONE field
 is never MISSING (that is, on the PUT statement, the SORT clause of the UAI
 statement, or on the IF/ELSEIF statements - and it always EXISTS on IF/ELSEIF).

 ● Within its context, the occurrence count of an EXACTLY-ONE field is always one.

 ● See “References to fieldgroup members not in fieldgroup context” on page 15 for a
 discussion of an EXACTLY-ONE fieldgroup member outside its context.

 In the above, its context is either the context of an occurrence of its fieldgroup, for
 fieldgroup members, or record context, for outer fields.

 3.7 Most field constraints, all field derivations ignored
 by ADD, DELETE, CHANGE

 As noted in “EXACTLY-ONE fields” on page 17, you cannot use the ADD nor DELETE
 statement for an EXACTLY-ONE field, just as you cannot in User Language; that section
 also notes that ADD is freely allowed for an AT-MOST-ONE field, even though the
 corresponding statement in User Language might result in a request cancellation.

 Except for this constraint on EXACTLY-ONE fields, FUEL does not enforce field
 constraints (e.g., DATETIME, LENGTH-GE, etc.) in the CHANGE and ADD statements,
 nor do ADD, DELETE, and CHANGE cause a change to a derived (CAT or CTO) field.

 3.8 Handling of DEFAULT-VALUE fields

 The DEFAULT-VALUE attribute, allowed in FILEORG X'100' files, specifies the value
 of the first occurrence (see “First occurrence” on page 16) of an EXACTLY-ONE or AT-
 MOST-ONE field if it has not been stored.

 For an EXACTLY-ONE field, the result of this in FUEL is that any reference to the value
 of the first occurrence of the field, if it has not been stored, results in the DEFAULT-
 VALUE (and, note that there is no way in User Language nor in FUEL to determine
 whether or not the field has been stored).

 For an AT-MOST-ONE DEFAULT-VALUE field, any reference to the value of the first
 occurrence of the field, if it has not been stored, also generally results in the DEFAULT-
 VALUE but, since the field occurrence may also be MISSING, the PUT statement result
 may be something other than the DEFAULT-VALUE, as explained in “Handling of
 missing AT-MOST-ONE fields” on page 19.

——
18 Fast/Unload Release Notes Version 4.6

——
 Handling of missing AT-MOST-ONE fields
——

 3.9 Handling of missing AT-MOST-ONE fields

 Missing field processing is done for:

 1. the MISSING/EXISTS clauses on the IF/ELSEIF statements

 2. the PUT statement

 3. the #ERROR special variable

 4. retrieving a value

 5. the UAI SORT statement

 6. some #function arguments, for example, the first argument of #N2DATE

 In addition, all of the above processing is performed for a %variable to which a field
 occurrence has been assigned.

 Prior to the introduction of FILEORG X'100' files, the handling of all missing field
 occurrences was the same. However, when the DEFAULT-VALUE attribute is used with
 an AT-MOST-ONE field, if the first occurrence (see “First occurrence” on page 16) of the
 field is missing, it still has a value (the value of the DEFAULT-VALUE attribute).

 When an AT-MOST-ONE field has a DEFAULT-VALUE, and that field is missing, then
 the following take place when the first occurrence of the field is referenced:

 1. The IS FIXED and IS FLOAT tests for the missing first occurrence are true if the
 DEFAULT-VALUE is convertible to a fixed or float representation, respectively.

 2. When the missing first occurrence is used in a PUT statement which does not
 contain the MISSING clause other than MISSING *:

 ● If the DEFAULT-VALUE is convertible to the PUT AS format (a DEFAULT-
 VALUE longer than the length of a PUT AS STRING statement is not
 convertible), then the DEFAULT-VALUE is output.

 ● Otherwise, an ERROR condition occurs (in additon to the MISSING condition).
 See “Revised syntax for the PUT statement” on page 34 for a description of the
 ERROR clause in the PUT statement.

 3. After a PUT of the missing first occurrence, #ERROR is 1 or, if the DEFAULT-
 VALUE is not convertible to the output format as just described, it is 3.

 4. If the missing first occurrence of the field is used in the SORT clause of the UAI
 statement:

——
Fast/Unload Release Notes Version 4.6 19

——
New Features
——

 ● If the MISSING clause is present, the value specified there is used in the sort
 key.

 ● Otherwise, the DEFAULT-VALUE is used in the sort key. If the DEFAULT-
 VALUE is not convertible to the type specified, then a missing first occurrence
 will terminate Fast/Unload.

 5. The value used for the missing first occurrence (e.g., in a comparison, on the right
 hand side of an assignment, as a #function argument) is the DEFAULT-VALUE.

 The above behavior will also take place for a %variable, if the %variable has been
 assigned from the missing first occurrence of an AT-MOST-ONE DEFAULT-VALUE
 field.

 Other contexts in which the first occurrence of an AT-MOST-ONE field is missing is not
 affected by whether the field has the DEFAULT-VALUE attribute:

 1. The IF/ELSEIF statement's MISSING test for the missing first occurrence is true.

 2. The missing first occurrence may not be used with a DELETE, UNLOAD, or
 NOUNLOAD statement (DELETEC, UNLOADC, and NOUNLOADC, respectively,
 can be used), nor may it be used on the left side of a CHANGE statement.

 The DEFAULT-VALUE of a field (either AT-MOST-ONE or EXACTLY-ONE) has no
 effect on references to occurrences other than the first.

 3.10 Nested FOR FIELDGROUP blocks

 A FOR FIELDGROUP block may contain other FOR FIELDGROUP blocks, and the
 context established by a containing block "remains active" within a contained block
 (unless the fieldgroup specified on the contained block is the same as that specified in a
 containing block). For example, given the following definitions:

 DEFINE FIELDGROUP PERSON
 DEFINE FIELD NAME WITH FG PERSON
 DEFINE FIELD PERSON.SOCSECNUM WITH FG PERSON
 DEFINE FIELDGROUP BANKACCT
 DEFINE FIELD BALANCE WITH FG BANKACCT
 DEFINE FIELD ACCT.SOCSECNUM WITH FG BANKACCT

——
20 Fast/Unload Release Notes Version 4.6

——
 Nested FOR FIELDGROUP blocks
——

 The following FUEL program aggregates each person's bank balances:

 FOR EACH RECORD
 FOR EACH FIELDGROUP PERSON
 %BAL = 0
 FOR EACH FIELDGROUP BANKACCT
 IF ACCT.SOCSECNUM EQ PERSON.SOCSECNUM THEN
 %BAL = %BAL + BALANCE
 END IF
 END FOR
 PUT NAME
 PUT ' balance='
 PUT %BAL
 OUTPUT
 END FOR /* EACH FIELDGROUP PERSON
 END FOR

 Notice that IF ACCT.SOCSECNUM EQ PERSON.SOCSECNUM references field
 ACCT.SOCSECNUM in the inner (BANKACCT) block and references field
 PERSON.SOCSECNUM in the outer (PERSON) block.

 In the above example, and in many applications, nested FIELDGROUP blocks are not
 processing nested fieldgroups, but whenever processing nested fieldgroups, nested
 FOR FIELDGROUP blocks are required, as shown in “Nested fieldgroups”.

 3.11 Nested fieldgroups

 A nested fieldgroup is a fieldgroup which is itself defined to be a member of another
 fieldgroup; for example:

 DEFINE FIELDGROUP PERSON
 DEFINE FIELD NAME WITH FG PERSON

 DEFINE FIELDGROUP MEDICALEXAM WITH FG PERSON
 DEFINE FIELD EXAM.DATE WITH FG MEDICALEXAM

 In the above example, fieldgroup MEDICALEXAM is nested within, that is, it is a member
 of, fieldgroup PERSON.

——
Fast/Unload Release Notes Version 4.6 21

——
New Features
——

 To access occurrences of nested fieldgroups, you must use nested FIELDGROUPS; for
 example:

 FOR EACH RECORD
 FOR EACH FIELDGROUP PERSON
 PUT NAME
 %NEED_EXAM = '(no exams)'
 FOR EACH FIELDGROUP MEDICALEXAM
 PUT EXAM.DATE AT 30
 OUTPUT
 %NEED_EXAM = ''
 END FOR
 IF %NEED_EXAM NE '' THEN
 PUT %NEED_EXAM AT 30
 OUTPUT
 END FOR
 END FOR /* EACH FIELDGROUP PERSON
 END FOR

 3.12 Support for V7R4

 A few changes in V7R4 of Model 204 required changes to Fast/Unload:

 ● Using the Fast/Unload User Language Interface with Model 204 V7R4 requires
 Fast/Unload version 4.6.

 ● Processing a file with BLOB or CLOB fields which have the DEFAULT-VALUE
 attribute requires Fast/Unload version 4.6.

 ● Fast/Unload is not equipped to "fetch", ADD, or CHANGE UTF-8 fields, and so such
 statements are not allowed in FUEL. If UTF8FLD has the UTF8 attribute, only the
 following types of references to it are allowed:

 ▪ UTF8FLD(#)
 ▪ DELETE UTF8FLD or DELETE UTF8FLD(occur)
 ▪ DELETEC UTF8FLD or DELETEC UTF8FLD(occur)
 ▪ UNLOAD UTF8FLD or UNLOAD UTF8FLD(occur)
 ▪ UNLOADC UTF8FLD or UNLOADC UTF8FLD(occur)
 ▪ NOUNLOAD UTF8FLD or NOUNLOAD UTF8FLD(occur)

 Also, the PAI statement may not be used if any of the files which are input to
 Fast/Unload contains a field with the UTF8 attribute.

 Version 4.5 does not enforce these UTF8 field restrictions, as noted in “Preventing
 illegal access to UTF8 fields” on page 53.

——
22 Fast/Unload Release Notes Version 4.6

——
 New or changed program parameters
——

 3.13 New or changed program parameters

 The following new parameters may be passed to Fast/Unload:

 [NO]ERRCAN ERRCAN means that CANCEL REPORT is the default for the
 ERROR clause of the PUT statement. This allows you to make
 CANCEL REPORT the default just for the current Fast/Unload job,
 rather than as the default for all Fast/Unload jobs, which is provided
 by the customization zap for the PUT ERROR clause.

 NOERRCAN can be used to override the customization zap for the
 PUT ERROR clause, if it has been applied, so the normal ERROR
 clause default is in place.

 MISSZ | MISSN1 MISSZ means that 0 is the default MISSING value for PUT
 statements with non-STRING formats. This allows you to make this
 the default just for the current Fast/Unload job, rather than as the
 default for all Fast/Unload jobs, which is provided by the
 customization zap for the MISSING default.

 MISSN1 can be used to override the customization zap for the
 default MISSING value, if it has been applied, and the normal
 MISSING value default is in place.

 3.14 New or changed FUEL statements

 This section lists new statements that may be used in Fast/Unload, or changes to
 existing statements.

 These statements are all in support of fieldgroups in FILEORG X'100' files.

 3.14.1 FOR FIELDGROUP fgrpName[(occ)]

 The following block creates a context within which references to fieldgroup members and
 #FIELDGROUPID use the given fieldgroup occurrence:

 FOR FIELDGROUP fgrpName[(occ)]
 . . . statements which use fgrpName[(occ)] as the
 . . . fieldgroup context
 END FOR

 The fgrpName clause in the statement can be replaced by the name of any fieldgroup
 defined in the file.

——
Fast/Unload Release Notes Version 4.6 23

——
New Features
——

 The (occ) clause in the statement is optional and specifies the occurrence number of the
 fieldgroup being used as the context; just as with the occurrence number of a regular
 field in FUEL, it may be a positive integer count, a loop control variable, or a %variable.
 If it is a %variable, the value of the %variable must be a number greater than or equal to
 1; any fractional part is dropped.

 The given occurrence of the specified fieldgroup, within the current context, is the
 context for any members of that fieldgroup. If the (occ) clause is omitted, the first
 occurrence of the fieldgroup is used. If the occurrence of the fieldgroup does not exist
 within the current context, the entire block is skipped.

 For example, assuming the following field definitions:

 DEFINE FIELD FIELDA (FG GRP)
 DEFINE FIELD FIELDB (FG GRP)

 the following statements put, on the output stream, the values of the fields in the second
 occurrence of fieldgroup GRP:

 FOR FIELDGROUP GRP(2)
 PUT FIELDA
 PUT FIELDB
 OUTPUT
 END FOR

 Note: if GRP is not nested, and each of FIELDA and FIELDB is either EXACTLY-ONE,
 or is AT-MOST-ONE and not FG *, the following statements are equivalent to the above:

 PUT FIELDA(2)
 PUT FIELDB(2)
 OUTPUT

 There is no significant difference in processing time between the above two approaches.

 3.14.2 FOR FIELDGROUP fgrpName = id

 The following block creates a context within which references to fieldgroup members and
 #FIELDGROUPID use the fieldgroup occurrence whose ID is specified:

 FOR FIELDGROUP fgrpName = id
 . . . statements which use fgrpName with the
 . . . specified id as the fieldgroup context
 END FOR

 The fgrpName clause in the statement can be replaced by the name of any fieldgroup
 defined in the file.

——
24 Fast/Unload Release Notes Version 4.6

——
 New or changed FUEL statements
——

 The id clause in the statement specifies the fieldgroup ID to be matched for the
 fieldgroup being used as the context. It may be a positive integer count, a loop control
 variable, a special variable, or a %variable. If it is a special variable or a %variable, its
 value must be a number greater than or equal to 1; any fractional part is dropped.

 The occurrence of the specified fieldgroup, within the current context, whose fieldgroup
 ID is equal to the specified id, is the context for any members of that fieldgroup. If an
 occurrence of the fieldgroup does not exist with the specified id within the current
 context, the entire block is skipped.

 For example, assuming the following field definitions:

 DEFINE FIELD FIELDA (FG GRP)
 DEFINE FIELD FIELDB (FG GRP)

 the following statements put on the output stream the values of the fields in the
 occurrence of fieldgroup GRP which has the ID '4':

 FOR FIELDGROUP GRP = 4
 PUT FIELDA
 PUT FIELDB
 OUTPUT
 END FOR

 Note that if both the fieldgroup ID and fieldgroup occurrence number are available, it is
 faster to access a fieldgroup occurrence using "FOR FIELDGROUP fgrpName(occ)"
 than to access it using "FOR FIELDGROUP fgrpName = id".

 3.14.3 FOR EACH FIELDGROUP fgrpName

 The following block loops over all occurrences of a fieldgroup in the current context.
 Within the block it creates a context within which references to fieldgroup members and
 #FIELDGROUPID use, in order, each of the occurrences of the fieldgroup within the
 current context:

 FOR EACH FIELDGROUP fgrpName
 . . . statements which use consecutive occurrences of
 . . . fgrpName as the fieldgroup context
 END FOR

 The fgrpName clause in the statement can be replaced by the name of any fieldgroup
 defined in the file.

 FUEL's FOR EACH FIELDGROUP statement is identical to the User Language FOR
 EACH OCCURRENCE OF FIELDGROUP statement.

 Within the current context, each occurrence of the specified fieldgroup is the context for
 any members of that fieldgroup.

——
Fast/Unload Release Notes Version 4.6 25

——
New Features
——

 For example, assuming the following field definitions:

 DEFINE FIELD FIELDA (FG GRP)
 DEFINE FIELD FIELDB (FG GRP)

 the following statements put on the output stream the values of the fields in all
 occurrences of fieldgroup GRP:

 FOR EACH FIELDGROUP GRP
 PUT FIELDA
 PUT FIELDB
 OUTPUT
 END FOR

 Note: if GRP is not nested, and each of FIELDA and FIELDB is either EXACTLY-ONE
 or is AT-MOST-ONE, and is not FG *, the following statements are equivalent to the
 above (except for the use of the loop control variable I):

 FOR I FROM 1 TO FIELDA(#)
 PUT FIELDA(I)
 PUT FIELDB(I)
 OUTPUT
 END FOR

 There is no significant difference in processing time between the above two approaches.

 Also note that the following FUEL statements:

 FOR EACH FIELDGROUP GRP
 . . body
 END FOR

 are processed, for all intents and purposes (for example, with the same performance)
 the same as the following:

 FOR I FROM 1 TO FIELDGROUP GRP(#)
 FOR FIELDGROUP GRP(I)
 . . body
 END FOR
 END FOR

 The latter approach may be better in your FUEL program if you need to access the
 occurrence number (I, in this example) of the fieldgroup, although that is also available
 in the FOR EACH FIELDGROUP example above via the #FIELDGROUPOCCURRENCE
 special variable (see “#FIELDGROUPOCCURRENCE” on page 29).

——
26 Fast/Unload Release Notes Version 4.6

——
 New or changed FUEL statements
——

 3.14.4 LEAVE FIELDGROUP

 This statement will terminate execution of the current FOR FIELDGROUP block, causing
 execution to resume at the statement after the end of its matching END FOR.

 3.14.5 [NO]UNLOAD[C] FIELDGROUP

 The UNLOAD[C] FIELDGROUP statement allows the unloading of one outer
 occurrence, or all outer occurrences, of a fieldgroup.

 The syntax is:

 UNLOAD[C] FIELDGROUP [fldgrpName [qualifier]]

 Where:

 UNLOAD FIELDGROUP This statement unloads the specified occurrence(s); if a
 single occurrence is specified or implied, the occurrence
 must be present; if it is not present, the Fast/Unload job is
 cancelled. It can also be used without specifying any
 fieldgroup name.

 UNLOADC FIELDGROUP This statement unloads the specified occurrence(s); if a
 single occurrence is specified or implied, and the
 occurrence is not present, no action is performed. It can
 also be used without specifying any fieldgroup name.

 fldgrpName This is the name of the fieldgroup, whose occurrence(s)
 are to be unloaded. It must either be a non-nested
 fieldgroup, or it must be a FG * fieldgroup and be
 referenced outside any FOR FIELDGROUP block. The
 resulting outer occurrence(s) of the fieldgroup are
 unloaded.

 If fldgrpName is omitted, the current occurrence of the
 fieldgroup specified on the containing FOR FIELDGROUP
 block is unloaded. The fieldgroup specified on that block
 must either be a non-nested fieldgroup, or it must be a FG
 * fieldgroup and be referenced outside any FOR
 FIELDGROUP block.

 qualifier A specification of which occurence(s) of the fieldgroup
 named fldgrpName to be unloaded, of one of the following
 forms:

 (occ) The occurrence number to be unloaded, enclosed
 in parentheses. occ may be an integer constant,
 a %variable, or a loop control variable.

——
Fast/Unload Release Notes Version 4.6 27

——
New Features
——

 (*) Unload all occurrences of the fieldgroup; if there
 are none, no action is taken.

 = id The ID of the fieldgroup to be unloaded.

 qualifier is optional; if omitted, the first occurrence of the
 named fieldgroup is unloaded.

 The NOUNLOAD FIELDGROUP statement allows one outer occurrence, or all outer
 occurrences, of a fieldgroup to be marked to not be unloaded as part of a subsequent
 blanket UNLOAD statement for the record. The syntax is:

 NOUNLOAD FIELDGROUP [fldgrpName [qualifier]]

 Where:

 fldgrpName This is the name of the fieldgroup, whose occurrence(s) are to be marked
 to not be unloaded. It must either be a non-nested fieldgroup, or it must
 be a FG * fieldgroup and be referenced outside any FOR FIELDGROUP
 block. The resulting outer occurrence(s) of the fieldgroup are marked to
 not be unloaded.

 If fldgrpName is omitted, the current occurrence of the fieldgroup
 specified on the containing FOR FIELDGROUP block is marked to not be
 unloaded. The fieldgroup specified on that block must either be a non-
 nested fieldgroup, or it must be a FG * fieldgroup and be referenced
 outside any FOR FIELDGROUP block.

 qualifier A specification of which occurence(s) of the fieldgroup named fldgrpName
 to be marked to not be unloaded, of one of the following forms:

 (occ) The occurrence number to be marked, enclosed in parentheses.
 occ may be an integer constant, a %variable, or a loop control
 variable.

 (*) Mark all occurrences of the fieldgroup.

 = id The ID of the fieldgroup to be marked.

 qualifier is optional; if omitted, the first occurrence of the named
 fieldgroup is marked.

 3.14.6 PAI

 The PAI statement in FUEL supports FILEORG X'100' files, providing the same
 information that PAI CTOFIELDS in User Language provides. There are no operands
 of the FUEL PAI statement, to control display of automatic fields or LOB fields, as there
 are in the User Language PAI statement.

——
28 Fast/Unload Release Notes Version 4.6

——
 New or changed FUEL statements
——

 Fieldgroups are displayed with a 'fieldgroup name = ID' line at the start and end of the
 fieldgroup; so, for example, repeating the example PAI output shown in “Record
 structure in FILEORG X'100' files, context and other fieldgroup concepts” on page 10:

 OUTFLD = OUT01
 OUTFLD = OUT02
 \GRP = 20
 EXOMEM = MEM01
 EXOMEM2 = MEM02
 /GRP = 20
 OUTFLD = OUT03
 \GRP = 5
 EXOMEM = MEM03
 EXOMEM2 =
 REPMEM = REPMEM01
 /GRP = 5
 OUTFLD = OUT07

 3.15 New or changed #functions and special variables

 The following sections describe new or changed #functions or special variables in
 version 4.6 of Fast/Unload.

 3.15.1 #FIELDGROUPID

 This special variable returns the fieldgroup ID of the current occurrence of the fieldgroup
 specified on the containing FOR FIELDGROUP block.

 This is another exception to the use of special variables in the "Using SORT FIELDS"
 section. In fact, maybe we should just list those that can be used, since there are fewer
 (#FILENAME is another exception; it had not been listed). The special variables usable
 in SORT FIELDS are:

 ● #ERROR
 ● #RECIN
 ● #GRPMEM
 ● #GRPSIZ

 3.15.2 #FIELDGROUPOCCURRENCE

 This special variable returns the occurrence number of the current occurrence of the
 fieldgroup specified on the containing FOR FIELDGROUP block.

 This is another exception to the use of special variables in the "Using SORT FIELDS"
 section (in fact, maybe we should just list those that can be used, since there are fewer -
 #FILENAME is another exception; it had not been listed).

——
Fast/Unload Release Notes Version 4.6 29

——
New Features
——

 3.15.3 #DELWORD, #WORD, and #WORDS now have delimiter
 argument

 These #functions allow an additional argument to specify the delimiter character which
 separates words. If present, it must be a string of one character in length.

 For example:

 %X = 'Friends and Romans. Lend me your ears. I bury Brutus.'
 %Y = #DELWORD(%X, 2, 1, '.')
 PUT %Y
 OUTPUT
 %Y = #WORD(%X, 1, '.')
 PUT %Y
 OUTPUT
 %Y = #WORDS(%X, '.')
 PUT %Y
 OUTPUT

 The result of the above fragment is:

 Friends and Romans. I bury Brutus.
 Friends and Romans
 3

 In the doc, the mention of 'blank' will be changed to 'delimiter'. Note that we are not
 changing the delimiter used for #DEBLANK nor #FIND.

 3.15.4 #QUOTE: Wrap string in quote character, and double
 embedded quotes

 This function returns the input string with a quote character added before and after the
 input, and with any quote characters within the input replaced by two copies of the quote
 character.

 %quoted = #QUOTE(string, char)

 #QUOTE syntax

 Syntax Terms

 %quoted The input string wrapped in quotes with embedded quotes doubled; this
 may be a long string (that is, it may exceed 255 bytes in length).

 string The input string to be quoted; this may be a long string (that is, it may
 exceed 255 bytes in length).

 char The quote character; this must be a string of length one.

——
30 Fast/Unload Release Notes Version 4.6

——
 New or changed #functions and special variables
——

 For example:

 %S = 'Don''t stop'
 %L = #LEN(%S)
 PUT %L
 PUT ' '
 PUT %S
 OUTPUT
 %Q = #QUOTE(%S, '''')
 %L = #LEN(%Q)
 PUT %L
 PUT ' '
 PUT %Q
 OUTPUT

 The output from the above FUEL fragment is:

 10 Don't stop
 13 'Don''t stop'

 3.15.5 #SHADIGEST: SHA-1 digest ("hash") of string

 This function returns the 20-byte (always) binary string that is the SHA-1 digest of the
 argument.

 %hashval = #SHADIGEST(string)

 #SHADIGEST syntax

 Syntax Terms

 %hashval A %variable to receive the SHA-1 digest of the argument string.

 string The input string to be hashed; this may be a long string (that is, it may
 exceed 255 bytes in length).

 Usage Notes

 ● SHA (Secure Hash Algorithm) is a set of cryptographic hashing functions;
 #SHADIGEST provides SHA-1, the most commonly used. A complete explanation
 of SHA hashing can easily be found on the internet.

 ● This FUEL #function operates the same as the Janus SOAP ULI SHAdigest
 method.

——
Fast/Unload Release Notes Version 4.6 31

——
New Features
——

 Examples

 The 20-byte SHA-1 hash of a string is typically expressed as a 40-digit hex value. In the
 following example, the output string from #SHADIGEST is converted to hex using the
 #C2X function:

 %HSH = #SHADIGEST('this is a simple test')
 %XHSH = #C2X(%HSH)
 PUT %XHSH
 OUTPUT

 The result is:

 BC38AA2D6769639946806616C14AF0C69477AABE

 3.16 Other FUEL changes

 3.16.1 Reference to the number of occurrences of a fieldgroup

 Corresponding to references to the number of occurrences of a field as an entity in a
 FUEL program, you can also refer to the number of occurrences of a fieldgroup, by
 coding the FIELDGROUP keyword, followed by the fieldgroup name, followed by the “#”
 token in parentheses:

 FOR I FROM 1 TO FIELDGROUP PAYMENT.INFO(#)

 3.16.2 #IF FIELDGROUP fieldgroup DEFINED

 The #IF preprocessor statement has been extended to allow testing for the presence in
 the file being unloaded (or any of the files in a group being unloaded), of a fieldgroup.
 For example:

 #IF FIELDGROUP PAYMENT.INFO DEFINED

 3.16.3 Asterisk in PUT statement syntax

 The syntax for the PUT statement has been enhanced to support the use of the asterisk
 (*) in the following:

 MISSING * or ERROR *
 The MISSING and ERROR clauses now allow, in addition to a value or
 action keyword (immediately following MISSING or ERROR), an asterisk (*),
 which specifies that the default should be taken for the value or action and
 that an ERROR condition is exempted from the effect of the ERRCAN

——
32 Fast/Unload Release Notes Version 4.6

——
 Other FUEL changes
——

 parameter so that CANCEL is not performed for the conversion error. It also
 allows you to specify REPORT or NOREPORT after the asterisk. See
 “Asterisk in MISSING and ERROR clauses” on page 39 for examples.

 STRING(*[,other format specification])
 Using an asterisk (*) as the length specification for the STRING output
 format causes the value to be placed in the output using as many bytes as
 there are in the value; that is, the output length is variable.

 The use of STRING with a length of zero (its default) also specifies variable
 length output, but it has an undesirable effect on the MISSING clause, and
 so many forms of the STRING format are deprecated.

 For a PUT statement without a MISSING constant, the output is the same
 whether you specify nothing, 0, or * for the string length, but if a MISSING
 constant is present, you should use STRING(*[,..]) for variable length output.

 If you do not, STRING with length zero (explicitly or by default) causes the
 constant specified in the MISSING clause to be ignored; for example:

 PUT MIDDLE.NAME AS STRING MISSING '(none)'

 If field MIDDLE.NAME is missing for a record, nothing will be put to the
 output. The desired result, placing the string (none) in the output for a
 missing field, is obtained if you use:

 PUT MIDDLE.NAME AS STRING(*) MISSING '(none)'

 The following formats are deprecated and cause a warning message to be
 issued; after the deprecated format, the preferred format is shown:

 ● STRING(0[,...])
 STRING(*[,...]) /* This is preferred

 ● STRING()
 STRING(*) /* This is preferred

 ● STRING(,[...])
 STRING(*,[...]) /* This is preferred

 ● STRING not immediately followed by a parenthesis, and followed by a
 MISSING clause with a constant, for example:

 PUT AS STRING ERROR CANCEL MISSING '-'
 PUT AS STRING(*) ERROR CANCEL MISSING '-' /* This is preferred

 Even though any PUT .. STRING without a MISSING clause constant (or if
 the MISSING clause constant is the null string) does not expose the

——
Fast/Unload Release Notes Version 4.6 33

——
New Features
——

 MISSING value truncation problem, the warning message is issued anyway,
 to reinforce the practice of using (*... when you have a MISSING constant
 or when you are already coding (...).

 The syntax for the PUT statement is shown in the following two sections.

 3.16.3.1 Revised syntax for the PUT statement

 As described above, the asterisk (*) can be used in the MISSING and ERROR clauses.
 This section and the next include this as part of the syntax description. This revised
 syntax description is a replacement for the PUT description in the Fast/Unload
 Reference Manual.

 The syntax diagram for the PUT statement is:

 [TO destination] -
 PUT info -
 [AT loc] -
 [AS format -
 [MISSING missActOrVal [repOrNot]] -
 [ERROR errActOrVal [repOrNot]]
]

 The current doc for 'TO destination', 'info', 'AT loc', and 'AS format' is adequate, except:

 ● Negative loc is allowed and causes "overlay" of previous bytes.

 ● We need to remove or alter some language about the missing value from the
 various formats; also we should insert square brackets to indicate optional format
 parameters. The default length for STRING is 0 (variable, although * should be
 used if any format parameter or a MISSING constant is used), for FLOAT it is 4, and
 for DECIMAL and ZONED it is 32.

 ● The following sentence should be added in the 'AS format' section:
 If there is no AS format ... clause, the default format is STRING(*).

 ● And, of course, * needs to be added as a choice for STRING length.

 The items in the definition list would be better served as subsections of the PUT section,
 for example, 'AT loc', etc., with a final subsection titled 'PUT examples'.

 The MISSING and ERROR sections will be combined, as shown in the next section.

——
34 Fast/Unload Release Notes Version 4.6

——
 Other FUEL changes
——

 3.16.3.2 MISSING and ERROR clauses

 The ERROR clause is allowed with any info except a constant.

 The MISSING clause is allowed only if info may be missing, that is:

 ● a field occurrence;

 ● either of the special variables #FILENAME or #UPARM (even though #FILENAME
 cannot be missing);

 ● a %variable.

 The clauses may occur in either order. The terms in the MISSING and ERROR clauses
 are:

 missActOrVal
 one of the following:

 ● a constant value, which is placed in the output record if info is MISSING;
 ● either of the keywords SKIP or CANCEL, as described below;
 ● an asterisk (*) as a placeholder (causing missActOrVal to be the same as
 it would be without any MISSING clause; this is allowed starting with
 version 4.6.

 If the MISSING clause is not specified, or if MISSING * is specified, the value
 put when info is missing depends on whether info has a value:

 If info has no value
 Then the default MISSING handling for a STRING format is to fill the
 output area with blanks; for a numeric format, the default MISSING
 handling is to output either -1 or, if the MISSZ parameter is used, 0.

 If info has a value
 A missing field occurrence or %variable has a value if, and only if, it is
 the first occurrence (see “First occurrence” on page 16) of an AT-
 MOST-ONE field which has a DEFAULT-VALUE, or is a %variable,
 which has been assigned from such a field occurrence. In either of
 these cases, the default missActOrVal is as follows:

 ● If the value is convertible (and does not exceed the format length,
 for a STRING format), the value is placed in the output area.

 ● Otherwise, an ERROR condition occurs (in additon to the
 MISSING condition).

——
Fast/Unload Release Notes Version 4.6 35

——
New Features
——

 For example, if field AGE has AT-MOST-ONE DEFAULT-VALUE
 'UNKOWN', and the current record does not have an occurrence of
 AGE:

 PUT AGE AS DECIMAL(3)
 %X = #ERROR
 OUTPUT
 PUT 'Error value: '
 PUT #ERROR
 OUTPUT

 Since the field occurrence is missing and the value of the field is not
 convertible, both MISSING and ERROR conditions have occurred, and
 the result of the above fragment in this situation is:

 -1
 Error value: 3

 (We will also update the doc for #ERROR, noting that it can be 3 if
 both the ERROR and MISSING conditions occur).

 errActOrVal
 one of the following:

 ● a constant value, which is placed in the output record if a conversion error
 occurs on the PUT;
 ● either of the keywords SKIP or CANCEL, as described below;
 ● an asterisk (*) as a placeholder/override. This is allowed starting with
 version 4.6 and has the following effect:
 1. It overrides the effect of the ERRCAN parameter so that CANCEL is
 not performed for a conversion error on this PUT statement.
 2. It does not affect the repOrNot keyword, but otherwise it handles the
 conversion error just as the PUT statement would handle it (except
 that it overrides ERRCAN) if there were no MISSING or ERROR
 clauses (see the section below for MISSING and ERROR defaults).
 Note that this effect is already the default for a STRING format, and
 so the only reason to use it with a STRING format, other than reason
 (1) above, is to specify ERROR * NOREPORT (or equivalently ERROR
 TRUNC NOREPORT).
 3. It can simply serve as a placeholder, so that you can specify
 REPORT or NOREPORT in the ERROR clause, without an explicit
 constant, SKIP, or CANCEL.
 ● either of the keywords TRUNCATE or TRUNC (only for a STRING
 format); this is the same as using an asterisk (*).

 repOrNot
 For both the MISSING and ERROR clauses, you may add a trailing REPORT
 or NOREPORT keyword. NOREPORT indicates that the condition is not
 reported on the report data set; this is the default for the MISSING clause

——
36 Fast/Unload Release Notes Version 4.6

——
 Other FUEL changes
——

 unless CANCEL or SKIP is specified as missActOrVal. REPORT indicates
 that the condition is reported on the report data set; this is the default (starting
 with version 4.6) for the ERROR clause, and is the default for the MISSING
 clause if CANCEL or SKIP is specified as missActOrVal.

 The ERROR repOrNot default is distinctly different prior to version 4.6; see
 “Pre-4.5 defaults for the MISSING and ERROR clauses” on page 38.

 The SKIP and CANCEL keywords are handled as follows:

 SKIP This means that the entire input record is discarded. Note that if output
 records had been created with an OUTPUT statement before a missing
 value causes a SKIP, the output records would remain in the output data
 set. A partial output record that has been created before the SKIP would
 not go to the output data set.

 The SKIP keyword in the MISSING clause causes REPORT to be the
 default for MISSING.

 CANCEL This means the entire Fast/Unload job is terminated. Use this value if the
 MISSING or ERROR condition indicates a severe logic error in your data
 file structure.

 The CANCEL keyword in the MISSING clause causes REPORT to be the
 default for MISSING.

 Starting with version 4.6, the defaults for missActOrVal and errActOrVal are as follows:

 missActOrVal default
 The default for missActOrVal is as described at the start of this section; see
 “MISSING and ERROR clauses” on page 35.

 errActOrVal default
 The default for errActOrVal is as follows:

 ● If the ERRCAN parameter is used, the default is CANCEL.

 ● Otherwise, if the format is STRING, the default is the truncated string
 value.

 ● Otherwise (numeric format and not ERRCAN):

 ▪ If missActOrVal is specified and is not *, then the default for
 errActOrVal is the same as the specified missActOrVal.
 ▪ Otherwise, the default errActOrVal is -1, or, if the MISSZ parameter is
 used, 0.

——
Fast/Unload Release Notes Version 4.6 37

——
New Features
——

 As can be seen, there is some asymmetry between the ERROR defaults for
 STRING versus numeric formats if the ERRCAN parameter is not used:

 ● For numeric formats, if there is a MISSING clause (with missActOrVal
 other than *), the default for errActOrVal is whatever was specified for
 missActOrVal; if there is not a non-* MISSING clause, the default
 errActOrVal either is -1 or, if the MISSZ parameter is used, it is 0.
 ● For STRING formats, the default for errActOrVal is the truncated string
 value, regardless of what may be specified for missActOrVal.

 For Fast/Unload versions prior to 4.6, see “Pre-4.5 defaults for the MISSING and
 ERROR clauses” for a description of the defaults for the MISSING and ERROR clauses.

 3.16.3.3 Pre-4.5 defaults for the MISSING and ERROR clauses

 This section describes the defaults for the MISSING and ERROR clauses for
 Fast/Unload versions 4.4 and earlier (version 4.5 is the same as version 4.4, except that
 it uses the DEFAULT-VALUE, if any, for the missing first occurrence of an AT-MOST-
 ONE field).

 missActOrVal The default missActOrVal for a STRING format is to fill the
 output area with blanks; for a numeric format, the default
 missActOrVal is to output either -1 or, if the customization zap for
 MISSING default is applied, 0.

 This is the same as described above for version 4.6, but the
 above description is simpler, since the DEFAULT-VALUE
 attribute is not supported prior to version 4.5.

 MISSING repOrNot NOREPORT is the default unless CANCEL or SKIP is specified
 as missActOrVal, in which case REPORT is the default.

 This is exactly as described above for version 4.6.

 ERROR clause The default for the ERROR clause is as follows:

 ● If the customization zap for the PUT ERROR clause is
 applied, the default is ERROR CANCEL REPORT.

 ● Otherwise, if the format is STRING, the default is the
 truncated string value, and REPORT is the default for
 repOrNot.

 ● Otherwise (numeric format and no PUT ERROR
 customization zap):

——
38 Fast/Unload Release Notes Version 4.6

——
 Other FUEL changes
——

 ▪ repOrNot for ERROR defaults to REPORT, if an
 ERROR clause is present; if there is no ERROR clause,
 repOrNot for ERROR defaults to NOREPORT, unless
 REPORT, CANCEL, or SKIP is specified on the
 MISSING clause, in which case it defaults to REPORT.
 ▪ If missActOrVal is specified, then the default for
 errActOrVal is the same as the specified missActOrVal.
 ▪ Otherwise, the default errActOrVal is -1, or, if the
 customization zap for MISSING default is applied, 0.

 3.16.3.4 Additional PUT examples

 The following sections show some examples of the PUT statement.

 Asterisk in MISSING and ERROR clauses:

 The asterisk (*) in the MISSING clause is used as a placeholder, so you can specify
 REPORT without overriding the default missing value. This can be particularly useful for
 fields which have the DEFAULT-VALUE attribute, which PUT uses as the MISSING
 value. For example, if field COUNTRY has AT-MOST-ONE DEFAULT-VALUE 'USA',
 and the current record does not have an occurrence of COUNTRY:

 PUT COUNTRY AS STRING MISSING * REPORT
 OUTPUT

 The result of the above fragment in this situation is USA.

 The asterisk in the ERROR clause allows you to override the effect of the ERRCAN
 parameter for a particular PUT statement. For example:

 // EXEC PGM=FUNLOAD,PARM='ERRCAN'
 //FUNIN DD *
 ...
 PUT FLDA AS FLOAT(8) ERROR * REPORT
 PUT FLDB AS FLOAT(8)
 ...

 If FLDA contains Pizza, the program will not be cancelled by the first PUT statement,
 but if FLDB contains pie, the program will be cancelled. The REPORT keyword above is
 superfluous, since it is the default.

 3.16.4 Comparisons in IF/ELSEIF statements

 The processing for some kinds of IF/ELSEIF statements is now changed.

 In addition to these revised rules for comparisons, the Fast/Unload documentation will
 be enhanced as described in “Contrasting User Language and FUEL comparisons” on
 page 3.
——
Fast/Unload Release Notes Version 4.6 39

——
New Features
——

 A comparison is performed between two entities:

 [coerc] ent cmp [coerc] ent

 Each [coerc] ent phrase is a comparand:

 coerc Optionally, each entity (except a constant, and except where there is a conflict,
 as described below) can be prefixed by +, forcing a floating point comparison,
 or by $, forcing a fixed comparison. If coerc is present in both comparands,
 both coerc operators must be the same.

 ent The comparison is between two entities.

 cmp This is the comparison, for example, LT for the "less than" comparison.

 There are three types of comparison:

 float The "decimal rounded" (to 15 digits) value of the two comparands is compared,
 using a float comparison instruction. If either comparand cannot be converted,
 a zero is used in its place.

 fixed The truncated signed integer value of the two comparands is compared, using a
 signed integer comparison instruction. If either comparand cannot be
 converted, a zero is used in its place.

 string The string value of the two comparands is compared, using a string comparison
 instruction.

 Fast/Unload first determines the type of each entity as follows:

 ● If ent is a constant, its type is the type of the constant, the coerc prefix is not allowed
 before the constant.

 ● If ent is the #FIELDGROUPID special variable, its type is floating point, and neither
 comparand may have $ (fixed) as its coerc prefix.

 ● If ent is a loop control variable, a field occurrence count (fldNam(#)), a fieldgroup
 occurrence count (FIELDGROUP fldgrpNam(#)), or a special variable other than
 #FIELDGROUPID, #UPARM, or #FILENAME, its type is fixed.

 ● Otherwise (ent is a field occurrence, a %variable, #UPARM, or #FILENAME), its
 type is unknown.

 Given the type of the entities being compared, the type of comparison is as follows:

 ● If either ent is prefixed by +, a floating point comparison is performed. In this case,
 neither ent may be a string constant.

——
40 Fast/Unload Release Notes Version 4.6

——
 Other FUEL changes
——

 ● If either ent is prefixed by $, a fixed comparison is performed. In this case, neither
 ent may be a string constant, and the type of neither ent may be floating point.

 ● Otherwise (no coerc present):

 ▪ If the type of either ent is floating point, a floating point comparison is
 performed, and neither ent may be a string constant.

 ▪ Otherwise, if the type of either ent is fixed, a fixed comparison is performed,
 and neither ent may be a string constant.

 ▪ Otherwise, a string comparison is performed.

 Some of the above rules represent incompatibilities with earlier versions of Fast/Unload.
 See “Only constant entities previously implied comparison type” on page 48 for an
 explanation of the modifications of the above rules to describe comparisons in earlier
 versions.

 Some of the above rules change the behavior of comparisons; the following additional
 restrictions do not:

 ● If both comparands are constants, they must both be the same type.

 ● If one comparand is a constant, and coerc is specified (on the non-constant
 comparand), the type of constant must be the same as the type of comparison
 forced by coerc.

 3.16.4.1 IF/ELSEIF examples

 The following sections show some examples of comparisons in the IF statement (they
 apply equally to ELSEIF).

 #RECIN exclude/UPARM:

——
Fast/Unload Release Notes Version 4.6 41

——
New Features
——

 This example illustrates a technique for excluding records whose numbers are in a range
 that is specified in the Fast/Unload parameters.

 // EXEC PGM=FUNLOAD,PARM='UPARM=4-11'
 ...
 %LOSKIP = #WORD(#UPARM, 1, '-')
 %HISKIP = #WORD(#UPARM, 2, '-')
 FOR EACH RECORD
 IF #RECIN LT %LOSKIP OR #RECIN GT %HISKIP
 PUT '#RECIN '
 PUT #RECIN
 PUT ' not in excluded range '
 PUT #UPARM
 OUTPUT
 END IF
 END FOR

 If the input file has records numbered 0 through 15, the result of the above fragment is:

 #RECIN 0 not in exlcluded range 4-11
 #RECIN 1 not in exlcluded range 4-11
 #RECIN 2 not in exlcluded range 4-11
 #RECIN 3 not in exlcluded range 4-11
 #RECIN 12 not in exlcluded range 4-11
 #RECIN 13 not in exlcluded range 4-11
 #RECIN 14 not in exlcluded range 4-11
 #RECIN 15 not in exlcluded range 4-11

 Note that a numeric comparison is performed in IF #RECIN LT %LOSKIP.

 Processing every other field occurrence:

 A limitation of FUEL is that the counted FOR loop does not have a BY clause; you can
 easily achieve that using a REPEAT loop and a %variable; the termination test needs to
 use a numeric comparison, which is implicit when using a field occurrence count:

 %X = 1
 REPEAT
 IF %X GT SOMEFIELD(#)
 LEAVE REPEAT
 END IF
 ...
 %X = %X + 2
 END REPEAT

 Loop control variable:

——
42 Fast/Unload Release Notes Version 4.6

——
 Other FUEL changes
——

 Finally, a loop control variable is implicitly numeric in IF comparisons. For example:

 %LOSKIP = 3
 %HISKIP = 5
 FOR I FROM 1 TO 10
 IF I LT %LOSKIP OR I GT %HISKIP
 ...
 END IF
 END FOR

 3.17 Statistics improvements

 3.17.1 FSTATS for FILEORG X'100' files

 Field and fieldgroup statistics are produced for FILEORG X'100' files as follows:

 ● Occurrence counts for fieldgroup members are shown per fieldgroup, as opposed to
 per record, for non-fieldgroup members.

 ● Occurrence counts for EXACTLY-ONE fields refer to physically stored occurrences.

 ● The length calculated for a fieldgroup is based on the actual length (including the
 fieldgroup header) of physical fieldgroup items stored in table B or X; the length of
 each fieldgroup item never exceeds 511. For example, if the total length of the
 fields physically stored in a fieldgroup is 700, the fieldgroup occurrence will be split
 into multiple fieldgroup items, and the combined lengths of these items is used as
 the length of the fieldgroup occurrence in the fieldgroup's length statistics.

 ● The occurrence count calculated for a fieldgroup is based on “logical” fieldgroup
 occurrences. For example, if the total length of the fields physically stored in a
 fieldgroup is 700, even though this is physically stored as multiple fieldgroup items,
 this is treated as one fieldgroup occurrence.

 ● To help highlight fieldgroups distinctly from fields, a fieldgroup will contain three
 asterisks (***) in the field sequence number column.

 ● The new field attributes in FILEORG X'100' files are only displayed for FSTATS
 AVGTOT.

 ● Since the default for STORE-NULL differs for EXACTLY-ONE fields, FSTATS for it
 may differ from the output of the DISPLAY FIELD command:

 ▪ If the STORE-NULL attribute is NONE or ALL, it is displayed (for any field).
 ▪ The STORE-NULL attribute is always displayed for an EXACTLY-ONE field.
 ▪ Otherwise, STORE-NULL is not displayed (and by inference, if STORE-NULL is
 allowed, it is LIT).

——
Fast/Unload Release Notes Version 4.6 43

——
New Features
——

 ● Since the STORE-DEFAULT attribute is only allowed for a field with the DEFAULT-
 VALUE attribute, it is always displayed for such a field. This may differ from the
 output of the DISPLAY FIELD command:

 ● A CONCATENATED field is simply shown with CAT; the fields which are
 concatenated as the value are not shown.

 ● A COUNT-OCCURRENCES-OF field is simply shown with CTO; the field which is
 counted as the value is not shown.

——
44 Fast/Unload Release Notes Version 4.6

——
 Compatibility/Fixes
——

——————
CHAPTER 4 Compatibility/Fixes

 This chapter lists any compatibility issues with prior versions of Fast/Unload, in two
 sections — one covering compatibility with version 4.4, and one covering compatibility
 with version 4.5. We also present a section listing any bugs which have been fixed in
 this version of Fast/Unload but had not, as of the date of this release, been fixed in
 version 4.5 (all 4.6 fixes have also been fixed in version 4.4).

 In general, backward incompatibility means that an operation which was previously
 performed without any indication of error, now operates, given the same inputs and
 conditions, in a different manner. We may not list as backwards incompatibilities those
 cases in which the previous behaviour, although not indicating an error, was “clearly and
 obviously” incorrect, and which are introduced as normal bug fixes (whether or not they
 had been fixed with previous maintenance).

 4.1 Backwards compatibility with Fast/Unload 4.4 and
 4.5

 This section lists any differences in processing that result from execution with
 Fast/Unload version 4.6, as compared with the same inputs to Fast/Unload versions 4.4
 and 4.5 at current maintenance levels. In some cases zaps have been delivered to
 change the behavior to be the same as the version 4.6 behavior; these cases are
 explicitly listed.

 See “Backwards compatibility with Fast/Unload 4.5” on page 51 for compatibility issues
 which exist only between versions 4.6 and 4.5 of Fast/Unload.

 4.1.1 Considerations for compatibility issues

 In general, we only introduce compatibility issues if we feel that any risk well justifies the
 benefit, fixing behaviour which is clearly wrong. One area of particular concern may be
 the changes involving IF/ELSEIF comparisons in Fast/Unload. The description of FUEL
 comparisons can be found in the following sections:

 ● “Contrasting User Language and FUEL comparisons” on page 3

 ● “Comparisons in IF/ELSEIF statements” on page 39

 There are also sections dealing with compatibility issues regarding comparisons:

 ● “Only constant entities previously implied comparison type” on page 48

——
Fast/Unload Release Notes Version 4.6 45

——
Compatibility/Fixes
——

 ● “Float comparison of FLOAT fields now uses rounded value” on page 49

 ● “IS FLOAT/FIX disallowed for operands of numeric types” on page 50

 We believe that if this changes the operation of any existing FUEL programs, it is for the
 better. If you determine that the changes are risky, please let us know and we can
 discuss some approaches to reduce the risk.

 4.1.2 Detect PUT syntax error immediately after
 FIXED/DECIMAL/ZONED

 Prior to version 4.6 of Fast/Unload, a single-character "garbage" character was allowed
 and ignored after the FIXED, DECIMAL, or ZONED formats in the PUT statement; for
 example:

 PUT AMOUNT AS FIXED 2 MISSING -999

 This invalid syntax is no longer allowed. Detecting this syntax error was part of the fix
 described in “Allow MISSING or ERROR immediately after FIXED/DECIMAL/ZONED in
 PUT” on page 54.

 Presumably, the statement intended in place of the above was:

 PUT AMOUNT AS FIXED(2) MISSING -999

 4.1.3 Disallow PUT constant>255 AS FIXED(1)

 Previously, a FUEL statement was not treated as an error if it specified an integer
 constant whose value is greater than 255 with a format of FIXED(1). For example:

 PUT 256 AS FIXED(1)

 This should be reported as an error, because the value (256) does not fit in the length (1
 byte) specified.

 Any PUT statement which specifies an integer constant whose value is greater than 255,
 and with a format of FIXED(1), is now reported as an error.

 This fix was also delivered as a maintenance zap to versions 4.4 and 4.5 of Fast/Unload.

 4.1.4 Handle quotes in MISSING clause of UAI SORT

 Previously, the contents of the MISSING clause in a UAI SORT statement were used
 exactly as is, without stripping quotes (and also with a couple of other problems);
 consequently, the behavior prior to version 4.6 was as follows:

——
46 Fast/Unload Release Notes Version 4.6

——
 Backwards compatibility with Fast/Unload 4.4 and 4.5
——

 ● MISSING values which should be reported as syntax errors, namely, mismatched
 quotes and values which are longer than 255 bytes, are not reported in error. Take
 this FUEL program, for example:

 UAI SORT CHAD MISSING 'X

 This should be reported as an invalid statement due to the missing trailing quote,
 but it is not; the output of this program is actually (because of another glitch) the
 same as if MISSING 'X' were specified.

 ● The MISSING value stored in the sort key of UAI records contains an incorrect
 value, so that such records are not sorted in the proper sequence. Take this FUEL
 program for example:

 UAI SORT CHAD MISSING 'X'

 If a record has a missing occurrence of CHAD, and another has an occurrence with
 the single character X, these will not be sorted together. Rather, if there is a record
 with the single character @ and another with the single character =, the missing
 occurrence record will be sorted between them. As a little glitch, the final quote of
 the MISSING value is dropped if it is the last character in the FUEL statement.

 The handing of UAI's MISSING clause has been fixed, as reflected by the revised start
 of the description of that clause, as shown in “Revised description of UAI MISSING”.

 4.1.4.1 Revised description of UAI MISSING

 As stated in “Handle quotes in MISSING clause of UAI SORT” on page 46, a fix has
 been made to the handling of the MISSING clause of the UAI statement. The rest of this
 section presents the new syntax of that clause, as a replacement for the start of its
 documentation.

 ● The MISSING keyword lets you provide a value for the sort key when the field is
 missing from the database record or the %variable has the MISSING value.

 mvalue is the string of characters between the MISSING keyword and the following
 keyword (usually AND) or the end of the line, if there is no additional keyword on the
 UAI statement. If there are no quotation marks (actually, apostrophe characters; the
 terms 'apostrophe' and 'quote' mean the same thing in this section) in this string of
 characters, then that string (which can be numeric) is the value to be used for a
 missing field or %variable (multiple consecutive blanks are collapsed to a single
 blank). Quotes are necessary only if the value is to contain a UAI statement
 keyword which normally terminates the value, or if leading, trailing, or multiple
 consecutive blanks are required in the value. If there are quotes in the string, then
 quote normalization is repetitively performed, as follows:

 Balanced There must be an even number of quotes.

——
Fast/Unload Release Notes Version 4.6 47

——
Compatibility/Fixes
——

 Start quote The first quote is discarded, and encloses a quoted region
 which begins after that quote and continues until a close quote.

 Combine doubled Within a quoted region, if a quote is immediately followed by
 another, then the two quotes are replaced with a single one.

 Close quote An "undoubled" quote terminates the quoted region, and is
 discarded.

 All characters within a quoted region (after undoubling of internal quotes) are
 appended to the preceding portion of the value.

 mvalue must (after quote normalization as above) be less than 256 characters in
 length.

 mvalue must be convertible to the sort key data type. For example, ... (rest of
 MISSING clause description as before)

 This fix was also delivered as a maintenance zap to versions 4.4 and 4.5 of Fast/Unload.

 4.1.5 #IF errors which are now detected

 As mentioned in “Fixes to #IF” on page 55, several problems in the #IF statement have
 been fixed. Some of these problems allowed erroneous #IF statements to compile
 without any indication of error; in version 4.6 these errors are now detected:

 ● #IF DEFINED (as a complete statement) was allowed, and it always operated as if
 checking for a field which is not found. This statement is no longer allowed.

 ● #ELSE and #ELSEIF were allowed within an #IF block after an #ELSE. These are
 no longer allowed.

 4.1.6 Only constant entities previously implied comparison
 type

 As mentioned in “Comparisons in IF/ELSEIF statements” on page 39, several entities
 (field/group counts, loop control variables, and most special variables) now imply a
 numeric comparison; previously only numeric constants implied numeric comparisons.

 This was done to obtain correct comparison results which were previously incorrect, but
 of course this may change the behavior of some FUEL programs (from incorrect to

——
48 Fast/Unload Release Notes Version 4.6

——
 Backwards compatibility with Fast/Unload 4.4 and 4.5
——

 correct). For example, assuming that the current record contains 10 occurrences of field
 FOO:

 IF FOO(#) GT 3
 PUT 'More than a few
 ELSE
 PUT 'Just a few'
 END IF
 OUTPUT

 In version 4.4., the result of the above is Just a few, but in version 4.6., the result is
 More than a few.

 In addition, it was previously allowed to compare a string constant (with either IF/ELSEIF
 or WHEN) to an implicit numeric entity, but that is no longer allowed. Hence, the
 following statements were all allowed in version 4.4 but are not allowed in version 4.6:

 SELECT #RECIN
 WHEN '0'
 FOR I = 1 TO 10
 IF I LT '3'
 IF SOMEFIELD(#) GE 4

 4.1.7 Float comparison of FLOAT fields now uses rounded
 value

 Prior to version 4.6 of Fast/Unload, a float comparison of a FLOAT field used the exact
 (that is, unrounded) value of the field. Version 4.6 now uses the value of the field
 rounded to the nearest 15 significant digit decimal value. So, for example, given the
 following single record file:

 IN SOMEFIL INITIALIZE
 IN SOMEFIL DEFINE FIELD FLT (FLOAT LEN 8)
 IN SOMEFIL begin
 %x is float
 %x = 3
 %x = 1/%x
 store record
 FLT = %x
 end store
 end

——
Fast/Unload Release Notes Version 4.6 49

——
Compatibility/Fixes
——

 The following FUEL fragment:

 %X = 1/3 + 0
 IF +%X EQ FLT
 PUT '1/3 equal, %var and FLOAT field'
 ELSE
 PUT '1/3 different, %var and FLOAT field'
 END IF
 OUTPUT

 Produces 1/3 equal, %var and FLOAT field in version 4.6, but 1/3
 different, %var and FLOAT field in prior versions of Fast/Unload.

 Note that this change to rounded float value comparison also applies to the SELECT
 statement with a FLOAT field and a "contained" WHEN statement with a float constant.

 4.1.8 IS FLOAT/FIX disallowed for operands of numeric types

 The purpose of the IS FIXED and IS FLOAT tests is to check the format of the contents
 of a %variable or field occurrence. In version 4.4 these tests were allowed with implicitly
 numeric entities; however, their behaviour was unpredictable. Version 4.6 no longer
 accepts this; for example:

 IF #RECIN IS FIXED
 IF 1.0 IS FLOAT

 In version 4.4, these were allowed but the results were unpredicatble. In version 4.6,
 these are not allowed.

 Note that there were some IS FLOAT/FIXED tests with numeric operands which worked
 correctly in version 4.4, but, for simplicity, all are now disallowed.

 4.1.9 #IF/#ELSEIF now syntax error with nonsense field names

 As described in “#IF/#ELSEIF allowed nonsense field names” on page 56, a statement
 such as the following was allowed in version 4.4 and produced results likely to be
 unintended:

 #IF FOOBAR(*) DEFINED

 In version 4.6, this a statement results in a syntax error.

 4.1.10 Round %var or float constant to 15 digits for ZONED
 format

——
50 Fast/Unload Release Notes Version 4.6

——
 Backwards compatibility with Fast/Unload 4.4 and 4.5
——

 Previously, when a float constant (e.g., 123456789.0) or a %variable contains more than
 8 significant digits and is used in a PUT statement, the value is rounded to 8 significant
 digits, rather than 15 as it should be. For example:

 PUT 1234567895.0 AS DECIMAL(10) /*Right: 1234567895
 OUTPUT
 %X = 1234567895
 PUT %X AS DECIMAL(10) /*Right: 1234567895
 OUTPUT
 PUT 1234567895.0 AS ZONED(10) /*Wrong: 123456790{
 OUTPUT /*Should be: 123456789E
 PUT %X AS ZONED(10) /*Wrong: 123456790{
 OUTPUT /*Should be: 123456789E
 PUT 199999999234.0 AS DECIMAL(12) /*Right: 199999999234
 OUTPUT
 PUT 199999999234.0 AS ZONED(12) /*Wrong: 20000000000{
 OUTPUT /*Should be: 19999999923D

 This fix was also delivered as a maintenance zap to versions 4.4 (ZAP4426) and 4.5
 (ZAP4549) of Fast/Unload.

 4.2 Backwards compatibility with Fast/Unload 4.5

 This section lists any differences in processing that result from execution with
 Fast/Unload version 4.6, as compared with the same inputs to Fast/Unload version 4.5
 at current maintenance levels, although in some cases a version 4.5 zap has been
 delivered to change the behavior to be the same as the version 4.6 behavior; these
 cases are explicitly listed.

 See also “Backwards compatibility with Fast/Unload 4.4 and 4.5” on page 45 for
 additional compatibility issues between versions 4.6 and 4.5 of Fast/Unload.

 4.2.1 Differences in PUT ONE DV fields with no MISSING
 constant

 As described in “Handling of missing AT-MOST-ONE fields” on page 19, in version 4.6
 the PUT statement of the first occurrence of a missing AT-MOST-ONE DEFAULT-
 VALUE field (or a %variable which has been assigned from the missing first occurrence
 of such a field), if the PUT statement does not have the MISSING keyword followed by a
 constant, will

 1. result in the MISSING condition

 2. output the DEFAULT-VALUE, if convertible

 3. Also result in the ERROR condition, if non-convertible

——
Fast/Unload Release Notes Version 4.6 51

——
Compatibility/Fixes
——

 In version 4.5, a non-convertible DEFAULT-VALUE does not result in an ERROR
 condition.

 4.2.2 Other compatibility issues with Fast/Unload 4.5

 In general, the fixes described in “Fixes in Fast/Unload 4.6 but not in 4.5” represent
 compatibility issues with version 4.5 of Fast/Unload.

 4.3 Fixes in Fast/Unload 4.6 but not in 4.5

 This section lists fixes to functionality existing in Fast/Unload version 4.5 but which, due
 to the absence of customer problems, have not, as of the date of the release, been fixed
 in that version.

 None of the problems listed in this section pertain to Fast/Unload version 4.4. The fixes
 in Fast/Unload 4.6 that are not available in version 4.4 are listed in “Fixes in Fast/Unload
 4.6 but not in 4.4” on page 54.

 4.3.1 UAI of EXACTLY-ONE fields

 In Fast/Unload version 4.5, the UAI output for a record with any EXACTLY-ONE field
 which is not physically present will contain the default value (either the DEFAULT-
 VALUE or, if none, the null string). In 4.6, only physically present EXACTLY-ONE
 occurrences are output for UAI.

 For the most part the only consequences of this are that UAI can run more slowly in 4.5
 than in 4.6, and that a subsequent LAI using the UAI output can increase table B/X
 usage if EXACTLY-ONE fields with DEFAULT-VALUE are STORE-DEFAULT LIT or
 EXACTLY-ONE fields without DEFAULT-VALUE are STORE-NULL LIT. However, it
 also will cause LAI to fail (with a field constraint violation) if the default value violates a
 constraint on the field.

 4.3.2 PUT of ONE DV xx field AS non-STRING with no MISSING
 clause

 Previously, a PUT statement of an AT-MOST-ONE field is not allowed if the PUT
 statement uses a non-STRING format, does not contain a MISSING clause, and the
 DEFAULT-VALUE of the field is not convertible to a number. This is now allowed; if a
 field occurrence is missing in the above situation, the default non-string MISSING value
 (that is, -1, or 0 with the MISSZ parameter) is placed in the output.

——
52 Fast/Unload Release Notes Version 4.6

——
 Fixes in Fast/Unload 4.6 but not in 4.5
——

 4.3.3 [NO]UNLOAD of outer EXACTLY-ONE field

 In version 4.5 of Fast/Unload, the UNLOAD and NOUNLOAD statements are not
 performed correctly for outer EXACTLY-ONE fields (in both versions 4.5 and 4.6, they
 are not allowed for EXACTLY-ONE fieldgroup members). For version 4.5, NO/UNLOAD
 of an outer EXACTLY-ONE field produces a compilation error message (when
 maintenance ZAP4538 is applied).

 Version 4.6 correctly performs NO/UNLOAD of outer EXACTLY-ONE fields.

 4.3.4 References to AT-MOST-ONE fieldgroup members

 In version 4.5, references to AT-MOST-ONE fieldgroup members is not supported. That
 is, version 4.5 does not provide FOR FIELDGROUP blocks for field references, and
 references to non-nested, non-FG-* AT-MOST-ONE fieldgroup members without a FOR
 FIELDGROUP block (which are supported in 4.6 as described in “References to
 fieldgroup members not in fieldgroup context” on page 15), result (with ZAP4540) in a
 compilation error in 4.5.

 4.3.5 DEFAULT-VALUE for AT-MOST-ONE field in UAI SORT

 In version 4.5, when an AT-MOST-ONE field is used for the SORT key in a UAI SORT
 unload, the DEFAULT-VALUE of the field is not used as the default for the MISSING
 clause of the sort specification. In version 4.6, as described in “Handling of missing AT-
 MOST-ONE fields” on page 19, the DEFAULT-VALUE is used.

 4.3.6 Bug in PAI if fieldgroup present and outer field added

 In version 4.5 of Fast/Unload, the following FUEL fragment:

 ADD REP = #RECIN
 PUT '*'
 OUTPUT
 PAI

 is not handled correctly; for example, it may produce a "FUNL0056 Unknown field" error
 message and cancel Fast/Unload.

 4.3.7 Preventing illegal access to UTF8 fields

 Fast/Unload is not equipped to "fetch", ADD, or CHANGE UTF8 fields (doing so
 requires, at the least, conversion between EBCDIC and Unicode). Version 4.6 of
 Fast/Unload ensures that these unsupported accesses are not allowed, by prohibiting
 the FUEL statements which would give rise to them.

——
Fast/Unload Release Notes Version 4.6 53

——
Compatibility/Fixes
——

 Version 4.5 does not prohibit those statements, so it should not be used with files
 containing UTF8 fields.

 4.3.8 Handling of fieldgroup IDs greater than 2**31 - 1

 In version 4.5 of Fast/Unload, if a fieldgroup occurrence has an ID which is greater than
 2,147,483,647 the following incorrect results occur:

 ● The PAI statement displays the ID as a negative number (in particular, value of ID -
 4,294,967,296).

 ● PUT #FIELDGROUPID displays the ID as a negative number (in particular, value of
 ID - 4,294,967,296).

 The above errors are corrected in version 4.6.

 4.4 Fixes in Fast/Unload 4.6 but not in 4.4

 This section lists fixes, delivered in Fast/Unload 4.6, to functionality existing in
 Fast/Unload version 4.4 but which, due to the absence of customer problems, have not,
 as of the date of the release, been fixed in that version. Some of the problems in this
 section have also been fixed in version 4.5; such cases are indicated.

 The Fast/Unload 4.6 fixes to problems introduced in version 4.5 that are not available in
 version 4.5 are listed in “Fixes in Fast/Unload 4.6 but not in 4.5” on page 52.

 4.4.1 Allow MISSING or ERROR immediately after
 FIXED/DECIMAL/ZONED in PUT

 The FIXED, DECIMAL, and ZONED formats of the PUT statement all have default
 lengths, which allow omission of the parenthesized format; for example, the following is
 allowed and puts a 4-byte binary integer to the output:

 PUT AMOUNT AS FIXED

 However, prior to version 4.6, you were not able to specify a MISSING or ERROR
 clause immediately after the format type, for example:

 PUT AMOUNT AS FIXED MISSING -999

 This is now allowed. Note that when this bug was fixed, it also fixed another problem, as
 described in “Detect PUT syntax error immediately after FIXED/DECIMAL/ZONED” on
 page 46.

——
54 Fast/Unload Release Notes Version 4.6

——
 Fixes in Fast/Unload 4.6 but not in 4.4
——

 4.4.2 Long string access to FLOAT LEN 4 field

 When a FLOAT LEN 4 field is passed as an argument to certain #functions which accept
 string values longer than 255 bytes, an error may occur (specifically noted in version 4.4
 has been an operation exception at FUNS + X'3870'). The following FUEL statement
 exhibits such a usage:

 %X = #CONCAT('xyz', FLOAT4)

 4.4.3 Separate extension record stats for each file in group

 In version 4.4 of Fast/Unload, the table B statistics for the files within a group have two
 incorrect lines:

 Maximum extension chain length processed
 Non-adjacent extension records processed

 In version 4.4, they are cumulative for all files in the group. In version 4.6 (and version
 4.5 with ZAP4545 applied), they are separated for each of the files within the group.

 4.4.4 Fixes to #IF

 There are a number of fixes to the #IF statement, which are present in version 4.6 of
 Fast/Unload but not in version 4.4 nor version 4.5:

 1. The preprocessor statements (#...) did not allow the "trailing comments" (/*
 ...).

 2. Sometimes the error messages were misleading.

 3. The parsing of #IF and #ELSEIF did not allow fieldnames which have the word
 'DEFINED' or 'UNDEFINED' in them. There is a workaround for this, using quotes
 around part of the field name.

 4. An erroneous #IF DEFINED (as a complete statement) was allowed, and it always
 operated as if checking for a field which is not found.

 5. #ELSE and #ELSEIF were allowed within an #IF block after an #ELSE.

 Items (4) and (5) above are both noted as incompatibilities; see “#IF errors which are
 now detected” on page 48.

——
Fast/Unload Release Notes Version 4.6 55

——
Compatibility/Fixes
——

 4.4.5 Properly handle '=' in field name in ADD and CHANGE
 statements

 Previously, a field name containing an equal sign (=) was not allowed on the left hand
 side of an ADD or CHANGE statement; for example, consider a field named
 WARNOT=PEACE:

 ADD WARNOT'='PEACE = 'Tolstoy'

 The above statement is now allowed.

 4.4.6 IS FLOAT/FIX unpredictable for operands of numeric
 types

 As desribed in “IS FLOAT/FIX disallowed for operands of numeric types” on page 50, IS
 FLOAT/FIX is now disallowed for all implictily numeric operands. For example:

 IF #RECIN IS FIXED
 IF 1.0 IS FLOAT

 In version 4.4, these were allowed but the results were unpredicatble. In version 4.6,
 these are not allowed.

 4.4.7 #IF/#ELSEIF allowed nonsense field names

 In version 4.4, the following statement was allowed:

 #IF FOOBAR(*) DEFINED

 In version 4.6, such a statement is not allowed. The #IF and #ELSEIF statements only
 check to see whether a field (or fieldgroup) name is defined; an occurrence should not
 be specified.

 In version 4.4, the above statement checks for a field named FOOBAR(*), in the very
 bizarre case that you wanted to check for such a field you should do #IF
 FOOBAR'(*)' DEFINED.

 Since such a statement was formerly accepted (although it quite possibly gave an
 unintended result), this is mentioned in “#IF/#ELSEIF now syntax error with nonsense
 field names” on page 50.

——
56 Fast/Unload Release Notes Version 4.6

——
 Version co-requisites
——

 4.5 Version co-requisites

 This section lists any restrictions on usage of various products (including Fast/Unload
 itself) which will be imposed by use of version 4.6 of Fast/Unload.

 If a UAI operation is performed on a FILEORG X'100' file, the LAI requires at least
 version 7.7 of the Sirius Mods, although in general, if the file contains FILEORG X'100'
 features, especially fieldgroups, the LAI must be done with Model 204 V7R2 or greater,
 and so also requires a version of Sirius Mods which supports Model 204 V7R2 or
 greater.

——
Fast/Unload Release Notes Version 4.6 57

——
Compatibility/Fixes
——

——
58 Fast/Unload Release Notes Version 4.6

	Rocket M204 Fast/Unload
Release Notes
	Notices
	Corporate information
	Contacting Global Technical Support

	Contents
	1. Introduction
	1.1. Differences between versions 4.5 and 4.6
	1.2. z/OS or z/CMS required

	2. Maintenance and Support
	2.1. Improved error messages
	2.2. Documentation
	2.2.1. Contrasting User Language and FUEL comparisons
	2.2.1.1. FUEL does not imply numeric comparison for FLOAT fields
	2.2.1.2. Comparisons involving approximately equal float values

	2.2.2. PUT statement

	3. New Features
	3.1. Support for FILEORG X'100' files - summary
	3.2. Record structure in FILEORG X'100' files, context and other fieldgroup concepts
	3.2.1. Nested fieldgroups and FG *

	3.3. FOR FIELDGROUP blocks
	3.4. Statements which cannot reference fieldgroup members
	3.5. References to fieldgroup members not in fieldgroup context
	3.5.1. First occurrence

	3.6. EXACTLY-ONE fields
	3.7. Most field constraints, all field derivations ignored by ADD, DELETE, CHANGE
	3.8. Handling of DEFAULT-VALUE fields
	3.9. Handling of missing AT-MOST-ONE fields
	3.10. Nested FOR FIELDGROUP blocks
	3.11. Nested fieldgroups
	3.12. Support for V7R4
	3.13. New or changed program parameters
	3.14. New or changed FUEL statements
	3.14.1. FOR FIELDGROUP fgrpName[(occ)]
	3.14.2. FOR FIELDGROUP fgrpName = id
	3.14.3. FOR EACH FIELDGROUP fgrpName
	3.14.4. LEAVE FIELDGROUP
	3.14.5. [NO]UNLOAD[C] FIELDGROUP
	3.14.6. PAI

	3.15. New or changed #functions and special variables
	3.15.1. #FIELDGROUPID
	3.15.2. #FIELDGROUPOCCURRENCE
	3.15.3. #DELWORD, #WORD, and #WORDS now have delimiter argument
	3.15.4. #QUOTE: Wrap string in quote character, and double embedded quotes
	3.15.5. #SHADIGEST: SHA-1 digest ("hash") of string

	3.16. Other FUEL changes
	3.16.1. Reference to the number of occurrences of a fieldgroup
	3.16.2. #IF FIELDGROUP fieldgroup DEFINED
	3.16.3. Asterisk in PUT statement syntax
	3.16.3.1. Revised syntax for the PUT statement
	3.16.3.2. MISSING and ERROR clauses
	3.16.3.3. Pre-4.5 defaults for the MISSING and ERROR clauses
	3.16.3.4. Additional PUT examples

	3.16.4. Comparisons in IF/ELSEIF statements
	3.16.4.1. IF/ELSEIF examples

	3.17. Statistics improvements
	3.17.1. FSTATS for FILEORG X'100' files

	4. Compatibility/Fixes
	4.1. Backwards compatibility with Fast/Unload 4.4 and 4.5
	4.1.1. Considerations for compatibility issues
	4.1.2. Detect PUT syntax error immediately after FIXED/DECIMAL/ZONED
	4.1.3. Disallow PUT constant>255 AS FIXED(1)
	4.1.4. Handle quotes in MISSING clause of UAI SORT
	4.1.4.1. Revised description of UAI MISSING

	4.1.5. #IF errors which are now detected
	4.1.6. Only constant entities previously implied comparison type
	4.1.7. Float comparison of FLOAT fields now uses rounded value
	4.1.8. IS FLOAT/FIX disallowed for operands of numeric types
	4.1.9. #IF/#ELSEIF now syntax error with nonsense field names
	4.1.10. Round %var or float constant to 15 digits for ZONED format

	4.2. Backwards compatibility with Fast/Unload 4.5
	4.2.1. Differences in PUT ONE DV fields with no MISSING constant
	4.2.2. Other compatibility issues with Fast/Unload 4.5

	4.3. Fixes in Fast/Unload 4.6 but not in 4.5
	4.3.1. UAI of EXACTLY-ONE fields
	4.3.2. PUT of ONE DV xx field AS non-STRING with no MISSING clause
	4.3.3. [NO]UNLOAD of outer EXACTLY-ONE field
	4.3.4. References to AT-MOST-ONE fieldgroup members
	4.3.5. DEFAULT-VALUE for AT-MOST-ONE field in UAI SORT
	4.3.6. Bug in PAI if fieldgroup present and outer field added
	4.3.7. Preventing illegal access to UTF8 fields
	4.3.8. Handling of fieldgroup IDs greater than 2**31 - 1

	4.4. Fixes in Fast/Unload 4.6 but not in 4.4
	4.4.1. Allow MISSING or ERROR immediately after FIXED/DECIMAL/ZONED in PUT
	4.4.2. Long string access to FLOAT LEN 4 field
	4.4.3. Separate extension record stats for each file in group
	4.4.4. Fixes to #IF
	4.4.5. Properly handle '=' in field name in ADD and CHANGE statements
	4.4.6. IS FLOAT/FIX unpredictable for operands of numeric types
	4.4.7. #IF/#ELSEIF allowed nonsense field names

	4.5. Version co-requisites

