
Rocket Model 204 SirLib

User’s Guide

November 2014
LIB-0705-UG-01



Notices
Edition

Publication date: November 2014
Book number: LIB-0705-UG-01
Product version:

Copyright
© Rocket Software, Inc. or its affiliates 1995-2014. All Rights Reserved.

Trademarks

Rocket is a registered trademark of Rocket Software, Inc. For a list of Rocket registered trademarks go
to: www.rocketsoftware.com/about/legal. All other products or services mentioned in this document
may be covered by the trademarks, service marks, or product names of their respective owners.

Examples

This information might contain examples of data and reports. The examples include the names of
individuals, companies, brands, and products. All of these names are fictitious and any similarity to
the names and addresses used by an actual business enterprise is entirely coincidental.

License agreement

This software and the associated documentation are proprietary and confidential to Rocket Software,
Inc. or its affiliates, are furnished under license, and may be used and copied only in accordance with
the terms of such license.

Note:  This product may contain encryption technology. Many countries prohibit or restrict the
use, import, or export of encryption technologies, and current use, import, and export regulations
should be followed when exporting this product.

http://www.rocketsoftware.com/about/legal


Corporate Information
Rocket Software, Inc. develops enterprise infrastructure products in four key areas: storage, 
networks, and compliance; database servers and tools; business information and analytics; and 
application development, integration, and modernization.

 Website: www.rocketsoftware.com

Rocket Global Headquarters
77 4th Avenue, Suite 100
Waltham, MA 02451-1468
USA

Contacting Technical Support
If you have current support and maintenance agreements with Rocket Software and CCA, 
contact Rocket Software Technical support by email or by telephone:

Email:  m204support@rocketsoftware.com

Telephone : 

 North America +1.800.755.4222

    United Kingdom/Europe +44 (0) 20 8867 6153

Alternatively, you can access the Rocket Customer Portal and report a problem, download an 
update, or read answers to FAQs. You will be prompted to log in with the credentials supplied as 
part of your product maintenance agreement.

To log in to the Rocket Customer Portal, go to:

www.rocketsoftware.com/support

http://www.rocketsoftware.com
http://www.rocketsoftware.com/support
mailto:support@rocketsoftware.com


——————————————————————————————————————————
Proprietary Notices
——————————————————————————————————————————

——————————————————————————————————————————
iv SirLib User's Guide



——————————————————————————————————————————
 Contents
——————————————————————————————————————————

——————— 
  Contents
 

 Proprietary Notices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

 Chapter 1: Introduction to UL/SPF . . . . . . . . . . . . . . . . . . . . . . . 1

 UL/SPF packaging and installation requirements . . . . . . . . . . . . . . . . . 2
 Integrating UL/SPF with other subsystems . . . . . . . . . . . . . . . . . . . . 2
 Related documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

 Chapter 2: Overview of Configuration Management . . . . . . . . . . . . . . 5

 Chapter 3: SirLib Implementation . . . . . . . . . . . . . . . . . . . . . . . . 7

 SirLib Operations Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

 Chapter 4: SirLib — A Programmer's Reference . . . . . . . . . . . . . . . 15

 Q (SEQUENCE) Command . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
 X (XCOMPARE) Command . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
 N (NEW) Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
 K (ERASE) Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
 Z (RESEQUENCE) Command . . . . . . . . . . . . . . . . . . . . . . . . . . 27

 Chapter 5: SirLib — Update Example . . . . . . . . . . . . . . . . . . . . . 29

 Chapter 6: SirLib Change Control . . . . . . . . . . . . . . . . . . . . . . . 31

 Project Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
 Configuring Files (Applying Updates) . . . . . . . . . . . . . . . . . . . . . . 35
 Backing Out Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
 Applying Updates in Batch Mode . . . . . . . . . . . . . . . . . . . . . . 36
 Administering System and File Profiles . . . . . . . . . . . . . . . . . . . . . 38
 Release Cutover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
 View/Clear Procedure Locks . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

 Chapter 7: Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

 Chapter 8: SirLib Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

——————————————————————————————————————————
SirLib User's Guide v



——————————————————————————————————————————
Contents
——————————————————————————————————————————

 Chapter 9: Configuration Options . . . . . . . . . . . . . . . . . . . . . . . 49

 Chapter 10: Problem Resolution . . . . . . . . . . . . . . . . . . . . . . . . 53

 SirLib Can't Access File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
 Cutover Failed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
 Missing Base Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
 Missing SEQ Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
 Deleted Update Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
 Reconfiguration Failed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
 Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
 Production Fixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

 Appendix A: SIRLIBD Record Structure . . . . . . . . . . . . . . . . . . . . 57

 Appendix B: Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

 Appendix C: Date Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 65

 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

——————————————————————————————————————————
vi SirLib User's Guide



——————————————————————————————————————————
 Introduction to UL/SPF
——————————————————————————————————————————

—————— 
CHAPTER 1  Introduction to UL/SPF

 UL/SPF is a family of products implemented as User Language application subsystems
 and designed to function together in a Model 204 Online. Each product in the family can
 be installed and run independently, or each can be installed and run as a component of
 the integrated UL/SPF (User Language / System Productivity Facilities) framework.

 All UL/SPF products share a common "look and feel" that is modelled upon IBM's ISPF
 facilities. UL/SPF supplants the sometimes arcane command language of Model 204,
 providing a highly productive full screen interface to a variety of common Model 204
 functions. UL/SPF enhances the capabilities of Model 204 and bypasses many of its
 restrictions, enabling the performance of routine tasks that were previously impossible or
 prohibitively time-consuming.

 UL/SPF comprises the following products:

 SirDBA A system that analyzes Model 204 databases to determine their logical
 structure, populating an internal catalog. SirDBA is distributed as a
 component of the Sir2000 Database Analysis Tools.

 SirFile A comprehensive facility both for monitoring the physical storage utilization
 of Model 204 database files and for warning users of the need for file
 reorganizations. SirFile maintains historical information that allows it to
 predict when file sizing problems will occur, allowing a DBA to take
 preventative action before an application outage results.

 SirLib A system that provides change management and configuration control for
 Model 204 User Language applications. Fully integrated within the
 programming environment, SirLib supports unique Model 204 constructs
 such as file groups, while remaining nearly transparent to programmers.

 SirMon A comprehensive facility for monitoring the performance and availability of
 Model 204 online systems. SirMon combines the real time monitoring of
 Model 204 performance with intelligent full screen displays that facilitate
 System Manager duties.

 SirPro A collection of powerful and easy to use tools for programmers, database
 administrators, and application managers. SirPro provides programmers
 with powerful facilities for managing large libraries of User Language
 procedures, and it provides system managers with intuitive ISPF-like front
 ends to many Model 204 system management commands.

 SirScan A high performance utility that allows users in a Model 204 Online to
 browse the contents of its journal in real time. SirScan permits ordinary

——————————————————————————————————————————
SirLib User's Guide 1



——————————————————————————————————————————
Introduction to UL/SPF
——————————————————————————————————————————

 users to view journal entries generated by their own online session, and it
 allows users in ADMIN SCLASSes to browse journal entries for any set of
 users. The data is displayed in a full-screen browser with powerful
 searching commands and filtering options.

 In addition, a number of subsystems that are not linked into the UL/SPF menuing
 structure may be accessed via APSY-transfer from the UL/SPF applications. One such
 subsystem is FACT, a utility for browsing SirFact dumps.

 There are also many sample web and client-server applications developed for the Janus
 product family that are distributed and installed along with the UL/SPF products. These
 include JANCAT, an application that builds normalized views of Model 204 data for use
 by Janus Specialty Data Store applications, and JANSSL, a system for creating and
 managing SSL certificate requests.

 1.1 UL/SPF packaging and installation requirements

 All of the UL/SPF products are Model 204 application subsystems written in User
 Language. UL/SPF is distributed as a set of Model 204 files in a backup format
 produced by the Model 204 DUMP command. All User Language based products are
 distributed in a single Model 204 procedure file called SIRIUS.

 UL/SPF makes extensive use of specialized User Language $functions that enable the
 creation of User Language application systems that can support complex environments
 with minimal server size requirements. Prior to version 7.5 of Model 204, the $functions
 were part of the Sirius Mods, the installation of which (Sirius Mods Installation Guide)
 was a prerequisite for any UL/SPF product.

 The UL/SPF $functions are included in the
 http://m204wiki.rocketsoftware.com/index.php/List_of_$functions, and their use is
 controlled by a product authorization mechanism. Many functions require that a specific
 UL/SPF product be authorized. Some functions may only be invoked from an authorized
 procedure “signed” by Sirius Software or Rocket Software. The SIRIUS command
 examines the status of all Sirius products installed in a Model 204 Online.

 1.2 Integrating UL/SPF with other subsystems

 UL/SPF and any of its constituent products can be easily integrated with other User
 Language subsystems. Whenever a UL/SPF component product is exiting, it first
 checks to see if the global variable SIRIUS.COMM exists and has a non-null value. If so,
 the UL/SPF product performs a subsystem transfer using the value in SIRIUS.COMM as
 the name of the target subsystem.

——————————————————————————————————————————
2 SirLib User's Guide



——————————————————————————————————————————
 Integrating UL/SPF with other subsystems
——————————————————————————————————————————

 For example, the following code fragment lets you transfer into SIRMON. When
 SIRMON exits, control is transferred to the application subsystem MENUSYS, provided
 that NEXTPROC is the current subsystem's communication global variable:

 %RC = $SETG('SIRIUS.COMM','MENUSYS')
 %RC = $SETG('NEXTPROC','XFER')
 %RC = $SETG('XFER','SIRMON')
 STOP

 In addition to the individual User Language subsystems that implement the UL/SPF
 products, an umbrella UL/SPF subsystem, ULSPF, provides a menu that contains
 entries for all UL/SPF components installed at a site.

 The UL/SPF subsystems support fast path navigation. For example, a SirMon user can
 transfer into SirPro Option 1 by typing:

 =M.1.1

 1.3 Related documentation

 The following documentation is available from http://docs.rocketsoftware.com (M204
 folder) or from http://m204wiki.rocketsoftware.com:

 ● SirDBA User's Guide
 ● SirFile User's Guide
 ● SirLib User's Guide
 ● SirMon User's Guide
 ● SirPro User's Guide
 ● SirScan User's Guide
 ● Sirius Mods Installation Guide
 ● Model 204 System Manager's Guide

 The following documentation is available from the Model 204 documentation wiki
 (http://m204wiki.rocketsoftware.com):

 ● UL/SPF installation
 (http://m204wiki.rocketsoftware.com/index.php/UL/SPF_installation_guide)
 ● $functions
 (http://m204wiki.rocketsoftware.com/index.php/M204wiki_main_page#.24Functions)
 ● Model 204 commands
 (http://m204wiki.rocketsoftware.com/index.php/List_of_Model_204_commands)
 ● Model 204 files
 (http://m204wiki.rocketsoftware.com/index.php/Category:File_architecture_and_management)
 ● UL/SPF product messages
 (http://m204wiki.rocketsoftware.com/index.php/Category:Sirius_Mods_messages)
 ● User Language/SOUL (http://m204wiki.rocketsoftware.com/index.php/Category:SOUL)

——————————————————————————————————————————
SirLib User's Guide 3



——————————————————————————————————————————
Introduction to UL/SPF
——————————————————————————————————————————

——————————————————————————————————————————
4 SirLib User's Guide



——————————————————————————————————————————
 Overview of Configuration Management
——————————————————————————————————————————

—————— 
CHAPTER 2  Overview of Configuration Management

 After reading this chapter, you should read “Getting Started” on page 61 for tips on
 configuring your SirLib and SirPro environment.

 SirLib runs as an APSY subsystem inside a Model 204 online, as does SirPro, a
 package of productivity tools. Together they provide a complete, integrated User
 Language developers' environment. SirPro provides the programmers' environment,
 and SirLib provides the management environment for applying and backing out updates.

 There is some overlap in programmer and management activity in managed
 environments, and there is no reason why programmers cannot be responsible for
 performing SirLib functions. This document covers briefly the SirPro functions related to
 managed changes. These functions are also covered in the SirPro User's Guide.

 Configuration management functions typically fall into four categories:

 ● Identifying, grouping, and documenting system changes.
 ● Providing an environment for controlling change and programmer activity.
 ● Backing out changes.
 ● Reporting on system configurations.

 SirLib provides specific functions for each facet of change control. Furthermore, SirLib
 reduces the complexities of procedure distribution to such an extent that only a single,
 small procedure file needs to be distributed to production environment(s), no matter how
 many applications run in that environment.

 In addition, SirLib is designed to provide specific mechanisms to automate and simplify
 programmers' tasks:

 ● SirLib prevents programmers overwriting each others' changes. In typical change
 management systems, this involves a procedure lock. SirLib performs this function
 without locking procedures.

 ● SirLib allows developers to continue working in the manner they're used to. SirLib
 does not dictate a development method.

 ● SirLib allows for quick fixes and fast backout of changes when introduced changes
 cause production problems.

 ● Reporting capabilities are integrated, and the data for reporting does not have to be
 manually entered — reporting data is generated to the internal dataset SIRLIBD
 when system activity occurs.

——————————————————————————————————————————
SirLib User's Guide 5



——————————————————————————————————————————
Overview of Configuration Management
——————————————————————————————————————————

 ● Verification of change level (or status, release number, etc.) is available in all
 environments where SirLib runs, via both reports and optional internal procedure
 comments.

 Most change management systems will not work in Model 204, because:

 ● They cannot be integrated with developer tools.
 ● They cannot handle the long procedure names permitted in Model 204.
 ● They don't understand the concept of Model 204 GROUPs.

 SirLib was designed to deal with all these change management issues and to work
 under a wide range of Model 204 configurations. SirLib provides primarily a means to
 achieve a well-managed User Language environment: it doesn't dictate procedure
 promotion schemes, and it doesn't force any project to manage its changes the same
 way as other projects in the same shop. A shop can standardize on a single
 mechanism, while allowing each project to promote changes via a path that is as simple
 and straightforward as possible.

 In addition, SirLib allows multiple users to make updates to the same procedure at the
 same time, and it eliminates the risk of programmers overwriting each others' changes.
 Essentially the granularity of an update is reduced to a section of a program, and
 possible update collisions are detected and handled unambiguously and early in the
 development process.

 A managed update refers to any change to a Model 204 procedure which is managed by
 the change management system. In this document, that means any change generated
 using SirPro and applied using SirLib. Managed updates may be small bug fixes, major
 application enhancements, or additions and deletions of whole procedures. Managed
 and unmanaged updates are made via the full screen interface to the Model 204 editor,
 SirPro. A managed file is one that is being managed by a change management system,
 in this case, SirLib.

 In managed files, only managed updates should occur. If unmanaged updates are
 allowed to occur to procedures in managed files, the entire change management
 scheme can be compromised. This is why it is recommended that you:
 1. Convert your managed files to PUBLIC with low (x'0221') privileges.
 2. Allocate the files to the SirLib subsystem.

 Then anyone can read the file, but only the change management system can update
 procedures in it.

 Note: If this is your first time using SirLib, you should read “Getting Started” on page 61
 before continuing with the detailed portions of the SirLib manual.

——————————————————————————————————————————
6 SirLib User's Guide



——————————————————————————————————————————
 SirLib Implementation
——————————————————————————————————————————

—————— 
CHAPTER 3  SirLib Implementation

 Managing changes to program code generally means controlling entire procedures or
 files. SirLib manages changes, that is, differences between old and new versions of
 procedures.

 The central construct underlying the SirLib system is that of an update procedure. An
 update procedure is a Model 204 procedure containing lines of code to be changed in
 another Model 204 procedure.

 Interspersed with the lines of code are lines containing SirLib commands and sequence
 numbers which tell SirLib where in the target procedure the lines to be changed are
 located. In other systems, update procedures are sometimes referred to as “delta's”, or
 differences. All update procedures for one file are kept together, separate from the
 managed file in another Model 204 procedure file called the “FixFile”.

 
 XMPLPROC.F2BALES.PRE_MAIN XMPLPROC.F2BALES.PRE_MAIN 1 OF 15 
 
 ====> 
 ===== * * * TOP OF PROCEDURE * * * 
 ===== ./ * Update generated by ALAN on 12-04-91 at 14:22 from WORKPROC 
 ===== ./ R 03280000 03290000 $ 03280001 00001000 
 ===== IF $LEN(%MPROC) GT 30 THEN 
 ===== :%SCR.PROC = $SUBSTR(%MPROC,1,29) WITH '*' 
 ===== ELSE 
 ===== :%SCR.PROC = %MPROC 
 ===== MODIFY :%SCR.PROC TO DIM 
 ===== END IF 
 ===== :%SCR.PROC = $SUBINS(:%SCR.PROC,%LITEM,33) 
 ===== ./ I 03590000 $ 03590100 00000100 
 ===== FOR %IDX FROM 1 TO %MAX.POS 
 ===== %LITEM = $LISTINF(%LIST,%IDX) 
 ===== %MPROC = $SUBSTR(%LITEM,39) 
 ===== %TEST = $PROCOPN(%MPROC,%MFILE) 
 ===== IF NOT %TEST THEN 
 ===== * * * BOTTOM OF PROCEDURE * * * 
 
 
 
 

 An Update Procedure

 The naming convention for SirLib update procedures identifies the target file for the
 update, the project to which the update links, and the procedure to be updated. Update
 procedure names must follow the following convention:

 <filename>.<project>.<proc-name>

 In the example above, the name of the update procedure being edited identifies the
 target file as XMPLPROC, and the project as F2BALES. The remainder of the update
 procedure name identifies the target procedure as PRE_MAIN.

——————————————————————————————————————————
SirLib User's Guide 7



——————————————————————————————————————————
SirLib Implementation
——————————————————————————————————————————

 The ./R command in the first line tells SirLib to Replace the lines sequenced as 328
 through 329 with the following lines of code (up to the next “./” command prefix). The ./I
 command tells SirLib to Insert after the line sequenced as 359 the lines up to the next “./”
 command. Deletion of lines of code is handled in a similar way with “./D”. SirLib inserts
 “./ *” comments at the top of each update procedure specifying the user, date, time and
 source file for each change.

 The other kind of procedure contained in a FixFile is a Control procedure. Control
 procedures are Model 204 procedures that contain control data for the change
 management process. The control data is simply a list of Projects.

 
 CONTROL.SIRMON CONTROL.SIRMON 1 OF 10 
 
 ====> 
 ===== * * * TOP OF PROCEDURE * * * 
 ===== _ B4ENV Environmental probs, CCASYS privs, FSOUTPUT, UTABLES (AB) 
 ===== _ B4UTABLE Make UTABLE settings valid for Version 2.1. (AB) 
 ===== _ B4ACCT Add ACCOUNT to user parms help text. (AB) 
 ===== _ 22STATS New statistics for Version 2.20 of the $functions. (AB) 
 ===== _ B4FIHELP Fix the description of ENQSHR and ENQEXC. (AB) 
 ===== _ B3CCNMSC Fix miscellaneous bugs, mostly found at CCN. (AB) 
 ===== _ B4FSON Point the start procedure to FSON/FSDET. (AB) 
 ===== _ B4GTBL Fix the LGTBL reset on exit from subsystems. (AB) 
 ===== _ F4IMPACT Enhancements suggested at IMPACT '92. (AK) 
 ===== _ F4SCROLL Make NOSCROLL do a ROLL SCROLL, fix help scrolling (AB) 
 ===== * * * BOTTOM OF PROCEDURE * * * 
 
 
 
 
 
 
 
 
 

 Control procedures contain project identifiers

 Project identifiers are 8-character names of logical changes which allow physical
 changes (actual update procedures) to be grouped so they are always applied and
 backed together. Project identifiers are used as the second qualifier of update
 procedure names. Project identifiers may also be followed by a line of comment in the
 CONTROL.xxxxxxxx procedure, as shown above.

 Two more concepts central to SirLib operations are Base and Sequenced procedures.

 When SirLib attempts to apply an update against a procedure it looks first for a
 procedure of the same name with a prefix of “BASE.”. BASE. Procedures are versions
 of procedures before any updates have been applied to them through SirLib. If a BASE.
 procedure is found SirLib applies the changes as directed to the BASE. version, deleting
 and replacing the previous executable procedure. If no BASE. version of the procedure
 is found SirLib assumes this is the first managed change to be applied to this procedure,
 and it creates the BASE. version before changes are applied (by copying the executable
 version into a BASE. version). Once a BASE. version of any procedure exists in a file it
 should never be altered or deleted. BASE. procedures should only be deleted as part of
 the Cutover process described later.

——————————————————————————————————————————
8 SirLib User's Guide



——————————————————————————————————————————
 SirLib Implementation
——————————————————————————————————————————

 Until the first update is applied to a procedure there is no need to create a separate
 BASE copy of the procedure. The list of BASE procedures in the managed file is the list
 of procedures that have had updates applied to them. SirLib always creates base
 procedures automatically; no user action is required to create a base.

 Sequenced versions of procedures are produced when programmers use SirLib facilities
 to make copies of procedures to work on. Sequenced versions are created
 automatically and named the same as the target procedure but prefixed with “SEQ.”.
 Internal sequence numbers are attached to each line of the original procedure and
 stored as part of the sequenced copy. When the programmer is finished making
 changes, this numbered version is used as the comparison procedure for producing an
 update procedure. Sequenced versions of procedures are kept by programmers for
 however long changes are being made and update procedures are being generated
 (update procedures can be regenerated as many times as a programmer wishes).
 When the programmer is finished with the program changes, and a final version of the
 update procedure has been generated, the sequenced and working version of the
 procedure may be deleted.

 While this process for generating updates sounds complicated, in practice it is simpler
 than most other change tracking systems, and far simpler in many ways than not using a
 change control system at all. The programmer generates working and sequenced
 copies of a procedure with the Q command, makes any changes needed, then
 generates the update procedure (the “differences”) with an X command (XCOMPARE).
 The update procedure is applied as part of a project when all parts of that project are
 completed.

 In SirLib, the most important procedures are the BASE.<procname> and the update
 procedures that apply to that BASE. procedure. If actual executable procedures are
 deleted they can be recreated by applying the updates to BASE. versions of the
 procedures. This is how updates are applied when a file is being reconfigured.

 Change tracking and reporting can be done using the update procedure names
 alone—they supply the exact number of changed programs in a release, and coupled
 with the number of lines within the update procedures, managers can tell the number of
 lines of new or replacement code generated, and the date and time each update was
 completed.

 Programmers need never be given update access to the actual production copies of
 procedure files. Development and testing is done by whatever method a shop uses.
 The assumed standard is for shops to define development APSYs with grouped
 procedure files, though this method is not a prerequisite for SirLib functioning.

 When a programmer finishes working on a procedure an update is generated instead of
 the entire procedure being copied to a staging or production file. Once all update
 procedures are generated for a release, a manager reviews the updates to make sure
 they conform to local coding standards and that they are linked to projects existing in the
 control procedure. This level of monitoring, which used to be difficult if not impossible to
 do, is a simple task under SirLib, because the update procedures tend to be small, and

——————————————————————————————————————————
SirLib User's Guide 9



——————————————————————————————————————————
SirLib Implementation
——————————————————————————————————————————

 because the internal comments clearly indicate who generated the new code, where it
 came from and when it was created. The manager applies the updates via option 2 in
 SirLib, and the production version of the procedure is ready for testing or distribution.

 Another option is to distribute the FixFile itself. A shop with multiple Model 204 online
 regions, can run a copy of SirLib in each region. Update procedures can be distributed
 in the FixFile and applied on a region-by-region basis; this allows for faster backouts in
 production regions, and removes the complications of distributing each managed file.

 3.1 SirLib Operations Overview

 Without SirLib, User Language change control might look like this:

 

Copy 1 Test 1 Prod 1

Proc 1 Proc 1 Proc 1

Copy 2 Test 2 Prod 2

Proc 2 Proc 2 Proc 2

Copy 3 Test 3 Prod 3

Proc 3 Proc 3 Proc 3

Development Test Production

Developer Tools,
Editor, etc. Restore Restore

Copyback
 

 Typical Model 204 procedure promotion.

 Typically, programmers make backup copies of procedures they are about to work on,
 either in the development file or in a “backup” file set aside for this purpose. They then
 work on the original procedure in the development file, integrating their changes either in
 the development file or when updates are sent to a test environment. Changes are
 promoted from development to test and from test to production either on a procedure-
 level or a file-level basis.

 As shown in the illustration, often each file requires its own distribution or “staging” copy
 in each environment, and a mechanism is usually provided for copying procedures back
 from production to test and from test to development (the backward migration paths at
 the bottom of the picture).

——————————————————————————————————————————
10 SirLib User's Guide



——————————————————————————————————————————
 SirLib Operations Overview
——————————————————————————————————————————

 On large projects the flow of change promotion can become extremely complex, with
 multiple development files and online environments, and various levels of integration
 both within and across onlines. Obviously the more complex the development path, the
 greater the difficulty of getting into production an error-free User Language system.

 

Changes

Proc 1

Proc 2

Proc 3

Development

SirLib/
SirPro

Proc 1

Proc 2

Proc 3

Test

SirLib

Proc 1

Proc 2

Proc 3

Production

SirLib

 
 Change Management using SirLib

 The figure above shows a change promotion scheme using the SirLib system. In the
 simple flow diagram shown above changes for the various procedure files are all
 generated into a single FixFile (here called Changes) in the development environment.
 The Changes file is distributed or shared across onlines, and the updates are applied in
 each region by a local copy of SirLib.

 The majority of configuration management tasks are invisible to programmers using
 SirLib. Programmers work in SirPro, which acts as a front-end to the Model 204 editor
 and to the Model 204 command structure. SirPro gives the User Language developer
 an SPF-like “toolbox” with which to work, supplying prefix commands for copying,
 deleting, moving, renaming, editing and browsing User Language procedures in a
 selected file. In addition, when SirLib is managing changes, special prefix commands
 are supplied within SirPro, that tell the SirLib system that a managed update is taking
 place. The commands are:

 Q SEQUENCE. The Q command tells SirLib to generate working and “sequenced”
 copy of a procedure.

 X XCOMPARE. Generates an update procedure by comparing the working and
 sequenced procedure copies. Output is a procedure containing the differences.

 N NEW. Generates an update procedure for a new procedure.

 K KLOBBER. Generates an update procedure for a logical delete of a procedure.

——————————————————————————————————————————
SirLib User's Guide 11



——————————————————————————————————————————
SirLib Implementation
——————————————————————————————————————————

 Z RESEQUENCE. Renumbers the internal sequence numbers for a procedure that
 has had many changes applied to it without the file being cutover.

 These commands are explained in more detail in the next section.

 Note in the previous picture, all the promotions paths are simplified. This is because
 SirLib allows updates to all managed files to be stored, managed and promoted within
 the same FixFile. Note also the elimination of the “copyback” path from the previous
 illustration. This path is generally a violation of a managed environment, and is tolerated
 because of the need to generate emergency fixes against production code, and because
 of the occasional requirement to re-align development and production procedures.
 SirLib eliminates this path by providing the tools to let users know the exact state of
 production code, and to duplicate the “update level” of production in any other
 environment.

 Programming a managed update consists of making a working and sequenced copy of a
 procedure using the “Q” command, making program changes to the working copy then
 executing an “X” command against the copy to produce an update procedure. The “X”
 command compares the working copy which has changed, to the sequenced copy which
 will not have changed. The resulting update procedure is the differences between the
 two.

 

./ * Update Generated by Alan on 19911016

./ R 000100000 00230000 $ 00010000
ELSE

%PIFFLE = $SUBSTR(%PIFFLE,17)
END IF

./ I 003400000 $
FDX:   IN ?&DFILE FD
./ D 0067100000 0072000000 $

PFILE1
BASE.PROC1
BASE.PROC2
BASE.PROC3
...
BASE.PROCX

PROC1
PROC2
PROC3
...
PROCX

CHANGES
CONTROL.PFILE1
CONTROL.PFILE2
...
CONTROL.PFILEX

PFILE1.CHG1.PROC1
PFILE1.CHG1.PROC2
PFILE1.CHG2.PROC1
PFILE1.CHG2.PROC3
...
PFILEX.CHGX.PROCX

CHG1 * Add new Accts Rcvbl screens
CHG2 * Fix error processing
CHG3 * Use extended attributes
CHG4 * Version 9 Release
CHGX ....

 
 Update procedures linked to project via naming convention

 Once an update procedure is produced the programmer can delete the working copy of
 the procedure and the matching sequenced version; the SirLib system generates the
 new production procedure by applying the update(s) against the BASE procedure. This
 is done by a programmer, project leader or administrator via the CONFIGURE option in
 SirLib.

——————————————————————————————————————————
12 SirLib User's Guide



——————————————————————————————————————————
 SirLib Operations Overview
——————————————————————————————————————————

 

SirLib
Programmer
Interface

Manager
Functions

Admin

·
·
·
·
·

·
·
·
·
·

EDIT
COPY
MOVE
DELETE
PRINT

XCOMPARE
SEQUENCE
NEW
ERASE
RESEQUENCE

·

·

·

CHANGES

CONFIGURE

CUTOVER

·
·
·

SECURITY
OPERATIONS
REPORTS

CHANGES

Control
Procedures
&
Change Decks

Distribution
System

Grouped
Procedure
Files

WORKPROC

working copies
of procedures
being changed
and tested

PROCFILE

original and
“BASE”
procedures

 
 SirLib Functions

 Management activity in the SirLib system begins when a functional change is identified
 in a particular file in the local application. In the SirLib Project screen (option 1), a new
 line is entered containing an 8-character project name and an optional description. PF
 key access allows an unlimited amount of optional documentation to be attached to a
 Project. The physical order of these project identifiers should not be altered once
 updates are linked to the identifiers, as this sequence specifies the order in which
 updates are applied. Updates that effect the same line of code will not apply correctly
 unless previous updates have been applied.

 
 ----------------------------- * * * SIRLIB * * * ----------------------------- 
 
 ===> 
 Change Description (FILE: SIRMON) 
 ----------------------------------------------------------------------------- 
 _ B4ENV Environmental probs, CCASYS privs, FSOUTPUT, UTABLES (AB) 
 _ B4UTABLE Make UTABLE settings valid for Version 2.1. (AB) 
 _ B4ACCT Add ACCOUNT to user parms help text. (AB) 
 _ 22STATS New statistics for Version 2.20 of the $functions. (AB) 
 _ B4FIHELP Fix the description of ENQSHR and ENQEXC. (AB) 
 _ B3CCNMSC Fix miscellaneous bugs, mostly found at CCN. (AB) 
 _ B4FSON Point the start procedure to FSON/FSDET. (AB) 
 _ B4GTBL Fix the LGTBL reset on exit from subsystems. (AB) 
 _ F4IMPACT Enhancements suggested at IMPACT '92. (AK) 
 _ F4SCROLL Make NOSCROLL do a ROLL SCROLL, fix help scrolling (AB) 
 
 
 
 
 
 -------------------- ULSPF.018: Enter new information and confirm with PF12. 
 1/Help 2/Document 3/Quit 4/Insert 
 7/Up 8/Down 9/Repeat 12/Commit 
 

 Project screen

 The Project option allows entry of Project names, and allows PF key access to a
 documentation feature for the project.

——————————————————————————————————————————
SirLib User's Guide 13



——————————————————————————————————————————
SirLib Implementation
——————————————————————————————————————————

 Entry fields on the Projects screen are:

 Status If this column is blank (or shows the default pad character, the
 underscore, the project is active and changes associated with this
 project will be included in subsequent file reconfigures and cutovers. To
 comment out a project, enter an asterisk ("*") in this field. Care should
 be taken in commenting out projects that have dependencies in projects
 that are implemented after them.

 Project ID The Project ID is an alphanumeric identifier of 1 to 8 characters that
 links together change decks containing related changes. The project ID
 should conform to some meaninful pattern as established at the site.
 For instance, all bug fixes could be prefixed with "B" and new features
 prefixed with "F", followed by a version number and some mneumonic.

 Description Up to 72 characters of text can be added to the project. This descriptive
 text is displayed on the reconfigure screen and cutover screen, and in
 the SIRLIB reports. Extra text can be added to a project via PF2 and
 this text is stored as data records in SIRLIBD.

 In a highly controlled environment the project leader may require that no changes occur
 in a file unless a project is entered first via the Project facility (options are provided to
 protect the ability to define Projects). In a less structured project, updates may be
 produced as programmers need to build them, and a project leader may later decide
 which will be included in a particular release by adding a project that links the updates in.

 Along with making distribution files smaller this allows changes to be distributed and
 applied by SirLib directly in a production region. Generally, all changes for all procedure
 files can be kept in a single file, greatly reducing complex distribution problems.
 Operating in this manner allows changes to be backed out much faster. It also allows
 releases to be shipped to all sites and applied on a region-by-region or project-by-project
 basis. Status of the current configuration can be viewed in SirLib screens and also by
 reviewing the procedure comments placed by SirLib inside each proc that has had an
 update applied to it. Change status can also be seen in SirLib reports.

——————————————————————————————————————————
14 SirLib User's Guide



——————————————————————————————————————————
 SirLib — A Programmer's Reference
——————————————————————————————————————————

—————— 
CHAPTER 4  SirLib — A Programmer's Reference

 
 ------ FILE: SIRPRO ------ ULSPF303/2.2.0/CMS ----- 93-03-31 11:18:04 ------ 
 ==> Total Procs = 25 
 Sel Procedure Name Account Bytes Date Time 
 1 PUPR-CCAGRP ALAN 26823 93/03/30 8:44:59 
 2 PUPR-CCASTAT.FILE ALAN 25293 93/03/30 8:45:00 
 3 PUPR-CCASTAT.USER ALAN 19678 93/03/30 8:45:02 
 4 PUPR-COMMAND ALAN 17644 93/03/30 8:45:04 
 5 PUPR-COMP.SHIJI ALAN 18929 93/03/30 8:45:05 
 6 PUPR-COPY ALAN 10288 93/03/30 8:45:06 
 7 PUPR-COPY.CHECK ALAN 3986 93/03/30 8:45:06 
 8 PUPR-COPY.SHIJI ALAN 37391 92/08/14 9:09:25 
 9 PUPR-COPY2 ALAN 18671 93/03/30 8:45:07 
 10 PUPR-DELETE.CHECK ALAN 5319 93/03/30 8:45:08 
 11 PUPR-DELETE.SHIJI ALAN 34747 93/03/30 8:45:09 
 12 PUPR-DEL1 ALAN 19552 92/08/14 9:10:02 
 13 PUPR-DEL2 ALAN 21340 93/03/30 8:45:10 
 14 PUPR-EDIT1 ALAN 20437 93/03/30 8:45:11 
 15 PUPR-EDIT2 ALAN 30427 93/03/30 8:45:12 
 16 PUPR-ERASE.SHIJI ALAN 12098 92/08/14 9:09:02 
 17 PUPR-KILL.SHIJI ALAN 16985 93/03/30 8:45:14 
 -------------------------------------------- ULSPF.120: Updates not allowed. 
 1/Help 2/Sort-Name 3/Quit 4/Sort-User 5/Sort-Date 6/Sort-Size 
 7/Up 8/Down 9/Repeat 10/Refresh 11/*UPPER 12/FULLNAME 
 

 SirPro Procedure Editor Screen (EDIT)

 The SirPro screen shown above is the main working environment for the programmer in
 the SirLib-controlled environment. This screen, and others like it, provide access to all
 procedure activity in Model 204. Details on the use of SirPro, including managed update
 commands, are contained in the &SPROUG.. Managed update prefix commands are
 the only part of SirPro discussed in this document.

 The X, Q, N, K and Z prefix commands are used to generate 'working', base and
 sequenced copies of procedures and to generate updates from those copies. The
 programmer types one of these managed update commands to the left of the selected
 procedure and presses ENTER . SirPro then presents one of the managed update
 screens to get further details on the managed update. Those screens are shown in the
 following detailed sections.

——————————————————————————————————————————
SirLib User's Guide 15



——————————————————————————————————————————
SirLib — A Programmer's Reference
——————————————————————————————————————————

 4.1 Q (SEQUENCE) Command

 “Sequencing” is the managed update method by which programmers make copies of
 procedures to work on. In other systems, programmers make backup copies of
 procedures and then work on the original. In SirPro programmers never alter the original
 program code, but execute “Q” commands to get working and sequenced copies from
 which update procedures can be generated.

 Updates must be done in a file other than the original, which is why procedure groups
 are recommended for development apsys.

 
 --- Sequence Procedure ----- ULSPF303/2.2.0/CMS ----- 93-03-31 15:00:16 ---- 
 ==> 
 
 Input procedure 
 Proc file ==> SIRPRO 
 Procedure ==> PUNP-SMARTBROWSE 
 
 Output procedures 
 Proc file ==> DEVPRO Password ==> 
 Unsequenced procedure ==> PUNP-SMARTBROWSE 
 Sequenced procedure ==> SEQ.PUNP-SMARTBROWSE 
 
 
 The FixFile must contain control procedure CONTROL.SIRPRO 
 and all updates for file SIRPRO 
 
 FixFile ==> SIRFIXES Password ==> 
 
 
 Replace existing procedures? (Y/N) ==> N 
 ---------------------------------------------------------------------------- 
 1/Help 3/Quit 
 
 

 SirPro screen for generating SEQ and working procedure copies

 The Q command tells SirLib to generate both a copy of the selected procedure (the copy
 that the programmer will work on) and a “sequenced” copy of the procedure (a copy
 containing sequence or line numbers), which will later be used as comparison input for
 the Xcompare command. Building these copies is always the first programming step in
 generating a managed update. The Q prefix command presents a screen (Sequence
 Procedure) with the following input fields:

 Input procedure
 The following two fields identify the source procedure, i.e. the version of the
 procedure before it is changed. This information is copied from the entry on the
 SirPro procedure editor screen.

 Proc file Name of the Model 204 file containing the source procedure.

 Procedure Name of the source procedure. This is the procedure that was
 subject to a “Q” prefix command on the SirPro EDIT screen.

——————————————————————————————————————————
16 SirLib User's Guide



——————————————————————————————————————————
 Q (SEQUENCE) Command
——————————————————————————————————————————

 Output procedures
 SirLib is designed to work in a Model 204 subsystem (APSY) context using
 procedure groups. The “Q” command creates two output procedures that must be
 in a different file from the source procedure. One of these procedures is used as a
 working copy, while the other procedure is used to determine any changes made to
 the working copy. Both of these procedures are formed by applying any staged
 updates to the indentified source procedure.

 Proc file Name of the Model 204 file to contain the two procedures produced
 by the SirLib “Q” command.

 Password If a password is required for update access to the file it must be
 entered here.

 Unsequenced procedure
 Name of the procedure that will become the working copy for
 developing and testing changes. This defaults to the name of the
 source procedure.

 Sequenced procedure
 Name of the procedure that will contain a sequenced version of the
 working copy, before any changes have been made. The
 sequenced procedure may be used by the SirLib “X” command to
 prepare an update procedure reflecting any changes made to the
 working copy. The default procedure name for sequenced
 procedures is the unsequenced procedure name prefixed with SEQ.:

 SEQ.<unsequenced procedure name>

 This default prefix may be overridden if it conflicts with local
 conventions.

 Location of control and update procedures
 SirLib uses a naming convention to identify any updates that should be applied to
 the source procedure before generating a working copy. FixFile is searched for a
 “Control Procedure” whose name must be the name of the input procedure file
 prefixed with CONTROL.:

 CONTROL.<input procedure proc file name>

 The Control Procedure identifies all projects with updates to procedures in the input
 procedure file. For each such project, FixFile is checked for Update Procedures that
 should be applied to the source procedure.

 FixFile Name of Model 204 file containing control and update procedures
 used to build the output procedures. Default is SIRLIBP.

——————————————————————————————————————————
SirLib User's Guide 17



——————————————————————————————————————————
SirLib — A Programmer's Reference
——————————————————————————————————————————

 Password Read access is required for the control procedure any update
 procedures. If a password is required for read access it must be
 entered here.

 Replace existing procedures?
 Overlaying a working copy or sequenced copy of a procedure can cause updates in
 progress to be lost. The default for this field is N, which directs the Q command to
 not overwrite an existing procedure. If a user wishes to overwrite existing
 procedures this indicator should be set to Y.

 When the “Q” command is executed, SirLib looks in the source file for a procedure
 named BASE.<procname>, where <procname> is the name of the selected procedure.
 If no such procedure is found then SirLib copies the procedure into the target procedure
 in the Output file. In addition, SirLib generates a sequenced copy of the procedure,
 named whatever the programmer specified in the Sequenced Copy field on this screen.
 The sequenced copy of the procedure is identical to the unsequenced (or working) copy,
 except that each line is prefixed with a sequence number.

 If SirLib does find a BASE.<procname> procedure then it looks for the
 CONTROL.<filename> procedure in the specified FixFile. A control procedure of the
 specified name must exist or the Q command fails. Noting the active projects in the
 control procedure, SirLib finds all update procedure names that match the pattern:

 <file>.<project>.<procname>

 where <file> is the name of the input file for this operation, <procname> is the name of
 the selected input procedure, and <project> is one of the identifiers in columns 1 to 8 of
 the control procedure. All update procedure names that conform to this pattern are
 sorted by their project and then by the sequence line numbers they effect. This
 aggregate update is then applied to BASE.<procname> to produce the sequenced and
 unsequenced output procedures. In other words, the programmer doesn't just get a
 copy of the procedure they request, they get a generated procedure composed of the
 BASE procedure with all updates applied to it.

 If a project name is commented out in the control procedure it is not included in the
 resulting sequenced and unsequenced output procedures. A Project name is
 commented out by placing an asterisk (“*”) in front of it in the control procedure. (This is
 how working versions of production procedures can be generated in development
 regions if the development region has active projects that do not exist yet in production).

 The sequenced version of a procedure should never be changed, as it is the “before”
 image for the XCOMPARE that will eventually generate the update procedure.
 Sequence numbers should not concern programmers for the most part, though there are
 a few times when it is worth knowing something about how they work.

 The “Q” command automatically begins sequencing at 10000 and increments each line
 in the BASE.<procname> procedure by 10000. As changes are generated, the
 XCOMPARE function generates new line numbers for lines of code being inserted and

——————————————————————————————————————————
18 SirLib User's Guide



——————————————————————————————————————————
 Q (SEQUENCE) Command
——————————————————————————————————————————

 replaced. The XCOMPARE algorithm attempts to number the first new line of code
 beginning with a sequence number 1 greater than its starting point in the existing
 sequence (this applies to Inserts and Replaces: it is irrelevant for Deletes). Subsequent
 new lines which are part of the same update are incremented by a power of 10 less than
 the last sequence of numbers for the section of code. Later changes that apply to the
 same section again begin numbering at their starting sequence number plus 1, and
 continue to increment at the next lowest available power of 10.

 Fortunately, the programmer doesn't have to understand any of this in order for it to
 work. The lower-order digit(s) of the sequence numbers in a SEQ procedure however
 will indicate the number of times a section of code has been changed. The sequence
 numbers themselves will indicate whether the XCOMPARE will be able to “fit” changes
 into the same section of code again. For example, a section of code with sequence
 numbers that look like this:

 003451001
 003452001
 003453001

 indicates that changes will still “fit” in the hundreds and tens columns. If an update
 procedure attempts to insert 3 lines of code after line 003452001, the resulting code will
 be numbered like this:

 003451001
 003452001
 003452102
 003452202
 003452302
 003453001
 003454001

 Replace (“./R”) commands operate slightly differently than Insert, but the outcome looks
 very similar. When changes no longer “fit” within the sequence numbers XCOMPARE
 will still generate an update procedure for this section of code, but the update procedure
 will be unnecessarily long and SirLib might lose its ability to detect update collisions. In
 this case, a Resequence is required, as described later in this chapter.

 Once an initial update has been coded and the update procedure saved in the FixFile, all
 subsequent “Q” commands against the same procedure will generate copies containing
 the update, and sequence numbers in output sequenced versions of the procedure will
 reflect the insertion of the update code.

——————————————————————————————————————————
SirLib User's Guide 19



——————————————————————————————————————————
SirLib — A Programmer's Reference
——————————————————————————————————————————

 4.2 X (XCOMPARE) Command

 Prefixing a procedure by an “X” in SirPro tells the SirLib system to compare the specified
 procedure against a matching “sequenced” procedure, generating another procedure
 that containing the differences between the two. The X prefix command presents a
 XCOMPARE Screen:

 
  --- Build Update Deck ------ ULSPF303/2.2.0/CMS ----- 93-03-31 15:02:42 ---- 
 ==> 
 
  Unsequenced input procedure 
 Proc file  ==> DEVPRO 
 Procedure ==> PUNP-SMARTBROWSE 
 
  Sequenced input procedure 
 Proc file ==> DEVPRO Password ==> 
 Procedure ==> SEQ.PUNP-SMARTBROWSE 
 
  Output update procedure 
 FixFile ==> SIRFIXES Password ==> 
 Project Name  ==> F4BATCH 
 Target File  ==> SIRLIB 
 
 Replace existing update? (Y/N)  ==> N 
 Enter editor for update? (Y/N)  ==> N 
 
 Synchronization count  ==> 2 
 Unlock this procedure? (Y/N)  ==> Y 
 ----------------------------------------------------------------------------- 
 1/Help 3/Quit 
 

 SirPro XCOMPARE screen

 Unsequenced input procedure
 Identifies the procedure to be examined for changes, which was the object of an “X”
 command from a SirPro procedure list screen.

 Proc file Protected field showing name of input procedure.

 Procedure Protected field showing name of unsequenced input procedure.

 Sequenced input procedure
 Identifies the sequenced version of the input procedure, showing its contents prior to
 any changes.

 Proc file Name of Model 204 file containing the sequenced input procedure.
 Deafults to the same file as the input unsequenced procedure.

 Password Read access is required for the sequenced input procedure. If the
 file is not already open with sufficient privileges and a password will
 be required, it should be entered here.

 Procedure Name of the procedure containing a sequenced representation of the
 unsequenced input procedure before any changes were applied.
 Defaults to the name of the unsequenced input procedure with a
 prefix of “SEQ.”.

——————————————————————————————————————————
20 SirLib User's Guide



——————————————————————————————————————————
 X (XCOMPARE) Command
——————————————————————————————————————————

 Output update procedure
 Identifies the location and name of an update procedure that will contain the
 changes that have been made to the sequenced version of the source procedure.

 FixFile Name of Model 204 file to contain the update procedure produced by
 this invocation of XCOMPARE.

 Password Write access is required for the output update procedure. If the file is
 not already open with sufficient privileges and a password will be
 required, it should be entered here.

 Project name
 This is the 8-character project name to which this update should be
 linked.

 The file administrator may have required that updates for this file only
 be linked to existing projects, in which case the entered project name
 is checked to make sure it exists in the control procedure. If this
 setting is not on, updates may be created, and the project entered in
 the control procedure later.

 Target File This is the production file containing the base procedure against
 which this update will apply.

 Replace existing update
 Entering “Y” in this field allows the user to overwrite an existing version of the
 update procedure with the latest changes. Programmers are always permitted to
 overwrite update procedures created under their userid when this switch is set to
 “Y”. The file administrator may have specified in the Administration options that
 programmers may not overwrite each other's update procedures either in this file or
 within the entire system. If this option is set, and an update procedure exists of the
 same name as the one being created in the target file, and the userid who created
 the update procedure (or last updated it) is not the same as the current user's id,
 then the generation of the update will not be permitted.

 Enter Editor for update
 Entering “Y” in this prompt places the generating user into an edit session on the
 new update procedure. The update procedure will have already been stored before
 the edit session is invoked, so PF3 or QUIT may be used to exit the edit session
 without losing the update procedure.

 Synchronization count
 This field allows programmers to set the number of lines that will be compared
 before the sequenced and unsequenced versions of the procedures are considered
 to be back in sync, and further lines are no longer to be generated to the output
 update procedure (at least until the next mis-match). The default sync count value
 is 2, and this will work well for the vast majority of cases.

——————————————————————————————————————————
SirLib User's Guide 21



——————————————————————————————————————————
SirLib — A Programmer's Reference
——————————————————————————————————————————

 Increasing the sync count may reduce the number of difference lines found,
 resulting in smaller update procedures, or it may have no effect at all beyond a
 minor performance penalty in the XCOMPARE operation. In a very few cases it
 may produce larger output procedures. An entered value of “*” tells XCOMPARE to
 repeat the compare operation, increasing the sync count from 1 until it hits a value
 that no longer produces a smaller output procedure. This is the worst-performing
 option for running XCOMPARE, but will almost always generate the smallest
 possible output procedure. Unless changes are massive and many, the size of the
 output procedure is fairly irrelevant, and playing with the sync count has little utility.

 Unlock this procedure?
 Entering “Y” in this field makes the procedure available to other programmers in
 systems or files where procedures are locked to one updating user at a time. Any
 value but “Y” allows the programmer to generate an update procedure but will retain
 the exclusive lock on the procedure (such as when a test integration is being run,
 and the programmer doesn't wish to relinquish control of the procedures being
 updated). If procedure locking is not turned on, the lock/unlock information is still
 maintained for historical reporting, but this switch has no actual effect in locking
 procedures. See Administration options for Procedure Locking options.

——————————————————————————————————————————
22 SirLib User's Guide



——————————————————————————————————————————
 N (NEW) Command
——————————————————————————————————————————

 4.3 N (NEW) Command

 Prefixing a procedure by an N in the SirPro edit screen tells the system to generate an
 update procedure, similar to that produced by X, but containing all lines of the specified
 procedure, because it is a new procedure to the system. The N prefix command
 presents a Create New Procedure screen:

 
  --- Create New Proc -------- ULSPF303/2.2.0/CMS ----- 93-03-31 15:03:50 ---- 
 ==> 
 
  New procedure name 
 Proc file  ==> DEVPRO 
 Procedure  ==> PUNP-SMARTBROWSE 
 
 
 
  Output update procedure 
 FixFile ==> SIRFIXES Password ==> 
 Project name  ==> F4BATCH 
 Target file  ==> SIRLIB 
 
 Replace existing update? (Y/N) ==> N 
 Enter editor for update? (Y/N) ==> N 
 
 
 
 
 
 ----------------------------------------------------------------------------- 
 1/HELP 3/QUIT 
 

 Generating a New update procedure

 New procedure name
 Identifies the new procedure, which was the object of an “N” command from a
 SirPro procedure list screen.

 Proc file Name of Model 204 file containing the new procedure.

 Procedure Name of the new procedure.

 Output update procedure
 Identifies the location and name of an update procedure that will represent the
 creation of a new procedure.

 FixFile Name of Model 204 file to contain the update procedure.

 Password Write access is required for the output update procedure. If the file is
 not already open with sufficient privileges and a password will be
 required, it should be entered here.

 Project name
 This is the 8-character project name to which this update should be
 linked. The file administrator may have required that updates for this
 file only be linked to projects previously defined in the control

——————————————————————————————————————————
SirLib User's Guide 23



——————————————————————————————————————————
SirLib — A Programmer's Reference
——————————————————————————————————————————

 procedure. In this case the project entered is verified to see that it
 exists before the update is generated. Otherwise the project name is
 used to determine the name for the update procedure.

 Target File This is the production file containing the base procedure against
 which this update will apply.

 Replace existing update
 Entering “Y” in this field allows the user to overwrite an existing version of the
 update procedure with the latest changes. Programmers are always permitted to
 overwrite update procedures created under their userid when this switch is set to
 “Y”. The file administrator may have specified in the Administration options that
 programmers may not overwrite each other's update procedures either in this file or
 within the entire system. If this option is set, and an update procedure exists of the
 same name as the one being created in the target file, and the userid who created
 the update procedure (or last updated it) is not the same as the current user's id,
 then the generation of the update will not be permitted.

 Enter Editor for update
 Entering “Y” in this prompt places the generating user into an edit session on the
 new update procedure. The update procedure will have already been stored before
 the edit session is invoked, so PF3 or QUIT may be used to exit the edit session
 without losing the update procedure.

——————————————————————————————————————————
24 SirLib User's Guide



——————————————————————————————————————————
 K (ERASE) Command
——————————————————————————————————————————

 4.4 K (ERASE) Command

 Prefixing a procedure with a “K” command in the SirPro edit screen directs SirLib to
 generate an update procedure that will cause the deletion of the indicated procedure.
 Managed update deletes are always logical deletes, allowing deleted procedures to be
 recovered at any time when the file is reconfigured. For this reason, an empty (zero-
 line) version of the erased procedure is left in the file, and should not be physically
 deleted. The K prefix command presents an Erase Procedure screen:

 
  --- Klobber Procedure ------ ULSPF303/2.2.0/CMS ----- 93-03-31 15:04:13 ---- 
 ==> 
 
  Procedure to erase 
 Proc file  ==> DEVPRO 
 Procedure  ==> PUNP-SMARTBROWSE 
 
 
  Output update procedure 
 FixFile ==> SIRFIXES Password ==> 
 Project name  ==> F4BATCH 
 Target file  ==> SIRLIB 
 
 
 Replace existing update? (Y/N) ==> N 
 Enter editor for update? (Y/N) ==> N 
 
 
 
 
 
 ----------------------------------------------------------------------------- 
 1/Help 3/Quit 
 

 Generating an Erase (a logical delete) of a procedure in SirPro

 Procedure to erase
 Identifies the procedure to be erased, which was the object of a “K” prefix command
 from a SirPro procedure list screen.

 Proc file Name of Model 204 file containing the procedure.

 Procedure Name of procedure to be deleted.

 Output update procedure
 Identifies the location and name of an update procedure that will represent deletion
 of the procedure.

 FixFile Name of Model 204 file to contain the update procedure.

 Password Write access is required for the output update procedure. If the file is
 not already open with sufficient privileges and a password will be
 required, it should be entered here.

——————————————————————————————————————————
SirLib User's Guide 25



——————————————————————————————————————————
SirLib — A Programmer's Reference
——————————————————————————————————————————

 Project name
 This is the 8-character project name to which this update should be
 linked. The file administrator may have required that updates for this
 file only be linked to projects previously defined in the control
 procedure. In this case the project entered is verified to see that it
 exists before the update is generated. Otherwise the project name is
 used to determine the name for the update procedure.

 Target File This is the production file containing the base procedure against
 which this update will apply.

 Replace existing update
 Entering “Y” in this field allows the user to overwrite an existing version of the
 update procedure with the latest changes. Programmers are always permitted to
 overwrite update procedures created under their userid when this switch is set to
 “Y”. The file administrator may have specified in the Administration options that
 programmers may not overwrite each other's update procedures either in this file or
 within the entire system. If this option is set, and an update procedure exists of the
 same name as the one being created in the target file, and the userid who created
 the update procedure (or last updated it) is not the same as the current user's id,
 then the generation of the update will not be permitted.

 Enter Editor for update
 Entering “Y” in this prompt places the generating user into an edit session on the
 new update procedure. The update procedure will have already been stored before
 the edit session is invoked, so PF3 or QUIT may be used to exit the edit session
 without losing the update procedure.

——————————————————————————————————————————
26 SirLib User's Guide



——————————————————————————————————————————
 Z (RESEQUENCE) Command
——————————————————————————————————————————

 4.5 Z (RESEQUENCE) Command

 The sequence numbers generated by SirLib are for the most part of no concern to User
 Language programmers. However, if a large number of update procedures are
 generated which effect the same areas of code in a procedure, further changes to the
 same areas may result in unnecessarily large update procedures. In addition, the
 process of untangling overlapping updates with SirLib will become more complex. This
 is should be a rare event, however if it does occur, a manager need only generate a
 resequence procedure by using the “Z” prefix command. The Z command presents a
 Resequence Procedure screen:

 
  --- ReSequence Proc -------- ULSPF303/2.2.0/CMS ----- 93-03-31 15:04:34 ---- 
 ==> 
 
  Resequence procedure 
 Proc file  ==> DEVPRO 
 Procedure  ==> PUNP-SMARTBROWSE 
 
 
  Output update procedure 
 FixFile ==> SIRFIXES Password ==> 
 Project name  ==> F4BATCH 
 Target file  ==> SIRLIB 
 
 
 New starting number  ==> 10000 
 New increment  ==> 10000 
 Replace existing update? (Y/N)  ==> N 
 Enter editor for update? (Y/N)  ==> N 
 
 
 
 ----------------------------------------------------------------------------- 
 1/HELP 3/QUIT 
 

 Resequencing a procedure in SirPro

 Resequence procedure
 Identifies the procedure to be resequenced, which was the object of a “Z” prefix
 command from a SirPro procedure list screen.

 Proc file Name of Model 204 file containing the procedure.

 Procedure Name of procedure.

 Output update procedure
 Identifies the location and name of an update procedure that will cause
 resequencing of the procedure.

 FixFile Name of Model 204 file to contain the update procedure.

 Password Write access is required for the output update procedure. If the file is
 not already open with sufficient privileges and a password will be
 required, it should be entered here.

——————————————————————————————————————————
SirLib User's Guide 27



——————————————————————————————————————————
SirLib — A Programmer's Reference
——————————————————————————————————————————

 Project name
 This is the 8-character project name to which this update should be
 linked. The file administrator may have required that updates for this
 file only be linked to projects previously defined in the control
 procedure. In this case the project entered is verified to see that it
 exists before the update is generated. Otherwise the project name is
 used to determine the name for the update procedure.

 Target File This is the production file containing the base procedure against
 which this update will apply.

 New starting number
 The default is to begin renumbering with 10000.

 New increment
 The default is to renumber in increments of 10000.

 Replace existing update
 Entering “Y” in this field allows the user to overwrite an existing version of the
 update procedure with the latest changes. Programmers are always permitted to
 overwrite update procedures created under their userid when this switch is set to
 “Y”. The file administrator may have specified in the Administration options that
 programmers may not overwrite each other's update procedures either in this file or
 within the entire system. If this option is set, and an update procedure exists of the
 same name as the one being created in the target file, and the userid who created
 the update procedure (or last updated it) is not the same as the current user's id,
 then the generation of the update will not be permitted.

 Enter Editor for update
 Entering “Y” in this prompt places the generating user into an edit session on the
 new update procedure. The update procedure will have already been stored before
 the edit session is invoked, so PF3 or QUIT may be used to exit the edit session
 without losing the update procedure.

——————————————————————————————————————————
28 SirLib User's Guide



——————————————————————————————————————————
 SirLib — Update Example
——————————————————————————————————————————

—————— 
CHAPTER 5  SirLib — Update Example

 Notice that sequenced versions of procedures do not apply to New, Erase or
 Resequence operations. Also note that Q is the managed update equivalent of a Copy,
 just as N is the equivalent of Create and K is the equivalent of Delete. XCOMPARE has
 no direct equivalent in the unmanaged command structure, though coupled with later
 reconfiguration using the output update procedure it is analogous to moving finished
 changes to a staging area. Resequencing is of course a special purpose function with
 no unmanaged corollary.

 

PFILE1
PROCEDURE TEMP
BEGIN
FDX:   IN ?&GFL FD RECTYPE = 'CNTL'

END FIND
FRX:   FOR EACH RECORD IN FDX

PRINT NAME AT 10 ...
PRINT ADDRESS AT 40

END FOR
END
END PROCEDURE

CHANGES
PROCEDURE CONTROL.PFILE1
CHG1     * Add state and zip
END PROCEDURE

PROCEDURE PFILE1.CHG1.TEMP
./ I 00060000          $ 00061000 00001000

PRINT STATE AND ZIP AT 40
END PROCEDURE

PFILE1
PROCEDURE BASE.TEMP
BEGIN
FDX:   IN ?&GFL FD RECTYPE = 'CNTL'

END FIND
FRX:   FOR EACH RECORD IN FDX

PRINT NAME AT 10 ...
PRINT ADDRESS AT 40

END FOR
END
END PROCEDURE

PROCEDURE TEMP
BEGIN
FDX:   IN ?&GFL FD RECTYPE = 'CNTL'

END FIND
FRX:   FOR EACH RECORD IN FDX

PRINT NAME AT 10 ...
PRINT ADDRESS AT 40
PRINT STATE AND ZIP AT 40

END FOR
END
END PROCEDURE

WORKFILE
PROCEDURE TEMP
BEGIN
FDX:   IN ?&GFL FD RECTYPE = 'CNTL'

END FIND
FRX:   FOR EACH RECORD IN FDX

PRINT NAME AT 10 ...
PRINT ADDRESS AT 40
PRINT STATE AND ZIP AT 40

END FOR
END
END PROCEDURE

PROCEDURE SEQ.TEMP
00010000BEGIN
00020000FDX:   IN ?&GFL FD RECTYPE = 'CNTL'
00030000       END FIND
00040000FRX:   FOR EACH RECORD IN FDX
00050000          PRINT NAME AT 10 ...
00060000          PRINT ADDRESS AT 40
00070000       END FOR
00080000END
END PROCEDURE

 
 How a change progresses through SirLib

 In the example above, procedure TEMP exists in file PFILE1 (upper left). The
 programmer uses the “Q” command to copy TEMP into WORKFILE, getting both a
 working and a “SEQ” version of the procedure. A single line of new code is inserted in
 TEMP (the line “PRINT STATE AND ZIP AT 40”). Using XCOMPARE, the update is
 generated to file CHANGES, and named PFILE1.CHG1.TEMP. A project leader defines
 the project name CHG1 in CONTROL.PFILE1. Finally, SirLib's Reconfiguration function,
 described in the next section, is used to create a “BASE” version of the procedure, so
 the update can be backed out if necessary, and the original procedure TEMP is deleted.
 The update procedure PFILE1.CHG1.TEMP is applied to BASE.TEMP to create the new
 executable procedure TEMP. The final state of PFILE1 is shown lower right.

——————————————————————————————————————————
SirLib User's Guide 29



——————————————————————————————————————————
SirLib — Update Example
——————————————————————————————————————————

——————————————————————————————————————————
30 SirLib User's Guide



——————————————————————————————————————————
 SirLib Change Control
——————————————————————————————————————————

—————— 
CHAPTER 6  SirLib Change Control

 SirLib functions are accessed through a main menu in the SirLib APSY (Selection 5 from
 the UL/SPF screen). The main menu also allows specification of a File and FixFile. The
 File field specifies the procedure file targeted for the requested activity. The FixFile field
 specifies the Model 204 procedure file that contains the CONTROL.<filename>
 procedure and all update procedures for the selected File.

 
  ----------- * * * Configuration and Change Control System * * * ------------ 
 
 ==> 
 
 
  1. Project Definitions File  ===> 
 Password ===> 
  2. Configure FixFile  ===> SIRLIBP 
 Password ===> 
  3. Administration 
 
  4. Security 
 
  5. Cutover 
 
  6. Reports 
 
  7. View/Clear Procedure Locks 
 
 
 
 ---------------------------------------------------------------------------- 
 1/Help 3/Quit 
 

 SirLib Main Menu

 Options 1, 2 and 5 require a File to be input. If FixFile is not specified for Option 1, 2 or
 5, the default FixFile as defined in the Administration option will be used. If FixFile is
 specified for these options, the specified FixFile overrides the default. This allows, for
 instance, files to be reconfigured from different sets of update procedures in different
 FixFiles. SirLib's default FixFile is always SIRLIBP.

 Change Management functions are:

 1. Project Definitions: Add, delete or change the Project identifiers in the FixFile
 assigned to a managed file.

 2. Configure: Apply and backout changes to files (that is; change the configuration of
 the file).

 3. Administration: Administration functions define system defaults and file-specific
 overrides for those defaults, for security, procedure stamping, Administration ID
 assignment and other “profile” options. This function is also used to remove files from
 the SirLib system.

——————————————————————————————————————————
SirLib User's Guide 31



——————————————————————————————————————————
SirLib Change Control
——————————————————————————————————————————

 4. Security: Defines access to SirLib main menu options and to the Resequence
 command (“Z”) in SirPro. Security settings only apply if SECURE is set to “Y” in the
 Administration function for the file (or for the system, if the file is not specifically set).

 5. Cutover: Does a large-scale clean-up of BASE. Procedures, update procedures,
 Project identifiers and internal procedure stamps. This option is used infrequently;
 perhaps between major releases of an application.

 6. Reports: Access to SirLib reports.

 7. View/Clear Procedure Locks: Access to a display screen of all procedures
 (optionally restricted by file) that are currently checked out. The “checked out”
 procedures are displayed even if the administration option for multiple updates is
 turned on, and therefore no procedures are really locked.

——————————————————————————————————————————
32 SirLib User's Guide



——————————————————————————————————————————
 Project Definition
——————————————————————————————————————————

 6.1 Project Definition

 SirLib is a file-based system. It is not specifically aware of the subsystem structure of a
 site's applications. This allows SirLib to manage applications that have a single procfile-
 to-APSY relationship for all their APSYs, as well as those that run many APSYs from a
 single file or have multiple procedure files per ASPY.

 SirLib uses two pieces of information to track updates and configuration status for a file.
 One way is via a single FILE record, kept in SIRLIBD, which holds security and
 administrative information for the file. The other is the file's Control procedure which is
 stored with the file's update procedures in a FixFile. Control procedures are named
 CONTROL.<filename>, where <filename> is the name of the managed file. Control
 procedures contain a single line for each Project name. A Project is a logical change.
 Update procedures are linked to projects by naming convention. Update procedures are
 named:

 <filename>.<project>.<procname>

 The first qualifier tells SirLib what file the update applies to. The second qualifier
 indicates the project to which the update is linked. The third qualifier is the procedure to
 be changed.

 The project name qualifier provides a mechanism for grouping changes, and controlling
 and linking their application and backout. When a project is added to a Control
 procedure, the whole set of changes linked to that project becomes included in any
 reconfiguration of that file. If the project is commented out or deleted, all update
 procedures whose names contain that project name are “backed out”; that is, not applied
 to the BASE procedure(s) during the next reconfiguration.

 Control procedures may be edited directly in the Model 204 editor by users who have
 been given access to the FixFile (FixFiles should be private files). However, the format
 of the lines of the procedure must be carefully maintained. Each line of the CONTROL
 procedure must have a Project identifier in column 1-8 (left-justified and blanks to the
 right if shorter than 8 characters). Column 9 must be blank and columns 10 through 72
 may contain a comment. The Project Identifier must be in upper case. The optional
 comment may be in mixed case. If a Project name begins with an asterisk (“*”), SirLib
 considers the entire line a comment. Updates are backed out by commenting-out
 project names in this way, and reconfiguring a file. SirLib skips the commented line,
 applying all previous and subsequent updates.

 The proper way to maintain Projects is via Option 1 in SirLib. This screen allows users
 to add, change and delete Project identifiers. It verifies the format of the Project
 identifier, automatically converting it to upper case. To access this screen, a file must be
 specified on the main menu: Project identifiers are always file-specific, as are the Control
 procedures in which they are contained. If a project spans more than one file, an
 identifying line for that project must be placed in the control procedure for each file to
 which the project applies.

——————————————————————————————————————————
SirLib User's Guide 33



——————————————————————————————————————————
SirLib Change Control
——————————————————————————————————————————

 While adding, deleting, changing and commenting out project identifier are all simple
 tasks, the user should keep in mind that these identifiers are control nodes for applying
 and backing out whole sets of updates. Simple actions taken on these nodes can have
 major consequences. Of particular importance are the following issues:

 Order: Updates are applied in the order shown in the Control procedure. A project,
 being the name of a logical change, may point to many update procedures (physical
 changes). If the order of project names is altered in the control procedure, and
 update procedures across projects affect the same section of the same procedure,
 the sequence numbers in later updates may not match those in the existing
 procedure, and the attempt to reconfigure the file will fail. In this case the
 ReConfigure option in SirLib will tell the user the update procedure that failed to apply
 and the sequence number where the error occurred.

 Logical Dependency: There is no way SirLib or any other change management
 system can know about logical dependencies between source code changes in
 different update procedures. A %variable declared in one update may be used by
 code built by another update procedure. Backing out the first change may allow the
 second to apply correctly (that is, all the lines of code physically verify before they are
 applied). But the resulting program may not function correctly because the
 declaration of the %variable is missing from the resulting procedure. It is important
 that physical changes which are logically dependent upon on another be applied and
 backed out together, and this is done by linking them to the same project.

 From the Project Definition screen, PF2 gives access to an edit session in which the
 user may add as much documentation as required to the project. The user edits into a
 procedure in mixed-case mode, and when the edit session is exited, the lines of the
 procedure are converted to TEXT fields in SIRLIBD, and linked to the appropriate
 Project Identifier.

——————————————————————————————————————————
34 SirLib User's Guide



——————————————————————————————————————————
 Configuring Files (Applying Updates)
——————————————————————————————————————————

 6.2 Configuring Files (Applying Updates)

 Applying updates is always done a file at a time. The process is called ReConfiguring a
 file. The file and FixFile are selected on the main menu at the time Option 2 is selected.
 The SIrLib File Reconfiguration screen is then displayed:

 
  ------------------- * * * SIRLIB File ReConfiguration * * * ---------------- 
 
 Name of procedure file to be fixed ==> SIRMON 
  File for CONTROL and change decks ==> SIRLIBP 
 
 This function applies managed updates (change decks) to a Model 204 
 procedure file. The control and change decks must be in same procedure 
 file (SIRLIBP is the system default, but the user may change it.) 
 
 The procedure CONTROL.pfile controls file reconfiguration, where 'pfile' 
 is the name of the file to which changes are being applied. CONTROL 
 procedures are maintained via the CHANGES screen in SIRLIB, and contain 
 8-char change identifiers, followed by an optional asterix and comment. 
 Change identifiers beginning with '*' are not applied. 
 
 Each uncommented change identifier must match one or more procedures 
 named pfile.fixname.procname, residing in the same file, where pfile 
 is the file targeted for reconfiguration, fixname is the logical change 
 identifier and procname is the procedure to which the change(s) applies. 
 
  Press ENTER to reconfigure the selected file. 
 ---------------------------------------------------------------------------- 
 PF3/ Exit 
 

 Applying Fixes/Changes
 The above screen shows how the programmer applies changes to a file. Pressing
 ENTER on this screen applies all active updates in the FixFile to the BASE. version of
 target procedures in the target file. This option may be protected by the System
 Administrator, so that only approved users may reconfigure a file.

 If a procedure is locked when SirLib attempts to apply changes to it, the ReConfiguration
 fails and a message is displayed identifying the procedure that could not be updated by
 SirLib. This could happen if a user is editing the procedure, or if the procedure is locked
 by an active APSY. The ReConfiguration should be done over again. ReConfiguration
 may be run as many times as needed, until all changes are properly applied. When a
 ReConfiguration fails in this manner the file may be left in a state where some
 procedures are deleted. The faulty update should be fixed or commented out and
 reconfiguration run again.

 6.2.1 Backing Out Changes

 ReConfiguration ignores all projects that are prefixed by an “*”. The manager who
 wishes to backout all updates linked to a project, can do so by commenting out the
 project name in the Project screen, and reconfiguring the file using option 2. This takes
 only a few minutes work and is independent of DUMP/RESTORE or other external
 backups of the file. To backout only one or some of several updates associated with a
 project, the manager may delete the update procedure or change its name so it is no
 longer found when SirLib checks for updates linked to projects. Deleting update

——————————————————————————————————————————
SirLib User's Guide 35



——————————————————————————————————————————
SirLib Change Control
——————————————————————————————————————————

 procedures is a severe remedy in any case and should be avoided, as the source
 working procedure from which the update was generated may no longer exist.

 Each active Project in the Control procedure must be linked to at least one update, or
 the ReConfiguration will fail. If updates are deleted or renamed such that none link to a
 particular project, the project name should also be commented out or deleted.

 6.2.2 Applying Updates in Batch Mode

 Updates can also be applied in batch mode. The command for applying fixes in batch
 mode is:

 SIRLIB BATCH <target file name> <fixfile name> <source file
 name>

 where <target file name> is the file to be reconfigured, i.e. needs updating, and <fixfile
 name> is the file that contains the update procedures.

 <source file name> is optional and allows fixes originally written against one procedure
 file to be applied to a different file. This is useful if the source procedure file in the
 development environment has a different name than the procedure file in production. In
 the standard case, where the target and source procedure files are the same or have the
 same name, this parameter can either be left blank or can be the same as the target file.

 SIRLIB BATCH SIRMON SIRFIXES SIRMON

 results in the same changes being applied to SIRMON as:

 SIRLIB BATCH SIRMON SIRFIXES

 The following example shows changes, originally written against DEVPPROC being
 applied to PRODPROC (with the change decks coming from SIRLIBD).

 SIRLIB BATCH PRODPROC SIRLIBD DEVPROC

 This command does not have to be placed in a batch job, but can be typed directly in at
 Model 204 command level, or can be inserted in the USER0 stream, or invoked in an
 IODEV3 thread.

 One use of the batch SirLib command is to place the command for each managed file in
 the USER0 stream of the production online. This allows application updates to be
 “staged” to production by copying them to the production FixFile, with the application
 update occuring automatically each time the online comes up.

 To aid in batch debugging and job control, SIRLIB also sets a global SIRLIBFAILURE to
 0 if the configuration command worked correctly and to 1 if the command failed. This
 global can be used to set JOBCODEs or to initiate recovery steps in the event the batch

——————————————————————————————————————————
36 SirLib User's Guide



——————————————————————————————————————————
 Configuring Files (Applying Updates)
——————————————————————————————————————————

 configuration fails. A message detailing the reason for the configuration failure is printed
 to CCAPRINT.

——————————————————————————————————————————
SirLib User's Guide 37



——————————————————————————————————————————
SirLib Change Control
——————————————————————————————————————————

 6.3 Administering System and File Profiles

 
  ------------------- * * * SIRLIB Administration * * * -------------------- 
 
 ==> 
  File: SIRMON 
  Changes File: SIRLIBP 
  Single Checkout: N 
  Overwrite protection: N 
  Require Change Identifiers: Y 
  Keep History: Y 
  Secure: N 
 
  Administrator ID:s HOMER_____ BART______ MAGGIE____ MARGE_____ 
 ALEX _____ ITCHY_____ SCRATCHY__ __________ 
 __________ __________ __________ __________ 
  Procedure Stamping: Y 
  Exempt Prefixes: HELP.______________________________ 
 MSGS_______________________________ 
 ___________________________________ 
 ___________________________________ 
 
 ---------------------------------------------------------------------------- 
 1/Help 3/Quit 
 7/Up 8/Down 9/Repeat 10/Remove 12/Commit 
 

 SirLib Administration screen

 The SirLib Administration Option allows users to define a custom SirLib profile for each
 file. If the Administration option is selected with no file specified on the main menu, then
 the System Profile is being defined or changed. If a File is specified on the main menu
 then a file-specific profile is being defined or changed.

 Only users defined to the ADMIN SCLASS in the SirLib APSY definition are allowed
 access to the Administration Option without specifying a file. Only users defined as
 Administrators in the System profile are allowed access to File profiles.

 The settings on the Administration screen are described below. If any of these settings
 is left blank on a File profile, then SirLib takes its behavior from the System profile
 setting. If the option is left blank on the System profile, default action varies, but is noted
 in the descriptions below.

 File
 A file name is displayed only if one was specified on the main menu. The file name
 cannot be modified on the Administration panel. If no file was specified on the main
 menu, then this field will read “System Defaults”.

 Changes File.
 A Changes File (FixFile) is a Model 204 procedure file that contains update
 procedures and a CONTROL.<filename> procedure for a file or set of files. Any
 number of files may share the same FixFile. The default FixFile for all of SirLib is
 SIRLIBP, a Model 204 procedure file that was created as part of the SirLib
 installation process. If a different FixFile is specified as the default for a managed
 file, SirLib options 1, 2, 5, and all SirLib reports will look in the new FixFile for update
 procedures and the control procedure.

——————————————————————————————————————————
38 SirLib User's Guide



——————————————————————————————————————————
 Administering System and File Profiles
——————————————————————————————————————————

 Single Checkout
 This switch affects the behavior of the “Q” command in SirPro. The default, N,
 allows multiple programmers to update the same procedure at the same time, and
 leaves it up to SirLib to handle possible collisions when the update procedures are
 applied. The administrator may switch this option to Y to force a “checkout” to occur
 when the “Q” command is executed against a procedure.

 Once a procedure is checked out by a programmer it may not be checked out by
 another via a managed update command until the previous programmer signals that
 it is available by checking it back in. The checkout occurs automatically when a “Q”
 command is executed. The checkin is optional on the “X” screen, when the final
 update procedure is being generated. The programmer simply checks “Y” at the
 bottom of the Xcompare panel to unlock the procedure. Users in the SirLib ADMIN
 sclass can view and remove procedure locks by Option 7 from the SirLib main
 menu.

 Regardless of the setting of this switch, SirLib stores a lock record for each
 procedure that is the subject of a “Q” (Sequence) command. This allows managers
 to view a list of procedures being updated even when the procedure is not actually
 locked.

 Overwrite protection
 This switch affects the behavior of the SirPro “X” prefix command. By default SirPro
 allows users to overwrite each others' update procedures, provided a switch is
 checked on the Xcompare panel when generating the second update procedure.
 The Overwrite switch on the Administration panel never stops programmers from
 overwriting their own changes, however if Overwrite is set to N on this panel, SirLib
 will not allow a programmer to replace an update procedure generated by another
 user.

 Require Project Identifiers
 The system default is to allow programmers to generate update procedures for any
 project, whether or not the project name is listed in the CONTROL.<filename>
 procedure for the file. If this toggle is set to Y, then programmers may only name
 their update procedures using project names that exist in the control procedure.
 Note the format of update procedure names is:

 <filename>.<project>.<proc-name>

 The second qualifier of the above naming convention is the value that is checked
 when this option is set to Y.

 Requiring project names to exist before updates are linked to them allows the
 manager to specify destinations for update procedures, and may prevent changes
 from being left out of a release by inadvertent misspellings of project names by
 programmers.

——————————————————————————————————————————
SirLib User's Guide 39



——————————————————————————————————————————
SirLib Change Control
——————————————————————————————————————————

 The advantage of not requiring a project name to exist before changes are linked to
 it is that it provides a “control point” to switch on an entire project. That is, update
 procedures may be generated to FixFiles over a period of time, but they don't get
 included in file reconfigurations until a project name is entered, and at that point they
 are all made active simultaneously.

 Keep History
 Setting this switch to N reduces the amount of historical information kept by SirLib.
 Certain history records are maintained regardless of this setting, such as
 ReConfigurations and Cutovers.

 Secure
 This option globally turns on and off SirLib internal security, for the system as a
 whole or for a particular file.

 If this switch is set to N the only security in effect is determined by users' SCLASS
 privileges from SUBSYSMGMT. ADMIN SCLASS users only are permitted access
 to the Administration and View/Clear Procedure Locks options from the main menu,
 and all other options are available to any user with access to the SirLib subsystem.
 If SECURE is set to Y, then SirLib will pay attention to the values set by
 administrators in the SECURE option.

 If on the default System profile, SECURE=N, specific files that require security can
 override this setting by having SECURE=Y on their administration screen. The
 reverse can also be done, with the system set to use security by default, and files
 that need no such detailed coverage set with security off. A blank setting for
 SECURE on a file record tells SirLib to use the System Defaults for that file. If
 SECURE is left blank in the system profile SirLib assumes it should be N.

 Administrator IDs
 Administrator IDs defined for the System profile (i.e. when no file is specified on
 entering the Administration Option) are given access to Administration functions for
 all files. These System Administrators may then access Administration options to
 set File profiles. Users defined as Administrators for a File have access to Security
 (Option 5) for the files they administer. Up to 12 IDs may be specified as
 Administrators for the system and for each file. If a shop wishes to use SirLib and
 SirPro on an honor system basis, one of the simplest ways to do it is to define all
 users to the ADMIN SCLASS of SirLib, and either turn security off, or let each user
 build whatever permissions they require for themselves or their development group.

 Procedure Stamping
 This switch indicates whether or not a comment is inserted in a changed procedure.
 The comment indicates the name, date, time, and source file of the change.
 Procedure Stamping may be set on or off globally (Y to turn stamping on, N to turn it
 off) on the Administrator setup screen.

 Internal procedure stamps can be deleted by SirLib when the file is “Cutover” (refer
 to “Release Cutover” on page 42). The deleted stamps may be replaced with

——————————————————————————————————————————
40 SirLib User's Guide



——————————————————————————————————————————
 Administering System and File Profiles
——————————————————————————————————————————

 comment stamps indicating the cutover date, time, and administrator ID. Default
 SirLib behavior is to stamp procedures.

 Note: When working versions of procedures are generated (via the “Q” prefix
 command in SirPro), internal stamps are stripped from the working procedure and
 sequenced procedure. This prevents programmers from having to deal with these
 extra comment lines, and it prevents the stamps being generated into update
 procedures. Procedure stamps are also used as input data in some SirLib reports.

 Exempt Prefixes
 If procedure stamping is “on”, a list of procedure prefixes may be entered for
 procedures in the system or for a file which should not have comments inserted.
 This prevents SirLib comments from entering procedures that contain application
 help text, message text or other literal information used by the application. Prefixes
 for exempt procedures may be up to 32 characters long. Wild card characters such
 as “*” or “?” are taken as literal values in these prefixes. Up to 4 prefixes may be
 specified for any file or the system as a whole. There are no default exempt
 prefixes.

 Files are added to the SirLib system via the Administration panel. For a file to participate
 in Managed update activity, it must have at least a file name entered on this panel, and
 the entering user must have pressed

 To remove a file from the SirLib system, simply press PF10 and SirLib will remove all
 security, history, procedure locks, administration and user privileges for the file. If the
 file has already been added to the SirLib subsystem, use SUBSYSMGMT to remove it.

——————————————————————————————————————————
SirLib User's Guide 41



——————————————————————————————————————————
SirLib Change Control
——————————————————————————————————————————

 6.4 Release Cutover

 One way to use SirLib is to keep update procedures forever, allowing unlimited flexibility
 to reconfigure a system to a previous state. However, as systems age it may be
 inconvenient to keep applying a large number of projects and even larger number of
 update procedures. The “cutover” option essentially returns a managed file to a pre-
 managed state, but with all existing updates applied.

 Cutovers always occur on a file-by-file basis. Performing a cutover causes the following
 SirLib processing:

 ReConfiguration: Cutover invokes a full file ReConfiguration to ensure that all updates
 are applied. This step can be bypassed with a switch on the Cutover panel.

 Delete Update procedures: All update procedures in the FixFile that have the cutover
 file as a first qualifier are deleted whether or not they are linked to an active project.

 Delete Project Identifiers: All lines in the control procedure for the file
 (CONTROL.<cutover-file>) are deleted.

 Delete BASE. Procedures:: All procedures beginning with “BASE.” are deleted from
 the target cutover file.

 Delete Comments: When changes have been applied, SirLib will have inserted a
 comment like:

 *** F2BALES Applied by ... ***

 at the beginning of each changed procedure. These comments are deleted at
 cutover, and a single new comment reading:

 *** Cutover on DD/MM/YY

 is inserted (procedures excluded from inserted commenting are not stamped; see
 System Setup). The re-stamping of procedures with a Cutover stamp can be
 suppressed by a switch on the Cutover screen.

 Cutover is initiated from the SirLib main menu, via option 4. The file to be cutover is
 specified on the main menu along with the FixFile from which the changes are to be
 applied and deleted. If the FixFile field is left blank the default FixFile from the File
 record is used.

——————————————————————————————————————————
42 SirLib User's Guide



——————————————————————————————————————————
 Release Cutover
——————————————————————————————————————————

 
  ---------------------- * * * SIRLIB File Cutover * * * ---------------------- 
 ==> 
 Cutover File ==> SIRMON__ 1st SIRLIB Txn  ==> 19911127 09:49 
 Password  ==> 1st Cutover  ==> ________ _____ 
 Changes File ==> SIRFIXES Last Reconfigure ==> ________ _____ 
 Password  ==> Last Cutover  ==> ________ _____ 
 
 Apply Changes  ==> Y 
 Delete Base Procedures  ==> Y ________ _____ 
 Delete Update Decks  ==> Y ________ _____ 
 Delete Change Identifiers ==> Y ________ _____ 
 Remove Procedure Stamps  ==> Y ________ _____ 
 Insert Cutover Stamps  ==> Y 
 
  Change ------------------- Description ------------------------------------- 
 B3FSTP1 Fix fast path from UL/SPF to SIRMON. (AK) 
 B3APSYOS Fix size of subsystem overview screen. (AK) 
 B3DOC1 Miscellaneous documentation fixes. (AK) 
 B3BIND Rename the $BIND and $UNBIND functions. (AB) 
 B3TIME Fix TIME command for MOPR-SCROLL (AB) 
 ---------------------------------------------------------------------------- 
 1/Help 3/Quit 
 7/Up 8/Down 9/Repeat 12/Commit 
 

 Cutover Information Display
 A scrollable panel at the bottom of Cutover screen allows the user to view the changes
 that are to be applied. If the projects shown are not the ones the user wants applied and
 deleted, the process should not be continued until the appropriate FixFile is located.

 The remaining fields on the Cutover screen display information to help the file manager
 determine the state of the file and changes associated with the file. Existing projects are
 displayed in a block at the bottom of the screen. Dates and times are displayed for the
 first SirLib transaction for this file, the first and last reconfiguration, and the most recent
 cutover. All of this information is refreshed after a successful cutover.

 From the Cutover panel, PF12 initiates the cutover. If the cutover fails during any step
 a failure message appears when the screen is refreshed, and the user should check the
 date and time stamps for each activity to see which step failed. Refer to “Problem
 Resolution” on page 53 for advice on error recovery.

 Because the results of a cutover are irreversible it is recommended that cutovers always
 be prefaced by a backup of the managed file and its associated FixFile. It is also
 recommended that the Reconfiguration step not be bypassed unless the user knows for
 certain that a reconfiguration has just been run. Care should be taken to verify that
 changes are not incorrectly “commented out” in the Control procedure. If any step fails
 to execute properly, processing stops at that step and control is returned to the Cutover
 panel, where an error message is displayed. After cutover compleyes, the date stamps
 for each activity will be updated on the Cutover panel. The user should verify these
 dates and times before exiting.

——————————————————————————————————————————
SirLib User's Guide 43



——————————————————————————————————————————
SirLib Change Control
——————————————————————————————————————————

 6.5 View/Clear Procedure Locks

 Procedures always have a record posted whenever a programmer takes a managed
 update copy of the procedure using the “Q” command. This record becomes a lock
 when the manager has set Single User Update to Y in the Administration panel.
 Programmers unlock procedures by executing an “X” (Xcompare) against the locked
 procedure, specifying Y in the field on the Xcompare screen that asks whether the
 procedure should be unlocked. The View/Clear locks option in SirLib is a way for
 managers to track and modify procedure locking.

 
  ---------------------- * * * View/Clear Procedure Locks * * * ---------------- 
 ==> Locked Procs: 10 
  Sel Procedure Name Account Source WorkFile Date Time 
 COPR-CONFIGURE ALAN JUNKPROC ALANPROC 11/27 14:42 
 CREATE.SIRCOMMG ALAN JUNKPROC ALANPROC 12/12 11:31 
 LIB-ADMIN.TRANSIT.SUB ALAN JUNKPROC ALANPROC 12/12 09:56 
 MOLB-TRANSIT.SUB ALAN JUNKPROC ALANPROC 12/12 10:04 
 MOPR-APSYOVR ALAN SIRMON ALANPROC 12/16 08:29 
 MOPR-CFRSOVR ALAN SIRMON ALANPROC 12/16 08:29 
 MSGS.LIB.SEL ALAN ALANPROC ALANPROC 12/15 15:21 
 UTIL.ALLOC ALAN JUNKPROC ALANPROC 11/27 14:50 
 XREFN-USET ALAN JUNKPROC ALANPROC 12/02 10:41 
 XREFP-CROSS.OUT ALAN JUNKPROC ALANPROC 12/09 08:32 
 
 
 
 
 
 
 
 ---------------------------------------------------------------------------- 
 1/Help 2/Sort-Name 3/Quit 4/Sort-User 5/Sort-Date 6/Sort-File 
 7/Up 8/Down 9/Repeat 10/Refresh 12/Fullname 
 

 View/Clear Procedure Locks
 Access to this option is determined by ADMIN SCLASS membership.

 If the manager wishes to clear a lock, an “S” is placed to the left of the procedure name.
 Locks are cleared when ENTER is pressed. If the View/Clear Locks function is entered
 with a filename specified on the main menu, only those procedures locked from the
 specified file are displayed. The list may be scrolled and sorted via the displayed PF
 keys.

 In the View/Clear locks option, the procedure name is displayed out to 33 characters.
 Following that, the display shows the programmer owning the procedure, the source file
 for the checkout, the workfile and the date and time the checkout occurred. PF12 
 allows the view to be toggled into a fullname mode, in which long procedure names
 overlay the user and file information on the right side of the screen.

——————————————————————————————————————————
44 SirLib User's Guide



——————————————————————————————————————————
 Security
——————————————————————————————————————————

—————— 
CHAPTER 7  Security

 SirLib security does not directly protect files. Because programmers will be working
 most of the time in SirPro, a simple way to ensure consistent use of the SirLib/SirPro
 system is to make all managed procedure files PUBLIC with low (read-only) privileges,
 and then to allocate those procedure files to SirPro with read privileges and to SirLib with
 update privileges. This allows programmers to make copies of the procedures they
 need but not to change anything in the managed files, forcing all updates to go through
 SirLib.

 Details on this sort of conversion are given in “Getting Started” on page 61.

——————————————————————————————————————————
SirLib User's Guide 45



——————————————————————————————————————————
Security
——————————————————————————————————————————

——————————————————————————————————————————
46 SirLib User's Guide



——————————————————————————————————————————
 SirLib Reports
——————————————————————————————————————————

—————— 
CHAPTER 8  SirLib Reports

 This section reviews the reports supplied with the SirLib system. The Reports menu is
 accessed as option 6 from the SirLib main menu:

 
 ---------- * * * Configuration and Change Control Report * * * ----------- 
 
 ==> 3 
 1. Change History 
 2. Configuration Rpt File ===> 
 3. Problem Tracking FixFile ===> 
 
 *------------------ Directed Output Specification ------------------* 
 
 Destination ==> 2 (Select 1, 2 or 3, below) 
 
 1. DATASET DDNAME ==> OUTALAN 
 2. PRINTER ID ==> ALAN 
 3. $PRINT CLASS ==> X 
 
 Lines Per Page ==> 60 (UDDLPP) 
 Characters per Line ==> 133 (UDDCCC) 
 Record Format ==> 12 (UDDRFM) 
 Header Control ==> 3 (HDRCTL) 
 
 ---------------------------------------------------------------------------- 
 1/Help 3/Quit 
 12/Submit 
 

 SirLib Reports Menu
 Reports are selected by number. Reports may be limited to a File and/or FixFile. Print
 routing and formatting information is entered in the fields at the bottom of the screen. A
 print destination of TERMINAL, $TERMINAL or blank will result in the report printing at
 the user's terminal. If a printer is specified, the printing activity is handled by an
 SDEAMON and the user's terminal session is freed immediately upon their pressing
 PF12 .

——————————————————————————————————————————
SirLib User's Guide 47



——————————————————————————————————————————
SirLib Reports
——————————————————————————————————————————

——————————————————————————————————————————
48 SirLib User's Guide



——————————————————————————————————————————
 Configuration Options
——————————————————————————————————————————

—————— 
CHAPTER 9  Configuration Options

 Manipulating update procedures instead of whole procedure files offers a large number
 of advantages in managing the Model 204 environment. These advantages are seen in
 simplified and more flexible pathing schemes for promoting changes, clearer
 accountability for change, and a more powerful and direct way of building a bug-free
 production system.

 The flexibility of SirLib allows sites to use the product in a number of different ways. The
 best SirLib implementation is the simplest one that handles all the complexities of a site's
 application needs. Factors to consider include:

 ● The number of regions available for developing, testing, maintaining and running
 production Model 204 systems.

 ● The relative volume of new development vs. maintenance activity.

 ● The complexity and length of application testing.

 ● Local coding standards.

 In general, shops want to accomplish as much as possible in each available online
 region. Therefore, functional areas tend to be merged whenever possible: either
 development and testing or development and maintenance are run in a single region,
 with some shops having the luxury of a unique region for each functional area, and other
 shops having to develop and test, run and maintain production all in a single region.
 SirLib can accomodate any of these situations, but here we would like to present a kind
 of optimal situation, where functional areas are merged into a single region whenever it
 is possible without causing programmers, testers and users to interfere with each other.

 A practical limit with Model 204 makes it difficult to merge more than two functional
 areas into a single region. Assuming that a shop is taking advantage of the Application
 Subsystem (APSY) feature of Model 204, and that there are embedded references to
 procedure files in the User Language code (e.g. statements like “IN PROCFILE
 INCLUDE xxxxxxxxx”), only two versions of any application subsystem can be run in the
 region -- one with the specified procedure file, and a second whose APSY definition has
 a procedure group defined with the same name.

 If a shop wants to run three versions of a subsystem in a region, say a development
 APSY, a test APSY and a copy of the production APSY, programmers either have to
 change procedure references when moving procedures between subsystems, code in
 such a way that no procedure file references are used, dynamically free and allocate
 files, or change the definition of the procedure group used by one of the apsys. A shop
 might also code all procedure file references with dummy string substitution or, as

——————————————————————————————————————————
SirLib User's Guide 49



——————————————————————————————————————————
Configuration Options
——————————————————————————————————————————

 mentioned above, not use the Application Subsystem feature. Any of these options
 sacrifices some of the strengths of Model 204, or places unnecessary restrictions on
 coding staff.

 Given that no more than two functional areas should operate within a region, and
 assuming a shop requires a full-scale testing environment, the following example shows
 one possible implementation of change management using SirLib.

 
Development

Grouped
Procedure

Files

SirPro
"X"

function

"Q"
function

SirPro

SirLib
Configure
function

Devfile

Prodfile

FixFile

Test

SirLib
Configure
function

FixFile

Prodfile

Production

SirLib
Configure
function

FixFile

Prodfile

 
 Managing changes across 3 environments, using SirLib in each

 The problem with the above example is that any volume of maintenance fixes will
 interfere with the normal course of development. With testing given its own online
 region, programmers will have to balance scheduled development with production fixes.
 Development may have to be set aside (by temporarily renaming procedures being
 worked on, for instance) while emergency fixes are coded, then the fixes will have to be
 incorporated with the new development work quickly, as the region is turned back over
 to development tasks. If fixes to production are a regular occurence this can be an
 expensive and time-wasting way to work.

 If a shop wants to eliminate the complexity of dealing with update procedures in every
 region, the previous flow of change could be simplified to look like this.

——————————————————————————————————————————
50 SirLib User's Guide



——————————————————————————————————————————
 Configuration Options
——————————————————————————————————————————

 
Production

Prodfile

Test

Prodfile

Development

SirPro

"Q"
function

Grouped
Procedure

Files

SirPro
"X"

function

SirLib
Configure
function

FixFile

Devfile

Prodfile

 
 Managing changes across three environments, using one copy of SirLib

 Again, this configuration has the same problems with emergency fixes and other
 unscheduled maintenance interfering with the development schedule, and the ensuing
 complications in the development environment. In addition, while you gain the simplicity
 of only dealing with update procedures in the development region, you lose some of the
 strengths of SirLib: the ability to verify and reconfigure the state of procedure files in any
 region and the simplified distribution provided by the FixFile. In addition, under this
 scheme, testers need to be given the entire test file over again every time changes are
 requested of the development team, and of course, the entire procedure file must be
 sent to production each time a release is made.

 A final example of a SirLib configuration is the way that Sirius Software used the product
 for its own development and maintenance distribution.

 Because Sirius' “production” environment was a large number of client sites, and the
 amount of maintenance required on a release was unpredicatable, Sirius used a single
 environment for development and testing, and it reserved a second environment for
 ongoing maintenance on each production release. This configuration allowed the
 building of new releases in the same Online region where complex testing occurred, and
 the simultaneously re-configuring of the maintenance environment to match that of any
 client experiencing problems. An example of this setup is shown below:

——————————————————————————————————————————
SirLib User's Guide 51



——————————————————————————————————————————
Configuration Options
——————————————————————————————————————————

 

Development/
Unit Testing

Grouped
Procedure

Files

SirPro
"X"

function

SirLib
Configure
function

SirPro

"Q"
function

SirLib
Cutover
function

FixFile

Devfile

Prodfile

Maintenance/
Pre-Release Testing

Grouped
Procedure

Files

SirPro
"X"

function

SirLib
Configure
function

SirPro

"Q"
function

FixFile

Devfile

Prodfile

Production

SirLib
Configure
function

Prodfile

FixFile

 
 Separately managed development/unit testing and release testing

 The “next” release of an application was developed in the Development/Testing region,
 using SirLib to manage the staging of completed units.

 This is an excellent option for anyone with a large volume of development work in
 progress, complex testing requirements, and production environments that may require
 unsheduled programming not easily integrated with ongoing new development.

——————————————————————————————————————————
52 SirLib User's Guide



——————————————————————————————————————————
 Problem Resolution
——————————————————————————————————————————

—————— 
CHAPTER 10  Problem Resolution

 This section reviews corrective actions for a variety of common error conditions.

 10.1 SirLib Can't Access File

 Make sure that each file managed by SirLib is allocated via SUBSYSMGMT to the SirLib
 APSY, or that an update password exists for the file.

 10.2 Cutover Failed

 Cutover is a complex function involving 5 steps:

 1. Apply updates,
 2. delete update procedures,
 3. delete project names,
 4. delete “BASE.” Procedures and
 5. ReStamp procedures.

 Only the first and last options may be bypassed. Each of the 5 options is executed in
 the above order. If a step fails it can be identified by the error message and by the
 date/time fields associated with it not having been updated when control returns to the
 Cutover screen.

 The first step applies update procedures to the target managed file. This process is
 exactly the activity performed from the Reconfiguration option, and may be bypassed if
 the user has just run a Reconfiguration. If the first step is executed (recommended
 always) and fails, then the destination procedure file does not have all existing changes
 applied to it. This change application process does not apply changes which are
 commented-out in the control procedure, and it cannot know if all update procedures that
 are supposed to be in the FixFile are indeed there. Most of the error messages
 occurring at this step will indicate that some user or apsy is locking a procedure that
 SirLib wants to update. See the ReConfiguration section for details on this.

 Each of the remaining 4 steps is an updating transaction requiring update privileges to
 either the update procedure file or target procedure file. The first thing to check in case
 of cutover failure is that these files are allocated to the online region and to the SirLib
 APSY, and that privilege settings are high enough to allow the updating of permanent
 procedures.

——————————————————————————————————————————
SirLib User's Guide 53



——————————————————————————————————————————
Problem Resolution
——————————————————————————————————————————

 If cutover continues to fail, either turn on all messages in the SirLib ASPY definition, or
 run SirLib in TEST DEBUG mode, and call the specific problem in to your SirLib
 Administrator or to Technical Support. Cutover may be run as many times as necessary
 to accomplish the file clean up.

 10.3 Missing Base Procedure

 If a BASE procedure of a file once existed and has since been deleted, SirLib will see
 there is no BASE, copy the existing executable procedure into a BASE version and then
 attempt to apply changes to it. The user will get an error saying that changes (from the
 first update procedure most likely) will not apply to the procedure. The error message
 will specify the sequence number where the problem occurred. The user will be able to
 edit both the procedure and the update procedure and see that the new code in the
 update procedure being applied already exists in the BASE procedure.

 A BASE version of a procedure is created the first time a change to the procedure is
 detected during a reconfiguration. If a BASE procedure is not present when a re-
 configuration is attempted, SirLib assumes this is the first time managed updates have
 been applied to the procedure, and a new BASE. procedure will be created.

 The BASE procedure is more important to a managed system than the actual executable
 procedure. BASE procedures with update procedures applied are used to re-build the
 executable procedures to any previous configuration.

 If a BASE procedure is accidentally deleted while there are still changes that need to be
 applied to that procedure, the BASE procedure must be restored for those changes to
 apply. Each BASE procedure must be in the same file as the executable procedure
 which it matches.

 10.4 Missing SEQ Procedure

 Sequenced versions of procedures are generated during execution of the “Q” command.
 The SEQ. version created must remain unchanged while the unsequenced (working)
 copy is being updated. If the SEQ. version is altered, the update procedure resulting
 from the XCOMPARE will not apply correctly to the BASE procedure, and the entire
 reconfiguration will fail.

 If an SEQ. procedure is deleted or is suspected of being altered, the programmer needs
 to generate a new SEQ. version via the following steps:

 1. Verify that no unmanaged changes have occurred against the procedure since the
 working version was generated.

——————————————————————————————————————————
54 SirLib User's Guide



——————————————————————————————————————————
 Missing SEQ Procedure
——————————————————————————————————————————

 2. If managed changes have occurred against the procedure since the original
 sequenced version was generated, the user should comment them out in the
 CONTROL procedure via the CHANGES option in SirLib and regenerate a new
 SEQ version that includes those changes, by executing a “Q” command.

 3. Regenerate the sequenced and unsequenced procedures from the original using
 the Q command, sending the unsequenced version to a temp file, which can be
 deleted.

 10.5 Deleted Update Procedure

 Update procedures can be regenerated as many times as required, as long as the
 original sequenced and unsequenced versions of the procedure still exist.

 10.6 Reconfiguration Failed

 Usually Reconfiguration failures are due to an APSY or USER holding the target file
 open. Reconfiguration requires exclusive access to the target file. SirLib does not
 check that a specific APSY is locking a file, as it makes no assumptions about how many
 APSYs might be running out of that file. Therefore, SirLib always presents this error
 upon its inability to delete or rename some procedure. Reconfiguration can be restarted
 when the locking USER or APSY releases the file.

 If an invalid update procedure has been built and reconfiguration fails, a message is
 displayed indicating the update procedure at fault and the sequence number where the
 mismatch occurred. Reconfiguration will also fail in the case where two or more
 programmers have attempted to change the same line number from working and SEQ
 procedures generated at the same time. In SirLib this is known as a “collision”.

 10.7 Collisions

 Update collisions occur during ReConfiguration when two update procedures attempt to
 change the same line or section of a procedure, both referring to the same physical
 location in the procedure by the same sequence number(s). This can occur when more
 than one programmer generates sequenced and unsequenced copies of the same
 procedure in a time frame that doesn't allow the second programmer's copy to include
 changes from the first programmer's update procedure. Read the section under the Q
 command for an explanation of how sequence numbering works. In the case of
 collisions, the first change gets applied by SirLib, and the second change contains
 commands that try to find sequence numbers that are now altered by the first change.

——————————————————————————————————————————
SirLib User's Guide 55



——————————————————————————————————————————
Problem Resolution
——————————————————————————————————————————

 When SirLib applies update procedures to BASE procedures, it sorts all changes for a
 procedure into sequence and version number order. If SirLib finds within a section of
 code two changes that both want to be the same version it warns the user and stops
 processing.

 There are many ways to handle collisions and the best is usually determined by the
 programmers. A simple approach is to delete all but the most complex of the conflicting
 update procedures and to incorporate the other changes into the working version of the
 procedure that was used to generate the one update procedure kept. That update
 procedure is then regenerated. In some cases the working and SEQ version of the most
 complex update procedure will have been deleted. In this case it is best to regenerate
 the conflicting update procedure using an SEQ procedure that contains the other
 change(s).

 To avoid difficult resolution of collisions, working and SEQ procedures should never be
 deleted until the programmer has verified that the changes apply and integrate with all
 other changes.

 10.8 Production Fixes

 Sometimes it will be necessary to make a quick change to a production procedure which
 has already been updated in development. In SirLib developers should never copy
 production procedures back to development in order to make these fixes.

 In the production environment identify which changes have been applied to the
 procedure which requires the fix. This can be done by browsing the procedure to see
 the change stamps, or if procedure stamping is turned off for the target procedure, by
 running a status report for the file to identify the last Reconfigure date and time, and the
 projects which were then applied.

 In the development environment, ReConfigure the file to its current production state.
 Execute a “Q” command to generate SEQ and working versions of the procedure. Make
 the production fix, generate an update procedure and distribute the new update
 procedure to production, applying the update procedure there via a ReConfigure.

 In the development environment, ReConfigure the file to include the new fix and all other
 new development update procedures. Handle collisions as indicated earlier in this
 section. Notify all developers working on the fixed procedure to regenerate their SEQ
 and working procedures to include the production fix.

——————————————————————————————————————————
56 SirLib User's Guide



——————————————————————————————————————————
 SIRLIBD Record Structure
——————————————————————————————————————————

—————— 
APPENDIX A  SIRLIBD Record Structure

 SirLib stores a variety of change management information in the Model 204 file
 SIRLIBD. This data is used in the SirLib reporting system (Option 6 from the main
 menu) and may also be processed by user-provided reporting programs. This appendix
 explains the record layout for SIRLIBD.

 RECTYPE Field indicating record type, with following values:

 SYS Rectype that specifies system defaults for SirLib. There is only
 one record with this RECTYPE.

 FIL Rectype that specifies file defaults for SirLib (missing fields on
 this record means use system default). One record of this
 RECTYPE for each registered file.

 PRO Unused.

 USR Rectype for user security definition.

 DOC Documentation associated with a project.

 CHG Project Identifier record.

 PRC Procedure record for procedures checked out by programmers.

 HST Historical information kept if “Keep History” is specified in file or
 system defaults.

 CHANGE Project name in CONTROL.<file>.

 FILE Name of managed update file.

 FFILE Name of update procedure file.

 PROC Procedure name.

 PROJECT Unused.

 RESOURCE Name of a protected resource, as follows:

 CHANGE Access to Change Definition.

 CONFIG Access to Re-Configuration.

——————————————————————————————————————————
SirLib User's Guide 57



——————————————————————————————————————————
SIRLIBD Record Structure
——————————————————————————————————————————

 CUT Access to File Cutover.

 RESEQ Access to Procedure Resequencing -- “Z” prefix command
 in SirPro.

 SECURE Access to File-specific security.

 USER User ID (from $ACCT).

 WFILE Work File. File that procedures were moved to via one of the
 managed update commands.

 ACTIVITY The managed update activity tracked on a history record (RECTYPE =
 HST).

 ADMIN Administrator id specified on the SYS rectype.

 EXEMPT Prefix of procedures not to be stamped with internal comments on the
 status of the application of changes. Maximum length is forty
 characters.

 DATE General date/time stamp, in YYYYMMDDHHMM form.

 HISTORY Single character flag indicating whether historical information should
 be kept for a file or system. Contains either blank, Y (yes) or N (no). If
 RECTYPE=FIL, blank means refer to the setting on RECTYPE=SYS.
 If RECTYPE=SYS, blank means keep history.

 OVERWRITE Single character flag indicating whether programmers are allowed to
 overwrite each other's update procedures (overwriting one's own
 update procedure is always allowed, though a switch on the
 XCOMPARE screen will help prevent accidental overwrites). Contains
 either a blank, Y (yes) or N (no). If RECTYPE=FIL, blank means refer
 to the setting on RECTYPE=SYS. If RECTYPE=SYS, blank means
 allow overwriting.

 PROC.LOCK Single character flag indicating whether procedures should be locked
 against managed updates once a developer has checked out the
 procedure (checkout occurs when a “Q” command is executed against
 the procedure). Contains a blank, Y (yes) or N (no). If
 RECTYPE=FIL, blank means refer to the setting on RECTYPE=SYS.
 If RECTYPE=SYS, blank means don't lock procedures.

 REQ.IDENT Single character flag indicating whether an existing project identifier is
 required for generating update procedures. Contains a blank, Y (yes)
 or N (no). If RECTYPE=FIL, blank means refer to the setting on
 RECTYPE=SYS. If RECTYPE=SYS, blank means don't require
 identifiers.

——————————————————————————————————————————
58 SirLib User's Guide



——————————————————————————————————————————
 SIRLIBD Record Structure
——————————————————————————————————————————

 SECURE Single character flag indicating whether the SECURITY settings
 defined in Option 4 of the SirLib main screen should be enforced.
 Contains a blank, Y (yes) or N (no). If RECTYPE=FIL, blank means
 refer to the setting on RECTYPE=SYS. If RECTYPE=SYS, blank
 means don't secure.

 STAMP Single character flag indicating whether managed procedures should
 be stamped with a single line comment for each change that has been
 applied. If RECTYPE=FIL, blank means refer to the setting on
 RECTYPE=SYS. If RECTYPE=SYS, blank indicates that stamping
 should be done.

 TEXT Text for change comments and documentation on RECTYPE=DOC.
 Maximum length is 72 characters.

 TIME Time stamp, in HHMM form.

 CUT.BASE Date/Time stamp from the most recent cutover of BASE procedures
 (RECTYPE=FIL), in YYYYMMDDHHMM form. When BASE
 procedures are cutover they are deleted.

 CUT.CHANGE Date/Time stamp for the last time Update procedures were cutover
 (RECTYPE=FIL), in YYYYMMDDHHMM form. When Update
 procedures are cutover they are deleted.

 CUT.IDENT Date/Time stamp for the last time Project Identifiers were cutover
 (RECTYPE=FIL), in YYYYMMDDHHMM form. Project Identifiers are
 deleted from the “CONTROL.filename” file when they are cutover.

 CUT.STAMP Date/Time stamp for the last time internal procedure stamps were
 cutover, that is, removed from procedures in the file (RECTYPE=FIL),
 in YYYYMMDDHHMM form.

 FIRST.CUT Date/Time stamp for the first cutover performed on a file
 (RECTYPE=FIL), in YYYYMMDDHHMM form.

 LAST.CUT Date/Time stamp for the last time Cutover performed on a file
 (RECTYPE=FIL), in YYYYMMDDHHMM form.

 LAST.CONF Date/Time stamp for the last time a file was reconfigured
 (RECTYPE=FIL), in YYYYMMDDHHMM form.

 UNLOCK Date/Time stamp when a procedure was checked back in by an
 updating programmer (RECTYPE = PRC), in YYYYMMDDHHMM
 form.

——————————————————————————————————————————
SirLib User's Guide 59



——————————————————————————————————————————
SIRLIBD Record Structure
——————————————————————————————————————————

——————————————————————————————————————————
60 SirLib User's Guide



——————————————————————————————————————————
 Getting Started
——————————————————————————————————————————

—————— 
APPENDIX B  Getting Started

 Following are the steps the SirLib administrator should follow before SirLib and SirPro
 are made available to programming teams.

 1. Follow the instructions in the Sirius Mods Installation Guide.

 2. Follow the UL/SPF installation instructions
 (http://m204wiki.rocketsoftware.com/index.php/UL/SPF_installation_guide).

 3. Add users to the SirLib and SirPro Subsystems. ADMIN SCLASS users in both
 SirLib and SirPro acquire STOP/START/TEST privileges. In SIRLIB, ADMIN
 SCLASS users also have the ability to access the Administration Option which
 allows them to define file administrators for SirLib purposes, and allows them to
 define or change SirLib's system default profile.

 SIRPRO should generally be left PUBLIC and AUTOSTART.

 SIRLIB may be either PUBLIC or PRIVATE, depending upon how strictly you want
 to manage project definitions, reconfigurations and access to reports. PRIVATE is
 the default.

 4. Add files to the SirLib apsy definition.

 For SirLib to manage changes to procedures in a Model 204 file, the file must be
 added to the apsy definition via SUBSYSMGMT, with X'BFFF' privileges in all
 SCLASSs. By making managed files public, and requiring that update access occur
 only through SirLib, the administrator can guarantee a high level of integrity for the
 state of changes in the file. When files are allocated to the apsy, they should be
 allocated as non-required.

 5. For procedure files to be managed by SirLib, change OPENCTL to X'80' and
 PRIVDEF to X'0221'. This allows read access to managed procedures, and allows
 SirPro to be used without the need for passwords. At the same time it protects
 procedures from update outside the change management system.

 6. Create a SirLib default system profile. SirLib requires a single “administration”
 record to exist in its internal data file (SIRLIBD) for the system profile. To build the
 system profile record, choose Administration from the SirLib Main Menu without
 specifying a file, define the characteristics of your SirLib setup, and save the profile.
 Use the help text or the appropriate section from this manual for advice on what
 value to set in each screen field.

——————————————————————————————————————————
SirLib User's Guide 61



——————————————————————————————————————————
Getting Started
——————————————————————————————————————————

 7. Create a SirLib Administration record for each managed file. SirLib requires an
 “administration” record to exist in SIRLIBD for each file to be managed. Add the file-
 specific Administration record by choosing Administration from the SirLib Main
 Menu, specifying a file name at the FILE prompt. Use the help text or the
 appropriate section from this manual for advice on what value to set in each screen
 field. Any field left blank on the file-specific administration screen means that that
 characteristic will be inherited from the system profile.

 Users will not be able to perform managed update commands in SirPro for a
 particular file until the SirLib Administration record is created for the file. SirPro
 managed update commands are X, Q, K, N and Z. All other SirPro commands
 (Edit, Browse, Rename, etc.) will operate independent of SirLib Administration
 records.

 8. Define SirLib security characteristics. SirLib Security is ignored if SECURE is set to
 “N” on the System Administration record (which you would have built two steps
 previously). The security scheme is put back into effect when SECURE is switched
 back to “Y” in Option 3. Setting SECURE=N is a good way to let users navigate
 freely around SirLib while they are learning the system.

 To define SirLib internal security, select Security from the SirLib Main Menu, not
 specifying a file at the FILE prompt. The top line of the Security screen shows
 system default security settings, and subsequent lines show settings for each file
 that has an Administration record. You protect a SirLib function on a system-wide
 basis by placing any character in the system default row (the top row of the screen).
 So, for instance, you could protect every SirLib function except Reports, by placing
 a “Y” in the top row for each column except the last one.

 In the file-specific rows of this screen, a blank column allows the file to inherit the
 system default setting for that SirLib function, a “Y” means protect the function
 regardless of system default setting, and a “N” means do not protect the function
 regardless of system default setting. This scheme allows you to define a system
 default security scheme, and then let all files inherit the same scheme.

 When a function is protected for a file, individual user ids must be given permission
 to access that function on a file by file basis. To give users this access, select
 Security from the SirLib Main Menu, specifying the procedure file at the FILE
 prompt. The Security screen will again appear, but this time the top row represents
 the settings for the file-specific functions, and each subsequent row allows the entry
 of a user ID.

 On the file specific security screen, you cannot alter the top row (use the system
 default screen to change file protection). Enter user ids in the rows that follow, and
 place “Y” in the columns for the protected functions you wish that user to be able to
 access.

 Again, if you start out using SirLib with SECURE set to “N” in the system default
 Administration record, all internal security is bypassed. You can still build your
 security scheme, but users are not restricted by it.

——————————————————————————————————————————
62 SirLib User's Guide



——————————————————————————————————————————
 Getting Started
——————————————————————————————————————————

 A number of other changes can be made if you wish to make the SirLib/SirPro controlled
 environment more convenient for programmers. The following
 changes/recommendations allow programmers to work in GROUP procedure file
 context, supporting “development” and “production” versions of an apsy in the same
 region.

 9. Allocate a development procedure file for each production procedure file. If you
 have production procedure files PRCFILE1, PRCFILE2 and PRCFILE3, you might
 allocate DEVFILE1, DEVFILE2 and DEVFILE3. Under SirLib, programmers can
 never make changes directly in an original procedure file, so the intention of these
 “DEV” files is to have all changes for PRCFILE1 occur in DEVFILE1, PRCFILE2 in
 DEVFILE2, etc.

 10. Create a GROUP for each production procedure file. The GROUPS should have
 the same name as the production procedure files. So, continuing the previous
 example, you would create groups PRCFILE1, PRCFILE2 and PRCFILE3. GROUP
 PRCFILE1 would be defined as follows:

 CREATE PERM GROUP PRCFILE1 FROM DEVFILE1, PRCFILE1
 PARAMETER PRCFILE=*, PRIVDEF=x'0221'
 END

 The order of group member definition is critical, as Model 204 looks for procedures
 in the order the files are listed.

 11. Define a development apsy for each production apsy.

 Use SUBSYSMGMT to copy your production subsystems to development
 subsystem definitions. So if you have ACCTS, PERSON and INVENT, you might
 copy each of them to DEVACCTS, DEVPERSON and DEVINVENT. The only
 change you need to make to the definitions is to change the procedure file to a
 group.

 12. Rationalize your INCLUDE statements. Depending upon how you modularize your
 User Language code, you may have constructs like:

 IN FILE ?&PRCFILE INCLUDE COMMON.ROUTINES

 These statements will fail in GROUP procedure file context unless they are changed
 to read:

 IN ?&PRCFILE INCLUDE COMMON.ROUTINES

 13. Build utility apsys for procedure file DUMP, RESTORE and FILEMANAGE. If you've
 followed the instructions above, your procedure files will now be “PUBLIC”
 (OPENCTL=x'80'), with very restrictive access privileges. Because the files are
 PUBLIC, you will never be prompted for a password, so you cannot get access
 sufficient to perform DUMP, RESTORE or other file maintenance.

——————————————————————————————————————————
SirLib User's Guide 63



——————————————————————————————————————————
Getting Started
——————————————————————————————————————————

 The solution is to create apsys that provide the required access, and perform the
 maintenance for you. These apsy are simple to write, and if you wish, Sirius
 Software will send you the code for the ones we use, which are DUMPSTER (dump
 all procedure files), RECOVER (restore a specific file from DUMPSTER dump), and
 FIMANAGE (customized at each use to perform a specific file maintenance activity).

 14. Take a backup of everything you've done.

 Finally, SirLib users should note the following points.

 Baseline Procedures: There is no need to establish a baseline for managed
 procedures. SirLib can be put into place to manage existing procedures or to
 manage systems being built from scratch. The baseline for any file is the point where
 you begin using SirLib. The baseline for any procedure is the state it is in the first
 time SirLib applies a change. The creation and maintenance of a baseline is
 automatic, and requires no action on the part of developers or managers.

 Procedure Prefixes: SirLib requires exclusive use of three procedure prefixes. SirLib
 reserves the prefix “BASE.” for procedures in managed files, the prefix “SEQ.” for
 procedures in files where developers are working on changes, and the prefix
 “CONTROL.” for update procedures in the FixFile.

——————————————————————————————————————————
64 SirLib User's Guide



——————————————————————————————————————————
 Date Processing
——————————————————————————————————————————

—————— 
APPENDIX C  Date Processing

 SirLib uses dates in the following ways:

 ● To examine the CPU clock (as returned by the STCK hardware instruction) to
 determine the current date, in case SirLib is under a rental or trial agreement

 ● To display the current date, as returned by the TIME SVC, modified by the
 SYSDATE parameter or the the Sir2000 User Language Tools APPDATE clock, as
 page headers in various end-user displays

 ● To keep track of the date and time at which a user issued a CHECKIN,
 CHECKOUT, CONFIGURE, or CUTOVER SirLib operation, using the TIME SVC,
 modified by the SYSDATE parameter or the the Sir2000 User Language Tools
 APPDATE clock

 For headers on pages or rows that occur on printed pages or displayed screens, UL/SPF
 products generally use a full four-digit year format, although they may display dates with
 two-digit years in circumstances where the proper century can be inferred from the
 context.

——————————————————————————————————————————
SirLib User's Guide 65



——————————————————————————————————————————
Date Processing
——————————————————————————————————————————

——————————————————————————————————————————
66 SirLib User's Guide



——————————————————————————————————————————
 Index
——————————————————————————————————————————

—————— 
  Index

A M
Administration Managed file
 overwrite ... 21, 24, 26, 28  definition ... 6
 requiring identifiers ... 21, 23, 25, 27 Managed update

 definition ... 6
B  programmer activity ... 12

 summary ... 29Backing out changes ... 35
BASE. procedures

P definition and naming convention ... 8
BATCH Problem resolution ... 53
 configuring files in batch mode ... 36  collisions ... 55

 cutover failed ... 53
C  file access ... 53

 missing BASE. procedure ... 54Change deck
 missing SEQ. procedure ... 54 naming convention ... 7
 production fixes ... 56Change identifiers
 integrating with ongoing logical dependency ... 34
 development ... 56Commands
 reconfiguration failure ... 55 K ... 11, 25
 update procedure deleted ... 55 N ... 11, 23
Production fixes Q ... 11, 16
 generating procs to match production ... 18 X ... 11, 20
Project definition Z ... 11, 27
 documenting projects ... 34Configuration management ... 5
 screen ... 33Configuration options ... 49
Project defintionControl procedure
 overview ... 33 defined ... 8
Project identifiersCutover ... 42
 defined ... 8 actions performed ... 42
 order of ... 34 caveats ... 43
 updating ... 34 explained ... 42
Project names initiating ... 42
 backing out changes ... 33

D
RDefault profile ... 38
Reconfiguration
 applying change decks ... 35F
 backing out changes ... 35FixFile
 batch mode ... 36 defined ... 7
 applying change decks ... 36
Reports ... 47
Resequence ... 19

——————————————————————————————————————————
SirLib User's Guide 67



——————————————————————————————————————————
Index
——————————————————————————————————————————

S  requiring change identifiers ... 39
 Security: global on/off setting ... 40Security
 Single/Multi Programmer updating ... 38 overview ... 45
 system and file defaults ... 38SEQ. (sequenced) procedures

 definition and naming convention ... 8
USequence numbers

 how they work ... 18 UL/SPF
SIRLIBD record, structure of ... 57  constituent products ... 1
System administration  integrating with other subsystems ... 2
 defining a fixfile ... 38  introduction to ... 1
 defining Administrator IDs ... 40 Update procedure
 Keep History ... 40  definition ... 7
 overview ... 31
 Overwrite protection ... 39 V
 procedure checkin-checkout ... 39 View/Clear procedure locks ... 44
 Procedure Stamping ... 40
 Procedure Stamping exemptions ... 41

——————————————————————————————————————————
68 SirLib User's Guide


	Rocket Model 204 SirLib
User’s Guide
	Notices
	Corporate information
	Contacting Global Technical Support

	Contents
	1. Introduction to UL/SPF
	1.1. UL/SPF packaging and installation requirements
	1.2. Integrating UL/SPF with other subsystems
	1.3. Related documentation

	2. Overview of Configuration Management
	3. SirLib Implementation
	3.1. SirLib Operations Overview

	4. SirLib — A Programmer's Reference
	4.1. Q (SEQUENCE) Command
	4.2. X (XCOMPARE) Command
	4.3. N (NEW) Command
	4.4. K (ERASE) Command
	4.5. Z (RESEQUENCE) Command

	5. SirLib — Update Example
	6. SirLib Change Control
	6.1. Project Definition
	6.2. Configuring Files (Applying Updates)
	6.2.1. Backing Out Changes
	6.2.2. Applying Updates in Batch Mode

	6.3. Administering System and File Profiles
	6.4. Release Cutover
	6.5. View/Clear Procedure Locks

	7. Security
	8. SirLib Reports
	9. Configuration Options
	10. Problem Resolution
	10.1. SirLib Can't Access File
	10.2. Cutover Failed
	10.3. Missing Base Procedure
	10.4. Missing SEQ Procedure
	10.5. Deleted Update Procedure
	10.6. Reconfiguration Failed
	10.7. Collisions
	10.8. Production Fixes

	A. SIRLIBD Record Structure
	B. Getting Started
	C. Date Processing
	Index



