
Rocket Model 204 Fast/Reload

Reference Manual

November 2014
FRL-0705-RM-01

Notices
Edition

Publication date: November 2014
Book number: FRL-0705-RM-01
Product version:

Copyright
© Rocket Software, Inc. or its affiliates 1992-2014. All Rights Reserved.

Trademarks

Rocket is a registered trademark of Rocket Software, Inc. For a list of Rocket registered trademarks go
to: www.rocketsoftware.com/about/legal. All other products or services mentioned in this document
may be covered by the trademarks, service marks, or product names of their respective owners.

Examples

This information might contain examples of data and reports. The examples include the names of
individuals, companies, brands, and products. All of these names are fictitious and any similarity to
the names and addresses used by an actual business enterprise is entirely coincidental.

License agreement

This software and the associated documentation are proprietary and confidential to Rocket Software,
Inc. or its affiliates, are furnished under license, and may be used and copied only in accordance with
the terms of such license.

Note: This product may contain encryption technology. Many countries prohibit or restrict the
use, import, or export of encryption technologies, and current use, import, and export regulations
should be followed when exporting this product.

http://www.rocketsoftware.com/about/legal

Corporate Information
Rocket Software, Inc. develops enterprise infrastructure products in four key areas: storage,
networks, and compliance; database servers and tools; business information and analytics; and
application development, integration, and modernization.

 Website: www.rocketsoftware.com

Rocket Global Headquarters
77 4th Avenue, Suite 100
Waltham, MA 02451-1468
USA

Contacting Technical Support
If you have current support and maintenance agreements with Rocket Software and CCA,
contact Rocket Software Technical support by email or by telephone:

Email: m204support@rocketsoftware.com

Telephone :

 North America +1.800.755.4222

 United Kingdom/Europe +44 (0) 20 8867 6153

Alternatively, you can access the Rocket Customer Portal and report a problem, download an
update, or read answers to FAQs. You will be prompted to log in with the credentials supplied as
part of your product maintenance agreement.

To log in to the Rocket Customer Portal, go to:

www.rocketsoftware.com/support

http://www.rocketsoftware.com
http://www.rocketsoftware.com/support
mailto:support@rocketsoftware.com

——
 Contents
——

———————
 Contents

 Proprietary Notices . ii

 Contents . iii

 Summary of Changes . v
 Fast/Reload Version 6.9 . v
 Fast/Reload Version 6.7 . v
 Fast/Reload Version 6.5 . vi
 Fast/Reload Version 5.4 . vi
 Fast/Reload Version 5.0 . vi

 Chapter 1: Introduction . 1

 Chapter 2: Invoking Fast/Reload . 3

 Chapter 3: Fast/Reload Statements . 5

 The OPTIONS statement . 6
 ANYorder . 6
 BAVail [page_type] size . 7
 DKOnly . 11
 ERRCont . 11
 FTOnly . 12
 NObuff n_out_buffs . 12
 NXBuff n_tableX_buffs . 12
 NOVAlidate . 13
 STAtc stats_intvl . 13
 TAPei ddname . 14
 The LAI statement . 14
 LAI compared to FILELOAD/FLOD . 16
 Using LAI with UAI . 16
 Loading null data . 17

 Chapter 4: Incompatibilities with standard FLOD/FILELOAD 19

 Extension records in hash key files . 19
 Adding data to non-empty unordered files . 19
 Ordered index layout when field codes change 19
 Ordered index layout when mixing generated and unloaded index data 20
 Table B space allocation . 20

——
Fast/Reload Reference Manual

——
Contents
——

 Chapter 5: Performance . 21

 Chapter 6: Invisible fields . 23

 Chapter 7: Procedures . 25

 Preparing the environment . 25
 Setting PDSIZE . 26

 Chapter 8: DBCS support . 27

 Appendix A: Float Handling . 29

 Loading into FLOAT fields . 29
 Loading float values into non-FLOAT fields 30

 Appendix B: Installing Fast/Reload . 31

 Appendix C: Messages . 33

 Appendix D: Date Processing . 35

 Index . 37

 Figures

 Figure 1: LAI statement syntax . 14

——
 Fast/Reload Reference Manual

——
 Summary of Changes
——

——————
 Summary of Changes

 This section describes significant changes to the documentation. In most cases these
 changes correspond to enhancements made to the underlying product.

 Fast/Reload Version 6.9

 The following changes correspond to changes in Fast/Reload since version 6.8:

 ● Although this fix has been provided via maintenance to all supported releases, it is
 worth noting that the handling of float values in Fast/Reload has been improved.
 The most significant aspect of this is that using UAI/LAI to reorganize a file with, in
 particular, FLOAT LEN 4 fields, and changing them to FLOAT LEN 8, now produces
 values which are correct according to standard Model 204 float handling.

 The explanation of float field processing has been elaborated in “Float Handling” on
 page 29.

 Fast/Reload Version 6.7

 The following changes correspond to changes in Fast/Reload since version 6.5:

 ● Support is added for the loading of files processed under Model 204 version 6.1,
 including files that contain Model 204 Large Object fields (Lobs). This support
 requires Model 204 V6R1 and for Table E space to be defined in the target file; Lobs
 can be added by either of the following:

 ▪ The Fast/Reload D statement will process PAI output from a file that has Lob
 fields defined.
 ▪ With the LAI statement; LAI support for Lobs requires UAI output of Lobs, first
 delivered in version 4.3 of Fast/Unload.

 ● A new keyword, ERRCONT, is added to the OPTIONS statement (see “The
 OPTIONS statement” on page 6). ERRCONT lets you complete a reload despite
 errors that would normally cause a MSIR.0316 user restart.

 ● Buffer pointer validation is added, along with a new option, NOVALIDATE, to turn
 this validation off (“NOVAlidate” on page 13).

——
Fast/Reload Reference Manual

——
Summary of Changes
——

 Fast/Reload Version 6.5

 The following changes correspond to changes in Fast/Reload since version 5.4:

 ● Support for reloading of procedures and procedure aliases (see “Procedures” on
 page 25).

 Fast/Reload Version 5.4

 The following changes correspond to changes in Fast/Reload since version 5.0:

 ● New OPTION BAVAIL statement.

 Fast/Reload Version 5.0

 Major rewrite of this manual, coinciding with major enhancements to Fast/Reload.

 ● Support for Sir2000 Field Migration Facility.

——
 Fast/Reload Reference Manual

——
 Introduction
——

——————
CHAPTER 1 Introduction

 Fast/Reload is a plug compatible replacement for the Model 204 FLOD and FILELOAD
 utilities. It consists of replacement and new object decks that are linked into your
 BATCH204 or ONLINE load module. After building these new load modules you will
 derive immediate benefits from Fast/Reload because existing FLOD and FILELOAD
 programs will then be compiled and executed by Fast/Reload.

 In addition to these immediate benefits, Fast/Reload provides some extra functional
 enhancements to the FLOD and FILELOAD utilities. Primary among these is the ability
 to efficiently load data unloaded by Fast/Unload using a single command (LAI). This
 greatly simplifies and speeds up the reorganization process. The combination of
 Fast/Unload with UAI and Fast/Reload with LAI is called Fast/Reorg.

 Fast/Reload has its own FILELOAD language compiler which converts FILELOAD
 language programs to machine language. In reloads that involve simply appending data
 to the end of an empty or existing file, Fast/Reload will bypass the Model 204 disk buffer
 monitor and instead perform full track I/O to write the table B pages being loaded.

 Fast/Reload uses multi-buffered BSAM input for the input sequential data file. This
 allows overlap of BSAM input and other processing. In addition, this allows Fast/Reload
 to take advantage of chained scheduling under MVS. Both of these benefits can
 significantly reduce the real time required to perform a FLOD or FILELOAD operation.

 Fast/Reload will run under both MVS and CMS with any release of Model 204 at or after
 2.2.

——
Fast/Reload Reference Manual 1

——
Introduction
——

——
2 Fast/Reload Reference Manual

——
 Invoking Fast/Reload
——

——————
CHAPTER 2 Invoking Fast/Reload

 Fast/Reload is invoked exactly the same way that the FLOD or FILELOAD utility is
 invoked with a standard Model 204 load module.

——
Fast/Reload Reference Manual 3

——
Invoking Fast/Reload
——

——
4 Fast/Reload Reference Manual

——
 Fast/Reload Statements
——

——————
CHAPTER 3 Fast/Reload Statements

 All Fast/Reload programs must begin with the FILELOAD or FLOD command and end
 with an END statement. All statements between the FILELOAD or FLOD and the END
 are converted into machine code by the Fast/Reload compiler or are used to set
 environmental parameters by the Fast/Reload compiler. An example of a very simple
 Fast/Reload program is:

 FILELOAD -1,-1,0,1000000,10000,10000,,68
 G
 DUMMY=1,0,X'8000'
 FIELD1=1,10
 END

 Fast/Reload supports all the statements supported by FLOD and FILELOAD except the
 following:

 ● The L statement.
 ● The ENDL statement.
 ● The F statement.
 ● The ENDF statement.
 ● The UP statement.
 ● The DOWN statement.
 ● The DELETE statement.

 In addition, the X'4000' mode bit used to delete a field occurrence or occurrences is not
 currently supported. Finally, FLOD exits are not currently supported.

 If you have FILELOAD or FLOD programs that contain statements not supported by
 Fast/Reload, you can still run the programs with the same load module you use for
 Fast/Reload programs. The FLODX and FILELOADX commands invoke the original
 Model 204 FLOD and FILELOAD programs instead of Fast/Reload.

 Fast/Reload attempts to copy the FLOD/FILELOAD program to the temporary procedure
 indicated by the FRELPREV system parameter (which defaults to -1). If Fast/Reload
 determines that the FLOD or FILELOAD program cannot be processed by Fast/Reload
 but can be processed by standard FLOD or FILELOAD, the FRELPREV temporary
 procedure is opened for input, and the program is passed to standard FLOD or
 FILELOAD to be read again.

 For more information on both supported and unsupported statements, see
 http://m204wiki.rocketsoftware.com/index.php/Category:File_management. In addition
 to the standard statement set, Fast/Reload supports the extra statements described in
 the following subsections: “The OPTIONS statement” on page 6 and “The LAI
 statement” on page 14.

——
Fast/Reload Reference Manual 5

——
Fast/Reload Statements
——

 Note that each statement must begin in column one, since a blank in column one of a
 FLOD statement indicates the "read-and-load-a-field" statement.

 3.1 The OPTIONS statement

 This statement can appear anywhere inside a Fast/Reload program and is used to set
 environmental parameters that affect the way the load will be performed. The OPTIONS
 statement can be abbreviated to its first three or more characters. For example, the
 following are all valid OPTIONS statements:

 OPTIONS TAPEI FOOFOO
 OPTION TAPEI FOOFOO
 OPTI TAPEI FOOFOO
 OPT TAPEI FOOFOO

 Multiple parameters can be set via the OPTIONS statement. They are described in the
 following subsections. The minimum required abbreviation for each is indicated in
 uppercase.

 3.1.1 ANYorder

 This option only has an effect when data is being loaded into a hash or sort key file.
 When data is being loaded into one of these files, performance will generally be good if
 the data is being loaded in hash or sort key order. If the data being loaded is not in this
 order, load performance could be disastrously affected. Fast/Reload normally does not
 continue in such a case. The ANYORDER option overrides this behavior and lets the
 file load continue.

 In general, it is better to determine the reason records are out of order and to correct the
 problem, than to use the ANYORDER option to ignore it.

 If you are using LAI, the ordering can be done by the HASH or SORT option of the UAI
 statement in Fast/Unload (see the Fast/Unload Reference Manual).

 Otherwise, to obtain the full track I/O benefits of Fast/Reload, you should ensure that
 your input records are in the correct order. You must sort the TAPEI dataset in order by
 the SORT key, or by the hash code of the HASH key. This can be achieved using the
 M204HASH utility, as described in
 http://m204wiki.rocketsoftware.com/index.php/Hash_key_files.

——
6 Fast/Reload Reference Manual

——
 The OPTIONS statement
——

 3.1.2 BAVail [page_type] size

 Size is -1 (the default), or a non-negative number.

 This option has the following two beneficial effects:

 1. If size is non-negative (and the file is not SORTED), the use of the
 BRESERVE=bres parameter is changed during the file load. A record will start
 within remain <= size+bres bytes at the end of the page if, and only if, the record
 fits in its entirety on that page; that is, the total record size is less than or equal to
 remain. This ensures that no base record is split with BRESERVE bytes or fewer in
 the base record, while using more available space on a table B page than the
 default algorithm.

 2. If size is greater than zero, Fast/Reload ensures, during the file load, that at least
 size bytes are unused on a table B page. This provides for some record growth by
 subsequent updates, for example, during an ONLINE run, without shifting fields to
 an extension record.

 BAVAIL is ignored if Fast/Reload is not operating using full track I/O. A base record is
 the first part of a table B record, as opposed to the subsequent parts of a table B record,
 which are called extension records.

 Page_type can be any of the following:

 ALL This applies to all table B pages. If size is non-negative, then Fast/Reload
 guarantees that every table B page contains at least size unused bytes.

 BASE This applies to any page which contains one or more base records. If size is
 non-negative, then Fast/Reload guarantees that any page with a base record
 contains at least size unused bytes.

 EXT This applies to any page which contains an extension record. If size is non-
 negative, then Fast/Reload guarantees that any page with an extension record
 contains at least size unused bytes.

 If page_type is omitted, size applies to all table B pages.

 Multiple OPTIONS BAVAIL specifications will override the value(s) previously specified;
 for example:

 OPTIONS BAVAIL 100 BAVAIL BASE 150

 will set aside 150 bytes on each page with a table B base record, and 100 bytes on all
 other table B pages, but

 OPTIONS BAVAIL BASE 150 BAVAIL 100

 will set aside 100 bytes on all table B pages.

——
Fast/Reload Reference Manual 7

——
Fast/Reload Statements
——

 The default BAVAIL for each page type is -1. If the value of all of them is -1,
 Fast/Reload does not specifically reserve any table B space, but uses the normal
 Model 204 space algorithm determined by BRESERVE, ensuring that a record does not
 start within the last BRESERVE bytes of a page.

 If the file being loaded is not a SORTED file (FILEORG X'01'), a non-negative setting for
 any page type will modify the effect of the BRESERVE parameter for all table B pages.
 Let BA be the maximum of all BAVAIL values; if it is non-negative, then if an entire table
 B record is less than BRESERVE bytes long it can be stored within the last BA +
 BRESERVE bytes on the page, but otherwise a table B record is not started in that area.

 Therefore, you may want to set a temporary value for BRESERVE during the file load
 which differs from the value used during online updating. For example:

 OPEN FILE mumble
 RESET BRESERVE 300
 FILELOAD -1,-1,0,1000000,1000000
 OPTIONS BAVAIL 400
 LAI
 END
 RESET BRESERVE 800

 Note: The correct values for BRESERVE and BAVAIL are file-specific, and depend on
 characteristics such as record sizes, the cost to your applications of extension records,
 the importance of conserving table B space, and updating characteristics. Like any
 tuning exercise, this requires analysis and experimentation. The numbers in the above
 example could be wrong for your file, in fact, you may do better with an online
 BRESERVE that is smaller than the file load BRESERVE, and BAVAIL may be smaller
 than both, larger than both, or in between.

 In the following examples:

 ● The file is a simple ENTRY ORDER file (FILEORG X'00').

 ● There are no preallocated fields.

 ● Each page contains 6140 usable bytes. (A page has 6144 bytes prior to the trailer,
 but there are 2 bytes used to determine the number of records on a page, and 2
 used for the amount of unused space.)

 ● Dataln means the total length of data in a record, basln means the space used for a
 base record, and extln means the space used for an extension record.

 ● Each base record or extension record requires a 2-byte page locator, and contains a
 3-byte area which is zero or has the record number of a subsequent extension
 record. So, for example, if a record is completely stored in a base record, basln =
 dataln + 5.

 ● Each example illustrates a case starting with a base record on an empty page.

——
8 Fast/Reload Reference Manual

——
 The OPTIONS statement
——

 ● The resulting space allocation shows each page as the letter “P” and a page
 number, followed by extension and/or base records and free space enclosed in
 square brackets. For example

 Rec0 dataln=100
 Rec1 dataln=300
 P0 [Rec0 basln=105] [Rec1 basln=305]
 [free=5730]

 shows two records stored on one page.

 ● Extension records are shown with the base record ID followed by a period and
 extension number, for example:

 Rec0 dataln=12570
 P0 [Rec0 basln=6140]
 P1 [Rec0.1 extln=6140]
 P2 [Rec0.2 extln=305] [free=5835]

 shows one record stored on three pages.

 ● Results are shown for different values for BAVAIL. With the default value of
 BAVAIL=-1, Fast/Reload uses the standard Model 204 algorithm for allocating table
 B space during a file load. This standard algorithm is always used when
 Fast/Reload is not using full track I/O.

 The following example shows that BAVAIL=0 can be used for maximum packing on a
 page, and BAVAIL>0 can be used to ensure free space on a page; each of them ensure
 a base record is not split in the first BRESERVE bytes:

 Rec0 dataln = 6000
 Rec1 dataln = 130
 BRESERVE = 300

 using BAVAIL = -1:
 P0 [Rec0 basln=6005] [free=135]
 P1 [Rec1 basln=135] [free=6005]

 using BAVAIL = 0:
 P0 [Rec0 basln=6005] [Rec1 basln=135]

 using BAVAIL = 135:
 P0 [Rec0 basln=6005] [free=135]
 P1 [Rec1 basln=135] [free=6005]

——
Fast/Reload Reference Manual 9

——
Fast/Reload Statements
——

 The following example shows that without BAVAIL, you cannot guarantee free space on
 a page:

 Rec0 dataln=130
 Rec1 dataln=6000 (60 100-byte fields)
 BRESERVE = 300

 using BAVAIL = -1:
 P0 [Rec0 basln=135] [Rec1 basln=6005]

 using BAVAIL = 0:
 P0 [Rec0 basln=135] [Rec1 basln=6005]

 using BAVAIL = 135:
 P0 [Rec0 basln=135] [Rec1 basln=5805] [free=200]
 P1 [Rec1.1 extln=205] [free=5935]

 The following example shows tighter packing and fewer extension records:

 Rec0 dataln=6000 (60 100-byte fields)
 Rec1 dataln=100
 Rec2 dataln=6100 (61 100-byte fields)
 Rec3 dataln=100
 Rec4 dataln=6000 (60 100-byte fields)
 BRESERVE = 200

 using BAVAIL = -1:
 P0 [Rec0 basln=6005] [free=135]
 P1 [Rec1 basln=105] [Rec2 basln=6005] [free=30]
 P2 [Rec2.1 extln=105] [Rec3 basln=105]
 [Rec4 basln=5905] [free=25]
 P3 [Rec4.1 extln=105] [free=6035]

 using BAVAIL = 0:
 P0 [Rec0 basln=6005] [Rec1 basln=105] [free=30]
 P1 [Rec2 basln=6105] [free=35]
 P2 [Rec3 extln=105] [Rec4 basln=6005] [free=30]

——
10 Fast/Reload Reference Manual

——
 The OPTIONS statement
——

 The following example shows use of BAVAIL which increases the extension records at
 file load time, but by leaving space on all pages, records can grow without producing
 extension records which are stored on pages “far away” from the base page:

 Rec0 .. Rec5 dataln=4000 (40 100-byte fields)
 BRESERVE = 300

 using BAVAIL = -1:
 P0 [Rec0 basln=4005] [Rec1 basln=2105]
 [free=30]
 P1 [Rec1.1 extln=1905] [Rec2 basln=4005]
 [free=230]
 P2 [Rec3 basln=4005] [Rec4 basln=2105]
 [free=30]
 P3 [Rec4.1 extln=1905] [Rec5 basln=4005]
 [free=230]

 using BAVAIL = 300:
 P0 [Rec0 basln=4005] [Rec1 basln=1805]
 [free=330]
 P1 [Rec1.1 extln=2205] [Rec2 basln=3605]
 [free=330]
 P2 [Rec2.1 extln=405] [Rec3 basln=4005]
 [Rec4 basln=1405] [free=325]
 P3 [Rec4.1 extln=2605] [Rec5 basln=3205]
 [free=330]
 P4 [Rec5.1 extln=805] [free=5335]

 The smallest value of size for any BAVAIL option is -1; the largest value is 6130 minus
 the length of all preallocated fields, minus 3 if FILEORG is SORTED, minus 1 if
 FILEORG is HASHED, minus 4 if FILEORG is UNORDERED.

 3.1.3 DKOnly

 In many cases, Fast/Reload bypasses the Model 204 disk buffer monitor for table B
 pages and instead uses its own full track buffers for output. This can, in certain
 instances, result in data being loaded into different table B pages than standard FLOD or
 FILELOAD would use. An example of this is non-empty reuse record number files. You
 can force Fast/Reload to use the Model 204 disk buffer monitor by specifying the
 DKONLY option. This option can result in a significant increase in the real and CPU
 time required to perform a file load.

 3.1.4 ERRCont

 Added in Sirius Mods version 6.7, this parameter lets you complete a reload despite
 errors that would normally cause a MSIR.0316 user restart. This can be useful, for
 example, in a case where you know you have some input data that will cause an error,
 but you want to use a reload for reformatting purposes despite the problematic fields.

——
Fast/Reload Reference Manual 11

——
Fast/Reload Statements
——

 If you specify ERRCONT to “continue on error” a Fast/Reload program, you probably
 need to increase the Model 204 ERMX parameter setting to prevent a session
 termination because of excessive errors.

 Note: Using ERRCONT may place your data at risk, so use this parameter only in
 cases where you know your data and have taken due precautions and backups
 beforehand.

 The following FILELOAD code uses the ERRCONT parameter:

 FILELOAD -1,-1,0,1000000,10000,10000,10000,50
 OPTIONS ERRCONT
 LAI
 END

 3.1.5 FTOnly

 In many cases, Fast/Reload bypasses the Model 204 disk buffer monitor for table B
 pages and instead uses its own full track buffers for output. In certain cases, though,
 Fast/Reload will automatically drop back to using the Model 204 disk buffer monitor.
 When it does this, a file load might take considerably longer than expected. If you do not
 wish Fast/Reload to perform this automatic dropback, simply specify the FTONLY
 option. FTONLY will result in the file load being terminated when an automatic dropback
 would ordinarily be done.

 3.1.6 NObuff n_out_buffs

 NOBUFF must be followed by a number indicating the number of full track output buffers
 Fast/Reload is to use. When Fast/Reload is bypassing the Model 204 disk buffer
 monitor and performing full track I/O to table B, it uses a certain number of full track
 buffers. These buffers must each be large enough to hold the data that will fit on a
 single track of the disk devices containing the database file. This means that the buffers
 will each be 43,288 bytes long if you are using 3380's, 49,472 bytes long if you are using
 3390's and 49,472 bytes long if you are using both. Ordinarily Fast/Reload uses 3 full
 track output buffers. This is probably sufficient for most purposes. On rare occasions, it
 might be possible to get some speed improvements by using more than 3 output buffers.
 In these cases simply specify the NOBUFF option followed by a number greater than 3.
 NOBUFF must always be greater than or equal to 3.

 3.1.7 NXBuff n_tableX_buffs

 NXBUFF must be followed by a number indicating the number of full track table X
 buffers Fast/Reload is to use. NXBUFF must always be greater than or equal to 3.

——
12 Fast/Reload Reference Manual

——
 The OPTIONS statement
——

 3.1.8 NOVAlidate

 NOVAlidate indicates that no buffer pointer validation is to be performed. For example,
 in the following statement, buffer pointer validation would make sure that the input record
 was at least 107 bytes long:

 FIELDA=99,9

 Without buffer pointer validation, the above statement would simply load data off the end
 of the input buffer, which would result in FIELDA being loaded with garbage, or perhaps
 in certain cases, would result in an addressing exception because the area past the end
 of the buffer is not allocated. Buffer pointer validation is probably more important with
 index register based references to the input buffer, because these types of references
 are more likely to have bad values in the index register and so go outside the current
 input buffer:

 FIELDC=4|1,20

 With buffer pointer validation, if a buffer reference is determined to be invalid, an error
 message is issued indicating the input record number as well as the invalid buffer offset
 and length, as in the following example:

 MSIR.0892: Input error: input record number: 1, start position/
 length: 99/9

 This option is only available under Sirius Mods 6.7 and later. Before Sirius Mods 6.7,
 buffer pointer validation was never performed, which is compatible with Model 204
 versions before V5R1. Standard FILELOAD started performing buffer pointer validation
 in Model 204 V5R1.

 While buffer pointer validation is probably a good idea, it does have a slight performance
 cost. If there appears to be little chance of a buffer pointer error in a FILELOAD
 program, and performance is at an absolute premium, you can use the NOVALIDATE
 option to eliminate the cost of the buffer pointer validity checks.

 Since LAI programs have no explicit buffer references, the NOVALIDATE option has no
 effect on LAI programs.

 3.1.9 STAtc stats_intvl

 STATC must be followed by a number indicating the number of database file records
 that Fast/Reload will create before updating Model 204 statistics. To speed up
 processing, Fast/Reload does not ordinarily update Model 204 statistics (since last,
 system, etc.) until the end of a file load. If for some reason you wish these statistics to
 be updated more frequently you can specify a STATC value. If you specify OPTION
 STATC 10, Model 204 statistics will be updated for every 10th record created in the
 database file. OPTION STATC 0 and OPTION STATC 1 are equivalent.

——
Fast/Reload Reference Manual 13

——
Fast/Reload Statements
——

 3.1.10 TAPei ddname

 TAPEI must be followed by string indicating the DDNAME to be used instead of TAPEI
 for the input sequential file containing the data to be loaded. For example if you wish to
 load data from DDNAME HOMER, simply specify OPTION TAPEI HOMER. This allows
 more than one input stream to be used to load data in a single BATCH204 or ONLINE
 run.

 3.2 The LAI statement

 The LAI statement allows data created with the Fast/Unload UAI (Unload All Information)
 statement to be loaded into a database file. LAI stands for Load All Information and has
 several optional parameters.

 LAI [DElfield] [FAMsplit] [NEWfgid] [NOfdef]
 [NOIndex] [NOProcs]

 LAI statement syntax

 where the parameters can be abbreviated with only the part shown in uppercase, and
 where:

 DElfield means that if a field that is not defined in the target file is found in the input
 dataset, that is, was unloaded by UAI, that field should simply be deleted.
 If this parameter is not specified, the presence of an undefined field would
 terminate the LAI with an error. This statement provides an efficient way of
 deleting fields during a reorg.

 Note: This parameter has no effect if the NOFDEF parameter is not also
 specified. This is because if NOFDEF is not specified, any unloaded field
 will be automatically defined in the target file.

 FAMsplit means that if any two names (two fields, a field and an alias, or two
 aliases) were part of a single Sir2000 Field Migration Facility family in the
 unloaded file but are now either separate fields or part of separate Sir2000
 Field Migration Facility families, the values should be loaded into each field
 or family. Effectively, this “splits” the original family into multiple
 components. If FAMSPLIT is not specified, an attempt to do such a split
 causes the FLOD or FILELOAD to be terminated.

 The most likely use of this parameter is to convert a file that is being
 controlled by Sir2000 Field Migration Facility into one that is not, but where
 any fields or aliases that were in the original file could still be referred to
 with User Language programs. This might be useful for sending a non-
 Sir2000 Field Migration Facility version of a file to a site that does not have

——
14 Fast/Reload Reference Manual

——
 The LAI statement
——

 Sir2000 Field Migration Facility. Since Sir2000 Field Migration Facility
 makes sure that related fields and aliases automatically stay in synch, it is
 generally not a good idea to update the non-Sir2000 Field Migration Facility
 version of the file.

 See the chapter titled “File Reorganizations” in the Sir2000 Field
 Migration Facility Reference Manual for considerations about preserving
 SIRFIELD information using Fast/Reorg.

 means that fieldgroup IDs from the TAPEI input file are not copied to
 created fieldgroups, but rather that fieldgroup IDs within each record are
 created starting with 1.

 NEWfgid
 NOfdef means that field definitions unloaded by UAI are not to be used to
 automatically define a field if it does not exist in the new file. If this
 parameter is not specified, all fields that have not been explicitly defined in
 the new database file but were defined in the old database file (unloaded
 with UAI) will be defined with exactly the same attributes that they had in
 the old database file.

 NOIndex means that ordered index data unloaded by UAI is not to be loaded by LAI.
 When this option is used, visible ordered index data will be regenerated
 and sorted by LAI and invisible ordered index data will be lost. This
 parameter has no effect if the OINDEX parameter was not specified on the
 UAI command for the unload.

 NOProcs means that any procedures and procedure aliases unloaded by UAI are not
 to be loaded by LAI. Procedure and alias records in the input dataset will
 be skipped. For more information about loading procedures, see
 “Procedures” on page 25.

 Fast/Reload programs using LAI are quite simple. For example, the following is a valid
 Fast/Reload: program:

 FILELOAD -1,-1,0,1000000
 LAI
 END

 The LAI statement has these limitations:

 ● The LAI statement must be the only statement that appears in a Fast/Reload
 program other than the OPTION statement.

 ● LAI cannot be used on files that were created by a release of Model 204 before
 release 8.

——
Fast/Reload Reference Manual 15

——
Fast/Reload Statements
——

 3.2.1 LAI compared to FILELOAD/FLOD

 When using LAI, some of the parameters on the FILELOAD or FLOD statement have a
 slightly different meaning than when doing a standard FLOD. These parameters are:

 ● Parameter 1

 This parameter has the same meaning as in standard FILELOAD/FLOD. That is,
 this is the maximum number of records that will be loaded into the database file.

 ● Parameter 2

 This parameter is ignored when doing an LAI.

 ● Parameter 3

 In standard FILELOAD/FLOD programs this indicates the number of physical input
 records in TAPEI to be skipped. When doing an LAI, this indicates the number of
 unloaded table B records to be skipped. This parameter, along with parameter 1
 allows you to split a reload into pieces. For example, the following statements load
 the first million records unloaded via UAI, then the next million records and finally
 the remaining records.

 FILELOAD 1000000,-1,0,100000,100000
 LAI
 END
 FILELOAD 1000000,-1,1000000,100000,100000
 LAI
 END
 FILELOAD -1,-1,2000000,100000,100000
 LAI
 END

 All other parameters for the FILELOAD statement have the same meaning as when
 doing a non-LAI FILELOAD.

 3.2.2 Using LAI with UAI

 LAI is closely related to the UAI statement in Fast/Unload. Ordinarily, the interaction
 between these two is quite simple. However, in cases where sorting of the data
 unloaded by Fast/Unload is desired and/or if the data is being loaded into a hash or sort
 key file, the interaction can become more complex.

 When loading data into a hash or sort key file with the LAI statement, the data must have
 been unloaded with a UAI statement that specified the HASH or SORT parameter and
 specified the new file's hash or sort key as the first key on the UAI statement. If this is
 not the case, the LAI will not load any data. If the UAI statement is coded correctly, the
 data unloaded by UAI will be in the order that the data will eventually be in the database

——
16 Fast/Reload Reference Manual

——
 The LAI statement
——

 file being loaded. In these cases, Fast/Reload will never have to make more than one
 pass through table B and will actually be able to use full track I/O to write the table B
 pages if the data is being loaded into an empty hash or sort key file.

 If the UAI statement is coded incorrectly, however, the unloaded data will be in an order
 different from that which the data will loaded into the destination database file. The
 impact of this on performance could be disastrous. Consequently, Fast/Reload will not
 ordinarily continue in the case when data is detected out of order. You can override this
 behavior with the ANYORDER option, but at least in the case of reorganizations, it is
 generally faster to unload the data again with the correct parameters rather than trying to
 load the data in incorrect order.

 The types of errors on the UAI statement that can cause data to be in incorrect order
 are:

 ● Specifying SORT on the UAI and then attempting to load the data into a hash key
 file.

 ● Specifying HASH on the UAI and then attempting to load the data into a sort key file.

 ● Specifying a BSIZE on the UAI HASH statement different from the BSIZE in the
 hashed file being loaded.

 Note if you are loading the data into a sorted file, there are several cases of the UAI
 SORT statement which render the sort key unusable. See the Fast/Unload Reference
 Manual.

 Note that if you are loading the data into a non-hash key, non-sort key file, there is
 nothing wrong with loading data unloaded with a UAI command that had a SORT or
 HASH key specified. In fact, if you wish to maintain good locality for data with similar
 values for a particular field without incurring the overhead of maintaining a sort key file,
 you can specify that field as a sort key on a UAI and simply load the data into a non-sort
 key file.

 3.3 Loading null data

 Standard Model 204 FLOD and FILELOAD do not allow null data (string data with a
 length of 0) to be loaded into the database file. That is, if after stripping blanks and
 zeros the resulting field has length zero, no data will be loaded into the database file.
 This is the case, even if you are trying to load null data that had been dumped using
 Model 204's PAI command. Thus, it is extremely difficult if not impossible to reorganize
 a database file containing null data using FLOD or FILELOAD.

 Fast/Reload allows you to do this in a couple of ways:

——
Fast/Reload Reference Manual 17

——
Fast/Reload Statements
——

 ● Any null data unloaded via Fast/Unload's UAI command will be loaded as null data
 by Fast/Reload's LAI command.

 ● The X'0001' mode bit lets you load null data as a zero length string into the
 database file.

 For example, the following FILELOAD program will load null data dumped via the PAI
 command back into the new database file as null data:

 FILELOAD -1,-1,0,1000000,10000,10000,,68
 I 3
 #1
 G
 =4,5,*
 I 1
 #2
 =3,6|1,=
 I 1,,,1|1
 =2
 #3
 I 2,1,2,-7,-1|1
 D 5,0|1=8|1,0|2,X'0801'
 =1
 #4
 PROC.ID=1,0,X'8000'
 END

 The key part of the above example is the X'0001' mode bit on the D statement. Note
 also, that for PAI type reloads, it is generally a good idea to turn off blanks stripping.
 This is controlled by the X'0800' mode bit on the D statement.

——
18 Fast/Reload Reference Manual

——
 Incompatibilities with standard FLOD/FILELOAD
——

——————
CHAPTER 4 Incompatibilities with standard
 FLOD/FILELOAD

 In general, every effort was made to maintain compatibility between Fast/Reload and
 standard Model 204 FLOD and FILELOAD. In some specific instances, however, it was
 determined that compatibility was undesirable. These instance are described in this
 chapter.

 4.1 Extension records in hash key files

 When Model 204 determines that an extension record must be started while loading data
 into a hash key file, it starts the extension record on a random page. Fast/Reload, when
 operating using full track I/O, on the other hand, tries to start the extension record on the
 next page. This is because the full track feature requires that pages be written in
 ascending order. This has a side benefit that when retrieving the extension record, head
 movement and caching characteristics are likely to be improved. If you wish
 Fast/Reload to use the standard Model 204 extension record allocation, you should
 specify the DKONLY option in the FLOD program.

 4.2 Adding data to non-empty unordered files

 When loading data into unordered files that have had reusable space created because
 of record or field deletions, Model 204 will ordinarily try to put data in the reusable areas
 before appending data after the last record in the file. Fast/Reload, on the other hand
 will attempt to add data after the last record in the file. This ensures that records will be
 allocated in ascending order allowing full track I/O to be used for the loaded table B
 pages. If you wish Fast/Reload to use the standard Model 204 record allocation for
 unordered files, you should specify the DKONLY option in the FLOD program.

 4.3 Ordered index layout when field codes change

 Data in the ordered index is maintained in field code order. A field code is an internal,
 numeric (between 0 and 4095) representation of a field name. It is possible that a field
 code might change between a UAI and LAI. Since UAI simply loads the data in the
 order in which it was unloaded, this can produce a slightly different layout of the non-leaf
 nodes in the ordered index. The effect on FLOD/FILELOAD or online performance is
 likely to be unmeasurable. If you wish to minimize the chances of field code changes
 you should
——
Fast/Reload Reference Manual 19

——
Incompatibilities with standard FLOD/FILELOAD
——

 ● Explicitly define fields in the same order they were defined in the original database
 file.

 ● Use the same value of ATRPG in the new database file as used in the old.

 4.4 Ordered index layout when mixing generated and
 unloaded index data

 When the old database file had ordered index data unloaded via UAI OINDEX or UAI
 INVISIBLE, and new ordered index fields are defined in the new database file, the layout
 of non-leaf nodes will be slightly different than if the ordered index data had all been
 regenerated and resorted via FLOD. This is because the ordered index data is loaded in
 a new step in the FLOD process called the “FLOD” step, before the Z step. Thus the
 ordered index data is loaded in a different order than it would have been if all the data
 had been sorted and the loaded in the Z step. The effect on FLOD/FILELOAD or online
 performance is likely to be unmeasurable.

 4.5 Table B space allocation

 As described in “BAVail [page_type] size” on page 7, setting OPTION BAVAIL to a non-
 negative number causes a change in the way space is reserved on table B pages.

 1. Fast/Reload guarantees (if full track I/O is in use) that BAVAIL bytes are unused on
 each table B page.

 2. If full track I/O is in use, and the file is not SORTED (FILEORG X'01'), Fast/Reload
 will allow records to be started with less than BRESERVE + BAVAIL bytes available
 on the page, as long as the entire record fits on the page.

 See “BAVail [page_type] size” on page 7 for a complete discussion and some examples.

——
20 Fast/Reload Reference Manual

——
 Performance
——

——————
CHAPTER 5 Performance

 In general UAI/LAI is the fastest way of performing a database file reorganization. There
 are two key options that effect both FILELOAD/FLOD performance and online
 performance:

 1. Whether the reload/unload is to be split up into passes.

 2. Whether ordered index data is to be unloaded via UAI OINDEX and reloaded via
 LAI.

 In general, for optimal online performance, you should try to unload and reload data in a
 single pass.

 ● This minimizes the number of list pages that will be used for a particular fieldname-
 value pair.

 ● This ensures that index data associated with a particular fieldname-value pair will
 tend to be localized on disk, minimizing head movement and maximizing cache hit
 ratios.

 If it is not possible to unload and reload the data in a single pass because of limitations
 in intermediate sort work space, then there are a few things to keep in mind:

 ● If you are not sorting the data on the UAI, it is more efficient to unload the data into
 multiple separate data sets and then load these data sets in multiple reload steps.
 By doing this, you avoid having to skip input records after the first reload step. In
 addition, if unloading ordered index data, you eliminate the need to skip
 intermediate records to get to the ordered index data in each reload step. Finally,
 you reduce the amount of ordered index data that must be scanned on each reload
 step, since each step must scan all ordered index data unloaded.

 ● If you must sort the data on the UAI, you might actually get better performance by
 regenerating the ordered index data rather than unloading it via UAI OINDEX and
 then reloading it. This is especially true if you have a large amount of ordered index
 data and you are using many reload passes. You might consider doing a UAI
 INVISIBLE in this case, if you wish to preserve invisible ordered index values.

 When unloading and reloading data in a single pass, it will generally be more efficient to
 use the UAI OINDEX parameter to unload the ordered index data than to regenerate the
 ordered index data because the ordered index data will already be in sorted order in the
 old database file. You must be aware however, that using the UAI OINDEX or UAI
 INVISIBLE feature can place significant real memory requirements on the reload
 because the reload must map old record numbers to new record numbers. The table

——
Fast/Reload Reference Manual 21

——
Performance
——

 that is used for this mapping must reside in real storage for adequate performance since
 the entries will tend to be accessed in arbitrary order. Any paging for this mapping table
 could have disastrous effects on reload performance.

 The amount of storage required for this mapping table depends on two factors. The first
 factor is the range of record numbers being loaded. The number of entries in the
 mapping table will equal the range of record numbers unloaded. This will generally be
 BSIZE times BRECPPG for hash key files and BHIGHPG times BRECPPG for other
 files. For example, if you are loading data unloaded from an entry order file with
 BHIGHPG of 15,000 and BRECPPG of 100, the mapping table will have 1,500,000
 entries. By splitting the unload or reload into multiple passes you will reduce the number
 of entries in the mapping table. The second factor influencing the size of the record
 mapping table is whether the data was sorted on the UAI. If the data was sorted, the
 record number mapping will tend to be random and thus require 3 bytes per entry in the
 record mapping table. If the data was not sorted the data will have a structure that
 allows the record mapping table to require only 1 byte per entry.

 Thus, the maximum possible storage requirement for the record mapping table would be
 16 million (maximum record numbers allowed in a 204 file) times 3 bytes or 48 million
 bytes.

——
22 Fast/Reload Reference Manual

——
 Invisible fields
——

——————
CHAPTER 6 Invisible fields

 One of the features of Fast/Reorg is to allow ordered invisible field values to be
 preserved over a file reorganization in a generic manner. That is, once you define and
 load all of your invisible fields as ORDERED INVISIBLE or ORDERED NUMERIC
 INVISIBLE, you will never again have to worry about losing invisible fields over a
 reorganization.

 In addition to preserving ordered invisible fields over a file reorganization, Fast/Reorg
 does some cleanup of the invisible ordered index data. Specifically, index entries
 associated with non-existent records are deleted over the reorganization process. This
 is accomplished in two steps.

 ● First, Fast/Unload does not unload any index data associated with records outside
 the range of record numbers unloaded. Thus, if an unload is done in two passes,
 the index data unloaded in the first pass will contain record numbers in the range of
 records unloaded in the first pass.

 ● Second, Fast/Reload would discard index data associated with deleted records.

 For example, if you unload record numbers 0 through 1,422,633 in an unload, the
 invisible index value associated with record number 2,422,666 would not be unloaded.
 Note that if record 944,433 had been deleted but had ordered index invisible data in
 table D, this data would be unloaded by UAI. When LAI attempts to convert record
 number 944,433 to a new record number, it would notice that the record had not been
 reloaded (because it had never been unloaded) and hence would discard the ordered
 index data for that record. This cleanup of invisible ordered index data ensures that
 table D is not wasted by invisible ordered index data for deleted records.

 Note that if you are using invisible fields (ordered or non-ordered) with reuse record
 number files, there is nothing that prevents a deleted record from being replaced by
 another record, thus rendering the invisible index value for that record number
 erroneously "valid" again. This is a generic problem with reuse record number files and
 invisible fields and is not exacerbated by the use of Fast/Reorg. In fact, Fast/Reorg
 gives you an option of eliminating the use of reuse record number files in an application
 requiring the use of invisible fields, and instead relying on the speed and ease of use of
 Fast/Reorg to recover record numbers via frequent reorganizations.

——
Fast/Reload Reference Manual 23

——
Invisible fields
——

——
24 Fast/Reload Reference Manual

——
 Procedures
——

——————
CHAPTER 7 Procedures

 As of Fast/Unload version 4.2 and Sirius Mods 6.5, the UAI and LAI statements support
 the reorganization of procedures and procedure aliases. Procedures and aliases
 present in the TAPEI input data set for a Fast/Reload run are loaded as is by LAI by
 default. The UAI unload and LAI reload preserve their associations.

 If procedure or alias names clash with names in the target file, the reload stops. If you
 want the unloaded procedures and aliases not to be reloaded, you specify the
 NOPROCS option of the LAI statement (“The LAI statement” on page 14).

 The procedure reloading feature likely entails some environmental adjustments
 (especially more storage buffers), and it offers an automatic tuning of the target file's
 procedure dictionary settings.

 7.1 Preparing the environment

 When you are LAI-reloading a file that has procedures, take into consideration the
 following recommendations:

 ● More CSECTs are required than in the typical BATCH204 module.

 ● Instead of maintaining separate BATCH204 and ONLINE modules, combine their
 CSECTs into a single ONLINE module, and use that for Fast/Reload.

 ● Ensure sufficient disk buffers to minimize the elapsed time for the reload:

 If your storage capacity is plentiful, 10,000 to 15,000 buffers should ensure
 maximum throughput.

 ▪ Set the Model 204 parameter MINBUF to at least 10000.
 ▪ Set the LDKBMWND parameter to at least 30.

 Otherwise, if storage capacity is a concern, set the MAXBUF parameter to the
 number of pages in the unloaded procedure dictionary, plus some overhead:

 MAXBUF = PDpgs + LDKBMWND + 50 +
 min(10, nprocs) * avgProcpgs

——
Fast/Reload Reference Manual 25

——
Procedures
——

 Where:

 ▪ PDpgs (total number of pages in the unloaded procedure dictionary), nprocs
 (number of unloaded procedures), and avgProcpgs (average procedure
 length in pages) are available from the FSTATS statistics in the UAI report data
 set.

 ▪ The LDKBMWND parameter is set to at least 30.

 7.2 Setting PDSIZE

 Procedure loading includes an automatic PDSIZE-setting feature. This auto-sizing is
 weighted toward creating a new procedure dictionary whose total size is nearly the same
 as the old, but which typically is a product of a larger PDSIZE and fewer procedure
 dictionary chunks (blocks of contiguous pages) than the old.

 The sizing feature is invoked only when you are loading into a file that has no
 procedures, the file's PDSIZE value is the default size (3), and the number of pages of
 UAI unloaded procedures and aliases is greater than the default PDSIZE.

 When the preceding conditions exist, the PDSIZE of the reload target file is set to one of
 the following:

 ● The number of pages in the unloaded file's procedure dictionary, if that number of
 pages is less than or equal to 255.
 ● The smallest number less than 255 that will yield the smallest number of page
 chunks, if the number of pages in the unloaded procedure dictionary exceeds 255.

 To arrive at these smallest numbers, (the rounded-up, integral result of) the number
 of pages in the unloaded procedure dictionary is divided by the initial number of
 chunks in the new dictionary. This chunks value is the quotient of the old page
 count and 255, rounded up to the next integral value.

 For example, for an unloaded dictionary that has 800 pages, the new chunk count would
 be 4 (800/255, then rounded up), and the new PDSIZE would be 200 (800/4). For an
 unloaded dictionary that has 1332 pages, the new chunk count would be 6, and the new
 PDSIZE would be 222.

 The target file's existing value for PDSIZE is used in any of the following cases:

 ● A procedure dictionary already exists.
 ● PDSIZE is already set to a value other than 3.
 ● The unloaded procedures and aliases used no more than 3 pages.

 Note: The PDSIZE optimization feature is only activated if the Fast/Unload user has the
 FSTATS feature enabled. If FSTATS is not enabled, necessary optimization information
 is not written to the unloaded data set.

——
26 Fast/Reload Reference Manual

——
 DBCS support
——

——————
CHAPTER 8 DBCS support

 Fast/Reload provides support for mixed and pure DBCS fields. This includes support of
 the X'0080', X'0040', X'0020' and X'0010' FLOD mode bits. For more information on
 these bits see the Model 204 DBCS Programmer's Guide.

 In addition, Fast/Reload will perform certain DBCS conversions automatically when
 loading data in UAI/LAI format. These conversions are performed automatically when a
 field's DBCS definition has changed. The possible DBCS conversions are:

 Pure DBCS to mixed DBCS
 No conversion is performed.

 Pure DBCS to mixed DBCS
 Data is wrapped in shift/out and shift/in.

 Pure DBCS to non-DBCS
 The data is stored as a string with no modification.

 Mixed DBCS to pure DBCS
 The data must be wrapped in shift/out and shift/in with no intervening
 shift/out or shift/in. If this is the case, the shift/out and shift/in are stripped. If
 not, an error message is issued and the field is not loaded.

 Mixed DBCS to mixed DBCS
 No conversion is performed.

 Mixed DBCS to non-DBCS
 The data is stored as a string with no modification.

 Non-DBCS to pure DBCS
 This conversion is invalid so an error message is issued and the field is not
 loaded in this case.

 Non-DBCS to mixed DBCS
 The data is stored as a string with no modification other than conversion of
 non-string types to string.

 If DBCS data is stored in a field that was not defined as a DBCS field, it is possible to tell
 Fast/Reload to treat the field as if it had been a DBCS field. This is done with the PURE
 and MIXED statements. The PURE statement tells Fast/Reload to treat the unloaded
 data for a field as if it were pure DBCS data regardless of its actual definition. The
 MIXED statement tells Fast/Reload to treat the unloaded data for a field as if it were
 MIXED DBCS data regardless of its actual definition. Both the PURE and the MIXED

——
Fast/Reload Reference Manual 27

——
DBCS support
——

 statements must come after the LAI statement and are invalid in non-LAI FLOD
 programs.

 For example:

 FILELOAD -1,-1,0,1000000,10000,10000,,68
 LAI
 PURE DBCS_STRING
 MIXED OTHER_STRING
 END

 indicates that Fast/Reload is to treat data for field DBCS_STRING as pure DBCS data
 and data for field OTHER_STRING as mixed DBCS data.

——
28 Fast/Reload Reference Manual

——
 Float Handling
——

——————
APPENDIX A Float Handling

 There are two contexts in which floating point values are processed by Fast/Reload:

 ● When the field being loaded into is defined as a FLOAT field.

 ● When the input value is a floating point value and the field being loaded into is
 defined as any type other than FLOAT.

 These two contexts are discussed in the following two sections.

 As a brief background, note the following:

 ● Floating point values use the IBM hexadecimal floating point representation, which
 is a one-bit sign, a 7-bit base 16 exponent, and a binary fraction whose length is
 either 3 bytes (FLOAT LEN 4), 7 bytes (FLOAT LEN 8), or 14 bytes (FLOAT LEN
 16).

 ● In a normalized floating point number, the high-order nibble (the first four bits) of
 the fraction has a non-zero value.

 A.1 Loading into FLOAT fields

 An input value to be loaded into a field defined as FLOAT is processed in three different
 ways, depending on whether the input is provided with the X'0080' mode bit, or, if not,
 whether the input is a non-floating point source or is a floating point source:

 X'0080' mode
 In a non-LAI load, if the value being loaded is due to one of the file load
 statements with the X'0080' bit set (indicating float input), the floating point
 value is used as it is. If the input value is shorter than the field being loaded
 into, the fraction part of the field is padded on the right with binary zeros. If the
 input value is longer than the field being loaded into, the fraction part of the field
 is truncated to the length of the field. Otherwise (lengths the same) it is copied
 unchanged to the field occurrence.

 Non-float
 Input that is a non-float value (in either an LAI or non-LAI load) is first converted
 to the 8-byte floating point value that is closest to the 15-digit decimal
 representation of the input. Then it is treated as an 8-byte float input value, as
 described next.

——
Fast/Reload Reference Manual 29

——
Float Handling
——

 Float If the input is a float value not due to the X'0080' mode bit (such an input can
 only occur in a LAI load), if the length of the input is the same as the length of
 the field, it is copied unchanged to the field occurrence. Otherwise, it is
 processed according to the length of the input value and the length of the field:

 4-byte input
 To store a 4-byte input float value (in an LAI load) into a length 8 or 16
 FLOAT field, the 4-byte value is converted to an 8-byte value which is
 closest to the 6-digit decimal value closest to the 4-byte float input.
 This 8-byte value is stored unchanged in a FLOAT LEN 8 field, or the
 fraction is padded on the right with binary zeroes to store into a FLOAT
 LEN 16 field.

 8-byte or 16-byte input to FLOAT LEN 4
 To store FLOAT LEN 4 from an 8 or 16-byte input, the first 8 bytes of
 the input are used; this float value is then “hex rounded” to a FLOAT
 LEN 4, without normalization. That is, the first 24 bits of the fraction
 are used, incremented by 1 if the 25th fraction bit is 1; if this overflows
 the 24 bit fraction, the exponent is adjusted, otherwise it is copied.

 8-byte input to FLOAT LEN 16
 To store an 8 byte input float value into a FLOAT LEN 16 field, eight
 bytes of binary zero are padded on the right.

 16-byte input to FLOAT LEN 8
 To store a 16 byte input float value into a FLOAT LEN 8 field, the first 8
 bytes of the input are used.

 A.2 Loading float values into non-FLOAT fields

 Loading a floating point input value into a non-FLOAT field depends on whether the
 input value is 4 bytes long or not:

 4-byte float input
 A 4-byte floating point input value being loaded into a non-FLOAT field is
 first converted to a 6-digit decimal number closest to the value of the floating
 point input.

 8-byte or 16-byte float input
 An 8-byte or 16-byte floating point input value being loaded into a non-
 FLOAT field is first converted to a 15-digit decimal number closest to the
 value of the floating point input.

 The resulting decimal number is then stored into the field being loaded, according to the
 rules for the defined field type.

——
30 Fast/Reload Reference Manual

——
 Installing Fast/Reload
——

——————
APPENDIX B Installing Fast/Reload

 Fast/Reload was part of the Sirius Mods. Until version 7.5 of Model 204, see the Sirius
 Mods Installation Guide for installation instructions.

 Fast/Reload logs FLOD and FILELOAD programs to a temporary procedure. This is so
 that if it decides to pass the FLOD or FILELOAD program to standard FLOD or
 FILELOAD, the statements it has scanned are not lost. Ordinarily, the temporary
 procedure used for this purpose is -1. If this is inconvenient, the temporary procedure
 number to be used can be changed by setting the FRELPREV system parameter. This
 parameter should be set to 0 or a negative number greater than the value of he NORQS
 system parameter. Setting FRELPREV to a positive number turns off the copying of
 FLOD/FILELOAD programs to a temporary procedure and hence makes it impossible to
 have Fast/Reload automatically pass of to standard FLOD or FILELOAD.

——
Fast/Reload Reference Manual 31

——
Installing Fast/Reload
——

——
32 Fast/Reload Reference Manual

——
 Messages
——

——————
APPENDIX C Messages

 Please refer to
 http://m204wiki.rocketsoftware.com/index.php/M204wiki_main_page#Messages for
 messages related to Fast/Reload.

——
Fast/Reload Reference Manual 33

——
Messages
——

——
34 Fast/Reload Reference Manual

——
 Date Processing
——

——————
APPENDIX D Date Processing

 This chapter presents date processing issues for Fast/Reload. The only use of dates
 within Fast/Reload is to examine the CPU clock (as returned by the STCK hardware
 instruction) to determine the current date, in case Fast/Reload is under a rental or trial
 agreement. Please note that Fast/Reload itself does not produce any results which
 depend on the content of any data which may be date values. However, since it does
 load content into Model 204 fields, if that content contains two digit year date values, the
 customer must ensure that any application using that data has an algorithm or rule for
 unambiguously determining the correct century for the values.

 You must examine all uses of date values in your applications to ensure that each of
 your applications produces correct results. Furthermore, both the operating system and
 Model 204 must correctly process and transmit dates beyond 1999 in order for
 Fast/Reload to operate properly.

——
Fast/Reload Reference Manual 35

——
Date Processing
——

——
36 Fast/Reload Reference Manual

——
 Index
——

——————
 Index

A L
ANYorder option ... 6 L statement ... 5

LAI ... 1, 14, 17
B

MBAVail option ... 7
BRESERVE ... 8, 20 Multiple step reloads ... 16

D N
DBCS support ... 27 NEWfgid parameter ... 15
DELETE statement ... 5 NObuff n_out_buffs option ... 12
DElfield parameter ... 14 NOfdef parameter ... 15
DKOnly option ... 11, 19 NOIndex parameter ... 15
DOWN statement ... 5 NOProcs parameter ... 15

NOVAlidate option ... 13
E Null data ... 17

NXBuff n_tableX_buffs option ... 12ENDF statement ... 5
ENDL statement ... 5

OERRCont option ... 11
Errors, ignoring ... 11 OPTIONS statement ... 6

Ordered index ... 19-20
F

PF statement ... 5
FAMsplit parameter ... 14 PDSIZE parameter, Model 204 ... 26
Fast/Reorg ... 1 Performance ... 21
Field definitions ... 15 Procedure dictionary ... 25
Fields, deleting ... 14 Procedure support ... 25
FILELOAD parameters ... 16
FLOD parameters ... 16 S
FRELPREV parameter ... 5, 31 Sort key files ... 6, 16
FTOnly option ... 12 splitting a Sir2000 FMF family ... 14

Splitting an reload into multiple steps ... 16
H STAtc stats_intvl option ... 13
Hash key files ... 6, 16

T
I TAPei ddname option ... 14
Invisible fields ... 23

U
UAI ... 1, 14, 16-17
UP statement ... 5

——
Fast/Reload Reference Manual 37

——
Index
——

——
38 Fast/Reload Reference Manual

——
 Index
——

 Figures

 Figures

——
Fast/Reload Reference Manual vii

——
Index
——

——
viii Fast/Reload Reference Manual

	Rocket Model 204 Fast/Reload
Reference Manual
	Notices
	Corporate information
	Contacting Global Technical Support

	Contents
	Summary of Changes
	Fast/Reload Version 6.9
	Fast/Reload Version 6.7
	Fast/Reload Version 6.5
	Fast/Reload Version 5.4
	Fast/Reload Version 5.0

	1. Introduction
	2. Invoking Fast/Reload
	3. Fast/Reload Statements
	3.1. The OPTIONS statement
	3.1.1. ANYorder
	3.1.2. BAVail [page_type] size
	3.1.3. DKOnly
	3.1.4. ERRCont
	3.1.5. FTOnly
	3.1.6. NObuff n_out_buffs
	3.1.7. NXBuff n_tableX_buffs
	3.1.8. NOVAlidate
	3.1.9. STAtc stats_intvl
	3.1.10. TAPei ddname

	3.2. The LAI statement
	3.2.1. LAI compared to FILELOAD/FLOD
	3.2.2. Using LAI with UAI

	3.3. Loading null data

	4. Incompatibilities with standard FLOD/FILELOAD
	4.1. Extension records in hash key files
	4.2. Adding data to non-empty unordered files
	4.3. Ordered index layout when field codes change
	4.4. Ordered index layout when mixing generated and unloaded index data
	4.5. Table B space allocation

	5. Performance
	6. Invisible fields
	7. Procedures
	7.1. Preparing the environment
	7.2. Setting PDSIZE

	8. DBCS support
	A. Float Handling
	A.1. Loading into FLOAT fields
	A.2. Loading float values into non-FLOAT fields

	B. Installing Fast/Reload
	C. Messages
	D. Date Processing
	Index

