
Rocket Model 204 Horizon:

Intersystem Processing Guide

Version 7 Release 5.0

September 2014
204–75–HZN-01

Notices
Edition

Publication date: September 2014
Book number: 204–75–HZN-01
Product version: Version 7 Release 5.0

Copyright
© Rocket Software, Inc. or its affiliates 1989—2014. All Rights Reserved.

Trademarks

Rocket is a registered trademark of Rocket Software, Inc. For a list of Rocket registered trademarks go
to: www.rocketsoftware.com/about/legal. All other products or services mentioned in this document
may be covered by the trademarks, service marks, or product names of their respective owners.

Examples

This information might contain examples of data and reports. The examples include the names of
individuals, companies, brands, and products. All of these names are fictitious and any similarity to
the names and addresses used by an actual business enterprise is entirely coincidental.

License agreement

This software and the associated documentation are proprietary and confidential to Rocket Software,
Inc. or its affiliates, are furnished under license, and may be used and copied only in accordance with
the terms of such license.

Note: This product may contain encryption technology. Many countries prohibit or restrict the
use, import, or export of encryption technologies, and current use, import, and export regulations
should be followed when exporting this product.

Corporate Information
Rocket Software, Inc. develops enterprise infrastructure products in four key areas: storage,
networks, and compliance; database servers and tools; business information and analytics; and
application development, integration, and modernization.

 Website: www.rocketsoftware.com

Rocket Global Headquarters
77 4th Avenue, Suite 100
Waltham, MA 02451-1468
USA

Contacting Technical Support
If you have current support and maintenance agreements with Rocket Software and CCA,
contact Rocket Software Technical support by email or by telephone:

Email: m204support@rocketsoftware.com

Telephone :

 North America +1.800.755.4222

 United Kingdom/Europe +44 (0) 20 8867 6153

Alternatively, you can access the Rocket Customer Portal and report a problem, download an
update, or read answers to FAQs. You will be prompted to log in with the credentials supplied as
part of your product maintenance agreement.

To log in to the Rocket Customer Portal, go to:

www.rocketsoftware.com/support

iv

Contents
About this Guide

Audience ...xi
A note about User Language and SOUL ...xi
Purpose of this guide ..xi
Model 204 documentation set ...xi
Notation conventions..xii

1 How to Use This Guide
Overview .. 1
Relationship to Model 204 Documentation Set .. 1

Other locations of Horizon information.. 1
Documentation map ... 2

Application programmer chapters ... 2
Network administrator chapters... 2
Model 204 system manager chapters ... 3
Systems programmer chapters ... 3

2 Model 204 Intersystem Processing Fundamentals
Overview .. 5
Terms and Concepts.. 5

Network: a collection of nodes .. 5
Network diagram ... 6

Model 204’s Intersystem Facilities .. 8
Terminal Process Communication facility (TPROCESS) .. 8
Transfer Control facility ... 9
Horizon ... 10

 SNA Concepts and Terminology... 12
SNA networks provide resource sharing .. 12
SNA protocols neutralize physical differences .. 13
LUs service application programs ... 13
Horizon partner programs can be written in different languages............................. 14
Sessions connect LUs; conversations connect programs....................................... 15
Horizon supports parallel sessions.. 15
Conversation partners are known as client and server ... 16
Horizon programs can have multiple roles and partners... 17

3 Network Management
Overview .. 21
Defining the Network to Model 204 .. 22

Network entities requiring definition .. 22
Creating a Horizon network.. 23

Polling application with one-way communication .. 24
Defining a Horizon network .. 26
Contents v

Example 1: Polling Application.. 26
Example 2: Polling Application Extension ... 31
Example 3: Two-Way Conversation Initiation Application 32
Example 4: Local Node Testing ... 34

Defining the Network to SNA Communications Server .. 36
Two components of SNA Communications Server network definition 37

APPL Statements for Network Definition ... 37
APPL statement per Horizon online .. 37
APPL statement dual function... 37
Coding the APPL statement(s) for Horizon support .. 38
How many APPL statements are required? .. 38
Activation of APPL statements .. 38
APPL statement parameters ... 38

Coding the Mode Table Entry for SNA Communications Server Network Definition ... 41
MODETAB, also called logon mode table... 41
Where mode tables reside .. 41
Creating a mode table entry .. 42
Recommended mode table parameter values .. 42
Modifications for specific systems and applications .. 43
Setting the PSERVIC security byte ... 43

Network administration commands ... 44
Preparing the ONLINE Configuration... 44

IODEV specification for Horizon inbound threads... 44
Modifying the NSUBTKS parameter.. 45

Application Testing with the RPI Subsystem .. 45
RPI subsystem installation .. 45
System manager responsibilities... 46
Ensuring the procedure file permits procedure inclusion .. 46
Ensuring the procedure to be tested is defined as a process 46
Application developer responsibilities ... 47

4 Security
Overview .. 49

Terminology .. 49
Contents.. 49

Managing Access to a Server System ... 50
Controlling Remote Client System Access to the Server ... 51

Controlling access to a server system... 51
Controlling access to a server program... 51

Controlling Individual Remote Users.. 51
Login processing ... 51
Login options... 53
Application Subsystem security... 56

Protecting Procedure Files... 57
Controlling Users on a Client System .. 58

Defining remote server systems.. 58
Restricting access to remote server systems.. 58
Controlling user identification to a remote server system.. 59

Protecting Network Node Names ... 60
Using SNA Communications Server password protection 61
vi Rocket Model 204 Horizon: Intersystem Processing Guide

For more information... 61
Security Design Examples ... 61
Example 1: Login Not Required on Server... 62

Coding for client .. 63
Coding for server... 64

Example 2: Login Required on Server ... 65
Coding for client .. 65
Coding for server... 66

Example 3: Trusting the Client ... 66
Coding for client .. 67
Coding for server... 68

Example 4: Protecting the Client Process Definition.. 69
Coding for client .. 69
Coding for server... 70

Example 5: Two Different Process Definitions:
Inquiry and Update... 70

Coding for client .. 71
Coding for server... 73

Example 6: Accepting Guest Users ... 74
Coding for the client .. 74
Coding for the server... 76

5 Horizon Conversation Interface
Overview .. 77

Horizon partners.. 77
Conversation Rules and States.. 77

Conversation states ... 78
Horizon conversation states.. 78
Horizon state rules .. 79

Horizon Conversation Data Flow ... 79
Data flow rules .. 79
Enforcing direction of data flow ... 82
Following the RESULT %variable ... 83

Interrupting the Sender .. 84
Using SEND ERROR to interrupt the sender .. 84
Using SIGNAL PROCESS to interrupt the sender .. 86

Confirming Receipt of Data .. 87
Buffering and Shipping Conversation Information.. 88

How the LUs buffer and ship data... 89
Four statements cause immediate buffer flushing... 90
Buffering delays error and data-receipt notification... 91

Communicating with Multiple Partners Concurrently ... 91
Inviting replies ... 92
Detecting replies ... 92
Awaiting requests for data from multiple partners ... 92
Initiating a background task ... 94

6 Horizon SOUL Interface
Overview .. 97

Dependence on conversation state... 97
Contents vii

Error checking ... 97
CLOSE PROCESS Statement ... 97
CONFIRM Statement ... 99
CONFIRMED Statement .. 100
FLUSH PROCESS Statement .. 101
INVITE Statement .. 102
OPEN PROCESS Statement ... 103
QUERY PROCESS Statement .. 106
RECEIVE Statement .. 108
SEND Statement.. 110
SEND ERROR Statement.. 111
SIGNAL PROCESS Statement .. 112
TEST RECEIPT Statement .. 113
WAIT FOR RECEIPT Statement.. 114

7 Horizon User Language (SOUL) Sample Programs
Client Program ... 117

Companion program ... 117
Program .. 117

Server Sample ... 121
Companion program ... 121
Program .. 121

Subroutine to Check Horizon Return Codes ... 125
Subroutine... 125

Remote Updating Example .. 134
Multiple-node updating.. 136
Between-node data consistency ... 138

8 Horizon Error Processing
Overview of Horizon error processing ... 139
Detecting Horizon Errors.. 139

Conversation status information.. 140
Client versus server error detection and debugging.. 140

Troubleshooting Horizon Errors ... 141
Types of errors .. 141
OPEN PROCESS errors ... 142
Unanticipated conversation termination .. 143

$STATUS/$STATUSD Codes and Accompanying Error Messages.......................... 144

A Horizon Conversation States and Statements
Overview .. 147

Conversation states .. 147
 Conversation Statement/State Dependencies .. 148

B LU 6.2 Verb Set Equivalences
Overview .. 149
LU 6.2 and Horizon verb and parameter equivalences.. 149
LU 6.2 verb equivalences... 153

C SNA Communications Server Performance Tuning for Horizon
viii Rocket Model 204 Horizon: Intersystem Processing Guide

Overview ... 155
Chaining and RU Sizes .. 155

When to chain ... 156
Chaining’s cost .. 157

Session-Level Pacing... 157
Pacing parameter settings .. 157
Modification of pacing parameter values... 157

Transmission Priority and Route Selection .. 157
Assigning transmission priority and route selection .. 158
Horizon batch transmissions ... 158

D Connecting to Non-Model 204 Systems
Connecting to CICS ... 159

Horizon connectivity versus CICS Interface connectivity 159
One LU for CICS; multiple LUs for Model 204 .. 161
Supporting CICS parallel sessions.. 161

 SNA Communications Server Definition Statements .. 161
Preparing the log mode definitions.. 161
Determining session characteristics.. 162
Coding the APPL statement.. 164

Model 204-Side Definition Commands... 164
Network definition requirements.. 164

CICS-Side Definition Commands... 166
LU 6.2 network definition considerations... 166
Security considerations ... 167
Specifying the Model 204 partner program ... 167

Maintaining Operations .. 167
Establishing the connection .. 167
Changing CNOS session limits .. 168
Executing an orderly shutdown ... 169

Connecting to VAX/VMS.. 169
Digital products needed to support the connection ... 170
SNA Communications Server system programmer considerations 170
System manager considerations... 172
Application programmer considerations .. 172

Connecting to OS/2 EE .. 173
OS/2 products needed to support the connection... 173
SNA Communications Server system programmer considerations 173
Application programmer considerations .. 174

Connecting to UNIX System V and AT&T LU 6.2 Facility .. 175
Products needed to support the connection.. 175
SNA Communications Server system or network considerations 175
System manager considerations... 176
Application programmer considerations .. 176

E Horizon CNOS Connections
CNOS overview.. 177

CNOS terminology .. 177
CNOS session control.. 178

Setting session limits... 178
Contents ix

Deactivating sessions ... 178
Changing session limits... 179

CNOS minimum support .. 179
Managing the Horizon CNOS network ... 180

Defining CNOS network entities to Model 204.. 181
Defining CNOS support to SNA Communications Server 181

Handling CNOS errors ... 182
Rejecting a CNOS connection... 182
Typical CNOS connection errors... 182

Index
x Rocket Model 204 Horizon: Intersystem Processing Guide

About this Guide

Audience

This guide is designed to meet the needs of application programmers, the
Model 204 system manager, network administrators, and systems
programmers.

A note about User Language and SOUL

Model 204 version 7.5 provides a significantly enhanced, object-oriented,
version of User Language called SOUL. All existing User Language programs
will continue to work under SOUL, so User Language can be considered to be
a subset of SOUL, though the name "User Language" is now deprecated. In
this guide, the name "User Language" has been replaced with "SOUL."

Purpose of this guide

The Rocket Model 204 Horizon: Intersystem Processing Guide describes the
intersystem processing facilities of Model 204, with primary attention to
Horizon. Horizon permits Model 204 SOUL application programs running in
separate processors to converse as peers across an IBM SNA
Communications Server (formerly VTAM)-controlled SNA network. The
conversation interface consists of SOUL statements that conform to the LU 6.2
protocol.

Model 204 documentation set

To access the Rocket Model 204 documentation, see the Rocket
Documentation Library (http://docs.rocketsoftware.com/), or go directly to the
Rocket Model 204 documentation wiki (http://m204wiki.rocketsoftware.com/).
Preface xi

Notation conventions

This guide uses the following standard notation conventions in statement syntax and
examples:

Convention Description

TABLE Uppercase represents a keyword that you must
enter exactly as shown.

TABLE tablename In text, italics are used for variables and for
emphasis. In examples, italics denote a variable
value that you must supply. In this example, you
must supply a value for tablename.

READ [SCREEN] Square brackets ([]) enclose an optional
argument or portion of an argument. In this case,
specify READ or READ SCREEN.

UNIQUE | PRIMARY KEY A vertical bar (|) separates alternative options. In
this example, specify either UNIQUE or
PRIMARY KEY.

TRUST | NOTRUST Underlining indicates the default. In this example,
NOTRUST is the default.

IS {NOT | LIKE} Braces ({ }) indicate that one of the enclosed
alternatives is required. In this example, you must
specify either IS NOT or IS LIKE.

item ... An ellipsis (. . .) indicates that you can repeat the
preceding item.

item ,... An ellipsis preceded by a comma indicates that a
comma is required to separate repeated items.

All other symbols In syntax, all other symbols (such as
parentheses) are literal syntactic elements and
must appear as shown.

nested-key ::=
column_name

A double colon followed by an equal sign
indicates an equivalence. In this case, nested-
key is equivalent to column_name.

Enter your account:

sales11

In examples that include both system-supplied
and user-entered text, or system prompts and
user commands, boldface indicates what you
enter. In this example, the system prompts for an
account and the user enters sales11.

File > Save As A right angle bracket (>) identifies the sequence
of actions that you perform to select a command
from a pulldown menu. In this example, select the
Save As command from the File menu.

EDIT Partial bolding indicates a usable abbreviation,
such as E for EDIT in this example.
xii Rocket Model 204 Horizon: Intersystem Processing Guide

1
How to Use This Guide

Overview

The Rocket Model 204 Horizon: Intersystem Processing Guide
describes Horizon, the distributed application facility from Rocket
Software. This document provides the information necessary for
various types of users to implement and use Horizon. This guide is a
handbook for programmers, network administrators, and Model 204
system administrators.

Relationship to Model 204 Documentation Set

The Rocket Model 204 Horizon: Intersystem Processing Guide is the
main source of information for Horizon. The Model 204 documentation
set does not include information specific to Horizon that is not also
included in this guide.

However, this guide is not completely a standalone document. It does
make references to Model 204 documents for more information about
aspects of Model 204 that relate to the use of Horizon. For example, this
guide refers to the Rocket Model 204 documentation wiki SOUL/User
Language pages for information about creating and using Model 204
application subsystems.

Other locations of Horizon information

In addition to this guide, the Model 204 documentation set discusses
aspects of Horizon in several sources, including the following:
How to Use This Guide 1

• Rocket Model 204 installation information (for IBM z/OS, IBM z/VM, or IBM
z/VSE)

• Rocket Model 204 documentation wiki System management pages

• Rocket Model 204 documentation wiki SOUL/User Language pages:
http://m204wiki.rocketsoftware.com/index.php/SOUL

• Rocket Model 204 documentation wiki command pages:
http://m204wiki.rocketsoftware.com/index.php/Category:Commands

• Rocket Model 204 documentation wiki parameter pages:
http://m204wiki.rocketsoftware.com/index.php/List_of_Model_204_param
eters

Documentation map

This guide is designed to meet the needs of the following types of individuals
involved with the Horizon product:

• Application programmers

• Model 204 system managers

• Network administrators

• Systems programmers

All users should read Chapter 2 to get an overview of Horizon and to become
familiar with the terminology used in this guide.

Note: Systems programmers responsible for installing Horizon should refer to
the Rocket Model 204 installation information for their operating system.

Application programmer chapters

The following sections are particularly relevant to application programmers
developing or modifying distributed Model 204 applications using Horizon:

• Chapter 5: “Horizon Conversation Interface”

• Chapter 8: “Horizon Error Processing”

• Appendix A: “Horizon Conversation States and Statements”

• Appendix B: “LU 6.2 Verb Set Equivalences” (helpful for programmers who
have developed applications in other LU 6.2 environments)

• Appendix D: “Connecting to Non-Model 204 Systems”

Network administrator chapters

The following sections are particularly relevant to persons responsible for
establishing and maintaining a network supporting Horizon:
2 Rocket Model 204 Horizon: Intersystem Processing Guide

• Chapter 3: “Network Management”

• Chapter 4: “Security”

• Appendix D: “Connecting to Non-Model 204 Systems”

• Appendix E: “Horizon CNOS Connections”

Model 204 system manager chapters

The following sections are particularly relevant to Model 204 system
administrators (depending on their responsibilities):

• Chapter 3: “Network Management”

• Chapter 4: “Security”

• Chapter 6: “Horizon SOUL Interface”

• Appendix D: “Connecting to Non-Model 204 Systems”

Systems programmer chapters

The following sections are particularly relevant to systems programmers
responsible for the IBM SNA Communications Server (formerly VTAM)
network:

• “Defining the Network to SNA Communications Server” on page 36

• Appendix C: “SNA Communications Server Performance Tuning for
Horizon”

• Appendix D: “Connecting to Non-Model 204 Systems”

• Appendix E: “Horizon CNOS Connections”
How to Use This Guide 3

4 Rocket Model 204 Horizon: Intersystem Processing Guide

2
Model 204 Intersystem
Processing Fundamentals

Overview

This chapter introduces Model 204 intersystem processing options and
provides a discussion of basic concepts and terminology. A review of
this chapter may be in order for both experienced and inexperienced
intersystem programming personnel, since the conventions followed by
Model 204 may differ from those to which you may be accustomed.

Terms and Concepts

This section introduces some of the basic networking terminology used
in this document and illustrates a simple intersystem connection
involving Model 204.

Network: a collection of nodes

In this guide, a computer network is defined as a collection of nodes,
connected, at the software level, by a communication interface. Some
examples of communication interfaces are:

• The Virtual Telecommunication Access Method (VTAM)

• The Model 204 Cross Region Access Method (CRAM)

• The VM Inter User Communication Vehicle (IUCV)

Strictly speaking, there are different types of nodes on a network:
application nodes, terminal nodes, printer nodes, and so on. When the
Model 204 Intersystem Processing Fundamentals 5

term node is used in this guide, however, it refers to an application node, that
is, the point of connection to the network for some system that supports
application programs. Examples of such systems follow:

• Model 204

• CICS

• CMS

• PC DOS or OS/2

Network diagram

Figure 2-1 on page 7 is a diagram of a hypothetical network.

It consists of three nodes and the software communication interface SNA
Communications Serverdoc. The network links system M204A with system
M204B; the transactions originate from terminals X, Y, and Z.
6 Rocket Model 204 Horizon: Intersystem Processing Guide

Figure 2-1. Network Transactions

Essential elements of Figure 2-Figure 2-1. are described below:

• Each node on the network has a name by which it is known to other nodes.
The node to the left is named M204A, and the one to the right is M204B.

• M204C is an additional node that runs on the same machine and in the
same domain as M204A.

• Users X, Y, and Z are end users. An end user is defined as a user
connected to a Model 204 terminal thread, such as IODEV 7 (SNA
Communications Server 3270) or IODEV 41 (CMS Full Screen).

X = single-node transaction
Y = distributed transaction
Z = single-node transaction with cross-domain terminal connection

program program

program
program

SNA Communications Server SNA Communications Server

M204C

M204A M204B

O
P
E
R
A
T
I
N
G

S
Y
S
T
E
M

O
P

S
Y
S
T
E
M

X Y Z
Model 204 Intersystem Processing Fundamentals 7

• User X is running a single node transaction, that is, a transaction whose
programs execute completely within a single application node of the
network. This type of transaction has always been supported by Model 204.

• User Z is also running a single node transaction, but using a cross-domain
terminal connection. User Z’s terminal is owned by the SNA
Communications Server on the machine that runs M204A, but is not
involved with the M204A application node in any way. Z’s terminal is
connected to the application node M204B, which runs on a different
machine (in SNA terms, “in a different domain”). This is still a single node
transaction, because all the application programs involved run at a single
application node: M204B.

• User Y is running a distributed transaction. A distributed transaction is a
transaction that requires application programs at more than one node. The
exchange of data between two application programs at different nodes is
referred to as a conversation. Conversations are defined in greater detail
in “SNA Concepts and Terminology,” later in this chapter. The two
programs that converse are referred to as conversation partners.

Model 204’s Intersystem Facilities

The Model 204 intersystem processing facilities, TPROCESS, Transfer
Control, and Horizon, support distributed transactions. They are summarized
below.

For more complete information about TPROCESS and Transfer Control, see:

• Rocket Model 204 documentation wiki SOUL pages:
http://m204wiki.rocketsoftware.com/index.php/SOUL

• Rocket Model 204 documentation wiki system management pages:
http://m204wiki.rocketsoftware.com/index.php/Using_Program_Communi
cation_facilities

• Rocket Model 204 documentation wiki command pages:
http://m204wiki.rocketsoftware.com/index.php/Category:Commands

Terminal Process Communication facility (TPROCESS)

This facility allows a SOUL (User Language) request to communicate with a
partner process that runs in either CMS or CICS. The partner process is a CICS
program or CMS EXEC. TPROCESS is a standard part of SOUL.

A listing of basic requirements, operation, and applications of TPROCESS
follows.

Configuration requirements

The terminal user must connect to Model 204 through either the CICS or CMS
full screen interface. SNA Communications Server is not required.
8 Rocket Model 204 Horizon: Intersystem Processing Guide

Operation and restrictions

• The partner process must run in the same physical machine as the SOUL
request. The partner process runs in the environment (region or virtual
machine) where the terminal is attached: CICS or CMS.

• The SOUL request must initiate the partner process. Under CICS, the
request may transfer control to the partner.

• Communication passes through the terminal connection.

• The terminal thread IODEV number must be 11 or 41. For more
information about these IODEVs, see the Rocket Model 204 documentation
wiki:
http://m204wiki.rocketsoftware.com/index.php/IODEV_parameter

• Under CICS, the partner process may be written in any supported host
language. Under CMS, the language must be REXX or EXEC2.

• The SOUL request is always Master in the conversation, and the partner
process is the Slave. This means that the SOUL request controls the
communication channel, and that the partner may not send data on it
unless the SOUL request is ready to receive it.

Applications

TPROCESS is appropriate for many applications that require interaction
between a SOUL request and a program running in the terminal-owning
environment. Examples include:

• Switching between a COBOL application running under CICS and a SOUL
application running in Model 204.

Control can be transferred between the two applications repeatedly without
any awareness on the part of the end user that each application runs in a
different environment.

• Passing DB2 or VSAM data from a CICS region into a Model 204
application.

• Editing a file using XEDIT under CMS, and then uploading the data into
Model 204.

• Downloading data from Model 204 to CMS or CICS for manipulation by a
statistical or graphics package.

Transfer Control facility

This facility allows a SOUL request to transfer control to a partner process that
runs in CICS or to another Model 204 region or non-Model 204 SNA
Communications Server application. The partner is a CICS program or SNA
Communications Server application. Transfer Control is a standard part of
SOUL.
Model 204 Intersystem Processing Fundamentals 9

A listing of basic requirements, operation, and applications of Transfer Control
follows.

Configuration requirements

The terminal user must connect to Model 204 through either the CICS or SNA
Communications Server full screen interface.

Only z/OS and z/VSE SNA Communications Server users can execute a
transfer of control.

Operation and restrictions

• The partner can run in the same physical machine as the SOUL request or
in a different physical machine: CICS partners must be in the same
machine; SNA Communications Server partners can be in the same or in a
different machine.

• The SOUL request transfers control to the partner.

• Communication passes through the terminal connection or through SNA
Communications Server.

• For CICS partners, the terminal thread IODEV number must be 11. If the
partner is a SNA Communications Server application, the terminal thread
IODEV number must be 7. For more information about these IODEVs, see
the Rocket Model 204 documentation wiki:
http://m204wiki.rocketsoftware.com/index.php/IODEV_parameter

Applications

Transfer Control is appropriate for applications that require a transfer of a user
from one Model 204 online into another or from one Model 204 online into a
non-Model 204 CICS or SNA Communications Server application.
Examples include:

• Under CICS, transferring a user back to an initiating transaction.

• Transferring a SNA Communications Server user between Model 204
regions without the user’s awareness of the change of environment.

• Testing Horizon applications: a programmer can transfer between
Model 204 partners checking the results of a Horizon testing phase.

Horizon

This feature is more powerful and general than TPROCESS. It offers a
communication interface in SOUL that conforms to the SNA LU 6.2 protocol.
Horizon is an optional feature which must be purchased separately and must
be installed to be used.
10 Rocket Model 204 Horizon: Intersystem Processing Guide

A listing of basic requirements, operation, and applications of Horizon follows.

Configuration requirements

The ACF/SNA Communications Server product or a supported TCP/IP product
must be available in the operating system under which Model 204 is running.
This guide assumes that the network product is SNA Communications Server.

TCP/IP support

Although SNA Communications Server is assumed, appropriate changes to the
LINK and PROCESSGROUP command definitions allow the same Horizon
code to work with a TCP/IP network product, unless mentioned otherwise in
this guide.

On IBM z/VM and IBM z/VSE systems, Horizon supports IPv4 network
addresses.

On IBM z/OS systems, Horizon supports either IPv4 or IPv6 network
addresses. For full details on IPv6 network address support for Horizon, see
the Rocket Model 204 Release Notes: New Features Version 7 Release 4.0.

Operation and restrictions

• The SOUL request’s partner process may run in the same copy of Model
204, in an adjacent region or virtual machine, or in a different physical
machine.

• The SOUL request may initiate the conversation, or the partner may initiate
it.

• Communication passes through the SNA network (described in the next
section, “SNA Concepts and Terminology”).

• The terminal thread that initiates the conversation may be any IODEV
number. The thread that receives an incoming conversation request must
be IODEV 27. For more information about IODEV 27, see “IODEV
specification for Horizon inbound threads” on page 44. See also the Rocket
Model 204 documentation wiki system management pages:
http://m204wiki.rocketsoftware.com/index.php/Defining_the_user_environ
ment_(CCAIN).

• The partner process may be written in any language that has access to an
LU 6.2 communication interface. Currently supported partner languages
include:

– SOUL

– assembler

– C

– COBOL
Model 204 Intersystem Processing Fundamentals 11

– PL/1

• The two communicating partners interact as peers. Each one can control
the communication channel at different times during a conversation.
Change of direction can be negotiated.

Applications

Horizon permits applications that require “any-to-any” connectivity. A
transaction that originates in SOUL might request data from three partners, all
of whom run on different hardware. This application can be designed so that
the SOUL request has the same conversation with each partner, yet is
completely unaware of the different hardware environments in which its
partners run.

Horizon is therefore more flexible than TPROCESS, for example, which
requires partners to run on the same physical machine. The relationship
between the two Horizon partners is peer-to-peer, rather than the master/slave
relationship required by TPROCESS.

Some possible applications include:

• A central site polling a number of satellites and aggregating data for a
report.

For example, a concern with several geographically distributed
warehouses, each with its own IBM 9370-based inventory database, might
want an aggregate total of its supply of a particular stock item.

• A central server used by several remote requestors.

For example, an insurance company keeps premium calculation rules in a
central database. Proposal generation is a distributed transaction: a branch
office collects input data, ships it to the server for calculation, and then
accepts the result and formats a report. One branch office keeps its local
customer information in a Model 204 database on an IBM 9370, while a
smaller office uses a Personal Computer.

• Aggregation of data from several different sources.

A transaction interacts with an end user through a SOUL request, which
invokes requests to CICS for DB2 data, to CMS for SQL/DS data, and even
to a DEC computer for data residing there.

 SNA Concepts and Terminology

This section provides a brief review of SNA concepts and how Horizon applies
those concepts.

SNA networks provide resource sharing

Before the advent of Systems Network Architecture (SNA), data
communication for IBM was mostly a matter of dedicated, hard-wired
12 Rocket Model 204 Horizon: Intersystem Processing Guide

connections between communicating objects (usually a terminal
communicating with a program). SNA moves toward an environment where
network resources are managed by an operating system layer.

A major benefit of this approach is that network resources can be shared
among different applications. An early example of this benefit is its removal of
the need to dedicate a terminal to an application like CICS or Model 204.
Instead, the terminal is “owned” by an operating system component called SNA
Communications Server, which can connect it to CICS, Model 204, TSO, and
so forth, at the terminal user’s request.

SNA protocols neutralize physical differences

A second objective of SNA is to standardize the rules, or protocols, by which
two partners communicate. An important result of this is that partners have a
logical, rather than a physical, view of each other. An application is not
concerned about whether a terminal is attached locally or remotely, or about
the idiosyncrasies of different terminal devices. At the application programming
level, each communicating node in an SNA network is, therefore, referred to as
a Logical Unit (LU), and each node on an SNA network is the point of
connection for an LU.

Multiple LU types are defined; each is associated with the a set of rules
(protocol) that the partners must obey to communicate. For inter-program
communication, these rules specify an application program interface.

When this interface is offered by a particular product or language, it allows a
program written in that language to converse with another program using a
similar interface. Neither program needs any knowledge of what language its
partner is written in, what hardware it runs on, what communication media are
used, or what the physical network looks like.

This application program interface and the associated rules that specify how
the communicating partners are to behave define LU type 6.2.

LUs service application programs

An LU is the system software under which an application program runs at a
network node. With the installation of Horizon, Model 204 can become such an
LU. Figure 2-2 on page 14 illustrates the relationship between an application
program and an LU.
Model 204 Intersystem Processing Fundamentals 13

Figure 2-2. Application Program and LU

The LU provides various services to the application program:

• An application programming interface for communications.

• Enforcement of rules governing application program behavior.

• Packaging of application data in network format for transmission, and
unpackaging and presentation to the application program of received
application data.

• Error detection, and, when possible, recovery.

Horizon partner programs can be written in different languages

Horizon is Model 204’s implementation of LU 6.2. Using Horizon, a SOUL
request can participate in a conversation with another program. That partner
program can be another SOUL request or a program written in another
language which satisfies the LU 6.2 conversation interface protocols.

For conversations where both partners are written in SOUL, the information in
this Horizon guide is sufficient.

To design an application that involves conversations between programs in
different languages, the designer must understand the common SNA standard
to which the different interfaces conform. For example, the syntax of Horizon is
somewhat different from that of the CICS interface and quite different from the
subroutine-calling interface offered by APPC/PC. But all three LU 6.2 interfaces
make a common set of operations available to an application program.

The architecture to which these and other LU 6.2 interfaces conform is
documented in detail in IBM publication GC30-3084: the Transaction

Model 204/Horizon
V
T
A
M

program

Application
 Program Logical Unit (LU)
14 Rocket Model 204 Horizon: Intersystem Processing Guide

Programmer’s Reference Manual for LU Type 6.2. A mapping between
Horizon’s SOUL statements and their LU 6.2 architectural specifications is
provided in Appendix B.

Sessions connect LUs; conversations connect programs

The connection between two logical units over which conversation data flows
is called a session.

Each session can be thought of as an individual telephone line between two
LUs, in that it can be used by only one pair of conversing programs at any given
time. A session is thus a resource “owned” by an LU and assigned to an
application program for the duration of a conversation. A session between two
LUs usually survives after a conversation ends and is then free to be
reassigned to a subsequent conversation.

A session limit can be set between any two LUs. This limit determines how
many concurrent conversations can be active between them; it puts a cap on
the number of parallel sessions that may exist between the two LUs.

A conversation is a communication between two application programs. The
program that initiates the conversation is called the client program. The client’s
partner in the conversation is called the server program. When the LU at which
the server program is to run receives the initiation request, it starts the server
program.

A session can be thought of as a long-term connection between two LUs,
whereas a conversation is seen as a short-term connection between two
application programs. Since a conversation flows on a session, a session must
be established, or bound, between the LUs involved before two application
programs can have a conversation.

Horizon supports parallel sessions

A pair of LUs can connect to each other by a single session (one session
active at a time, reused serially for conversations) or by parallel sessions
(multiple sessions active at a time). Two LUs cannot be connected by both
single and parallel sessions at the same time.

Parallel session support allows the partitioning of sessions into session groups
that have common properties such as the remote partner and session limit and
common session characteristics like message size and security.

Parallel sessions are supported in Model 204-to-Model 204 communications.
Model 204 also provides CNOS (change number of sessions) parallel session
support, and can connect with parallel sessions to any client that provides the
CNOS minimum support set of functions and components (as defined in the
SNA Format and Protocol Reference Manual: Architecture Logic for LU Type
6.2).
Model 204 Intersystem Processing Fundamentals 15

For parallel sessions connections from Model 204 to systems other than those
running on SNA Communications Server, Model 204 must run with the so-
called “peer-to-peer” release levels of SNA Communications Server and NCP.

Conversation partners are known as client and server

Figure 2-Figure 2-3. illustrates a distributed transaction and facilitates
discussion of the relationship between the two conversation partners.

Figure 2-3. Horizon Distributed Transaction

The end user sits at a terminal. The thread that the end user is connected to
runs the client program. The client program, also referred to as the outbound
program, makes the initial request to establish a conversation, using the OPEN
PROCESS statement.

The client program’s OPEN PROCESS statement causes a conversation
initiation request to pass over the communication path. The LU at which the
server program is to run receives the initiation request and starts the server
program. The server program, which services the request for a conversation,
begins by issuing the OPEN PROCESS ACCEPT statement. The server
program is also referred to as the inbound program.

server
program

client
program

client
program

server
program

M204A M204B

O
P

S
Y
S
T
E
M

O
P

S
Y
S
T
E
M

 A B
16 Rocket Model 204 Horizon: Intersystem Processing Guide

A Model 204 system in which a client program runs is referred to as a client
system; one in which a server program runs is called a server system.

A system is designated client or server only in the context of a particular
transaction. In Figure 2-3 on page 16 ONLINE M204A is the client system for
transaction A, which initiates at M204A. For transaction B, which initiates at
M204B, M204A is the server system.

Note: A client program never connects to an active server program. The OPEN
PROCESS request actually initiates, or attaches, the server program. For
Model 204, this implies that there must be a free (that is, not currently used)
thread on the server system to run the server program. This free thread must
be a Horizon IODEV (IODEV=27), defined by the system manager in the user
zero input stream.

For more information about the Horizon IODEV, see “IODEV specification for
Horizon inbound threads” on page 44. See also the Rocket Model 204
documentation wiki system management pages:
http://m204wiki.rocketsoftware.com/index.php/Defining_the_user_environmen
t_(CCAIN).

Horizon programs can have multiple roles and partners

As shown in Figure 2-Figure 2-4., it is possible to build distributed transactions
that span more than two nodes.

In Figure 2-Figure 2-4., the application program at M204A has two open
conversations: one with a program at the M204B node, and one at M204C. The
application program at M204B is both a server to the client program at M204A,
and a client program to the server at M204D.

The designation of a program as client or server carries no implications about
how it behaves with respect to its partner once the conversation is established.
These terms only describe who initiated the conversation (the client), and who
was initiated by it (the server). Since the Horizon protocol is peer-to-peer, which
partner has control of the conversation (that is, the one allowed to send data at
any given point in processing) is completely up to the application designer.
Model 204 Intersystem Processing Fundamentals 17

Figure 2-4. Multi-Node Transaction

Horizon terms have multiple synonyms

Unmodified, “client” can refer to a Model 204 ONLINE system or to an
application program that runs in that Model 204 ONLINE. “Server” similarly can
refer to a system or a program. To clarify the terms used in this document, the
Table 2-1 lists possible elements in a typical Horizon network transaction along
with their synonyms and definitions.

server/
client
programclient

program
server
program

server
program

M204B M204DM204A

M204C

 A

Table 2-1. Synonyms for Horizon terms

Term Also known as Meaning

end user terminal user User on a terminal thread
connected to the client
system
18 Rocket Model 204 Horizon: Intersystem Processing Guide

client program [client | outbound} {user | program | process
| application

Model 204 application that
initiates a conversation

client system {client | outbound} {system | Online | node | LU} Host and provider of network
services to a client program

server program {server | service | inbound} {user | program | process
| application}

Model 204 application that
is initiated by an incoming
conversation request.

server system {server | service | inbound} {system | Online | node
| LU}.

Host and provider of network
services to a server program

Table 2-1. Synonyms for Horizon terms (Continued)

Term Also known as Meaning
Model 204 Intersystem Processing Fundamentals 19

20 Rocket Model 204 Horizon: Intersystem Processing Guide

3
Network Management

Overview

The network management topics that the system manager must
consider when using Model 204’s Horizon are listed below. This
chapter discusses each of these topics except for network security,
which is described in Chapter 4.

• Network definition

Network definition involves defining the network to Model 204
(using the DEFINE command) and defining the network to SNA
Communications Server (formerly VTAM) or a TCP/IP product.

• Network administration

Network administration involves using the network administration
commands to manipulate the network entities defined to Model 204.

• Network security

Network security involves using DEFINE command security
parameters in conjunction with Application Subsystem security to
provide the desired protection for network resources. Network
security is described in Chapter 4, “Security.”

• Model 204 Online configuration preparation

Online configuration preparation involves the following modification
of system input (CCAIN): allotting Horizon inbound threads
(IODEV=27) and adding to the NSUBTSKS parameter value for LU
6.2/SNA Communications Server pseudo subtasks.

• Application program testing
Network Management 21

The Remote Procedure Invocation (RPI) subsystem, included as part of
DICTIONARY installation, is an option that simplifies the testing of Horizon
application programs.

Defining the Network to Model 204

Before partner programs can converse over Horizon, the network, including the
programs and their interconnections, must be defined to Model 204. In
addition, the network must be defined to SNA Communications Server, which
supports Horizon. Each Model 204 system in the network provides a definition
of the link, processgroup, and process entities using respectively the DEFINE
LINK, DEFINE PROCESS, and DEFINE PROCESSGROUP commands.

Network entities requiring definition

This section introduces the network definition commands. For Model 204,
Horizon network definition involves identifying network entities with DEFINE
commands. These entities and their interdependencies form the network’s
logical layer. Parameters of the DEFINE command for each entity point to
names of related entities within the network and thereby determine the
network’s communication paths.

The following three network entities must be defined with the Model 204
DEFINE command before a Horizon application can run successfully:

• Link — Defines the transport mechanism and protocol to be used for
communications, and specifies a node name to be used when Model 204
connects to the SNA network so that other nodes within the network can
refer to this node by name.

• Processgroup — Connects the process to a specific link and groups
processes according to certain attributes, such as session usage, to
facilitate resource allocation. It also defines a remote node with which a
process can communicate.

• Process — Defines the local conversation program. If the process is a client
process, it also identifies the remote conversation partner or partner
process. If the process is a server process, it identifies the subsystem
which is to be invoked when the client process issues an inbound
conversation request.

Defining the network to Is described in

Model 204 • This chapter.

• The DEFINE LINK, DEFINE PROCESS, and DEFINE
PROCESSGROUP commands on the Rocket Model
204 documentation wiki:

http://m204wiki.rocketsoftware.com/index.php/Categ
ory:Commands

SNA Communications
Server

“Defining the Network to SNA Communications
Server” on page 36.
22 Rocket Model 204 Horizon: Intersystem Processing Guide

Note: CNOS connections require the definition of two additional definition
commands: DEFINE REMOTE and DEFINE SESSIONGROUP. For more
information about these entities, see Appendix E.

Also, for the complete syntax and description of DEFINE LINK, DEFINE
PROCESSGROUP, DEFINE PROCESS, DEFINE REMOTE, and DEFINE
SESSIONGROUP, see the Rocket Model 204 documentation wiki:

http://m204wiki.rocketsoftware.com/index.php/Category:Commands

Creating a Horizon network

A large department store chain has its headquarters in New York and branches
located in various states in the U.S. Three Model 204 online systems are
running in three different locations: the headquarters in New York, one branch
in San Francisco, and one branch in Boston. Figure 3-1 shows the network to
be defined to Model 204.
Network Management 23

Polling application with one-way communication

Figure 3-1 illustrates a polling application where communication is initiated in
only one way: from headquarters to the two branches. Headquarters needs to
access the weekly sales figures in San Francisco and Boston.

Figure 3-1 Physical Network Configuration for Polling Application

DEFINE parameters for network entities

Figure 3-2 on page 25 illustrates the logical view from the Model 204 System 1
at headquarters and at the Boston Branch, Systems 1 and 2 respectively. The
boxes contain skeleton entity definitions: named entities plus the appropriate
DEFINE command parameters. The arrows in Figure 3-2 show how the
parameters interrelate: straight arrows show intrasystem correspondence; bent
arrows show intersystem correspondence. The complete formats of the
DEFINE commands are described in the Rocket Model 204 documentation
wiki:

http://m204wiki.rocketsoftware.com/index.php/Category:Commands

 Model 204

 System 3

 San Francisco
 Branch

Model 204

 System 2

 Boston
 Branch

 Model 204

 System 1

 New York
Headquarters

 SNA

 NETWORK
24 Rocket Model 204 Horizon: Intersystem Processing Guide

Figure 3-2 Logical Network View from New York and Boston

Defining the link

Each Model 204 system is identified to the network through the LOCALID
parameter of the DEFINE LINK command. In this example, the LOCALID for
the New York headquarters is M204HQ; the LOCALID for the Boston Branch
is M204BO.

Defining the processgroup

The DEFINE PROCESSGROUP command uses the REMOTEID parameter to
specify the remote node with which a process wishes to communicate.
Processgroup PGCLI1 in headquarters specifies REMOTEID M204BO, which
points to the Boston branch; processgroup PGSRV in the Boston branch
specifies REMOTEID M204HQ, which points to the New York headquarters.

Defining the process

The DEFINE PROCESS command for the client process in headquarters
specifies PARTNER=WSALES, the server process in Boston. The server

 New York Headquarters Boston Branch

 System 1 System 2

 Client Server

 LINK LINKCLI

LOCALID=M204HQ

 LINK LINKSRV

LOCALID=M204BO

PROCESSGROUP
PGCLI1

LINK=LINKCLI
REMOTEID=M204BO
OUTLIMIT=5

PROCESSGROUP
PGSRV

LINK=LINKSRV
REMOTEID=M204HQ
INLIMIT=5

PROCESS WKSALES

DESTINATION=PGCLI1
PARTNER=WSALES

PROCESS WSALES

FROM=PGSRV
SUBSYSTEM=WKS
Network Management 25

process WSALES in Boston specifies SUBSYSTEM=WKS, the subsystem to
be invoked when the client process initiates a conversation.

Defining a Horizon network

Example 1: Polling Application

The following is a step-by-step description of how the DEFINE commands are
set up for a polling application where the conversations are initiated from one
central location. This example is based on the department store application
described in the physical network example in Figure 3-1 on page 24. DEFINE
commands for the headquarters in New York are described first.

Defining the link for the client side

New York headquarters initiates a conversation to determine the weekly sales
figures at the Boston and San Francisco branches. New York headquarters is
therefore the client system. The first command required is DEFINE LINK:

DEFINE LINK LINKCLI WITH -
SCOPE=SYSTEM -
TRANSPORT=VTAM -
PROTOCOL=LU62 -
SESSIONS=6 -
LOCALID=M204HQ -
INBUFSIZE=2048

This definition provides the following specifications:

• The transport type (SNA Communications Server) and the protocol (LU62)
to be used for communications.

• The maximum number of sessions that can be used by Horizon
applications (6).

• The identification of the New York headquarters’ Model 204 system to the
SNA network (M204HQ).

• The size of the “receive” buffer, which receives data transferred over the
session (2048 bytes, the recommended value).

Defining the processgroup for the client side

The next step is setting up the processgroup definitions:

DEFINE PROCESSGROUP PGCLI1 WITH -
 SCOPE=SYSTEM -
 LINK=LINKCLI -
 REMOTEID=M204BO -
 OUTLIMIT=5 -
 INLIMIT=0 -
 RETAIN=4
26 Rocket Model 204 Horizon: Intersystem Processing Guide

DEFINE PROCESSGROUP PGCLI2 WITH -
 SCOPE=SYSTEM -
 LINK=LINKCLI -
 REMOTEID=M204SF -
 OUTLIMIT=3 -
 INLIMIT=0 -
 RETAIN=0

This definition provides the following specifications:

• The first processgroup defined above, PGCLI1, is to converse with the
Model 204 system at the Boston branch (REMOTEID=M204BO).

• PGCLI1 allows a maximum of five concurrent outbound conversations
(OUTLIMIT=5).

• Since the headquarters is initiating all the conversations and is not
expected to receive any inbound conversation requests, no inbound
conversations have to be specified (INLIMIT=0).

• Four sessions are retained.

• The second processgroup, PGCLI2, is to converse with the Model 204
system at the San Francisco branch.

• PGCLI2 allows only three concurrent outbound conversations.

• Since the headquarters is initiating all conversations and is not expected to
receive any inbound conversation requests, no inbound conversations
have to be specified.

• No sessions are retained when processes belonging to PGCLI2 are closed.

Defining the client process

Lastly, the system manager defines the remote conversation partner with the
DEFINE PROCESS command as follows:

DEFINE PROCESS WKSALES WITH -
 SCOPE=SYSTEM -
 DESTINATION=(PGCLI1,BOSTON,PGCLI2,SF) -
 PARTNER=WSALES -
 DATALEN=2048 -
 CONFIRM

The definition provides the following specifications:

• Process WKSALES belongs to processgroups PGCLI1 and PGCLI2, which
directs the conversation to either the Boston or San Francisco branches.

• WKSALES is a client process and its partner name is WSALES, the
process name on the server system.

• The maximum data area expected to be received from the server
processes on either the Boston or San Francisco branches is 2048 bytes.

Network Management 27

• Confirmation processing is allowed.

Logically viewing the network

The network as seen by the system manager at the New York headquarters is
shown in Figure 3-3.

Figure 3-3 Logical Network Configuration at New York Headquarters

Figure 3-3 shows the relationship of the process to the processgroups and the
processgroups to the link. Notice that the two processgroups support a total of

 Where denotes internal definitions and parameter values that
 are calculated by the system.

 LINK LINKCLI
 LOCALID=M204HQ
 SESSIONS=6

 M204BO

RETAIN=4

 PROCESSGROUP
 PGCLI1

 REMOTEID=M204BO
 OUTLIMIT=5
 INLIMIT=0
 RETAIN=4

PROCESS WKSALES

DESTINATION=(PGCLI1,BOSTON,PGCLI2,SF)
PARTNER=WSALES

 M204SF

RETAIN=0

 PROCESSGROUP
 PGCLI2

 REMOTEID=M204SF
 OUTLIMIT=3
 INLIMIT=0
 RETAIN=0
28 Rocket Model 204 Horizon: Intersystem Processing Guide

eight concurrent outbound conversations, while the link supports only six
sessions for these outbound conversations.

PGCLI2 is assumed to be a less active processgroup that requires fewer and
shorter conversations. Its RETAIN value of zero means that when its
conversations end, its sessions are freed up for use by the busier PGCLI1.

Preserving an available session

This is an example of tuning RETAIN and OUTLIMIT values so that it is
possible not to run out of available sessions. See the discussion of RETAIN in
“Defining a Horizon network” on page 26 for more information about sharing
sessions and network resource use.

The sessions are allocated on a first come, first served basis. They remain
allocated to a remote node unless the link is closed, a STOP LINK or STOP
PROCESSGROUP command is issued, or the session is ended by the remote
node. The effects of STOP LINK and STOP PROCESSGROUP are described
further in the Rocket Model 204 documentation wiki:

http://m204wiki.rocketsoftware.com/index.php/STOP_command:_Stopping_a
_Horizon_or_Model_204_SQL_link_or_processgroup

The session used by each outbound conversation with PGCLI2 is released as
soon as the conversation ends, as specified by the RETAIN value of zero in
PGCLI2’s processgroup definition.

Defining the link for the server side

Since the branches receive inbound conversation requests from the New York
headquarters for weekly sales figures, they are server systems. The DEFINE
commands for one of the branches, Boston, are as follows, beginning with
DEFINE LINK:

DEFINE LINK LINKSRV WITH -
 SCOPE=SYSTEM -
 TRANSPORT=VTAM -
 PROTOCOL=LU62 -
 SESSIONS=5 -
 LOCALID=M204BO -
 INBUFSIZE=2048

This definition provides the following specifications:

• The transport type (SNA Communications Server) and the protocol (LU62)
to be used for communications.

• The maximum number of sessions that can be used by Horizon
applications (5).

• The identification of the Boston branch’s Model 204 system to the SNA
network (M204BO).
Network Management 29

• The size of the “receive” buffer, which receives data transferred over the
session (2048 bytes, the recommended value).

Defining the processgroup for the server side

The next step is setting up the processgroup definition:

DEFINE PROCESSGROUP PGSRV WITH -
 SCOPE=SYSTEM -
 LINK=LINKSRV -
 REMOTEID=M204HQ -
 OUTLIMIT=0 -
 INLIMIT=5 -
 RETAINALL

The definition provides the following specifications:

• Processgroup PGSRV needs to converse with the Model 204 system at the
New York headquarters, as indicated by the REMOTEID value of M204HQ.

• PGSRV allows a maximum of five concurrent inbound conversations and
no outbound conversations, since the Boston branch is not expected to
initiate any conversations.

• All sessions are retained.

Defining the server process

Lastly, the DEFINE PROCESS command specifies the subsystem to be
invoked by an inbound conversation request from the client:

DEFINE PROCESS WSALES WITH -
 SCOPE=SYSTEM -
 FROM=PGSRV -
 SUBSYSTEM=WKS -
 DATALEN=2048 -
 CONFIRM

The definition provides the following specifications:

• Process WSALES belongs to processgroup PGSRV, which directs the
conversation to the New York headquarters.

• WSALES is a server process and the subsystem associated with it is WKS.

• The maximum data area expected to be received from the client process is
2048 bytes.

• Confirmation processing is allowed. Even if the SOUL CONFIRM statement
is not used in the subsystem procedures, CONFIRM is included in the
server process definition because the client process has CONFIRM in its
definition. Both the client and server processes must specify the same
option.
30 Rocket Model 204 Horizon: Intersystem Processing Guide

Example 2: Polling Application Extension

The following example highlights the RETAIN parameter of the DEFINE
PROCESSGROUP command. The department store application described in
the previous example is expanded here, requiring more than weekly sales
figures from the Boston and San Francisco branches. Suppose that the New
York headquarters also requires the payroll and personnel information at the
branches in order to print paychecks on a monthly basis.

Logical view of network

The logical view of the network at New York headquarters is illustrated in Figure
3-4. The system manager uses two different processgroups to handle sales
and payroll applications. This limits the maximum number of concurrent
outbound conversations for each type of application.

Figure 3-4 Processgroups Sharing Sessions

 Where denotes internal definitions and parameter values that
are calculated by the system.

 LINK LINKCLI
 LOCALID=M204HQ
 SESSIONS=15

 M204BO

RETAIN=7

 M204SF

RETAIN=6

PROCESSGROUP
 SALES1

REMOTEID=
M204BO
OUTLIMIT=5
INLIMIT=0
RETAIN=5

PROCESSGROUP
 ADMIN1

REMOTEID=
M204BO
OUTLIMIT=2
INLIMIT=0
RETAIN=2

PROCESSGROUP
 SALES2

REMOTEID=
M204SF
NOOUTLIMIT
INLIMIT=0
RETAIN=3

 WKSALES PAYROLL WKSALES PAYROLL

 PERSONEL PERSONEL

PROCESSGROUP
 ADMIN2

REMOTEID=
M204SF
OUTLIMIT=3
INLIMIT=0
RETAIN=3
Network Management 31

Processgroups sharing sessions

Processgroups SALES1 and ADMIN1 (and SALES2 and ADMIN2) are able to
share sessions because of four parameter values they have in common:

• LINK=LINKCLI

• REMOTEID=M204BO

• LOGIN=NOTRUST (the default)

• MODENAME (not specified)

Processgroups SALES1 and ADMIN1 can retain a total of seven sessions
since SALES1 is specified with RETAIN=5 and ADMIN1 is specified with
RETAIN=2.

Note: The sessions are shared by SALES1 and ADMIN1. This does not mean
that five sessions are retained specifically for SALES1 and two for ADMIN1.

Processgroups SALES2 and ADMIN2 can retain a total of six sessions since
SALES2 is specified with RETAIN=3 and ADMIN2 is specified with RETAIN=3.
Since SALES2 has NOOUTLIMIT, it is possible for all six sessions to be used
by processes belonging to SALES2.

Example 3: Two-Way Conversation Initiation Application

The polling application in Figure 3-1 on page 24 involved communication
initiated in only one way: from one central location, the headquarters, to the two
main branches. Communication can also be initiated from more than one
direction.

For example, the Boston branch mentioned in the previous example may
require access to the inventory in a sub-branch located in Cambridge. If the
Boston branch runs out of stock on an item, it can be determined whether
Cambridge has the item available, and the customer can be sent to that branch.
Similarly, the Cambridge branch can do a query on the Boston branch’s
inventory.
32 Rocket Model 204 Horizon: Intersystem Processing Guide

Physical network configuration

Figure 3-5 shows the physical network configuration for this type of application.

Figure 3-5 Two-Way Conversation Initiation

Logical network view

Figure 3-6 on page 34 shows the logical network configuration for the two-way
inventory application as viewed from the Boston branch. Processgroup
INVENTRY points to M204CB, which identifies the Cambridge branch. Both the
OUTLIMIT and INLIMIT parameters for processgroup INVENTRY are set to

Model 204

Boston

system A

Model 204

Cambridge

system B

 SNA

NETWORK
Network Management 33

nonzero values: it is possible to initiate conversations or receive inbound
conversation requests.

Figure 3-6 Logical Network Configuration for Boston Branch

Example 4: Local Node Testing

A single Model 204 system can represent both the client and the server system
for initial development and testing purposes. You can set up two SNA
Communications Server APPL definitions for the same Model 204 ONLINE,
and use two different link definitions to refer to these APPL definitions using the
LOCALID parameter. For more information about SNA Communications
Server APPL definitions, see “Defining the Network to SNA Communications
Server” on page 36.

 Where denotes internal definitions and parameter values that
are calculated by the system.

 LINK=BOSTON
 LOCALID=M204BO
 SESSIONS=10

 M204HQ

RETAIN=5

 M204CB

RETAINALL

PROCESSGROUP
 SALES

REMOTEID=
M204HQ
OUTLIMIT=0
INLIMIT=5
RETAIN=3

PROCESSGROUP
 ADMIN

REMOTEID=
M204HQ
OUTLIMIT=0
INLIMIT=2
RETAIN=2

PROCESSGROUP
 INVENTRY

REMOTEID=
M204CB
OUTLIMIT=2
INLIMIT=2
RETAINALL

 WSALES PAYROLL TOYS

 PERSONEL FURNTURE
34 Rocket Model 204 Horizon: Intersystem Processing Guide

Logical network view

Figure 3-7 on page 35 shows the interrelationship of the network entities for a
single Model 204 system acting as client and server. The entity names must be
unique since they reside within the same Model 204 online system. The arrows
in the figure show how the DEFINE command parameters interrelate: straight
line arrows show intrasystem correspondence; bent line arrows show
intersystem correspondence.

Figure 3-7 Client and Server Processes on a Single System

Defining the links

DEFINE LINK LINKCLI WITH -
 SCOPE=SYSTEM -
 TRANSPORT=VTAM -
 PROTOCOL=LU62 -
 SESSIONS=5 -

 New York Headquarters
 System 1

 LINK LINKCLI

LOCALID=M204HQ1

 LINK LINKSRV

LOCALID=M204HQ2

PROCESSGROUP
SALESCLI

LINK=LINKCLI
REMOTEID=M204HQ2
OUTLIMIT=3

PROCESSGROUP
SALESSRV

LINK=LINKSRV
REMOTEID=M204HQ1
INLIMIT=3

PROCESS WKSALECL

DESTINATION=SALESCLI
PARTNER=WKSALESR

PROCESS WKSALESR

FROM=SALESSRV
SUBSYSTEM=WKS
Network Management 35

 INBUFSIZE=2048 -
 LOCALID=M204HQ1

DEFINE LINK LINKSRV WITH -
 SCOPE=SYSTEM -
 TRANSPORT=VTAM -
 PROTOCOL=LU62 -
 SESSIONS=5 -
 INBUFSIZE=2048 -
 LOCALID=M204HQ2

Defining the processgroups

DEFINE PROCESSGROUP SALESCLI WITH -
 SCOPE=SYSTEM -
 LINK=LINKCLI -
 REMOTEID=M204HQ2 -
 OUTLIMIT=3 -
 INLIMIT=0 -
 RETAIN=3

DEFINE PROCESSGROUP SALESSRV WITH -
 SCOPE=SYSTEM -
 LINK=LINKSRV -
 REMOTEID=M204HQ1 -
 OUTLIMIT=0 -
 INLIMIT=3 -
 RETAIN=3

Defining the processes

DEFINE PROCESS WKSALECL WITH -
 SCOPE=SYSTEM -
 DESTINATION=SALESCLI -
 PARTNER=WKSALESR -
 DATALEN=2048 -
 IMEOUT=60

DEFINE PROCESS WKSALESR WITH -
 SCOPE=SYSTEM -
 FROM=SALESSRV -
 SUBSYSTEM=WKS -
 DATALEN=2048 -
 TIMEOUT=60

Defining the Network to SNA Communications Server

This section describes how to set up the SNA Communications Server network
support for Horizon.

Throughout the discussion in this section, the term link refers to a Horizon link.
Although not a communication line like a SNA Communications Server or SNA
link, a Horizon link, in fact, corresponds to an SNA logical unit (LU). That is, a
36 Rocket Model 204 Horizon: Intersystem Processing Guide

Horizon link serves as a logical port between an application program and the
network.

Two components of SNA Communications Server network definition

You define Horizon to the SNA Communications Server network in two areas
of the VTAMLST data set:

1. APPL definition statements

2. Mode table entries

An APPL statement for each Horizon “link” is required to establish that Horizon
link as a logical unit (LU) within the network.

An entry in a mode table is required to specify the particular set of SNA
protocols (the session mode) desired for a session between two Horizon LUs.
In this case the protocols are characteristic of LU type 6.2.

The following two sections describe how to code the APPL statements and the
mode table entries to define the SNA Communications Server network.

APPL Statements for Network Definition

SNA Communications Server network definition for host-to-host
communications (such as a Model 204-to-Model 204 Horizon conversation)
differs from that for terminal-to-host environments. In host-to-host
environments, a single entity type can take either the primary or the secondary
role in the conversation. Terminal-to-host environments, have two entity types,
one of which always takes the primary role and the other of which always takes
the secondary role.

APPL statement per Horizon online

Horizon Model 204-to-Model 204 sessions involve one type of LU: a SNA
Communications Server application LU. Terminal-to-host communications
involve two different types of LUs: a SNA Communications Server application
LU and several terminal LUs. These LU types are defined in SNA
Communications Server in separate places. Host Onlines (SNA
Communications Server application LUs) are defined by APPL statements;
terminals are defined in LU macros.

APPL statement dual function

In a Horizon Model 204-to-Model 204 session, both partners are SNA
Communications Server application LUs and both are defined to SNA
Communications Server by APPL statements. Yet, on any particular Horizon
session, one partner is the primary end and the other one is the secondary, just
as in a terminal-to-host session. The APPL statement for a Horizon system
must therefore provide information about both the primary and secondary ends.
Network Management 37

In terminal-to-host systems the APPL statement carries the primary information
and the LU macros carry the secondary information.

Thus, for example, the APPL statement for a Horizon system must point to a
mode table (while for terminal-to-host systems the LU macro does). Also, since
each Horizon link supports multiple sessions, where the link can be primary on
one and secondary on another, information for both roles must be included on
each APPL.

Coding the APPL statement(s) for Horizon support

The APPL statements are coded within the library SYS1.VTAMLST (in z/OS)
or within a file with filetype VTAMLST (in CMS).

You should group together all the APPL statements for all the Model 204
systems running under a particular SNA Communications Server in the same
VTAMLST member or file, for ease of activating the APPL statements.

How many APPL statements are required?

In addition to the APPL statement required for Model 204 SNA
Communications Server terminal support, you must code at least one APPL
statement for each Model 204 system involved in a Horizon conversation.

Each additional link to the network requires an additional APPL statement.

Activation of APPL statements

For each SNA Communications Server that supports Horizon “links,” the
relevant APPL statements must be activated before Model 204 and Horizon
can use the network. Generally, this activation occurs automatically at SNA
Communications Server startup. However, if direct operator control of APPL
activation is desired, entire groups of APPLs (major nodes) can be activated at
one time.

APPL statement parameters

Most of the two dozen or so parameters on the APPL statement default to
values appropriate to Horizon systems. Only four parameters must be specified
by the SNA Communications Server systems programmer. Technical Support
recommends that two other parameters be specified as well, to make network
maintenance easier. A seventh parameter, again optional, is relevant only
where Horizon node name protection is desired. Node name protection is
described on “Protecting Network Node Names” on page 60.

The required parameters for the APPL statement, when used for defining SNA
Communications Server support for Horizon links, are shown in the following
simplified syntax chart that does not include all APPL statement parameters.

name APPL AUTH=ACQ,
38 Rocket Model 204 Horizon: Intersystem Processing Guide

 PARSESS=YES,
 MODETAB=tablename,

Optional:
 DLOGMOD=entryname,
 VPACING=5,
 PRTCT=password

Where:

• name must be the same as the LOCALID parameter of the corresponding
DEFINE LINK command. This name is the LU name, the name of the SNA
network entity that participates in network sessions with a partner LU. The
APPL name (and LOCALID) of the remote Horizon “link” becomes the
REMOTEID parameter for defining the partner systems in Model 204. The
value of name on each APPL definition statement must be unique within the
entire network.

Note: Do not confuse the APPL name with the ACBNAME parameter. The
ACBNAME parameter refers to the name used when a SNA Communications
Server application LU issues a request to open communications with the
network. The ACBNAME can be the same as or different from the APPL name,
and it does not need to be unique within the network. Its default is the APPL
name.

While it can be of some use to code a value for ACBNAME in terminal-to-host
systems with multiple copies of the host Online, it is not helpful for host-to-host
systems such as Horizon. Moreover, if ACBNAME is coded on the APPL
statement, the LOCALID parameter in the DEFINE LINK command must be set
to this ACBNAME value, while the REMOTEID parameter in the DEFINE
PROCESSGROUP command must still be set according to the APPL name.

The name parameter of the APPL statement for SNA Communications Server
terminal support must be the same as the VTAMNAME parameter in the User
0 CCAIN of Model 204.

• AUTH (authorize) is required and must specify ACQ (acquire). This
specification lets Model 204 acquire sessions with other LUs. In Horizon,
Model 204 regularly does this when starting outbound conversations. This
parameter setting authorizes the Model 204 SIMLOGON SNA
Communications Server request when acquiring sessions.

• Parallel session support, the PARSESS parameter, is required and must be
set to YES. This setting causes SNA Communications Server to prepare
support—primarily in terms of network addressing tables—for more than
one session to take place concurrently between the same pair of LUs.

All the sessions allowed by the SESSIONS parameter on the Model 204
DEFINE LINK command can take place concurrently with the same remote
system, with each bearing a program-to-program conversation.

Note: If PARSESS parameter defaults to NO, Model 204 fails in its attempt
to start a second, simultaneous conversation.
Network Management 39

• MODETAB is a required parameter. It ties the APPL definition to the mode
definition that specifies the particular set of SNA protocols required for the
LU 6.2 session between two LUs.

MODETAB points SNA Communications Server to the table containing the
mode definition. An entry in the table is a set of characteristics, or session
parameters, that is applied when a session is established. These
parameters are sent from the LU that acquires the session to the partner
LU so that both share a common set of rules.

Generally, unless the environment already contains systems using LU 6.2,
the SNA Communications Server systems programmer should construct a
new, separate table for LU 6.2 session parameters, with one entry in it. (As
described on page 161 and in Appendix E, parallel sessions connections
may require two entries.)

If the entry for the LU 6.2 session parameters is to be placed in a table
containing other LU 6.2 entries, the DLOGMOD parameter should be coded
(in addition to the MODETAB parameter) to specify which entry is desired.

Note: If MODETAB is not coded at all, SNA Communications Server uses an
inappropriate default mode table for the LU 6.2 sessions. Unlike the situation
for the mode entry, there is no way for a SNA Communications Server
application to supply the name of the proper mode table to SNA
Communications Server dynamically upon starting the session; there is
accordingly no corresponding DEFINE parameter in Model 204.

Another way to specify the entry is to use the Model 204 DEFINE commands
rather than specifying the mode definition in SNA Communications Server. To
do so, code the name of the SNA Communications Server mode table entry on
the MODENAME parameter of the DEFINE PROCESSGROUP command.

If the mode table specified in MODETAB contains more than one set of session
parameters, SNA Communications Server selects the first entry, by default. To
specify an entry that is not the first one in the table, you must use either the
DLOGMOD parameter in the SNA Communications Server APPL statement or
the MODENAME parameter in the Model 204 DEFINE LINK command.

• APPC=NO is required if you are using SNA Communications Server 3.3 or
later SNA Communications Server versions. The NO option, which is the
default, is required even though Horizon is an LU 6.2 implementation.
APPC is not valid for versions of SNA Communications Server earlier than
SNA Communications Server 3.3.

• DLOGMOD is an optional parameter that specifies the name of a particular
entry in the mode table that has the parameters to be used for the session.
The value specified for DLOGMOD must match a MODEENT entry name
in the specified table.

DLOGMOD is described further in the description of MODETAB, above.

• VPACING (SNA Communications Server pacing) is an optional parameter.
This is the maximum number of messages, or chain elements, received by
40 Rocket Model 204 Horizon: Intersystem Processing Guide

the LU during a session before an acknowledgment, a pacing response, is
sent to the partner LU.

The value of the VPACING parameter must match the value of the
SSNDPAC parameter in the partner’s mode table that limits the number of
messages sent before a response is received. A value of five (messages)
for both is recommended to accommodate average message length.

– SNA Communications Server pacing is also discussed in Appendix C.

– PRTCT (protect password) is an optional parameter that provides a
security feature in network access. When the PSWD parameter is
coded on the Model 204 DEFINE LINK command, the issuer of the
OPEN LINK command is prompted for a password. The password
entered must match the value of the PRTCT parameter, or SNA Com-
munications Server rejects the Online request to open communications
for the named LU. Chapter 4 fully describes Horizon security features.

Coding the Mode Table Entry for SNA Communications Server
Network Definition

As described in “APPL Statements for Network Definition” on page 37, the
APPL statement corresponding to a Horizon link points directly to a table, each
of whose entries is a set of session characteristics (session parameters). The
entire set is actually sent from the LU that acquires the session (the primary LU)
to the partner LU (the secondary LU) in the Bind message that establishes the
session. The two halves of the session are thereby able to share a common set
of rules.

MODETAB, also called logon mode table

The MODETAB table is often called a logon mode table or logmode table and
its entries logmodes because, prior to the introduction of program-to-program
communications, the table entries referred to the characteristics of a terminal
and were set up for the session when the terminal logged on to the network. In
a program-to-program session, neither end is a terminal and, strictly speaking,
there is no logon being done. However, the notion of a set of session
parameters controlling the rules of the session between the two partners still
pertains.

Where mode tables reside

Mode tables are assembled and link edited into a load library usually called
SYS1.VTAMLIB (in z/OS) or into a file with filetype LOADLIB (in VM). The
source code may be entered anywhere, but is usually entered into
SYS1.VTAMLST in z/OS or a file with filetype VTAMLST in VM.
Network Management 41

Creating a mode table entry

The SNA Communications Server systems programmer must create an entry
in the SNA Communications Server mode table to specify the particular set of
SNA protocols desired for the session between two Horizon LUs.

This entry is one of the following:

• The first or only entry in the table.

• An entry whose LOGMODE parameter value matches the value of the
optional DLOGMOD parameter of the APPL statement.

DLOGMOD parameter of the APPL statement.

• An entry whose LOGMODE parameter value is the same as the
MODENAME parameter value of the Model 204 DEFINE
PROCESSGROUP command.

Recommended mode table parameter values

Generally you should set the mode table entry with the parameter values
shown below. Most of these parameters specify LU type 6.2 variations on basic
SNA protocols. Exceptional cases are cited in “Modifications for specific
systems and applications” on page 43.

 tablename MODETAB
 entryname MODEENT LOGMODE=entryname
 TYPE=X’00’,
 FMPROF=X’13’,
 TSPROF=X’07’,
 PRIPROT=X’B0’,
 SECPROT=X’B0’,
 COMPROT=X’50B1’,
 RUSIZES=X’8888’,
 SSNDPAC=X’05’,
 PSERVIC=X’060200000000000000102000’
 . .
 . . (Entries for systems other than
 . . Model 204 may follow here.)
 tablename MODEEND

Note: Unlike the case for the APPL name, there is no uniqueness requirement
for mode entry names; the same name may appear in more than one table.
There is also no need to activate mode tables. The proper table is simply link
edited into the library and is accessed from there by as many copies of SNA
Communications Server as are designated to use that library.
42 Rocket Model 204 Horizon: Intersystem Processing Guide

Modifications for specific systems and applications

The nature of a particular system or application may require modifications to
the values of the following parameters of the mode table entry to support
Horizon:

• RUSIZES

• SSNDPAC

The COS= parameter in the mode table entry may also need to be modified to
meet system and application requirements.

The situations requiring such modifications are discussed in Appendix C.

Modifications for parallel session connections are discussed on page 181. In
particular, the PSERVIC value must be different.

Modifications for connections to VAX/VMS systems are discussed on
page 169.

Setting the PSERVIC security byte

You may need to review the tenth byte of your PSERVIC setting, which is
equivalent to the 23rd byte of the bind between the Horizon partners. PSERVIC
describes the layout of the presentation services (PS) portion of the bind.

The tenth byte of PSERVIC governs security options. Three options are
relevant:

• X’00’ means no security information is accepted by the Horizon primary
partner. The secondary partner does not send any user ID or password.

• X’10’ means security information is accepted by the Horizon primary
partner. The secondary partner sends user ID and password.

• X’12’ means security information is accepted by the Horizon primary
partner, and the Already-Verified indicator is accepted in lieu of a password.
The secondary partner sends user ID but no password.

These settings must correspond to the Horizon DEFINE PROCESSGROUP
command LOGIN parameter or Horizon rejects any conversations for the
processgroup.

As shown below, the PSERVIC settings must also correspond to the Model 204
SYSOPT parameter X’10’ bit setting, which indicates (on or off) whether login
is required for access to MODEL 204.

X’00’ corresponds to LOGIN=NOTRUST, SYSOPT X’10’ bit off
X’10’ corresponds to LOGIN=NOTRUST, SYSOPT X’10’ bit on
X’12’ corresponds to LOGIN=TRUST, SYSOPT X’10’ bit on
Network Management 43

Network administration commands

Network administration concerns are those that have to do with the day-to-day
operation of the Model 204 network. These operation tasks are governed by
the network administration commands. The Rocket Model 204 documentation
wiki provides syntax and description for each of the network administration
commands:

http://m204wiki.rocketsoftware.com/index.php/Category:Commands

The network administration commands are used to manipulate the different
network entities (link, processgroup, and process) once they have been
defined. These commands, also called network control commands, can be
placed in the User 0 stream or within a Model 204 procedure. They require that
the issuer be either User 0, a system administrator, or a system manager. They
can also be issued at command level.

The network control commands include:

• OPEN LINK

• CLOSE LINK

• START

• STOP

• MONITOR

• MODIFY

Preparing the ONLINE Configuration

This section describes CCAIN stream parameters the system manager must
set appropriately for Horizon to function successfully. The parameters
discussed here are the system input (CCAIN) parameters IODEV and
NSUBTKS. ONLINE configuration preparation includes allotting Horizon
inbound threads (IODEV=27) and adding to the NSUBTSKS parameter value
for LU 6.2/SNA Communications Server pseudo subtasks.

IODEV specification for Horizon inbound threads

Processing inbound conversation requests requires that Model 204 have a
pool of Horizon threads available for running the server programs. These
threads must be defined in the server CCAIN stream as part of the Model 204
ONLINE configuration.

A new IODEV number, 27, defines Horizon inbound conversation threads. The
NOTERM parameter is required on the first user parameter line that specifies
IODEV=27. NOTERM indicates how many threads are to be allocated for
Horizon inbound conversation processing.
44 Rocket Model 204 Horizon: Intersystem Processing Guide

To guarantee that there is no shortage of Horizon inbound threads and that all
incoming conversation requests can be processed, set the NOTERM
parameter to the total of INLIMIT values on all DEFINE PROCESSGROUP
commands for the server system.

For more information about IODEV 27, see the Rocket Model 204
documentation wiki:
http://m204wiki.rocketsoftware.com/index.php/Defining_the_user_environmen
t_(CCAIN).

Modifying the NSUBTKS parameter

The number of pseudo subtasks that can be used by Model 204 during a run
must be increased by 4 per open link if Horizon is running in CMS, or by 2 per
open link if Horizon is running in z/OS.

NSUBTKS is a user zero parameter. It is described in the Rocket Model 204
documentation wiki:
http://m204wiki.rocketsoftware.com/index.php/NSUBTKS_parameter

Pseudo subtasks are described in the Rocket Model 204 documentation wiki:
http://m204wiki.rocketsoftware.com/index.php/Controlling_system_operations
_(CCAIN)

Application Testing with the RPI Subsystem

A server process always invokes an application subsystem. This implies that
before a SOUL program can be run as a server process it must first be defined
as a Model 204 application subsystem. For running or testing ad hoc
procedures, this definition of the procedure as a subsystem may be
inconvenient.

The Model 204 Remote Procedure Invocation (RPI) subsystem permits ad hoc
procedures that have not been defined as application subsystems to be
invoked by server processes. RPI is simply an initiator subsystem that invokes
a specified procedure from a specified procedure file.

For more information about developing application subsystems, see the Rocket
Model 204 documentation wiki:

http://m204wiki.rocketsoftware.com/index.php/SOUL

RPI subsystem installation

The RPI subsystem is installed automatically and defined to the Application
Subsystem facility as part of DICTIONARY installation. It must be installed on
the system in which the server program to be tested runs.
Network Management 45

System manager responsibilities

Before the RPI subsystem can be used, a system manager has two
responsibilities:

1. Ensure that the procedure file containing the procedure to be tested
permits the procedure to be invoked.

2. Ensure that the procedure to be tested is defined as a process.

Each of these is described separately below.

Ensuring the procedure file permits procedure inclusion

You cannot include a procedure from the procedure file if the file is private or if
it is does not grant sufficient privileges to include a member procedure. You
must take the file type and file privileges into account and choose one of two
options for opening the procedure file:

1. Open the procedure file automatically when the RPI subsystem is invoked.
Do this by adding the procedure file to the RPI subsystem definition using
the SUBSYSMGMT facility.

2. Let RPI attempt to open the file. Do this by appropriate coding of the
DEFINE PROCESS command SUBSYSPARM parameter, which is dis-
cussed below.

The following considerations affect your choice of option:

• RPI can open a public or semipublic procedure file that is not defined to the
RPI subsystem as long as the default privileges for the file are sufficient to
allow procedure INCLUDEs. For such files, the second option above is
simpler.

• RPI cannot open private files and files not given sufficient privileges to allow
procedure INCLUDEs. Such files must be added to the RPI subsystem
definition to be automatically opened.

• If you rely on the first option above, you must update the RPI subsystem
definition whenever you test a procedure from a new procedure file.

Ensuring the procedure to be tested is defined as a process

For each procedure to be tested, supply a DEFINE PROCESS command that
includes the following parameters:

SUBSYSTEM=RPI

SUBSYSPARM=’[file] [procedure] [OPEN | NOOPEN]’

Where:

– file is the Model 204 procedure file containing the procedure.
46 Rocket Model 204 Horizon: Intersystem Processing Guide

– procedure is the name of the procedure to be invoked.

– OPEN is appropriate if the procedure file is not defined to the RPI sub-
system and RPI must try to open it.

– NOOPEN is appropriate if the procedure file is defined to the RPI sub-
system and has been automatically opened.

For example, the DEFINE PROCESS command below allows server process
ANSWERQ to run the RPI subsystem and invoke the ad hoc procedure
MYPROC from TESTFILE, as specified in SUBSYSPARM.

DEFINE PROCESS ANSWERQ WITH SCOPE=SYSTEM DATALEN=2048 -
 FROM=BOULDER SUBSYSTEM=RPI -
 SUBSYSPARM=’TESTFILE MYPROC OPEN’

Application developer responsibilities

The application developer testing under RPI must know the following:

• The communication global variable for RPI is COMM. Every procedure
being included is responsible for setting this.

• The exit value for COMM is EXIT. The inbound procedure must set this
when it terminates.

As always, neglecting to set the communication variable leads to looping or
other errors. An inbound process that is looping does not usually call
attention to itself until it fills up the CCAAUDIT file.

• You cannot use RPI to test a procedure that expects to receive data in the
command line global variable. This variable is reserved for use by RPI.
Network Management 47

48 Rocket Model 204 Horizon: Intersystem Processing Guide

4
Security

Overview

A distributed transaction consists of at least two parts: the part that
requests a remote service (the client), and the part that services the
request (the server). This section describes the security concerns of a
Horizon network from the point of view of the server and then of the
client.

Terminology

Server and client systems are Model 204 ONLINEs that contain
application programs that converse with each other. The client program
usually communicates directly with a human end user at a terminal. The
server program has no access to the terminal. All its communication to
the end user must pass through the client program. In addition, the
server program is not accessible by terminals attached to the server
system, because the service thread is a non-terminal thread.

A system may be a client system or a server system or both.

Contents

Security issues for Horizon are divided into the following three areas:

1. Server system access.

Managing the use of server system resources by remote and local
users. This is discussed in “Managing Access to a Server System”
on page 50.
Security 49

2. Client system use.

Controlling a client system’s local users’ access to server systems. This is
discussed in “Controlling Users on a Client System” on page 58.

3. Network node name use.

Protecting network node names from unauthorized use (see page 60).

This chapter provides a description of the features that Model 204 offers to help
the system manager control these security issues. A series of examples of
different security schemes concludes the chapter.

Managing Access to a Server System

The following issues are of concern to the manager of a server system:

• Controlling which remote client systems may make requests of the server
system. This is discussed in “Controlling Remote Client System Access to
the Server” on page 51.

• Specifying which individual users from a given client system may use the
server system, and which server programs they may use. This is discussed
in “Controlling Individual Remote Users” on page 51.

• Protecting the file which contains the service transaction program. This is
discussed in “Protecting Procedure Files” on page 57.

Figure 4-1 shows how these issues represent layers of protection for the server
system, and how access is controlled. Refer to it during the discussion of
access to a server system.

Figure 4-1 Lines of Defense for a Server System

 System-level Control User-level Control

 Horizon
 client
 request

 Session This server This user This user
 allowed program OK OK in this OK in this
 with this from this server server
 client client system? program?
 system? system?

Subsystem
security

 Login DEFINE
PROCESS

 DEFINE
PROCESSGROUP
50 Rocket Model 204 Horizon: Intersystem Processing Guide

Controlling Remote Client System Access to the Server

The system manager of a server system controls access to the server system
as a whole and to each of its resources individually. This control is exercised
through the DEFINE PROCESSGROUP and DEFINE PROCESS commands
that precede any use of the Horizon facility.

Controlling access to a server system

For a client system to establish an SNA session with a Model 204 server, the
client’s network node name must be coded in the REMOTEID parameter of a
server’s DEFINE PROCESSGROUP command. Since this command requires
system manager privileges, a given client system must be specifically
authorized by a server’s system manager to gain access to the server.

For example, referring to Figure 3-2 on page 25, the following abbreviated
DEFINE PROCESSGROUP command allows sessions with the network node
M204HQ:

DEFINE PROCESSGROUP PGRP1 WITH REMOTEID=M204HQ...

Controlling access to a server program

For a given server program (that is, application subsystem or procedure) to be
accessible from any client system, the server system manager must include the
name of a processgroup that defines that client system in the FROM parameter
of the server program’s process definition. The system manager is thus
required to tell Model 204 explicitly which nodes in the network may access any
server program.

For example, referring to Figure 3-2 on page 25, the following abbreviated
DEFINE PROCESS command allows access to the server program WSALES
from the client system M204HQ (which is defined in processgroup PGRP1):

DEFINE PROCESS WSALES FROM=PGRP1...

Controlling Individual Remote Users

Model 204 login and Application Subsystem security processing are the
principal means by which a system manager controls remote user access to
service resources. This section first describes the layers of login processing
and possible security options, and then describes Application Subsystem
security options.

Login processing

For an end user, the first level of security in Model 204 is login processing. The
typical terminal-attached end user presents a password at login time. The
system uses the password to verify the user’s ID. The ID then can be reliably
used to assign operational privileges and to grant access to various resources.
Security 51

These assignments are made according to rules contained in Model 204
Application Subsystem security and external security packages.

Login processing for a client user who logs into a Model 204 system to process
part of a distributed transaction differs from that for a typical terminal end-user
in the following ways:

• Absence of command level access

• Problematic password use

Access to command level

A successfully logged-in terminal thread accesses a Model 204 system at
“command level” (the > prompt) unless the AUTOSYS parameter is specified
for the thread. (The AUTOSYS parameter automatically places the user in a
subsystem after login to Model 204.) The terminal end user is then permitted
certain ad hoc capabilities: to issue certain Model 204 commands, compose
and run temporary SOUL Requests, open files, send messages to other users,
and so on.

A successfully logged-in Horizon client user, however, is passed directly into a
“canned” application: the process to which the user is connecting (which must
be predefined by the server’s system manager). Unless that process (server
application) is specifically designed to build and execute ad-hoc requests from
the client program, the client end user has no ad-hoc capability, because the
server thread is never at command level.

To change the server application’s behavior, the end user must be able to log
into the server system on a terminal thread and change the server application
program.

Password problems

At login time, a terminal end user typically supplies a password at the terminal
and is admitted to Model 204 with the appropriate privileges. Supplying a
password may not be as easy for a client program, however: when processing
a transaction distributed over many server systems, each system involved may
require a login from the client. Prompting the end user repeatedly for a
password is cumbersome and needlessly exposes the end user to underlying
network communication activity. Having the required passwords in a file may
be a security exposure.

To resolve this password problem, Horizon login processing introduces options
(“trusted” users and “guest” users) for logging in client users that do not present
passwords. These options are described in the discussion of Horizon login
options that follows.
52 Rocket Model 204 Horizon: Intersystem Processing Guide

Login options

In this section, the decisions made during Horizon login processing, as
depicted in the branches of the login tree in Figure 4-2, are described in turn,
following the figure.

The diagram in Figure 4-2 is a hierarchical representation of the various
Horizon security options that affect login for a client user trying to run a server
program.

Figure 4-2 Login Security Processing

 USERID

VALID PASSWORD TRUSTED LU

USER KNOWN

GUEST USER

 F

 S

 F S

 S

 F F S

Login succeeds.
User passes to
subsystem
security.

Login fails.
OPEN PROCESS
fails.

accept

noyes

 yesnonoyes

absentpresent

absentpresent

reject

F If login required
(SYSOPT X’10’ bit on)

S If login not required
(SYSOPT X’10’ bit off);
user assigned default
privileges and not passed
to subsystem security
Security 53

Login required

When the SYSOPT (system options) parameter X’10’ bit is on, login is required
for any user of the ONLINE. Successful login passes the client user to the
server’s Application Subsystem security checking, which is reviewed in
“Application Subsystem security” on page 56.

Security is described in greater detail in the Rocket Model 204 documentation
wiki:
http://m204wiki.rocketsoftware.com/index.php/Storing_security_information_(
CCASTAT)

The SYSOPT parameter is described in the Rocket Model 204 documentation
wiki: http://m204wiki.rocketsoftware.com/index.php/SYSOPT_parameter

A failure in login processing on the service online system causes the client’s
OPEN PROCESS request to fail, rejected by the server system.

Login processing first checks for a valid user ID.

USERID

• USERID absent

If USERID is absent from the incoming OPEN PROCESS request and login
is required, login fails.

• USERID present

If USERID is present, processing proceeds to check for a password.

 PASSWORD

• PASSWORD present

If PASSWORD is present in the incoming request, Model 204 uses it to
validate the login.

– PASSWORD valid

If the password is valid, login succeeds and the user is passed to
Application Subsystem security.

– PASSWORD invalid

If the password is not valid, login fails.

• PASSWORD absent

If the PASSWORD is absent, processing proceeds to check further options.

Trusted LU

If LOGIN=TRUST is specified on the DEFINE PROCESSGROUP command
used to define the client to the server, the server system does not require a
password to log the user in. The server’s system manager uses this option
54 Rocket Model 204 Horizon: Intersystem Processing Guide

based on the belief that the client node reliably verifies that the requesting user
is valid.

Using this option makes it unnecessary to store and pass login passwords
throughout the network when processing a distributed transaction.
LOGIN=TRUST must be coded on both the DEFINE PROCESSGROUP
command defining the server to the client and the one defining the client to the
server.

The effect of LOGIN in the Horizon login process is as follows:

• LOGIN=NOTRUST

The client system is not DEFINEd as trusted by the server, and login fails.

• LOGIN=TRUST

The server system simply accepts the user ID passed in the request from
the client system without requiring a password. Processing proceeds to the
known user test.

User known

If the client system is trusted, Model 204 attempts to log the user in without a
password. A “known” user is one whose USERID value is defined in either the
server’s password table (CCASTAT) or in the external security package CA-
ACF2. (For the security packages Security Server (formerly RACF) and CA-
Top Secret, see the Note below.) Login processing of the USERID value on an
incoming request proceeds as follows:

• USERID known

If the requesting USERID value is known, login succeeds and user
privileges are as defined in CCASTAT or CA-ACF2. The user is passed to
Application Subsystem security.

• USERID unknown

If the requesting USERID value is not known, login processing proceeds to
the guest user test.

Note: USERIDs defined to Security Server or to CA-Top Secret are always
considered unknown. If a USERID value is not defined in CCASTAT but is
defined in Security Server or CA-Top Secret, the user is considered unknown
and login processing proceeds to the guest user test.

Login not required

When the SYSOPT X’10’ bit is off, login is not required. An incoming
conversation request can proceed even if no user ID is present on the client
request.

When login is not required, the outcome of Horizon login processing depends
on whether a user ID is present:
Security 55

• USERID present

The login is processed just as if login were required:

– If login requirements are met, Horizon assigns the user the user ID
passed in the request. The user is passed to Application Subsystem
security checking.

– If login requirements are not met, login fails and no conversation is
allowed.

• USERID not present

Horizon assigns the user an ID of “NO USERID,” an account of “NO
ACCOUNT,” and Superuser privileges.

When login is not required, the resources of the server ONLINE are still
protected. With a user ID of NO USERID, the client user cannot be admitted to
private application subsystems or to the restricted classes of semipublic
subsystems. The user may not open protected files without a valid password
and may not issue restricted commands.

A user of a non-Model 204 client system whose LU 6.2 interface does not
support security parameters can only connect to a service ONLINE that does
not require login.

Application Subsystem security

After login security processing, the following kinds of client users pass to
Application Subsystem security processing:

• Those with valid user IDs and passwords

• Those with known user IDs and no passwords but from trusted LUs

• Those without known user IDs but who are “guests” from trusted LUs

• Those with user IDs but for whom login processing was not required

Client users must pass through Application Subsystem security before they can
execute any service transaction. Based on the user ID and the type of the
subsystem, Application Subsystem security decides:

• Who is allowed to enter a given subsystem

• What privileges are granted upon entry

• What kind of access to subsystem-owned files is granted

This section contains a brief summary of how the subsystem handles these
three security concerns. For a more thorough description of application
subsystems, see the Rocket Model 204 documentation wiki:
http://m204wiki.rocketsoftware.com/index.php/System_requirements_for_appl
ication_subsystems
56 Rocket Model 204 Horizon: Intersystem Processing Guide

Controlling who is allowed in

Subsystems can be public, semipublic, or private. They differ in how they treat
attempts to enter the subsystem.

• A public subsystem permits all users to enter and gives all users the same
level of privileges.

• A semipublic subsystem permits access to all users. A user defined to the
subsystem gets the privileges associated with that user class (SCLASS).
Undefined users get the privileges associated with the default SCLASS.

• A private subsystem admits only users who are defined to it.

How privileges are assigned

Individual privileges held at entry to the subsystem can be overridden by the
user’s SCLASS assignment. The system manager may assign different
privileges for each SCLASS.

The privileges set in the SCLASS definition are equivalent to the user privileges
ordinarily granted upon successful login to Model 204: the power to create files,
issue certain privileged commands, change passwords, or access secured
records.

For more information about these privileges, refer to the Rocket Model 204
documentation wiki:
http://m204wiki.rocketsoftware.com/index.php/System_requirements_for_appl
ication_subsystems

The SCLASS may also define the account name the user is assigned while in
the subsystem, and may also define the record security key for the user.

This assignment of privileges, account name, and record security key lasts only
while the user is in the subsystem in question. If the user transfers to another
subsystem, the new subsystem determines privileges, account, and record
security.

How access to subsystem files is assigned

SCLASS definition also controls what files a user may open and what file
privileges are granted per file.

Protecting Procedure Files

The service program resides in a procedure file in the server ONLINE. This file
can be protected from access by end users on the server system by making the
file semipublic or private, that is, by requiring a password. The file is opened
automatically upon entry to the server subsystem, making a password
unnecessary for client system users.
Security 57

Controlling Users on a Client System

This section discusses the following issues of concern to the manager of a
client system:

• Specifying which remote server systems may be accessed from the local
system

• Specifying which remote server definitions are available for ad hoc use and
which are to be restricted to application subsystems

• Controlling the ways in which individual users are allowed to identify
themselves to a server system

Defining remote server systems

Using the DEFINE PROCESSGROUP and DEFINE PROCESS commands,
the system manager of the client system defines the remote server systems
and programs with which the client can communicate.

• DEFINE PROCESSGROUP

Just as the server system requires that each remote client system be
defined to it in a DEFINE PROCESSGROUP command, the client system
requires that any server system to which it passes a request be defined the
same way: through the REMOTEID parameter.

• DEFINE PROCESS

Each remote service must be defined in a DEFINE PROCESS command.
The DESTINATION parameter specifies to which service systems an
OPEN PROCESS request for this transaction may be directed.

Restricting access to remote server systems

A distributed application can be designed in such a way that the server side of
the application is responsible for all checking to make sure that its client is
authorized to issue incoming requests. However, having the server prevent
malicious or incorrect client programs from compromising it may be
inconvenient. It is often easier for the server program to assume that it is
conversing with a correctly debugged, trustworthy client. This assumption
implies two requirements:

1. The code of the client program is protected from unauthorized modifica-
tion.

2. An unauthorized program is prevented from “posing” as the client.

Restricting client programs to application subsystems achieves this protection.

An application subsystem provides a secure environment in which to package
and run the client program, thus providing the first protection above. Access to
a client program can be limited to predefined users. The behavior of the client
58 Rocket Model 204 Horizon: Intersystem Processing Guide

program can be further restricted by the definition of the SCLASS to which the
end user is assigned. Unauthorized end users are prevented from changing
either the client or server.

The second protection listed above is provided by blocking the access of non-
subsystem clients. In SOUL, a program establishes itself as a client by issuing
the OPEN PROCESS statement to initiate a conversation with a server. To
block an OPEN PROCESS statement issued by a client running outside the
application subsystem environment, the client system manager can use the
RESTRICT parameter of the DEFINE PROCESS command, as follows:

RESTRICT=APSY

When RESTRICT=APSY is coded, end users outside the subsystem cannot
run their own copy of a client program. They must use the subsystem’s copy.

Controlling user identification to a remote server system

A client program can pass to a server system a user ID, password, and account
(or profile) other than the current value of these items by supplying new values
in the USERID, PASSWORD, and ACCOUNT (or PROFILE) parameters of the
OPEN PROCESS statement.

To control any such client program changing of USERID and ACCOUNT (or
PROFILE), the system manager of the client system can choose one of the
following three options for the DEFINE PROCESS command UIDSOURCE,
ACCTSOURCE, or PROFSOURCE parameters:

• CURRENT

• OPEN

• NONE

Using the CURRENT option with UIDSOURCE and ACCTSOURCE (or
PROFSOURCE)

If CURRENT is specified, the client program cannot change the user ID or
account number (or profile) that the server sees by coding them on the OPEN
PROCESS statement. If these parameters appear on the OPEN PROCESS
statement, the OPEN fails. The client’s OPEN PROCESS passes to the server
only the user ID and account with which the user is currently logged in.

This option is designed to be used in combination with the LOGIN=TRUST
option of DEFINE PROCESSGROUP. Even if the PROCESS definition
specifies UIDSOURCE=CURRENT, the OPEN PROCESS statement may
contain a PASSWORD parameter (unless the partner is a non-Model 204
program); but if the conversation is initiated with a TRUSTed server, the
password is not needed.
Security 59

Using the OPEN option with UIDSOURCE and ACCTSOURCE
(or PROFSOURCE)

OPEN allows the client program to change the user ID or account that the
server sees. The client may use values other than those currently logged in to
the server by specifying them on the OPEN PROCESS statement.

If the client specifies the USERID parameter on OPEN PROCESS, the
PASSWORD parameter must also be supplied. ACCOUNT (or PROFILE) may
be changed without supplying PASSWORD. If a program omits the USERID or
ACCOUNT (or PROFILE) parameter, the user’s current user ID or account is
passed.

Using the NONE option with UIDSOURCE and ACCTSOURCE
(or PROFSOURCE)

The NONE option suppresses all security information in the OPEN request. It
is useful when the server system does not require login. It may be required in
future Horizon implementations if the server system is a non-Model 204 system
that does not accept security parameters from clients. Such a system may
reject an OPEN request that includes security parameters.

Table 4-1 displays the effects of the UIDSOURCE and ACCTSOURCE options,
depending on what the OPEN PROCESS contains. The results in the table are
the same if PROFILE and PROFSOURCE are substituted for ACCOUNT and
ACCTSOURCE, since they are synonyms.

Table 4-1. Selection of User ID and Account Number

Protecting Network Node Names

The system manager authorizes each network node that a given Model 204
system may communicate with by specifying its name in the REMOTEID
parameter of a DEFINE PROCESSGROUP command. Certain options of the
DEFINE PROCESSGROUP command (LOGIN=TRUST and

 Value of
 UIDSOURCE and ACCTSOURCE:

 CURRENT OPEN NONE

 Taken
 Yes OPEN from OPEN
 USERID or ACCOUNT fails OPEN fails
 coded on PROCESS
 OPEN PROCESS
 statement:
 No Current Current None
60 Rocket Model 204 Horizon: Intersystem Processing Guide

GUESTUSER=ACCEPT) grant special status to the node named in the
REMOTEID parameter. To confidently designate a partner system as trusted,
a system manager must be assured of the following:

• The only user of that node name is the system that the user is authorizing.

• Individuals cannot bring up their own unauthorized system that identifies
itself to the network using an authorized node name.

Using SNA Communications Server password protection

SNA Communications Server (formerly VTAM)’s APPL statement, which
defines a network node name, provides an option to restrict use of that name.
The PRTCT parameter, when coded, contains a password that must be
supplied when the SNA Communications Server ACB is opened. This feature
can be used to insure that certain network node names are used only by
authorized systems.

If PRTCT is coded on the APPL definition, the PSWD parameter must be
included in the DEFINE LINK command. PSWD causes the OPEN LINK
command to prompt for a password. If the password given does not match the
one which appears in the APPL PRTCT parameter, the OPEN LINK command
fails.

For more information

Coding the SNA Communications Server APPL definition is described further
in “Defining the Network to SNA Communications Server” on page 36. The
DEFINE LINK command is described on page 26.

Security Design Examples

Horizon was designed to place responsibility for understanding network
topology and security in the hands of the system manager and to shield the
application programmer from these considerations. This section contains a
series of security design examples that increase in complexity and show some
of the range of possible security options. Starting with a very simple design,
which uses a minimum of features, new options are added as they are needed
to satisfy the given security needs of each example.

Six security design examples are provided. In each example, security features
that are new or changed from the previous example are noted. The following
table identifies the example number and its features:

Example New or highlighted feature

1. No server or client security: default security parameters.

2. Server has login security protection.
Security 61

Example 1: Login Not Required on Server

By default, no security options apply to a Horizon conversation. The server
system must be configured with the SYSOPT=X’10’ bit off (login not required)
to permit a client (who is not passing a user ID) to OPEN a PROCESS for which
no security attributes have been specified.

This section contains displays of sample client and server coding for this
example, followed by notation of the security aspects featured. The client and
server DEFINE commands and SOUL requests use the default security
parameters, which are coded explicitly and accompanied by comments. Most
non-security related parameters are omitted.

3. Server trusts client; server-client link is SNA Communications Server-
password protected; client system is login protected.

4. Server trusts client; client programs can only be application
subsystems.

5. Two trusted client processes: one restricted to application
subsystems and one, unrestricted, for ad hoc requests. Server can
differentiate between the two processes.

6. Two trusted client processes; application subsystem security in effect
for server.

Example New or highlighted feature
62 Rocket Model 204 Horizon: Intersystem Processing Guide

Coding for client

Client Network Definition Comments

DEFINE LINK LINKCLI WITH -
 LOCALID=M204HQ -
 NOPSWD No LINK password prompt

DEFINE PROCESSGROUP PGCLI WITH-
 LINK=LINKCLI -
 REMOTEID=M204BO -
 LOGIN=NOTRUST -
 GUESTUSER=REJECT

Partner LU not trusted
Login of unknown user fails

DEFINE PROCESS WKSALES WITH -
 DESTINATION=PGCLI -
 PARTNER=WSALES -
 UIDSOURCE=NONE -
 ACCTSOURCE=NONE -
 RESTRICT=NONE

Connection only allowed to M204BO

Send no user ID in OPEN request
Send no ACCOUNT in OPEN request
Ad hoc request may OPEN

Client Conversation Comments

BEGIN
 OPEN PROCESS WKSALES
 .
 .
 converse
 .
 .
 CLOSE PROCESS WKSALES
END

No USERID, PASSWORD, or ACCOUNT
Security 63

Coding for server

Notes 1. The server system is not necessarily unsecured:

– The system can be configured solely for use by client users, so that the
files are protected by Application Subsystem security.

– The system manager can password protect the ONLINE’s files.

– The ONLINE system may be configured with no terminal threads. The
system manager may define only server threads (IODEV=27).

2. The only source authorized as a client user of the WKS subsystem is
Headquarters (M204HQ).

3. The WKS subsystem must be either semipublic or public: the client user is
sending no security parameters and therefore enters the subsystem with a
user ID of NO USERID and an ACCOUNT value of NO ACCOUNT. A pri-
vate subsystem requires a user ID other than NO USERID.

Server Network Definition Comments

SYSOPT=X’nn’ (X’10’ bit off) Login not required

DEFINE LINK LINKSRV WITH -
 LOCALID=M204BO -
 NOPSWD

DEFINE PROCESSGROUP SALES WITH -
 LINK=LINKSERV -
 REMOTEID=M204HQ -
 LOGIN=NOTRUST
 GUESTUSER=REJECT

DEFINE PROCESS WSALES WITH -
 FROM=SALES -
 SUBSYSTEM=WKS

No LINK password prompt

Partner LU not trusted
Logon of unknown user fails

Connection only allowed from
M204HQ
Invoke WKS subsystem

Server Conversation

BEGIN
 OPEN PROCESS internalname ACCEPT
 .
 .
 converse
 .
 .
 CLOSE PROCESS internalname
END
64 Rocket Model 204 Horizon: Intersystem Processing Guide

Example 2: Login Required on Server

In this example, the system manager of the server system from the previous
example adds an end user application to that system, as well as some public
files which end users can open at will. To control which users can enter the
server ONLINE, the server system manager turns on X’10’ of the SYSOPT
parameter, causing the system to require login. The system manager of the
server system informs the system manager of the client system at
Headquarters that client Horizon requests fail without a user ID. User IDs
presented are validated if they are defined in the server’s CCASTAT file or in
an external security database such as ACF2.

In this and following examples, the defaulted values are removed. Changes to
the example configurations are indicated by two plus signs (++) to the left of the
line.

Coding for client

Client Network Definition Comments

++

DEFINE LINK LINK1 WITH -
 LOCALID=M204HQ

DEFINE PROCESSGROUP PGRP1 WITH -
 LINK=LINK1 -
 REMOTEID=M204BO

DEFINE PROCESS WKSALES WITH -
 DESTINATION=PGRP1 -
 PARTNER=WSALES -
 UIDSOURCE=OPEN

Connection only allowed to M204BO

Allow OPEN PROCESS to code USERID

Client Conversation Comments

++
++

BEGIN
 %UID=$READ(’ENTER USERID -
 %PSWD=$READ(’ENTER
PASSWORD’)
 OPEN PROCESS WKSALES WITH -

 USERID %UID -
 PASSWORD %PSWD
 .
 .
 converse
 .
 .
 CLOSE PROCESS WKSALES
END

User ID specified for server
Login password
Security 65

Coding for server

Notes 1. The only parameters changed in this example are SYSOPT on the server
side and UIDSOURCE on the client side.

2. The USERID and PASSWORD parameters are added to OPEN PRO-
CESS on the client side to allow the Horizon request to successfully log in
to the server system.

3. Each user of the client request is prompted for a user ID and password to
be passed to the server system.

4. The server’s system manager must now define each authorized client user
from M204HQ, as well as each end user who uses his ONLINE, in either
the CCASTAT file or an external security database, for example, ACF2.

Example 3: Trusting the Client

Each time that an end user on the client ONLINE wants to run the Horizon
request, the user must enter a user ID and password to access the server node.
To relieve this burden, the application is changed so that the client system is
trusted. A client user is prompted for a password only upon logging in to the
client system.

Server Network Definition Comments

++ SYSOPT=X’nn’ (X’10’ bit on) Login required

DEFINE LINK LINKSRV WITH -
 LOCALID=M204BO -

DEFINE PROCESSGROUP SALES WITH -
 LINK=LINKSRV -
 REMOTEID=M204HQ -

DEFINE PROCESS WSALES WITH -
 FROM=SALES -
 SUBSYSTEM=WKS

Connection only allowed from M204HQ
Invoke WKS subsystem

Server Conversation

BEGIN
 OPEN PROCESS internalname ACCEPT
 .
 .
 converse
 .
 .
 CLOSE PROCESS internalname
END
66 Rocket Model 204 Horizon: Intersystem Processing Guide

Coding for client

Client Network Definition Comments

++

++

++

DEFINE LINK LINKCLI WITH -
 LOCALID=M204HQ -
 PSWD

DEFINE PROCESSGROUP PGCLI WITH -
 LINK=LINKCLI -
 REMOTEID=M204BO -
 LOGIN=TRUST

DEFINE PROCESS WKSALES WITH -
 DESTINATION=PGCLI -
 PARTNER=WSALES -
 UIDSOURCE=CURRENT -

Prompt for password at OPEN LINK

Login won’t require password

Connection only allowed to M204BO

OPEN PROCESS passes current user ID

Client Conversation Comments

++
BEGIN
 OPEN PROCESS WKSALES
 .
 .
 converse
 .
 .
 CLOSE PROCESS WKSALES
END

No user ID or password need be
coded anymore.
Security 67

Coding for server

Notes 1. Both the client and server processgroup definitions are changed from
LOGIN=NOTRUST to LOGIN=TRUST. This attribute must be the same on
both partners’ processgroup definitions for Horizon to work.

2. The PSWD parameter is added to the LINK definition. Since these part-
ners are to TRUST each other, they must be protected from a situation in
which an impostor opens a link using one of their LOCALID names. Speci-
fying PSWD causes the password prompt to be displayed at OPEN LINK
time; but password verification is initiated by adding the PRTCT parameter
to the SNA Communications Server APPL definition for each LOCALID.
Note that this (SNA Communications Server) password is completely
unrelated to any login password and has nothing to do with the CCASTAT
file.

3. The client process definition has UIDSOURCE=CURRENT, prohibiting the
SOUL program from specifying its own user ID on OPEN PROCESS.

4. The client system passes (without a password) the end user’s currently
logged in user ID to the server system. Since the client system is another
Model 204 system, the server’s system manager can trust that the client
system verified the end user’s password before allowing that user to oper-
ate with that user ID. This is true even if login is not required on the client

Server Network Definition Comments

++

DEFINE LINK LINKSRV WITH -
 LOCALID=M204BO -

DEFINE PROCESSGROUP SALES WITH -
 LINK=LINKSRV -
 REMOTEID=M204HQ -
 LOGIN=TRUST

DEFINE PROCESS WSALES WITH -
 FROM=SALES -
 SUBSYSTEM=WKS

Connection only allowed from M204HQ
Invoke WKS subsystem

Server Conversation

BEGIN
 OPEN PROCESS internalname ACCEPT
 .
 .
 converse
 .
 .
 CLOSE PROCESS internalname
END
68 Rocket Model 204 Horizon: Intersystem Processing Guide

system: if the end user does not log in or if their login fails, they proceed
with a user ID of NO USERID.

5. The end user no longer has to pass a password for a conversation with the
M204BO system, and may not even be aware that the application does
any underlying communication.

6. Any number of trusted systems can be defined this way.

Example 4: Protecting the Client Process Definition

The sample application is revised so that the service program now performs
some updates. (Note that only one node is updated by a given transaction. As
discussed in “Remote Updating Example” on page 134, a two-node update can
cause problems at recovery time.) An incorrectly written client request that
OPENs the PROCESS may cause data corruption on the server system. To
prevent ad hoc client requests from using the process definition, the client
system manager makes the following adjustment.

Coding for client

Client Network Definition Comments

++

DEFINE LINK LINKCLI WITH -
 LOCALID=M204HQ -

DEFINE PROCESSGROUP PGCLI WITH -
 LINK=LINKCLI -
 REMOTEID=M204BO -
 LOGIN=TRUST

DEFINE PROCESS WKSALES WITH -
 DESTINATION=PGCLI -
 PARTNER=WSALES -
 UIDSOURCE=CURRENT -

 RESTRICT=ASPY

Login won’t require password

Connection only allowed to M204BO

OPEN PROCESS passes current user ID

OPEN only under application subsystem

Client Conversation Comments

BEGIN
 OPEN PROCESS WKSALES
 .
 .
 converse
 .
 .
 CLOSE PROCESS WKSALES
END

No user ID or password need be
coded anymore.
Security 69

Coding for server

Notes There is only one difference: RESTRICT=APSY has been added to the process
definition on the client side.

Example 5: Two Different Process Definitions:
Inquiry and Update

Some users on the client system require ad hoc access to the process
definition to do inquiries. The solution is to define two separate processes: one
for inquiry-only work, accessible to ad hoc requests, and another for updates,
which may only be used by a canned application subsystem.

Server Network Definition Comments

SYSOPT=X’nn’ (X’10’ bit on) Login required

DEFINE LINK LINKSRV WITH -
 LOCALID=M204BO -

DEFINE PROCESSGROUP SALES WITH -
 LINK=LINKSRV -
 REMOTEID=M204HQ -
 LOGIN TRUST

DEFINE PROCESS WSALES WITH -
 FROM=SALES -
 SUBSYSTEM=WKS

Connection only allowed from M204HQ
Invoke WKS subsystem

Server Conversation

BEGIN
 OPEN PROCESS internalname ACCEPT
 .
 .
 converse
 .
 .
 CLOSE PROCESS internalname
END
70 Rocket Model 204 Horizon: Intersystem Processing Guide

Coding for client

Client Network Definition Comments

++

++

++

DEFINE LINK LINKCLI WITH -
 LOCALID=M204HQ

DEFINE PROCESSGROUP PGCLI WITH -
 LINK=LINKCLI -
 REMOTEID=M204BO -
 LOGIN=TRUST

DEFINE PROCESS WKSALESU WITH -
 DESTINATION=PGCLI -
 PARTNER=WSALESU -
 UIDSOURCE=CURRENT -
 RESTRICT=APSY

DEFINE PROCESS WKSALES WITH -
 DESTINATION=PGCLI
 PARTNER=WSALES -
 UIDSOURCE=CURRENT
 RESTRICT=NONE

Login won’t require password

Connection only allowed to M204BO

OPEN PROCESS passes current user ID
OPEN only under application subsystem

Connection only allowed to M204BO

OPEN PROCESS passes current user ID
May be opened by ad hoc request
Security 71

Client Conversation Comments

++

BEGIN
 OPEN PROCESS WKSALES
 .
 .
 Make inquiry
 .
 .
 CLOSE PROCESS WKSALES
END

Ad hoc request
User inquiry-only process

Client Conversation Comments

++

BEGIN
 OPEN PROCESS WKSALESU
 .
 .
 Make inquiry and update
 .
 .
 CLOSE PROCESS WKSALES
END

Application subsystem request

User query and update process
72 Rocket Model 204 Horizon: Intersystem Processing Guide

Coding for server

Notes 1. There is a new process definition on the client side. The old name,
WKSALES, was used for the inquiry-only process definition. The new defi-
nition, exclusive to the application subsystem, uses the name
WKSALESU.

2. On the server side, there are two process definitions, both invoking the
same subsystem. However, the SUBSYSPARM parameter is added,
which causes the quoted value to appear in the command-line variable
when the subsystem is entered. This allows the subsystem to differentiate

Server Network Definition Comments

SYSOPT=X’nn’ (X’10’ bit on) Login required

++

++

DEFINE LINK LINKSRV WITH -
 LOCALID=M204BO -

DEFINE PROCESSGROUP SALES WITH -
 LINK=LINKSRV -
 REMOTEID=M204HQ -
 LOGIN=TRUST

DEFINE PROCESS WSALES WITH -
 FROM=SALES -
 SUBSYSTEM=WKS -
 SUBSYSPARM=’INQUIRY’

DEFINE PROCESS WKSALESU WITH -
 FROM=SALES -
 SUBSYSTEM=WKS -
 SUBSYSPARM=’UPDATE’

Inquiry service program
Connection only allowed from M204HQ
Invoke WKS subsystem
Command-line parameter

Updating service program
Connection only allowed from M204HQ
Invoke WKS subsystem
Command-line parameter

Server Conversation Comments

++

++

BEGIN
 OPEN PROCESS internalname ACCEPT
 .
 .
 IF request to update received
 IF %CMDLINE = ’UPDATE’
 CLOSE PROCESS internalname -
 ERROR
 END IF
 END IF
 .
 .
 CLOSE PROCESS internalname
END

Reject request
Security 73

between a client user with only inquiry privileges and one with update priv-
ileges.

Note: The same end user can enter the service subsystem with different
privileges:

• Writing one’s own client request and entering with INQUIRY

• Using the application subsystem on the client side to enter with
UPDATE

• Or, depending upon the SCLASS assigned, this end user may not have
update privileges for any subsystem file.

Example 6: Accepting Guest Users

As more and more users on the client system want to use this application, the
server system manager must define each client user in the server CCASTAT
file or in an external security database. Since these users can only run in one
application subsystem of the server system, the following revision places the
responsibility for the subsystem’s security in the hands of its administrator, and
it takes the server’s system manager out of the loop.

Coding for the client

Client Network Definition Comments

DEFINE LINK LINKCLI WITH -
 LOCALID=M204HQ

DEFINE PROCESSGROUP PGCLI WITH -
 LINK=LINKCLI -
 REMOTEID=M204BO -
 LOGIN=TRUST

DEFINE PROCESS WKSALESU WITH -
 DESTINATION=PGCLI -
 PARTNER=WSALESU -
 UIDSOURCE=CURRENT -
 RESTRICT=APSY

DEFINE PROCESS WKSALES WITH -
 DESTINATION=PGCLI -
 PARTNER=WSALES -
 UIDSOURCE=CURRENT-
 RESTRICT=NONE

Login won’t require password

Connection only allowed to M204BO
OPEN PROCESS passes to current user ID
May only be OPENed under
application subsystem

Connection only allowed to M204BO

OPEN PROCESS passes to current user ID
May be opened by ad hoc request
74 Rocket Model 204 Horizon: Intersystem Processing Guide

Client Conversation Comments

BEGIN
 OPEN PROCESS WKSALES
 .
 .
 Do inquiry
 .
 .
 CLOSE PROCESS WKSALES
END

Ad hoc request
Uses inquiry-only process

Client Conversation Comments

BEGIN
 OPEN PROCESS WKSALESU
 .
 .
 Do inquiry and update
 .
 .
 CLOSE PROCESS WKSALESU
END

Application subsystem request
Uses update process
Security 75

Coding for the server

Notes 1. The only parameter change is the addition of the GUESTUSER=ACCEPT
parameter on the processgroup definition on the server side. Client users
from this particular processgroup no longer must be defined in CCASTAT.

2. If the service subsystem is private, the subsystem administrator must
define each prospective client user to the subsystem. If it is semipublic,
only those client users that are in SCLASSes other than the default must
be defined.

Server Network Definition Comments

SYSOPT=X’nn’ (X’10’ bit on) Login required

++

DEFINE LINK LINKSRV WITH -
 LOCALID=M204BO -

DEFINE PROCESSGROUP SALES WITH -
 LINK=LINKSRV -
 REMOTEID=M204HQ -
 LOGIN=TRUST -
 GUESTUSER=ACCEPT

DEFINE PROCESS WSALES WITH -
 FROM=SALES -
 SUBSYSTEM=WKS -
 SUBSYSPARM=’INQUIRY’

DEFINE PROCESS WSALESU WITH -
 FROM=SALES -
 SUBSYSTEM=WKS -
 SUBSYSPARM=’UPDATE’

Login of unknown user succeeds

Inquiry service program
Connection only allowed from M204HQ
Invoke WKS subsystem
Command-line parameter

Updating service program
Connection only allowed from M204HQ
Invoke WKS subsystem
Command-line parameter

Server Conversation Comments

 OPEN PROCESS internalname ACCEPT
 .
 .
 IF request to update received
 IF %CMDLINE ¬= ’UPDATE’
 CLOSE PROCESS internalname -
 ERROR
 END IF
 END IF
 .
 .
 CLOSE PROCESS internalname
END

Reject request
76 Rocket Model 204 Horizon: Intersystem Processing Guide

5
Horizon Conversation Interface

Overview

This chapter is intended for programmers who use the Horizon
conversation interface, the statements a SOUL request uses to
converse with a partner program. The SOUL conversation statements
that comprise the conversation interface are discussed in detail
individually and shown in sample programs in this chapter.

Horizon partners

Horizon partners have a peer to peer relationship. One partner controls
the direction of data flow on the path at any given time, but either
partner may assume control at different points in the conversation.
Which partner is in control at a given point is decided by the application
designer and is based on Horizon’s implementation of the LU 6.2
conversation protocols. The rules that govern Horizon conversations
are described and their use is illustrated in this chapter.

Conversation Rules and States

Imagine a debate in which there are no rules of discourse: each side
talks out of turn, arguing its point at the same time as the other. It would
be difficult, if not impossible, to follow each train of thought and make
sense of it. A formal set of rules prevents this, however, by requiring
each side to talk and listen in turn.
Horizon Conversation Interface 77

Two communicating programs also need to obey rules. An orderly conversation
implies, for example, that a program that sends data can expect the other to
receive it:

An orderly conversation also implies that both programs do not wait to receive
data at the same time, each expecting the other to send it:

Rules impose order on a conversation by specifying what actions either partner
may take at any given point. Rules also allow the LU that is host to a
conversation program to detect errors and to report them in an understandable
way to the programmer. Without these rules, programmers would be forced to
detect errors on their own by observing lost data or deadlock conditions.

Conversation states

LU 6.2 conversation rules rely on the concept of a conversation state. At the
completion of each SOUL communication statement, the conversation is said
to be in one of a number of states. Each state is associated with a set of verbs
(communication statements) the application program is allowed to issue when
in that state, and a set of verbs that are prohibited when in that state. A set of
rules also dictates how a conversation partner may change from one state to
another upon the completion of a verb (in Horizon, a SOUL statement).

Violations of these state rules are detected by the LU at which a program is
running. When a violation occurs, the LU returns a state check indicator to the
program, through the $STATUS and $STATUSD functions. State checks are
described in more detail in “Enforcing direction of data flow” on page 82.

Horizon conversation states

A Horizon conversation partner can be in one of five states:

Partner A Partner B

SEND RECEIVE
SEND RECEIVE

Partner A Partner B

SEND RECEIVE
RECEIVE RECEIVE

State Description

Reset Exists between conversations. No Horizon resources have been
acquired; the process is not open.
78 Rocket Model 204 Horizon: Intersystem Processing Guide

Horizon state rules

The transition rules that specify how a partner changes from one state to
another are described in the examples in this section. The descriptions of the
individual SOUL conversation statements in Chapter 6 contain tables that list
the state changes possible for each statement. Table A-1 in Appendix A lists
the Horizon statements that can be issued in each state.

Horizon state rules also help to address the following issues, each of which is
discussed in detail in this section:

1. Enforcing the direction in which data may be sent at a given point in the
conversation

2. Providing ways for the receiving partner to interrupt the sender and
request the right to send data

3. Providing a way for the sending partner to request acknowledgment that
sent data has been received and accepted, and for the receiving partner to
supply that acknowledgment

Horizon Conversation Data Flow

Data flow rules

The following rules govern Horizon conversation data flow:

• When a conversation begins, the client side is in Send state and the server
side is in Receive state.

• At any given time during a conversation, one and only one partner is
allowed to send data. The other must receive it.

• The direction of data transfer remains the same until the side that is sending
indicates that it is finished. A program indicates that it is finished sending
data by issuing one of the following statements:

– RECEIVE, which allows its partner to send data.

– CONFIRM, to which its partner must respond positively or negatively.

– CLOSE PROCESS, which terminates the conversation.

Send The state in which a partner is allowed to send data.

Receive The state in which a partner must be to receive information.

Confirm An intermediate state in which the receiving side of the conversation
is expected to send a confirmation or an error response to its partner.

Close The state in which the conversation is over (the partner has closed its
process), but local resources are still allocated.

State Description
Horizon Conversation Interface 79

Each conversation partner runs under the supervision of a host LU. (For more
information about LUs, see “SNA Concepts and Terminology” on page 12.) The
LUs coordinate and enforce these data flow rules by monitoring the Send or
Receive state at each end of the conversation.

Figure 5-1 on page 81 shows the effect of these data flow rules on the basic
format of a Horizon conversation. The numbers in parentheses indicate the
sequence of the data flow between the client and server programs.

Most of the Figures in this chapter are arranged to show the logical correlation
of the conversation statements issued by each partner program. Arrows show
the type of information passed between the partners and often unrealistically
suggest that a physical transmission of data accompanies each statement. For
80 Rocket Model 204 Horizon: Intersystem Processing Guide

more information about how the physical transmission of data is determined,
see the discussion of buffering on page 88.

Figure 5-1 Conversation Data Flow Illustration

Following is a brief description of the steps in parentheses in Figure 5-1:

Statement Keyword What Sent Statement Keyword

State at Completion State at Completion
and/or and/or

RESULT %variable RESULT %variable
 and/or and/or

$STATUS Contents $STATUS Contents

Client Program Server Program

(1) OPEN PROCESS OUTB (5) OPEN PROCESS INB
ACCEPT

state=Send state=Receive
. .
. .

(2) SEND data (6) RECEIVE
state=Send RESULT=DATA
. state=Receive
. .

(3) SEND data (7) RECEIVE
state=Send RESULT=DATA
. state=Receive
. .

(4) RECEIVE change-direction (8) RECEIVE
(waiting) RESULT=SEND
. state=Send
. .
. .
. .

(11) RESULT=DATA data (9) SEND
state=Receive state=Send
. .
. .

(12) RECEIVE close indicator (10) CLOSE PROCESS
$STATUS=4 state=Reset
state=Close
.

(13) CLOSE PROCESS
state=Reset

Step(s) Task

(1) The client program allocates a conversation with a server program. After
the OPEN PROCESS completes, the client is in Send state and the
server is in Receive state.
Horizon Conversation Interface 81

Enforcing direction of data flow

A program puts itself into another state by issuing the appropriate statement
during a conversation. For example, a program in Send state changes to
Receive state by issuing a RECEIVE statement. The program thereby
surrenders the right to send information; it must receive until its partner gives
up the right to send.

As shown in Figure 5-2 on page 83, however, a program in Receive state
cannot regain send rights by issuing a SEND statement. Issuing SEND is not
allowed in Receive state (see Appendix A). If the program issues a SEND
statement while in Receive state, it receives a state check from its LU in the
form of non-zero $STATUS and $STATUSD codes. (These codes are set by
the LU as completion codes following each SOUL statement issued.)

A state check means that a program is out of synchronization with its partner
because of an application program error in one or both partners. A program is
issuing a statement while it is in a state in which that statement is not allowed.
By issuing state checks, the LUs enforce the conversation data flow rules.

(2)-(3) The client program sends two messages to the server program. The
client program then issues a RECEIVE statement.

(4) The RECEIVE statement puts the client program in Receive state.

(5)-(8) The server program receives (issues RECEIVE statements) and the host
LU returns data to it. When the LU encounters the “change-direction”
indicator, it places the server program in Send state, and it notifies the
server program by setting its RESULT %variable to “SEND.”

(9)-(10) The server program sends one message and closes (with CLOSE
PROCESS) its side of the conversation.

(11)-(12) The client program receives until it has received all the messages the
server sent. When the LU encounters the “close” indicator, it notifies the
client program by setting $STATUS to 4.

(13) The client program closes its side of the conversation.

Step(s) Task
82 Rocket Model 204 Horizon: Intersystem Processing Guide

After a state check indication, you can issue a QUERY PROCESS statement
to determine the correct conversation state. Then you can terminate the
conversation and fix one or both of the partner programs.

Figure 5-2 Conversation State Check

Following the RESULT %variable

The RESULT parameter of the RECEIVE statement indicates to a program in
Receive state that its partner has surrendered the right to send. Upon
completion of a RECEIVE, the RESULT %variable specified in the RECEIVE
contains a character string indicating what was just received (see Steps 6-8 in
Figure 5-1 on page 81).

If RESULT contains the string “DATA”, the receiving side knows that it has
received information from its partner and should process it accordingly. If
RESULT contains the string “SEND”, the receiving side knows that its partner
is surrendering the right to send. The receiving program can begin to send data.

Unless it intends to interrupt the sender, the receiving side never acts on its
own. It follows the directions in the RESULT %variable until it is told to go into
Send state. Once in Send state, it controls the conversation.

Statement Keyword What Sent Statement Keyword

State at Completion State at Completion
and/or and/or

RESULT %variable RESULT %variable
 and/or and/or

$STATUS Contents $STATUS Contents

Client Program Server Program

SEND data RECEIVE
state=Send RESULT=DATA
. state=Receive
. .
. .

SEND data SEND
state=Send $STATUS=state check

(SEND statement not accepted)
 state=Receive
Horizon Conversation Interface 83

Interrupting the Sender

During a conversation, a conversation partner in Receive state can use one of
two statements to interrupt the sending side:

• SEND ERROR

• SIGNAL PROCESS

Using SEND ERROR to interrupt the sender

If the receiving side detects an error in the information received, such as the
arrival of incorrect data, an “out of space” condition, or an application logic
error, it may force a reversal in the direction of data flow by issuing a SEND
ERROR statement.

SEND ERROR transmits a negative response to the partner and then discards
all not-yet-received information sent by the partner. No further information is
presented to the transaction program. Upon receipt of the negative response,
the remote LU switches the direction of data flow. The program that issued the
SEND ERROR changes into Send state and its partner changes into Receive
state (see Figure 5-3 on page 85).
84 Rocket Model 204 Horizon: Intersystem Processing Guide

Figure 5-3 shows SEND ERROR used in a conversation.

Figure 5-3 Using SEND ERROR in a File Transfer Application

Statement Keyword What Sent Statement Keyword

State at Completion State at Completion
and/or and/or

RESULT %variable RESULT %variable
and/or and/or

$STATUS Contents $STATUS Contents

Client Program Server Program
. .
. .
. .

SEND data RECEIVE
$STATUS=0 RESULT=DATA
state=Send (write to
. sequential file)
. .
. .

SEND data RECEIVE
$STATUS=0 RESULT=DATA
state=Send (write to
. sequential file;
. file overflow
. condition detected)
. .

SEND data (discarded) .
. SEND ERROR
. error .
$STATUS=error state=Send
state=Receive .
. .

RECEIVE data ("file full") SEND "file full"
state=Receive state=Send
RESULT=DATA .
. .

RECEIVE close indicator CLOSE PROCESS
$STATUS=4 state=Reset
state=Close
.

CLOSE PROCESS
state=Reset

(Report error to end user:
"file full, file transfer failed")
Horizon Conversation Interface 85

Using SIGNAL PROCESS to interrupt the sender

If the receiving side of a conversation wants to interrupt its partner without
causing an error condition, it can use the SIGNAL PROCESS statement.

Issuing SIGNAL PROCESS does not put the issuing program into Send state
or discard any data that is already in transit from the sending partner. SIGNAL
PROCESS merely transmits a desire to send to the partner.

The partner program is notified about this desire to send at the completion of
its next SEND statement: its host LU sets a value of 1 in the %variable specified
in the REQSEND parameter of SEND. The partner does not have to pay
attention to this signal. The issuing program must continue to receive until the
partner surrenders the right to send by issuing the RECEIVE statement.

Typically, a sending program knows whether its partner is coded to issue a
SIGNAL PROCESS, and only checks the REQSEND %variable if the
conversation is designed to use this feature.
86 Rocket Model 204 Horizon: Intersystem Processing Guide

Figure 5-4 shows SIGNAL PROCESS used in a conversation.

Figure 5-4 Using SIGNAL PROCESS

Confirming Receipt of Data

Information is typically passed back and forth during a conversation without an
indication of whether it has been received by the intended partner. Sometimes,
however, before it can continue with the transaction, one side of a conversation
needs confirmation that what it sent was received. The CONFIRM and
CONFIRMED statements perform this function.

The sending side issues the CONFIRM statement. Any buffered data is
shipped to the partner along with the indication that a confirmation is expected.
The receiving side must then issue a CONFIRMED or a SEND ERROR
statement before the sending side can continue.

Statement Keyword What Sent Statement Keyword

State at Completion State at Completion
or or

RESULT %variable RESULT %variable

Client Program Server Program
. .
. .
. .

SEND data RECEIVE
state=Send RESULT=DATA
. state=Receive
. .
. signal SIGNAL PROCESS
. state=Receive
. .
. .

SEND data RECEIVE
state=Send RESULT=DATA
REQSEND=1 state=Receive
. .
. .

RECEIVE change-direction RECEIVE
state=Receive RESULT=SEND
. state=Send
. .
. .

RESULT=DATA data SEND
state=Receive state=Send
. .
. .
. .
Horizon Conversation Interface 87

Figure 5-5 is a conversation excerpt showing the use of CONFIRM and
CONFIRMED.

Figure 5-5 Confirming Receipt of Data

Buffering and Shipping Conversation Information

This section describes how the LUs of conversation partner programs buffer
and ship conversation information from partner to partner.

The Horizon buffering process is such that issuing a SEND statement doesn’t
necessarily cause data to be sent immediately. This introduces a potentially
confusing interval between the first SEND statement issued and the eventual
confirmation (or not) of the receipt of the data sent. Also, since a SEND may

Statement Keyword What Sent Statement Keyword

State at Completion State at Completion
or or

RESULT %variable RESULT %variable

Client Program Server Program

SEND data RECEIVE
state=Send RESULT=DATA
. state=Receive
. .
. .

CONFIRM confirmation request RECEIVE
(waiting) RESULT=CONFIRM
(return here) state=Confirm

 .
 .

 Do what is necessary
 before confirming
 (like closing a
 sequential file to
 assure that all data
 is written to non-
 volatile storage).
 .
 .

$STATUS=0 confirmation indicator CONFIRMED
state=Send state=Receive

 or

$STATUS=error error indicator SEND ERROR
state=Receive state=Send
88 Rocket Model 204 Horizon: Intersystem Processing Guide

not cause data to be shipped immediately, the application programmer must
know the statements that do cause immediate shipment.

How the LUs buffer and ship data

Figure 5-6 on page 90 shows the larger context for the conversation depicted
in Figure 5-1. The conversation between the partner programs, Program A and
Program B, uses a session established between their respective LUs, M204A
and M204B.

The LUs buffer data and handle statement processing for the application
programs. While a statement issued by an application program is being
executed by an LU, the application program’s processing is suspended.
Application program processing continues when the LU returns control to the
application program.

When a program issues a SEND statement, the data sent is stored in the
conversation buffer in that program’s LU. The contents of the buffer are held
until it is full or until the application program issues a statement that explicitly
causes the LU to send, or flush, the buffer. The statements that can cause an
immediate buffer flush are discussed later in this section.

The contents of the sending LU’s conversation buffer is shipped over the
session to the partner LU’s conversation buffer, where it is stored until the
partner program issues a statement that receives data.

Large blocks of data are broken into multiple network conversation buffers on
the sending side and reassembled on the receiving side.

Figure 5-6 shows how the LUs buffer and ship data. This depiction of the
physical transmission of conversation information complements the preceding
Figures in this chapter. The earlier Figures emphasize the logical correlation of
conversation statements.

In Figure 5-6, the data from Program A’s three SEND statements is stored in
the conversation buffer in LU M204A. Program A’s RECEIVE statement causes
LU M204A to ship the conversation buffer over the session to LU M204B’s
conversation buffer. The buffer’s data is staged in a “receive buffer” in LU
M204B before being passed through to the conversation buffer.
Horizon Conversation Interface 89

The data is stored in LU M204B’s conversation buffer until Program B receives
it with RECEIVE statements. LU M204A appends a change-direction indicator
to the buffered information when Program A issues a RECEIVE statement.

Figure 5-6 Buffering Data

Four statements cause immediate buffer flushing

The following statements can cause an immediate buffer flush:

• RECEIVE

When issued in Send state, RECEIVE indicates to the host LU that the
application program intends to change the conversation direction. The LU
then sends all buffered data to the partner.

• CONFIRM

 Program A LU M204A LU M204B Program B

 OPEN PROCESS X
 SEND
 SEND
 SEND
 RECEIVE (wait)

Conversation
Buffer

(data)
(data)
(data)

 (change-dir)

Session

Conversation
Buffer

(data)
(data)
(data)

 (change-dir)

OPEN PROCESS Y
RECEIVE
RECEIVE
RECEIVE
RECEIVE (chng-dir)

Receive
Buffer
90 Rocket Model 204 Horizon: Intersystem Processing Guide

CONFIRM indicates that the application program expects a confirmation
from its partner after all data that has been sent up to that point is physically
shipped.

• FLUSH PROCESS

FLUSH PROCESS is used by an application program that needs to force a
physical send. FLUSH PROCESS could be used, for example, if a program
that sends data only intermittently to its partner needs to have that data
physically sent immediately, rather than be buffered to conserve network
utilization.

• INVITE

Issued in Send state, INVITE, like RECEIVE, indicates to the host LU that
the application program intends to change the conversation direction. The
LU then sends all buffered data to the partner. Unlike RECEIVE, the issuing
program does not wait for a reply after the buffer is sent.

Buffering delays error and data-receipt notification

Because the LU buffers data, not always shipping it immediately, certain errors
(especially OPEN PROCESS errors) do not reflect back to the client program
until a buffer is actually shipped through the network. Depending on how the
conversation is constructed, the client program can issue an OPEN PROCESS
statement and many SEND statements before it receives an OPEN PROCESS
error condition.

Note: A good completion code following a SEND statement is only an
indication that the data to be transmitted has been accepted by Model 204. It
does not tell the program whether that data has been received by the
conversation partner. Before taking any action that depends on the successful
arrival of sent data, you should issue a CONFIRM, which forces the data to be
physically sent and which requires an acknowledgment from the other side.

Communicating with Multiple Partners Concurrently

Typically a partner program waits until information is received from the remote
partner before proceeding to the next statement in the program. This serial
processing is satisfactory for applications that depend on input from a specific
partner before they can continue, but restricts the ability to communicate
efficiently with multiple concurrent partners: regardless of the number of
concurrent conversations the program has, the program must request and wait
for data from one partner at a time before soliciting data from another partner.

Horizon also supports applications in which a local program sends a request for
data to multiple partners and processes their replies in any order. The local
program invites its partners to send it data, then either waits for the partners to
respond or continues executing other tasks until its partners respond.
Horizon Conversation Interface 91

Inviting replies

The INVITE statement causes residual data in the send buffer to be flushed to
the partner along with a Change Direction indicator. This places the sender in
Receive state and the partner in Send state, like issuing the RECEIVE
statement. Unlike RECEIVE, INVITE does not cause the program to wait for a
reply. Instead, it continues to execute. Subsequent INVITE statements can
therefore be issued to other partners before processing of replies begins.

Detecting replies

To detect whether and from whom a reply has arrived, the application requires
a WAIT FOR RECEIPT or a TEST RECEIPT statement following INVITE. Both
WAIT FOR RECEIPT and TEST RECEIPT permit the application to detect a
reply from a specific conversation ID or from any of the partner conversations
or processes with outstanding invitations.

WAIT FOR RECEIPT suspends further running of the program until the
specified reply is received. TEST RECEIPT detects the specified reply but does
not stop the program from running. Situations for which WAIT FOR RECEIPT
and TEST RECEIPT are suitable are described below.

Awaiting requests for data from multiple partners

If your application requires data from multiple partners to complete a task
before the program can do further processing, use the WAIT FOR RECEIPT
statement after INVITE. The WAIT FOR RECEIPT statement suspends
execution of your program until a reply is received from the specified remote
partner(s). Your program awakens when a specified reply has arrived. The
RECEIVE statement then receives the data into program variables.

Figure 5-5 on page 88 is an example of a SOUL program in which the client
program initiates tasks at both server program A and server program B. The
client waits while the servers process the request. The $STATUS=0 code
following the client’s WAIT FOR ANY RECEIPT statement tells the client to
RECEIVE the data from server program B. The $STATUS=0 code following the
client’s next WAIT FOR ANY RECEIPT statement tells the client to RECEIVE
the data from server program A.
92 Rocket Model 204 Horizon: Intersystem Processing Guide

The shaded area in Figure 5-7 indicates where the client program and the
server programs are executing concurrently.

Figure 5-7 Waiting for receipt of data

Statement Keyword What Sent Statement Keyword What Sent Statement Keyword

State at Completion State at Completion State at Completion
 or or or
$STATUS Contents $STATUS Contents $STATUS Contents
 or or or
RESULT %variable RESULT %variable RESULT %variable

Server Program A Client Program Server Program B

OPEN PROCESS B
INVITE data OPEN PROCESS X

ACCEPT
state=Receive change-dir state=Receive

RECEIVE
OPEN PROCESS A state=Send

.

. RECEIVE FROM %cid

. state=Receive
WAIT FOR ANY RECEIPT -
RETURN %cid

$STATUS=1
(no outstanding invitations remaining)

OPEN PROCESS Z ACCEPTdata INVITE .
state=Receive change-dir state=Receive .

(working)
RECEIVE WAIT FOR ANY RECEIPT - .

state=Send RETURN %cid .
. . .
. . .
. (waiting) .
. . .
. . .
(working) %cid=’B’ data SEND
. $STATUS= 0 state=Send
. .
. RECEIVE FROM %cid .
. state=Receive .
. WAIT FOR ANY RECEIPT -
. RETURN %cid
. .
. (waiting)
. .
. .

SEND data %cid=’A’
state=Send $STATUS= 0
Horizon Conversation Interface 93

Initiating a background task

You can use the INVITE statement followed by TEST RECEIPT to have a
partner process serve as a background task. Since the TEST RECEIPT
statement does not suspend execution of your program, you can invite a
partner program to perform a task and can continue to perform other tasks until
a reply is received from the partner. When TEST RECEIPT $STATUS codes
indicate that a reply has arrived, the RECEIVE statement puts the data into
program variables.

The application subsystem performing the background task can execute both
command level commands and SOUL procedures.

Figure 5-8 on page 95 is an example of a SOUL program in which the client
program initiates a task at server program A and continues to run while server
program A is processing the task request. The client periodically (in this case,
each time it is about to use READ SCREEN) issues a TEST FOR RECEIPT A
statement. When the $STATUS code indicates that no reply has been received
($STATUS/D=1/2), the client program continues with other work. When the
$STATUS code indicates that server program A has replied ($STATUS=0), the
client program RECEIVEs the data.

The shaded area in the figure indicates where the client program and the server
programs are executing concurrently.
94 Rocket Model 204 Horizon: Intersystem Processing Guide

With the method shown in Figure 5-8, you can initiate multiple background
tasks and can test for replies from invited partners.

Figure 5-8 Testing for receipt of data

Statement Keyword What Sent Statement Keyword

State at Completion State at Completion
and/or and/or

RESULT %variable RESULT %variable
and/or and/or

$STATUS Contents $STATUS Contents

Client Program Server Program A

.

.

.

READ SCREEN

OPEN PROCESS A
 state=Send

. .
TEST FOR RECEIPT A .

.
$STATUS= 0 .

RECEIVE FROM A
state=Receive

READ SCREEN
.
.
.

INVITE data OPEN PROCESS
ACCEPT

state=Receive change-direction state=Receive

TEST FOR RECEIPT A RECEIVE
state=Send

$STATUS/D=1/2 .
(no data has arrived) .

(working)
READ SCREEN .

.
(process transaction) .

. data SEND
Horizon Conversation Interface 95

96 Rocket Model 204 Horizon: Intersystem Processing Guide

6
Horizon SOUL Interface

Overview

This section describes individually the SOUL statements used by
Horizon. The description of each statement contains usage information,
complete syntax, and conversation state dynamics.

Dependence on conversation state

Remember that the Horizon SOUL statements that can be issued by a
process are dependent on the state of the particular conversation. This
state can be determined by using the QUERY PROCESS statement,
which is described in this section.

Error checking

Error conditions encountered during the execution of the Horizon SOUL
statements are not displayed on the terminal. The SOUL request should
check for errors by using the $STATUS and $STATUSD functions. The
text of the most recently issued error message can be retrieved by using
the $ERRMSG function.

CLOSE PROCESS Statement

Function The CLOSE PROCESS statement deallocates the specified
conversation from the process.

Syntax The CLOSE PROCESS format follows:
Horizon SOUL Interface 97

CLOSE PROCESS {cid | processname | %variable}
 [SYNCLEVEL | FLUSH | CONFIRM | ERROR | %variable]

Where:

• cid or processname or %variable is the conversation ID on the OPEN
PROCESS statement for this conversation.

• If no CID value is specified on the OPEN PROCESS statement,
processname should be used. If a CID value is specified on the OPEN
PROCESS, you also must specify that value here on the CLOSE
PROCESS statement.

• SYNCLEVEL specifies that the actions taken depend on whether
CONFIRM or NOCONFIRM is specified on the DEFINE PROCESS
command:

– If CONFIRM is specified, the actions indicated by CLOSE PROCESS
CONFIRM are taken.

– If NOCONFIRM is specified, the actions indicated by CLOSE PRO-
CESS FLUSH are taken.

SYNCLEVEL is the default.

• FLUSH specifies that any data buffered by preceding SEND statements is
transmitted to the remote partner before the conversation is deallocated.

• CONFIRM specifies that a CONFIRM request is sent to the remote partner
before the conversation is deallocated. CONFIRM also implies a buffer
flush.

• ERROR specifies that the conversation is terminated abnormally.

• %variable contains “SYNCLEVEL,” “FLUSH,” “CONFIRM,” or “ERROR.”
98 Rocket Model 204 Horizon: Intersystem Processing Guide

Conversation
state

Valid conversation states

Status codes

CONFIRM Statement

Function CONFIRM sends a confirmation request to the remote partner. After issuing
CONFIRM, the sending program waits for the receiver to issue CONFIRMED
or SEND ERROR. This exchange allows the local and remote partners to
synchronize their processing. CONFIRM causes the conversation buffer, which
contains all accumulated messages, to be flushed.

Syntax The CONFIRM statement format follows:

CONFIRM {cid | processname | %variable} REQSEND %variable

Where:

• cid or processname or %variable is the conversation ID on the OPEN
PROCESS statement for this conversation.

• If no CID value is specified on the OPEN PROCESS statement,
processname should be used. If a CID value is specified on the OPEN
PROCESS, you also must specify that value here on the CONFIRM
statement.

State Statement

Send state For CLOSE PROCESS with SYNCLEVEL,
 CONFIRM, or FLUSH

Send, Receive, or For CLOSE PROCESS with ERROR
Confirm state

 New
S / SD State Description

0 0 Reset Normal completion.
2 2 Receive SEND ERROR statement issued by partner.
4 0 Reset Partner process closed conversation normally.
4 1 Reset Partner process ended abnormally.
5 any no change Parameter check (coding error). See

Table 8-1, which lists the meanings of the
individual $STATUSD codes.

10-99 Close Resource allocation failures (see Table 8-1).
Horizon SOUL Interface 99

• REQSEND %variable is used to detect a signal from the partner. While the
conversation is in Send state, a SIGNAL PROCESS
(REQUEST_TO_SEND) statement from the conversation partner can be
received, indicating that the partner wishes to enter Send state.

Reception of a SIGNAL from the partner is indicated in the REQSEND
%variable:

– A value of 1 indicates a SIGNAL was received.

– A value of 0 indicates no SIGNAL was received.

 Conversation
state

Valid conversation state: Send

Status codes

CONFIRMED Statement

Function The CONFIRMED statement sends a positive confirmation to the remote
partner that the last statement was executed successfully. This is only issued
in response to a CONFIRM request.

Syntax The syntax of the CONFIRMED statement follows:

CONFIRMED {cid | processname | %variable}

Where:

• cid or processname or %variable is the conversation ID on the OPEN
PROCESS statement for this conversation.

• If no CID value is specified on the OPEN PROCESS statement,
processname should be used. If a CID value is specified on the OPEN
PROCESS, you also must specify that value here on the CONFIRMED
statement.

 New
S / SD State Description

0 0 Send Normal completion.
2 2 Receive SEND ERROR statement issued by partner.
3 3 no change State check.
4 1 Close Partner process ended abnormally.
5 any no change Parameter check (coding error). See

Table 8-1, which lists the meanings of the
individual $STATUSD codes.

10-99 Close Resource allocation failures (see Table 8-1).
100 Rocket Model 204 Horizon: Intersystem Processing Guide

Conversation
state

Valid conversation state: Confirm

Status codes

FLUSH PROCESS Statement

Function The FLUSH PROCESS statement causes the conversation buffer to be sent to
the remote partner.

Syntax The FLUSH PROCESS format follows:

FLUSH PROCESS {cid | processname | %variable}

Where:

• cid or processname or %variable is the conversation ID on the OPEN
PROCESS statement for this conversation.

• If no CID value is specified on the OPEN PROCESS statement,
processname should be used. If a CID value is specified on the OPEN
PROCESS, you also must specify that value here on the FLUSH
PROCESS statement.

Conversation
state

Valid conversation state: Send

 New
S / SD State Description

0 0 Receive Normal completion when issued in
Confirm state.

Send Normal completion when issued in
Confirm Send state.

Close Normal completion when issued in
Confirm Close state.

3 3 no change State check.
5 any no change Parameter check (coding error). See

Table 8-1, which lists the meaning of each
$STATUSD code.

10-99 Close Resource allocation failures (see Table 8-1).
Horizon SOUL Interface 101

 Status codes

INVITE Statement

Function The INVITE statement permits a program to request data from one or more
partners simultaneously and allows the issuing program to continue to run
while its requests for data are being processed. The INVITE statement causes
the send buffer to be flushed to the partner, and it places the partner in Send
state, enabling the partner to send data when it is ready. After INVITE is issued,
the issuing program continues to execute.

The program that issues INVITE has the option of requesting that its partner
send confirmation before entering Send state.

Usage The INVITE statement is used to change the direction of the conversation from
Send to Receive state. The RECEIVE statement is used to accept the data
transmitted by the partner.

Following each INVITE statement you may issue multiple RECEIVE
statements to accept data sent in reply to the INVITE. However, issuing
consecutive INVITEs to the same partner is an error. Since INVITE may be
issued only in Send state, and since the first INVITE statement changes the
conversation state from Send to Receive, a second INVITE results in a state
check. When the “inviting” partner next receives a send indication from its
partner, it again enters Send state and may again issue INVITE.

Syntax The INVITE statement format follows:

INVITE {cid|processname|%variable}
 [SYNCLEVEL|FLUSH|CONFIRM]

Where:

• cid or processname or %variable is the conversation ID on the OPEN
PROCESS statement for this conversation. If no CID value is specified on
the OPEN PROCESS statement, use the process name.

 New
S / SD State Description

0 0 Send Normal completion.
2 2 Receive SEND ERROR statement issued by partner.
3 3 no change State check.
4 1 Close Partner process ended abnormally.

5 any no change Parameter check (coding error). See
Table 8-1, which lists the meaning of each
$STATUSD code.

10-99 Close Resource allocation failures (see Table 8-1).
102 Rocket Model 204 Horizon: Intersystem Processing Guide

• SYNCLEVEL, the default, specifies that the actions taken depend on
whether CONFIRM or NOCONFIRM is specified on the DEFINE
PROCESS command for the program that issues this INVITE:

– If CONFIRM is specified, the actions described below for INVITE CON-
FIRM are taken.

– If NOCONFIRM is specified, the actions described below for INVITE
FLUSH are taken.

• FLUSH causes the LU to flush the contents of the send buffer, sending with
it a change-direction indicator. The remote partner enters Send state.

• CONFIRM causes the local LU to flush the contents of the send buffer
along with a confirmation request and a change-direction indicator. The
remote partner enters Confirm state and must issue an appropriate verb
(CONFIRMED, SEND ERROR, or CLOSE). If it issues CONFIRMED or
SEND ERROR, it then enters Send state.

INVITE CONFIRM is valid only when the conversation’s synchronization
level is CONFIRM.

Conversation
state

Valid conversation state: Send

Status codes and state transitions

OPEN PROCESS Statement

Function The OPEN PROCESS statement allocates local resources necessary for a
conversation. These resources include local storage as well as a session
connecting the local Model 204 system to the remote partner. If a non-busy

 New
S / SD State Description

0 0 Receive OK

2 2 Receive Partner responded to INVITE CONFIRM
 with SEND ERROR

3 3 no change State check (issued in wrong
conversation state)

4 1 Close Partner process ended abnormally
5 any no change Parameter check (coding error). See

Table 8-1, which lists the meaning of each
$STATUSD code.

10-99 Close Resource allocation failures (see Table 8-1).
Horizon SOUL Interface 103

session is available, it is used; otherwise an attempt to activate a new session
is made if session limits have not been reached.

There are two distinct uses of the OPEN PROCESS statement:

• For a client process, it allocates an outbound conversation.

An outbound conversation is identified by the absence of the ACCEPT
clause. Allocation involves creating control blocks, getting control of a
session for the conversation, and requesting the initiation of the remote
process with optional initialization parameters.

• For a server process, it identifies an inbound conversation.

An inbound OPEN PROCESS statement, identified by OPEN PROCESS
with the ACCEPT clause, may be issued only by a server process. It
receives any initialization parameters passed to it during the initialization of
the conversation by the client process.

In addition, the OPEN PROCESS statement establishes the conversation ID
(CID) for both types of conversations.

Usage A conversation begins when an OPEN PROCESS statement is issued in a
SOUL request. A conversation ends when one of the following happens:

• The request issues the CLOSE PROCESS statement.

• The end user’s thread returns to command level.

• The request issues the END statement (TPROCESS only).

• The request is cancelled.

• The thread is restarted.

• The network connection is severed by the Model 204 system administrator
who issues the CLOSE LINK command.

• The communication path (session) is broken by some external event
beyond the control of Model 204.

Syntax The OPEN PROCESS format follows:

OPEN PROCESS {processname] %variable}
[CID {name | %variable}]

Client process (outbound) parameters:

[AT {destination | %variable}]
[WITH]
[USERID {%variable | ’string’}]
[PASSWORD {%variable | ’string’}]
[{ACCOUNT | PROFILE} {%variable | ’string’}]
[INITIAL {DATA ’string’ | DATA %variable
 | IMAGE image}...]
104 Rocket Model 204 Horizon: Intersystem Processing Guide

Server process (inbound) parameters:

ACCEPT
[INITIAL {DATA %variable | IMAGE image}...]

Where:

• processname depends on the program that issues the OPEN PROCESS:

– For a client (outbound) program: processname is the name of a client
process specified in a client DEFINE PROCESS command.

– For a server (inbound) program: processname is any name chosen by
the SOUL programmer.

Note: Names beginning with CCA are specifically disallowed from use in the
OPEN PROCESS statement.

• CID is the ID of a conversation for subsequent Horizon SOUL statements.
If CID is not specified, processname is used as the ID. However, CID must
be specified if the user has two or more active conversations with the same
processname. If CID is specified, subsequent conversation statements
must also specify the same CID value.

• AT specifies the symbolic destination for a remote partner. The destination
name must correspond to a symbolic name specified on the DESTINATION
parameter of the DEFINE PROCESS command for processname. Refer to
the DEFINE PROCESS command client (outbound) options. If not
specified, the first processgroup of the DESTINATION parameter is used.

• AT may not be specified if there is only one processgroup in the
DESTINATION parameter.

• USERID is the user ID to be logged in at the server node on behalf of this
OPEN PROCESS. If this parameter is omitted, Model 204 transmits the
current user ID. If the local user on the client system is not logged in,
Model 204 transmits no user ID. If this parameter is coded, the DEFINE
PROCESS command for processname must specify UIDSOURCE=OPEN.

• PASSWORD is the password to be used for login at the server node. If
USERID is coded, this parameter is required. If USERID is omitted, this
parameter is used if coded and if a current user ID exists for the thread.

• ACCOUNT and PROFILE are synonyms and are mutually exclusive. They
may only be coded if the DEFINE PROCESS command for processname
specifies the OPEN option. They behave the same way the USERID
parameter does.

• INITIAL depends on the program that issues the OPEN PROCESS:

– For a client (outbound) program: INITIAL specifies the Program Initial-
ization Parameters (PIP data) to be passed to the remote partner

– For a server (inbound) program: INITIAL specifies the SOUL areas
used to accept the Program Initialization Parameters
Horizon SOUL Interface 105

The total length of the PIP data must be less than the DATALEN value
specified on the DEFINE PROCESS command for processname.

Conversation
state

Valid conversation state: Reset

 Status codes

QUERY PROCESS Statement

Function QUERY PROCESS allows the SOUL programmer to retrieve information from
the host LU about one or more characteristics of the conversation.

Syntax Following the choice of cid, processname, or %variable is a list of
parameter/%variable pairs. The parameters correspond to the conversation
characteristics about which information can be returned by the host LU.

After a program issues a QUERY PROCESS statement with one or more
parameters and accompanying %variables, the LU returns the value of the
indicated conversation characteristic, storing it in the %variable following the
parameter. A compilation error occurs if the type or length of any %variable is
invalid.

The QUERY PROCESS format follows:

QUERY PROCESS {cid | processname | %variable}

Parameters (include at least one):

STATE %variable
PROCESSGROUP %variable
REMOTEID %variable

 New
S / SD State Description

0 0 Send Normal completion when issued by
client (outbound) program.

 Receive Normal completion when issued by
server (inbound) program.

2 2 Receive SEND ERROR statement issued by partner.
4 1 Close Partner process ended abnormally.

5 any no change Parameter check (coding error). See
Table 8-1, which lists the meanings of

 the individual $STATUSD codes.
10-99 Close Resource allocation failures (See Table 8-1).
106 Rocket Model 204 Horizon: Intersystem Processing Guide

SYNCLEVEL %variable
MODENAME %variable

Where:

• cid or processname or %variable is the conversation ID on the OPEN
PROCESS statement for this conversation, if it is open.

• If no CID value is specified on the OPEN PROCESS statement,
processname should be used. If a CID value is specified on the OPEN
PROCESS, you also must specify that value here on the QUERY
PROCESS statement.

• STATE is the current conversation state of the conversation. The value of
STATE is a string of maximum length 7. Value options follow:

– RESET

– SEND

– RECV (to indicate Receive state)

– CONFIRM

– CONFSND (to indicate Confirm Send state)

– CONFCLS (to indicate Confirm Close state)

– CLOSE

For more information about conversation states, see “Conversation states”
on page 78. For more information about the Confirm Send and Confirm
Close states, see the discussion of the RESULT parameter of the
RECEIVE statement in “RECEIVE Statement” on page 108.

• PROCESSGROUP is the name of the processgroup associated with the
conversation. The value is a string of length 8.

• REMOTEID is the name of the LU at which the remote partner is located.
The value is a string of length 8.

• SYNCLEVEL is the level of synchronization processing used for the
conversation, that is, whether confirmation processing is allowed. The
value is a string of maximum length 9. Values are:

– CONFIRM

– NOCONFIRM

CONFIRM or NOCONFIRM can be set on the DEFINE PROCESS
command, described in “Defining a Horizon network” on page 26.

• MODENAME is the mode table entry for the session which the conversation
is using. The value is a string of length 8.

Conversation
state

Valid conversation states:

• Any state: for STATE option
Horizon SOUL Interface 107

• Any state except Reset state: for other options

 Status codes and state transitions

RECEIVE Statement

Function The RECEIVE statement receives any data or indicator sent by the remote
partner.

Syntax The RECEIVE statement format follows:

RECEIVE {IMAGE imagename | %variable} FROM
 {cid | processname | %variable} RESULT %variable

Where:

• imagename specifies that the receiving area is an image previously defined
by an image definition.

The receiving area can also be a %variable. The data received from the
remote partner is assumed to be in string form and is converted to the type
of %variable.

• cid or processname or %variable is the conversation ID on the OPEN
PROCESS statement for this conversation.

• If no CID value is specified on the OPEN PROCESS statement,
processname should be used. If a CID value is specified on the OPEN
PROCESS, you also must specify that value here on the RECEIVE
statement.

• RESULT %variable is used to determine what the process has received.
RESULT should only be examined if $STATUS is 0 or 1, since otherwise,
nothing is placed in this %variable.

The RESULT %variable must be a string variable at least 15 characters in
length. It can contain only one of these values following a RECEIVE
statement:

– DATA: All of the data issued by one send operation by the remote part-
ner has been received in the %variable or IMAGE. (It may be neces-

 New
S / SD State Description

0 0 no change Normal completion.
5 any no change Parameter check (coding error). See

Table 8-1, which lists the meanings of
 the individual $STATUSD codes.

10-99 Close Resource allocation failures (see Table 8-1).
108 Rocket Model 204 Horizon: Intersystem Processing Guide

sary to IDENTIFY another IMAGE to reference all of the data.)

– DATA TRUNCATED: Part of the data issued by one send operation by
the remote partner has been received in the %variable or IMAGE. (It
may be necessary to IDENTIFY another IMAGE to reference even the
data received.) The data is truncated on the right. To correct this prob-
lem, increase the setting of DATALEN on the DEFINE PROCESS-
GROUP command.

– SEND: No data was received; the SOUL program may issue a SEND
statement.

– CONFIRM: No data was received; the SOUL program may issue a
CONFIRMED or SEND ERROR statement; a CONFIRMED statement
can return the state to Receive.

– CONFIRM SEND: No data was received. The SOUL program may now
issue a CONFIRMED or SEND ERROR statement; a CONFIRMED
statement can change the state to Send.

– CONFIRM CLOSE: No data was received. The SOUL program may
issue a CONFIRMED or SEND ERROR statement; a CONFIRMED
statement can change the state to Reset.

A compilation error results if the type or length of the RESULT %variable is
incorrect.

Note: The end of the conversation is indicated by $STATUS=4 and not by a
RESULT value.

Conversation
state

Valid conversation states: Send or Receive state
Horizon SOUL Interface 109

 Status codes and state transitions

SEND Statement

Function Initiate transmission of data from an application program to its remote partner.

Syntax SEND [IMAGE imagename |’string’| %variable]
 TO {cid | processname | %variable} [FLUSH | CONFIRM]
 REQSEND %variable

Where:

• imagename specifies that the object sent is an image previously defined by
an image definition.

The object sent can also be a quoted string or a %variable. A %variable is
converted to string form before being sent to the remote partner.

 New
S / SD State Description

0 0 Unchanged Normal completion.
1 0 Check Special completion: no data, check RESULT:

RESULT

2 2 Unchanged SEND ERROR statement issued by partner.
3 3 Unchanged State check.
4 0 Close Partner process closed conversation normally.
4 1 Close Partner process ended abnormally.
5 any no change Parameter check (coding error). See

Table 8-1, which lists the meanings of
 the individual $STATUSD codes.

10-99 Close Resource allocation failures (see Table 8-1).

RESULT %variable Meaning

DATA TRUNCATED Data received was longer
than target variable or
DATALEN; remain in
Receive state.

DATA INCOMPLETE Not used (always truncated)
SEND Receiver is now in Send

state.
CONFIRM Respond with CONFIRMED

or SEND ERROR; remain in
Receive state.

CONFIRM SEND Respond with CONFIRMED
or SEND ERROR; enter
Send state.

CONFIRM CLOSE Respond with CONFIRMED
or SEND ERROR; enter
Close state.a
110 Rocket Model 204 Horizon: Intersystem Processing Guide

• cid or processname or %variable is the conversation ID on the OPEN
PROCESS statement for this conversation.

• If no CID value is specified on the OPEN PROCESS statement,
processname should be used. If a CID value is specified on the OPEN
PROCESS statement, you also must specify it on the SEND statement.

• FLUSH is identical to issuing a FLUSH statement following the SEND.

• CONFIRM is identical to issuing a Confirm statement following the SEND.

• REQSEND %variable is used to detect a signal from the partner. While the
conversation is in Send state, a signal may be received, indicating that the
remote conversation partner wishes to enter Send state.

The REQSEND %variable indicates a signal from the partner:

– A value of 1 indicates a SIGNAL was received.

– A value of 0 indicates no SIGNAL was received.

Conversation
state

Valid conversation state: Send

 Status codes and state transitions

SEND ERROR Statement

Function The SEND ERROR statement sends a negative acknowledgment indicating
that the local partner detected an application error.

Syntax The SEND ERROR statement format follows:

SEND ERROR TO {cid | processname | %variable}
 REQSEND %variable

Where:

 New
S / SD State Description

0 0 Send Normal completion.
2 2 Receive SEND ERROR statement issued by partner.
3 3 no change State check.
4 1 Close Partner process ended abnormally.
5 any no change Parameter check (coding error). See

Table 8-1, which lists the meanings of
 the individual $STATUSD codes.

10-99 Close Resource allocation failures (see Table 8-1).
Horizon SOUL Interface 111

• cid or processname or %variable is the conversation ID on the OPEN
PROCESS statement for this conversation.

• If no CID value is specified on the OPEN PROCESS statement,
processname should be used. If a CID value is specified on the OPEN
PROCESS, you also must specify that value here on the SEND ERROR
statement.

• REQSEND %variable is used to detect a signal from the partner. While the
conversation is in Send state, a SIGNAL (REQUEST_TO_SEND) may be
received, indicating that the remote conversation partner wishes to enter
Send state.

Reception of a signal from the partner is indicated in the REQSEND
%variable:

– A value of 1 indicates a SIGNAL was received.

– A value of 0 indicates no SIGNAL was received.

Conversation
state

Valid conversation states: Send, Receive, or Confirm state

 Status codes and state transitions

SIGNAL PROCESS Statement

Function The SIGNAL PROCESS statement notifies the remote partner that the local
partner is requesting to enter Send state for the conversation.

Syntax The SIGNAL PROCESS format follows:

SIGNAL PROCESS {cid | processname | %variable}

Where:

 New
S / SD State Description

0 0 Send Normal completion.
2 2 Receive SEND ERROR statement issued by partner.
3 3 no change State check.
4 1 Close Partner process ended abnormally.
5 any no change Parameter check (coding error). See

Table 8-1, which lists the meanings of
 the individual $STATUSD codes.

10-99 Close Resource allocation failures (see Table 8-1).
112 Rocket Model 204 Horizon: Intersystem Processing Guide

• cid or processname or %variable is the conversation ID on the OPEN
PROCESS statement for this conversation.

• If no CID value is specified on the OPEN PROCESS statement,
processname should be used. If a CID value is specified on the OPEN
PROCESS, you also must specify that value here on the SIGNAL
PROCESS statement.

Conversation
state
information

Valid conversation states: Receive or Confirm state

Status codes and state transitions

TEST RECEIPT Statement

Function The TEST RECEIPT statement determines whether or not a partner process
has sent anything in reply to an INVITE statement. Using the TEST RECEIPT
statement instead of a WAIT FOR RECEIPT statement allows the issuing
program to perform other tasks while the partner is preparing its reply to the
INVITE.

The TEST RECEIPT statement permits the application to test for the reply from
a specific conversation ID or from any of the partner conversations or
processes.

After a reply is detected, the RECEIVE statement is used to receive the data or
indicator sent.

Syntax The TEST RECEIPT statement format follows:

TEST [FOR] ANY RECEIPT RETURN %variable

TEST [FOR] RECEIPT {cid | processname | %variable}

Where:

• TEST ANY RECEIPT means that the receipt of information for any one of
the conversations with outstanding INVITEs is sufficient to satisfy the
TEST.

 New
S / SD State Description

0 0 no change Normal completion.
3 3 no change State check.
5 any no change Parameter check (coding error). See

Table 8-1, which lists the meanings of
 the individual $STATUSD codes.

10-99 Close Resource allocation failures (see Table 8-1).
Horizon SOUL Interface 113

%variable is a SOUL string variable into which is stored the CID of the
conversation that replied. Only this form of the TEST statement requires the
return of identifying information from the partner.

• TEST RECEIPT means that the receipt of information from the
conversation or partner specified by cid or processname or %variable is
sufficient to satisfy the TEST.

cid or processname or %variable is the conversation or partner identifier on
the OPEN PROCESS statement for this conversation. If no CID value is
specified on the OPEN PROCESS statement, use the process name.

Conversation
state
information

Valid conversation states: Not applicable (N/A). Horizon does no state
checking for TEST RECEIPT.

Status codes and state transitions

WAIT FOR RECEIPT Statement

Function The WAIT FOR RECEIPT statement causes the issuing SOUL program to stop
running until a reply is received from the specified remote partner(s). After a
reply is detected, the RECEIVE statement is used to receive the data or
indicator sent.

The WAIT FOR RECEIPT statement permits the application to wait for a
specific conversation ID to respond before it awakens. Or, the application can
awaken when any of the conversations or processes respond.

 Syntax The WAIT FOR RECEIPT statement format follows:

WAIT [duration] [FOR] ANY RECEIPT RETURN %variable

 New
S / SD State Description

0 0 N/A OK (data has arrived from
remote partner).

1 1 N/A No outstanding INVITEs remain.
1 2 N/A No data has arrived from

remote partner.
5 5 N/A Process not opened (only if cid or process

name specified).
5 17 N/A Cid or process name too long.
10-99 N/A Resource allocation failures (see Table 8-1).
114 Rocket Model 204 Horizon: Intersystem Processing Guide

WAIT [duration] [FOR] RECEIPT
 {cid | processname | %variable}

Where:

• WAIT FOR ANY RECEIPT causes the program to reawaken upon the
receipt of information from any one of the conversations with outstanding
INVITEs.

%variable is a SOUL string variable into which is stored the CID of the
conversation that replied. Only this form of the WAIT FOR RECEIPT
statement requires the return of identifying information from the partner.

• WAIT FOR RECEIPT causes the program to reawaken upon the receipt of
information from the conversation or partner specified by cid or
processname or %variable.

cid or processname or %variable is the conversation or partner identifier on
the OPEN PROCESS statement for this conversation. If no CID value is
specified on the OPEN PROCESS statement, use the process name.

• duration = integer | %variable SEC[S]

duration is an optional parameter that limits the length of time (in seconds)
that the WAIT statement waits for the specified receipt to occur. If the
specified receipt does not occur before or during the execution of the timed
WAIT, the WAIT statement completes with $STATUS=1 and
$STATUSD=3.

Note: duration has nothing to do with the TIMEOUT parameter of the DEFINE
PROCESS command for the conversation. If TIMEOUT is exceeded during
execution of a conversation statement, the conversation is immediately
terminated abnormally. The timed WAIT allows the programmer a variety of
possible consequent actions if duration is exceeded, including abnormal
termination of the conversation.

Conversation
state

Valid conversation states: Not applicable (N/A). Horizon does no state
checking for WAIT FOR RECEIPT.
Horizon SOUL Interface 115

Status codes and state transitions

 New
S / SD State Description

0 0 N/A OK - information has arrived.
1 1 N/A No outstanding INVITEs to

wait for.
1 3 N/A WAIT duration reached before

events complete.
5 any N/A Parameter check (coding error).

Table 8-1 lists the meanings of
 the individual $STATUSD codes.

10-99 N/A Resource allocation failures (see Table 8-1).
116 Rocket Model 204 Horizon: Intersystem Processing Guide

7
Horizon User Language (SOUL)
Sample Programs

Client Program

 The following example is a small client program that establishes a
conversation with a partner process, sends a message to the partner, receives
messages from the partner, and ends the conversation.

The STAT_CHECK subroutine is used after each HORIZON statement to
determine the appropriate subsequent action for the program to take.
Subroutine STAT_CHECK is found in “Subroutine to Check Horizon Return
Codes” on page 125.

The HORIZON LINK, PROCESSGROUP, and PROCESS definition
commands are included as comments at the beginning of the procedure, for
convenient reference.

Companion program

“Server Sample” on page 121 has an example of a server program that can
communicate with the client program shown here.

Program

PROCEDURE CLIENT
BEGIN

**
*** S A M P L E H O R I Z O N C L I E N T P R O G R A M ***
**

Horizon User Language (SOUL) Sample Programs 117

*** NETWORK DEFINITIONS ***

*
* DEFINE LINK VIRGINIA WITH SCOPE=SYSTEM LOCALID=FREDBURG -
* INBUFSIZE=2048 TRANSPORT=VTAM PROTOCOL=LU62 SESSIONS=4
*
* DEFINE PROCESSGROUP BOULDER WITH SCOPE=SYSTEM OUTLIMIT=4 -
* INLIMIT=0 REMOTEID=COLORADO LINK=VIRGINIA
*
* DEFINE PROCESS WEEKEND WITH SCOPE=SYSTEM PARTNER=SOMEFUN -
* DESTINATION=(BOULDER,FAC,MOAB,ARCHES) DATALEN=500
*
**
*** DATA AND SUBROUTINES ***
**

 %CID IS STRING LEN 8
 %RECVMSG IS STRING LEN 255
 %RESULT IS STRING LEN 15
 %REQSEND IS FLOAT
 %ADVICE IS FLOAT

 %CID = ’MADAME’

 INCLUDE STAT_CHECK

*** MAIN PROGRAM ***

 OPEN PROCESS WEEKEND CID %CID AT FAC

CALL STAT_CHECK (%CID, %HRZN_OPEN, %RESULT, %REQSEND, %ADVICE)
JUMP TO (ABORT) %ADVICE - 1

*** FALL THROUGH WHEN ADVICE=1 (OPEN SUCCEEDED) ***

SEND ’HELLO, MADAME!’ TO %CID REQSEND %REQSEND

CALL STAT_CHECK (%CID, %HRZN_SEND, %RESULT, %REQSEND, %ADVICE)
JUMP TO (ABORT, -
HANDLE_ERROR, -
HANDLE_SIGNAL) %ADVICE - 1

*** FALL THROUGH WHEN ADVICE=1 (SEND SUCCEEDED) ***

RECEIVE_LOOP:

RECEIVE %RECVMSG FROM %CID RESULT %RESULT

CALL STAT_CHECK (%CID, %HRZN_RECEIVE, %RESULT, %REQSEND, -
 %ADVICE)
118 Rocket Model 204 Horizon: Intersystem Processing Guide

JUMP TO (ABORT, -
HANDLE_ERROR,-
BOGUS, -
SEND, -
HANDLE_CLOSE,-
HANDLE_CONFIRM) %ADVICE - 1

*** FALL THROUGH WHEN ADVICE=1 (RECEIVED DATA) ***

 PRINT ’RECEIVED FROM PARTNER:’ AND %RECVMSG

 JUMP TO RECEIVE_LOOP

SEND:

 SEND ’GOODBYE, MADAME!’ TO %CID REQSEND %REQSEND

CALL STAT_CHECK (%CID, %HRZN_SEND, %RESULT, %REQSEND, %ADVICE)
JUMP TO (ABORT, -
HANDLE_ERROR, -
HANDLE_SIGNAL) %ADVICE - 1

*** FALL THROUGH WHEN ADVICE=1 (SEND SUCCEEDED) ***

CLOSE PROCESS %CID

CALL STAT_CHECK (%CID, %HRZN_CLOSE, %RESULT, %REQSEND, %ADVICE)
JUMP TO (END, -
ABORT, -
HANDLE_ERROR) %ADVICE

**
*** EXCEPTION HANDLERS ***
**

HANDLE_CONFIRM:

 PRINT ’*** PARTNER REQUESTED CONFIRMATION ***’

 SEND ERROR TO %CID REQSEND %REQSEND

CALL STAT_CHECK(%CID, %HRZN_SEND_ERROR, %RESULT, %REQSEND, -
 %ADVICE)
JUMP TO (ABORT, -
BOGUS, -
ABORT) %ADVICE - 1

*** FALL THROUGH IF ADVICE = 1 (SEND ERROR SUCCEEDED) ***

 CLOSE PROCESS %CID

CALL STAT_CHECK (%CID, %HRZN_CLOSE, %RESULT, %REQSEND, %ADVICE)
Horizon User Language (SOUL) Sample Programs 119

*** IF CLOSE FAILED, JUST GIVE UP

JUMP TO (END, -
END, -
END) %ADVICE

HANDLE_SIGNAL:

 PRINT ’*** PARTNER SENT SIGNAL - CLOSING CONVERSATION ***’

 CLOSE PROCESS %CID

CALL STAT_CHECK (%CID, %HRZN_CLOSE, %RESULT, %REQSEND, %ADVICE)

*** IF CLOSE FAILED, JUST GIVE UP

JUMP TO (END, -
END,-
END) %ADVICE

HANDLE_ERROR:

 PRINT ’*** PARTNER SENT ERROR - CLOSING CONVERSATION ***’

 CLOSE PROCESS %CID

CALL STAT_CHECK (%CID, %HRZN_CLOSE, %RESULT, %REQSEND, %ADVICE)

*** IF CLOSE FAILED, JUST GIVE UP

JUMP TO (END, -
END, -
END) %ADVICE

HANDLE_CLOSE:

 PRINT ’*** PARTNER CLOSED CONVERSATION ***’

 CLOSE PROCESS %CID

CALL STAT_CHECK (%CID, %HRZN_CLOSE, %RESULT, %REQSEND, %ADVICE)

*** IF CLOSE FAILED, JUST GIVE UP

JUMP TO (END, -
END, -
END) %ADVICE

BOGUS:

 PRINT ’*** STAT_CHECK RETURNED AN UNDEFINED ADVICE CODE ***’
 JUMP TO END
120 Rocket Model 204 Horizon: Intersystem Processing Guide

ABORT:

 PRINT ’*** STAT_CHECK ADVISES THAT WE ABORT ***’
 JUMP TO END

END: END
END PROCEDURE

Server Sample

The following example is a server program that receives messages from a
partner program and sends back a message to the partner, repeating this
sequence until the partner ends the conversation.

The STAT_CHECK subroutine is used after each HORIZON statement to
determine the appropriate subsequent action for the program to take.
Subroutine STAT_CHECK is found in “Subroutine to Check Horizon Return
Codes” on page 125.

The HORIZON LINK, PROCESSGROUP, and PROCESS definition
commands are included as comments at the beginning of the procedure for
convenient reference.

In this example, the server program is invoked using the Remote Procedure
Invocation (RPI) subsystem. See “Application Testing with the RPI Subsystem”
on page 45.

Companion program

“The following example is a small client program that establishes a
conversation with a partner process, sends a message to the partner, receives
messages from the partner, and ends the conversation.” on page 117 has an
example of a client program that can communicate with the server program
shown here.

Program

PROCEDURE SERVER
BEGIN

**
*** S A M P L E H O R I Z O N S E R V E R P R O G R A M ***
**
**
*** NETWORK DEFINITIONS ***
**
*
* DEFINE LINK BOULDER WITH SCOPE=SYSTEM LOCALID=COLORADO -
* INBUFSIZE=2048 TRANSPORT=VTAM PROTOCOL=LU62 SESSIONS=4
*

Horizon User Language (SOUL) Sample Programs 121

* DEFINE PROCESSGROUP VIRGINIA WITH SCOPE=SYSTEM OUTLIMIT=0 -
* INLIMIT=4 REMOTEID=FREDBURG LINK=BOULDER LOGIN=NOTRUST -
* GUESTUSER=REJECT
*
* DEFINE PROCESS SOMEFUN WITH SCOPE=SYSTEM SUBSYSTEM=RPI -
* FROM=(VIRGINIA) DATALEN=500 SUBSYSPARM=’MYFILE SERVER OPEN’
*
**
*** DATA AND SUBROUTINES ***
**

 %CID IS STRING LEN 8
 %RECVMSG IS STRING LEN 255
 %RESULT IS STRING LEN 15
 %REQSEND IS FLOAT
 %ADVICE IS FLOAT

 %CID = ’SAILOR’

 INCLUDE STAT_CHECK

**
*** MAIN PROGRAM ***
**
OPEN PROCESS SOMEFUN CID %CID ACCEPT

CALL STAT_CHECK (%CID, %HRZN_OPEN, %RESULT, %REQSEND, %ADVICE)
JUMP TO (ABORT) %ADVICE - 1

*** FALL THROUGH WHEN ADVICE=1 (OPEN SUCCEEDED) ***

AUDIT ’CONVERSATION HAS BEGUN’

RECEIVE_LOOP:

RECEIVE %RECVMSG FROM %CID RESULT %RESULT

CALL STAT_CHECK (%CID, %HRZN_RECEIVE, %RESULT, %REQSEND, -
 %ADVICE)
JUMP TO (ABORT, -
HANDLE_ERROR, -
BOGUS, -
SEND, -
HANDLE_CLOSE, -
HANDLE_CONFIRM) %ADVICE - 1

*** FALL THROUGH WHEN ADVICE=1 (RECEIVED DATA) ***

AUDIT ’RECEIVED FROM PARTNER:’ AND %RECVMSG

JUMP TO RECEIVE_LOOP
122 Rocket Model 204 Horizon: Intersystem Processing Guide

SEND:

SEND ’HELLO, SAILOR!’ TO %CID REQSEND %REQSEND

CALL STAT_CHECK (%CID, %HRZN_SEND, %RESULT, %REQSEND, %ADVICE)
JUMP TO (ABORT, -
HANDLE_ERROR, -
HANDLE_SIGNAL) %ADVICE - 1

*** FALL THROUGH WHEN ADVICE=1 (SEND SUCCEEDED) ***

JUMP TO RECEIVE_LOOP

**
*** EXCEPTION HANDLERS ***
**

HANDLE_CONFIRM:

AUDIT ’*** PARTNER REQUESTED CONFIRMATION ***’

SEND ERROR TO %CID REQSEND %REQSEND

CALL STAT_CHECK(%CID, %HRZN_SEND_ERROR, %RESULT, %REQSEND, -
 %ADVICE)
JUMP TO (ABORT, -
BOGUS, -
ABORT) %ADVICE - 1

*** FALL THROUGH IF ADVICE = 1 (SEND ERROR SUCCEEDED) ***

CLOSE PROCESS %CID

*** IF CLOSE FAILS, JUST GIVE UP

CALL STAT_CHECK (%CID, %HRZN_CLOSE, %RESULT, %REQSEND, %ADVICE)
JUMP TO (END, -
END, -
END) %ADVICE

HANDLE_SIGNAL:

AUDIT ’*** PARTNER SENT SIGNAL - CLOSING CONVERSATION ***’

CLOSE PROCESS %CID

*** IF CLOSE FAILS, JUST GIVE UP

CALL STAT_CHECK (%CID, %HRZN_CLOSE, %RESULT, %REQSEND, %ADVICE)
JUMP TO (END, -
END, -
Horizon User Language (SOUL) Sample Programs 123

END) %ADVICE

HANDLE_ERROR:

AUDIT ’*** PARTNER SENT ERROR - CLOSING CONVERSATION ***’

CLOSE PROCESS %CID

*** IF CLOSE FAILS, JUST GIVE UP

CALL STAT_CHECK (%CID, %HRZN_CLOSE, %RESULT, %REQSEND, %ADVICE)
JUMP TO (END, -
END, -
END) %ADVICE

HANDLE_CLOSE:

AUDIT ’*** PARTNER CLOSED CONVERSATION ***’

CLOSE PROCESS %CID

*** IF CLOSE FAILS, JUST GIVE UP

CALL STAT_CHECK (%CID, %HRZN_CLOSE, %RESULT, %REQSEND, %ADVICE)
JUMP TO (END, -
END, -
END) %ADVICE

BOGUS:

AUDIT ’*** STAT_CHECK RETURNED AN UNDEFINED ADVICE CODE ***’
JUMP TO END

ABORT:

AUDIT ’*** STAT_CHECK ADVISES THAT WE ABORT ***’
JUMP TO END

END:

*** ALWAYS SET THE APSY COMMUNICATION VARIABLE BEFORE LEAVING

%X = $SETG(’COMM’,’EXIT’)
END
END PROCEDURE
124 Rocket Model 204 Horizon: Intersystem Processing Guide

Subroutine to Check Horizon Return Codes

The following subroutine can be used in Horizon User Language (SOUL)
programs to simplify the checking of the status information that is set by each
HORIZON statement. The subroutine condenses the large number of
combinations of $STATUS codes, RESULT codes, and so on into a small set
of recommended actions for the program:

• Continue normally.

• Terminate immediately.

• Respond to partner’s SEND ERROR.

• Respond to partner’s SIGNAL PROCESS.

• Start to SEND.

• Partner has closed conversation.

• Respond to partner’s CONFIRM.

• No more data expected.

• Expected data has not arrived.

Refer to the client and server program samples in this chapter on page 117 and
page 121, respectively, for illustrations of how the subroutine is to be used.

Subroutine

PROCEDURE STAT_CHECK
**

SUBROUTINE STAT_CHECK (%PROCESS IS STRING LEN 10 INPUT-
%STATEMENT IS FLOAT INPUT, -
%RESULT IS STRING LEN 15 INPUT, -
%REQSEND IS FLOAT INPUT, -
%ADVICE IS FLOAT OUTPUT)

**
* STAT_CHECK SHOULD BE CALLED AFTER EACH HORIZON STATEMENT. *
* IT EVALUATES THE RELEVANT STATUS INFORMATION THAT WAS SET BY *
* THE STATEMENT AND RETURNS A RECOMMENDED PROGRAM-ACTION CODE. *
* *
* %PROCESS -- THE CONVERSATION ID (CID) OF THE PROCESS *
* %STATEMENT-- THE HORIZON STATEMENT JUST ISSUED *
* 1 = OPEN (O) 8 = SEND (S) *
* 2 = CONFIRM (CF) 9 = SEND ERROR (SE) *
* 3 = CONFIRMED (CFD) 10 = SIGNAL (SP) *
* 4 = CLOSE (C) 11 = INVITE (I) *
Horizon User Language (SOUL) Sample Programs 125

* 5 = FLUSH (F) 12 = TEST (T) *
* 6 = QUERY (Q) 13 = WAIT (W) *
* 7 = RECEIVE (R) *
* %RESULT -- THE RESULT VARIABLE FROM THE ’RECEIVE’ STATEMENT *
* %REQSEND -- THE REQSEND VARIABLE FROM ’SEND’ OR ’SEND ERROR’ *
* %ADVICE -- (OUTPUT) THE RECOMMENDED ACTION TO TAKE. USE THE *
* FOLLOWING CHART TO DETERMINE WHICH ADVICE CODES *
* STAT_CHECK CAN RETURN FOR DIFFERENT HORIZON *
* STATEMENTS: *
* *
* - - - S T A T E M E N T S - - - - - A D V I C E C O D E S - - *
* *
* O CF CFD C F I Q R S SE SP T W *
* X X X X X X X X X X X X X 1 - CONTINUE *
* X X X X X X X X X X X X X 2 - ABORT *
* - X - X - X - X X - - - - 3 - GOT ’SEND ERROR’ *
* - X - - - - - - X X - - - 4 - GOT ’SIGNAL PROCESS’ *
* - - X - - - - X - - - - - 5 - TRANSITION TO ’SEND’ *
* - - X - - X - X - - - - - 6 - PARTNER CLOSED CONVERSATION *
* - - - - - - - X - - - - - 7 - TRANSITION TO ’CONFIRM’ *
* - - - - - - - - - - - X X 8 - NO OUTSTANDING INVITES *
* - - - - - - - - - - - X - 9 - NO RECEIPTS YET *
**

%STATUS = $STATUS
%STATUSD = $STATUSD

JUMP TO (O,CF,CFD,C,F,Q,R,S,SE,SP,I,T,W) %STATEMENT

X: **********************************
 * INVALID STATEMENT CODE *

 JUMP TO ABORT

O: **********************************
 * OPEN PROCESS *

 IF %STATUS = 0 THEN
 JUMP TO CONTINUE
 ELSE
 JUMP TO ABORT
 END IF

CF: **********************************
 * CONFIRM *

 *** FIRST SEE IF SIGNAL RECEIVED FROM PARTNER
126 Rocket Model 204 Horizon: Intersystem Processing Guide

 IF %REQSEND = 1 THEN
 JUMP TO REQUEST_TO_SEND
 ELSEIF %STATUS = 0 THEN
 JUMP TO CONTINUE

 *** CHECK FOR 2/2 (PARTNER RESPONDED TO CONFIRM WITH SEND ERROR)

 ELSEIF %STATUS = 2 AND %STATUSD = 2 THEN
 JUMP TO SEND_ERROR
 ELSE
 JUMP TO ABORT
 END IF

CFD: **********************************
 * CONFIRMED *

 %S IS STRING LEN 8

 IF %STATUS = 0 THEN

*** SEE WHAT THE CONVERSATION STATE HAS CHANGED TO

 QUERY PROCESS %PROCESS STATE %S
 IF %S = ’CLOSE’ THEN
 JUMP TO CLOSE_BY_REMOTE
 ELSEIF %S = ’SEND’ THEN
 JUMP TO SEND
 ELSE
 JUMP TO CONTINUE
 END IF

 ELSE
 JUMP TO ABORT
 END IF

C: **********************************
 * CLOSE PROCESS *

 IF %STATUS = 0 THEN
 JUMP TO CONTINUE

 *** CHECK FOR 2/2 (PARTNER RESPONDED TO CONFIRM WITH SEND ERROR)

 ELSEIF %STATUS = 2 AND %STATUSD = 2 THEN
 JUMP TO SEND_ERROR
 ELSE
Horizon User Language (SOUL) Sample Programs 127

 JUMP TO ABORT
 END IF

F: **********************************
 * FLUSH PROCESS *

 IF %STATUS = 0 THEN
 JUMP TO CONTINUE
 ELSE
 JUMP TO ABORT
 END IF

Q: **********************************
 * QUERY PROCESS *

 IF %STATUS = 0 THEN
 JUMP TO CONTINUE
 ELSE
 JUMP TO ABORT
 END IF

R: **********************************
 * RECEIVE *

 IF %STATUS = 0 THEN
 JUMP TO CONTINUE
 ELSEIF %STATUS = 1 THEN

 *** ANALYZE THE RESULT VARIABLE FOR APPROPRIATE ACTION

 *** DATA TRUNCATED OR INCOMPLETE - ASSUME THIS ISN’T DESIRABLE

 IF %RESULT = ’DATA TRUNCATED’ THEN
 JUMP TO ABORT
 ELSEIF %RESULT = ’DATA INCOMPLETE’ THEN
 JUMP TO ABORT
 ELSEIF %RESULT = ’SEND’ THEN
 JUMP TO SEND

 *** ALL FLAVORS OF CONFIRM STATE - TELL USER TO DO ’CONFIRMED’.
 *** AFTERWARD, STAT_CHECK WILL SAY ’SEND’, ’CLOSE’, ETC.

 ELSEIF %RESULT = ’CONFIRM’ THEN
 JUMP TO CONFIRM
 ELSEIF %RESULT = ’CONFIRM SEND’ THEN
 JUMP TO CONFIRM
 ELSEIF %RESULT = ’CONFIRM CLOSE’ THEN
128 Rocket Model 204 Horizon: Intersystem Processing Guide

 JUMP TO CONFIRM
 ELSE
 JUMP TO ABORT
 END IF

 *** CHECK FOR 2/2 (PARTNER RESPONDED TO CONFIRM WITH SEND ERROR)

 ELSEIF %STATUS = 2 AND %STATUSD = 2 THEN
 JUMP TO SEND_ERROR

 *** CHECK FOR 4/0 (INDICATES PARTNER ENDED CONVERSATION NORMALLY)

 ELSEIF %STATUS = 4 AND %STATUSD = 0 THEN
 JUMP TO CLOSE_BY_REMOTE
 ELSE
 JUMP TO ABORT
 END IF

S: **********************************
 * SEND *

 IF %STATUS = 0 THEN

 *** SEE IF SIGNAL RECEIVED FROM PARTNER

 IF %REQSEND = 1 THEN
 JUMP TO REQUEST_TO_SEND
 ELSE
 JUMP TO CONTINUE
 END IF

 *** CHECK FOR 2/2 (PARTNER RESPONDED TO CONFIRM WITH SEND ERROR)

 ELSEIF %STATUS = 2 AND %STATUSD = 2 THEN
 JUMP TO SEND_ERROR
 ELSE
 JUMP TO ABORT
 END IF

SE: **********************************
 * SEND ERROR *

 *** SEE IF SIGNAL RECEIVED FROM PARTNER

 IF %REQSEND = 1 THEN
 JUMP TO REQUEST_TO_SEND

 *** NO SIGNAL, SO CHECK %STATUS
Horizon User Language (SOUL) Sample Programs 129

 ELSEIF %STATUS = 0 THEN
 JUMP TO CONTINUE
 ELSE
 JUMP TO ABORT
 END IF

SP: **********************************
 * SIGNAL PROCESS *

 IF %STATUS = 0 THEN
 JUMP TO CONTINUE
 ELSE
 JUMP TO ABORT
 END IF

I: **********************************
 * INVITE *

 IF %STATUS = 0 THEN
 JUMP TO CONTINUE
 ELSEIF %STATUS = 2 AND %STATUSD = 2 THEN
 JUMP TO SEND_ERROR
 ELSEIF %STATUS = 4 THEN
 IF %STATUSD = 0 THEN
 JUMP TO CLOSE_BY_REMOTE
 ELSE
 JUMP TO ABORT
 END IF
 ELSE
 JUMP TO ABORT
 END IF
 T: **********************************
 * TEST FOR RECEIPT *

 IF %STATUS = 0 THEN
 JUMP TO CONTINUE
 ELSEIF %STATUS = 1 THEN
 IF %STATUSD = 1 THEN
 JUMP TO NEVER_MORE
 ELSEIF %STATUSD = 2 THEN
 JUMP TO NOT_YET
 ELSE
 JUMP TO ABORT
 END IF
 ELSE
 JUMP TO ABORT
130 Rocket Model 204 Horizon: Intersystem Processing Guide

 END IF
 W: **********************************
 * WAIT FOR RECEIPT *

 IF %STATUS = 0 THEN
 JUMP TO CONTINUE
 ELSEIF %STATUS = 1 THEN
 IF %STATUSD = 2 THEN
 JUMP TO NEVER_MORE
 END IF
 END IF
 JUMP TO ABORT

**
*** SET THE ADVICE CODE AND EXIT. ***
**
CONTINUE:
 %ADVICE = 1
 JUMP TO EXIT

ABORT:
 %ADVICE = 2
 JUMP TO EXIT

SEND_ERROR:
 %ADVICE = 3
 JUMP TO EXIT

REQUEST_TO_SEND:
 %ADVICE = 4
 JUMP TO EXIT

SEND:
 %ADVICE = 5
 JUMP TO EXIT

CLOSE_BY_REMOTE:
 %ADVICE = 6
 JUMP TO EXIT

CONFIRM:
 %ADVICE = 7
 JUMP TO EXIT

NEVER_MORE:
 %ADVICE = 8
 JUMP TO EXIT

NOT_YET:
Horizon User Language (SOUL) Sample Programs 131

 %ADVICE = 9
 JUMP TO EXIT

**
*** SUBROUTINE EXIT PATH ***
**

EXIT:

**
*** NOTE: THE FOLLOWING AUDIT LOGIC IS USEFUL AS A DEBUGGING ***
*** TOOL FOR TRACING HORIZON STATEMENTS BUT MAY BE REMOVED ***
*** OR BYPASSED FOR EFFICIENCY IF DESIRED. ***
**
 *** AUDIT RESULT OF EACH STAT_CHECK INVOCATION ***

 %STMT IS STRING LEN 14

 IF %STATEMENT = 1 THEN
 %STMT = ’OPEN’
 ELSEIF %STATEMENT = 2 THEN
 %STMT = ’CONFIRM’
 ELSEIF %STATEMENT = 3 THEN
 %STMT = ’CONFIRMED’
 ELSEIF %STATEMENT = 4 THEN
 %STMT = ’CLOSE’
 ELSEIF %STATEMENT = 5 THEN
 %STMT = ’FLUSH’
 ELSEIF %STATEMENT = 6 THEN
 %STMT = ’QUERY’
 ELSEIF %STATEMENT = 7 THEN
 %STMT = ’RECEIVE’
 ELSEIF %STATEMENT = 8 THEN
 %STMT = ’SEND’
 ELSEIF %STATEMENT = 9 THEN
 %STMT = ’SEND ERROR’
 ELSEIF %STATEMENT = 10 THEN
 %STMT = ’SIGNAL PROCESS’
 ELSEIF %STATEMENT = 11 THEN
 %STMT = ’INVITE’
 ELSEIF %STATEMENT = 12 THEN
 %STMT = ’TEST’
 ELSEIF %STATEMENT = 13 THEN
 %STMT = ’WAIT’
 ELSE
 %STMT = ’**UNDEFINED**’
 END IF

 %ADV IS STRING LEN 20
132 Rocket Model 204 Horizon: Intersystem Processing Guide

 IF %ADVICE = 1 THEN
 %ADV = ’CONTINUE’

 ELSEIF %ADVICE = 2 THEN
 %ADV = ’ABORT’
 ELSEIF %ADVICE = 3 THEN
 %ADV = ’HANDLE SEND ERROR’
 ELSEIF %ADVICE = 4 THEN
 %ADV = ’HANDLE SIGNAL’
 ELSEIF %ADVICE = 5 THEN
 %ADV = ’START SENDING’
 ELSEIF %ADVICE = 6 THEN
 %ADV = ’PARTNER CLOSED’
 ELSEIF %ADVICE = 7 THEN
 %ADV = ’HANDLE CONFIRM’
 ELSEIF %ADVICE = 8 THEN
 %ADV = ’NOTHING ACTIVE’
 ELSEIF %ADVICE = 9 THEN
 %ADV = ’NOTHING YET’
 END IF

 QUERY PROCESS %PROCESS STATE %S

 %TRACE IS STRING LEN 255
 %TRACE = ’STAT_CHECK:’ -
 WITH ’ Statement=’ WITH %STMT -
 WITH ’ %STATUS=’ WITH %STATUS WITH ’/’ WITH %STATUSD

 *** AUDIT RESULT VARIABLE AFTER RECEIVE

 IF %STATEMENT = 7 THEN
 %TRACE = %TRACE WITH ’ Result=’ WITH %RESULT

 *** AUDIT REQSEND VARIABLE AFTER SEND OR SEND ERROR

 ELSEIF %STATEMENT = 8 OR %STATEMENT = 9 THEN
 %TRACE = %TRACE WITH ’ Reqsend=’ WITH %REQSEND
 END IF

 %TRACE = %TRACE -
 WITH ’ State=’ WITH %S -
 WITH ’ Advice=’ WITH %ADVICE WITH ’/’ WITH %ADV -
 WITH ’ Cid=’ WITH %PROCESS

 *** USE ’PRINT’ FOR CLIENT PROGRAM, ’AUDIT’ FOR SERVER PROGRAM

 IF $VIEW(’IODEV’) EQ ’27’ THEN
 AUDIT %TRACE
 ELSE
Horizon User Language (SOUL) Sample Programs 133

 PRINT %TRACE
 END IF
**
*** END OF AUDITING ***
**

RETURN: RETURN
END SUBROUTINE STAT_CHECK

* *
* THE FOLLOWING VARIABLES MAY BE USED AS THE %STATEMENT PARAMETER *
* IN A CALL TO STAT_CHECK, TO MAKE YOUR PROGRAM EASIER TO READ *
* (BE SURE TO EXECUTE THESE ASSIGNMENT STATEMENTS *BEFORE* YOU *
* REFERENCE THE VARIABLES.) *
* *
* EXAMPLE: OPEN PROCESS %CID *
* CALL STAT_CHECK(%CID,%HRZN_OPEN,%RESULT,%REQSEND,%ADVICE) *
* *

%HRZN_OPEN = 1
%HRZN_CONFIRM = 2
%HRZN_CONFIRMED = 3
%HRZN_CLOSE = 4
%HRZN_FLUSH = 5
%HRZN_QUERY = 6
%HRZN_RECEIVE = 7
%HRZN_SEND = 8
%HRZN_SEND_ERROR = 9
%HRZN_SIGNAL = 10
%HRZN_INVITE = 11
%HRZN_TEST = 12
%HRZN_WAIT = 13
END PROCEDURE

Remote Updating Example

The applications considered thus far have been inquiry-only, but Horizon also
permits remote file updating. By definition, remote updating of a local node
occurs when data received at the local node during a Horizon conversation is
stored at the local node. Horizon accommodates this single node updating
using standard Model 204 recovery features.

Coordinated updating and recovery between multiple nodes is not provided
with Version 2, Release 2 of Horizon. Multiple-node updating and recovery
requires an additional conversation protocol, called two-phase commit, along
with corresponding enhancements to the recovery logic of Model 204.

The example (in pseudo code) in Figure 7-1 on page 135 illustrates how a
Horizon single-node remote update can be accomplished using existing
134 Rocket Model 204 Horizon: Intersystem Processing Guide

Model 204 recovery logic. The arrows in the example indicate when data is
physically transmitted across the network. The numbers in parentheses show
the order in which the statements in the programs are processed.

Figure 7-1. Single-Node Remote Update

Program A Program B

. .

. .

. .
(1) Send image to partner (3) Receive image from partner

If $Status ≠ 0 then
Jump to cleanup

(2) Confirm partner (4) Receive confirm-request
from partner

If $Status ≠ 1 and
Result ≠’confirm’ then

Jump to cleanup

(5) Store record

(8) If $Status ≠ 0 (6) Confirmed partner
Jump to cleanup

(7) If $Status = 0 then
(9) Tell user update succeeded Commit

. Else

. Back out

. Jump to cleanup

. .

. .

. .
Horizon User Language (SOUL) Sample Programs 135

A brief description follows of the steps in parentheses in the example in Figure
7-1 on page 135:

Multiple-node updating

An application that requires updates at more than one node can be written
using the current version of Horizon, provided that it does not depend upon
Model 204 recovery alone to assure it of database consistency across network
nodes. Such an application can be designed in one of two ways:

1. The application is designed so that there are no database consistency
dependencies across nodes.

In this case, Model 204 recovery protects each individual node. Such a
design implies that each node’s update is seen by recovery as a separate
transaction, disjoint from updates at any other node.

2. The application is designed so that the application takes responsibility for
detecting and correcting cross-node inconsistencies.

Such a recovery scheme can sometimes be designed, but an extensive
discussion of the issues involved is beyond the scope of this guide.

Step Description

(1) Program A sends data to its remote partner.

(2) Program A issues a confirmation request. This causes the data and a
confirmation indicator to be sent to Program B.

(3) Program B receives the data. If the receive fails for any reason, the
appropriate cleanup logic is invoked.

(4) Program B does a second RECEIVE, and verifies that what it has received
is the confirmation request. If the confirmation request is not present, the
cleanup logic is called. An update unit is never started.

(5) Program B stores the data it receives into its file, and this begins an update
unit.

(6) Program B acknowledges that it has made the update by issuing a
CONFIRMED statement.

(7) If Program A is still active, $STATUS from the confirmation is 0, and
Program B commits the current update unit. Otherwise, Program B backs
the update out.

(8-9) When something (a confirmation or an error indication) is received,
Program A reports the result to the end user.
136 Rocket Model 204 Horizon: Intersystem Processing Guide

Figure 7-Figure 7-2. shows an application that performs updates at two nodes.
The numbers in parentheses show the order in which the statements in the
programs are processed.

Figure 7-2. Double-Node Update

Program A Program B

. .

. .

. .
(1) Store record (4) Receive image from partner

If $Status ≠ 0 then
Jump to cleanup

(2) Send image to partner (5) Store record
If $Status ≠ 0 then

Back out
Jump to cleanup

Ž
(3) Confirm partner (6) Receive confirm-request

 from partner
(9) If $Status = 0 then

Commit If $Status ≠ 1 and
Else Result ≠ ’confirm’ then

Back out Back out
Jump to cleanup Jump to cleanup
.
. (7) Confirmed partner
.
. (8) If $Status = 0 then
. Commit
. Else
. Black out
. Jump to cleanup
. .
. .
. .
Horizon User Language (SOUL) Sample Programs 137

A brief description follows the steps in the example in Figure 7-2 on page 137:

Between-node data consistency

A database consistency problem can occur if Program A terminates before it
gets a chance to make the decision at Step 9, or if Program B terminates before
it completes Step 8. The application should be designed to check (perhaps at
initialization time or just before performing a given update) that the database at
each node “looks correct.”

Another alternative is for the initiating node to keep a file to which it logs records
of the nodes that have been successfully updated. In the event of a network
failure, the data in this log file is used for manually coordinating recovery.

Note: The physical consistency of any Model 204 file is always taken care of
by Model 204 recovery, and is not a consideration here. Logical consistency
within a single Model 204 system is also provided. The only issue that the
application designer needs to worry about is logical consistency of data among
the different nodes that the application attempts to update.

Steps Description

(1) Program A stores data into a record, and this begins an update unit.

(2) Program A sends a copy of the data to its remote partner.

(3) Program A issues a confirmation request. This causes the data and a
confirmation indicator to be sent to Program B.

(4) Program B receives the data. If the RECEIVE fails for any reason, the
appropriate cleanup logic is invoked.

(5) Program B stores the data it receives into its file. This begins an update
unit.

(6) Program B verifies that what it has received is the confirmation request. If
the confirmation request is not present, the update unit is backed out and
the cleanup logic is called.

(7) Program B acknowledges that it has made the update by issuing a
CONFIRMED statement.

(8) This step begins when the confirmation is sent. If Program A is still active,
$STATUS from the confirmation is 0, and Program B commits the current
update unit.

(9) When something (a confirmation or an error indication) is received,
Program A acts according to what it receives:

• A confirmation ($STATUS=0) signifies that Program B successfully received
the update data and stored its record, and is presently committing the update.
Program A can therefore commit its update with the near certainty that its
partner’s commit will also succeed.

• An error ($STATUS¼0) signifies that, for some reason, the Program B update
did not succeed. Program A therefore backs out its update.
138 Rocket Model 204 Horizon: Intersystem Processing Guide

8
Horizon Error Processing

Overview of Horizon error processing

Most Horizon errors do not cause the SOUL program to be cancelled.
Usually, however, the appropriate programmatic action when an error
is detected is to display diagnostic information, terminate the program,
and debug the problem.

Debugging program-to-program errors is more difficult than debugging
a single program, because there are more places where problems may
occur. There are two or more programs, running asynchronously at
different nodes, and there are numerous network components
connecting them.

This chapter discusses the detection and troubleshooting of typical
types of Horizon error conditions and provides a table containing the
Horizon error codes and messages.

The Rocket Model 204 messages documentation contains descriptive
and debugging information for many of the Horizon error conditions that
are accompanied by a Model 204 error message number.

Detecting Horizon Errors

Unlike most other SOUL statements, when a Horizon statement is
executed, certain status information is set to indicate whether the
statement completed normally. In cases of error, this status information
may not only indicate the type of error but also may contain directions
about how to correct the error.
Horizon Error Processing 139

It is the responsibility of the application program to check this status information
and to detect and handle errors.

Conversation status information

Information about the current condition of a Horizon conversation is
communicated to the SOUL program through the following means:

• The $STATUS and $STATUSD functions.

• The RESULT variable (on RECEIVE statements).

• The REQSEND variable (on the SEND, CONFIRM, and SEND ERROR
statements).

• The QUERY PROCESS statement, for additional information, such as
conversation state.

For more about the RESULT, REQSEND, and conversation state information
pertaining to individual Horizon conversation interface statements, see the
descriptions of each statement in the Chapter 6.

The execution of a Horizon SOUL statement always sets $STATUS to some
integer. Since each $STATUS code provides general information about the
current condition of the conversation, the application program should include
some logic to test $STATUS after each Horizon statement. When $STATUS
indicates an error has occurred ($STATUS=2 or greater), a Model 204
message is generated.

The individual $STATUS (and $STATUSD) codes and messages are listed in
tabular format in “$STATUS/$STATUSD Codes and Accompanying Error
Messages” on page 144.

Note: Model 204 (as opposed to Horizon) error messages generated during
Horizon program execution are not written to the user’s terminal. They can be
retrieved programmatically, however, using the $ERRMSG function.

Client versus server error detection and debugging

Client processes usually run on a thread that has a terminal. The exceptional
situation is when a server process initiates a conversation (becomes a client
process) with a third partner. The presence of the terminal permits interactive
debugging: the developer can insert PRINT statements into trace processing
routines to display status information about the conversation and to create
break points, for example.

A server process, on the other hand, does not have access to a terminal.
Messages are only written to the audit trail or the operator’s console.
Debugging a server process usually involves embedding AUDIT (rather than
PRINT) statements and browsing the audit trail for messages originating from
the thread on which the server process ran.
140 Rocket Model 204 Horizon: Intersystem Processing Guide

Troubleshooting Horizon Errors

In this section, the general categories of Horizon errors are listed, followed by
discussions of typical debugging approaches for OPEN PROCESS errors and
errors producing unanticipated conversation terminations.

Types of errors

There are several types of Horizon errors, corresponding to different values of
$STATUS. The list below describes briefly the types of errors. All the $STATUS
(and $STATUSD) codes and messages are listed in tabular format starting on
page 144.

• State check ($STATUS=3).

The program has issued a Horizon SOUL statement that is invalid for the
current state of the conversation. State checks are described further in
“Horizon Conversation Data Flow” on page 79.

• Partner closed the conversation ($STATUS=4).

This occurs if a partner has terminated or issued a CLOSE PROCESS
statement.

• Parameter check ($STATUS=5).

One or more parameters of a Horizon statement or Horizon entity definition
is incorrect.

• System failures ($STATUS=10 or greater).

A Horizon system component has failed or is unavailable. Unlike the other
types of errors, this is generally not an application program bug. There are
four kinds of system failures:

– Local allocation: a conversation could not be established because of a
lack of resources at the node where the program is running.

– Remote allocation: a conversation could not be established because of
a lack of resources at the node to which the connection was being
attempted.

– Session: failure of the LU 6.2 session on which the conversation was
running.

– Link: a SNA Communications Server (formerly VTAM) error occurred.

• Partner issued SEND ERROR statement ($STATUS=2).

Unlike the other types of errors, this is an application-level error. It allows a
program to create an error condition that is communicated to its partner. For
more information about the SEND ERROR statement, see page 111.
Horizon Error Processing 141

OPEN PROCESS errors

While many of the types of errors described in the previous section can occur
throughout the life of a conversation, one error situation is likely to be the most
frequent: a system failure encountered during a client program’s OPEN
PROCESS statement and the subsequent attempt at the server node to start
the requested partner process.

As described on page 103, such an error is not always received immediately
following the OPEN PROCESS statement. Most Horizon statements simply
cause LU 6.2 requests to be buffered until physical transmission becomes
necessary, which may be several Horizon statements later. Consequently, a
client program may not receive an indication of a remote allocation failure until
some later statement.

For more information about the physical sending of requests, see “Buffering
and Shipping Conversation Information” on page 88.

OPEN PROCESS errors received immediately

The types of errors typically seen at OPEN PROCESS time on the client side
are the following:

• State Check

• Parameter Check

• Retryable and Non-Retryable Local Allocation errors

Generally the remedy is simple. For example, suppose that following an OPEN
PROCESS statement, $STATUS=5 and $STATUSD=4. This is a parameter
check error: entity not defined. After making sure that the process name is
correctly spelled, check with the system manager to make sure a process
definition exists.

When an error from the server side is returned on a subsequent Horizon
statement, tracking it down is not so simple.

OPEN PROCESS errors traced to the server

When a client program receives an error that can be traced to the server side,
it is almost always necessary to look in the server system’s audit trail for an
indication of what happened. Because Horizon is based on the LU 6.2 protocol,
only limited information can be transmitted along with an error: The return of
detailed information about why the conversation failed is considered a breach
of security.

For example, a server program may fail due to a shortage of any one of a
number of Model 204 or network resources. A Model 204 error message
pinpointing the reason for the failure is generated at that server node; however,
the error notification received by the client program only indicates that a
142 Rocket Model 204 Horizon: Intersystem Processing Guide

resource shortage occurred at the server. The audit trail at the server node
must be looked at to find out what resource is not available.

For security violations, Horizon sends only an indication that there has been a
security violation. To determine if the USERID or PASSWORD value is
incorrect, for example, it is necessary to look in the audit trail at the server node.

Troubleshooting conversation initiation layers for server errors

To determine where the fault is on the server side, consider the layers that a
conversation request must pass through for the conversation to start:

To determine from the client side where the server problem is, the developer
should examine each layer in turn. Examples follow of kinds of errors at each
layer:

• If there are no sessions available or the remote LU is not active, the
conversation fails.

• If the Horizon network definitions are not correct, the remote LU may not be
known at the local node.

• If the security requirements at the remote node are not met, the
conversation fails.

• If the server program is not defined, the conversation fails.

• If the partner application subsystem is not started, the conversation fails.

Since each layer can generate a variety of errors, a systematic examination of
the conversation initiation layers is the most productive debugging approach.

Unanticipated conversation termination

Another error, which can occur at any time, is an abnormal termination of
conversation by the partner ($STATUS=4, $STATUSD=1). A variety of events
at the partner node can result in abnormal conversation termination, including:

 Session

 Conversation Network Definition
 Allocation
 Path Security

 Application Subsystem Facility

 Application
Horizon Error Processing 143

• Bumping of the partner thread.

• Termination of the partner process due to program errors.

• Issuing of CLOSE LINK FORCE by the partner’s LU.

The only way to determine what went wrong is to examine the audit trail at the
partner node for messages associated with the conversation that ended.

$STATUS/$STATUSD Codes and Accompanying Error
Messages

Table 8-1 lists the possible combinations of return values of the $STATUS and
$STATUSD functions (S/SD) and a brief description of each combination.

In addition to the $STATUS and $STATUSD information, you can use
$ERRMSG to retrieve the Model 204 error message numbers generated along
with $STATUS and $STATUSD. The message text associated with the
message number (along with debugging hints when appropriate) is found in the
Rocket Model 204 messages documentation.

Table 8-1. $STATUS/D Codes and Error Message Numbers

S SD Description EMN

0 0 Normal completion; no unusual conditions. none

1 0 Normal completion; check RESULT variable. none

1 1 Specified event(s) not pending (WAIT or TEST). none

1 2 Specified event(s0 still pending (TEST). none

1 3 WAIT completed due to timeout. none

2 2 SEND ERROR statement issued by partner (Horizon only) none

3 3 State check: verb issued in wrong conversation state. 1254

4 0 Conversation ended normally by partner process.

The partner process has finished executing, or it has ended
the conversation by issuing a CLOSE PROCESS statement.

none

4 1 Partner process closed conversation abnormally. none

5 1 Password required.

If the USERID keyword parameter is provided on the OPEN
PROCESS statement, the PASSWORD parameter must also
be provided.

1950

5 2 Process is already open.

The OPEN PROCESS statement being executed specifies a
process name or CID for a process that is already open.

1499

5 3 Initial (PIP) data incorrectly specified. 2031

5 4 Entity (process, processgroup, or link) not defined. 1743
144 Rocket Model 204 Horizon: Intersystem Processing Guide

5 5 Process has not been opened. 1572

5 6 Statement or option not supported. 1811

5 11 Process may only be opened within an application subsystem. 1948

5 12 Process definition requires ’OPEN’ for security parameters.

The OPEN PROCES STATEMENT being executed contains
an ACCOUNT or USERID parameter. This is only valid when
the process definition specifies ACCTSOURCE=OPEN or
UIDSOURCE=OPEN (PROFILE and PROFSOURCE may be
written instead of ACCOUNT and ACCTSOURCE).

1949

5 13 Security violation. 1951*

2027**

5 14 SESPARMS was specified on the processgroup definition but
is not valid for Horizon links.

none

5 15 OPEN type conflicts with PROCESS type. 1953*

2027**

5 16 Reserved names may not be used in OPEN PROCESS. 1955

5 17 Process name or CID is too long. 2035

5 18 Synchronization level not supported.

The process issued the CONFIRM verb but the process
definition does not contain the CONFIRM parameter

2036

5 19 Parameter required by not specified. 1797

5 20 Invalid duration value specified for WAIT statement. 1882

10 1 Insufficient main storage available at a local node. 1788

10 2 Reserved.

10 3 Local link is not open or is being closed. 1494

10 4 Local Processgroup is being stopped. 1493

11 1 Partner process temporarily cannot be started. 2031

11 3 Retryable remote allocation failure. 1294

2290

12 1 Link failure. 1325

13 1 Session failure. none

13 2 Reserved.

13 3 Connection failure for parallel session setup. none

50 1 Local session limit has been reached. 1496

Table 8-1. $STATUS/D Codes and Error Message Numbers (Continued)

S SD Description EMN
Horizon Error Processing 145

* Server message

** Client message

50 2 Local conversation limit has been reached. 1495

50 3 Server process subsystem could not be started because
APSY is not initialized.

50 4 Subsystem is not available. The requested server process
subsystem is not defined in CCASYS.

50 5 Input buffer too small for SUBSYSPARM. The SUBSYSPARM
value specified in the process definition was larger than the
size in the IODEV 27 command line.

50 6 Synchronization level not supported by local process.
Requesting process and local process must agree on
CONFIRM or NOCONFIRM.

50 7 Server security violation.

51 1 Server process not available (from client’s point of view only). 2031

51 2 Synchronization level not supported by server LU (from client’s
point of view only). The server process definition does not
specify the same synchronization level as that of the local
process (CONFIRM/NONCONFIRM).

2031

52 1 Link failure. none

53 1 Session failure. Check sense code in $ERRMSG. 1432

53 2 Timeout duration exceeded waiting for response from partner. 1968

53 3 Session Bind rejected due to incorrect session parameters. none

53 4 Unexpected conversation end.

Table 8-1. $STATUS/D Codes and Error Message Numbers (Continued)

S SD Description EMN
146 Rocket Model 204 Horizon: Intersystem Processing Guide

A
Horizon Conversation States and
Statements

Overview

The communication statements (verbs) that an application program
may issue at any given point in the conversation depend upon the
current state of the conversation. The Model 204 Horizon conversation
states are described briefly below. Table A-1 on page 148 lists the
Horizon statements that can be issued in each state.

Conversation states

The following conversation states are used in Horizon:

Reset The application program may allocate a conversation (open
a process).

Send The application program may send data, request
confirmation, or (stop sending and) receive data.

Receive The application program may receive data from the partner
application program or request permission to send.

Confirm The application program may comply with the request for
confirmation. (It may also request permission to send later,
after the confirmation.)

Close The application program may deallocate the conversation
(close the process) with the remote application program.
Horizon Conversation States and Statements 147

 Conversation Statement/State Dependencies

The matrix in Table A-1 lists the Horizon statements that can be issued in a
given conversation state.

“No” a state check is incurred because the statement is not valid in that state.
State checks are issued only when a process is already open. The dashes in
the matrix mean that some error other than a state check is incurred. N/A’s
(not applicable) are entered for TEST RECEIPT and WAIT FOR RECEIPT
because they are not state dependent.

Table A-1. Statement and state dependencies

Reset Send Receive Confirm Close

OPEN PROCESS Yes - - -

CONFIRM - Yes No No

CONFIRMED - No No Yes

CLOSE PROCESS - Yes Yes Yes

FLUSH - Yes No No

INVITE - Yes No No

QUERY PROCESS Yes Yes Yes Yes

RECEIVE - Yes Yes No

SIGNAL - No Yes Yes

SEND - Yes No No

SEND ERROR - Yes Yes Yes

TEST RECEIPT N/A N/A N/A N/A

WAIT FOR RECEIPT N/A N/A N/A N/A
148 Rocket Model 204 Horizon: Intersystem Processing Guide

B
LU 6.2 Verb Set Equivalences

Overview

In terms of the LU 6.2 architectural standard, Horizon implements LU
6.2 “mapped conversation” support, using the “base subset” of LU 6.2
options. In addition, some optional verb sets are implemented: explicit
flush, PIP data, attribute query, and security.

The tables in the following sections map Horizon programming
statements and their parameters and status codes to corresponding
terminology used in standard LU 6.2 architectural documents. The
SOUL column of the tables is formatted according to the following
conventions:

• Items in full capitals are keyword parameters.

• Items in lowercase are positional parameters.

• Items in parentheses are parameters on either DEFINE commands
or network control commands; the command name is given in initial
capitals.

LU 6.2 and Horizon verb and parameter equivalences

Table B-1 maps LU 6.2 verbs and parameters to SOUL statements and
parameters.
LU 6.2 Verb Set Equivalences 149

Table B-1. LU 6.2 and Horizon Equivalences

LU 6.2 Verbs and Parameters SOUL Statements and Parameters

MC_ALLOCATE
 LU_NAME(other)

 MODE_NAME
 TPN
 RETURN_CONTROL
 WHEN_SESSION_ALLOCATED
 SYNC_LEVEL
 NONE
 CONFIRM
 SECURITY
 NONE
 SAME

 PGM(USER_ID)
 PGM(PASSWORD)
 PGM(PROFILE)
 PIP
 (YES(var1,var2,...))
 (NO)
 RESOURCE
 RETURN_CODE

OPEN PROCESS
 (REMOTEID on Processgroup);
 pointed to optionally by
 AT on OPEN PROCESS
 (MODENAME on Process)
 (PARTNER on Process)

 [default]

 (NOCONFIRM on Process)
 CONFIRM on Process)

 [default}
 (UIDSOURCE=CURRENT on
Process,
 LOGIN=TRUST on Processgroup)
 USERID
 PASSWORD
 PROFILE

 INITIAL DATA
 [default]
 processname|CID
 $STATUS and $STATUSD

MC_CONFIRM
 RESOURCE
 RETURN_CODE
 REQUEST_TO_SEND_RECEIVED

CONFIRM
 cid
 $STATUS and $STATUSD
 REQSEND

MC_CONFIRMED
 RESOURCE

CONFIRMED
 cid

MC_DEALLOCATE
 RESOURCE
 TYPE
 SYNC_LEVEL
 FLUSH
 CONFIRM
 LOCAL
 ABEND
 RETURN_CODE

CLOSE PROCESS
 cid

 SYNCLEV
 FLUSH
 CONFIRM
 [implicit]
 ERROR
 $STATUS and $STATUSD

MC_FLUSH
 RESOURCE

FLUSH PROCESS
 cid

MC_POST_ON_RECEIPT included in INVITE
150 Rocket Model 204 Horizon: Intersystem Processing Guide

MC_PREPARE_TO_RECEIVE
 RESOURCE
 TYPE
 SYNC_LEVEL
 FLUSH
 CONFIRM
 LOCKS
 SHORT
 RETURN_CODE

INVITE
 cid

 SYNCLEVEL
 FLUSH
 CONFIRM

 [default]
 $STATUS and $STATUSD

MC_GET_ATTRIBUTES
 RESOURCE
 OWN_FULLY_QUALIFIED_LU_NAME
 PARTNER_LU_NAME

PARTNER_FULLY_QUALIFIED_LU_NA
ME
 MODE_NAME
 SYNC_LEVEL

QUERY PROCESS
 cid
 (LOCAL ID returned by Monitor Link)
 REMOTEID
 REMOTEID
 MODENAME
 SYNCLEVEL

MC_RECEIVE_AND_WAIT
 RESOURCE
 DATA
 LENGTH
 RETURN_CODE
 WHAT_RECEIVED

RECEIVE
 FROM cid
 %variable|IMAGE imagename
 [implicit]
 $STATUS and $STATUSD
 RESULT

MC_REQUEST_TO_SEND
 RESOURCE

SIGNAL
 cid

MC_SEND_DATA
 RESOURCE
 DATA
 LENGTH
 RETURN_CODE
 REQUEST_TO_SEND_RECEIVED

SEND
 TO cid
 %variable|’string’|IMAGE imagename
 [implicit]
 $STATUS and $STATUSD
 REQSEND

MC_SEND_ERROR
 RESOURCE
 RETURN_CODE
 REQUEST_TO_SEND_RECEIVED

SEND ERROR
 TO cid
 $STATUS and $STATUSD
 REQSEND

MC_TEST
 RESOURCE
 TEST
 POSTED
 RETURN_CODE

TEST RECEIPT
 cid

 [default]
 $STATUS and $STATUSD

Table B-1. LU 6.2 and Horizon Equivalences (Continued)

LU 6.2 Verbs and Parameters SOUL Statements and Parameters
LU 6.2 Verb Set Equivalences 151

WAIT

 RESOURCE_LIST

 RESOURCE_POSTED
 RETURN_CODE

WAIT FOR RECEIPT
 receipt cid
 or
 ANY receipt
 RETURN
 $STATUS and $STATUSD

Table B-1. LU 6.2 and Horizon Equivalences (Continued)

LU 6.2 Verbs and Parameters SOUL Statements and Parameters
152 Rocket Model 204 Horizon: Intersystem Processing Guide

LU 6.2 verb equivalences

Table B-2 maps LU 6.2 verbs to Horizon SOUL statements, CICS commands,
and AT&T LU 6.2 Facility commands.

Table B-2. LU 6.2 Verb Equivalences

LU 6.2 Verbs Horizon SOUL Statements CICS Commands

MC_ALLOCATE
MC_CONFIRM
MC_CONFIRMED
MC_DEALLOCATE

MC_FLUSH
MC_GET_ATTRIBUTES
MC_PREPARE_TO_RECEIVE
MC_POST_ON_RECEIPT
MC_RECEIVE_AND_WAIT
MC_REQUEST_TO_SEND
MC_SEND_DATA
MC_SEND_ERROR
MC_TEST
WAIT

OPEN PROCESS
CONFIRM
CONFIRMED
CLOSE PROCESS

FLUSH PROCESS
QUERY PROCESS
INVITE

RECEIVE
SIGNAL
SEND
SEND ERROR
TEST RECEIPT
WAIT FOR RECEIPT

EXEC CICS ALLOCATE
EXEC CICS CONNECT PROCESS

EXEC CICS RETURN
or EXEC CICS SEND LAST
or EXEC CICS ISSUE ABEND
EXEC CICS WAIT
EXEC CICS EXTRACT PROCESS
EXEC CICS ISSUE SIGNAL

EXEC CICS RECEIVE

EXEC CICS SEND
EXEC CICS ISSUE ERROR

OS/2 APPC Horizon SOUL Statements AT&T LU 6.2 Facility

MC_ALLOCATE
MC_CONFIRM
MC_CONFIRMED
MC_DEALLOCATE
MC_FLUSH
MC_GET_ATTRIBUTES
MC_GET_TYPE
MC_PREPARE_TO_RECEIVE
MC_POST_ON_RECEIPT
MC_RECEIVE_AND_WAIT
MC_RECEIVE_IMMEDIATEM
MC_REQUEST_TO_SEND
MC_SEND_DATA
MC_SEND_ERROR
MC_TEST_RTS

OPEN PROCESS
CONFIRM
CONFIRMED
CLOSE PROCESS
FLUSH PROCESS
QUERY PROCESS

INVITE

RECEIVE

SIGNAL
SEND
SEND ERROR
TEST RECEIPT
WAIT FOR RECEIPT

malcnv
mcnfrm
mcnfrmed
mdalcnv
mflush
mgetadr

mprprev
mpstrct
mrcvwt
mrcvim
mrqssnd
msnddta
msnderr
mtestev
LU 6.2 Verb Set Equivalences 153

154 Rocket Model 204 Horizon: Intersystem Processing Guide

C
SNA Communications Server
Performance Tuning for Horizon

Overview

SNA Communications Server (formerly VTAM) network performance
tuning includes the monitoring of response times and network loads,
and the adjustment of SNA Communications Server, NCP, and
application variables. The goal of the tuning is to improve response time
and allow for greater capacity.

Although SNA Communications Server tuning necessarily involves the
SNA Communications Server system programmer, some of the
variables that can be tuned to increase performance have to do with the
SNA Communications Server definitions discussed in “Defining the
Network to SNA Communications Server” on page 36. Three of those
variables (associated with the APPL statement and the mode table) are
briefly discussed in this appendix:

• Chaining and RU sizes

• Session-level pacing

• Transmission priority and route selection

Chaining and RU Sizes

In the mode table entry for Model 204/Horizon supplied in “Defining the
Network to SNA Communications Server” on page 36, the RUSIZES
parameter (maximum secondary LU send RU length, and maximum
primary LU send RU length) is coded to restrict RU lengths in both
SNA Communications Server Performance Tuning for Horizon 155

directions on the session to 2K (2048) bytes. The two 1-byte values are coded
in normalized floating-point notation, in the form:

m * 2n

where m is the first digit of the value and n is the second digit. Thus, x’88’ is 8
* 28, or 2048. These values are suitable for most applications.

The restrictions on RU sizes for a session compel the session partners to
segment messages exceeding the maximum into smaller elements “chained”
together.

When to chain

Chaining is a common means of achieving better performance in SNA
networks for the particular circumstances described below. When these
circumstances apply, it may be advisable to lower the RU maximums in order
to attain more chaining.

The first of these circumstances pertains to network topology and the second
pertains to Model 204 system resources.

• When a network contains remote NCPs (that is, multiple “hops” between
source and destination), connected by relatively low-speed lines,
transmission delays can be greatly reduced by ensuring that the message
units being transmitted are small. Chaining of application data
accomplishes this since one chain element at a time is transmitted.

• When the Model 204 ONLINE running Horizon conversations is virtual-
storage constrained and at the same time required to support a significant
number of conversations concurrently, efforts should be taken to reduce the
buffer requirement for those conversations. For each active, concurrent
conversation, Horizon allocates as a common buffer (for data sent and
received) the larger of the following values:

– Maximum primary send RU size

– DEFINE PROCESS DATALEN= parameter value

This buffer is allocated for the duration of the conversation.

For example, if the largest message expected from a partner across all
processes is 1K bytes and the table entry still calls for a maximum send RU
size of 2K, the buffer allocated for each conversation in Model 204 is at
least 1K larger than actually needed. If it becomes necessary to conserve
virtual storage, setting maximum RU sizes to 1K in the mode table entry for
Model 204 causes Model 204 to allocate just 1K for each buffer, resulting
in a savings of 1K per active conversation.

Note: Unless you are sure that the expected messages in the two directions
between the ONLINEs will be unequal in length, keep the values for both
secondary and primary LU the same, rather than paring down the values
separately as much as possible: Horizon returns a “DATA TRUNCATED” error
code to the application process when the process receives an application
156 Rocket Model 204 Horizon: Intersystem Processing Guide

message larger than the buffer it has allocated. If, on the other hand, the
sending side has a maximum RU equal to this receiving side’s buffer, the large
message is sent as a chain of smaller elements, each of which fits into the
receiver’s buffer.

Chaining’s cost

Message chaining has a cost: CPU usage. Chaining means multiple sends per
message, whereas only a single send is required when the message is sent in
its entirety as a single unit. More CPU cycles are needed to accomplish the
multiple sends. The network tuner must check to make sure that CPU usage by
Model 204 has not increased significantly by the level of chaining introduced.

Session-Level Pacing

Session-level pacing is an important means of protecting internal network
components from overload by individual users. An operand of the APPL
statement and an operand of the mode entry statement combine to specify the
session-level pacing parameters.

Pacing parameter settings

In the samples provided in “Defining the Network to SNA Communications
Server” on page 36, the flow control, or pacing, variables are set to 5 in both
directions. The SNA Communications Server on the sending side forwards no
more than five messages (message chain elements, actually) on a single
session involving this Horizon “link” to the SNA Communications Server of the
receiving side, until an internal acknowledgment (a “pacing response”) is
received from the sending SNA Communications Server.

Usually there is no need to alter this value. The setting of 5, in conjunction with
the large maximum RU size of 2K, protects the network from long chains of
data without slowing down the flow of average-length data.

Modification of pacing parameter values

Pacing values may be reconsidered if, perhaps for reasons outlined in the
discussion above on chaining, the maximum RU sizes are reset to values much
smaller than the average application message length. The pacing values
should then be set higher to avoid unnecessary throttling of the conversations.

Transmission Priority and Route Selection

This network performance topic is directed to the network planner, the person
doing the initial preparation for inter-computer traffic. The objective is to prevent
network batch transmissions from disturbing shorter, network interactive
transmissions.

Horizon transmissions are usually the interactive type: a user triggers a remote
process by opening a local process through terminal-entered commands and
SNA Communications Server Performance Tuning for Horizon 157

waits at the terminal for the remote process to complete. If interactive
transmissions experience transient delays, at least some users are disturbed.
Transient delays of batch transmissions (such as file transfer), however, are
unobserved and overall turnaround time is instead the performance criterion.

Transmission priority refers to NCP’s ability to prioritize transmission across
NCP-to-NCP lines. Route selection refers to the ability of both SNA
Communications Server and NCP to force different sorts of traffic onto logically
distinct and independently managed “virtual routes.” Network planners can
take advantage of these facilities to allow interactive traffic to be transmitted
ahead of, or on lines different from, batch traffic.

Assigning transmission priority and route selection

When a computer network sporadically transmits large amounts of data of a
systems nature (such as job output) between the computers, an operating-
system level subsystem, such as JES or RSCS, is typically used. The network
planner uses the mode table entries for those subsystems to associate the
batch traffic they send with yet another network table, the class of service
(COS) table. The COS= operand on the MODEENT macro refers to the name
of the COS table entry. Entries in the COS table determine transmission priority
and route preference.

A special entry can be assigned to these batch transmission subsystems so
that their traffic flows at a lower priority than, or separately from, Horizon
interactive traffic. The Model 204/Horizon mode table entry (and entries for
online systems generally) can then assume, by omitting the COS= operand, an
association with the “default COS table entry,” which is coded so as to
designate a high priority transmission.

Horizon batch transmissions

Horizon processes can also involve batch transmissions. Applications can be
written, for example, to periodically transfer Model 204 audit trails between
systems for merger at a central point.

To separate such applications from interactive ones, the performance tuning
technique is to include a COS= operand in a new mode table entry for the
Horizon systems involved in the application. The Model 204 DEFINE
PROCESSGROUP MODENAME= parameter can then be used to call for a
session with the special routing characteristics desired when the audit-trail
transfer application process is started.

158 Rocket Model 204 Horizon: Intersystem Processing Guide

D
Connecting to Non-Model 204
Systems

Connecting to CICS

Compared to a Model 204-to-Model 204 Horizon conversation, a
Model 204-to-CICS Horizon conversation requires some additional
conceptual understanding (of the CICS side) but little additional
programming effort for the Model 204 side. The Model 204 network
administration adjustments to CICS protocols are largely transparent to
the programmer. There are no changes to the Horizon conversation
interface “verbs.”

This Overview presents a discussion of how Horizon and CICS
connect. The rest of this section describes how to prepare the SNA
Communications Server (formerly VTAM), Model 204, and CICS
network definitions and how to implement and maintain the operation of
the connection.

Horizon connectivity versus CICS Interface connectivity

Horizon connectivity to CICS differs in several respects from the
CRAM-based Model 204 CICS (terminal) Interface:

• The Model 204 CICS Interface operates only when the Model 204
and CICS systems are resident on the same z/OS machine. Horizon
connects to CICS on the same or on a widely separated machine.

• Special Model 204 software or SVCs or both must be installed in
CICS and z/OS for the CICS Interface, but not for Horizon. In
Connecting to Non-Model 204 Systems 159

Horizon, software in Model 204 communicates peer-to-peer with native
CICS software.

• The CICS Interface is primarily a means for a CICS-controlled terminal user
to run programs in Model 204. Horizon is a means for CICS and Model 204
application programs to converse and share data as peers.

• The application programming in CICS that corresponds to Horizon SOUL
programming is done with a set of extensions to CICS Command Level
programming. Like Horizon SOUL statements, these CICS commands
each correspond, often very closely, to an APPC verb.

• Horizon connectivity is through SNA Communications Server. Both
Model 204 and CICS therefore must implement “logical units” to serve as
their entry points into the SNA network. In Model 204, this entry point is the
Horizon “link,” of which there may be several. In CICS, this entry point is the
single LU that also serves the CICS terminal handler.

Figure D-1 shows the components of the Horizon/CICS environment. LU 6.2
conversations between CICS transactions and Model 204 procedures can be
started from a terminal controlled by either system.

Figure D-1 The Horizon/CICS environment

SNA

CICS M204A

C
I
C
S
A
P
P
L
I
D

P
R
O
C
E
D
U
R
E
S

M
o
d
e
l

2
0
4

T
R
A
N
S
A
C
T
I
O
N
S

C
I
C
S

“VTAMNAME”

 link1

 link2

.

.

 link

SNA

 Single-session LU

 Parallel-sessions LU
160 Rocket Model 204 Horizon: Intersystem Processing Guide

One LU for CICS; multiple LUs for Model 204

In Figure D-1, CICS has one LU and Model 204 has several. This does not
imply any essential difference between the two systems. Model 204’s ability to
provide more than one link simply offers some extra flexibility in system
management. The cost is some added complexity in system administration.

For example, you can assign one link for applications transferring large
amounts of data between the two systems per request, and you can assign one
link for applications with heavy request volume but relatively short data
transfers per request. Such a scheme optimizes response time. The cost is that
you have to maintain extra definitions for the second link and its associated
processgroups.

Figure D-1 shows many sessions in progress simultaneously between CICS
and one of the Model 204 links. Such a configuration is called “parallel
sessions.” A simpler configuration is possible: each Model 204 link can support
just one session, with users employing that session for program-to-program
conversations in series, that is, one after the other.

Note: Separate additional links per CICS region are required if Model 204
connects to more than one CICS region simultaneously. For more information
about this, see “Network definition requirements” on page 164.

Supporting CICS parallel sessions

To support the parallel sessions configuration between CICS and Model 204,
you must prepare “CNOS” support: support for special intersystem protocols
used by the system software for setting up, terminating, and dynamically
controlling the sessions between the two systems.

CNOS support preparation is described in Appendix E. It includes updating the
SNA Communications Server “logmode” definitions and APPL statements, as
well as updating definition commands in Model 204 and CICS.

 SNA Communications Server Definition Statements

This section describes the SNA Communications Server network preparation
required for LU 6.2 support: updating the SNA Communications Server
“logmode” definitions, determining session parameters, and coding the APPL
statements.

Preparing the log mode definitions

Mode table configuration, including an example of recommended mode table
entry values for Horizon, is discussed in “Defining the Network to SNA
Communications Server” on page 36.

The following are recommendations for mode table configuration:
Connecting to Non-Model 204 Systems 161

• Use only one table for all LU 6.2 sessions, between all systems. Let this
table’s first entry—which serves as the default entry—be the most widely
applicable one, such as the one with the values for single-session support
recommended in Chapter 3.

• If using CNOS sessions, include an SNASVCMG entry and an entry with
parallel session support somewhere in the table.

• Code the table’s name on the MODETAB parameter of the APPL
statements for both CICS and for each of the Horizon links in MODEL 204.

• Omit the DLOGMOD parameter.

• For all but CNOS connections, omit the MODENAME parameter on both
the Horizon PROCESSGROUP and the CICS CONNECTION definitions.

• For CNOS connections, include MODENAME in the Horizon
SESSIONGROUP and the CICS CONNECTION definitions. This
MODENAME will be the name of the CNOS parallel-sessions entry in the
single, common mode table for LU 6.2.

• Code the table’s name on the MODETAB parameter of the APPL
statements for both CICS and for each of the Horizon links in Model 204.

• Omit the DLOGMOD parameter.

• For all but CNOS connections, omit the MODENAME parameter on both
the Horizon PROCESSGROUP and the CICS CONNECTION definitions.

• For CNOS connections, include MODENAME in the Horizon
PROCESSGROUP and the CICS CONNECTION definitions. This
MODENAME will be the name of the parallel-sessions entry in the single,
common mode table for LU 6.2.

Determining session characteristics

When sessions are started from Model 204, the SNA Communications Server
session parameters are determined by reference to the Model 204 network
entity definitions, the APPL statements for CICS, and the common mode table
for Horizon and CICS LU 6.2. Finally, the session parameters are checked by
CICS against CICS definitions before the bind is accepted.

Figure D-2 on page 163 shows the steps in the bind selection process when
Model 204 initiates the process. The mode table configuration in Figure D-2
allows a common, default entry to be chosen when no MODENAME is specified
in the Model 204 definitions (sequence (A) in figure) and a specific entry for
CICS parallel-session support (sequence (B) in figure) when the entry is
specified on the DEFINE PROCESSGROUP command. Such a configuration
is recommended for connections between Horizon and CICS.
162 Rocket Model 204 Horizon: Intersystem Processing Guide

When sessions are started from CICS, the bind process steps in Figure D-2 are
reversed.

Figure D-2 SNA Communications Server Session Parameter Selection

1B

2B

3B

4B

5B

6B

Horizon Procedure
(A) OPEN PROCESS P1 AT PGRP1...
.
.
.

Model 204 Definitions
LINK LINK1 WITH PROTOCOL=LU62...
PROCESSGROUP PGRP1 WITH REMOTEID=CICS...
PROCESS P1...
.
.
.
LINK LINK2 WITH PROTOCOL=CICSLU62...
PROCESSGROUP PGRP2 WITH -

VTAM APPL Statements
CICS APPL MODETAB=TABLU62,...

M204LNK1 APPL MODETAB=TABLU62,...

VTAM Mode Table
TABLU62 MODETAB
MODELU62 MODEENT
.
.
.
PSESLU62 MODEENT
.
.
.
SNASVCMG MODEENT
.
.

CICS
(A) Accept BIND as Single-session LU62
(B) Accept BIND as Parallel-sessions LU62

1A

2A

3A

4A

5A

6A

 CICS Definitions
 CONNECTION ONE SINGLESESS=YES
 CONNECTION TWO SINGLESESS=NO
MODENAME=PSESLU62
Connecting to Non-Model 204 Systems 163

Following is a brief description of the sequence in Figure D-2 on page 163:

Coding the APPL statement

The APPL statements for the Horizon links to CICS are identical to those for
Model 204-Model 204 links.

Typically, you have to modify the CICS APPL statement to include parameters
relevant to LU 6.2 support (PARSESS=YES, etc.). You need to add a
MODETAB parameter, since other than LU 6.2 connections, CICS will not have
been the secondary LU in any application. The MODETAB parameter should
point to the common LU 6.2 table, as stated in the mode table configuration
recommendations in “Preparing the log mode definitions” on page 161.

Model 204-Side Definition Commands

The DEFINE command specifications prepare the Model 204-side of the
connection to CICS. The CICS and Model 204 staffs must coordinate at
definition time with regard to the names used (for REMOTEID, PARTNER, and
so on).

For information about the DEFINE commands for CNOS parallel sessions, see
Appendix E.

Network definition requirements

The DEFINE command specifications listed below are modified or require
special attention for CICS single-session support.

Step Description

(1) The session is started from Model 204. The processgroup name specified
after the AT parameter indicates where (with which processgroup and link
definition) to find the session characteristics.

(2) MODENAME, if any, points to a specific mode table entry. If MODENAME
is not specified (as shown), the default mode table entry is used.
REMOTEID indicates the CICS LU.

(3) The SNA Communications Server APPL statement for the CICS LU points
to the common mode table, TABLU62.

(4) TABLU62, the common mode table, the name of which precedes the list of
entries. The first entry in the list, here MODELU62, is the default. As
recommended in “Preparing the log mode definitions” on page 161, the
default entry specified is the one with the session parameters for single-
session support.

(5) The CICS connection definitions are checked by CICS when the Bind
arrives.

(6) The result is a Bind for single-session support.
164 Rocket Model 204 Horizon: Intersystem Processing Guide

• DEFINE LINK command PROTOCOL parameter

One Horizon link must be reserved for each CICS system to which the
Model 204 system connects. Each of these links appears to CICS to be a
separate system.

• DEFINE PROCESSGROUP command MODENAME parameter

The MODENAME parameter is required on the definition for the
processgroup whose REMOTEID parameter points to the CICS partner.
More than one processgroup can be defined for this link, but the
MODENAME (and REMOTEID) must be the same on each.

(On the CICS side, CICS online resource definition or CICS DFHTCT
macros specify the LU/mode definition (CICS “connection” and “sessions”
definitions) which identifies the Model 204 system. If more than one
processgroup, as mentioned above, is defined on the Model 204 side for
the Horizon link, the CICS definitions do not change in any way.)

• DEFINE PROCESS command PARTNER parameter

The PARTNER parameter value must be the four-character CICS
transaction ID in which the CICS partner program is to run.

• DEFINE PROCESS command PARTNER parameter

The PARTNER parameter value must be the four-character CICS
transaction ID in which the CICS partner program is to run.

• DEFINE LINK command SESSIONS parameter and
DEFINE PROCESSGROUP command INLIMIT and OUTLIMIT
parameters

The CICS and Model 204 staffs must coordinate with regard to initial values
for session limits specified on the Model 204 DEFINE PROCESSGROUP
command and on the CICS DEFINE SESSIONS. It is suggested that the
total be set high and that it be divided equally between inbound and
outbound sessions.

That is, let SESSIONS on the DEFINE LINK command be high, and let the
INLIMIT value equal the OUTLIMIT value on the DEFINE
PROCESSGROUP command. These Model 204-side values are to
correspond to two values on the CICS SESSIONS MAXIMUM definition, as
follows:

• The total number of application sessions allowed with the named
Model 204 link is indicated by the first MAXIMUM value in CICS and by the
sum of INLIMIT and OUTLIMIT in Model 204.

• The number within the above total reserved for sessions on which CICS is
assured to win any contention for a chance to start an application
conversation is indicated by the second MAXIMUM value in CICS and by
INLIMIT in Model 204.
Connecting to Non-Model 204 Systems 165

The difference between the two CICS MAXIMUM values is the number of
sessions on which CICS defers to Model 204 when both wish to use the
session.

Note: The Model 204 DEFINE LINK SESSIONS value should include two extra
control sessions which are not used for applications. None of the values on the
processgroup definition (and none of the CICS values) includes these two extra
sessions.

CICS-Side Definition Commands

The CICS Inter-communication Facilities Guide explains the statements and
parameters needed to configure LU 6.2 connections in CICS. Especially
relevant to CICS connections to Model 204 are the CICS CONNECTION and
SESSIONS definitions. These definitions, taken together, roughly correspond
to the Model 204 PROCESSGROUP definition.

LU 6.2 network definition considerations

This section discusses aspects of the CONNECTION and SESSIONS
definitions that are important for Model 204 LU 6.2 connections.

Parameter names used are for CICS RDO.

• MODENAME (on SESSIONS) is required for both single- and parallel-
session connections.

• SINGLESESS (on CONNECTION) determines whether or not parallel
sessions are supported (SINGLESESS=N invokes the support).

• BINDPASSWORD (on CONNECTION) must be left blank.

• There are two values required on MAXIMUM (on SESSIONS). The first of
these refers to the total number of concurrent application sessions allowed
with any one Model 204 “link.” The second specifies the number of
sessions out of the total on which CICS will be assured the ability to start a
conversation.

• RECEIVESIZE and SENDSIZE (on CONNECTIONS) are the maximum
values CICS allows for RUSIZES on a Bind from another system. CICS
negotiates the Bind values downward to these values. For ease of
administration, code all values the same: the two values for RUSIZES in the
logmode entry and these two CICS parameters. 2048 is a good value.
166 Rocket Model 204 Horizon: Intersystem Processing Guide

Security considerations

The levels of security support for conversations invoked from the Model 204
side are specified on the ATTACHSEC parameter (on CONNECTION). They
should correspond as follows in Table D-1 to Horizon security values:

Note: For conversations invoked on the CICS side, the security level is always
equivalent to “identify”: CICS always sends a user ID but never sends a
password.

Specifying the Model 204 partner program

In CICS, the partner program name for conversations invoked from the CICS
side is not specified on a definition statement, but rather in the application
program’s EXEC CICS CONNECT command. The PROCNAME parameter on
this command must be the appropriate process name in Model 204.

Note: CICS insists that the PROCNAME parameter name be four characters
in length. Hence, the name of a server process invoked from CICS also must
be four characters in length.

Maintaining Operations

This section describes the principal operating functions for each side in Horizon
to CICS conversations: establishing the connection, changing session limits,
and executing an orderly shutdown.

Establishing the connection

Once the Horizon link is open and the CICS connection definitions are put “in
service,” you can set up the connection between the two systems. “In service”
status in CICS does not involve ACB open as does Horizon’s OPEN LINK, but
is similar to “started” status for the link in Horizon. Like link opening in Horizon,
however, it can be configured to occur automatically at system startup, instead
of by doing CEMT I CONN followed by ACQ.

Table D-1. CICS LU 6.2 Security Support Compared to Horizon

CICS side Model 204 side

LOCAL UIDSOURCE=NONE (no security)

IDENTIFY LOGIN=TRUST +
UIDSOURCE=OPEN or

UIDSOURCE=CURRENT

(Model 204 sends user ID but no
password)

VERIFY UIDSOURCE=OPEN or

UIDSOURCE=CURRENT +
OPEN PROCESS PASSWORD

(Model 204 sends user ID and
password
Connecting to Non-Model 204 Systems 167

Since you can initiate the connection setup from either system, choose one
system as the focal point for control of connection. Using one system as the
focal point simplifies the establishment and takedown of the connection.

When Model 204 is the focal point

If Model 204 is designated as the focal point, the first outbound process of the
run that is opened on the link, before its open completes, accomplishes the
establishment of the connection. The Model 204 system administrator has no
special commands to issue.

When this first conversation opens, the MONITOR LINK command display
shows two control sessions active on the link in addition to the application
session. “X” in the session FLGS (flags) column on the display indicates these
control sessions. “S” indicates that Model 204 was the source of the
connection. “T” indicates that CICS started the connection and Model 204 was,
in CNOS terminology, the connection “target.”

The audit trail shows a message stating the names of the link, processgroup
(for the application process just opened), and CICS LU name and that the
connection is established. If the SOUL program issues $ERRMSG, the same
message is displayed as that on the audit trail. Otherwise, the connection
establishment process is transparent to the program.

Should the connection attempt fail at any time during set up of the control
sessions or during CNOS Initialize exchange, the status of the connection is
reset entirely and a second conversation attempt is allowed to try the
connection process again. Failure audit messages record the attempted
connection and the reason for the failure. The program attempting the first
OPEN PROCESS may detect a failure in the connection process as a
$STATUS/$STATUSD code of 13/3 or 53/3.

When CICS is the focal point

If CICS is the focal point, the CICS operator must “bring up the link” to Horizon
as a regular, system startup activity. CICS log messages record the session
limits specified in the CNOS Initialize exchange. Horizon’s MONITOR LINK will
show two idle control sessions active. Either CICS users or Model 204 users
may then start conversations.

Changing CNOS session limits

At any time while the connection is up, the CICS operator can decrease the
session limits on the connection with a CEMT SET MODENAME command.
Horizon will overlay its current session limits with values carried in the CNOS
Change command from CICS, and it will return a positive CNOS Reply. The
new values are accepted or negotiated according to SNA standards.

In addition, CICS implements the session deactivation aspect of CNOS
Change, whereby the CNOS sender designates one partner to be responsible
168 Rocket Model 204 Horizon: Intersystem Processing Guide

for terminating those sessions in excess of the new limits. Since CICS always
designates the CNOS “source” to do the termination, the Horizon system
administrator sees some number of sessions lost. The audit messages
reporting the lost sessions will not themselves refer to the CNOS Change
process. However, they will be preceded by a message stating the receipt of
the CNOS Change command from CICS.

For more information about Horizon CNOS support, see Appendix E.

Executing an orderly shutdown

You can bring down a connection, as well as start one up, from either the
Model 204 or the CICS side. To close the connection cleanly, however, the
CICS side should implement shutdown procedures.

Shutdown from the Model 204 side

From Model 204, CLOSE LINK FORCE or EOJ bring the connection down in
an unpredictable manner. Although there are no system abends or the like on
the CICS side, and the connection is still re-startable from this point, the CICS
log registers some peculiar system level errors.

Shutdown from the CICS side

Orderly shutdown from the CICS side does not involve ACB close. The
following sequence of actions occurs:

• The operator “takes down the link” with Model 204 by the CEMT SET
CONNECTION RELEASED command.

• Horizon prohibits outbound conversations. A message is audited stating
that connection shutdown has begun by request from the CICS side.

• CICS proceeds to drain all active application sessions and then terminates
each session. The application sessions are terminated first, the two control
sessions last.

• When the control sessions end, the completion of the connection reset
process is recorded on the audit trail.

Either side may now restart the connection at any time.

Connecting to VAX/VMS

This section discusses requirements for LU 6.2 conversations between a
VAX/VMS system and Model 204. It is assumed that members of both staffs
will coordinate with regard to the names and values used to meet the network
definition and data transmission protocols. Information here is provided
according to responsibility: there are sections for SNA Communications Server
Connecting to Non-Model 204 Systems 169

system programmers, system managers, and application programmers, or
their equivalents.

The DECnet/SNA Guide to IBM Parameters is a valuable reference source for
the information in this section.

Digital products needed to support the connection

On each VAX or MicroVAX involved in a program-to-program application with
Model 204, install Digital’s LU 6.2 software product, “DECnet/SNA VMS
APPC/LU6.2.”

Either of two additional Digital products is needed to provide the basic SNA
protocol stack, on top of which the LU 6.2 product runs:

• DECnet/SNA Gateway, a software product, is for use when a DECnet
network connects the several Digital computers needing LU 6.2 support.

• VMS/SNA, a communications processor box, is for use when these
machines are not themselves connected together.

A single Gateway box provides the SNA service to all VAXs on the network,
while in standalone mode, each VAX must run the SNA software.

Note: The Gateway function may alternatively be provided by products
currently available from other vendors.

SNA Communications Server system programmer considerations

Special SNA Communications Server/NCP definition items are required:

You must choose one of the following methods of customizing the SNA
Communications Server/NCP definition for the VAX. If neither of these is
entered, the Bind sent by Horizon is rejected; no conversation can take place:

• When defining the VAX’s and their LUs to SNA Communications
Server/NCP, the VAX requires outbound pacing on the data flow to it from
the NCP. Make the alteration to the logmode table for LU 6.2 that is
suggested on page 41 of this Horizon guide. Add the following parameter
setting:

SRCVPAC=4.

• Alternatively, the logmode table entry can remain as suggested (with
SRCVPAC defaulting to 0) if the following pacing value is entered on the LU
macro(s) for the VAX in the NCP:

PACING=4

Use the following definition statements to define the Digital interconnect system
to ACF/NCP:
170 Rocket Model 204 Horizon: Intersystem Processing Guide

• GROUP

• If the DIAL operand is YES, the group line must be identified as half-duplex
in the DECnet/SNA configuration file for SNA lines.

• LINE

• If the GROUP definition DIAL operand is YES:

• Set ADDRESS to (lnbr,HALF), where lnbr is the relative line number of the
communication line.

• Set NRZI to NO for the DECnet/SNA Gateway.

• The NRZI setting depends on the communication device. Consult
VMS/SNA documentation for the setting to use for your device.

• PU

• If the GROUP definition DIAL operand is NO:

• The ADDR value must be set in the DECnet/SNA configuration file for SNA
lines.

• MAXDATA must be equal to SEGMENT SIZE in both DECnet/SNA and
VMS/SNA.

• DEC strongly recommends that MAXOUT be set to 7.

• LU

• In addition to the logmode table modifications for LU 6.2 suggested on
page 41 of this Horizon guide:

• For LOCADDR, DECnet/SNA Gateway supports a range of values of 1 to
128; VMS/SNA supports a range of values of 1 to 64.

Some items in the IBM or Horizon definitions pertaining to the SNA connection
must be repeated in the Digital definitions. In the VMS/SNA software product,
such definitions are done with the “SNA Network Management” facility.

To use this facility, enter “run sys$system:snanm”. At the SNANNM prompt,
enter SET ACCESS NAME. Prompts follow for the input of five items, three of
which you enter or modify:

• APPLICATION refers to the SNA Communications Server APPL name
used by the Horizon link, and it must correspond to the Horizon LOCALID
on the DEFINE LINK statement.

• LOGON refers to the logmode table entry to be used on the session. The
name entered here must correspond to the name on the MODEENT
statement for the logmode table entry in SNA Communications Server that
has been set up for a VAX-to-Horizon session.
Connecting to Non-Model 204 Systems 171

• ACCESS NAME is the tag for this set of definition statements. You refer to
this name in the VAX program.

System manager considerations

This section uses a sample program from the DECnet/SNA VMS APPC/LU6.2
Programming Interface as a reference point for the discussion of network
definition requirements.

Implementing the sample application program

Digital program-to-program communications applications can be coded in
Fortran, Pascal, Basic, Cobol, PL/I, C, or VAX Macro. A sample is provided in
each of these languages in the Digital manual for LU6.2. The following notes
may help to implement the sample.

The parameters on the DEFINE_REMOTE verb in the sample require care:

• ACC_NAME is the name of the definition set entered through the SNA
management facility (see above). When this parameter is included, none of
the parameters listed as options after it (not even (PLUNAME) need be
included. The name of the Horizon LU is obtained instead from the “access”
definitions.

There are, however, two required parameters containing the term
LUNAME. These are actually two aliases that the VAX programmer can use
for the Horizon LOCALID and they may or may not be identical to the
Horizon LOCALID. To avoid confusion, code the name of the Horizon
LOCALID for both of these (as well as for APPLICATION in the SNANM
facility.)

• The parameter NODE-NAME on the DEFINE_REMOTE verb refers to the
DECnet designation for the DECnet/SNA Gateway, if there is one. If
VMS/SNA is used (that is, if a VAX is connecting stand-alone to
Model 204), the value for NODE_NAME must be 0.

• The parameter TPN_NAME on the DEFINE_REMOTE verb refers to the
Horizon server process name. This is the only place where the Horizon
process name can (and must) be indicated.

Application programmer considerations

This section uses the sample programs from the DECnet/SNA VMS
APPC/LU6.2 Programming Interface as a reference point for the discussion of
conversation programming requirements.

Changing the SYNCLEVEL value

The VAX samples allocate the conversation with SYNCLEVEL of CONFIRM.
Horizon, however, uses SYNCLEVEL as the default for
CONFIRM/NOCONFIRM on its CLOSE PROCESS. With SYNCLEVEL of
172 Rocket Model 204 Horizon: Intersystem Processing Guide

CONFIRM, the VAX side is requested to confirm receipt of the close request
from Horizon before it can close itself.

But the samples have no confirmation routine. You must change the constant
for SYNCLEVEL (at the top of the samples) to “NONE” to run a program without
confirmation exchanges.

If you keep the SYNCLEVEL of CONFIRM, you have to add a CONFIRMED
verb to the VAX program. Issue this CONFIRMED verb when RECEIVE returns
a CONFIRM_DEALLOCATE status (which happens when the Horizon program
issues CLOSE PROCESS).

Connecting to OS/2 EE

This section discusses requirements for LU 6.2 conversations between OS/2
EE and Model 204. It is assumed that members of both staffs will coordinate
with regard to the names and values used to meet the network definition and
data transmission protocols. Information here is provided according to
responsibility: there are sections for SNA Communications Server system
programmers and application programmers, or their equivalents.

OS/2 products needed to support the connection

On each workstation involved in a program-to-program application with
Model 204, OS/2 EE Communications Manager must be installed. This
includes the APPC files required to compile programs that issue APPC
requests.

A variety of physical link types are supported for connecting to the mainframe,
among them SDLC and Token Ring (to channel-attached TR gateway). In
addition, APPC is supported by OS/2 in an SNA Gateway configuration, where
only one workstation need provide the physical link to the mainframe.

SNA Communications Server system programmer considerations

Special SNA Communications Server/NCP definition items are required:

• When defining the PC’s LUs to SNA Communications Server/NCP, the
SNA Communications Server logo screen should not be displayed to the
PS/2. This logo (“message 10") should be suppressed. Neglecting to
suppress this message causes session binding to fail.

This logo suppression can be done in either of two ways:

– Not specifying a USS table in the SNA Communications Server
APPLID

– Pointing to a table that does not include the terminal operator mes-
sages

Note: The IBM default USS table (ISTINCDT) does not include an MSG 10.
Connecting to Non-Model 204 Systems 173

• On an SDLC line, the SDLC window size (which in NCP is represented by
the MAXOUT parameter on the PU macro for the PC LU) must also be
entered in Communications Manager under the SDLC DLC ADAPTER
PROFILE panel. The two values to adjust are:

– Send window count

– Receive window count

• Large RUSIZES should be specified using the RUSIZES in the LOGMODE
entry for the APPLID. A value of X’8888’, representing 2K, is
recommended. Also, in Communications Manager under the SDLC
ADAPTER PROFILE panel, the maximum RUSIZE should be adjusted to
reflect the 2K value.

• On a switched SDLC line, the NODE ID on the SNA BASE PROFILE in
Communications Manager must be in sync with the IDNUM parameter on
the PU macro for the IBM PS/2 LU. Also, you must enter a value of “05D”
in the IDBLK parameter in the PU macro.

• You can use the recommended logmode table entry shown on page 41 in
this Horizon guide.

Application programmer considerations

IBM provides several sample programs written in C, FORTRAN and PL1. For
testing, the C file requestor program was customized for Model 204. In this
customizing process and APPC coding in general, there are several things to
keep in mind:

• On the TP_STARTED APPC command:

– The lu_alias must be equal to the LU Alias specified on the LOCAL
APPC LOGICAL UNIT PROFILE window in Communications Manager.

– The tp_name should be equal to the name of the program on the work-
station (that is, the XXXXXXXX.EXE module).

• As a result of the TP_STARTED command, a tp_id is returned. This tp_id
must be used on all future APPC calls.

• On the MC_ALLOCATE APPC command:

– The plu_alias is equal to the LU alias found on the PARTNER LU PRO-
FILE window in Communications Manager.

– The tp_name must be equal to the name of the process in Model 204
that is being used as the server routine (this must be presented in
EBCDIC).

– The mode_name must be equal to the Mode Name found on the
TRANSMISSION SERVICE MODE PROFILE found in Communica-
tions Manager (this must be presented in EBCDIC).

– Optionally, the pwd and user_id used to logon to Model 204 are
included in the MC_ALLOCATE command (these must be presented in
174 Rocket Model 204 Horizon: Intersystem Processing Guide

EBCDIC).

• On the MC_SEND_DATA command, any data passed to Model 204 must
be converted to EBCDIC before the command is executed.

• On the MC_RECEIVE_AND_WAIT command, any returned data from
Model 204 must be converted to ASCII after the command is executed.

Note: The same memory location used for APPC calls is also used for the
APPC SV_CONVERT routine. As a result, primary return codes, secondary
return codes, and what-received indicators must be either saved or analyzed
prior to executing the conversion routine. Failure to do so results in invalid
processing due to the examination of returned values that have changed.

• On the SV_CONVERT command, use the SV_G character set. It converts
more characters than the SV_AE character set does, and it is user
modifiable. The table is under the name supplied on the WORKSTATION
PROFILE window in Communications Manager under the Translation
Table File Name prompt.

Connecting to UNIX System V and AT&T LU 6.2 Facility

The AT&T LU 6.2 Facility is a software package for the AT&T workstations
(3B1s, 3B2s) that run UNIX System V. UNIX System V uses SNA LU 6.2 to
communicate with other LU 6.2 supporting platforms.

This section discusses requirements for LU 6.2 conversations between the
AT&T LU 6.2 Facility and Model 204. It is assumed that members of both staffs
will coordinate with regard to the names and values used to meet the network
definition and data transmission protocols. Information here is provided
according to responsibility: there are sections for SNA Communications Server
system programmers, system managers, and application programmers, or
their equivalents.

Products needed to support the connection

• AT&T LU 6.2 Facility

• AT&T 3B1,B2 workstations running UNIX System V.

SNA Communications Server system or network considerations

Special SNA Communications Server/NCP definition items are required:

• The EXCHID on the UNIX system for LOCAL NODE (switched lines only)
must match the SNA Communications Server/NCP Major Node definition
for PU: that is, EXCHID must equal IDBLK plus IDNUM. For example:

If IDBLK=03E and IDNUM=0002, EXCHID=03E0002

• AT&T LU 6.2 LINE definition parameter MAX_BTU must equal SNA
Communications Server/NCP PU’s MAXDATA. If HDX=YES on the AT&T
Connecting to Non-Model 204 Systems 175

LINE definition, set DUPLEX to HALF on the SNA Communications
Server/NCP LINE definition. If HDX=NO, set DUPLEX to FULL.

• Let NRZI=NO for both the AT&T LU 6.2 LINE definition and the SNA
Communications Server/NCP GROUP definition.

• AT&T LU 6.2 entity STATION parameter ADDRESS must equal SNA
Communications Server/NCP PU’s ADDR.

• The SNA Communications Server/NCP LU pacing parameters VPACING
and PACING must match the AT&T MODE definition parameters SPCT
and RPCT, respectively.

System manager considerations

The REMOTEID parameter on the Model 204 DEFINE PROCESSGROUP
command must match the UNIX LOCAL LU NNAM parameter. The LOCAL LU
is similar to the SNA Communications Server/NCP LU, and both addresses
must match.

The UNIX REMOTE LU NNAM parameter must match the Model 204 DEFINE
LINK command LOCALID parameter.

Application programmer considerations

Sample programs used to demonstrate the UNIX System V and AT&T LU 6.2
Facility connection to Model 204 duplicated the C program flow from the AT&T
3B2 Computer AT&T LU 6.2 Facility Administrator’s and Programmer’s Guide,
Release 2.0.

ASCII to EBCDIC conversion must be done on the UNIX side.
C subroutines are provided to do this.

If you pass a user ID and password from the UNIX System V workstation to
Model 204, avoid mixed case. It is necessary to force UPPERCASE to avoid
errors.
176 Rocket Model 204 Horizon: Intersystem Processing Guide

E
Horizon CNOS Connections

CNOS overview

SNA LU 6.2 supports single-session and parallel-session connections.
A parallel-session LU can have multiple concurrently active sessions
with a given partner LU. A single-session LU cannot activate another
session until the current session is deactivated. SNA CNOS verbs
dynamically control the number, activation, and deactivation of parallel
sessions between two LUs.

CNOS has no meaning for the TCP/IP protocol, and therefore the
features in this appendix are not applicable for connections using a
TCP/IP protocol.

This section provides an overview of CNOS terminology and basic
operation.

CNOS terminology

Each CNOS command has a source and a target. The source LU is
the LU that issues the CNOS request. The target LU is the LU that
receives the CNOS request and issues the CNOS reply.

CNOS requests are issued only over control sessions. There are two
control sessions for each pair of partner LUs. These sessions are
dedicated to regulating the remaining conversational sessions bound
between the LU partners. A conversational session is a session used
for conversations between user applications.

A CNOS command can apply to all sessions existing between two
logical units or just those in a particular mode. A mode is a subset of
the sessions between two LUs. All sessions in a mode, by definition,
have a common logmode name and common session characteristics.
Horizon CNOS Connections E-177

A logmode names a SNA Communications Server (formerly VTAM)
table entry that contains predefined session characteristics that SNA
Communications Server uses to establish sessions between two logical
units. The CNOS partners’ common session characteristics include
request unit size, access security, trusted logins, and support for LU 6.2
and the CNOS protocol.

A mode is identified to the LU partners by a mode name which must be
unique to the LU it subdefines.

The session limit is the maximum number of concurrent sessions that
can exist between two LUs using the same mode.

CNOS session control

The three basic CNOS verbs are INITIALIZE, RESET, and CHANGE:

• INITIALIZE_SESSION_LIMIT changes the session limit from zero
to a nonzero number.

• RESET_SESSION_LIMIT changes the session limit to zero.

• CHANGE_SESSION_LIMIT increases or decreases the session
limits

Setting session limits

When a CNOS INITIALIZE verb sets a session limit it specifies:

• Source requested maximum session count

• Guaranteed number of source contention winners

• Guaranteed number of target contention winners

Source contention winners means the number of sessions the source
has reserved for itself. Target contention winners means the number of
sessions the source is willing to reserve for the target.

The target may negotiate these values to meet its requirements and
uses several negotiation rules to do so. The target replies to the source
with values for the bulleted items above and will indicate whether the
values returned have been negotiated.

Deactivating sessions

A CNOS RESET verb specifies:

• Whether the source or target is responsible for session
deactivation.

• Whether the reset applies to one or all modes between the local and
remote LU.
E-178 Rocket Model 204 Horizon: Intersystem Processing Guide

When one resets the session limit, one of the two LUs must deactivate
the sessions between them to make the active session count equal to
zero. The RESPONSIBLE parameter of RESET designates who is
responsible for deactivating the required number of sessions.

Sessions are deactivated in an orderly manner:

• Conversations are allowed to finish.

• The responsible LU indicates that it will send no new conversation
requests by sending a BIS (Bracket Initiation Stop) request.

• The target of this request acknowledges and concurs by sending a
BIS reply.

• The responsible LU asks SNA Communications Server to
deactivate the session by sending an UNBIND request.

Changing session limits

When a CNOS CHANGE verb increases or decreases session limits, it
specifies the same parameters (session count and contention winners)
as INITIALIZE. If sessions need to be deactivated to meet the new
session limits, CHANGE (like RESET) specifies the node responsible
for session deactivation and the modes affected.

CNOS minimum support

Horizon provides the CNOS minimum support set, which includes the
components listed below:

• A control-operator transaction program that can issue the CNOS
minimum support set verbs

• Presentation services for the control operator program

• Two control sessions for every CNOS LU pair

• The CNOS service transaction program

Minimum support verbs

The CNOS minimum support verbs include the control operator, LU
definition, and display verbs shown in Table E-1. The table also shows
the Model 204 commands (presentation) for those verbs:

Table E-1. CNOS verbs with equivalent Model 204 commands

CNOS verb Meaning for Model 204 Model 204 command

INITIALIZE_SESSION_LIM
IT (send support)

Horizon initiates CNOS communications
with a partner LU

START SESSIONGROUP
Horizon CNOS Connections E-179

Optional verb

Model 204 also provides send support for CHANGE_SESSION_LIMIT,
allowing Model 204 user to initiate execution of MODIFY
SESSIONGROUP. This functionality is not required as part of the
CNOS minimum support set.

Managing the Horizon CNOS network

Setting up Horizon CNOS support requires modifications to the basic
Horizon network entity definitions, two CNOS-specific entity definitions,
and two SNA Communications Server mode table entry definitions.

Horizon network control commands are modified to apply to CNOS
entities and include some functionality not available to non-CNOS
Horizon.

INITIALIZE_SESSION_LIM
IT(receive support)

Horizon responds to a remote LU’s
CNOS_INITIALIZE request

—

RESET_SESSION_LIMIT
(send support)

Horizon shuts down conversation traffic STOP SESSIONGROUP

RESET_SESSION_LIMIT
(receive support)

Horizon responds to a remote LU’s CNOS
RESET request

—

RESET_SESSION_LIMIT
MODENAME(ALL)

Horizon lets all conversations for all
sessiongroups with a remote to finish,
unbinds the sessions, and frees the
sessiongroups

STOP REMOTE

CHANGE_SESSION_LIMIT
(receive support)

Horizon responds to a remote LU’s
CHANGE_SESSION_LIMITrequest

—

DEFINE_TP Defines Horizon process DEFINE PROCESS

DEFINE_LOCAL_LU Defines Horizon link DEFINE LINK

DEFINE_REMOTE_LU Defines Horizon remote DEFINE REMOTE

DEFINE_MODE Defines Horizon sessiongroup DEFINE SESSIONGROUP

DISPLAY_TP Shows Horizon CNOS process usage MONITOR PROCESS

DISPLAY_LOCAL_LU Shows Horizon CNOS link usage MONITOR LINK

DISPLAY_REMOTE_LU Shows Horizon CNOS remote usage MONITOR REMOTE

DISPLAY_MODE Shows Horizon sessiongroup usage MONITOR
SESSIONGROUP

Table E-1. CNOS verbs with equivalent Model 204 commands (Continued)

CNOS verb Meaning for Model 204 Model 204 command
E-180 Rocket Model 204 Horizon: Intersystem Processing Guide

Defining CNOS network entities to Model 204

You need to define two CNOS-only network entities, and you need to follow the
CNOS-specific syntax for the three basic Horizon network entities.

Remotes and sessiongroups

The following Model 204 intersystem entities are unique to and required for
Horizon links with CNOS sessions:

You request CNOS support by including a remote entity and one or more
sessiongroup entity definitions with your link, processgroup, and process
definitions.

Links, processgroups, and processes

The basic Horizon entity definitions are documented on the Rocket Model 204
documentation wiki command pages:

http://m204wiki.rocketsoftware.com/index.php/Category:Commands

• DEFINE LINK command: Horizon for TCP/IP

• DEFINE LINK command: Horizon for VTAM

• DEFINE PROCESS command: Horizon for TCP/IP and VTAM

• DEFINE PROCESSGROUP command: Horizon for TCP/IP

• DEFINE PROCESSGROUP command: Horizon for VTAM

Defining CNOS support to SNA Communications Server

SNA Communications Server network definition for Horizon CNOS differs from
non-CNOS only in the SNA Communications Server mode table entry
requirements. Horizon CNOS connections require two mode entries:

• One entry for the characteristics of the CNOS control sessions

• One or more entries for the characteristics of the CNOS conversation
sessions

Intersystem entity Description

Remote Identifies the remote LU and specifies the local link to which
the remote node connects and the login security for the link.

Sessiongroup A group of sessions with the same network properties (from
a common remote and link) and the same session
characteristics (from a common SNA Communications
Server logmode entry).
Horizon CNOS Connections 181

Coding the SNA Communications Server APPL definition

Follow the directions in Chapter 3 for non-CNOS APPL definitions.

Coding the mode table entries

Define a mode entry whose entry name and LOGMODE parameter value is
SNASVCMG. You can use the SNASVCMG entry in the default mode table
supplied by IBM.

Define one or more mode entries for the CNOS conversation sessions. Make
sure each entry has an entry name and LOGMODE parameter value that
matches the value of the MODENAME parameter of a DEFINE
SESSIONGROUP command.

For each conversation session entry, follow the parameter recommendations
on page 41 for non-CNOS connections, with one exception:

Specify PSERVIC=X’060200000000000000102300’

Handling CNOS errors

Rejecting a CNOS connection

If you issue an inbound request for an existing process that does not seem
(according to the definitions) to have a logical connection with the CNOS
connection over which the connection request has come, Model 204 issues the
following message:

M204.2837: NO LOGICAL CONNECTION BETWEEN PROCESS %C AND
REMOTEID %C

Typical CNOS connection errors

Typically, Model 204 informs you of errors involving the CNOS connection by
issuing the 2260 error message that follows. The message suits a variety of
error situations by substituting one of multiple qualifying phrases according to
the error characteristics.

M204.2260: CONNECTION [INITIALIZATION
 | CHANGE OF SESSION LIMITS | RESET
 | RESET OF ALL MODENAMES]
 WITH [partner-LU] [COMPLETED SUCCESSFULLY
 | DID NOT COMPLETE]
 - [qualifier], SOURCE WAS [originating-LU]
182 Rocket Model 204 Horizon: Intersystem Processing Guide

Where

Note: Periodically check that the connection is being set up and shut down as
planned.

Argument Means…

CONNECTION INITIALIZATION
COMPLETED SUCCESSFULLY

Initial intersystem handshake is
completed and user procedures can run
over the connection.

CONNECTION CHANGE OF SESSION
LIMITS COMPLETED SUCCESSFLLY

By request of one partner, the capacity
of the intersystem connection was
increased or decreased.

CONNECTION RESET COMPLETED
SUCCESSFULLY

One partner is draining the
conversational sessions between the
two partners that belong to the relevant
SESSIONGROUP.

 All sessions will be terminated when the
drain completes.

You must reinitialize the connection to
begin another user conversation.

CONNECTION RESET OF ALL
MODENAMES COMPLETED
SUCCESSFULLY

One partner is draining all service and all
conversational session for each of the
SESSIONGROUPs between the two
partners.

All sessions will be terminated when the
drain completes.

You must reinitialize the connection to
begin another user conversation.

partner-LU Specifies the name of the conversation
partner program. It is the same name
used in the DEFINE PROCESS
command for the server process at the
remote node.

qualifier One of the phrases explained in Table E-
2 on page 183

originating-LU Specifies the name of the source
program. It is the same name used in the
DEFINE PROCESS command for the
local server.

Table E-2. Message 2260 qualifiers

Qualifying phrase Meaning

ACCEPT END / INIT END FAILED An internal error has occurred.
Horizon CNOS Connections 183

COMMAND RACE DETECTED Another CNOS command was in progress when you submitted
your START SESSIONGROUP or STOP SESSIONGROUP or
STOP REMOTE. Please try again.

ERROR UNLOCKING SGRD A serious internal error has occurred.

MODENAME IN USE BY A PGRD The MODENAME value in your sessiongroup definition has
already been allocated to a processgroup owned by the same
link.

MODENAME IN USE BY AN SGRD The MODENAME value in your sessiongroup definition has
already been allocated to a processgroup owned by the same
remote.

MODENAME NOT DEFINED The target of the CNOS request could not find a sessiongroup
and remote definition that matched the source’s START
SESSIONGROUP or STOP SESSIONGROUP or STOP
REMOTE.

NEGOTIATED The target negotiated the source’s CNOS request.

NOT NEGOTIATED The target accepted the CNOS request as it was and did not
attempt to change it.

OPEN PROCESS FAILED An internal error has occurred.

PROTOCOL VIOLATION
DETECTED

The CNOS source or target has committed a protocol error (for
example, requesting more winners than maximum sessions, not
specifying a mode name on a set or reset command, trying to
negotiate a reset command, etc.). See “Parallel Session
Support” in the SNA Format and Protocol Reference.

RECEIVE FAILED An internal error has occurred.

REMOTE NOT DEFINED The named remote has no remote entity definition.

REMOTEID IN USE BY A PGRD The REMOTEID specified in the remote entity definition was
previously allocated to a non-CNOS processgroup. A non-CNOS
processgroup may not share a REMOTEID with a remote unless
they are owned by different links.

REMOTEID IN USE BY AN RMTD The REMOTEID specified in the remote entity definition was
previously allocated to another remote owned by the same link.

RMTD CHAINING ERROR A serious internal error has occurred.

RMTD LINK NOT DEFINED Model 204 is unable to find an entity definition for the link named
in the remote entity definition.

RMTD NOT INIT GCORE FAILED Model 204 is unable to get the storage necessary to initialize a
remote control block.

RMTD NOT INIT RESET RQ RECVD A STOP REMOTE has been received for a remote that was
already stopped or was never initialized (none of its
sessiongroups was ever started)

Table E-2. Message 2260 qualifiers (Continued)

Qualifying phrase Meaning
184 Rocket Model 204 Horizon: Intersystem Processing Guide

SEE PREVIOUS MESSAGE A bug has occurred. See the previous bug message.

SEND FAILED An internal error has occurred.

SESSION LIMIT AT 0 The target has refused the source’s request because its session
limit is already zero.

SESSIONGROUP ALREADY
STOPPED

Model 204 received a STOP SESSIONGROUP request for a
sessiongroup that was already stopped (by a previous STOP
SESSIONGROUP or STOP REMOTE).

SESSIONGROUP NOT DEFINED A. The named sessiongroup has no entity definition.

B. The named sessiongroup has no corresponding definition at
the remote node that matches the sessiongroup’s REMOTEID
and MODENAME values.

SGRD CHAINING ERROR A serious internal error has occurred.

SGRD IN LOCK DENIED STATE A command race occurred and your request was the loser.
Please try again.

SGRD LOCK BY SOURCE A command race occurred and your request was the loser.
Please try again.

SGRD LOCKED BY TARGET A command race occurred and your request was the loser.
Please try again.

SGRD NOT INIT GCORE FAILURE Model 204 is unable to allocate the storage needed to initialize
the SGRD.

SNASVCMG CHAINING ERROR A serious internal error has occurred.

SNASVCMG IN USE BY A PGRD A serious internal error has occurred.

SNASVCMG NOT DEFINED A serious internal error has occurred.

SNASVCMG NOT INIT- GCORE
FAIL

Model 204 is unable to allocate the storage needed to initialize
the SGRD for SNASVCMG.

SNASVCMG NOT INIT- RESET
RECV

A serious internal error has occurred.

Table E-2. Message 2260 qualifiers (Continued)

Qualifying phrase Meaning
Horizon CNOS Connections 185

186 Rocket Model 204 Horizon: Intersystem Processing Guide

Index
Symbols

$STATUS codes
conversation examples with 82, 85, 93, 94

$STATUS function
error message table 144
error processing, and 97, 140

$STATUSD function
error message table 144
error processing, and 97, 140 to 146

A

ACBNAME parameter, VTAM 39
ACCEPT option, GUESTUSER parameter 55, 61,

76
ACCEPT option, OPEN PROCESS 16, 64, 104
ACCOUNT parameter, OPEN PROCESS 105

for login 59 to 60
ACCTSOURCE parameter, DEFINE PROCESS

command 59 to 60
APPL statement, VTAMLST definition 37, 61

CNOS coding of 161 to 164
syntax 38, 41

Application node 6
Application program interface 13
Application program testing 34, 45
Application Subsystem security, See Security, Ap-

plication Subsys
Applications, inquiry-only 70
Applications, update-only 70
APSY option, RESTRICT parameter 59, 70
AT parameter, OPEN PROCESS statement 105
AT&T LU 6.2 Facility conversations 175 to 176
AUTH parameter, VTAM APPL 39
AUTOSYS parameter 52

B

Background task, conversation 94
Bind request 41

CICS CNOS 162
Buffering, data 88 to 91

buffers for 89 to 90

CLOSE PROCESS statement, and 98
CONFIRM statement, and 99
errors during 142
example of 90
FLUSH PROCESS statement, and 101

C

CCASTAT file 74, 76
for security 66

Chaining, message 155
CICS program

HORIZON communication with 159 to 169
TPROCESS communication with 8
transfer to 9

CID (conversation ID) 104
CID parameter, OPEN PROCESS 105
Client

link definition 26
process 49
process definition 27
processgroup definition 26
program 15, 49
program sample 117 to 121
synonyms for 18
system 17, 49
user 49

client 49
CLOSE LINK command 104

abnormal conversation termination, and 144
privileges for 44

CLOSE PROCESS statement 79
description of 97

Close state 101
definition of 79

CLOSE value, STATE parameter 107
CMS EXEC, communication with 8
CNOS protocols 15

operator functions 167 to 169
preparing support for 161 to 167

COMM communication variable, in RPI 47
Command line global variable 47
CONFCLS value, STATE parameter 107
CONFIRM CLOSE value, RESULT parameter 109
187

CONFIRM parameter, CLOSE PROCESS state-
ment 98

CONFIRM parameter, DEFINE PROCESS com-
mand 30, 98, 107

CONFIRM parameter, INVITE statement 103
CONFIRM parameter, SEND statement 111
CONFIRM SEND value, RESULT parameter 109
Confirm state

definition of 79
CONFIRM statement 79, 87

buffering, and 90, 91
description of 99
example with 88
with OPEN PROCESS 30

CONFIRM value, RESULT parameter 109
CONFIRM value, STATE parameter 107
Confirmation processing, See CONFIRM parameter
CONFIRMED statement 87

description of 100
example with 88

CONFSND value, STATE parameter 107
Conventions, notation xii
Conversation 15 to 17

allocation 104
background task 94
beginning 104
deallocation 97
ending 104
interface, SOUL 112
multiple partners, with 95
partner 8, 18
rules 77 to 90
states 78 to 87
two-way 32

COS (class of service) table, VTAM 158
COS parameter, VTAM MODETAB 43
CURRENT option, ACCTSOURCE parameter 59
CURRENT option, PROFSOURCE parameter 59
CURRENT option, UIDSOURCE parameter 59, 68

D

DATA TRUNCATED value, RESULT parameter 109
DATA value, RESULT parameter 109
DATALEN parameter, DEFINE PROCESS com-

mand 106
DECnet SNA VMS APPC/LU6.2 conversations 170
DEFINE LINK command

example of 26, 29, 36
DEFINE PROCESS command 58

example of 27, 30, 36
for security 51

DEFINE PROCESSGROUP command 58

example of 27, 30, 36
for security 51

Definition, network 22 to 36
DESTINATION parameter, DEFINE PROCESS

command 58, 105
Distributed transaction 8
DLOGMOD parameter, VTAM APPL 40
Documentation set xi
Domain, SNA 8

E

END statement, for TPROCESS 104
End user, terminal 7, 18, 49
ERRMSG function 140, 144
ERROR parameter, CLOSE PROCESS statement

98
Error processing 97, 139 to 146

F

FLUSH parameter, CLOSE PROCESS statement
98

FLUSH parameter, INVITE statement 103
FLUSH parameter, SEND statement 111
FLUSH PROCESS statement

buffering, and 91
description of 101

G

Guest user 74
GUESTUSER parameter, DEFINE PROCESS-

GROUP command 76

H

HORIZON
overview of 10 to 12

I

Inbound entity, See Server
Inbound program, See Server program
INLIMIT parameter, DEFINE PROCESSGROUP

command 165
INQUIRY option, SUBSYSPARM parameter 74
Inquiry-only applications 70
Intersystem processing

facilities, MODEL 204 8
Intersystem processing, overview of 5 to 12
INVITE statement 92 to 95, 102 to 103
188 Rocket Model 204 Horizon: Intersystem Processing Guide

buffering, and 91
IODEV 11 thread 9, 10
IODEV 27 thread 11, 17, 21, 64

defining 44
IODEV 41 thread 9
IODEV 7 thread 10
IPv6 11

L

Limit, session 15
LINK parameter, DEFINE PROCESSGROUP com-

mand 32
Link, network 22
LOCALID parameter, DEFINE LINK command 25,

171, 172, 176
LOGIN parameter, DEFINE PROCESSGROUP

command 32, 43
Login privileges

SCLASS defined 57
LU (logical unit) 13

CICS 160
services 14
synonyms for 18

LU 6.2 protocol 10, 13

M

Master-to-slave communication 9
Message chaining 155
Mode table, VTAM, See MODETAB table, VTAM

107
Model 204 documentation set xi
MODENAME parameter, DEFINE PROCESS-

GROUP command 32, 40, 158
for VTAM tuning 158, 162, 164, 165

MODENAME parameter, QUERY PROCESS state-
ment 107

MODETAB parameter, VTAM APPL 40, 162, 164
MODETAB table, VTAM 40 to 43, 107, 155

CNOS coding for 161 to 164
MODIFY PROCESSGROUP command

privileges for 44
MONITOR LINK command

privileges for 44
MONITOR PROCESS command

privileges for 44
MONITOR PROCESSGROUP command

privileges for 44

N

Network

administration 21, 44 to 45
administration commands 44 to 45
command privileges 44
definition 21 to 36
definition examples 26 to 36
definition to VTAM 21, 37, 41 to 43, 161,

161 to 164, 170 to 172, 173, 175
link 22
management 21
security, See Security, network 22

NOACCOUNT option, ACCOUNT parameter 56, 64
NOCONFIRM parameter, DEFINE PROCESS com-

mand 98, 107
Node names 7

protecting 60, 61
Node, network 5, 13

definition of 5
synonyms for 18

NONE option, ACCTSOURCE parameter 60
NONE option, PROFSOURCE parameter 60
NONE option, UIDSOURCE parameter 60
NOOPEN option, SUBSYSPARM parameter 47
Notation conventions xii
NOTERM parameter 44
NOTRUST option, LOGIN parameter 43, 68
NOUSERID option, USERID parameter 56, 64
NSUBTKS parameter 21, 45

O

OPEN LINK command
privileges for 44

OPEN option, ACCTSOURCE parameter 60
OPEN option, PROFSOURCE parameter 60
OPEN option, SUBSYSPARM parameter 47
OPEN option, UIDSOURCE parameter 60
OPEN PROCESS statement

beginning a conversation 16, 104
description of 103
errors during 91, 142

OS/2 EE Communications Manager conversations
173

Outbound entity, See Client
Outbound program, See Client program
OUTLIMIT parameter, DEFINE PROCESSGROUP

command 165

P

Pacing, session-level 157
Parallel sessions 15

CICS 167 to 169
PARSESS parameter, VTAM APPL 39
189

PARTNER parameter, DEFINE PROCESS com-
mand 26, 165

Partner process 8, 9, 18
Partner program 18
Partner, conversation 8, 18
PASSWORD parameter, OPEN PROCESS 105

for login 54 to 56, 59 to 60, 66
Passwords, login 52
Peer-to-peer communication 12, 77, 160
PIP, See Program Initialization Parameters (PIP)
Private subsystems 57
PRIVDEF parameter 57
Privileges

login 52
network control command 44

Procedure files
security for 57

Process 22
synonyms for 18

Process definitions, protecting 69
PROCESSGROUP parameter, QUERY PROCESS

statement 107
Processgroups 22
PROFILE parameter, OPEN PROCESS 105
PROFSOURCE parameter, DEFINE PROCESS

command 59 to 60
Program Initialization Parameters (PIP) 104, 105
PROTOCOL parameter, DEFINE LINK command

165
PRTCT parameter, VTAM APPL statement 41, 61,

68
PSERVIC parameter, VTAM 43
pseudo subtasks 21, 45
PSWD parameter, DEFINE LINK command 61, 68
Public subsystems 57

Q

QUERY PROCESS statement 97, 140
description of 106

R

Receive state
definition of 79

RECEIVE statement 79, 82
buffering, and 90
description of 108

RECV value, STATE parameter 107
Remote Procedure Invocation subsystem, See RPI
Remote updating 134 to 138
REMOTEID parameter, DEFINE PROCESS-

GROUP command 25, 51, 60, 176

sharing sessions, and 32
VTAM APPL, and 39

REMOTEID parameter, QUERY PROCESS state-
ment 107

REQSEND parameter
CONFIRM statement 100
for status information 140
SEND statement 86

Reset state
definition of 78

RESET value, STATE parameter 107
RESTRICT parameter, DEFINE PROCESS com-

mand 59, 70
RESULT parameter, RECEIVE statement 83, 108,

140
RETAIN parameter, DEFINE PROCESSGROUP

command
example of 31

RPI (Remote Procedure Invocation) subsystem 22,
45 to 47, 121

RUSIZES parameter, VTAM MODETAB 43, 155,
166, 174

S

SCLASS, subsystem 57
privileges 57

Security, Application Subsystem 52, 56
Security, network 22, 49 to 76

CICS CNOS 167
client system 58 to 60
default options for 61
DEFINE commands for 51, 58
example series 61 to 76
for node names 60
for procedure files 57
for process definitions 69
login processing in 51 to 56
passwords in 52
server system 50 to 57

Semipublic subsystems 57
SEND ERROR statement 84 to 87

description of 111
example with 84

Send state
definition of 79

SEND statement 82
buffering, and 91
description of 110

SEND value, RESULT parameter 109
SEND value, STATE parameter 107
Server

link definition 29
190 Rocket Model 204 Horizon: Intersystem Processing Guide

process 49
process definition 30
processgroup definition 30
program 15, 49
program sample 121 to 124
synonyms for 18
system 17, 49
user 49

server 49
Service entity, See Server
Session

allocation 104
control 166, 168
limit 15, 168
parallel 15
sharing 32

SESSIONS parameter, DEFINE LINK command 39,
165

SIGNAL PROCESS statement 84, 86, 100
description of 112
example with 87

SNA (Systems Network Architecture)
concepts 12, 13

SOUL
and User Language xi

SSNDPAC parameter 41
SSNDPAC parameter, VTAM MODETAB 43
START LINK command

privileges for 44
START PROCESSGROUP command

privileges for 44
STAT_CHECK subroutine 117, 121, 125 to 134
State check, conversation 78, 82, 141
State, conversation

See Conversation
STOP LINK command

privileges for 44
STOP PROCESSGROUP command

privileges for 44
SUBSYSPARM parameter, DEFINE PROCESS

command 46, 74
SUBSYSTEM parameter, DEFINE PROCESS com-

mand 26, 46
Subsystem types

security processing, and 56
SYNCLEVEL parameter, CLOSE PROCESS 98
SYNCLEVEL parameter, INVITE statement 103
SYNCLEVEL parameter, QUERY PROCESS state-

ment 107
SYSOPT parameter, for network security 54, 62
Systems Network Architecture, See SNA

T

TCP/IP support 11
Terminal end user 49
Terminal Process Communication facility

See TPROCESS
TEST RECEIPT statement 92, 94 to 95, 113 to 114
Threads, inbound session 44
TIMEOUT parameter, DEFINE PROCESS com-

mand 115
TPROCESS (Terminal Process Communication Fa-

cility) 8 to 9
Transactions, MODEL 204 7
Transfer Control facility 8, 9 to 10
TRUST option, LOGIN parameter 43, 55, 59, 61, 68

example with 67, 68
Trusted user

example 67, 68

U

UIDSOURCE parameter, DEFINE PROCESS com-
mand 59 to 60, 68

UPDATE option, SUBSYSPARM parameter 74
Update-only applications 70
User class, subsystem 57
User Language. See SOUL
USERID parameter, OPEN PROCESS 105

for login 56, 59 to 60, 66
in Application Subsystem security 56

V

VALUE parameter, QUERY PROCESS statement
107

Verb, conversation 78
VPACING parameter, VTAM APPL 41
VTAM (Virtual Telecommunication Access Method)

5, 13, 21
APPL definition 34, 36, 38, 161 to 164
defining HORIZON network to 22, 36 to 43,

161 to 164, 170, 173, 175
node definitions 10, 11
performance tuning 155 to 158

VTAMLST data set 37
VTAMNAME parameter 39

W

WAIT FOR RECEIPT statement 92 to 93, 114 to 116
191

192 Rocket Model 204 Horizon: Intersystem Processing Guide

	Cover
	Notices
	Corporate Information
	Contacting Technical Support

	Contents
	About this Guide
	How to Use This Guide
	Overview
	Relationship to Model 204 Documentation Set
	Other locations of Horizon information

	Documentation map
	Application programmer chapters
	Network administrator chapters
	Model 204 system manager chapters
	Systems programmer chapters

	Model 204 Intersystem Processing Fundamentals
	Overview
	Terms and Concepts
	Network: a collection of nodes
	Network diagram

	Model 204’s Intersystem Facilities
	Terminal Process Communication facility (TPROCESS)
	Transfer Control facility
	Horizon

	SNA Concepts and Terminology
	SNA networks provide resource sharing
	SNA protocols neutralize physical differences
	LUs service application programs
	Horizon partner programs can be written in different languages
	Sessions connect LUs; conversations connect programs
	Horizon supports parallel sessions
	Conversation partners are known as client and server
	Horizon programs can have multiple roles and partners

	Network Management
	Overview
	Defining the Network to Model 204
	Network entities requiring definition

	Creating a Horizon network
	Polling application with one-way communication

	Defining a Horizon network
	Example 1: Polling Application
	Example 2: Polling Application Extension
	Example 3: Two-Way Conversation Initiation Application
	Example 4: Local Node Testing

	Defining the Network to SNA Communications Server
	Two components of SNA Communications Server network definition

	APPL Statements for Network Definition
	APPL statement per Horizon online
	APPL statement dual function
	Coding the APPL statement(s) for Horizon support
	How many APPL statements are required?
	Activation of APPL statements
	APPL statement parameters

	Coding the Mode Table Entry for SNA Communications Server Network Definition
	MODETAB, also called logon mode table
	Where mode tables reside
	Creating a mode table entry
	Recommended mode table parameter values
	Modifications for specific systems and applications
	Setting the PSERVIC security byte

	Network administration commands
	Preparing the ONLINE Configuration
	IODEV specification for Horizon inbound threads
	Modifying the NSUBTKS parameter

	Application Testing with the RPI Subsystem
	RPI subsystem installation
	System manager responsibilities
	Ensuring the procedure file permits procedure inclusion
	Ensuring the procedure to be tested is defined as a process
	Application developer responsibilities

	Security
	Overview
	Terminology
	Contents

	Managing Access to a Server System
	Controlling Remote Client System Access to the Server
	Controlling access to a server system
	Controlling access to a server program

	Controlling Individual Remote Users
	Login processing
	Login options
	Application Subsystem security

	Protecting Procedure Files
	Controlling Users on a Client System
	Defining remote server systems
	Restricting access to remote server systems
	Controlling user identification to a remote server system

	Protecting Network Node Names
	Using SNA Communications Server password protection
	For more information

	Security Design Examples
	Example 1: Login Not Required on Server
	Coding for client
	Coding for server

	Example 2: Login Required on Server
	Coding for client
	Coding for server

	Example 3: Trusting the Client
	Coding for client
	Coding for server

	Example 4: Protecting the Client Process Definition
	Coding for client
	Coding for server

	Example 5: Two Different Process Definitions: Inquiry and Update
	Coding for client
	Coding for server

	Example 6: Accepting Guest Users
	Coding for the client
	Coding for the server

	Horizon Conversation Interface
	Overview
	Horizon partners

	Conversation Rules and States
	Conversation states
	Horizon conversation states
	Horizon state rules

	Horizon Conversation Data Flow
	Data flow rules
	Enforcing direction of data flow
	Following the RESULT %variable

	Interrupting the Sender
	Using SEND ERROR to interrupt the sender
	Using SIGNAL PROCESS to interrupt the sender

	Confirming Receipt of Data
	Buffering and Shipping Conversation Information
	How the LUs buffer and ship data
	Four statements cause immediate buffer flushing
	Buffering delays error and data-receipt notification

	Communicating with Multiple Partners Concurrently
	Inviting replies
	Detecting replies
	Awaiting requests for data from multiple partners
	Initiating a background task

	Horizon SOUL Interface
	Overview
	Dependence on conversation state
	Error checking

	CLOSE PROCESS Statement
	CONFIRM Statement
	CONFIRMED Statement
	FLUSH PROCESS Statement
	INVITE Statement
	OPEN PROCESS Statement
	QUERY PROCESS Statement
	RECEIVE Statement
	SEND Statement
	SEND ERROR Statement
	SIGNAL PROCESS Statement
	TEST RECEIPT Statement
	WAIT FOR RECEIPT Statement

	Horizon User Language (SOUL) Sample Programs
	Client Program
	Companion program
	Program

	Server Sample
	Companion program
	Program

	Subroutine to Check Horizon Return Codes
	Subroutine

	Remote Updating Example
	Multiple-node updating
	Between-node data consistency

	Horizon Error Processing
	Overview of Horizon error processing
	Detecting Horizon Errors
	Conversation status information
	Client versus server error detection and debugging

	Troubleshooting Horizon Errors
	Types of errors
	OPEN PROCESS errors
	Unanticipated conversation termination

	$STATUS/$STATUSD Codes and Accompanying Error Messages

	Horizon Conversation States and Statements
	Overview
	Conversation states

	Conversation Statement/State Dependencies

	LU 6.2 Verb Set Equivalences
	Overview
	LU 6.2 and Horizon verb and parameter equivalences
	LU 6.2 verb equivalences

	SNA Communications Server Performance Tuning for Horizon
	Overview
	Chaining and RU Sizes
	When to chain
	Chaining’s cost

	Session-Level Pacing
	Pacing parameter settings
	Modification of pacing parameter values

	Transmission Priority and Route Selection
	Assigning transmission priority and route selection
	Horizon batch transmissions

	Connecting to Non-Model 204 Systems
	Connecting to CICS
	Horizon connectivity versus CICS Interface connectivity
	One LU for CICS; multiple LUs for Model 204
	Supporting CICS parallel sessions

	SNA Communications Server Definition Statements
	Preparing the log mode definitions
	Determining session characteristics
	Coding the APPL statement

	Model 204-Side Definition Commands
	Network definition requirements

	CICS-Side Definition Commands
	LU 6.2 network definition considerations
	Security considerations
	Specifying the Model 204 partner program

	Maintaining Operations
	Establishing the connection
	Changing CNOS session limits
	Executing an orderly shutdown

	Connecting to VAX/VMS
	Digital products needed to support the connection
	SNA Communications Server system programmer considerations
	System manager considerations
	Application programmer considerations

	Connecting to OS/2 EE
	OS/2 products needed to support the connection
	SNA Communications Server system programmer considerations
	Application programmer considerations

	Connecting to UNIX System V and AT&T LU 6.2 Facility
	Products needed to support the connection
	SNA Communications Server system or network considerations
	System manager considerations
	Application programmer considerations

	Horizon CNOS Connections
	CNOS overview
	CNOS terminology

	CNOS session control
	Setting session limits
	Deactivating sessions
	Changing session limits

	CNOS minimum support
	Managing the Horizon CNOS network
	Defining CNOS network entities to Model 204
	Defining CNOS support to SNA Communications Server

	Handling CNOS errors
	Rejecting a CNOS connection
	Typical CNOS connection errors
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Index

