
Rocket M204 Fast/Unload

Reference

Version 4.4

November 2013
FUN-0704-RM-02

Notices
Edition

Publication date: November 2013
Book number: FUN-0704-RM-02
Product version: Version 4.4

Copyright
© Rocket Software, Inc. or its affiliates 1990-2013. All Rights Reserved.

Trademarks

Rocket is a registered trademark of Rocket Software, Inc. For a list of Rocket registered trademarks go
to: www.rocketsoftware.com/about/legal . All other products or services mentioned in this document
may be covered by the trademarks, service marks, or product names of their respective owners.

Examples

This information might contain examples of data and reports. The examples include the names of
individuals, companies, brands, and products. All of these names are fictitious and any similarity to
the names and addresses used by an actual business enterprise is entirely coincidental.

License agreement

This software and the associated documentation are proprietary and confidential to Rocket Software,
Inc. or its affiliates, are furnished under license, and may be used and copied only in accordance with
the terms of such license.

Note: This product may contain encryption technology. Many countries prohibit or restrict the
use, import, or export of encryption technologies, and current use, import, and export regulations
should be followed when exporting this product.

Contact information

Website: www.rocketsoftware.com

Rocket Global Headquarters
77 4th Avenue
Waltham, MA 02451–1468
USA
Tel: +1 781 577 4321
Fax: +1 617 630 7100

http://www.rocketsoftware.com/about/legal
http://www.rocketsoftware.com

Contacting Global Technical Support
If you have current support and maintenance agreements with Rocket Software, you can access the
Rocket Customer Portal and report a problem, download an update, or read answers to FAQs. The
Rocket Customer Portal is the primary method of obtaining support.

To log in to the Rocket Customer Portal or to request a Rocket Customer Portal account, go to
www.rocketsoftware.com/support

Alternatively, you can contact Global Technical Support by email or telephone:

Email: support@rocketsoftware.com
Telephone: 1 855 577 4323 (Toll-free US) or +1 781 577 4323 (International)

http://www.rocketsoftware.com/support
mailto:support@rocketsoftware.com

——
 Contents
——

———————
 Contents

 Proprietary Notices . ii

 Contents . iii

 Summary of Changes . xi
 Fast/Unload Version 4.4 . xi
 Fast/Unload Version 4.3 . xi
 Fast/Unload Version 4.2 . xii
 Sirius Mods Version 6.7 . xiii
 Fast/Unload Version 4.1 . xiii
 Fast/Unload Version 4.0 . xiii
 Fast/Unload Version 3.1 . xv
 Fast/Unload Version 3.0 . xv

 Chapter 1: Introduction . 1

 Chapter 2: Invoking Fast/Unload as a Standalone MVS Program 3

 Chapter 3: Invoking Fast/Unload as a Standalone CMS Program 5

 Chapter 4: Parameters . 7

 ABenderr=rc . 7
 ALlmsg . 8
 Asynch . 8
 Dbcs={IBM|FUJITSU|HITACHI|NONE} . 8
 Every=n . 8
 FNvmask=X"yz" . 9
 Frecord=n . 10
 FStats[=AVGTOT|MINMAX] . 10
 FUnout . 11
 Harderr= {ABEND|CANCEL|SKIP|SKIP0|IGNORE|IGNORE0} 11
 Ioapp=pp . 12
 LIBuff=n . 12
 List . 13
 Maxrec=n . 13
 Nbbuff=n . 13
 NEbuff=n . 14
 NObuff=n . 14
 NOEnq . 15
 NOList . 15
 NOTify . 15

——
Fast/Unload Reference iii

——
Contents
——

 Orecerr={CANCEL|SKIP|IGNORE} . 15
 Sbbuff=n . 16
 SEbuff=n . 16
 SEQ . 17
 SKiprec=n . 17
 SORTOut | SORTOUTD . 17
 SOrtp={31|24} . 18
 UPArm="string" . 18
 Upper . 18

 Chapter 5: Fast/Unload Extraction Language 19

 Program Structure . 19
 Output Streams . 20
 Output Records . 21
 Sample Program with Multiple Outputs 22
 Outside the FOR EACH RECORD loop 23
 Input Program (FUNIN) Conventions . 24
 Program Elements . 25
 Entities . 26
 Field name with occurrences . 26
 Constants . 27
 Loop control variables . 27
 Special variables . 28
 %Variables . 31
 Expressions . 32
 #Function calls . 33
 Assignment statement . 35
 #ELSE . 36
 #ELSEIF . 36
 #END IF . 37
 #IF . 37
 ADD[C] field = expr . 38
 ADDC field = expr . 39
 CANCEL [ccode] . 40
 CHANGE field [(occurrence)] = expr . 40
 CHECK condition ... CANCEL | WARN | ALLOW 41
 CHECK statement actions . 43
 CHECK statement defaults . 43
 DATESTAT [SUMMARY | DETAIL] . 44
 DELETE[C] field [(occurrence)] . 44
 DELETEC field[(occurrence)] . 46
 ELSE . 46
 ELSEIF cond [THEN] . 46
 END FOR . 47
 END IF . 47
 END REPEAT . 48
 END SELECT . 48

——
iv Fast/Unload Reference

——
 Contents
——

 FOR v FROM begin TO end . 48
 FOR EACH RECORD . 50
 FSTATS [AVGTOT | MINMAX] . 50
 Description of Table B statistics . 51
 Description of field statistics . 53
 Description of procedure statistics . 56
 FUNCTIONS [IN *|DDname] member member 57
 IF cond [THEN] . 57
 Using EXISTS, MISSING, IS FIXED, or IS FLOAT 59
 Using AND and OR . 60
 LEAVE clause_type . 61
 LEAVE FOR example . 61
 LEAVE SELECT example . 63
 MSGCTL [FUNL]n ABDUMP . 64
 NEW fieldname [WITH BLOB | CLOB] . 64
 NOUNLOAD [field [(occurrence | *)]] . 65
 OPEN datafile . 67
 OTHERWISE . 67
 OUT TO destination . 68
 OUTPUT [FILTER loadmod] . 69
 PRINT ALL INFORMATION or PAI . 70
 PUT . 70
 REPEAT . 78
 REPORT entity [AND | WITH entity] ... 79
 SELECT entity . 80
 SKIP . 82
 SORT [TO destination] . 82
 SORT PGM sortprogramname . 83
 TO [destination | *] . 83
 UNLOAD[C] [field [(occur | *)]] . 83
 UNLOAD (all fields) . 84
 UNLOAD[C] (specified fields) . 84
 Using UNLOAD[C] field . 85
 Examples . 86
 UNLOAD ALL INFORMATION or UAI . 88
 UAI statement options . 89
 UAI SORT or HASH and field unload order 95
 WHEN value(s) . 96

 Chapter 6: Standard #Functions . 99

 Run-time errors during standard #function calls 100
 #ABDUMP: End Fast/Unload with ABEND and dump 102
 #CONCAT: Concatenate strings . 103
 #CONCAT_TRUNC: Concatenate strings, allowing truncation 104
 #C2X: Convert character string to hex representation 106
 #DATE: Current date and/or time . 107
 #DATECHG: Add some days to datetime 108

——
Fast/Unload Reference v

——
Contents
——

 #DATECHK: Check if datetime matches format 110
 #DATECNV: Convert datetime to different format 112
 #DATEDIF: Difference between two dates 113
 #DATEFMT: Validate datetime format string 115
 #DATE2N: Convert datetime string to number of seconds*300 116
 #DATE2ND: Convert datetime string to number of days 118
 #DATE2NM: Convert datetime string to number of milliseconds 120
 #DATE2NS: Convert datetime string to number of seconds 122
 #DEBLANK: Remove leading and trailing blanks from substring 124
 #DELWORD: Remove blank-delimited words from string 125
 #FIND: Word position of one word sequence within another 126
 #FLOAT8: Get 8-byte float, padding 4-byte input with 0 127
 #INDEX: Position of second string within first 129
 #LEFT: Initial substring, followed by pad characters to specified length . . . 130
 #LEN: Length of string . 132
 #LOWCASE: Change uppercase letters of string to lowercase 133
 #ND2DATE: Convert number of days to datetime string 134
 #NM2DATE: Convert number of milliseconds to datetime string 135
 #NS2DATE: Convert number of seconds to datetime string 136
 #NUM2STR: Convert number to string with decimal point 137
 #N2DATE: Convert number of seconds*300 to datetime string 141
 #ONEOF: See if string is in delimited list of strings 142
 #PAD: Final substring, preceded by pad characters to specified length 144
 #PADR: Initial substring, followed by pad characters to specified length . . . 146
 #REVERSE: Get reverse of string . 148
 #RIGHT: Final substring, preceded by pad characters to specified length . . 149
 #SNDX: Create SOUNDEX code for string 151
 #STRIP: Remove leading and/or trailing copies of pad character 152
 #SUBSTR: Substring . 154
 #TIME: Current time and/or date . 156
 #TRANSLATE: Change characters of string using from/to pairings 157
 #UPCASE: Change lowercase letters of string to uppercase 159
 #VERPOS: Position in string of character not in or in list 160
 #WORD: Return nth blank-delimited word from string 162
 #WORDS: Count number of blank-delimited word in string 163
 #X2C: Convert hex representation to character string 164

 Chapter 7: BLOB/CLOB processing considerations 165

 Statement and #function modifications . 165
 NEW statement option for Lobs . 165
 #CONCAT supports long string arguments and result 166
 #LEN supports a long string argument 166
 #SUBSTR supports a long string argument and result 166
 Contexts for long strings and Lobs . 167
 %Variables containing strings longer than 255 167
 Permitted use of long string values . 167
 Permitted use of Lobs . 168

——
vi Fast/Unload Reference

——
 Contents
——

 Lob statistics . 169
 Lob field examples . 169
 Creating a NEW Lob field . 169
 Structured unload of Lob field . 170

 Chapter 8: Datetime Processing Considerations 171

 Datetime Formats . 172
 Valid Datetimes . 177
 Processing Dates With Two-Digit Year Values 177
 CENTSPAN . 178
 SPANSIZE . 179
 Strict and non-strict format matching . 179
 Datetime and format examples . 180
 Datetime Error Handling . 184
 #DATExxx Functions CENTSPAN Argument 185
 Benefits of Sirius datetime processing . 186

 Chapter 9: DATESTAT Analysis . 189

 DATESTAT Reporting . 190
 DATESTAT SUMMARY . 191
 DATESTAT DETAIL . 193

 Chapter 10: Job Statistics . 195

 Chapter 11: Fast/Unload User Language Interface 199

 When to use the Fast/Unload User Language Interface 200
 Setting up the Fast/Unload User Language Interface environment 202
 System parameters for the Fast/Unload User Language Interface 203
 FUNPARM . 204
 FUNMAXT . 204

 Chapter 12: Using an External Sort Package 207

 Specifying the sort . 207
 Using SORT FIELDS . 208
 Using SORT RECORD . 209
 Sample code . 210

 Chapter 13: Using Fast/Unload with DBCS data 211

 Chapter 14: Customer-written Assembler #Function Packages 213

 Members of SIRIUS.OBJLIB used in coding #Functions 213
 Run-time Interface Symbols: FUNCEQU COPY 213
 Example #Function Package: UFUN ASSEMBLE 214

——
Fast/Unload Reference vii

——
Contents
——

 Compiler Call to Package to Locate #Function 214
 Run-time Invocation of #Function . 215
 Get information about #function argument(s) 216
 Get string value of argument . 217
 Get float value of argument . 218
 Get fixed value of argument . 219
 Assign string value to argument . 220
 Assign float value to argument . 221
 Assign fixed value to argument . 221
 Allocate storage . 222
 Release storage . 223
 Issue an error message and/or set return code 223
 Terminate Fast/Unload, optionally set return code 225
 Example - MVS . 226
 Installing a #Function Package . 226
 Using a #Function Package . 226
 Example - CMS . 226
 Installing a #Function Package . 226
 Using a #Function Package . 227

 Chapter 15: Using User Exits or Filters 229

 Chapter 16: Using Fast/Unload with Model 204 Groups 231

 Chapter 17: Using Fast/Unload with the Sir2000 Field Migration Facility . 233

 Appendix A: Floating Point Arithmetic and Numeric Conversion 235

 Overview . 235
 Primitive operations . 236
 Using a float value, with decimal digit precision 237
 Obtaining numeric values from non-floats 238
 Assignments and length-preserved PUT statements 239
 Length-converting PUT statements . 240
 Arithmetic expressions . 241
 Example . 241

 Appendix B: Messages . 243

 Appendix C: Return Codes . 285

 Appendix D: Installation . 287

 Installation from the web . 287
 MVS Installation . 288
 CMS Installation . 289

——
viii Fast/Unload Reference

——
 Contents
——

 Appendix E: Customization of Defaults . 291

 Sort Parameter List . 291
 Changing the default sort parameter . 292
 Default for ERROR clause on PUT statement 292
 Default for MISSING clause on PUT statement 292
 Default CHECK conditions and actions . 293
 CENTSPAN and SPANSIZE . 294
 Default SORT program name . 294
 Setting NOLIST as default . 294
 Setting default FSTATS processing . 295
 Setting default ABENDERR . 295
 DBCS Environment . 295
 IBM DBCS Environment . 295
 Fujitsu DBCS Environment . 296
 Hitachi DBCS Environment . 296

 Appendix F: SMF record format . 297

 Index . 299

——
Fast/Unload Reference ix

——
Contents
——

——
x Fast/Unload Reference

——
 Summary of Changes
——

——————
 Summary of Changes

 This section describes significant changes to the documentation. In most cases these
 changes correspond to enhancements made to the underlying product.

 Fast/Unload Version 4.4

 The following are features introduced in version 4.4:

 ● Support for the FILEORG X'80' feature introduced in version V6R3 of Model 204.

 ● Support for unloading an ad-hoc group of files: the OPEN command in a “batch”
 Fast/Unload job (“OPEN datafile” on page 67) now allows the specification of
 multiple filenames. Formerly. you were required to use the Fast/Unload User
 Language Interface to unload a group.

 ● The #FILENAME special variable is available. It obtains the name of the file
 currently being unloaded. See “Special variables” on page 28.

 Fast/Unload Version 4.3

 The following are features introduced in version 4.3:

 ● As described in “BLOB/CLOB processing considerations” on page 165, the principal
 new feature in version 4.3 of Fast/Unload is the ability to operate on BLOB and
 CLOB (collectively called “Lob”) fields, which are introduced with V6R1 of
 Model 204. The following features support this:

 ▪ FUEL %variables may contain strings longer than 255 bytes.

 ▪ #functions may both accept arguments and produce results in excess of 255
 bytes.

 ▪ These operations are supported on/with Lob fields:
 ♦ The CHANGE and ADD[C] statements
 ♦ UAI (and so UNLOAD[C] statements)
 ♦ Using Lob field values where strings longer than 255 bytes may be used
 ♦ The NEW field statement (by ading WITH CLOB or WITH BLOB)

 ▪ An FSTATS statistic for Table E page usage for each Lob field.

——
Fast/Unload Reference xi

——
Summary of Changes
——

 ● The handling of floating point values in Fast/Unload has been extensively reviewed
 in version 4.3. Although it is not expected to affect anyone's current use of
 Fast/Unload, many small changes have been made which can produce different
 results, and it is strongly recommended that all customers upgrade to version 4.3 to
 obtain the revised, correct float handling now in place.

 The principal problem is that the results of a FUEL program can be incorrect, for
 many cases, if a FLOAT LEN 4 field is explicitly referenced in the program. For
 instance, a FLOAT LEN 4 field may not work with comparisons (the IF statement),
 with arithmetic, as a #function argument, with the PUT statement, or as an item in
 the UAI SORT statement. (In these last two cases, the statement will work correctly
 when 4 is specified for the PUT or SORT item length.)

 Assigning a FLOAT LEN 4 field to a %variable, then using that %variable, can
 produce the above errors — and possibly others, as well (particularly if FLOAT LEN
 16 fields are explicitly referenced in a FUEL program).

 There are other odd cases in which float handling is performed incorrectly.

 “Floating Point Arithmetic and Numeric Conversion” on page 235 contains a
 complete specification of the handling of floating point values in Fast/Unload.

 ● In conjunction with the floating point project, a new #function is added: #FLOAT8
 (“#FLOAT8” on page 127) accepts a numeric argument and returns the value of the
 argument as an 8-byte floating point value. If the argument is a 4-byte floating point
 value, then the conversion is done by appending binary zeroes; otherwise, it is done
 by the normal FUEL conversion to an 8-byte floating point value.

 Although not related to new features, the following change has been made to the
 documentation:

 ● In addition to field name references, the SORT FIELDS statement (“Using SORT
 FIELDS” on page 208) allows references to %variables or (some) special variables.

 Fast/Unload Version 4.2

 The following are features introduced in version 4.2:

 ● UAI unloading of procedures and procedure aliases

 ▪ The feature is invoked by the new UAI statement option PROCS (see “UAI
 statement options” on page 89), or by default, that is, by specifying neither
 PROCS nor the new UAI statement option NOPROCS.

 ▪ Statistics about the file's procedures are available as part of FSTATS
 processing (see “Description of procedure statistics” on page 56). Generating
 these statistics enables an optimization of the procedure dictionary reloading.

——
xii Fast/Unload Reference

——
 Sirius Mods Version 6.7
——

 Sirius Mods Version 6.7

 The following are Fast/Unload related features introduced in Sirius Mods version 6.7:

 ● FastUnload and FastUnloadTask methods for the Fast/Unload User Language
 Interface (“Fast/Unload User Language Interface” on page 199).

 ● New system parameters FUNPARM (“FUNPARM” on page 204) and FUNMAXT
 (“FUNMAXT” on page 204).

 Fast/Unload Version 4.1

 The following are features introduced in version 4.1:

 ● New or changed program parameters:

 ▪ FNvmask (see “FNvmask=X"yz"” on page 9)
 ▪ LIBuff (see “LIBuff=n” on page 12)
 ▪ FUNOUT, SORTOUT, SORTOUTD
 (see “FUnout” on page 11, “SORTOut | SORTOUTD” on page 17, and
 “Changing the default sort parameter” on page 292)

 ● New #function:

 ▪ #ABDUMP (see “#CONCAT: Concatenate strings” on page 103)

 ● New "preprocessor" feature:

 ▪ #IF/#ELSEIF/#ELSE/#ENDIF conditional compilation (see “#IF” on page 37)

 ● Support for multiple-output streams (see “Output Streams” on page 20), which
 includes these FUEL additions:

 ▪ TO destination option added to multiple statements
 ▪ OUT TO destination statement
 ▪ NOUNLOAD statement

 Fast/Unload Version 4.0

 Following are new features introduced in version 4.0:

 ● New ADDC statement

 ● New DELETEC statement

——
Fast/Unload Reference xiii

——
Summary of Changes
——

 ● New FSTATS directive

 ● New LEAVE statement

 ● New REPEAT statement

 ● New UNLOAD[C] field statement

 ● New or changed program parameters:

 ▪ ABenderr
 ▪ List and NOList (and customization zap, allowing NOLIST as default)
 ▪ FSTATS=MINMAX or FSTATS=AVGTOT (and customization zap, allowing
 MINMAX as default)

 ● New #functions:

 ▪ #CONCAT_TRUNC
 ▪ #DEBLANK
 ▪ #DELWORD
 ▪ #FIND
 ▪ #LEFT
 ▪ #LOWCASE
 ▪ #NUM2STR
 ▪ #ONEOF
 ▪ #PAD
 ▪ #PADR
 ▪ #REVERSE
 ▪ #RIGHT
 ▪ #STRIP
 ▪ #TRANSLATE
 ▪ #UPCASE
 ▪ #WORD
 ▪ #WORDS

 ● New #OUTLEN and #OUTPOS special variables.

 ● Additional information produced by FSTATS.

 ● Additional job statistics.

 ● MISSING value treated as zero in numeric contexts.

 ● " date format token, numeric date format separators.

 ● BM, BD, BH date format tokens.

 ● Strict date matching in “string” #DATExxx functions.

——
xiv Fast/Unload Reference

——
 Fast/Unload Version 4.0
——

 Following are features which were also released as zaps to one or more versions prior to
 version 4.0:

 ● UAI SORT support for 2-digit years.

 ● Customize SORT program name.

 ● Use of FUEL outside FOR EACH RECORD.

 Fast/Unload Version 3.1

 ● SPANSIZE window width introduced.

 ● CENTSPAN default changed from -75 to -50.

 ● ZYY date format token.

 ● Interpretation of I and * date format tokens.

 ● APPDATE clock value passed to Fast/Unload from User Language Interface.

 ● Support for Sir2000 Field Migration Facility.
 ▪ SIRFIELD definitions unloaded by UAI.
 ▪ FUEL supports ALIAS names
 ▪ FUEL honors REFERENCE WARN and REFERENCE CANCEL

 Fast/Unload Version 3.0

 Major rewrite of this manual, coinciding with major enhancements to Fast/Unload.

——
Fast/Unload Reference xv

——
Summary of Changes
——

——
xvi Fast/Unload Reference

——
 Introduction
——

——————
CHAPTER 1 Introduction

 Fast/Unload is a utility whose primary function is to quickly unload data from a
 Model 204 data file to one or more sequential data sets. The Fast/Unload utility consists
 of several functional units. One unit is a data extraction facility which reads data from a
 Model 204 data file. Another unit is a compiler which converts a special data language
 describing the output format to machine language. The generated machine language
 actually performs the output function. A third unit is a reporting facility which provides a
 job log and reports any special conditions or errors that might have occurred during a
 run.

 Fast/Unload can either be invoked directly as a standalone load module or from a User
 Language program. When invoked as a standalone load module, Fast/Unload
 enqueues the data file in share mode unless explicitly requested otherwise. If the
 enqueue fails, the Fast/Unload terminates with an error condition code. It is thus the file
 manager's job to ensure that when Fast/Unload is run as a standalone load module,
 Model 204 does not have the file to be unloaded locked in exclusive mode.

 The Fast/Unload User Language Interface, purchased as a separate Fast/Unload option,
 allows one to invoke Fast/Unload using the FastUnload or FastUnloadTask method of
 the Recordset class or the $Funload function in a User Language program. With this
 approach, an application builds a set of records to be unloaded, using standard User
 Language statements; for example, you can reduce unload time by restricting the set of
 records using indexed Model 204 fields. The Fast/Unload load module runs in a subtask
 (or PST under CMS) of Model 204. The Fast/Unload User Language Interface also
 provides the ability to unload data from a Model 204 group.

 With the Fast/Unload User Language Interface, the processing can be performed either
 synchronously or asynchronously.

 A system manager can cancel or examine Fast/Unload requests, and each user can
 perform the same functions on asynchronous requests that he or she initiated.

 See “Fast/Unload User Language Interface” on page 199 for more information about the
 Fast/Unload User Language Interface.

——
Fast/Unload Reference 1

——
Introduction
——

——
2 Fast/Unload Reference

——
 Invoking Fast/Unload as a Standalone MVS Program
——

——————
CHAPTER 2 Invoking Fast/Unload as a Standalone MVS
 Program

 Fast/Unload is simply invoked via the EXEC JCL card. The program name of
 Fast/Unload as distributed is FUNLOAD. The following DDNAMEs are used by
 Fast/Unload:

 ● FUNIN — This DD contains the statements used to describe the unload. FUNIN
 must be composed of fixed length, 80 byte records.

 ● FUNPRINT — This DD will be used as a log file and for reporting errors. This DD
 will also be referred to as the report data set.

 ● destination — A DD is required for each of the sequential data sets (which must be
 unique) declared as an output stream to which records are to be unloaded.
 FUNOUT is the default output stream for FUEL programs written for versions prior
 to 4.1.

 A DD statement is also required for the input Model 204 data file. The DD statement for
 the Model 204 file must match the internal name of the data file. In addition, if a
 Model 204 data file is made up of multiple physical files, DD cards must be provided for
 all physical files making up the logical file.

 It is also recommended that you allocate either a SYSUDUMP or SYSMDUMP file to the
 Fast/Unload job step.

 The following is an example of JCL that runs Fast/Unload in an MVS environment.

 //FUNLOAD JOB (0),CLASS=C,MSGCLASS=A,NOTIFY=HOMER
 //FUNLOAD EXEC PGM=FUNLOAD,REGION=1024K
 //STEPLIB DD DSN=SIRIUS.LOAD,DISP=SHR
 //SYSMDUMP DD DSN=HOMER.DUMP,DISP=SHR
 //SIRXREFD DD DSN=ULSPF.V404.SIRXREFD,DISP=SHR
 //FUNOUT DD UNIT=TAPE,VOL=SER=DUMP1,
 // LABEL=(1,SL),DISP=(NEW,PASS),
 // DSN=SIRXREFD.OUTPUT,DCB=BLKSIZE=30000
 //FUNPRINT DD SYSOUT=*
 //FUNIN DD *
 OPEN SIRXREFD
 FOR EACH RECORD
 PUT '*'
 OUTPUT
 PAI
 END FOR
 //

——
Fast/Unload Reference 3

——
Invoking Fast/Unload as a Standalone MVS Program
——

——
4 Fast/Unload Reference

——
 Invoking Fast/Unload as a Standalone CMS Program
——

——————
CHAPTER 3 Invoking Fast/Unload as a Standalone CMS
 Program

 Fast/Unload must be invoked by the Model 204 CMS interface because it uses the CMS
 interface's EXCP and BSAM simulation. The program name of Fast/Unload as
 distributed is FUNLOAD. A FILEDEF must be provided for any DD to be used by
 Fast/Unload. Note that because Fast/Unload uses the Model 204 CMS interface, any
 file can be on an OS format minidisk. The following DDNAMEs are used by
 Fast/Unload:

 ● FUNIN - This DD contains the FUEL used to describe the unload. FUNIN must be
 composed of fixed length, 80 byte records.

 ● FUNPRINT - This DD will be used as a log file and for reporting errors. This DD will
 also be referred to as the report data set.

 ● destination - A DD is required for each of the sequential data sets (which must be
 unique) declared as an output stream to which records are to be unloaded.
 FUNOUT is the default output stream for FUEL programs written for versions prior
 to 4.1.

 A FILEDEF statement is also required for the input Model 204 data file. The FILEDEF
 statement for the Model 204 file must match the internal name of the data file. In
 addition, if a Model 204 data file is made up of multiple physical files, FILEDEF
 commands must be provided for all physical files making up the logical file.

 The following is an example of an EXEC that runs Fast/Unload in a CMS environment.
 Note that while REXX is used here, the EXEC could be written in EXEC or EXEC2.

 /* Exec to run Fast/Unload */
 Address command;
 'FILEDEF * CLEAR';
 'FILEDEF FUNIN DISK FUN FUNLOAD A';
 'FILEDEF FUNPRINT DISK FUN LISTING A',
 '(RECFM VB LRECL 137 BLOCK 4096';
 'FILEDEF FUNOUT TAP1 (LRECL 10000 BLOCK 30000 RECFM VB';
 'FILEDEF SIRXREFD I DSN ULSPF V404 SIRXREFD';
 'M204CMS FUNLOAD';
 Exit rc;

 Note that in the above example the Fast/Unload Extraction Language program is in file
 FUN FUNLOAD on a CMS format disk and the Model 204 data file SIRXREFD is on an
 OS format minidisk.

——
Fast/Unload Reference 5

——
Invoking Fast/Unload as a Standalone CMS Program
——

——
6 Fast/Unload Reference

——
 Parameters
——

——————
CHAPTER 4 Parameters

 Some basic parameters are provided to control the operation of Fast/Unload. These
 parameters must be provided either as a PARM on the EXEC card in MVS, for example:

 //FUNLOAD EXEC PGM=FUNLOAD,REGION=4096K,
 // PARM='NEBUFF=8 SEBUFF=1 SBBUFF=3 SEQ'

 or as options on the M204CMS command in CMS, for example:

 'M204CMS FUNLOAD (NEBUFF 8 SEBUFF 1 SBBUFF 3 SEQ %'

 Under MVS, parameters are specified either by a parameter name alone or a parameter
 name followed by an equals sign (=) followed by the parameter value. Under CMS,
 parameters are specified either by a parameter name followed by a space and a percent
 sign (%) or a parameter name followed by a space and a parameter value. In general,
 one does not have to specify the entire parameter name for Fast/Unload to recognize it.
 A given parameter can only be set once.

 This chapter describes the parameter settings which are available for Fast/Unload. Note
 that the minimum required part of the parameter name is specified in upper case while
 the rest of the parameter is specified in lower case.

 4.1 ABenderr=rc

 This parameter specifies the minimum Fast/Unload return code which triggers an
 ABEND at the end of the run. Your JCL could include, for example:

 // EXEC PGM=FUNLOAD,PARM=(ABENDERR=8)
 //FUNOUT DD DISP=(NEW,CATLG,DELETE),...

 so that the FUNOUT dataset is not cataloged when a severe error is encountered.

 The default value of this parameter is zero, which means that Fast/Unload will not trigger
 an ABEND due to the return code.

 You can customize the default (see “Setting default ABENDERR” on page 295), but note
 that the default using the User Language Interface is always 0.

 This parameter is new in Fast/Unload version 4.0.

——
Fast/Unload Reference 7

——
Parameters
——

 4.2 ALlmsg

 This parameter only has meaning when Fast/Unload is invoked via the User Language
 Interface. This parameter indicates that you want to see all messages that would
 ordinarily go to the report data set when Fast/Unload is invoked as a standalone
 program. When invoked via the Fast/Unload User Language Interface, Fast/Unload
 attempts to minimize message traffic by suppressing certain informational messages. If
 you want to see all Fast/Unload report data, specify the ALLMSG option.

 For example, the Fast/Unload input program when invoked using the User Language
 Interface is not ordinarily echoed on the report. That is to say, when invoked via the
 Fast/Unload User Language Interface, the NOLIST parameter is the default unless
 ALLMSG is specified. If you want to see the input program, specify either the LIST or
 the ALLMSG parameter.

 4.3 Asynch

 This parameter only has meaning when Fast/Unload is invoked via the Fast/Unload User
 Language Interface. This indicates that you want for $Funload to return as soon as an
 unload request has been accepted, rather than upon completion of the unload. When
 using the ASYNCH parameter, you cannot unload a found set that is locked in exclusive
 mode (with a FIND AND RESERVE) and you cannot have any data returned to a list.
 The ASYNCH parameter is assumed when data is being unloaded to the $FUNIMG and
 $FUNSSTR functions.

 4.4 Dbcs={IBM|FUJITSU|HITACHI|NONE}

 This indicates that your database file has fields that contain DBCS data. DBCS must be
 followed by the type of DBCS environment under which your database file was created.
 Any of the following types are valid: IBM, FUJITSU, HITACHI, or NONE. The default
 value for DBCS is NONE. See “Customization of Defaults” on page 291 if you want to
 set a DBCS default other than NONE.

 4.5 Every=n

 This indicates that you want Fast/Unload to unload every Nth record in the database.
 This option is useful for sampling records in a database. For example, to process every
 other input record, set EVERY to 2. EVERY processing counts existing records, not
 Model 204 record numbers. You can use SKIPREC to set the starting record for
 EVERY. For example, you can unload every tenth record starting with the 100th record
 by setting SKIPREC to 99 and setting EVERY to 10. Fast/Unload would process the
 100th record, the 110th record, etc. The default for this parameter is 0 which means that
 all records are processed.

——
8 Fast/Unload Reference

——
 FNvmask=X"yz"
——

 4.6 FNvmask=X"yz"

 FNVMASK specifies which of the 8 characters of the name of the file being unloaded
 may differ from the file name stored on the disk pages of the Model 204 file. It must be
 specified as 5 characters of the form:

 X"yz" where yz are two hexadecimal digits representing an 8-bit mask. Each 1-bit in
 the mask corresponds to a character position in the file name which may be
 different than the file name stored on the disk pages of the Model 204 file.

 In the following example, the file 'BFILE' has the name 'AFILE' on its disk pages, and so
 the first character (X"80") must be masked as different:

 //CREATE EXEC PGM=BATCH204
 //AFILE1 DD DISP=SHR,DSN=DATA.AFILE1
 //AFILE2 DD DISP=SHR,DSN=DATA.AFILE2
 //CCAIN DD *
 ...
 CREATE AFILE FROM AFILE1, AFILE2
 ...
 //COPY1 EXEC PGM=IEBCOPY
 //SYSUT1 DD DISP=SHR,DSN=DATA.AFILE1
 //SYSUT2 DD DISP=SHR,DSN=DATA.BFILE1
 //SYSPRINT DD SYSOUT=*
 //SYSIN DD DUMMY
 //COPY2 EXEC PGM=IEBCOPY
 //SYSUT1 DD DISP=SHR,DSN=DATA.AFILE2
 //SYSUT2 DD DISP=SHR,DSN=DATA.BFILE2
 //SYSPRINT DD SYSOUT=*
 //SYSIN DD DUMMY
 //UNLOAD EXEC PGM=FUNLOAD,PARM='FNVMASK=X"80"'
 //BFILE1 DD DISP=SHR,DSN=DATA.BFILE1
 //BFILE2 DD DISP=SHR,DSN=DATA.BFILE2
 //FUNIN DD *
 OPEN BFILE
 ...

 If Fast/Unload is invoked via the Fast/Unload User Language Interface, the value of the
 FNVMASK parameter in Model 204 is automatically communicated, and this is the
 default value of FNVMASK for the unload. It may also be passed in the fifth argument of
 $Funload or the Parameters parameter to the FastUnload or FastUnloadTask methods,
 but if so, its value must be the same as the Model 204 FNVMASK parameter. If the
 Fast/Unload User Language Interface is used to unload a file with FNVMASK set to a
 non-zero value, you must use version 6.1 or later of the Sirius Mods. The Model 204
 FNVMASK parameter is part of the Sirius Performance Enhancements V3; that product,
 at least through its release in version 6.1, is not generally available.

 This parameter is new in Fast/Unload version 4.1.

——
Fast/Unload Reference 9

——
Parameters
——

 4.7 Frecord=n

 This sets the Model 204 record number at which unloading is to begin. FRECORD must
 be followed by a positive decimal integer that indicates the desired starting record
 number. This can be useful when debugging a FUEL program or when doing tuning
 runs for Fast/Unload and one believes that the records at the start of the data file are not
 representative of the rest of the data file. The default for this value is 0 which means
 that Fast/Unload starts unloading at record 0 of the input file. Note that if the indicated
 record number does not exist, unloading simply begins at the first existing record after
 the indicated starting record number.

 The FRECORD parameter only applies to the first file, if a group unload is being
 performed.

 4.8 FStats[=AVGTOT|MINMAX]

 This will gather field, Table, and procedure statistics, and it will check file integrity during
 the run. If this option is selected, the Fast/Unload report will contain a list of all defined
 fields in the database file, with field definition information and statistics about
 occurrences of the fields. It will also perform various integrity checks, and provide
 statistics about Table B and the file's procedures.

 The FSTATS directive can be used instead of the FSTATS parameter. Also, the
 quantity of statistics reported for each field can be controlled by the FSTATS directive,
 using the AVGTOT or MINMAX option. PARM='FSTATS=AVGTOT' or
 PARM='FSTATS=MINMAX' provides the same processing as the corresponding
 FSTATS directives; the FSTATS directive over-rides any specification of the FSTATS
 parameter. See “FSTATS [AVGTOT | MINMAX]” on page 50 for a description of the
 FSTATS directive, and for an explanation of the statistics displayed on the Fast/Unload
 report listing.

 The default processing for FSTATS with neither AVGTOT nor MINMAX is MINMAX,
 although this default can be changed with a customization zap (see “Setting default
 FSTATS processing” on page 295).

 FSTATS is not valid if the Field Statistics Option is not linked with your Fast Unload load
 module.

——
10 Fast/Unload Reference

——
 FUnout
——

 4.9 FUnout

 This indicates that you would like Fast/Unload to perform the I/O to the output sequential
 data set(s) even if going through a sort due to SORT statement(s) and/or UAI
 statement(s) with the SORT option. In most cases, when sorting data on one or more
 output streams, the sort package is responsible for performing output to that output
 stream's sequential data set. This parameter forces sorted output to be passed back to
 Fast/Unload via an E35 exit which then performs the I/O.

 You might want to use the FUNOUT option because:

 ● You want to have sorted data go to an OS format minidisk under CMS.
 ● You want to use Fast/Unload's defaults for output dataset format, rather than your
 sort package's defaults.
 ● Your sort package sometimes truncates output records.

 Note that use of the FUNOUT option will probably increase CPU overhead and maybe
 I/O overhead. You can customize Fast/Unload so that FUNOUT is the default; see
 “Changing the default sort parameter” on page 292.

 The FUNOUT option is mutually exclusive with the SORTOUT and SORTOUTD options
 (see “SORTOut | SORTOUTD” on page 17).

 A line showing FUNOUT = ON in the Fast/Unload report data set indicates that FUNOUT
 is in effect. SORTOUT and SORTOUTD will indicate OFF.

 4.10 Harderr=
 {ABEND|CANCEL|SKIP|SKIP0|IGNORE|IGNORE0}

 This sets the action to be performed when a hard error is encountered. A hard error is a
 missing record or extension record or an unknown field in the Model 204 data file.
 These can result from running against a data file or record set that is not protected from
 change with a record set lock when using the Fast/Unload User Language Interface or a
 database file enqueue when running Fast/Unload as a standalone load module. This
 type of error can also occur if running Fast/Unload against a broken file (other broken file
 errors, for example, inconsistencies in Table D, always cause Fast/Unload to end with a
 diagnostic dump).

 The valid values of HARDERR are:

 ● ABEND - Which means stop the Fast/Unload with a job step ABEND.
 ● CANCEL - Which means stop the Fast/Unload with a minimum job step completion
 code of 4.
 ● SKIP - Which means do not unload any more from the current record for a UAI or
 PAI, or skip the rest of the record for other forms of unload; the minimum job step
 completion code is 4. In order to perform the UAI and PAI operations as quickly as

——
Fast/Unload Reference 11

——
Parameters
——

 possible, some of the record may have been unloaded when a hard error is
 detected.
 ● SKIP0 - Which means skip (as above), but do not change the minimum job step
 completion code.
 ● IGNORE - Which means ignore the error. This option is identical to SKIP except in
 the case of a missing extension record. In this case HARDERR=IGNORE means
 that Fast/Unload should simply act as if the record did not contain an extension
 record pointer. The minimum job step completion code is 4.
 ● IGNORE0 - Which means ignore (as above), but do not change the minimum job
 step completion code.

 The default value for this parameter is CANCEL. In all cases, hard errors are always
 reported.

 4.11 Ioapp=pp

 For Fujitsu/AE systems, this sets the two character name of the Model 204 DCB
 appendage. Fast/Unload uses the Model 204 DCB appendage when running under
 Fujitsu/AE systems to specify storage areas to be page fixed for EXCP I/O. The value of
 this parameter should be the same as the Model 204 "EXCPVR" parameter. IOAPP
 should be specified for batch mode operation only. When invoked via the Fast/Unload
 User Language Interface, this parameter is ignored and the Model 204 "EXCPVR"
 parameter is used. IOAPP is ignored for Hitachi and IBM systems.

 4.12 LIBuff=n

 This specifies the size of the work area used to hold a normalized FUEL statement
 (“normalized“ means reducing to a single blank all multiple blanks separating statement
 tokens, and putting together physical line continuations).

 LIBUFF must be followed by a positive decimal integer that indicates the desired size. It
 is specified in bytes; the default is 7000, which should be more than enough for almost
 all FUEL programs. If you receive a FUNL error message indicating the line is too long,
 you can increase this parameter.

 This parameter is new in Fast/Unload version 4.1.

——
12 Fast/Unload Reference

——
 List
——

 4.13 List

 This indicates that the Fast/Unload input program lines should be printed on the
 Fast/Unload report data set. This parameter is the default for Fast/Unload, unless it has
 been customized (see “Setting NOLIST as default” on page 294). The inverse of this
 parameter is NOList.

 When Fast/Unload is invoked via the Fast/Unload User Language Interface, if the
 ALLMSG parameter is not specified, the NOLIST parameter is default.

 The program listing contains the hexadecimal program offset corresponding to the input
 line, the nesting level (when it changes) with an indication of an increase (+) or decrease
 (-) in the level or that a block is introduced which has the same nesting level (=), the
 statement number, and the program source statement.

 This parameter is new in Fast/Unload version 4.0.

 4.14 Maxrec=n

 This sets the maximum number of input records that will be processed. MAXREC must
 be followed by a positive decimal integer that indicates the desired maximum. This can
 be useful when debugging a FUEL program or when doing tuning runs for Fast/Unload.
 When the maximum number of records has been processed the Fast/Unload terminates
 as it ordinarily would when all records have be processed. The default for this
 parameter is 0 which means that all records to the end of the data file are unloaded.

 4.15 Nbbuff=n

 This specifies the number of base record buffers. NBBUFF must be followed by a
 decimal integer. This integer specifies the number of base record buffers. The size of
 these buffers is determined by the track size of the input device and the value specified
 for SBBUFF. Specifying a value of 1 for NBBUFF prevents any read ahead of base
 record buffers. Specifying a value greater than 2 would not be likely to provide much of
 a performance gain and could introduce significant delays in retrieving extension
 records. In fact, if extension records are expected to be numerous and physically distant
 from the base records, a single base record buffer might provide better performance
 than multiple base record buffers. The default value for NBBUFF is 2 meaning that
 Fast/Unload will always have a current base record buffer and will read ahead into the
 other buffer.

——
Fast/Unload Reference 13

——
Parameters
——

 4.16 NEbuff=n

 This specifies the number of extension record buffers. NEBUFF must be followed by a
 decimal integer that specifies the number of extension record buffers. The size of these
 buffers is determined by the track size of the input device and the value specified for
 SEBUFF.

 Specifying a value greater than 1 for NEBUFF allows the extension records buffers to
 act as a first-in/first-out buffer pool. If you expect many physically scattered extension
 records, or if the Fast/Unload "Wait for extension buffer" statistic has a high value, you
 may want to use a high value for NEBUFF. This would be especially desirable if you
 have a large amount of real memory on your CPU.

 The default value for NEBUFF is 2 when invoked via the Fast/Unload User Language
 Interface, and it is 40 when invoked as a standalone load module. This prevents
 Fast/Unload from wasting unnecessary storage when running in an ONLINE address
 space while providing a good sized extension buffer pool when running in its own
 address space. Note that extreme cases of extension record scattering will create
 uncorrectable performance problems for Fast/Unload as well as for Model 204.

 4.17 NObuff=n

 This specifies the number of output record buffers. NOBUFF must be followed by a
 decimal integer that specifies the number of output record buffers. The size of these
 buffers is determined by the DD or FILEDEF statements for the output data set(s). If no
 block size is specified in the data definitions for the output data set(s), Fast/Unload uses
 the largest possible block size given other data set characteristics. If output is going
 directly to a sort package, the size of the output buffers is always either the largest
 possible block size less than or equal to 4096, or the record length if output records can
 be more than 4096 bytes long.

 If the Fast/Unload "Wait for output buffer" statistic has a high value, you might want to
 use a high value for NOBUFF. This would be especially desirable if you have a large
 amount of real memory on your CPU. The default value for NOBUFF is 2 meaning that
 Fast/Unload will be able to write one buffer while it is filling the other, thus providing
 overlap of output I/O with CPU processing. If running under MVS and using a relatively
 small output block size, specifying a larger value for NOBUFF would enable Fast/Unload
 to take advantage of MVS chained scheduling of I/O which would probably provide a
 significant speed increase.

 The maximum value for NOBUFF is 99.

——
14 Fast/Unload Reference

——
 NOEnq
——

 4.18 NOEnq

 This indicates that Fast/Unload does not attempt to use standard Model 204 enqueueing
 on the input data file. By default, Fast/Unload attempts to obtain a share lock on the
 input data file, and it will terminate if it is unable to obtain the share lock.

 The NOENQ parameter may be useful if you want to run against a Model 204 data file
 that has been opened by an ONLINE in exclusive mode but which you know is not being
 updated, if you want to run against a Model 204 data file that is update protected by a
 security package, or if absolute data consistency is not critical (for creating certain
 reports, say, as opposed to reorganizing a file).

 This parameter has no meaning when Fast/Unload is invoked via the Fast/Unload User
 Language Interface.

 4.19 NOList

 This indicates that the Fast/Unload input program lines should not be printed on the
 Fast/Unload report data set. The inverse of this parameter is List.

 When Fast/Unload is invoked via the Fast/Unload User Language Interface, if the
 ALLMSG parameter is not specified, the NOLIST parameter is default. NOLIST can also
 be customized as the default for your installation; see “Setting NOLIST as default” on
 page 294.

 A LIST = OFF line in the Fast/Unload report data set indicates that NOLIST is in effect.

 This parameter is new in Fast/Unload version 4.0.

 4.20 NOTify

 This indicates that you want to be notified with a warning when the unload is complete.
 This parameter only has meaning when Fast/Unload is invoked via the Fast/Unload User
 Language Interface.

 4.21 Orecerr={CANCEL|SKIP|IGNORE}

 This sets the action to be performed when an output record error is encountered. This
 currently only refers to an output record exceeding the output record size. The valid
 values ORECERR are:

 ● CANCEL — Stop the Fast/Unload.

——
Fast/Unload Reference 15

——
Parameters
——

 ● SKIP — Skip the current record.
 ● IGNORE — Ignore the error and simply truncate the record.

 The default value for this parameter is 'CANCEL'. For any value of ORECERR, output
 record errors are reported.

 4.22 Sbbuff=n

 This specifies the size of base record buffers in tracks. SBBUFF must be followed by a
 decimal integer. This integer specifies the size of base record buffers in tracks. Base
 record buffers are used to read in the non-extension record parts of Model 204 data files.
 Extension records which happen to be contained in a current base record buffer will also
 be read from the base record buffer.

 This value must be evenly divided into the number of tracks per cylinder on the input
 device. For example, if the input device is a 3380, this value could be either 1, 3, 5 or
 15. If the input data set allocation is not in cylinder units and the input device does not
 support DEFINE EXTENT, the only valid value for this parameter is 1. (Prior to version
 4.0 of Fast/Unload, SBBUFF greater than 1 requires data set allocation in cylinder units,
 regardless of the support for DEFINE EXTENT.) Most modern DASDs support DEFINE
 EXTENT.

 The default value for SBBUFF is 1, meaning base record buffers are read in units of one
 track. If Fast/Unload statistics indicate a high "Base buffer wait time" value, one might
 be able to achieve better performance using a higher value for SBBUFF.

 4.23 SEbuff=n

 This specifies the size of the extension record buffers. SEBUFF must be followed by a
 decimal integer. This integer specifies the size of extension record buffers in tracks.
 When an extension record cannot be found in a base record buffer, it must be
 synchronously read into an extension record buffer.

 This value must be evenly divisible into the number of tracks per cylinder on the input
 device. For example, if the input device is a 3380, this value could be either 1, 3, 5 or
 15. If the input data set allocation is not in cylinder units and the input device does not
 support DEFINE EXTENT, the only valid value for this parameter is 1. (Prior to version
 4.0 of Fast/Unload, SEBUFF greater than 1 requires data set allocation in cylinder units,
 regardless of the support for DEFINE EXTENT.) Most modern DASDs support DEFINE
 EXTENT.

 The default for SEBUFF is 1, meaning extension records are read in units of one track.
 In general there is probably no advantage to setting this value to anything other than 1
 and in fact a large SEBUFF would probably produce degraded performance.

——
16 Fast/Unload Reference

——
 SEQ
——

 4.24 SEQ

 This parameter indicates that the input program (FUNIN in batch mode) has sequence
 numbers in columns 73 through 80. If this parameter is specified, all data after column
 72 in the input program is ignored. By default, Fast/Unload reads all columns in the
 input program.

 4.25 SKiprec=n

 This sets the number of input records that will be skipped before the first record is
 processed. The FUEL program or UAI statement is not processed for skipped records.
 This statement is useful when splitting an unload into multiple pieces. For example, if a
 database file has approximately 2 million records and you want to split the unload into 2
 pieces you could do one unload with MAXREC set to 1000000 then a second unload
 with SKIPREC set to 1000000. This parameter is different from FRECORD because
 FRECORD uses Model 204 record numbers while SKIPREC does not count unused
 record numbers. When using SKIPREC in conjunction with FRECORD, FRECORD is
 used to set a starting record number and then SKIPREC records are skipped from that
 record number. Records skipped for SKIPREC are not counted as processed records
 against MAXREC. The default for this parameter is 0 which means that no records are
 skipped.

 4.26 SORTOut | SORTOUTD

 In contrast to the FUNOUT parameter, both these parameters tell the external sort
 package to write the sorted records directly to the output sequential data set(s) after the
 sort. As of version 4.1, SORTOUTD is the default for Fast/Unload, unless it has been
 customized (see “Changing the default sort parameter” on page 292).

 For FUEL programs with one output stream, not explicitly declared (which includes all
 programs written prior to version 4.1), you can specify SORTOUT to maintain the pre-
 version 4.1 behavior: UAI SORT output is sent to the DD named FUNOUT, while non-
 UAI output is sent to the sort's SORTOUT DD. Alternatively, SORTOUTD provides a
 more consistent handling of such legacy programs: all sorted output, whether UAI or
 non-UAI, goes to FUNOUT, written by the sort program.

 For programs with multiple outputs, if SORTOUT or SORTOUTD is specified or implied,
 Fast/Unload tells the sort program the user-supplied destination for each sorted output
 stream, and the sort program does its own output.

 SORTOUT, SORTOUTD, and FUNOUT are mutually exclusive. In the Fast/Unload
 report dataset, only one of these will be ON. See “FUnout” on page 11.

——
Fast/Unload Reference 17

——
Parameters
——

 4.27 SOrtp={31|24}

 This parameter indicates the type of parameter list to be used to pass data to an external
 sort package. SORTP must be followed by either 24 or 31. If 24 is specified, the “old-
 fashioned” 24-bit parameter list is used. If 31 is specified, the 31-bit extended parameter
 list is used. The default for this parameter as shipped is 31, but you can modify this
 setting if your site requires. For more details about this parameter see “Sort Parameter
 List” on page 291.

 4.28 UPArm="string"

 This specifies a string which can be accessed in the FUEL program as a special variable
 (#UPARM). (See “Entities” on page 26 for a discussion of special variables in FUEL.) If
 the string contains any blanks, it can be preceded by and followed by one double
 quotation mark, for example:

 // EXEC PGM=FUNLOAD,PARM='UPARM="Good job"'

 The double quotation marks will not be part of the value of #UPARM. Under MVS, the
 maximum length of the string, not including the quotation marks, is 100. Under CMS,
 the string may not contain blanks, and the length of the string is restricted to 8.

 4.29 Upper

 This indicates that you want the report data set to be written using upper case
 characters only. This option should be used if you are using terminals or printers which
 do not correctly handle mixed case output. By default, Fast/Unload produces mixed
 case output.

——
18 Fast/Unload Reference

——
 Fast/Unload Extraction Language
——

——————
CHAPTER 5 Fast/Unload Extraction Language

 A user can specify the format and contents of data to be unloaded by Fast/Unload. This
 is done with the Fast/Unload Extraction Language (FUEL). The FUEL compiler is a
 separately priced Fast/Unload feature. If the FUEL compiler is not purchased, the only
 fast Unload statement available to a user is UAI. This chapter specifies the syntax and
 semantics of FUEL.

 When Fast/Unload is invoked via the Fast/Unload User Language Interface, the FUEL
 statements are entered through $functions documented in
 http://m204wiki.rocketsoftware.com/index.php/List_of_$functions. When Fast/Unload is
 invoked as a standalone load module, the FUEL statements are provided in the FUNIN
 data stream. When Fast/Unload is invoked via the Fast/Unload User Language
 Interface, compiler errors are displayed in a specified sequential data set or returned to a
 $list. When Fast/Unload is invoked as a standalone load module, compiler errors are
 displayed on the FUNPRINT DD.

 5.1 Program Structure

 A FUEL program must have exactly one FOR EACH RECORD loop (except if it has just
 one UAI statement, in which case the FOR EACH RECORD loop is optional). Certain
 FUEL statements may occur inside the FOR EACH RECORD LOOP; these are called
 executable statements. Statements that may not occur inside the FOR EACH
 RECORD LOOP are called directives.

 All executable statements except UNLOAD may also occur either before or after the
 FOR EACH RECORD loop. Directives must occur before any executable statement, in
 any order, excepting OPEN, which must be the first statement in the program.

 The executable statements before the FOR EACH RECORD loop are performed once,
 at the start of the Fast/Unload job. The statements inside the FOR EACH RECORD
 loop are performed for each input record. The statements after the FOR EACH
 RECORD loop are performed after the end of the input file (the last input file, if a group
 unload is being performed).

 As mentioned, a program with exactly one declared UNLOAD ALL INFORMATION (UAI)
 output may be coded without any accompanying FOR EACH RECORD loop. A single
 UAI directive coded without a FOR EACH RECORD loop simply implies that every
 record in the database is unloaded to the implicit FUNOUT destination. If any other
 declaring directive is present (that is, more than one UAI, no UAI, or any OUT TO), a
 FOR EACH RECORD loop is required.

——
Fast/Unload Reference 19

——
Fast/Unload Extraction Language
——

 See “UNLOAD ALL INFORMATION or UAI” on page 88 for more information about UAI,
 and see “UNLOAD[C] [field [(occur | *)]]” on page 83 for more information about using
 UAI with a FOR EACH RECORD LOOP.

 This structure of a FUEL program can be summarized as follows:

 OPEN filename
 -- Optional with the Fast/Unload User Language Interface
 -- Otherwise required
 Other directives
 -- Optional
 Statements executed once at start of job
 -- Optional (UNLOAD not allowed)

 FOR EACH RECORD
 Statements executed once per input record
 END FOR
 -- Optional if UAI specified

 Statements executed once at end of job
 -- Optional (UNLOAD not allowed)

 5.1.1 Output Streams

 FUEL uses the concept of output streams, where a stream is the data that is output to
 a particular destination, typically a data set. Legacy FUEL programs (that is, those
 written for versions prior to 4.1) have one output stream, and that stream's destination
 (FUNOUT) is implicitly declared. As of version 4.1, a FUEL program may have multiple
 output streams, and their destinations are explicitly declared using one or both of the
 following:

 ● An OUT TO directive (see “OUT TO destination” on page 68)
 ● The TO destination option on a UAI directive (see “UNLOAD ALL
 INFORMATION or UAI” on page 88).

 Once declared, the stream name is used:

 ● In the TO destination clause on subsequent output-generating statements.
 ● As the TO destination qualifier that associates the SORT control statement to a
 particular stream.
 ● As the parenthesized qualifier on certain special variables.

 The output stream controlling statements are grouped below. For an example of a
 multiple output program, see “Sample Program with Multiple Outputs” on page 22.

 OUT TO destination [DEF[AULT]]
 UAI [TO destination [DEF[AULT]]] ...

——
20 Fast/Unload Reference

——
 Program Structure
——

 SORT [TO destination] ...
 [TO destination] PUT ...
 [TO destination] OUTPUT
 [TO destination] PAI
 [TO destination] UNLOAD[C] [...]
 [TO destination] NOUNLOAD [...]

 ... #RECOUT[(destination)] ...
 ... #OUTLEN[(destination)] ...
 ... #OUTPOS[(destination)] ...

 Programming notes:

 ● For a legacy FUEL program, a programmer may not mix UAI/UNLOAD features with
 PUT/OUTPUT features. With a multiple-output program, these features may not be
 mixed within any single output stream, but a FUEL program may include
 PUT/OUTPUT stream(s) (which include PAI output) and UAI/UNLOAD stream(s).

 ● When compiling output-generating statements in the executable portion of a FUEL
 program with more than one output stream, the compiler has to insert code to see if
 the output stream has to change, and if it does, has to insert code to swap internal
 information relevant to the switching streams. It will minimize such checking and
 context switching if you group statements for each output stream when possible.
 For example:

 PUT TO A FIELDA
 PUT TO A FIELDB
 PUT TO B SOMEFIELD
 PUT TO B SOMEOTHERFIELD

 The statement sequence above is more efficient than the sequence below (although
 the difference is marginal except in large unloads with many streams).

 PUT TO A FIELDA
 PUT TO B SOMEFIELD
 PUT TO A FIELDB
 PUT TO B SOMEOTHERFIELD

 5.1.2 Output Records

 For each declared output stream (and in legacy code, in the implicitly declared single
 FUNOUT output stream), FUEL uses the concept of an output record. At any given
 point in a FOR EACH RECORD loop, there is exactly one output record for each output
 stream. The output record is considered empty at the start of each execution of the FOR
 EACH RECORD loop and after the execution of an OUTPUT or PAI statement.

 Data is added to the current output record as follows:

——
Fast/Unload Reference 21

——
Fast/Unload Extraction Language
——

 ● For a PUT/OUTPUT stream, data is added with PUT statements. A cursor (a
 position relative to the start of the output record) is initially set to point to the first
 character in the output record. Data may be placed into the output record at either
 the current cursor position, a position relative to the current cursor position, or an
 absolute position in the output record. The cursor is always positioned at the
 character after the last character added by a PUT statement.

 The OUTPUT statement marks the end of the output record and adds it to the
 output stream. If a PAI statement follows OUTPUT, the PAI places each Model 204
 record value into a separate output record in the stream.

 ● For a UAI/UNLOAD stream, data is added to the current output record with
 UNLOAD[C] field [(occurrence)] statements or with an UNLOAD statement (which,
 with no field specified, unloads all hitherto not unloaded fields, and is called a
 "blanket" UNLOAD).

 As of version 4.1, except for legacy FUEL programs, these statements that write data to
 an output stream (PUT, OUTPUT, PAI, UNLOAD[C]), as well as those special variables
 that refer to aspects of an output stream (#RECOUT, #OUTPOS, #OUTLEN), must be
 qualified to indicate which of the declared output streams they affect. The qualifiers are
 the "TO destination" prefix on these statements (see “TO [destination | *]” on page 83)
 and, for the special variables, the destination in parentheses. Statements without such
 qualification (called "naked" output statements) can be included if they apply to an output
 stream declared to be the default stream (one PUT/OUTPUT stream and one
 UAI/UNLOAD stream may be declared to be the default for their type of output).

 5.1.3 Sample Program with Multiple Outputs

 The program below splits an employee database into a full unload copy and two
 separate user-defined sorted datasets. One of the sorted datasets contains data on
 employees older than fifty, and the other contains the same information for employees
 fifty and younger.

——
22 Fast/Unload Reference

——
 Program Structure
——

 OPEN EMPFILE

 /* Output stream for age-discrimination */
 OUT TO OLDONES
 SORT TO OLDONES -
 FIELDS=(AGE,A,LASTNAME,A,FIRSTNAME,A)
 SORT TO OLDONES RECORD TYPE=F,LENGTH=(500)

 /* Output stream for callow youths */
 OUT TO KEEPERS DEFAULT
 SORT TO KEEPERS -
 FIELDS=(AGE,A,LASTNAME,A,FIRSTNAME,A)
 SORT TO KEEPERS RECORD TYPE=F,LENGTH=(500)

 /* Output stream for full unload */
 UAI TO UNLOADED DEFAULT

 FOR EACH RECORD
 IF AGE > 50
 /* Put info on OLDONES stream */
 TO OLDONES PUT LASTNAME
 TO OLDONES PUT FIRSTNAME
 TO OLDONES PUT AGE
 TO OLDONES PUT EMPNUM
 TO OLDONES PUT SALARY
 TO OLDONES PUT HIREDATE
 TO OLDONES PUT DATA(*)
 TO OLDONES OUTPUT
 ELSE
 /* Put info on KEEPERS (default) stream */
 PUT LASTNAME
 PUT FIRSTNAME
 PUT AGE
 PUT EMPNUM
 PUT SALARY
 PUT HIREDATE
 PUT DATA(*)
 OUTPUT
 END IF

 /* Unload to UNLOADED (default) stream */
 UNLOAD

 END FOR

 5.1.4 Outside the FOR EACH RECORD loop

 You may code additional FUEL statements before the FOR EACH RECORD loop and/or
 after the loop. The statements before the FOR EACH RECORD loop are executed once
 at the start of the job; the statements after the loop are executed once at the end of the
 job. These statements have, in effect, an empty input record.

——
Fast/Unload Reference 23

——
Fast/Unload Extraction Language
——

 The following example shows the use of outside-the-loop statements to report the
 maximum value of a field in the file:

 OPEN DATA
 FOR EACH RECORD
 IF %MAX < FIELDA THEN
 %MAX = FIELDA
 END IF
 END FOR
 REPORT 'Highest value of FIELDA:' AND %MAX

 Here is an example of statements that create a "trailer" record:

 OPEN INFIL
 FOR EACH RECORD
 PUT '01' /* Output record type data
 PUT ...
 ...
 OUTPUT
 END FOR /* End of FOR EACH RECORD
 PUT '02' /* Output record type trailer
 PUT ...
 ...
 OUTPUT

 Notes:

 ● All statements allowed within a FOR EACH RECORD loop, except UNLOAD, are
 allowed outside a FOR EACH RECORD loop.

 ● Fields from the input file can be referenced outside a FOR EACH RECORD loop.

 ● Outside a FOR EACH RECORD loop, all fields have zero occurrences, unless an
 ADD statement (see “ADD[C] field = expr” on page 38) is executed.

 5.2 Input Program (FUNIN) Conventions

 FUEL statements are terminated by the end of a logical record. A logical record consists
 of one or more physical records. If a physical record's last non-blank character is a
 hyphen (-), the following physical record is considered part of the same logical record.

 Comments can be placed into a FUEL program in two ways.

 ● Any logical line whose first non-blank character is an asterisk (*) is considered a
 comment.
 ● Any part of a logical line that occurs after a slash-asterisk character combination
 (/*) is considered a comment.

——
24 Fast/Unload Reference

——
 Input Program (FUNIN) Conventions
——

 Note that comments can be continued the same way that any other physical line can be
 continued. In the statement

 PUT FIELD1 AS FLOAT(4) /* This is a comment

 the phrase 'This is a comment' is a comment. The whole line

 * This is a comment line

 is a comment. In the following example

 PUT '*' /* Put out an asterisk -
 PUT FIELD1

 the phrase 'PUT FIELD1' would be considered part of the comment because the first
 physical line ends with a continuation character. Finally,

 * This comment goes on -
 and on -
 and on

 is another example of a continued comment line. Since the hyphen is not the last non-
 blank character on the physical record, the following example is not a continuation:

 REPORT '*' AND - /* Put out an asterisk
 #RECORD

 The above example will cause a syntax error.

 Fast/Unload will read either all of each input record, or only columns 1-72, depending on
 the SEQ parameter. See the discussion of the SEQ parameter in “Parameters” on page
 7.

 FUEL programs are compiled into efficient object code for use by the actual data unload
 step. Any FUEL program which contains syntax errors will generate compilation errors
 and will not be executed. In the syntax descriptions that follow, optional keywords or
 clauses are enclosed in square brackets ([]).

 5.3 Program Elements

 The basic program element which denotes a value in FUEL is called an entity. In
 addition, the assignment statement allows you to assign a value to a %variable, which
 is one form of entity. The value that can be assigned to a %variable can be an entity, an
 expression, or a #function call.

 This section explains these concepts.

——
Fast/Unload Reference 25

——
Fast/Unload Extraction Language
——

 5.3.1 Entities

 Many FUEL statements operate on entities. The entity types are described in the
 following subsections.

 5.3.1.1 Field name with occurrences

 This type of entity describes data in the input Model 204 data file. A field name can be
 followed by an optional occurrence number enclosed in parentheses. If an occurrence
 number is not specified, the FUEL compiler assumes that you are referring to the first
 occurrence of the field.

 The field name may be for any type of Model 204 field (including BLOB or CLOB, as of
 Fast/Unload 4.3).

 The occurrence number can be either an integer count, a loop control variable, a
 %variable, or the number (#) symbol:

 ● If the occurrence number is a loop control variable, the occurrence number is
 derived from the current value of the loop control variable.

 ● If the occurrence number is a %variable, it must contain a numeric value greater
 than or equal to 1 (fractional values are ignored). If the %variable is non-numeric, is
 less than 1, or is greater than the maximum fixed value, Fast/Unload is cancelled.

 ● The number symbol indicates a reference to the occurrence count rather than to a
 particular occurrence. The PUT statement also allows an asterisk (*), which
 indicates all occurrences.

 ● If a field name is specified without an occurrence number, the occurrence number
 defaults to 1.

 If a field occurrence is referenced that is greater than the number of occurrences of that
 field in the record, that occurrence has the MISSING value, and is treated as the null, or
 zero-length, string in contexts needing a string value, or as zero in contexts needing a
 numeric value. For example, this means that a statement such as

 %TOTAL = %TOTAL + SALARY

 can be placed in your FUEL program without requiring a test such as

 IF SALARY EXISTS
 %TOTAL = %TOTAL + SALARY
 END IF

 (Treating the MISSING value as zero in numeric contexts is new in version 4.0 of
 Fast/Unload; prior to that, a MISSING value in numeric context would terminate the job.)

——
26 Fast/Unload Reference

——
 Program Elements
——

 If a field name appears in a context where it might be interpreted as part of a
 Fast/Unload statement, the ambiguity can be removed by placing a single quote (')
 around the ambiguous part of the field name. For example, the field name YEARS AT
 RESIDENCE could be coded YEARS 'AT' RESIDENCE in a PUT statement.

 5.3.1.2 Constants

 There are three kinds of constants: string constants, fixed constants, and floating point
 constants.

 A string constant must be enclosed in single quotes ('). If you want the single quote to
 appear in a string constant, you must double it. For example, if you want to refer to a
 string constant containing "That's show business", you must code it as 'That''s show
 business'.

 A fixed constant can begin with an optional sign and can contain only decimal digits. It
 must be within the range -2**31 + 1 (-2,147,483,647) to 2**31 - 1 (2,147,483,647);
 otherwise it is treated as a floating point constant. 23, -18, and 1678 are examples of
 valid fixed constants.

 A floating point constant must contain a single decimal point and/or the letter E, or it
 must be outside the range -2**31 + 1 (-2,147,483,647) to 2**31 - 1 (2,147,483,647). It
 can begin with an optional sign, and can end with the letter E (to indicate a power of 10
 multiplier) followed by a fixed constant. Other than the leading sign, the decimal point,
 the E, and the sign of the power of 10 multiplier, it must otherwise contain only decimal
 digits.

 The following are examples of floating point constants:

 1E10
 77.19
 3.14159
 -2.718
 1.3E2
 12345678901
 1.E-4

 A floating point constant, expressed in base 10 in a FUEL program, is converted to IBM
 360 floating point representation; see “Floating Point Arithmetic and Numeric
 Conversion” on page 235 for a discussion of this.

 5.3.1.3 Loop control variables

 These variables are represented by a single letter of the alphabet (thus allowing at most
 26 of them), and they are given values by the FOR/FROM/TO statement. References to
 loop control variables outside their corresponding FOR loop produces unpredictable
 results.

——
Fast/Unload Reference 27

——
Fast/Unload Extraction Language
——

 5.3.1.4 Special variables

 These variables represent internal values maintained by Fast/Unload. The special
 variables are:

 #ERROR Indicates the result of a PUT operation. Success sets #ERROR to zero, a
 missing value sets it to 1, and a conversion or truncation error sets it to 2.

 #FILENAME The name of the file currently being unloaded.

 #GRPMEM The current file number within the Model 204 group (1 for the first file,
 etc.). #GRPMEM is simply 1 if a group is not being unloaded.

 #GRPSIZ The number of files in the group being unloaded. #GRPSIZ is simply 1 if
 a group is not being unloaded.

 #OUTLEN[(destination)]
 Reflects the length of the current output record in a non-UAI output
 stream.

 If there is exactly one output stream in your FUEL program (that is, in a
 program written prior to Fast/Unload version 4.1, or in a program with
 exactly one explicitly declared output stream), you may use the
 unqualified form of #OUTLEN. Otherwise, you must indicate which output
 stream's record length is meant by specifying the stream destination in
 parentheses:

 #OUTLEN(destination)

 In FUEL programs with more than one output stream, the destination
 qualifier may be omitted if you want to refer to the default OUT TO
 stream, that is, the destination that is declared in an OUT TO statement
 with the DEFAULT or DEF attribute (see “OUT TO destination” on page
 68).

 Notes:

 ● When used in a PUT statement, #OUTLEN(destination) is the length
 of the output record on the destination output stream prior to the PUT
 statement. The destination value need not be the same stream as
 the PUT statement.

 ● #OUTLEN may not be used in the REPORT statement (you may, of
 course, assign #OUTLEN to a %variable, and use that %variable in a
 REPORT statement).

 ● #OUTLEN is not valid for a UAI format output stream.

——
28 Fast/Unload Reference

——
 Program Elements
——

 This special variable is valid in Fast/Unload version 4.0 and above.

 #OUTPOS[(destination)]
 Reflects the output position that will be used by the next PUT statement
 on the explicit or implied destination, if it does not contain the AT clause.
 Unless a previous AT clause has specified something less than the
 current position, the value of #OUTPOS will be the value of #OUTLEN
 plus one, on the particular stream.

 If there is exactly one such output stream in your FUEL program (that is,
 in a program written prior to Fast/Unload version 4.1, or in a program with
 exactly one explicit OUT TO destination declaration), you may use
 #OUTPOS without a stream qualifier. Otherwise, you must indicate which
 output stream's position is meant by specifying the stream destination in
 parentheses:

 #OUTPOS(destination)

 In FUEL programs with more than one output stream, the destination
 qualifier may be omitted if you want to refer to the default OUT TO
 stream, that is, the destination that is declared in an OUT TO statement
 with the DEFAULT or DEF attribute (see “OUT TO destination” on page
 68).

 Notes:

 ● When used in a PUT statement, #OUTPOS(destination) is the
 position in the output record on the destination output stream prior to
 the PUT statement. The destination value need not be the same
 stream as the PUT statement.

 ● #OUTPOS may not be used in the REPORT statement (you may, of
 course, assign #OUTPOS to a %variable, and use that %variable in a
 REPORT statement).

 ● #OUTPOS is not valid for a UAI format output stream.

 This special variable is valid in Fast/Unload version 4.0 and above.

 #RECIN The current input record number in the Model 204 data file. In FUEL
 placed before the FOR EACH RECORD loop, #RECIN is -400000000
 (-4E8). In FUEL placed after the FOR EACH RECORD loop, #RECIN is
 -300000000 (-3E8).

 Note that the record number is not the same as number of input records,
 because of deleted records, “skipped” record numbers due to the values
 of the BRECPPG and BRESERVE Model 204 parameters, and so on.

——
Fast/Unload Reference 29

——
Fast/Unload Extraction Language
——

 For example, if you are unloading a file's records to two output streams,
 RECS1 and RECS2, and you want to limit the first stream to the first
 50,000 records. Using a loop with #RECIN < 50000 to route the
 records will not succeed in most cases because of the likely missing
 record numbers. Instead, code like the following is what you need:

 OPEN MYFILE
 UAI TO RECS1 OINDEX
 UAI TO RECS2 OINDEX
 %RECBLOCK = 50000
 FOR EACH RECORD
 IF %RECBLOCK GT 0.0 THEN
 %RECBLOCK = %RECBLOCK - 1
 TO RECS1 UNLOAD
 ELSE
 TO RECS2 UNLOAD
 END IF
 END FOR

 Using 0.0 above is not necessary, but it forces a float type comparison,
 which is the type of value in %RECBLOCK after the subtraction. Thus it
 avoids converting the current value to a fixed value on each loop, which
 happens if you use %RECBLOCK GT 0.

 #RECOUT[(destination)]
 The current output record number. For a non-UAI unload, it is equal to
 the total number of OUTPUT statements executed, plus the number of
 records written by the PAI statement on the destination output stream.
 For a UAI unload, it is the position in the output file of the last record
 written for the last UNLOAD statement on the destination output stream.

 The number of #RECOUT records depends on your output LRECL value
 and on the size of the unloaded records. A single Model 204 input record
 might consume more than one output record.

 If there is exactly one output stream in your FUEL program (that is, in a
 program written prior to Fast/Unload version 4.1, or in a program with
 exactly one explicitly declared output stream), you may use the
 unqualified form of #RECOUT. Otherwise, you must indicate which
 output stream is meant by specifying the stream destination in
 parentheses:

 #RECOUT(destination)

 Note that, since #RECOUT is valid for both UAI and non-UAI type
 streams, you must still provide the destination qualifier for #RECOUT in
 cases where both types of stream output are declared, even if some
 output stream is declared to be the default. For more information about
 declaring default streams, see “UNLOAD ALL INFORMATION or UAI” on
 page 88 and “OUT TO destination” on page 68.

——
30 Fast/Unload Reference

——
 Program Elements
——

 #UPARM The value of the UPARM parameter.

 Examples:

 ● You are processing record number 5672 from your Model 204 data file (not using a
 group) and you have currently output 1783 records: #RECIN would be 5672,
 #RECOUT would be 1783, and #GRPSIZ and #GRPMEM would be 1.

 ● You are processing record number 143 from your the second Model 204 data file in
 a group of 5 files, and you have currently output 81223 records: #RECIN would be
 143, #RECOUT would be 81223, #GRPSIZ would be 5, and #GRPMEM would be 2.

 Note that both #RECIN and #RECOUT start counting at zero, while #GRPMEM starts
 counting at 1.

 5.3.1.5 %Variables

 This type of entity can be used in all contexts in which a field occurrence can be used. A
 %variable can also be used as a field occurrence number or as either of the limits on a
 FOR ... FROM ... TO statement.

 A %variable consists of a percent sign (%) followed by any combination of the following
 characters:

 ● The percent sign (%).
 ● The underscore (_).
 ● The uppercase letters (A-Z).
 ● The decimal digits (0-9).

 There are no %variable declarations in FUEL. A %variable can hold any of the basic
 FUEL types (string, fixed, and float). The initial value of any %variable is "MISSING"
 (same value as a field that doesn't occur in the record). Just like a field occurrence, the
 type and existence of a %variable can be tested using the MISSING, EXISTS, IS FIXED,
 or IS FLOAT phrases on the IF statement.

 If a %variable has the MISSING value, it is treated as the null, or zero-length, string in
 contexts needing a string value, or as zero in contexts needing a numeric value. For
 example, this means that a statement such as

 %COUNT = %COUNT + 1

 can be placed in your FUEL program without requiring an initialization statement such
 as

 %COUNT = 0

——
Fast/Unload Reference 31

——
Fast/Unload Extraction Language
——

 (Treating the MISSING value as zero in numeric contexts is new in version 4.0 of
 Fast/Unload; prior to that, a MISSING value in numeric context would terminate the job.)

 Every %variable is left unchanged until your program resets it. Therefore, %variables
 can be used for counters, totals, maximums, etc., and they can be used on subsequent
 unloaded records and/or at the end of the unload of a file or at the end of the unload job.

 The value of a %variable is changed either by placing it before the equals sign (=) on the
 assignment statement or by placing it as an output argument to a #function.

 As of Fast/Unload version 4.3, the value of a %variable may be a string longer than 255
 bytes. Using such a %variable, however, is limited to the contexts described in
 “Permitted use of long string values” on page 167.

 This is an example, somewhat contrived, of the use of a %variable:

 * Minimum value of repeating string field:
 FOR EACH RECORD
 %MIN = FLD
 FOR I FROM 2 TO FLD(#)
 IF FLD(I) < %MIN THEN
 %MIN = FLD(I)
 END IF
 END FOR
 PUT %MIN
 OUTPUT
 END FOR

 5.3.2 Expressions

 The right hand side of the assignment statement and the ADD and CHANGE statements
 consists of an expression which denotes a value to be stored in a %variable or a field.
 This element of a FUEL program, the expression, has the following syntax:

 #function ([[-]entity] ,...)
 | entity
 | [-] entity {+ | - | * | / [-] entity} ...

 The first form of expression is a #function call; the value of the expression is the result
 returned by the #function. See “#Function calls” on page 33 for an explanation of the
 #function call.

 The second form of expression is simply an entity; the value of the expression is the
 value of the entity. See “Entities” on page 26 for a discussion of entities.

 The third form of expression is an arithmetic calculation; the value of the expression is
 the floating point value obtained from the indicated entities and operands, using the rules
 of arithmetic. All entities in the expression must contain a numeric value. If any does

——
32 Fast/Unload Reference

——
 Program Elements
——

 not, the FUEL program will end. If an overflow or underflow error occurs, the FUEL
 program will end, with an error message indicating the type of error and the line number
 being executed.

 Parentheses are not allowed within an arithmetic expression in this version of
 Fast/Unload. An arithmetic expression is evaluated from left to right, with multiplication
 and division having the same precedence, which is greater than that of addition and
 subtraction; addition and subtraction have the same precedence.

 A %variable that contains a string longer than 255 bytes is not allowed in an arithmetic
 expression.

 Note that the compiler will combine constants in most cases where possible; if an
 underflow or overflow occurs while combining constants, the program will immediately
 end during compilation, with a generic message that Fast/Unload has abended. The last
 line printed will contain the cause of the error.

 See “Floating Point Arithmetic and Numeric Conversion” on page 235 for a discussion of
 the algorithms involved in floating point arithmetic calculations.

 5.3.3 #Function calls

 A #function call is an expression that executes a certain algorithm, determined by the
 #function name, using values specified by a list of arguments, and returns a single value,
 called the #function result. The syntax of a #function call is:

 funcname ([[-] entity] [,...])

 The funcname consists of a number sign (#) followed by any combination of the
 following characters:

 ● The number sign (#).
 ● The underscore (_).
 ● The uppercase letters (A-Z).
 ● The decimal digits (0-9).

 The arguments to a #function are specified by position; each one can be omitted if the
 argument is optional. If an argument is supplied it is one of the forms of FUEL entities.

 The algorithm is specified for each individual #function. A set of standard #functions is
 included with Fast/Unload; they are described in “Standard #Functions” on page 99. In
 addition, your site can use any customer-written #functions you have written; see the
 FUNCTIONS statement and “Customer-written Assembler #Function Packages” on page
 213.

 Each #function has a different form, in terms of the number and type of arguments. The
 maximum number of commas that can be specified on a #function call is 30 (maximum

——
Fast/Unload Reference 33

——
Fast/Unload Extraction Language
——

 number of arguments is 31). The types of the arguments, and some other items
 important in specifying how to use a #function, are as follows:

 required argument
 If an argument to a #function is required, then you must code an entity for it
 in the call. If you do not code an entity, a compilation error message will be
 issued and the unload will not be performed.

 optional argument
 If an argument to a #function is optional, you need not code an entity for it in
 the call. If you provide any arguments following it, then a comma must be
 used to indicate the missing argument; for example:

 %P = #VERPOS(%S, %C, , 3)

 The third argument, which is optional, has not been coded above.

 omitted argument
 A particular #function may treat an omitted argument differently than a
 supplied argument which has the MISSING value or which has the null string
 value.

 input argument
 If an argument to a #function is an input argument, you can specify any form
 of entity for the argument. The #function can not change the value of an
 input argument.

 argument with MISSING value
 If an argument has the MISSING value (a %variable or a field), the #function
 algorithm can detect this, although, except as noted, for all arguments of the
 standard #functions this is the same as passing the null string for a string
 argument, or as passing zero for a numeric argument.

 Since the numeric use of MISSING is zero, the MISSING value is not
 allowed for an argument which may not be zero. Also, the MISSING value is
 not allowed for some other #function arguments, such as the CENTSPAN
 argument and the first argument in the #Nx2DATE family.

 #function result
 The value of an expression that is a #function call is called the #function
 result. See the evaluation process below for an explanation of how this is
 set.

 output argument
 In addition to the result, a #function can set additional values. This is
 provided by output arguments. If you supply an output argument, you must
 supply a %variable (leading minus sign is not allowed); if you supply an
 argument which is not a %variable, a compilation error message is issued
 and the unload will not execute.

——
34 Fast/Unload Reference

——
 Program Elements
——

 See the evaluation process below for an explanation of how the value of an
 output argument is modified.

 The process of evaluation of a #function call uses 'call by copy/result' semantics, that is:

 1. The value of each argument entity is copied to a distinct intermediate variable which
 the #function can access (this is true of both input and output arguments in the
 current version, but in terms of the details of #function evaluation, what is important
 is that output arguments are copied).

 2. The value of the result is set to MISSING.

 3. During the execution of the #function, the argument values (input or output) can be
 accessed and output arguments can be modified, in the intermediate variables. The
 result can be modified or accessed by the #function; this is done directly in the
 %variable which the #function result is assigned to.

 4. After termination of the #function, the value of each intermediate variable
 corresponding to an output argument is copied to the %variable coded as the output
 argument.

 Since #function calls are pervasive in advanced FUEL programs, there are many
 examples of their use throughout this manual. Here is an example which converts a field
 stored as IBM packed decimal into a numeric format usable by User Language:

 UAI
 FOR EACH RECORD
 %V = 0
 %X = #C2X(SALARY)
 %L = #LEN(%X)
 %L = %L - 1
 FOR I FROM 1 TO %L
 %C = #SUBSTR(%X, I, 1)
 %T = #INDEX('0123456789', %C)
 %T = %T - 1
 %V = %V * 10 + %T
 END FOR
 CHANGE SALARY = %V
 UNLOAD
 END FOR

 5.3.4 Assignment statement

 The assignment statement is the only FUEL statement that does not begin with a
 keyword. The syntax of the assignment statement is:

 %variable = expr

——
Fast/Unload Reference 35

——
Fast/Unload Extraction Language
——

 This statement changes the value of %variable to be the value of the expression expr.
 See “Expressions” on page 32 for the forms of legal FUEL expressions.

 If the value of expr is the MISSING value that becomes the value of %variable. A
 missing field occurrence, an un-assigned %variable, and various #function results are
 different sources of the MISSING value.

 Since the assignment statement is pervasive in advanced FUEL programs, there are
 many examples of its use throughout this manual. Here is a simple example:

 FOR EACH RECORD
 IF ALERT NE 1 THEN
 SKIP
 END IF
 IF REC.TYPE = 'MGR' THEN
 %TITLE = 'Vice President '
 %SUFF = #CONCAT('(', DEPT, ' Department', ')')
 ELSE
 %TITLE = ''
 %SUFF = #CONCAT('hired on ', HIREDT)
 END IF
 REPORT 'Alert' AND %TITLE AND NAME AND %SUFF
 END FOR

 5.4 #ELSE

 The #ELSE statement begins an always true section within a #IF block (see “#IF” on
 page 37 for a full explanation of #IF blocks). A #IF block can have zero or one #ELSE
 section.

 5.5 #ELSEIF

 The #ELSEIF statement has the form

 #ELSEIF fieldname { DEFINED | UNDEFINED }

 An #IF block may have zero or more #ELSEIF sections. If the #IF block has not had a
 prior true #IF or #ELSEIF section, then the next #ELSEIF condition is tested to see if the
 dependent lines should be compiled. See “#IF” on page 37 for a full explanation of #IF
 blocks.

——
36 Fast/Unload Reference

——
 #END IF
——

 5.6 #END IF

 The #END IF statement ends a #IF block (see “#IF” for a full explanation of #IF blocks).

 5.7 #IF

 The #IF statement begins an #IF block and has the form

 #IF fieldname { DEFINED | UNDEFINED }

 A #IF block may have zero or more #ELSEIF sections (see “#ELSEIF” on page 36) and
 zero or one #ELSE section (see “#ELSE” on page 36), and it is ended by a #END IF
 statement (see “#END IF”).

 The logic of #IF blocks is just like that of IF blocks, except that they affect which FUEL
 program statements are compiled, rather than the program flow at execution time.

 A #IF or #ELSEIF section is true if
 ● the specified fieldname is defined and the DEFINED condition is specified
 ● the specified fieldname is not defined and the UNDEFINED condition is specified

 fieldname may be any type of Model 204 field (including BLOB or CLOB, as of
 Fast/Unload 4.3).

 The FUEL statements within the first true section are compiled; all others are skipped. If
 no true sections have been found when an #ELSE section is encountered, the #ELSE
 section is true by definition. Once a true section has been processed, all FUEL
 statements are skipped until the #END IF is encountered.

 #IF blocks may not be nested.

 The FUEL program below can be used as is with input files that have a telephone
 number field named TELNO, with other input files in which the telephone number is in a
 field named TELEPHONE, and with still other files that have no telephone number field at
 all.

——
Fast/Unload Reference 37

——
Fast/Unload Extraction Language
——

 UAI
 FOR EACH RECORD
 #IF TELNO DEFINED
 %T = TELNO
 #ELSEIF TELEPHONE DEFINED
 %T = TELEPHONE
 #ELSE
 %T='XXX-XXX-XXXX'
 #END IF
 %L = #LEN(%T) - 3
 IF %L > 0 THEN
 ADD TEL_KEY = #SUBSTR(%T, %L)
 ELSE IF %L > -3 THEN
 REPORT 'Bad TELNO' AND %T AND 'record' AND #RECIN
 END IF
 UNLOAD
 END FOR

 5.8 ADD[C] field = expr

 This statement adds an occurrence of the field field to the current record. The value of
 the added occurrence is the value of the expression expr. See “Expressions” on page
 32 for the forms of legal FUEL expressions.

 For the ADD statement, expr may not have the MISSING value. The ADDC statement
 allows the MISSING value, and in that case no occurrence is added for the field.
 Otherwise the statements are the same.

 The added occurrence can be referenced as an entity, and it will be output by the
 UNLOAD or PAI statements.

 The following example produces a value for an INVISIBLE KEY field by using the last 4
 digits of the telephone number:

 UAI
 FOR EACH RECORD
 %L = #LEN(TELNO) - 3
 IF %L > 0 THEN
 ADD TEL_KEY = #SUBSTR(TELNO, %L)
 ELSE IF %L > -3 THEN
 REPORT 'Bad TELNO' AND TELNO AND 'record' AND #RECIN
 END IF
 UNLOAD
 END FOR

 Notes:

——
38 Fast/Unload Reference

——
 ADD[C] field = expr
——

 ● If you are using ADD with a UAI type of unload, be sure to code the UNLOAD
 statement.

 ● If any ADD[C] field statements are in the program, then no ordered index
 information is unloaded for field.

 ● Field and date statistics are generated using the values of field occurrences before
 any ADD statements are executed.

 ● For PAI, any ADDed occurrences are placed at the end of the output for the record,
 in the order in which the ADD statements were executed.

 ● The order of output for the normal UNLOAD statement is the same as for PAI,
 unless the field in question is the HASH field or the first SORT field on the UAI
 statement. In that case, the occurrence designated will be output first in the record,
 whether or not it is an ADDed occurrence.

 ● The definition of the field is ignored by the ADD statement: the behaviour for any
 ADDed occurrence is as if the field were defined as FLOAT LENGTH 8 if a float
 value is assigned, and defined as STRING otherwise.

 ● As described in “Permitted use of long string values” on page 167, as of
 Fast/Unload 4.3, the field in an ADD[C] statement may be a BLOB or CLOB; the
 expr may be a %variable that contains a string longer than 255 bytes.

 ● The check for %L > 0 above is necessary if there is any chance of it being false,
 since #SUBSTR requires that the second argument (%L) be a number greater than
 or equal to one.

 The ADDC field statement is new in Fast/Unload version 4.0.

 5.9 ADDC field = expr

 The ADDC statement is the same as the ADD statement, except that ADDC allows the
 assigned expr to be the MISSING value.

 See “ADD[C] field = expr” on page 38.

 The ADDC field statement is new in Fast/Unload version 4.0.

——
Fast/Unload Reference 39

——
Fast/Unload Extraction Language
——

 5.10 CANCEL [ccode]

 This statement terminates the unload. The cancel statement can be followed by an
 optional fixed constant which indicates an optional condition code to be returned for the
 step under MVS or return code for the FUNLOAD command under CMS. For example,
 the statement

 CANCEL 22

 would terminate the unload with a condition code (or return code) of 22.

 The CANCEL statement would typically be found inside a conditional clause, whose
 truth indicates a severe error. For a UAI OINDEX or INVISIBLE type of unload, this
 statement will prevent the output of an indexing data. For a PUT type of unload, any
 data that has been 'PUT' into the current output record is lost, unless an OUTPUT
 statement preceded the CANCEL statement. For example, in the program

 OPEN BIGFILE
 FOR EACH RECORD
 PUT KEY.FIELD AS STRING(7)
 IF #ERROR NE 0 THEN
 REPORT 'SEVERE ERROR IN RECORD' AND #RECIN
 CANCEL
 END IF
 OUTPUT
 END FOR

 if there is an error placing KEY.FIELD into the output record; for example if it's missing,
 then the unload is terminated.

 5.11 CHANGE field [(occurrence)] = expr

 This statement changes the value of the designated occurrence of the field field in the
 current record. The value of the changed occurrence is the value of the expression
 expr. See “Expressions” on page 32 for the forms of legal FUEL expressions.

 Expr may not have the MISSING value.

 Occurrence defaults to 1. As with any occurrence number, the value of occurrence
 must be numeric and greater than or equal to 1 (fractional values are ignored). If this is
 not true, Fast/Unload is cancelled.

 The occurrence of the field must exist.

 The changed occurrence can be referenced as an entity, and it will be output by the
 UNLOAD or PAI statements.

——
40 Fast/Unload Reference

——
 CHANGE field [(occurrence)] = expr
——

 The following example removes leading blanks from a field:

 UAI
 FOR EACH RECORD
 %P = #VERPOS(ADDRESS, ' ')
 IF %P > 1 THEN
 CHANGE ADDRESS = #SUBSTR(ADDRESS, %P)
 END IF
 UNLOAD
 END FOR

 Notes:

 ● If you are using CHANGE with a UAI type of unload, be sure to code the UNLOAD
 statement.

 ● If a field is modified by CHANGE, then no ordered index information is unloaded for
 that field.

 ● Field and date statistics are generated using the values of field occurrences before
 any CHANGE statements are executed.

 ● The CHANGE statement does not affect the order in which fields are output for the
 UNLOAD or PAI statements.

 ● The definition of the field is ignored by the CHANGE statement: the behaviour for
 any CHANGEd occurrence is as if the field were defined as FLOAT LENGTH 8 if a
 float value is assigned, and defined as STRING otherwise.

 ● As described in “Permitted use of long string values” on page 167, as of
 Fast/Unload 4.3, the field in an CHANGE statement may be a BLOB or CLOB; the
 expr may be a %variable that contains a string longer than 255 bytes.

 5.12 CHECK condition ... CANCEL | WARN | ALLOW

 This statement allows you to specify the conditions to be checked before unloading the
 file(s), so that you do not inadvertently unload a file that may need some corrective
 action. You can enter this statement multiple times; it must occur before any FOR
 EACH RECORD statement. You can use this statement to override the conditions
 checked by default.

 The following CHECK statement ensures that the unloaded file does not have any
 procedures nor any INVISIBLE non-ORDERED field definitions by canceling the unload
 if any are detected:

 OPEN BIGFILE
 CHECK PROCS INVIS CANCEL
 UAI OINDEX
——
Fast/Unload Reference 41

——
Fast/Unload Extraction Language
——

 The condition list in the CHECK statement can contain one or more of the following
 keywords:

 DUPDT Checks if the file is in Deferred Update Mode.

 BROKE-LOGIC
 Checks if the file is Logically Inconsistent.

 BROKE-PHYS
 Checks if the file is Physically Inconsistent.

 INVIS Checks if the file has any INVISIBLE fields defined that would not be
 unloaded:

 ● INVISIBLE non-ORDERED fields (Fast/Unload cannot access these).
 ● INVISIBLE ORDERED fields without the presence of a UAI OINDEX or
 a UAI INV statement.

 Note: If your INVISIBLE fields can be derived, you can create the values
 in the unload (UAI, PAI, or other) by using the ADD statement in FUEL (see
 “ADD[C] field = expr” on page 38). This approach should be distinctly
 faster than adding the values with User Language, although both
 approaches require building the index, usually with a sort and the
 Model 204 Z command.

 PROCS For UAI output streams only, checks whether the file contains any
 procedures (including aliases). For versions prior to 4.2, Fast/Unload
 cannot unload them, and they are lost during a file re-org if you do not
 otherwise unload them (using perhaps the Model 204 COPY PROC
 command, or DISPLAY PROC to a USE dataset) before re-creating the file.

 As of Fast/Unload 4.2, the UAI statement unloads procedures and aliases
 by default, or if you explicitly specify the PROCS option of UAI (see “UAI
 statement options” on page 89).

 A CHECK PROCS statement is ignored if the unload contains no UAI
 statements.

 Insert the CHECK PROCS statement before the (first) UAI statement.

 The BROKE-LOGIC, DUPDT, and BROKE-PHYS conditions are values represented in
 the FISTAT file status parameter
 (http://m204wiki.rocketsoftware.com/index.php/FISTAT_parameter).

 The checks performed on Fast/Unload depend upon the defaults in effect (“CHECK
 statement defaults” on page 43) and upon the type of unload performed. Conditions
 specified in any CHECK statements override the defaults for those conditions, if any.

——
42 Fast/Unload Reference

——
 CHECK condition ... CANCEL | WARN | ALLOW
——

 These messages in your FUNPRINT report inform about the unload checking:

 ● FUNL0133 shows the conditions checked as a result of the defaults, the type of
 unload, and any CHECK statements.

 ● FUNL0131 reports ("Check failed") any non-ALLOWed conditions (CANCEL or
 WARN) that are found to exist in the file.

 ● FUNL0132 suggests possible responses to the conditions reported in FUNL0131.

 5.12.1 CHECK statement actions

 The following actions may be taken if a condition is found to exist in the file to be
 unloaded. One and only one action must be specified on each CHECK statement.

 CANCEL The Fast/Unload run will be cancelled before unloading any records.

 WARN Fast/Unload will proceed with the unload, but at termination will have a
 completion code of 4 or greater.

 ALLOW Fast/Unload will proceed with the unload, without affecting the completion
 code.

 5.12.2 CHECK statement defaults

 If no CHECK statement is included in your FUEL program, the following default checks
 are still in effect as long as the NOENQ parameter is not specified. If NOENQ (“NOEnq”
 on page 15) is specified, no CHECK conditions are in effect.

 ● Whether the file has been initialized.
 Fast/Unload always checks for this, and it cannot be overridden.

 ● CHECK BROKE-PHYS BROKE-LOGIC CANCEL,
 if neither UAI OINDEX nor UAI INV is specified.

 ● CHECK BROKE-PHYS BROKE-LOGIC DUPDT CANCEL,
 if UAI OINDEX or UAI INV is specified.

 ● CHECK PROCS ALLOW,
 for UAI statements only.

 For information about customizing the CHECK defaults for your site, see “Default
 CHECK conditions and actions” on page 293.

——
Fast/Unload Reference 43

——
Fast/Unload Extraction Language
——

 5.13 DATESTAT [SUMMARY | DETAIL]

 This statement causes Fast/Unload to analyze the file for fields which contain date
 values, and to provide information about those fields.

 The analysis is done in two phases; a sampling phase of 1000 records evenly distributed
 in the file, and an analysis in the second phase of selected fields. A field is examined in
 the second phase if in the first it is determined to have date values or is not found in the
 sampled records. The second phase is performed during the normal unload pass of the
 file. For a detailed description of the analysis of date fields, see “DATESTAT Analysis”
 on page 189.

 The reporting of information about date fields is done at the end of the processing of the
 file; field statistics (if FSTATS processing is performed) are reported before date
 information. You can choose a brief report with 1 to 3 lines per date field, or a
 comprehensive report with 1 page per date field. The brief report is the default, or it can
 be specified with the SUMMARY option of DATESTAT. The comprehensive report can
 be specified with the DETAIL option of DATESTAT. In both cases, the report shows
 each field's most common date format, and, if the field contains any 2-digit ("YY") years,
 an estimate of a 100-year span containing all the 2-digit year dates. In addition, an
 indication is given of the level of quality of the data stored in the field. Date values which
 may conform to multiple formats (for example, MM/DD/YY vs. DD/MM/YY) are
 accounted for.

 For a detailed description of the DATESTAT reports, see “DATESTAT Reporting” on
 page 190.

 The following Fast/Unload program will generate date statistics without creating a
 FUNOUT file:

 OPEN filename
 DATESTAT type
 FOR EACH RECORD
 END FOR

 The field values reported by DATESTAT are the values before any changes by the ADD,
 CHANGE, or DELETE statements.

 5.14 DELETE[C] field [(occurrence)]

 This statement deletes the designated occurrence of the field field from the current
 record.

 Occurrence defaults to 1. As with any occurrence number, the value of occurrence
 must be numeric and greater than or equal to 1 (fractional values are ignored). If this is
 not true, Fast/Unload is cancelled.

——
44 Fast/Unload Reference

——
 DELETE[C] field [(occurrence)]
——

 For the DELETE statement, the occurrence of the field must exist. For the DELETEC
 statement, the occurrence need not exist, and in that case no occurrence is deleted.
 Otherwise the statements are the same.

 The following example allows you to redefine a field as AT-MOST-ONE by moving
 multiple occurrences to a new field:

 NEW SEC_ADDR
 UAI
 FOR EACH RECORD
 FOR I FROM 2 TO ADDRESS(#)
 /* Must do ADD before DELETE
 ADD SEC_ADDR = ADDRESS(2)
 /* Make ADDRESS(2)=ADDRESS(3), etc.
 DELETE ADDRESS(2)
 END FOR
 UNLOAD
 END FOR

 Notes:

 ● The DELETE statement causes the field occurrences to be "shifted down by one".
 That is, after DELETEing the Ith occurrence of a field, the value of the Jth
 occurrence becomes the value of the former J+1st occurrence, for all J greater than
 or equal to I.

 Therefore, the order of ADD and DELETE in the example above is necessary,

 ● If you are using DELETE with a UAI type of unload, be sure to code the UNLOAD
 statement.

 ● If a field is modified by DELETE, then no ordered index information is unloaded for
 that field.

 ● Field and date statistics are generated using the values of field occurrences before
 any DELETE statements are executed.

 ● For PAI and UNLOAD, any DELETEd occurrences are simply removed from the
 output.

 Note that if you are using UAI to unload a file and you want to simply remove all
 occurrences of a field, and to remove the field definition from the file, the best way to
 accomplish this is not by using the DELETE statement in FUEL. You should do a
 "normal" UAI, unloading the entire file, and when you reload the file, use the following
 statement:

 LAI NOFDEF DELFIELD

——
Fast/Unload Reference 45

——
Fast/Unload Extraction Language
——

 This will require you to insert field definitions for all fields in the file after the INITIALIZE
 command; omitting the DEFINE FIELD for the fields you want to delete will accomplish
 your objective.

 5.15 DELETEC field[(occurrence)]

 The DELETEC statement is the same as the DELETE statement, except that DELETEC
 allows you to specify a field and occurrence which may be missing on the current record.
 In that case, nothing is deleted for that statement.

 See “DELETE[C] field [(occurrence)]” on page 44.

 The DELETEC field statement is new in Fast/Unload version 4.0.

 5.16 ELSE

 This statement marks the beginning of statements to be executed when the all the
 previous associated IF and ELSEIF clauses are false. For example, in the program

 OPEN BIGFILE
 FOR EACH RECORD
 IF +FIELD1 > FIELD2
 PUT FIELD1 AS FLOAT(4)
 ELSE
 PUT FIELD2 AS FLOAT(4)
 END IF
 OUTPUT
 END FOR

 the greater of the first occurrence of FIELD1 and FIELD2 would be placed into the output
 record.

 5.17 ELSEIF cond [THEN]

 This statement is executed if all previous associated IF and ELSEIF clauses have
 proved to be false; if cond is true, then the group of statements following the ELSEIF
 statement, up to the matching ELSE or END IF statement, are executed.

——
46 Fast/Unload Reference

——
 ELSEIF cond [THEN]
——

 See “IF cond [THEN]” on page 57 for a description of cond. For example, in the
 program

 OPEN BIGFILE
 FOR EACH RECORD
 IF FIELD1 < 'D'
 PUT '1'
 ELSEIF FIELD1 < 'P'
 PUT '2'
 ELSE
 PUT '3'
 END IF
 OUTPUT
 END FOR

 a '2' is placed in the output record if FIELD1 is not less than 'D' but is less than 'P'.

 5.18 END FOR

 This statement terminates a FOR EACH RECORD or FOR/FROM/TO clause. The
 program

 OPEN BIGFILE
 FOR EACH RECORD
 PUT WELL.NUMBER AS FIXED(4)
 FOR I FROM 1 TO 100
 PUT DEPTH(I) AS FIXED(4)
 PUT MEASURE(I) AS FLOAT(4)
 END FOR
 OUTPUT
 END FOR

 demonstrates both uses of the END FOR statement.

 5.19 END IF

 This statement terminates an IF clause and all subsequent ELSEIF and ELSE clauses.

 See “IF cond [THEN]” on page 57 for an example of END IF.

——
Fast/Unload Reference 47

——
Fast/Unload Extraction Language
——

 5.20 END REPEAT

 This statement terminates a REPEAT clause.

 See “REPEAT” on page 78 for an example of END REPEAT.

 The END REPEAT statement is new in Fast/Unload version 4.0.

 5.21 END SELECT

 This statement marks the end of a SELECT clause and the last WHEN or OTHERWISE
 sub-clause. For example, in the following program ID would be placed in the output
 record regardless of the value of REC.TYPE, because the 'PUT ID' statement occurs
 after the END SELECT statement:

 OPEN BIGFILE
 FOR EACH RECORD
 SELECT REC.TYPE
 WHEN 1
 PUT 'PHYSICIAN' AT 1
 WHEN 2
 PUT 'PATIENT' AT 1
 END SELECT
 PUT ID AT 10 AS STRING(9)
 OUTPUT
 END FOR

 In this example, if REC.TYPE is equal to 3, columns 1 through 9 would be left blank in
 the output record.

 5.22 FOR v FROM begin TO end

 This statement marks the beginning of a clause that is executed once for each value of
 loop control variable v as specified by the range begin TO end. Begin can either be a
 fixed constant, greater than 0, or a %variable, which must contain a numeric value
 greater than or equal to 1 (fractional values are ignored), and in the range of the fixed
 values. End can either be a fixed non-negative constant, the count of a field occurrence,
 for example, ADDRESS(#), or a %variable, which must contain a numeric value greater
 than or equal to 0 (fractional values are ignored), and in the range of the fixed values. If
 both begin and end are constants, begin must be less than or equal to end.

——
48 Fast/Unload Reference

——
 FOR v FROM begin TO end
——

 The end value is evaluated once, before the first iteration of the loop. Therefore, the
 following example will be performed for two iterations:

 %V = 2
 FOR I FROM 1 TO %V
 %V = %V + 1
 END FOR

 Some valid FOR v statements are

 ● FOR A FROM 1 TO 10

 ● FOR I FROM 1 TO CHILD(#)

 ● FOR I FROM 2 TO %NUM

 ● FOR I FROM %V1 TO CHILD(#)

 This statement must always be paired with an END FOR statement. The loop control
 variable can be referred to inside the loop either as an entity or as an occurrence
 number for a field. Note that a loop control variable can only be a single alphabetic
 character. Nested FOR loops cannot use the same loop control variable. Non-nested
 FOR loops can use the same loop control variable.

 A LEAVE FOR statement may be placed within a FOR loop; executing the LEAVE FOR
 will terminate the innermost FOR loop containing the LEAVE FOR. See “LEAVE
 clause_type” on page 61 for a description of LEAVE and for an example of the use of
 LEAVE FOR.

 Within a FOR loop, if a field name is the same as the loop control variable, you must use
 quotes to refer to the field, for example PUT 'F'. The program

 OPEN BIGFILE
 FOR EACH RECORD
 PUT FIELD1 AT 1 AS STRING(10)
 FOR I FROM 1 TO FIELD2(#)
 PUT FIELD2(I) AS STRING(10)
 PUT FIELD3(I) AS STING(10)
 END FOR
 OUTPUT
 END FOR

 is an example of the use of the FOR statement.

——
Fast/Unload Reference 49

——
Fast/Unload Extraction Language
——

 5.23 FOR EACH RECORD

 This statement must occur exactly once in the FUEL program and must be associated
 with exactly one END FOR statement. Statements inside the FOR EACH
 RECORD/END FOR bracket are executed once for each input record.

 5.24 FSTATS [AVGTOT | MINMAX]

 The FSTATS directive will gather field, Table B, and procedure statistics and check file
 integrity during the run. If this option is selected, the Fast/Unload report will contain a list
 of all defined fields in the database file, with field definition information and statistics
 about occurrences of the fields. It will also perform various integrity checks, and provide
 statistics about Table B and the file's procedures.

 Each field is displayed with the first 50 bytes of its name, and the following information is
 available:

 ● the field's storage type (STRING, FLOAT, CODED, etc., along with an INVISIBLE
 indicator)

 ● all non-default field definition information, if there is any other than storage type

 ● maximum and minimum for the field's occurrences and lengths

 ● average and total for the field's occurrences and lengths

 ● total Table E pages used, if a BLOB or CLOB field

 ● counts of records missing the field, if there are any

 To restrict the FSTATS field display to only contain the storage type and the minimum
 and maximum of occurrences and lengths, you can use the FSTATS MINMAX directive;
 FSTATS AVGTOT requests the more complete field information.

 If you specify the FSTATS directive in your FUEL program without a qualifying MINMAX
 or AVGTOT, the type of processing is determined by the FSTATS program parameter; if
 there is no FSTATS=MINMAX nor FSTATS=AVGTOT program parameter, then the
 default processing for the FSTATS directive is AVGTOT. You can change this default to
 be MINMAX by a customization zap (see “Setting default FSTATS processing” on page
 295).

 In addition to listing summary information about fields and Table B, FSTATS processing
 will cause checking of some possible inconsistencies of field definition information, and a
 thorough check of the integrity of the Table B records on the file. The following checks
 are made for Table B consistency:

 1. "Trailing" non-null preallocated fields.

——
50 Fast/Unload Reference

——
 FSTATS [AVGTOT | MINMAX]
——

 2. Invalid field types (neither float, string, nor binary/coded).

 3. Last field of record on a page longer than space allocated to record (this will be
 done whether doing FSTATs or not).

 4. Unknown coded value for CODED field.

 5. Coded value stored for non-CODED field.

 6. Binary value stored for non-BINARY field.

 7. Float value stored for non-FLOAT field.

 8. Field value indexed but field not an indexed type, or vice-versa.

 9. Preallocated field stored beyond preallocated field block.

 If you specify FSTATS, the following Fast/Unload program will generate field statistics
 without creating a FUNOUT file:

 OPEN filename
 FOR EACH RECORD
 END FOR

 The field values reported by FSTATS are the values before any changes by the ADD,
 CHANGE, or DELETE statements.

 The FSTATS program parameter can be used instead of the FSTATS directive, although
 the parameter does not allow you to specify AVGTOT or MINMAX. See
 “FStats[=AVGTOT|MINMAX]” on page 10.

 FSTATS is not valid if the Field Statistics Option is not linked with your Fast Unload load
 module.

 This directive is new in Fast/Unload version 4.0, as is the additional information that is
 provided with FSTATS AVGTOT.

 5.24.1 Description of Table B statistics

 In addition to the field information, FSTATS processing produces information about
 Table B utilization of the file. These are produced with any type of FSTATS processing.
 The Table B information is as follows:

 Table B pages in use and Base records in file
 These are taken from the file parameters.

——
Fast/Unload Reference 51

——
Fast/Unload Extraction Language
——

 Base records processed
 This is the same value that is shown the FUNL0054 message. It is the
 number of input records processed, which is based on the size of the file (or
 found set, when using the Fast/Unload User Language Interface), up until
 processing stops, which may be due to the FUEL CANCEL statement. In
 “normal” processing (that is, no CANCEL statement, and not using the
 Fast/Unload User Language Interface), this should be the same as the
 number shown for Base records in file.

 Base records processed without extensions
 This is the number of base records processed which do not have any
 extension record.

 Extension records in file
 This is taken from the file parameters.

 Extension records processed
 This is the total number of extension records of the base records processed.

 Average extensions per extended record
 This is the average number of extension records among the base records
 processed that have extensions, that is:

 Extension records processed
 divided by
 (Base records processed -
 Base records processed without extensions)

 Minimum record length
 This is the length of the smallest record processed.

 Maximum record length
 This is the length of the largest record processed.

 Total length of records
 This is the total length of all records processed.

 Average record length
 This is the average of the lengths of all records processed. It is calculated
 as:

 Total length of records
 divided by
 Base records processed

 Standard deviation of record length
 This is the deviation from the average of the lengths of all records
 processed.

——
52 Fast/Unload Reference

——
 FSTATS [AVGTOT | MINMAX]
——

 Note that the record length statistics are based on the “internal” lengths of the base
 record and all its extensions. It includes all space used by the record in Table B, except
 for any extension record pointers, pointers to records on the page, and spill pointers.
 This approach is used because the general purpose of the record length statistics is to
 provide information about the Table B space that is required to hold the data,
 specifically to allow you to size a file so that it will achieve an optimum layout after a
 reorganization. After a reorganization, you can control the number of extensions in the
 file to depend only on the record length, but before a reorganization, the number of
 extensions, and the extra Table B space used for each extension's “overhead”, is
 dependent on the random availability of Table B space on the pages being updated.

 The FSTATS Table B information is only available with version 4.0 and later of
 Fast/Unload.

 5.24.2 Description of field statistics

 The field by field listing contains one line for the first 50 bytes of each field's name, and
 the following information is also available:

 ● the field's storage type (NEW, or STRING, FLOAT, CODED, etc., along with an
 INVISIBLE indicator)

 ● all non-default field definition information, if there is any other than storage type

 ● maximum and minimum for the field's occurrences and lengths

 ● average and total for the field's occurrences and lengths

 ● counts of records missing the field, if there are any

 All of this information is produced with FSTATS AVGTOT processing; for FSTATS
 MINMAX processing, only the storage type is presented, or, for INVISIBLE fields, as
 much as will fit on the single line of field information.

 For the most part, field definition information is not displayed for those parts of the
 definition that use the Model 204 field definition defaults. Information that is default (for
 example, UPDATE IN PLACE) is not presented. The field definition information is
 displayed using the follow abbreviations:

 NEW A field introduced with the NEW directive. No other information is provided
 for the field in the field statistics report.

 BINARY A BINARY field.

 STRING A non-BINARY, non-FLOAT, non-DBCS field.

 FLOATn A FLOAT field, of length n

——
Fast/Unload Reference 53

——
Fast/Unload Extraction Language
——

 CODED A CODED MANY-VALUED field.

 CODFEW A CODED FEW-VALUED field.

 PURE DBCS
 A STRING DBCS field.

 MIXED DBCS
 A STRING MIXED DBCS field.

 INVISIBLE
 An INVISIBLE field. Of course, no lengths, counts, averages, etc., are
 displayed for INVISIBLE fields. Also, most of the field definition for
 INVISIBLE fields is printed on the first line of the field statistics report, so it is
 printed even if FSTATS MINMAX processing is in effect. A special
 informational label is printed, (Derived for NR), if the field on the statistics
 display is a field that is automatically defined by Model 204 to contain index
 information for a NUMERIC RANGE field.

 NR A NUMERIC RANGE field.

 KEY A KEY (Table C indexed) field.

 OCCnn/PAD=Xpp/LENjj
 A fixed OCCURS (preallocated) field. Nn indicates the number of
 occurrences, pp is the hexadecimal representation of the PAD character,
 and jj is the length.

 OCCONE/PAD=Xpp/LENjj
 A fixed OCCURS (preallocated) field which is also defined to be AT-MOST-
 ONE. Pp is the hexadecimal representation of the PAD character, and jj is
 the length.

 ONE An AT-MOST-ONE field.

 FRV An FRV (“FOR-EACH-VALUE”) field which is also either CODED or MANY-
 VALUED.

 FRVFEW An FRV (“FOR-EACH-VALUE”) field which is FEW-VALUED and not
 CODED.

 NDEF A NON-DEFERRABLE field.

 UPEND An UPDATE-AT-END, non-INVISIBLE field.

 UNQ A UNIQUE field.

 LVLsec A secured field, with security level sec.

——
54 Fast/Unload Reference

——
 FSTATS [AVGTOT | MINMAX]
——

 ORDCH LRSV=lr NRSV=nr SPLT=sp IMM=im
 An ORDERED CHARACTER field, where:

 ● lr is the value of LRESERVE
 ● nr is the value of NRESERVE
 ● sp is the value of SPLITPCT
 ● im is the value of IMMED

 In addition to the field definition information, statistics are presented concerning the
 occurrences of the field. The following statistics are presented about each field:

 Minimum and maximum occurrences
 The minimum and maximum number of occurrences of the field on a single
 record. This information is produced with any FSTATS processing.

 Minimum and maximum length
 The minimum and maximum length of any occurrence of the field. This
 information is produced with any FSTATS processing. Note that the
 calculation of field length:

 ● for non-preallocated fields, does not include the two-byte field code nor
 (for string fields) the length byte
 ● is the “string” length of any CODED values and is the stored length of
 FLOAT or BINARY values

 Records with zero occurrences
 The count of records which contain zero occurrences of the field is
 displayed, if there are any such records. This information is produced only
 with FSTATS AVGTOT processing.

 Total and average occurrences
 The total number of occurrences of the field is displayed, along with the
 average occurrences per record, among the records that have at least on
 occurrence of the field. This information is produced only with FSTATS
 AVGTOT processing.

 Total and average length
 The total length of all occurrences of the field is displayed, along with the
 average length. The average length is simply the total length divided by the
 number of occurrences of the field. Note that the calculation of field length:

 ● for non-preallocated fields, does not include the two-byte field code nor
 (for string fields) the length byte
 ● is the “string” length of any CODED values and is the stored length of
 FLOAT or BINARY values
 This information is produced only with FSTATS AVGTOT processing.

——
Fast/Unload Reference 55

——
Fast/Unload Extraction Language
——

 The additional information that is provided with FSTATS AVGTOT is only available
 starting with Fast/Unload version 4.0.

 5.24.3 Description of procedure statistics

 In addition to the field and Table B information, FSTATS processing produces
 information about the file's procedures, largely from the procedure dictionary.

 The statistics are produced with any type of FSTATS processing, although those that
 pertain to procedure text quantity are produced only if the following is true: at least one
 UAI output stream is specified explicitly or implicitly to unload procedures (that is, UAI
 PROCS is specified, or UAI NOPROCS is not specified).

 If FSTATS is not specified, the statistics are still produced if at least one UAI stream is
 specified explicitly or implicitly to unload procedures.

 The procedure information is as follows:

 Chunks in PD
 Blocks of contiguous pages that comprise the procedure dictionary.

 Pages per chunk
 Number of pages in each procedure dictionary chunk.

 Total pages in PD
 Total number of pages in the unloaded procedure dictionary.

 Hash cells per page
 Number of entries (for individual procedure or alias information) per
 procedure dictionary page.

 Total number of cells
 Total number of cells in the unloaded procedure dictionary.

 Total number of procs
 Total number of procedure cells in the unloaded procedure dictionary.

 Total number of aliases
 Total number of alias cells in the unloaded procedure dictionary.

 Average length of proc/alias names
 Average length of the procedure and alias names in the procedure
 dictionary.

 Total text pages
 Number of Table D pages used to store the text of procedures.

——
56 Fast/Unload Reference

——
 FSTATS [AVGTOT | MINMAX]
——

 Average proc length in bytes
 Average length in bytes of the text of a procedure.

 Average proc length in pages
 Average length in pages of the text of a procedure.

 5.25 FUNCTIONS [IN *|DDname] member member ...

 This statement is used to inform Fast/Unload where customer-written assembler
 language #functions are located. Each member is a #function package in the load
 module library referenced on the DDname DD statement. If the IN is missing or IN * is
 specified, the STEPLIB and JOBLIB are searched.

 IN DDname is not allowed under CMS; IN * can be specified; it is the default and means
 to examine all accessed minidisks for files named member TEXT.

 A #function package is a module which contains a set of #functions. When a #function
 call occurs in a FUEL program, the standard set of FUEL #functions is searched first; if
 the #function name is not in the standard set, customer-written #function packages are
 searched in the order specified in all FUNCTIONS statements, first-come first-searched.
 The total number of #function packages may not exceed 10.

 The FUNCTIONS statement can be repeated several times, as desired, as long as the
 number of package names (member) totalled from all FUNCTIONS statements does not
 exceed 10.

 See “Customer-written Assembler #Function Packages” on page 213 for information
 about creating a #function package.

 5.26 IF cond [THEN]

 This statement indicates that all the statements between the IF statement and the
 corresponding END IF, ELSEIF or ELSE statement are to be executed if cond is true.
 cond can be one or more comparisons joined by logical operators.

 A comparison consists of two Fast/Unload entities separated by a comparison operator.
 The comparison operator can be one of the following:

 '<' or 'LT'
 '>' or 'GT'
 '=' or 'EQ'
 '¬=' or 'NE'
 '>=', '=>', or 'GE'
 '<=', '=<', or 'LE'

——
Fast/Unload Reference 57

——
Fast/Unload Extraction Language
——

 If the comparison contains a constant, the type of the comparison will be made on the
 basis of the constant type. For example, a comparison with a fixed constant will result in
 a fixed comparison.

 When comparing two non-constant entities, for example a field and a %variable, the
 comparison is always a string comparison unless forced to a floating point comparison
 by preceding one of the entities with a plus sign (+) or to a fixed comparison by
 preceding one of the entities with a dollar sign ($).

 For example, the following is a string comparison:

 FIELD1 > %VAR

 The following is a floating point comparison:

 +FIELD1 > FIELD2

 The following is a fixed comparison:

 FIELD1 > $%VAR

 Any entity that cannot be converted to the required comparison type is assumed to be
 zero for the purposes of a numeric comparison, or to be the null string (zero length
 string) for the purposes of a string comparison. If a comparison type is forced and one
 of the entities is a constant, it must be of the same type as the forced type of the
 comparison.

 Therefore, the following comparison is illegal:

 +FIELD1 > 0

 The following comparison is legal:

 +FIELD1 > 0.0

 In the following FUEL fragment example:

 %X = 1
 %Y = '1.0'
 IF %X EQ %Y THEN
 PUT 'string EQ'
 ELSEIF +%X EQ %Y THEN
 PUT 'float EQ'
 END IF
 OUTPUT

 The result is:

 float EQ

——
58 Fast/Unload Reference

——
 IF cond [THEN]
——

 Note: The %variable in a comparison may not contain a string longer than 255 bytes
 (except for use with EXISTS and MISSING phrases, introduced below, which do not
 reference the value of a %variable). Similarly, BLOB and CLOB fields (of any length)
 may only be used in comparisons that use EXISTS or MISSING.

 5.26.1 Using EXISTS, MISSING, IS FIXED, or IS FLOAT

 A comparison can also be an entity name followed by the word EXISTS or MISSING.
 These comparisons test for the existence of the entity. This is useful for performing
 statements based on the existence of an occurrence of a field, or on whether a value
 has yet to be assigned to a %variable, or on whether the result of a #function assigned
 to a %variable was the MISSING value.

 If occurrence 5 of field FIELD1 exists in the current record, the following is true:

 FIELD1(5) EXISTS

 But the following is false:

 FIELD1(5) MISSING

 An entity followed by the phrase IS FIXED or IS FLOAT tests for the possibility of
 converting a value to fixed point or floating point. For example, if the field FIELD1
 contains the value 12.5:

 FIELD1 IS FLOAT
 FIELD1 IS FIXED

 Both the above are true, since 12.5 can be converted to both a floating point value and
 a fixed point value (albeit with truncation). If the field FIELD1 contains 9999999999, the
 following is true:

 FIELD1 IS FLOAT

 But the following is false, since the value 9999999999 cannot be represented as a
 4-byte binary integer:

 FIELD1 IS FIXED

 Note: Prior to Fast/Unload version 4.3, you can combine the following in a single test:

 ● IS FIXED and IS FLOAT type checking
 ● Forcing of the type in a comparison using a plus sign (+) or a dollar sign ($), as
 described on the previous page

 However, most of these combinations cause the result to be independent of the value of
 a field occurrence or %variable. Since it is believed that such FUEL code is more likely

——
Fast/Unload Reference 59

——
Fast/Unload Extraction Language
——

 to be a coding error than intended to express a desired result, these constructs are
 illegal in FUEL in 4.3 and later versions.

 5.26.2 Using AND and OR

 All comparisons can be joined with AND and OR clauses. The words AND and OR can
 be used alternately with the ampersand (&) and vertical bar (|) symbols, respectively.
 Fast/Unload does the comparisons from left to right with AND having the same
 precedence as OR, unless comparisons are grouped with parentheses.

 For example, this comparison is true if FIELD1='9', the second occurrence of FIELD2 did
 not exist, and FIELD3(2)='5':

 FIELD1 > 12 AND FIELD2(2) EXISTS OR FIELD3(2) < 10

 But the following is false for the same values:

 FIELD1 > 12 AND (FIELD2(2) EXISTS OR FIELD3(2) < 10)

 Note that this is different than many programming languages, which use AND
 precedence greater than OR. Continuing with the same values as above, the following
 statement is false:

 FIELD2(2) MISSING OR FIELD3(2) < 10 AND FIELD1 > 12

 But the following statement is true:

 FIELD2(2) MISSING OR (FIELD3(2) < 10 AND FIELD1 > 12)

 Only the comparisons required to determine the truth of the IF statement are performed.
 It is thus more efficient to place the more likely of two comparisons first in an OR clause,
 and to place the less likely first in an AND clause. The following program demonstrates
 the IF statement:

 OPEN BIGFILE
 FOR EACH RECORD
 IF KEY.FIELD MISSING
 REPORT 'MISSING KEY IN RECORD' AND #RECIN
 SKIP
 END IF
 IF (#RECIN < 5000) OR (KEY.FIELD>'2000000' -
 & KEY.FIELD<'3000000')
 PUT KEY.FIELD AS STRING(7)
 PUT STUFF(*) AS STRING(10)
 OUTPUT
 END IF
 END FOR

——
60 Fast/Unload Reference

——
 LEAVE clause_type
——

 5.27 LEAVE clause_type

 This statement “breaks out of” the closest enclosing body of FUEL code as indicated by
 clause_type. Clause_type can be any of the following:

 FOR LEAVE FOR must be within a FOR v FROM loop; the remaining
 statements of the loop are skipped and the next FUEL statement executed
 is the one after the END FOR closest enclosing that loop.

 Note that LEAVE FOR cannot be used to terminate a FOR EACH
 RECORD clause; the SKIP or CANCEL statements can be used for that.

 REPEAT LEAVE REPEAT must be within a REPEAT loop; the remaining statements
 of the loop are skipped and the next FUEL statement executed is the one
 after the END REPEAT closest enclosing that loop.

 SELECT LEAVE SELECT must be within a WHEN or OTHERWISE clause; the
 remaining statements of the loop are skipped and the next FUEL statement
 executed is the one after the END SELECT closest enclosing the WHEN or
 OTHERWISE.

 Examples for LEAVE FOR and LEAVE SELECT are shown in the following sections;
 since LEAVE REPEAT is used in most REPEAT loops, an example for it is shown in
 “REPEAT” on page 78.

 The LEAVE statement is new in Fast/Unload version 4.0.

 5.27.1 LEAVE FOR example

 In this example, LEAVE FOR is used to bypass field occurrences which are in ascending
 date order, after a cutoff date.

 Here is a PAI of a Model 204 record:

 NAME = DAVE
 TITLE = CANNERY ROW
 DUE = 36387
 TITLE = SWEET THURSDAY
 DUE = 36389
 TITLE = THE RED PONY
 DUE = 36391

 When processing the above record, the following FUEL program:

——
Fast/Unload Reference 61

——
Fast/Unload Extraction Language
——

 OPEN DMEWORK
 %D = #DATE('YYYY/MM/DD')
 PUT 'Fines on books at $0.40/day as of '
 PUT %D
 OUTPUT
 %D = #DATE2ND(%D, 'YYYY/MM/DD')
 %TOTAL = 0

 FOR EACH RECORD
 %FINE = 0
 FOR I FROM 1 TO DUE(#)
 IF DUE(I) >= %D
 LEAVE FOR
 END IF
 %DUE = #ND2DATE(DUE(I), 'MM/DD/YY')
 %LATE = %D - DUE(I)
 %FINE = %FINE + %LATE * .40
 PUT %DUE
 PUT ' ('
 PUT %LATE
 PUT ' days late): '
 PUT TITLE(I)
 OUTPUT
 END FOR
 IF %FINE > 0 THEN
 PUT 'Fine: $'
 PUT %FINE AS DECIMAL(6,2)
 PUT ' owed by '
 PUT NAME
 OUTPUT
 %TOTAL = %TOTAL + %FINE
 END IF
 END FOR

 PUT 'The library has receivables of: $'
 PUT %TOTAL AS DECIMAL(7,2)
 OUTPUT

 produces the following output:

 Fines on books at $ 0.40/day as of 1999/08/21
 08/17/99 (4 days late): CANNERY ROW
 08/19/99 (2 days late): SWEET THURSDAY
 Fine: $ 2.40 owed by DAVE
 The library has receivables of: $ 2.40

 Remember that LEAVE FOR cannot be used to terminate a FOR EACH RECORD
 clause; the SKIP or CANCEL statements can be used for that.

——
62 Fast/Unload Reference

——
 LEAVE clause_type
——

 5.27.2 LEAVE SELECT example

 The following example uses LEAVE SELECT:

 FOR I FROM 1 TO 3
 %X = 0
 PUT 'SELECT '
 SELECT I
 WHEN 1
 FOR J FROM 1 TO 3
 %X = %X + 1
 PUT %X
 PUT '/'
 IF J = 3
 LEAVE SELECT
 END IF
 END FOR
 WHEN 2
 FOR J FROM 1 TO 3
 %X = %X + 1
 PUT %X
 PUT '/'
 IF J = 2
 LEAVE SELECT
 END IF
 END FOR
 OTHERWISE
 FOR J FROM 1 TO 3
 %X = %X + 1
 PUT %X
 PUT '/'
 IF J = 1
 LEAVE SELECT
 END IF
 END FOR
 END SELECT
 OUTPUT
 END FOR

 The above FUEL fragment produces the following output:

 SELECT 1/2/3/
 SELECT 1/2/
 SELECT 1/

——
Fast/Unload Reference 63

——
Fast/Unload Extraction Language
——

 5.28 MSGCTL [FUNL]n ABDUMP

 This statement allows Rocket Software to obtain diagnostic information for certain
 problems.

 When the message numbered n is issued, the Fast/Unload program will abend and
 create a diagnostic dump. If Rocket Software requests you to use the MSGCTL
 statement, be sure to have the appropriate setup (for example, SYSMDUMP in an MVS
 batch FUNLOAD job) to capture the dump.

 The number n must be greater than or equal to zero and less than or equal to the largest
 Fast/Unload message number; it can be padded on the left with zeroes. The keyword
 'FUNL' is optional, but if present there must not be any space between the letters
 “FUNL” and the message number.

 5.29 NEW fieldname [WITH BLOB | CLOB]

 This statement defines a new field name. To create occurrences of the field in the
 current record, use the ADD statement. The new field name can be referenced just as
 any other field in the file, and any ADDed occurrences will be produced in the UAI or PAI
 statements.

 For example, the following program creates a new field in the file which contains the
 current date and time:

 OPEN DATAFILE
 NEW DT_MOD
 FOR EACH RECORD
 ADD DT_MOD = #DATE('CYYDDDHHMISSXX')
 PAI
 END FOR

 The NEW statement must occur after the OPEN statement, before the FOR EACH
 RECORD statement, and before the UAI statement (if one is present).

 You must use a WITH BLOB or WITH CLOB clause (introduced in Fast/Unload version
 4.3) to define a BLOB or CLOB field. This is primarily useful for a UAI type unload,
 allowing you to create values in the new field that are loaded by LAI as Lob occurrences.

——
64 Fast/Unload Reference

——
 NEW fieldname [WITH BLOB | CLOB]
——

 Notes:

 ● Prior to Fast/Unload version 4.3, the new field you define has the Model 204 default
 field attributes (FRV, KEY, CODED, UPDATE AT END). As of version 4.3, the
 default attributes are NFRV, NKEY, NCOD, UPDATE IN PLACE.

 If you don't want the default definition, you can issue a Model 204 DEFINE FIELD
 command before the FLOD program, so the field will be loaded with the attributes
 you specify. Or, you can issue a DEFINE FIELD before you unload the file, which
 would circumvent the need for a NEW directive.

 ● If you are using NEW (and ADD) with a UAI type of unload, be sure to code the
 UNLOAD statement.

 ● If you are using NEW with a UAI OINDEX unload, the new field will not have an
 ordered index in the unload output, so it will go through the normal multi-step
 processing to build an index if you do a Fast/Reload.

 5.30 NOUNLOAD [field [(occurrence | *)]]

 The NOUNLOAD statement limits the UNLOAD statement (“UNLOAD[C] [field [(occur |
 *)]]” on page 83): it prevents subsequent unloading (by UNLOAD or UNLOADC
 statements) of some or all fields to some or all destination output streams.

 The NOUNLOAD statement must be coded inside a FOR EACH RECORD loop. It is
 only valid for an output stream declared with a UAI TO destination directive, which
 is described in “UAI statement options” on page 89.

 NOUNLOAD, optionally preceded by a “TO destination” clause (“TO [destination | *]” on
 page 83), has two forms:

 ● [TO destination] NOUNLOAD
 This “blanket” NOUNLOAD marks all field occurrences in the current record so that
 any subsequent UNLOAD or UNLOADC to the TO clause (or implied default)
 destination(s) is an error.

 ● [TO destination] NOUNLOAD field [(occurrence|*)]
 This “NOUNLOAD field” form means that from this point on in processing the current
 record, the specified field occurrence(s) may not be unloaded (with UNLOAD or
 UNLOADC) to the TO clause (or implied) destination(s), nor may they be unloaded
 by a subsequent “blanket” UNLOAD.

 Occurrence defaults to the first occurrence of field; an asterisk (*) specifies all
 occurrences of the field in the current record that have not been unloaded.

——
Fast/Unload Reference 65

——
Fast/Unload Extraction Language
——

 Note: Unlike the UNLOAD statement, if the specified (or implied) field
 occurrence(s) are missing in the current record, it is not an error.

 NOUNLOAD applies to the destination output stream specified in its TO clause prefix (or
 to the implied output stream, if there is no TO clause). The TO clause may be omitted if
 there is exactly one output stream, or if the output is to go to the stream declared with
 the DEFault attribute on an OUT TO directive (see “OUT TO destination” on page 68).

 Examples

 TO DESTA NOUNLOAD COMMENTS(*)

 If you issue the NOUNLOAD statement above, a subsequent UNLOAD statement like
 the following is caught as an error (FUNL0154):

 TO DESTA UNLOAD COMMENTS(2)

 And no occurrences of COMMENTS are unloaded by the subsequent blanket UNLOAD:

 TO DESTA UNLOAD

 The following statements put field FOO on destination DESTA and on no other
 destination:

 TO DESTA UNLOAD FOO /* first UNLOAD of FOO
 TO * NOUNLOAD FOO

 This statement sequence puts FOO on three output streams, but on no more thereafter:

 TO DESTA UNLOAD FOO
 TO DESTB UNLOAD FOO
 TO DESTC UNLOAD FOO
 TO * NOUNLOAD FOO

 The following statements prevent a field from appearing on any of the unloaded output
 streams. To get the same result without using NOUNLOAD, you would have to forgo the
 blanket unloads and explicitly unload all the other fields:

 TO * NOUNLOAD SEX /* SEX not previously unloaded
 IF SEX = 'M'
 TO MALES UNLOAD
 ELSE
 TO FEMALES UNLOAD
 END IF

——
66 Fast/Unload Reference

——
 OPEN datafile
——

 5.31 OPEN datafile

 The OPEN statement indicates the internal name of each Model 204 data file from which
 data is to be extracted.

 Prior to version 4.4, OPEN specifies the only file from which data may be extracted,
 and the syntax of the OPEN statement is OPEN filename, where filename is the
 internal name of the Model 204 data file.

 The internal name of the data file is also used as the DDNAME of the first physical file
 which makes up the entire logical Model 204 data file.

 As of version 4.4, FUEL programs may specify a group in the OPEN statement, and the
 OPEN statement is either of these forms:

 OPEN FILE filename
 This form indicates that a single file is to be opened, and its internal name is
 filename.

 OPEN filename1 [, filename2] ...
 This form, if there is more than one filename in the comma-separated list,
 indicates that a group of files is to be opened, with DD names filename1,
 filename2, and so on.

 You can also use the Fast/Unload User Language Interface to unload a group; prior to
 version 4.4, using the Fast/Unload User Language Interface was the only way to unload
 a group.

 The OPEN statement must be the first statement in any FUEL program.

 The following program is an example of the use of the OPEN statement:

 OPEN SIMPSONS
 FOR EACH RECORD
 PUT '*'
 OUTPUT
 PAI
 END FOR

 5.32 OTHERWISE

 This statement marks the beginning of a clause that indicates the actions to be
 performed when a field, or a particular occurrence of a field, specified on the currently
 active SELECT statement did not match any of the values indicated on WHEN
 statements.

——
Fast/Unload Reference 67

——
Fast/Unload Extraction Language
——

 An OTHERWISE clause is terminated by an END SELECT statement.

 The following program demonstrates a use of the OTHERWISE statement:

 OPEN BIGFILE
 FOR EACH RECORD
 SELECT SEX
 WHEN 'MALE'
 PUT 'M'
 WHEN 'FEMALE'
 PUT 'F'
 OTHERWISE
 PUT 'U'
 END SELECT
 OUTPUT
 END FOR

 5.33 OUT TO destination

 In versions prior to 4.1, a FUEL program either has a UAI directive or it does not. The
 presence of this directive determines whether the single permitted output stream is
 written to with UNLOAD[C] statements or with PUT/OUTPUT/PAI statements. As of
 version 4.1, which allows multiple output streams, a FUEL program can contain multiple
 UAI directives as well as multiple directives declaring non-UAI streams.

 To declare a non-UAI stream, you provide an OUT TO destination directive for each
 such stream. The destination becomes the name of the stream, and it is used by
 stream-specific output statements (see “TO [destination | *]” on page 83) and special
 variables (#RECOUT, #OUTLEN, #OUTPOS) to designate their particular stream.

 The format of the OUT TO directive is:

 OUT TO destination [DEFault]

 where:

 ● destination must be unique across all OUT TO and UAI TO destinations. Each
 destination requires a dataset definition (JCL statement or FILEDEF), and no two
 file names in these definitions may refer to the same underlying dataset.

 ● DEF or DEFAULT designates a stream as the default stream for naked output
 statements (those not qualified by the "TO destination" prefix). At most one OUT
 TO directive may be designated the default stream.

 A legacy program, that is, one with no OUT TO directives and that does not use the
 TO parameter on a UAI directive, has one default stream whose destination is
 FUNOUT. That stream is a UAI stream if the program has a UAI directive, and it is
 a non-UAI stream otherwise.

——
68 Fast/Unload Reference

——
 OUT TO destination
——

 Note: If any directive explicitly declares a destination, then all must. A program cannot
 have both an OUT TO destination directive and a UAI directive that has no TO
 clause, for example.

 OUT TO directives are valid as of version 4.1.

 5.34 OUTPUT [FILTER loadmod]

 This statement is used to place the current output record into an output data set. The
 output data set is either:

 ● On the stream indicated by destination, if the OUTPUT statement has a “TO
 destination” prefix (“TO [destination | *]” on page 83)

 ● On the implied output stream, if there is no “TO destination” prefix

 The prefix may be omitted if there is exactly one output stream, or if the output is to go to
 the stream declared with the DEFault attribute on the OUT TO directive (see “OUT TO
 destination” on page 68).

 If no data has been placed into the output record for a stream, the OUTPUT statement is
 a no-op.

 Note: The END of the FOR EACH RECORD loop discards the current OUTPUT record
 for all output streams. If no OUTPUT statement is specified, any data placed in the
 output record with PUT statements will be lost.

 The OUTPUT statement also has a FILTER option for passing the output record data
 through a user-written output filter. For more more information about this parameter, see
 “Using User Exits or Filters” on page 229.

 The OUTPUT statement is only valid on an output stream for a non-UAI destination.

 The following example is a program that would create two output records for each input
 record, writing them on the output stream DOH:

 OPEN SIMPSONS
 OUT TO DOH
 FOR EACH RECORD
 FOR I FROM 1 TO 10
 TO DOH PUT HOMER(I) AS STRING(20)
 END FOR
 TO DOH OUTPUT
 FOR I FROM 1 TO 10
 TO DOH PUT MARGE(I) AS STRING(20)
 END FOR
 TO DOH OUTPUT
 END FOR
——
Fast/Unload Reference 69

——
Fast/Unload Extraction Language
——

 5.35 PRINT ALL INFORMATION or PAI

 The PRINT ALL INFORMATION or PAI statement provides an output format identical to
 Model 204's like-named statements. That is, each value in a record is placed into a
 separate output record as a fieldname = value pair.

 The fieldname = value output records go to the output data set on either:

 ● The stream indicated by destination, if the PAI statement has a “TO destination”
 prefix (“TO [destination | *]” on page 83)

 ● The implied output stream, if there is no “TO destination” prefix

 The prefix may be omitted if there is exactly one output stream, or if the output is to go to
 the stream declared with the DEFault attribute on the OUT TO directive (see “OUT TO
 destination” on page 68).

 Note: If any PUT statements precede a PAI statement, make sure they are followed by
 an OUTPUT statement. If they are not, the first fieldname = value pair will be
 concatenated to the partial output record.

 The following program is an example of the use of the PAI statement:

 OPEN PERSONEL
 OUT TO DUMPIT
 FOR EACH RECORD
 TO DUMPIT PUT '* '
 TO DUMPIT PUT #RECIN
 TO DUMPIT OUTPUT
 TO DUMPIT PAI
 END FOR

 The PAI statement is only valid on an output stream for a non-UAI destination.

 Be careful when coding your selection criteria for PAI statements. After a PAI statement,
 you may not issue another PAI statement for the same record on the same output
 stream. If your FUEL program attempts a PAI for the same record on the same output
 stream, the unload will be terminated.

 5.36 PUT

 This statement is used to place data into the output record for either:

 ● The stream indicated by destination, if the PUT statement has a “TO destination”
 prefix (“TO [destination | *]” on page 83)

 ● The implied output stream, if there is no “TO destination” prefix

——
70 Fast/Unload Reference

——
 PUT
——

 The prefix may be omitted if there is exactly one output stream, or if the output is to go to
 the stream declared with the DEFault attribute on the OUT TO directive (see “OUT TO
 destination” on page 68).

 The format of the PUT statement is:

 [TO destination] PUT info AT loc AS format MISSING mvalue -
 ERROR evalue

 where

 destination
 must have been declared as an output stream in an OUT TO directive (see
 “OUT TO destination” on page 68).

 info can be one of the following:

 ● An entity. This results in the value of the entity being placed in the output
 buffer with the indicated format.

 ● Any valid Model 204 fieldname followed by the asterisk (*) symbol in
 parentheses. This results in each occurrence of the specified field being
 placed in the output buffer with the indicated format, one after the other.

 Note: As specified in “Permitted use of long string values” on page 167
 and “Permitted use of Lobs” on page 168, info may not be a %variable
 that contains a value longer than 255 bytes, or be a BLOB or CLOB field.

 loc can be either an absolute position in the output record or a position relative to
 the current output cursor for the PUT statement's output stream. For
 example, AT 25 indicates that data is to be placed at the 25th byte in the
 output record, offset 24 from the start of the record. On the other hand, AT +5
 indicates that data is to be placed 5 bytes after the end of the last PUT
 statement's data. If the AT loc clause is omitted, data is placed into the
 output record at the current position of the output cursor.

 format can be one of the following:

 ● FIXED(n1,n2) — This places a binary integer of length n1 bytes into the
 output record. n1 can have any value from 1 to 4. n2 specifies the power
 of 10 by which the number is to be multiplied before placing it in the
 output record. N2 is not a required parameter. For example, if the input
 field contains a 12.55, the output field would contain F'12' if the output
 format is FIXED(4), and contain F'1255' if the output format is FIXED(4,2).
 The default missing value for a FIXED format field is -1. If the input field
 cannot be converted to fixed format the error value is placed into the
 output record.

——
Fast/Unload Reference 71

——
Fast/Unload Extraction Language
——

 Note that a negative number cannot be converted to a fixed format of
 length 1; therefore, since the MISSING value must be convertible to the
 output format, a format of FIXED(1) will generally (except for an AT-
 MOST-ONE field with a DEFAULT-VALUE) require an explicit MISSING
 clause.

 ● FLOAT(n1) — This places a floating point value of length n1 bytes into
 the output record. N1 can be 4 to produce a short floating point, 8 to
 produce a long floating point or 16 to produce an extended floating point
 value. The floating point value stored into the output record is always
 normalized. The default missing value for a FLOAT format field is -1. If
 the input field cannot be converted to float format, the error value is
 placed into the output record.

 ● PACKED(n1,n2) — This places a packed decimal integer of length n1
 bytes into the output record. n1 can have any value from 1 to 16. n2
 specifies the power of 10 by which the number is to be multiplied before
 placing it in the output record. N2 is not a required parameter. For
 example, if the input field contains a 12.75, the output field would contain
 a X'00012C' if the output format is PACKED(3) and a X'01275C' if the
 output format is PACKED(3,2). The default missing value for a PACKED
 field is -1. If the input field cannot be converted to packed format the
 error value is placed into the output record.

 ● STRING(n1,adjust,pad,start) — This places the contents of the input field
 into the output record without any conversion. This would typically be
 used for string fields. n1 indicates the length of the output string. adjust
 can be either the letter R or the letter L enclosed in quotes and indicates
 whether the result string is right or left adjusted in the output string. This
 is not a required parameter, and it is assumed to be 'L'. Pad is a single
 EBCDIC character enclosed in quotes or a single hexadecimal character
 expressed as X'nn'. This character is used as the pad character if the
 input field is shorter than the output string. This is not a required
 parameter, and it is assumed to be X'40' (blank). start indicates the
 characters number at which output is to start. This provides a way of
 unloading substrings.

 If the input field is longer than the output string, the input field is
 truncated. If the input field is shorter than the output string it is padded
 with the pad character. Padding occurs on the right if the field is left
 justified and on the left if it is right justified. The default missing value for
 a string field is the field totally filled with the pad character.

 ● DECIMAL(n1,n2,n3) — This places the contents of the input field as a
 string of decimal characters (EBCDIC) into the output buffer. n1 is the
 total length of the output field. n2 is the number of digits to be placed to
 the right of the decimal point. n2 is not a required parameter, and it is
 assumed to be zero. If n2 is zero, a decimal point is not placed into the

——
72 Fast/Unload Reference

——
 PUT
——

 output string. n3 specifies the number of digits to be placed in an
 exponential format exponent. The default for this argument is 0, which
 indicates that exponential format is not to be used.

 For example, the value 12.75 would be output as “ 12” if the output
 format is DECIMAL(4), “ 12.750” if the output format is DECIMAL(7,3),
 and “ 1.27E+001” if the output format is DECIMAL(12,2,3).

 If it is impossible to convert the input field to decimal format, the output
 field is set to the error value. The default missing value for decimal
 format is -1.

 Note that, as with all conversion of fractional values to fixed width output
 formats in the PUT statement, any low order fraction digits are dropped
 without rounding. To create a numeric string which uses rounding for
 dropped low order digits, see “#NUM2STR: Convert number to string with
 decimal point” on page 137.

 ● ZONED(n1,n2) — This places a signed zoned decimal integer of length
 n1 bytes into the output record. n1 can have any value from 1 to 32. n2
 specifies the power of 10 by which the number is to be multiplied before
 placing it in the output record. N2 is not a required parameter. For
 example, if the input field contains a 12.75, the output field would contain
 a '1B' (X'F1C2') if the output format is ZONED(2), and contain a '127E'
 (X'F1F2F7C5') if the output format is ZONED(4,2). The sign is contained
 in the zone field of the last byte in the output. The sign is represented in
 "IBM preferred" format; a value of 21 is represented as X'F2C1', and a
 value of -21 appears as X'F2D1'. Note that the last byte will not be
 displayed as a decimal digit. The default missing value for a ZONED field
 is -1. If the input field cannot be converted to zoned format, the error
 value is placed into the output record.

 The following input field type to output format mappings are possible:

 ● FLOAT to FIXED. The floating point value is converted to a fixed binary
 integer. If the conversion results in an overflow, the error value is set.

 ● FLOAT to PACKED. The floating point value is converted to a fixed
 packed decimal. If the conversion results in an overflow, the error value
 is set.

 ● FLOAT to FLOAT. The floating point value is converted to the correct
 length and normalized. If the input floating point field does not contain a
 valid floating point number, the error value is set.

 ● FLOAT to STRING. The floating point value is converted to a STRING
 value in a way compatible with Model 204 (it will not contain any “E”
 power of 10 multiplier, and, like any conversion from a floating point

——
Fast/Unload Reference 73

——
Fast/Unload Extraction Language
——

 representation, it will use the algorithms specified in “Floating Point
 Arithmetic and Numeric Conversion” on page 235).

 ● FLOAT to DECIMAL. The floating point value is converted to decimal
 format. If the conversion results in an overflow, the error value is set.

 ● FLOAT to ZONED. The floating point value is converted to zoned
 decimal format. If the conversion results in an overflow, the error value is
 set.

 ● BINARY to FIXED. The binary value is converted to the correct length
 and possibly adjusted for binary fractional places. If the output field is not
 large enough to hold the resulting value, the output field is set to the error
 value.

 ● BINARY to PACKED. The binary value is converted to the correct length
 and possibly adjusted for packed decimal fractional places. If the output
 field is not big enough to hold the resulting value, the output field is set to
 the error value.

 ● BINARY to FLOAT. The binary value is converted to a floating point
 number of appropriate length.

 ● BINARY to DECIMAL. The binary value is converted to decimal format.
 If there is not enough space to place the binary number into the output
 string the output field is set to the error value.

 ● BINARY to STRING. The binary value is converted to a STRING value in
 a way compatible with Model 204.

 ● BINARY to DECIMAL. The binary value is converted to decimal format.
 If there is not enough space to place the binary number into the output
 string the output field is set to the error value.

 ● BINARY to ZONED. The binary value is converted to zoned decimal
 format. If there is not enough space to place the binary number into the
 output string the output field is set to the error value.

 ● STRING to FIXED. An attempt is made to convert the string value into a
 fixed binary number. If this is not possible, the output field is set to the
 error value.

 ● STRING to PACKED. An attempt is made to convert the string value into
 a packed decimal number. If this is not possible, the output field is set to
 the error value.

 ● STRING to FLOAT. An attempt is made to convert the string value into a
 floating point number. If this is not possible, the output field is set to the
 error value.

——
74 Fast/Unload Reference

——
 PUT
——

 ● STRING to STRING. No conversion is done. The string is moved byte
 for byte to the output record.

 ● STRING to DECIMAL. An attempt is made to convert the string value into
 a decimal number. If this is not possible, the output field is set to the error
 value.

 ● STRING to ZONED. An attempt is made to convert the string value into a
 zoned decimal number. If this is not possible, the output field is set to the
 error value.

 Note that coded fields are treated as string fields where the contents are
 considered to be the uncoded value of the field contents. Note also that the
 only possible conversion error when going to STRING format is if the length of
 the output field is not large enough to hold the result, that is if the conversion
 would result in truncation.

 See “Floating Point Arithmetic and Numeric Conversion” on page 235 for a
 discussion of the algorithms involved in converting from or to a numeric value.

 mvalue can be either a decimal or string constant (in quotes) which is placed in the
 output record if the input value does not exist. In addition, mvalue can be an
 action keyword that indicates an action to be performed when a missing value
 is encountered. The constants can always be followed by the word REPORT
 or NOREPORT. This would indicate whether the missing value should be
 reported on the Fast/Unload report data set. The default for this value is
 determined by the output format. Basically, the default is always -1 unless the
 output format is STRING, in which case the default is to fill the output field with
 blanks. The non-string default can be customized to be 0 at your site; see
 “Default for MISSING clause on PUT statement” on page 292. The default is
 also NOREPORT, that is not to report a missing value on the report data set,
 unless an action keyword is specified. In this case, the default is to report
 missing values for the field in the PUT statement. Valid action keywords are:

 ● SKIP — This means that the entire input record is discarded. Note that if
 output records had been created with an OUTPUT statement before a
 missing value causes a SKIP, the output records would remain in the
 output data set. A partial output record that has been created before the
 SKIP would not go to the output data set.

 ● CANCEL — This means the entire Fast/Unload job is terminated. Use
 this value if a missing field occurrence indicates a severe logic error in
 your data file structure.

 All action keywords for MISSING result in the action being reported in the
 report data set, unless NOREPORT is specified as part of mvalue.

——
Fast/Unload Reference 75

——
Fast/Unload Extraction Language
——

 evalue can be either a decimal or string constant (in quotes) which is placed in the
 output field if the input field cannot be correctly converted to the output format.
 The default is always REPORT, that is any conversion error is reported on the
 report data set.

 In addition, evalue can be an action keyword that indicates an action to be
 performed when a unconvertible value is encountered. The constants can
 always be followed by the word REPORT. This would indicate that the
 unconvertible value should be reported on the Fast/Unload report data set.
 The default for this value is always the same as the missing value except
 when the output format is STRING. In this case, the default is TRUNCATE.
 The default can be customized to be CANCEL at your site; see “Default for
 ERROR clause on PUT statement” on page 292.

 Valid action keywords are:

 ● TRUNCATE or TRUNC — This action keyword is only valid if the output
 format is STRING. If this is the case and the input record has a string
 longer than the output format indicates, then the input string would be
 truncated on the right if the input format indicates left justification and on
 the left for right justification. This action would not be reported on the
 report data set unless the REPORT keyword is specified.

 ● SKIP — This means that the entire input record is discarded. Note that if
 output records had been created with an OUTPUT statement before a
 missing value causes a SKIP, the output records would remain in the
 output data set. A partial output record that has been created before the
 SKIP would not go to the output data set.

 ● CANCEL — This means the entire Fast/Unload job is terminated. Use
 this value if a field occurrence conversion error indicates a severe error in
 your data file structure.

 All action keywords for ERROR result in the action being reported in the report
 data set.

——
76 Fast/Unload Reference

——
 PUT
——

 The following program demonstrates several types of PUT statements. The output
 stream destination name is OUTSTRM. The PUT and OUTPUT statements in the
 program do not need any TO OUTSTRM prefixes, because OUTSTRM was declared to
 be the default for non-UAI output streams.

 OPEN BIGFILE
 OUT TO OUTSTRM DEFAULT
 FOR EACH RECORD
 PUT '*'
 PUT #RECIN AT 5 AS FIXED(4)
 PUT REC.TYPE AT 9 AS STRING(1) MISSING REPORT ERROR TRUNC
 PUT USERID AT 10 AS STRING(10) ERROR TRUNC NOREPORT
 PUT CHARGE AT 20 AS FIXED(4,2) MISSING -999 ERROR -99
 PUT BALANCE AT 24 AS PACKED(8,2) MISSING -999 ERROR -99
 PUT CPUTIME AT 32 AS DECIMAL(12,5) MISSING -9999 ERROR -1
 PUT WEIGHT AT 44 AS FLOAT(8)
 %AVAIL = 0
 IF LIMIT IS FLOAT AND BALANCE IS FLOAT THEN
 %AVAIL = LIMIT - BALANCE
 END IF
 PUT %AVAIL AT 52 AS PACKED(8,2)
 OUTPUT
 END FOR

 In the following program

 OPEN BIGFILE
 FOR EACH RECORD
 PUT USERID AS STRING(5, ,'*', 3)
 OUTPUT
 END FOR

 If USERID had a value of 'SIMPSON', 'MPSON' would be output. If USERID had a
 value of 'MARGE', 'RGE**' would be output. If USERID had a value of 'SCRATCHY',
 'RATCH' would be output.

——
Fast/Unload Reference 77

——
Fast/Unload Extraction Language
——

 The following program can be used to add the value of a derived INVISIBLE KEY field to
 a PAI output:

 %TOT = 0 /* Initialize
 OPEN BIGFOOT
 FOR EACH RECORD
 PAI
 %I = FIELD1(#)
 IF %I < FIELD2(#) THEN
 %I = FIELD2(#)
 END IF
 FOR I = 1 TO %I
 %V = #CONCAT(FIELD1, '.', FIELD2)
 PUT 'INVIS_KEY ='
 PUT %V
 OUTPUT
 %TOT = %TOT + 1
 END FOR
 END FOR

 REPORT 'Number of INVISIBLE KEY values created:' AND %TOT

 However, note that to accomplish the same thing, you could use an ADD statement in
 place of the assignment to %V, delete the PUT and OUTPUT statements, and move the
 PAI to after the first END FOR.

 The PUT statement is not valid for a UAI format unload.

 5.37 REPEAT

 This statement marks the beginning of a clause that is executed repeatedly until the
 body of the clause is explicitly terminated, usually by a LEAVE REPEAT statement.

 This statement must always be paired with an END REPEAT statement, and, to avoid a
 never-ending loop, the loop should contain a statement such as LEAVE REPEAT to
 terminate the loop when some condition occurs. CANCEL and SKIP can also be used to
 terminate the loop, of course, but they also bypass statements outside the loop.

 Here is an example of a REPEAT loop that is used to extract items from a delimited
 string:

——
78 Fast/Unload Reference

——
 REPEAT
——

 %X = 'A/MAN/A/PLAN/A/CANAL/PANAMA'
 %I = 1
 %L = #LEN(%X)
 %L = %L + 1
 REPEAT
 %W = #INDEX(%X, '/', %I)
 IF %W = 0
 %W = %L /* Not found, go past end
 END IF
 %T = %W - %I
 %S = #SUBSTR(%X, %I, %T)
 PUT %S
 OUTPUT
 IF %W = %L /* Last item?
 LEAVE REPEAT
 END IF
 %I = %W + 1 /* New scan position
 END REPEAT

 The above FUEL fragment produces the following output:

 A
 MAN
 A
 PLAN
 A
 CANAL
 PANAMA

 The REPEAT statement is new in Fast/Unload version 4.0.

 5.38 REPORT entity [AND | WITH entity] ...

 This statement causes information to be reported on the report data set. The data
 consists of Fast/Unload entities separated by the words 'AND' or 'WITH'. As in User
 Language, a WITH separator indicates that no space is to be placed between the
 entities on output while an AND separator indicates that a single space is to be placed

——
Fast/Unload Reference 79

——
Fast/Unload Extraction Language
——

 between entities. For example, in the program

 OPEN BIGFILE
 FOR EACH RECORD
 PUT KEY.FIELD AS STRING(7)
 FOR I FROM 1 TO 10
 %TEST = FIELD1(I)
 PUT %TEST AS STRING(5)
 PUT FIELD2(I) AS STRING(5)
 IF (%TEST EXISTS) AND (FIELD2(I) MISSING)
 REPORT 'FIELD1(' WITH I WITH ') =' AND -
 %TEST WITH -
 '. UNMATCHED IN RECORD' AND #RECIN
 END IF
 END FOR
 OUTPUT
 END FOR

 if in record 22, the third occurrence of FIELD1 was '123' but there was no third
 occurrence of FIELD2

 FIELD1(3) = 123. UNMATCHED IN RECORD 22

 would appear in the report data set.

 Any numeric entity will be converted to a string representation (without any “E” power of
 10 multiplier); see also “Floating Point Arithmetic and Numeric Conversion” on page 235
 for a discussion of the algorithms involved in converting from a numeric value.

 Note: The #OUTLEN and #OUTPOS special variables may not be used in the REPORT
 statement.

 5.39 SELECT entity

 This statement marks the beginning of a clause which indicates actions to be taken
 based on the value of an entity. The SELECT statement must be matched with an END
 SELECT statement, one or more WHEN statements and an optional OTHERWISE
 statement. You may not place any statements after the SELECT statement and the

——
80 Fast/Unload Reference

——
 SELECT entity
——

 WHEN statement which follows it. For example, in the program

 OPEN BIGFILE
 FOR EACH RECORD
 SELECT REC.TYPE
 WHEN 'COUNTRY'
 PUT 'COUNTRY'
 PUT PRESIDENT AS STRING(30)
 WHEN 'STATE'
 PUT 'STATE '
 PUT GOVERNOR AS STRING(30)
 WHEN 'CITY'
 PUT 'CITY '
 PUT MAYOR AS STRING(30)
 OTHERWISE
 REPORT 'INVALID REC.TYPE =' AND REC.TYPE AND -
 'IN RECORD' AND #RECIN
 END SELECT
 OUTPUT
 END FOR

 REC.TYPE is used as a trigger to determine what type of information is to be placed into
 the output record.

 To test that a field or %variable contains one of several values, you should use SELECT;
 it is better than both of the following alternatives:

 ● an IF statement with multiple OR clauses

 ● an IF statement with the #ONEOF or #FIND function

 SELECT is easier to code and runs more efficiently; it is the best way to implement a
 "ONEOF" test. Another typical use of SELECT is shown here:

 SELECT AREACODE
 WHEN 617, 508, 413, 781, 978
 %STATE = 'MA'
 WHEN 407, 813, 305, 352, 954, 561
 %STATE = 'FL'
 WHEN 307
 %STATE = 'WY'
 END SELECT

 Even with a single WHEN statement SELECT is preferred, rather than an IF statement:

 SELECT RECTYPE
 WHEN 'MAST', 'DETL', 'HIST'
 UNLOAD
 END SELECT

——
Fast/Unload Reference 81

——
Fast/Unload Extraction Language
——

 5.40 SKIP

 This statement skips to the next iteration of FUEL code. Before the FOR EACH
 RECORD loop, SKIP specifies that the rest of the code up to the FOR EACH RECORD
 loop is skipped, and the code in the FOR EACH RECORD loop, if any, is executed for
 the first record. Within the FOR EACH RECORD loop, this statement skips the rest of
 the current iteration of loop and the FOR EACH RECORD loop is resumed for the next
 record. After the FOR EACH RECORD loop, SKIP specifies that the rest of the code in
 the FUEL program is skipped.

 The SKIP statement would typically be found inside a conditional clause. Any data that
 has been 'PUT' into the current output record is lost, unless an OUTPUT statement
 preceded the SKIP statement. For example, in the program

 OPEN BIGFILE
 FOR EACH RECORD
 PUT KEY.FIELD AS STRING(7)
 IF #RECIN EQ 5000 THEN
 SKIP
 END IF
 OUTPUT
 END FOR

 no data would be output for the input Model 204 data file's record number 5000.

 5.41 SORT [TO destination]

 For a PUT/OUTPUT stream, SORT directives indicate that the stream data is to be
 passed to an external SORT routine en route to the output data file. For such output
 streams, the SORT directives provide the control input to the SORT routine.

 The SORT clause of the UAI statement indicates that the unloaded data are to be sorted
 and provides the control input for the SORT routine. For such output streams, the only
 valid independent SORT directives are SORT OPTION and SORT PGM.

 Except in legacy (prior to Fast/Unload version 4.1) code, if even a single output stream is
 declared in an OUT TO or UAI directive, every SORT directive must have the TO
 destination qualifier. The destination used on a SORT TO directive must be
 declared in an OUT TO or UAI directive. SORT, OUT TO, and UAI directives can occur
 in any order.

 For more information about the SORT statement, see “Using an External Sort Package”
 on page 207.

——
82 Fast/Unload Reference

——
 SORT PGM sortprogramname
——

 5.42 SORT PGM sortprogramname

 This directive, which is allowed at most once in a FUEL program, is used to override the
 default sort routine to be used if any output streams are to be sorted. The
 sortprogramname program is used to sort all sorted output streams in place of the
 default sort routine.

 5.43 TO [destination | *]

 The qualifying clause TO destination is used as a prefix with PUT, OUTPUT, PAI,
 and PRINT ALL INFORMATION statements, and with UNLOAD, UNLOADC, and
 NOUNLOAD statements to indicate the output stream to which the statement applies.
 This clause is used as a suffix with the SORT statement for the same purpose. For
 Fast/Unload programs prior to version 4.1, this clause does not exist, and all output goes
 to the single FUNOUT stream.

 A destination stream must be declared in a preceding OUT TO or UAI TO directive (see
 “OUT TO destination” on page 68, and see “UNLOAD ALL INFORMATION or UAI” on
 page 88). The PUT, OUTPUT, PAI, and PRINT ALL INFORMATION operations require
 an OUT TO directive; UNLOAD[C] requires a UAI TO directive.

 To apply one of the statements above to all the appropriately declared output streams,
 you specify:

 TO *

 If a destination is declared with the DEF or DEFAULT attribute on an OUT TO directive,
 "naked" PUT and OUTPUT statements (that is, PUT and OUTPUT statements without
 any TO destination prefix) will apply to the default stream. And similarly, for a
 stream declared with the DEF or DEFAULT attribute on a UAI TO directive, naked
 UNLOAD[C] statements will apply to the default stream.

 5.44 UNLOAD[C] [field [(occur | *)]]

 The UNLOAD statement unloads a record, or one or all occurrences of a field in a
 record, in the UAI format, to either:

 ● The output stream indicated by destination, if the UNLOAD statement has a “TO
 destination” prefix (“TO [destination | *]”)

 ● The implied output stream, if there is no “TO destination” prefix

 The UNLOAD statement must be coded inside a FOR EACH RECORD loop, and it is
 only valid for an output stream declared with a UAI TO destination directive (see
 “UNLOAD ALL INFORMATION or UAI” on page 88).

——
Fast/Unload Reference 83

——
Fast/Unload Extraction Language
——

 The TO clause prefix may be omitted if there is exactly one output stream, or if the
 output is to go to the stream declared with the DEF or DEFAULT attribute on a UAI TO
 directive.

 Unloads created with the UNLOAD statement can be used as input for the LAI statement
 in Fast/Reload, which is described in the Rocket Model 204 Fast/Reload Reference
 Manual.

 The UNLOAD statement has two forms: one that unloads all fields in the record and one
 that unloads specified fields. These forms are described in the sections that follow.

 For information about a statement that lets you selectively stop or prevent subsequent
 unloading of some or all fields to some or all destinations, see “NOUNLOAD [field
 [(occurrence | *)]]” on page 65.

 5.44.1 UNLOAD (all fields)

 An UNLOAD statement with no field specification is called a normal or sometimes a
 blanket unload. This UNLOAD statement unloads the rest of the input record, that is, all
 field occurrences not yet specifically unloaded. If not preceded by any UNLOAD
 statements with field specifications, the normal UNLOAD statement simply unloads all of
 the Model 204 input record.

 The UNLOAD statement allows you to select which database records to include in a UAI
 unload: if no UNLOAD statement is executed in the FOR EACH RECORD body for a
 particular record, that record is not included in the UAI.

 In the following normal UNLOAD example, any record with a selected city is unloaded
 using the UAI format:

 OPEN BIGFILE
 UAI TO UNLOAD DEF
 FOR EACH RECORD
 SELECT CITY
 WHEN 'KALAMAZOO', 'ASHTABULA'
 UNLOAD
 END SELECT
 END FOR

 Note: You must be careful when coding your selection criteria for UNLOAD statements:
 If your FUEL program attempts any kind of UNLOAD for a record after a normal
 UNLOAD for the same record, the unload will be terminated.

 5.44.2 UNLOAD[C] (specified fields)

 An UNLOAD statement with a field specification is called an UNLOAD field statement.
 It controls the order in which fields are placed in the output dataset for the output stream

——
84 Fast/Unload Reference

——
 UNLOAD[C] [field [(occur | *)]]
——

 destination (and hence the order they will be reloaded in the Fast/Reload LAI). It can
 also be used to unload only some of the fields of a record: if you omit the “normal
 UNLOAD” statement for a record, only the data in explicit UNLOAD field statements is
 unloaded.

 The syntax for an UNLOAD field statement is:

 [TO destination] UNLOAD[C] field [(occurrence|*)]

 where:

 ● TO destination is as described earlier and in “TO [destination | *]” on page 83.

 ● field is required, and it may be any type of Model 204 field (including BLOB and
 CLOB, as of Fast/Unload 4.3).

 ● A field occurrence number is optional (it defaults to the first occurrence of field), or it
 may instead be an asterisk (*), meaning all occurrences of the field in the current
 record that have not been unloaded.

 ● Specifying UNLOADC instead of UNLOAD allows processing to continue in the
 event an occurrence of a specified field is missing from a record. UNLOADC is
 otherwise the same as UNLOAD.

 The UNLOAD field statement is valid as of Fast/Unload version 4.0.

 5.44.2.1 Using UNLOAD[C] field

 General references in the following usage notes to “UNLOAD field” apply equally to
 UNLOADC field unless otherwise noted.

 ● The UNLOAD field statement prohibits unloading the same field occurrence more
 than once for each UAI-declared output stream. An attempt to do so will end the
 unload.

 ● You can use the UNLOAD field(*) statement to unload all occurrences of a field,
 even if that field sometimes does not exist on a record. However, UNLOAD field
 with a specific occurrence requires that the field and occurrence specified in the
 statement exist on the record being unloaded. If you want to unload a single
 occurrence of a field even though that occurrence may not exist on some records,
 use UNLOADC, which allows the occurrence to be missing without stopping the
 unload.

 If you use UNLOADC, or if “UNLOAD field(*)” is used and the field has no
 occurrences, nothing is unloaded for that statement, except in the following case: If
 it is the first UNLOAD[C] field statement for the record, the initial data for the record
 is unloaded. This initial data includes an empty Model 204 record, and it may

——
Fast/Unload Reference 85

——
Fast/Unload Extraction Language
——

 include an implicitly unloaded field, if one is due to UAI SORT or HASH (see “UAI
 SORT or HASH and field unload order” on page 95).

 ● Since the UAI HASH statement implicitly unloads a field, you are not allowed to use
 UNLOAD field for the HASH field occurrence.

 In many circumstances, the UAI SORT statement also implicitly unloads the first sort
 field (see “UAI SORT or HASH and field unload order” on page 95). In such a case,
 you may not use UNLOAD field for the field occurrence specified as the first SORT
 item. You may, however, use UNLOAD field(*) to unload all occurrences of the
 HASH or SORT field.

 If a field is implicitly unloaded by UAI SORT or HASH, an UNLOAD field statement
 that refers to that field with a %variable or loop control variable as the occurrence is
 a compilation error, unless you have specified AS FIRST in the UAI statement.

 ● The following section contains examples that perform a partial unload: that is, an
 UNLOAD field statement is executed for a record, and a normal UNLOAD statement
 is not, potentially leaving some fields that are not unloaded.

 Note: If you specify OINDEX or INVISIBLE on the UAI statement, any record that
 you partially unload causes the run to be cancelled. Every unloaded record must be
 complete for the ordered index to be valid.

 5.44.2.2 Examples

 In the following example, the UNLOAD field statement is used to place the first
 occurrence of certain fields at the beginning of the record. Making this type of change to
 the physical representation can provide better performance, if these fields are heavily
 referenced in Model 204 applications.

 OPEN BIGFILE
 UAI OINDEX /* No partials, OINDEX OK
 FOR EACH RECORD
 UNLOAD NAME
 UNLOAD ADDRESS
 UNLOAD /* Rest of fields
 END FOR

——
86 Fast/Unload Reference

——
 UNLOAD[C] [field [(occur | *)]]
——

 The following example shows how the UNLOAD field statement can be used without a
 subsequent normal UNLOAD to unload only certain fields in some records. This differs
 from an approach using the DELETE statement, because it deletes all fields not
 referenced; using DELETE, you need to know the names of the fields you want to
 remove. Either approach will obtain very high performance, but note that this approach
 may not be used with the UAI OINDEX or UAI INVISIBLE statement.

 OPEN BIGFILE
 UAI
 %DATE = #DATEND
 %KREC = %DATE - 62 /* Cutoff for obsolete records
 %KFLD = %DATE - 366 /* Cutoff for obsolete fields
 FOR EACH RECORD
 IF EXPIRE_DATE < %KREC /* Unload partial?
 UNLOAD NAME /* Yes
 UNLOAD ADDRESS
 FOR I FROM 1 TO PAYMENT(#)
 IF PAYMENT_DATE(I) < %KFLD
 LEAVE FOR /* Order: descending date
 END IF
 UNLOAD PAYMENT_DATE(I)
 UNLOAD PAYMENT(I)
 END FOR
 ELSE /* Unload all fields
 UNLOAD
 END IF
 END FOR

——
Fast/Unload Reference 87

——
Fast/Unload Extraction Language
——

 The following example unloads only certain fields and achieves some field reordering, in
 this case making the largest payment the first in the record. Note again that a partial
 unload may not be used with the UAI OINDEX or UAI INVISIBLE statement. Also note
 that this example uses UNLOADC, signifying that some records might not contain an
 occurrence of PAYMENT.

 OPEN BIGFILE
 UAI
 FOR EACH RECORD
 IF REC_TYPE = 'PMT' /* Records of interest?
 UNLOAD NAME /* Yes
 UNLOAD ADDRESS
 %MAX = 1
 %PMT = PAYMENT(1)
 FOR I FROM 2 TO PAYMENT(#)
 IF PAYMENT(I) > + %PMT /* +: numeric
 %MAX = I
 %PMT = PAYMENT(I)
 END IF
 END FOR
 UNLOADC PAYMENT_DATE(%MAX) /* Max first
 UNLOAD PAYMENT(%MAX)
 UNLOADC PAYMENT_DATE(*) /* Unload rest
 UNLOAD PAYMENT(*)
 END IF
 END FOR

 5.45 UNLOAD ALL INFORMATION or UAI

 The UNLOAD ALL INFORMATION statement provides a method of quickly unloading all
 records in the database. UAI unloads can be used as input to Fast/Reload LAI. For
 information about Fast/Reload LAI, see the Fast/Reload Reference Manual. Together,
 UAI and LAI provide a way to quickly reorganize a Model 204 database file or Model 204
 group of files.

 The destination datasets for UAI output data have these requirements:

 ● The record format (RECFM) must be VB (variable blocked).

 ● The minimum record length (LRECL) for a UAI unload is 271 plus an increment for a
 SORT or HASH key length (if UAI SORT or UAI HASH) or for procedure unloading
 (if UAI PROCS), as follows:

 ▪ If you are using UAI SORT, the minimum record length must be increased by
 the number of sort fields plus the sum of the LENGTHs for all the sort fields.
 For example, if you are using two sort keys with LENGTHs of 255 and 30, the
 minimum record length is 271 + 2 + 255 + 30 or 558.

——
88 Fast/Unload Reference

——
 UNLOAD ALL INFORMATION or UAI
——

 ▪ If you are using UAI HASH, the minimum record length must be increased by 4.

 ▪ Whether you are using SORT or HASH, if the file you are unloading contains
 procedures that you are unloading (UAI PROCS is explicit or implied) the
 minimum LRECL size is at least 297.

 If UAI NOPROCS is specified for an output stream, or if the file to be unloaded
 contains no procedure dictionary pages, the minimum LRECL size is not
 incremented for procedure handling. The “no increment if no procedure
 dictionary pages” rule does not apply to a database that has procedure
 dictionary pages but no procedures (that is, procedures were once there but
 now are deleted and the file has not yet been reorganized).

 The UAI statement must immediately follow the OPEN statement in the FUEL program.
 The UAI statement is not permitted inside a FOR EACH RECORD loop.

 For information about doing selective UAI unloads, see the UNLOAD statement
 (“UNLOAD[C] [field [(occur | *)]]” on page 83).

 5.45.1 UAI statement options

 The format of the UAI statement is:

 UAI [TO destination [DEFault]]
 [PROCS | NOPROCS]
 [SORT item1 [AND item2 [AND ...]]]
 [HASH fieldname [AS FIRST] | %var]
 [BSIZE bsize]
 [MAXREC maxrec]
 [OINDEX]
 [INV | INVISIBLE]
 [MAXRECO maxreco]

 where

 TO destination [DEFault]
 Declares destination to be the name of an output stream to be used for UAI
 format output.

 A destination you declare in a UAI statement is used in a TO clause prefix to
 UAI output-generating statements (UNLOAD and UNLOADC) to indicate the
 output stream that is being written to. In such statements, a "TO destination"
 prefix is optional if a "UAI TO destination" statement with the DEF or
 DEFAULT attribute is declared.

 To declare multiple destinations in the case where you are using multiple
 output streams, specify a separate UAI statement for each destination. Each
 such destination must be unique across all UAI TO (and OUT TO)

——
Fast/Unload Reference 89

——
Fast/Unload Extraction Language
——

 destinations. Each destination requires a dataset definition (JCL statement
 or FILEDEF), and no two file names in these definitions may refer to the
 same underlying dataset.

 Prior to Fast/Unload version 4.1, and thereafter for unloads that have a
 single, UAI, output, the implicitly declared output stream is FUNOUT, and no
 destination stream needs to be specified.

 Note: If any of multiple output streams is declared in an OUT TO or UAI
 directive, all output streams must be declared.

 PROCS or NOPROCS
 Dictates whether procedures (and procedure aliases) in the file are to be
 unloaded. If you specify PROCS, any procedures or procedure aliases in
 the file are unloaded; if NOPROCS, they are not unloaded.

 Note: PROCS is the default: If you specify neither PROCS nor NOPROCS
 for all output streams, procedures (and procedure aliases) are unloaded.

 Procedure statistics are generated in the report data set, if at least one UAI
 output stream is specified explicitly or implicitly to unload procedures (that is,
 you specify UAI PROCS, or you do not specify UAI NOPROCS). These
 statistics are described in “Description of procedure statistics” on page 56.

 The PROCS/NOPROCS option is available as of Fast/Unload 4.2.

 SORT item1 [AND item2]...
 Orders the output stream file so that records are grouped together for LAI
 and, if the file is a SORT file when reloaded, item1 can provide each
 record's sort key. (See “UAI SORT or HASH and field unload order” on page
 95 for certain cases which render the first item unusable to be used as a
 reloaded soerted file's sort key.)

 SORT and HASH are mutually exclusive.

 SORT may not be specified with a Model 204 group, and INVISIBLE, BLOB,
 and CLOB fields may not be sorted.

 item1, item2, ... specify how you want the UAI records sorted; they have the
 following format:

 fieldname | %var
 [STRING [TRUNC] | FLOAT | PACKED | FIXED | ZONED]
 [LENGTH length] [ASCEND | DESCEND]
 [MISSING mvalue] [FORMAT fmt]
 [AS FIRST | AS PLACED] (only first item, if field)
 (old programs may have MAXLEN, a synonym for LENGTH)

——
90 Fast/Unload Reference

——
 UNLOAD ALL INFORMATION or UAI
——

 You can specify as many as ten different sort keys. Each sort key
 specification must be separated from the next with the keyword AND.

 ● About sort key data types:

 You can specify a sort key data type of string, floating point, packed
 decimal, fixed binary, or zoned decimal. The item is converted to the
 sort key data type if necessary. If it is converted from or to a numeric
 type, the conversion algorithms specified in “Floating Point Arithmetic
 and Numeric Conversion” on page 235 are used. If it is converted from
 a floating point representation to STRING, there is no “E” power of 10 in
 the converted value.

 Additional data type details:

 ▪ The default data type is STRING. The default LENGTH for
 STRING is 255.

 ▪ If you specify FLOAT, you can specify a LENGTH of 4, 8, or 16.
 The default length for FLOAT is 8.

 ▪ If you specify PACKED, the LENGTH parameter can be a value
 between 1 and 16, inclusive. The default length for PACKED is 16.

 ▪ If you specify FIXED, you can specify a LENGTH of 1, 2, 3, or 4.
 The default length for FIXED is 4.

 ▪ If you specify ZONED, the LENGTH parameter can be a value
 between 1 and 32, inclusive. The default length for ZONED is 32.

 The output data type can effect the order of the fields in the output; see
 “UAI SORT or HASH and field unload order” on page 95.

 ● TRUNC indicates that you do not care if the sort key is truncated for sort
 purposes. If you do not specify TRUNC and an item's value must be
 truncated, the unload is terminated.

 TRUNC is only valid if the output data type is STRING.

 TRUNC can effect the order of the fields in the output; see “UAI SORT
 or HASH and field unload order” on page 95.

 ● AS FIRST and AS PLACED, valid as of Fast/Unload version 4.0, affect
 the order of field unloading. They can only be specified on the first item.
 See “UAI SORT or HASH and field unload order” on page 95.

 AS FIRST may only be specified if the item is a field and the output data
 type is STRING; AS FIRST may not be specified if TRUNC is specified
 (see “UAI SORT or HASH and field unload order” on page 95).

——
Fast/Unload Reference 91

——
Fast/Unload Extraction Language
——

 ● ASCEND and DESCEND indicate for any sort key whether the lowest
 key value should appear first (ASCEND) or last (DESCEND) in the
 sorted output file.

 ● The MISSING keyword lets you provide a value for the sort key when
 the field is missing from the database record or the %variable has the
 MISSING value.

 mvalue must be a constant convertible to the sort key data type. For
 example, you must not specify the missing value "NOTTHERE" when
 the output data type is FLOAT, since the character string cannot be
 converted to floating point.

 The default value for MISSING is the null string for a STRING item and
 is -1 for other (i.e., numeric) items.

 Note that any sequence of characters can be used as a string MISSING
 value; that is, it need not be enclosed in quotes. For example, the
 following is valid:

 UAI SORT FOO LENGTH 20 MISSING GOOD NIGHT IRENE

 In the above statement, the missing value is the following 16 characters:

 GOOD NIGHT IRENE

 However, the following is invalid, assuming LOW is not a defined field:

 UAI SORT FOO LENGTH 20 MISSING HIGH AND LOW

 This is because the keyword AND terminates the missing value.

 ● LENGTH indicates the amount of space to be reserved for the sort key.
 The maximum value for length is 255. No field value will ever be longer
 than 255.

 Note: MAXLEN is an alias for LENGTH.

 ● The FORMAT option indicates that the “format” operand in the SORT
 FIELDS statement should use the indicated fmt value, rather than the
 format that corresponds to the type of the item. For example, the
 following statement:

 UAI SORT EXPIRE_DATE LENGTH 6 FORMAT Y2T

 will create a SORT FIELDS statement such as:

 SORT FIELDS=(...,position,6,Y2T,A)

——
92 Fast/Unload Reference

——
 UNLOAD ALL INFORMATION or UAI
——

 where position is the position in the UAI record of the EXPIRE_DATE
 field. Y2T is the sort format supported by DFSORT to sort character or
 zoned date fields with leading two-digit years.

 You can use the SORT OPTION statement along with the FORMAT
 keyword to establish the 100 year window for date sorting. For
 example, using DFSORT, the following statement:

 SORT OPTION Y2PAST=1970

 indicates to DFSORT that two-digit year sort formats occur in the years
 1970 through 2069. These two-digit year sorting features are available
 in DFSORT Release 14 with PTF UQ22534, or DFSORT Release 13
 with PTFs UN90139, UQ05520 and UQ22533 (according to
 http://www.storage.ibm.com/software/sort/srtmy2p.htm).

 In addition to the SORT OPTION statement, you can also use the SORT
 PGM statement with UAI SORT; see “Using an External Sort Package”
 on page 207.

 HASH fieldname [AS FIRST] | %var
 Orders the FUNOUT output file so that if the file is a HASH file when
 reloaded, the LAI operation is efficient and each record's hash key is
 provided.

 HASH is mutually exclusive with SORT. HASH may not be specified with a
 Model 204 group.

 fieldname | %var can be a %variable, or it can be the name of any field in
 the database file, optionally followed by 1 as a field occurrence constant, for
 example: ID(1). The default occurrence is 1, and only the first occurrence
 can be used.

 If fieldname is specified, it will be first in the output of the UAI. This is in
 case it is needed as the record hash key when the file is reloaded by LAI.
 You may specify AS FIRST after the HASH fieldname, in case you want to
 unload other occurrences of the field using the UNLOAD field statement with
 a %variable or loop control variable (see “UAI SORT or HASH and field
 unload order” on page 95). AS FIRST does not change any processing, it
 simply allows you to bypass the compiler error checking on such an
 UNLOAD field statement.

 BSIZE Indicates the Table B size of the file that will be loaded with this UAI data.
 This is only necessary if the Table B size of the target file differs from the
 Table B size of the unloaded file. This option is ignored if the HASH option
 is not also specified.

——
Fast/Unload Reference 93

——
Fast/Unload Extraction Language
——

 MAXREC When you request a UAI unload, each Model 204 table B record is written as
 one or more variable length UAI records. If you are using the SORT option,
 the best performance occurs when you set the LRECL of the FUNOUT DD
 so that it contains the average-length average Model 204 table B record.
 There is one unusual case in which you might want to have the table B UAI
 records shorter than LRECL; you can use MAXREC to limit the size of the
 UAI output records. (This would be only if a larger LRECL for the OINDEX
 records would be demonstrably better than the optimal SORT LRECL for
 table B records.)

 If specified, the value of MAXREC must be at least 271 plus the length of
 any SORT or HASH key field plus the number of SORT fields. If MAXREC is
 larger than the LRECL of FUNOUT, it is ignored (and LRECL is used as the
 limit of records sent to the sort).

 OINDEX Indicates that you want Fast/Unload to unload Ordered Index data. This
 allows you to avoid resorting Ordered Index data on the reload and can thus
 improve reload performance. The OINDEX option will always result in the
 unloading of INVISIBLE Ordered Index data, thus the use of the OINDEX
 option obviates the need to use the INVISIBLE option.

 Do not use the OINDEX option if the Ordered Index may be updated during
 the unload, which is possible if you use the NOENQ parameter or are
 running against an unenqueued found set or list when using the Fast/Unload
 User Language Interface.

 Any field that is modified by an ADD, CHANGE, or DELETE statement will
 not have its Ordered Index values unloaded.

 Note that when you specify OINDEX, any record that you partially unload (by
 use of an UNLOAD field statement without a normal UNLOAD statement)
 causes the run to be cancelled (see “Using UNLOAD[C] field” on page 85).
 Every unloaded record must be complete for the Ordered Index to be valid.

 INV or INVISIBLE
 indicates that you want Fast/Unload to unload Ordered Index data for
 INVISIBLE fields. This allows you to preserve INVISIBLE Ordered Index
 data over a reorg. Specifying both OINDEX and INVISIBLE is identical to
 simply specifying OINDEX.

 Note that an INVISIBLE field is not unloaded if it does not have the
 ORDERED attribute.

 Do not use the INVISIBLE option if the Ordered Index may be updated
 during the unload (due to the NOENQ parameter, or if using the Fast/Unload
 User Language Interface).

——
94 Fast/Unload Reference

——
 UNLOAD ALL INFORMATION or UAI
——

 Any field that is modified by an ADD, CHANGE, or DELETE statement will
 not have its Ordered Index values unloaded.

 Note that when you specify INVISIBLE, any record that you partially unload
 (by use of an UNLOAD field statement without a normal UNLOAD
 statement) causes the run to be cancelled (see “Using UNLOAD[C] field” on
 page 85). Every unloaded record must be complete for the Ordered Index to
 be valid.

 MAXRECO
 Is the maximum record length you want to use for Ordered Index data
 records. Ordered index data records never require sorting. Specify this
 value if you are unloading Ordered Index data and the output file has no
 explicit LRECL.

 For a discussion of the performance implications of reloading OINDEX or INVISIBLE
 data see the Fast/Reload Reference Manual.

 5.45.2 UAI SORT or HASH and field unload order

 If any sort item except the first is a field, it will occur twice in the output records, once as
 part of the sort key and a second time as part of the data (only that second instance will
 be reloaded by LAI). If the first sort item is a field and you specify TRUNC or AS
 PLACED for it, or specify an output data type other than STRING, it too will occur as
 both a sort key and as part of the output record. This ensures that you will never lose
 data because of sort key truncation.

 Except in these special cases (TRUNC or AS PLACED or non-STRING), if item1 (the
 first one of the SORT list) is a field, it will be first in the output of the UAI. This is in case
 it is needed as the sort key when the file is reloaded by LAI. This implicit unload is also
 performed if the UAI HASH statement is specified; the HASH field is implicitly unloaded
 as the first in the output of the UAI.

 In any of the above special cases (TRUNC or AS PLACED or non-STRING), or if the
 first item is a %variable, the UAI output is not suitable for loading into a sorted file.

 The implicit unloading must be considered if the UNLOAD field statement is used; if you
 are controlling the order in which fields are unloaded, you may need to be aware of the
 field implicitly unloaded first. Fast/Unload will not let you unload a field occurrence twice,
 so in most cases if you use an UNLOAD field statement which might be the same as
 the implicitly unloaded field, a compilation error occurs. If you want to use UNLOAD field
 with the same field name as the implicitly unloaded field, and UNLOAD field refers to
 that field with a %variable or loop control variable as the occurrence, you can avoid the
 compilation error by specifying AS FIRST in the UAI statement.

 See also “Using Fast/Unload with the Sir2000 Field Migration Facility” on page 233,
 which explains that a field RELATED to the implicitly unloaded HASH or SORT field is
 also implicitly unloaded.

——
Fast/Unload Reference 95

——
Fast/Unload Extraction Language
——

 5.46 WHEN value(s)

 This statement marks the beginning of a clause which indicates the actions to be taken
 when the entity specified on the currently active SELECT statement matches value.
 Value can specify a single value, a range of values, or multiple values and ranges of
 values separated by commas. A single value is indicated by a string, fixed point or
 floating point constant. For example, 'BART', 22, and -17.76 are valid single values. A
 range of values is indicated by two constants separated by a range indicator.

 Valid range indicators are:

 - An inclusive range
 -- An inclusive range
 >> An exclusive range
 -> A range inclusive of the first value and exclusive of the last
 >- A range exclusive of the first value and inclusive of the last

 For example:

 Range Means

 10-99 10 and 99 are considered in the range.

 10>>99 Neither 10 nor 99 is considered in the range.

 10->99 10 is considered in the range, and 99 is not.

 10>-99 10 is not considered in the range, and 99 is.

 The instructions executed in a WHEN clause are terminated by another WHEN
 statement, an OTHERWISE statement, or the END SELECT statement. Only one
 WHEN or OTHERWISE clause in a SELECT clause will be executed.

——
96 Fast/Unload Reference

——
 WHEN value(s)
——

 The program below demonstrates several forms of the WHEN statement:

 OPEN BIGFILE
 FOR EACH RECORD
 SELECT FINAL.GRADE
 WHEN 'INCOMPLETE'
 PUT -1 AS FIXED(2)
 WHEN 'WITHDREW'
 PUT -2 AS FIXED(2)
 WHEN 90-100, 'A'
 PUT 4 AS FIXED(2)
 WHEN 80->90, 'B'
 PUT 3 AS FIXED(2)
 WHEN 70->80, 'C'
 PUT 2 AS FIXED(2)
 WHEN 60->70, 'D'
 PUT 1 AS FIXED(2)
 OTHERWISE
 PUT 0 AS FIXED(2)
 END SELECT
 OUTPUT
 END FOR

 The values in a WHEN statement can have different types, for example, string, fixed
 point, or floating point. The comparison is made on the basis of the constant type. If an
 entity cannot be converted to fixed or floating point for the purposes of comparison, it is
 simply treated as zero.

——
Fast/Unload Reference 97

——
Fast/Unload Extraction Language
——

——
98 Fast/Unload Reference

——
 Standard #Functions
——

——————
CHAPTER 6 Standard #Functions

 This chapter lists the #functions provided with Fast/Unload. #Functions can be used as
 the expression in an assignment statement, as described in “Assignment statement” on
 page 35. Each #function is presented here with a brief phrase denoting its use, a short
 explanation, the form and types of its arguments and the result (or "output value"), one
 or more examples, any error conditions, and special notes.

 Unless otherwise indicated, all arguments shown are required and are input arguments,
 and any arguments with the MISSING value are treated as either null strings (for string
 arguments) or zeroes (for numeric arguments). See “#Function calls” on page 33 for an
 explanation of required/optional, output, and other types of arguments.

 In some instances the behavior of a #function will be compared to the behavior of a
 corresponding $function in Model 204 User Language. For documentation of the User
 Language $functions, see
 http://m204wiki.rocketsoftware.com/index.php/M204wiki_main_page#.24Functions.

 FUEL also contains program entities called “special variables” that might be initially
 mistaken for #functions. Similar to #functions in appearance and syntax, special
 variables are described in “Special variables” on page 28.

 Unless otherwise indicated, all input strings of the standard #functions are treated as
 non-DBCS, and all output strings have type of non-DBCS.

 In addition to the reference material in this chapter, the index contains a major heading
 labelled #Function prototypes. Under this heading are minor headings containing the
 form of the #functions, for your convenient reference.

——
Fast/Unload Reference 99

——
Standard #Functions
——

 6.1 Run-time errors during standard #function calls

 The default approach for handling errors in calls to standard #functions is strict:

 ● Fast/Unload treats most errors which the programmer can reasonably avoid as
 serious and terminates the run, if you have not provided for checking of the error.

 ● At termination, Fast/Unload will issue a message describing the nature of the error,
 the input program line number being executed and, if the error occurred during the
 execution of a #function, a dump of the current value of each #function argument.

 Fast/Unload provides an optional output "return code" argument for some #functions.
 You can test the value set in this argument for errors in the value of the other arguments.
 Various non-zero values for the return code argument indicate error conditions; unless
 otherwise indicated, when one of these is set, the #function result is set to the MISSING
 value. If you omit the return code argument and there is an error in the value of an
 argument, the program is cancelled.

 For example, since 'ONE WEEK' isn't numeric, the following fragment:

 %NEW_DT = #DATECHG('MM/DD/YY', '01/01/96', 'ONE WEEK',, -
 %TST)
 IF %TST NE 0 THEN
 REPORT 'Error incrementing date:' AND %TST
 END IF

 will set %NEW_DT to the MISSING value and will produce the following line on the
 FUNPRINT dataset:

 Error incrementing date: 12

 while the following fragment:

 %NEW_DT = #DATECHG('MM/DD/YY', '01/01/96', 'ONE WEEK')

 will cause Fast/Unload to immediately terminate, issuing an error message that a value
 is non-numeric, as shown in the following sample from FUNPRINT:

 FUNL0053 Unload started.
 FUNL0116 Value is non-numeric or is out of range in line 203;
 Fast/Unload cancelled.
 FUNL0127 Fast/Unload cancelled unloading input record number 0 in file
 PROCFILE.
 FUNL0130 Fast/Unload cancelled during execution of line 203.
 FUNL0128 3 argument positions passed to #function; values :
 FUNL0129 01=MM/DD/YY.
 FUNL0129 02=01/01/96.
 FUNL0129 03=ONE WEEK.

——
100 Fast/Unload Reference

——
 Run-time errors during standard #function calls
——

 Each #function description in this chapter has a figure showing the error conditions for
 the #function and, if there is a "return code" argument, the non-zero values for it. Notice
 that, in general, there are no run-time errors for missing required arguments or too many
 arguments; this is because such checking is done at compile time.

——
Fast/Unload Reference 101

——
Standard #Functions
——

 6.2 #ABDUMP: End Fast/Unload with ABEND and
 dump

 The #ABDUMP function accepts a numeric argument, and causes the Fast/Unload job to
 terminate with user abend code equal to that argument, producing a dump.

 %junk = #ABDUMP(ccode)

 where

 ccode Condition code for user ABEND; optional, defaults to 0.

 %junk This #function does not return, but the FUEL syntax requires a place to store
 the #function result.

 For example, the following fragment abends the job when the input record number is
 12345:

 IF #RECIN EQ 12345
 %FOO = #ABDUMP(99)
 END IF

 Notes

 ● The purpose of this #function is to assist in problem diagnosis; Technical Support
 will direct you if ever it needs to be used.

 This #function is new in Fast/Unload version 4.1.

——
102 Fast/Unload Reference

——
 #CONCAT: Concatenate strings
——

 6.3 #CONCAT: Concatenate strings

 The #CONCAT function accepts two or more arguments and returns a string value that
 is the concatenation of all of its arguments.

 %out = #CONCAT(stra, strb ...)

 where

 stra First input string (required).

 strb Second input string (required).

 ... Additional input strings (optional). For versions of Fast/Unload prior to 4.3, total
 length of all input strings may not exceed 255.

 %out Concatenation of inputs.

 For example, the following fragment prints the line Bugs Bunny on the FUNPRINT
 dataset:

 %RABBIT = #CONCAT('Bugs', ' ', 'Bunny')
 REPORT %RABBIT

 The Fast/Unload run is cancelled with a return code of 8 when:

 ● Total length of input strings exceeds 255 and
 Fast/Unload version is less than 4.3.

 ● Argument missing (see “Notes” below).

 Notes

 ● If the nth argument is present, where n is greater than 1, then the n-1st argument
 must be also be present. That is, the following will result in a run-time error,
 because the third argument is absent:

 %X = #CONCAT(%A, %B, , %D)

 ● See “#CONCAT_TRUNC: Concatenate strings, allowing truncation” on page 104 if
 your version of Fast/Unload is earlier than 4.3 and if you cannot ensure that the total
 length of the #CONCAT input strings is less than 256.

——
Fast/Unload Reference 103

——
Standard #Functions
——

 6.4 #CONCAT_TRUNC: Concatenate strings, allowing
 truncation

 The #CONCAT_TRUNC function accepts an optional output argument and two or more
 string arguments and returns a string value that is the concatenation of the string
 arguments, to a maximum of 255 bytes. It allows the total length of the string arguments
 to exceed 255, and returns the total length of those arguments as the absolute value of
 the output argument, setting it to a negative value if the length exceeds 255.

 %out = #CONCAT_TRUNC(%lenrc, stra, strb ...)

 where

 %lenrc Optional %variable, set to total length of stra, strb, ..., or to the negative of that
 length, if it exceeds 255.

 stra First input string (required).

 strb Second input string (required).

 ... Additional input strings (optional).

 %out Concatenation of stra, strb, ..., or the first 255 bytes of that concatenation, if it
 exceeds 255.

 For example, the following fragment

 %FOO = #CONCAT_TRUNC(%LEN, 'Hello,', -
 ' ', 'World!')
 REPORT %FOO AND 'length is' AND %LEN

 prints the following line on the FUNPRINT dataset:

 Hello, World! length is 13

 The Fast/Unload run is cancelled with a return code of 8 when:

 ● Argument missing (see “Notes” below).

 Notes

 ● If the nth argument is present, where n is greater than 2, then the n-1st argument
 must be also be present. That is, the following will result in a run-time error,
 because the fourth argument is absent:

 %X = #CONCAT_TRUNC(%L, %A, %B, , %D)

——
104 Fast/Unload Reference

——
 #CONCAT_TRUNC: Concatenate strings, allowing truncation
——

 ● See “#CONCAT: Concatenate strings” on page 103 if you want Fast/Unload to
 terminate if the total length of the input strings is greater than 255.

 This #function is new in Fast/Unload version 4.0.

——
Fast/Unload Reference 105

——
Standard #Functions
——

 6.5 #C2X: Convert character string to hex
 representation

 The #C2X function expects one required argument and returns a string containing the
 hexadecimal representation of the value in the argument string. Each byte position of
 the input string is converted to two characters in the result string, using only the
 characters 0-9 and A-F.

 %hex = #C2X(str)

 where

 str String to convert. Must be 127 bytes or less.

 %hex String containing hex digits.

 For example, the code fragment

 %JUNK = #C2X('ABabc')
 REPORT 'X''' WITH %JUNK WITH ''''

 would produce X'C1C2818283', while

 %JUNK = #C2X(' 1 ')
 REPORT 'X''' WITH %JUNK WITH ''''

 would produce X'40F140'.

 The Fast/Unload run is cancelled with a return code of 8 when:

 ● Length of str exceeds 127.

 Notes

 ● The inverse of this #function is #X2C.

 ● The User Language $C2X function
 (http://m204wiki.rocketsoftware.com/index.php/$C2X) allows a maximum input
 length of 126, and an error causes the null string to be returned.

 ● The User Language $IHEXA function
 (http://m204wiki.rocketsoftware.com/index.php/$IHexA) ignores any input characters
 after the first 127.

——
106 Fast/Unload Reference

——
 #DATE: Current date and/or time
——

 6.6 #DATE: Current date and/or time

 The #DATE function accepts an optional datetime format argument and an optional
 output return code argument and returns the current date and time in the specified (or
 defaulted) format.

 %dat = #DATE(fmt, %rc)

 where

 fmt Optional format for returned date, default is YYYY-MM-DD.

 %rc Optional output return code variable.

 %dat Datetime string with indicated format.

 For example, the following fragment stores the current date in the last occurrence of the
 REORG_DATE field:

 ADD REORG_DATE = #DATE()

 Non-zero values of %rc, or terminating conditions, are shown in the following figure (see
 the discussion in “Run-time errors during standard #function calls” on page 100).

 Errors: if %rc present, set to corresponding number and set %dat to MISSING;
 if absent, cancel Fast/Unload with return code 8.

 4 fmt is not a valid datetime format.

 Notes

 ● The only difference between #TIME and #DATE is the default value for fmt.

 ● The default format returned by the User Language $DATE and $SIR_DATE
 functions is “YY-MM-DD”; the default format returned by #DATE is “YYYY-MM-DD”.

 ● “Datetime Formats” on page 172 explains valid datetime formats.

——
Fast/Unload Reference 107

——
Standard #Functions
——

 6.7 #DATECHG: Add some days to datetime

 The #DATECHG function adds a specified number of days to an input datetime,
 returning the incremented datetime. It requires a datetime format argument, a datetime
 value, and a signed number of days. It accepts an optional CENTSPAN value for
 interpreting datetimes with two digit years. The incremented datetime is returned in the
 same format as the input datetime. An optional output return code argument allows the
 FUEL program to intercept error conditions.

 %odat = #DATECHG(fmt, dat, n, span, %rc)

 where

 fmt Format of dat and %odat.

 dat Datetime string.

 n Number of days to add to dat.

 span Optional CENTSPAN value.

 %rc Return code variable (optional, output).

 %odat Set to dat plus n days.

 For example, the following fragment prints the date one week after the run date on the
 FUNPRINT dataset:

 %X = #DATE('DAY Month, YYYY')
 %X = #DATECHG('DAY Month, YYYY', %X, 7)
 REPORT %X

 Non-zero values of %rc, or terminating conditions, are shown in the following figure (see
 the discussion in “Run-time errors during standard #function calls” on page 100).

 Errors: if %rc present, set to corresponding number and set %odat to
 MISSING; if absent, cancel Fast/Unload with return code 8.

 4 fmt is not a valid datetime format.
 8 dat does not match fmt or result date out of range.
 12 n is not a number or span is invalid.

 Notes

 ● “Datetime Formats” on page 172 explains valid datetime formats and valid dates.

 ● “CENTSPAN” on page 178 explains CENTSPAN arguments.

——
108 Fast/Unload Reference

——
 #DATECHG: Add some days to datetime
——

 ● The User Language $DATECHG function
 (http://m204wiki.rocketsoftware.com/index.php/$DATECHG) does not provide a call-
 level argument for interpreting two-digit years, the thread-level
 CENTSPLT/DEFCENT parameters are used instead.

 ● The User Language $SIR_DATECHG function
 (http://m204wiki.rocketsoftware.com/index.php/$Sir_Datechg) provides a
 CENTSPAN argument in the same fashion as #DATECHG.

——
Fast/Unload Reference 109

——
Standard #Functions
——

 6.8 #DATECHK: Check if datetime matches format

 The #DATECHK function verifies that a specific datetime value is valid for a given
 datetime format. It requires a datetime format argument and a datetime value. It
 accepts an optional CENTSPAN value for interpreting datetimes with two digit years. An
 optional output return code argument allows the FUEL program to intercept error
 conditions. The #DATECHK function returns 1 if all arguments are valid and consistent,
 else 0 if all arguments are valid except for the date.

 %tst = #DATECHK(fmt, dat, span, %rc)

 where

 fmt Datetime format string for dat.

 dat Datetime string to be validated against fmt.

 span Optional CENTSPAN value.

 %rc Return code variable (optional, output).

 %tst Set to 1 if dat matches fmt, 0 otherwise.

 For example, the following fragment prints the string Bad on the FUNPRINT dataset:

 %X = #DATECHK('DAY Month, YYYY', '30 February, 1997')
 IF %X = 1 THEN
 REPORT 'Good'
 ELSE
 REPORT 'Bad'
 END IF

 Non-zero values of %rc, or terminating conditions, are shown in the following figure (see
 the discussion in “Run-time errors during standard #function calls” on page 100).

 Errors: if %rc present, set to corresponding number and set %tst to MISSING;
 if absent, cancel Fast/Unload with return code 8.

 4 Fmt is not a valid datetime format.
 12 span is an invalid CENTSPAN value.

 Notes

 ● “Datetime Formats” on page 172 explains valid datetime formats and valid dates.

 ● “CENTSPAN” on page 178 explains CENTSPAN arguments.

——
110 Fast/Unload Reference

——
 #DATECHK: Check if datetime matches format
——

 ● The CCA User Language $DATECHK function does not provide a call-level
 argument for interpreting two-digit years, the thread-level CENTSPLT/DEFCENT
 parameters are used instead.

 ● The Sirius User Language $SIR_DATECHK function provides a CENTSPAN
 argument in the same fashion as #DATECHK.

——
Fast/Unload Reference 111

——
Standard #Functions
——

 6.9 #DATECNV: Convert datetime to different format

 The #DATECNV function converts a datetime value from one datetime format to another
 datetime format. It requires an input datetime value, a corresponding input datetime
 format string, and an output datetime format string. It accepts an optional CENTSPAN
 value for interpreting datetimes with two digit years. An optional output return code
 argument allows the FUEL program to intercept error conditions. The #DATECNV
 function returns the input datetime value in the format specified by the output datetime
 format string.

 %odat = #DATECNV(infmt, outfmt, dat, span, %rc)

 where

 infmt Datetime format string for dat.

 outfmt Datetime format string for odat.

 dat Input datetime string.

 span Optional CENTSPAN value.

 %rc Return code variable (optional, output).

 %odat Set to the value of dat, converted to output format.

 For example, this prints the string 19970101 on the FUNPRINT dataset:

 %X = #DATECNV('YYMMDD', 'YYYYMMDD', '970101', 1950)
 REPORT %X

 Non-zero values of %rc, or terminating conditions, are shown in the following figure (see
 the discussion in “Run-time errors during standard #function calls” on page 100).

 Errors: if %rc present, set to corresponding number and set %odat to
 MISSING; if absent, cancel Fast/Unload with return code 8.

 4 infmt or outfmt is not a valid datetime format.
 8 dat does not match infmt.
 12 span is an invalid CENTSPAN value.
 16 Converted datetime value out of range for %outfmt.

 Notes

 ● “Datetime Formats” on page 172 explains valid datetime formats and valid dates.

 ● “CENTSPAN” on page 178 explains CENTSPAN arguments.

——
112 Fast/Unload Reference

——
 #DATEDIF: Difference between two dates
——

 6.10 #DATEDIF: Difference between two dates

 The #DATEDIF function subtracts a second date from a first date and returns the
 difference in days, ignoring time portions for both dates. It requires a first datetime
 format string, a first datetime value, and a second datetime value. It accepts an optional
 second datetime format string and an optional CENTSPAN value for interpreting
 datetimes with two digit years. An optional output return code argument allows the
 FUEL program to intercept error conditions.

 %dif = #DATEDIF(fmta, data, fmtb, datb, -
 span, %rc)

 where

 fmta Datetime format string for data.

 data First datetime string.

 fmtb Optional second datetime format string for datb. Default is to use fmta.

 datb Second datetime string.

 span Optional CENTSPAN value.

 %rc Return code variable (optional, output).

 %dif Set to the number of days obtained by subtracting the second date from the first
 date, ignoring any time components of both dates.

 For example, the following fragment prints the string 7 days on the FUNPRINT dataset:

 %X = #DATEDIF('YYMMDD', '970308', , '970301')
 REPORT %X AND 'days'

 Non-zero values of %rc, or terminating conditions, are shown in the following figure (see
 the discussion in “Run-time errors during standard #function calls” on page 100).

 Errors: if %rc present, set to corresponding number and set %dif to MISSING;
 if absent, cancel Fast/Unload with return code 8.

 4 fmta or fmtb is not a valid datetime format.
 8 data does not match fmta, or datb does not match fmtb.
 12 span is an invalid CENTSPAN value.

 Notes

 ● Time is ignored in the subtraction.

——
Fast/Unload Reference 113

——
Standard #Functions
——

 ● In the example above, even though the input dates have 2-digit years, there is no
 need for a span argument, since the dates are in the same year.

 ● As in the CCA User Language $DATEDIF function, the single span argument is
 used for both dates; if it is necessary to get the difference between two dates which
 both have 2-digit years and are in different 100-year windows, you must first use
 #DATECNV to convert one of them to some 4-digit year format.

 ● “Datetime Formats” on page 172 explains valid datetime formats and valid dates.

 ● “CENTSPAN” on page 178 explains CENTSPAN arguments.

——
114 Fast/Unload Reference

——
 #DATEFMT: Validate datetime format string
——

 6.11 #DATEFMT: Validate datetime format string

 The #DATEFMT function is used to validate a datetime format string. It requires a
 datetime format string. It returns a value of 1 if the datetime format string is valid, else it
 returns a value of 0.

 %tst = #DATEFMT(fmt)

 where

 fmt Datetime format string to be validated.

 %tst Set to 1 if fmt is a valid format string, else set to 0.

 For example, the following fragment prints the string Good on the FUNPRINT dataset:

 %X = #DATEFMT('CYYDDDHHMISSXXX')
 IF %X = 1 THEN
 REPORT 'Good'
 ELSE
 REPORT 'Bad'
 END IF

 This #function has no terminating conditions.

 Notes

 ● “Datetime Formats” on page 172 explains valid datetime formats.

——
Fast/Unload Reference 115

——
Standard #Functions
——

 6.12 #DATE2N: Convert datetime string to number of
 seconds*300

 The #DATE2N function converts a datetime value in a string format into a numeric form
 that is the corresponding number of seconds*300 since January 1, 1900. It requires a
 datetime value string and a corresponding datetime format string. It accepts an optional
 CENTSPAN value for interpreting datetimes with two digit years. An optional output
 return code argument allows the FUEL program to intercept error conditions.

 %num = #DATE2N(dat, fmt, span, %rc)

 where

 dat Datetime value string.

 fmt Datetime format string for dat.

 span Optional CENTSPAN value.

 %rc Return code variable (optional, output).

 %num Set to the number of seconds*300 since 1 Jan 1900 12:00 AM that corresponds
 to the datetime value of dat.

 For example, the following fragment prints the value BEFORE on the FUNPRINT dataset:

 IF #DATE2N('121494', 'MMDDYY') < -
 #DATE2N('040195', 'MMDDYY') THEN
 REPORT 'BEFORE'
 END IF

 Non-zero values of %rc, or terminating conditions, are shown in the following figure (see
 the discussion in “Run-time errors during standard #function calls” on page 100).

 Errors: if %rc present, set to corresponding number and set %num to
 MISSING; if absent, cancel Fast/Unload with return code 8.

 4 fmt is not a valid datetime format.
 8 dat does not match fmt or result date out of range.
 12 span is an invalid CENTSPAN value.

 Notes

 ● Values returned by #DATE2N will often exceed the range that can be represented in
 a 4-byte integer, so you should probably avoid storing the value in a BINARY or
 FLOAT4 field.

——
116 Fast/Unload Reference

——
 #DATE2N: Convert datetime string to number of seconds*300
——

 ● Dates prior to 1 January 1900 will return a negative number.

 ● The inverse of this #function is #N2DATE.

 ● “Datetime Formats” on page 172 explains valid datetime formats and valid dates.

 ● “CENTSPAN” on page 178 explains CENTSPAN arguments.

——
Fast/Unload Reference 117

——
Standard #Functions
——

 6.13 #DATE2ND: Convert datetime string to number of
 days

 The #DATE2ND function converts a datetime value in a string format into a numeric form
 that is the corresponding number of days since January 1, 1900. It requires a datetime
 value string and a corresponding datetime format string. It accepts an optional
 CENTSPAN value for interpreting datetimes with two digit years. An optional output
 return code argument allows the FUEL program to intercept error conditions.

 %num = #DATE2ND(dat, fmt, span, %rc)

 where

 dat Datetime value string.

 fmt Datetime format string for dat.

 span Optional CENTSPAN value.

 %rc Return code variable (optional, output).

 %num Set to the number of days since 1 Jan 1900 12:00 AM that corresponds to the
 datetime value of dat.

 For example, the following fragment prints the value BEFORE on the FUNPRINT dataset:

 IF #DATE2ND('121494', 'MMDDYY') < -
 #DATE2ND('040195', 'MMDDYY') THEN
 REPORT 'BEFORE'
 END IF

 Non-zero values of %rc, or terminating conditions, are shown in the following figure (see
 the discussion in “Run-time errors during standard #function calls” on page 100).

 Errors: if %rc present, set to corresponding number and set %num to
 MISSING; if absent, cancel Fast/Unload with return code 8.

 4 fmt is not a valid datetime format.
 8 dat does not match fmt or result date out of range.
 12 span is an invalid CENTSPAN value.

 Notes

 ● Dates prior to 1 January 1900 will return a negative number.

 ● The inverse of this #function is #ND2DATE.

——
118 Fast/Unload Reference

——
 #DATE2ND: Convert datetime string to number of days
——

 ● “Datetime Formats” on page 172 explains valid datetime formats and valid dates.

 ● “CENTSPAN” on page 178 explains CENTSPAN arguments.

——
Fast/Unload Reference 119

——
Standard #Functions
——

 6.14 #DATE2NM: Convert datetime string to number of
 milliseconds

 The #DATE2NM function converts a datetime value in a string format into a numeric
 form that is the corresponding number of milliseconds since January 1, 1900. It requires
 a datetime value string and a corresponding datetime format string. It accepts an
 optional CENTSPAN value for interpreting datetimes with two digit years. An optional
 output return code argument allows the FUEL program to intercept error conditions.

 %num = #DATE2NM(dat, fmt, span, %rc)

 where

 dat Datetime value string.

 fmt Datetime format string for dat.

 span Optional CENTSPAN value.

 %rc Return code variable (optional, output).

 %num Set to the number of milliseconds since 1 Jan 1900 12:00 AM that corresponds
 to the datetime value of dat.

 For example, the following fragment prints the value 'BEFORE' on the FUNPRINT
 dataset:

 IF #DATE2NM('121494', 'MMDDYY') < -
 #DATE2NM('040195', 'MMDDYY') THEN
 REPORT 'BEFORE'
 END IF

 Non-zero values of %rc, or terminating conditions, are shown in the following figure (see
 the discussion in “Run-time errors during standard #function calls” on page 100).

 Errors: if %rc present, set to corresponding number and set %num to
 MISSING; if absent, cancel Fast/Unload with return code 8.

 4 fmt is not a valid datetime format.
 8 dat does not match fmt or result date out of range.
 12 span is an invalid CENTSPAN value.

 Notes

 ● Values returned by #DATE2NM will often exceed the range that can be represented
 in a 4-byte integer, so you should probably avoid storing the value in a BINARY or
 FLOAT4 field.

——
120 Fast/Unload Reference

——
 #DATE2NM: Convert datetime string to number of milliseconds
——

 ● Dates prior to 1 January 1900 will return a negative number.

 ● The inverse of this #function is #NM2DATE.

 ● “Datetime Formats” on page 172 explains valid datetime formats and valid dates.

 ● “CENTSPAN” on page 178 explains CENTSPAN arguments.

——
Fast/Unload Reference 121

——
Standard #Functions
——

 6.15 #DATE2NS: Convert datetime string to number of
 seconds

 The #DATE2NS function converts a datetime value in a string format into a numeric form
 that is the corresponding number of seconds since January 1, 1900. It requires a
 datetime value string and a corresponding datetime format string. It accepts an optional
 CENTSPAN value for interpreting datetimes with two digit years. An optional output
 return code argument allows the FUEL program to intercept error conditions.

 %num = #DATE2NS(dat, fmt, span, %rc)

 where

 dat Datetime value string.

 fmt Datetime format string for dat.

 span Optional CENTSPAN value.

 %rc Return code variable (optional, output).

 %num Set to the number of seconds since 1 Jan 1900 12:00 AM that corresponds to
 the datetime value of dat.

 For example, the following fragment prints the value 'BEFORE' on the FUNPRINT
 dataset:

 IF #DATE2NS('121494', 'MMDDYY') < -
 #DATE2NS('040195', 'MMDDYY') THEN
 REPORT 'BEFORE'
 END IF

 Non-zero values of %rc, or terminating conditions, are shown in the following figure (see
 the discussion in “Run-time errors during standard #function calls” on page 100).

 Errors: if %rc present, set to corresponding number and set %num to
 MISSING; if absent, cancel Fast/Unload with return code 8.

 4 fmt is not a valid datetime format.
 8 dat does not match fmt or result date out of range.
 12 span is an invalid CENTSPAN value.

 Notes

 ● Values returned by #DATE2NS will often exceed the range that can be represented
 in a 4-byte integer, so you should probably avoid storing the value in a BINARY or
 FLOAT4 field.

——
122 Fast/Unload Reference

——
 #DATE2NS: Convert datetime string to number of seconds
——

 ● Dates prior to 1 January 1900 will return a negative number.

 ● The inverse of this #function is #NS2DATE.

 ● “Datetime Formats” on page 172 explains valid datetime formats and valid dates.

 ● “CENTSPAN” on page 178 explains CENTSPAN arguments.

——
Fast/Unload Reference 123

——
Standard #Functions
——

 6.16 #DEBLANK: Remove leading and trailing blanks
 from substring

 The #DEBLANK function extracts a substring (starting at pos for length len) and returns
 it, with leading and trailing blanks removed. It requires a string to be deblanked. It
 accepts an optional starting position within the string to be deblanked, and an optional
 length.

 %out = #DEBLANK(str, pos, len)

 where

 str String to be deblanked; required.

 pos Optional position within str to start deblanking. Must be numeric greater than
 or equal to 1, default is 1.

 len Optional length, starting at pos of string to deblank. Must be numeric greater
 than or equal to 0, default is the remainder of the input string.

 %out Set to the substring within str, starting at pos for length len; leading and trailing
 blanks are then removed from this substring. Intermediate blanks within the
 substring are not affected.

 Examples:

 #DEBLANK(' ABC ') returns 'ABC'
 #DEBLANK(' ABC ', 1, 2) returns 'A'
 #DEBLANK(' A BC ', 2, 4) returns 'A B'

 The Fast/Unload run is cancelled with a return code of 8 when:

 ● pos is not numeric, or less than 1.

 ● len is not numeric, or less than 0.

 Notes

 ● This #function is similar to the #STRIP function (“#STRIP: Remove leading and/or
 trailing copies of pad character” on page 152).

 This #function is new in Fast/Unload version 4.0.

——
124 Fast/Unload Reference

——
 #DELWORD: Remove blank-delimited words from string
——

 6.17 #DELWORD: Remove blank-delimited words from
 string

 The #DELWORD function removes one or more blank-delimited words from a string. It
 requires an input string and a word number within the string. It accepts an optional
 number of words to delete.

 %out = #DELWORD(str, word, count)

 where

 str String containing words to be deleted; required.

 word Number of first word within str to remove; required. Must be numeric greater
 than or equal to 1.

 count Optional count of words to remove. Must be numeric greater than or equal to
 0, default is the remainder of words in the input string.

 %out Set to str with the substring removed which starts with the first character of
 word number word and ends with the last blank character before word number
 word+count.

 Examples:

 #DELWORD('A B C', 1) returns ''
 #DELWORD('A B C', 2) returns 'A '
 #DELWORD(' A B C ', 3) returns ' A B '
 #DELWORD('A B C', 4) returns 'A B C'
 #DELWORD(' ', 1) returns ' '
 #DELWORD('A B C', 1, 1) returns 'B C'
 #DELWORD('A B C', 1, 4) returns ''
 #DELWORD('A B C', 2, 2) returns 'A '

 The Fast/Unload run is cancelled with a return code of 8 when:

 ● word is not numeric, or less than 1.

 ● count is not numeric, or less than 0.

 This #function is new in Fast/Unload version 4.0.

——
Fast/Unload Reference 125

——
Standard #Functions
——

 6.18 #FIND: Word position of one word sequence
 within another

 The #FIND function determines the word position, within a string of blank-delimited
 words, of one or more blank-delimited words. It requires an input string to search within
 and an input sequence of words to search for.

 %pos = #FIND(haystack, words)

 where

 haystack String containing words to be searched within; required.

 words String containing one or more blank-delimited words to find; required.

 %pos Set to the word position, within haystack, of the first word of a sequence of
 words that matches the sequence in words. If words is not found, %pos is
 set to 0.

 Examples:

 #FIND('A B C', 'B') returns 2
 #FIND('A B C', 'D') returns 0
 #FIND('A B C', 'A B') returns 1
 #FIND(' ', ' ') returns 0
 #FIND('A B', 'A B C') returns 0
 #FIND('B B B A', 'B B A') returns 2
 #FIND('A A B', ' A B ') returns 2
 #FIND(' A A B ', 'A B') returns 2

 This #function has no cancelling conditions.

 Notes

 ● Multiple blanks in both input arguments are ignored.

 ● This #function is similar to the #ONEOF function (“#ONEOF: See if string is in
 delimited list of strings” on page 142). Note, however, that both #FIND and
 #ONEOF are inferior to the SELECT statement, when the only purpose is to test
 whether an entity has one of several values (see “SELECT entity” on page 80).

 This #function is new in Fast/Unload version 4.0.

——
126 Fast/Unload Reference

——
 #FLOAT8: Get 8-byte float, padding 4-byte input with 0
——

 6.19 #FLOAT8: Get 8-byte float, padding 4-byte input
 with 0

 The #FLOAT8 function accepts a numeric argument, and it returns the value of the
 argument as an 8-byte floating point value. If the argument is a 4-byte floating point
 value, then the conversion is done by appending binary zeroes; otherwise, it is done by
 the normal FUEL conversion to an 8-byte floating point value.

 %out = #FLOAT8(in)

 where

 %out Set to 8-byte floating point value of input argument.

 in Numeric input value.

 Notes

 ● See “Floating Point Arithmetic and Numeric Conversion” on page 235 for a
 specification of conversions to floating point values.

 ● Numeric operations in FUEL and in User Language are based on decimal, not
 binary, interpretation of floating point values, so this #function is seldom used.

 However, #FLOAT8 may be useful in unusual situations, in particular to perform a
 file reorganization that expands a FLOAT LEN 4 field to a FLOAT LEN 8 field, using
 the “raw” floating point conversion (such as can be done in a structured file
 reorganization using the X'0080' mode bit in FLOD).

 For example, if field FLT is defined in the input as FLOAT LEN 4, and you want to
 convert it to a FLOAT LEN 8 or FLOAT LEN 16 in a UAI/LAI file reorganization in
 such a way that the new field's values consist of the old ones with binary zeros
 added, you can use the following:

 OPEN PRODFILE
 UAI
 FOR EACH RECORD
 FOR I FROM 1 TO FLT(#)
 CHANGE FLT(I) = #FLOAT8(FLT(I))
 END FOR
 UNLOAD
 END FOR

 In this example, if the input value of FLT is 411028F6, which is the closest 4-byte
 floating point value to the decimal value 1.01, it is converted on output to
 411028F600000000, which User Language will display as 1.01000022888184
 (demonstrating that #FLOAT8 is only to be used in special circumstances).

——
Fast/Unload Reference 127

——
Standard #Functions
——

 A “normal” UAI/LAI conversion of 411028F6 to a FLOAT LEN 8 field would be to the
 hexadecimal value 411028F5C28F5C28, which User Language will display as 1.01.

 This #function is new in Fast/Unload version 4.3.

——
128 Fast/Unload Reference

——
 #INDEX: Position of second string within first
——

 6.20 #INDEX: Position of second string within first

 The #INDEX function locates the first occurrence, if any, of a search string (needle)
 within a searched string (haystack). It requires a string to be searched and accepts an
 optional string to locate. It accepts an optional starting position within the string to be
 searched. #INDEX returns either the starting position within the searched string of the
 first occurrence of the string to be located (starting at the specified position), or 0.

 %opos = #INDEX(haystack, needle, pos)

 where

 haystack String to be searched; required.

 needle String to be located, may be omitted.

 pos Optional starting position within haystack for search. Must be numeric
 greater than or equal to 1, default is 1.

 %opos Set to starting position of first occurrence of needle within haystack, with
 search starting at pos, else 0 if not found or if either string length is zero.

 Examples:

 #INDEX('123xy', '23') returns 2
 #INDEX('123xy', '45') returns 0
 #INDEX('12312', '12', 2) returns 4
 #INDEX('123xy', '23', 3) returns 0

 The Fast/Unload run is cancelled with a return code of 8 when:

 ● pos is not numeric, or less than 1.

 Notes

 ● If needle or haystack is the null string, 0 is returned.

——
Fast/Unload Reference 129

——
Standard #Functions
——

 6.21 #LEFT: Initial substring, followed by pad
 characters to specified length

 The #LEFT function returns a padded initial substring from a source string. It expects a
 source string argument and a numeric length of the output string. It accepts an optional
 pad character. #LEFT returns the string that begins at the first position of the source
 string and is of the specified output length. If the output length is less than or equal to
 the length of the source string, the first length characters of the source are returned.
 Otherwise, the source string is padded to the output length by following it with sufficient
 copies of the pad character.

 %out = #LEFT(str, len, pad)

 where

 str Source string.

 len Length of the output string. Must be numeric >= 0.

 pad Optional pad character. Default is blank. If supplied, must be a string of length
 1.

 %out If len is greater then #LEN(str):

 ● all of str, followed by len - #LEN(str) copies of the pad character

 Otherwise:

 ● substring from str starting at position 1 with length len

 For example:

 #LEFT('ABC', 1) returns 'A'
 #LEFT('ABC', 3) returns 'ABC'
 #LEFT('ABC', 4) returns 'ABC '
 #LEFT(4.6, 4, 0) returns '4.60'

 The Fast/Unload run is cancelled with a return code of 8 when:

 ● Len not numeric, or less than 0.

 ● Pad supplied, and length not 1.

——
130 Fast/Unload Reference

——
 #LEFT: Initial substring, followed by pad characters to specified length
——

 Notes

 ● This is the same as the #PADR function, except for the order of the arguments (see
 “#PADR: Initial substring, followed by pad characters to specified length” on page
 146).

 This #function is new in Fast/Unload version 4.0.

——
Fast/Unload Reference 131

——
Standard #Functions
——

 6.22 #LEN: Length of string

 The #LEN function returns the length of a string, in number of bytes. It expects a
 required string argument and returns a numeric result.

 %len = #LEN(str)

 where

 str String whose length you want to know. For Fast/Unload version 4.3 and later.
 str may be longer than 255 bytes.

 %len Set to length of str.

 For example, the following fragment prints the string Length: 13 on the FUNPRINT
 dataset:

 %X = #LEN('Hello, world!')
 REPORT 'Length:' AND %X

 This #function has no cancelling conditions.

——
132 Fast/Unload Reference

——
 #LOWCASE: Change uppercase letters of string to lowercase
——

 6.23 #LOWCASE: Change uppercase letters of string
 to lowercase

 The #LOWCASE function returns a copy of the input string, with all uppercase EBCDIC
 letters changed to the corresponding lowercase letters. It expects a source string
 argument.

 %out = #LOWCASE(str)

 where

 str Source string, required.

 %out Copy of str, with all uppercase EBCDIC letters changed to their lowercase
 EBCDIC equivalents.

 For example:

 #LOWCASE('?abc') returns '?abc'
 #LOWCASE('?ABC') returns '?abc'
 #LOWCASE('') returns ''

 This #function has no cancelling conditions.

 This #function is new in Fast/Unload version 4.0.

——
Fast/Unload Reference 133

——
Standard #Functions
——

 6.24 #ND2DATE: Convert number of days to datetime
 string

 The #ND2DATE function converts a numeric datetime value expressed as the number of
 days since January 1, 1900 into a datetime string value according to a specified
 datetime format string. It requires a datetime numeric value and a datetime format
 string. An optional output return code argument allows the FUEL program to intercept
 error conditions.

 %dat = #ND2DATE(datn, fmt, %rc)

 where

 datn Numeric datetime value expressed as the number of days since 1 Jan 1900
 12:00 AM. This argument may not have the MISSING value.

 fmt Datetime format string to use for creating %dat.

 %rc Return code (optional, output)

 %dat Set to datetime string value, in format specified by fmt, corresponding to datn.

 For example, the following fragment prints the string 07/31/84 on the FUNPRINT
 dataset:

 %X = #DATE2ND('8407301230', 'YYMMDDHHMI')
 %X = %X + 1 /* Add 1 day
 %X = #ND2DATE(%X, 'MM/DD/YY')
 REPORT %X

 Non-zero values of %rc, or terminating conditions, are shown in the following figure (see
 the discussion in “Run-time errors during standard #function calls” on page 100).

 Errors: if %rc present, set to corresponding number and set %dat to MISSING;
 if absent, cancel Fast/Unload with return code 8.

 4 fmt is not a valid datetime format.
 8 datn is out of range for fmt.

 Notes

 ● The inverse of this #function is #DATE2ND.

 ● “Datetime Formats” on page 172 explains valid datetime formats and valid dates.

——
134 Fast/Unload Reference

——
 #NM2DATE: Convert number of milliseconds to datetime string
——

 6.25 #NM2DATE: Convert number of milliseconds to
 datetime string

 The #NM2DATE function converts a numeric datetime value expressed as the number
 of milliseconds since January 1, 1900 into a datetime string value according to a
 specified datetime format string. It requires a datetime numeric value and a datetime
 format string. An optional output return code argument allows the FUEL program to
 intercept error conditions.

 %dat = #NM2DATE(datn, fmt, %rc)

 where

 datn Numeric datetime value expressed as the number of milliseconds since 1 Jan
 1900 12:00 AM. This argument may not have the MISSING value.

 fmt Datetime format string to use for creating %dat.

 %rc Return code (optional, output)

 %dat Set to datetime string value, in format specified by fmt, corresponding to datn.

 For example, the following fragment prints the string 07/31/84 on the FUNPRINT
 dataset:

 %X = #DATE2NM('8407301230', 'YYMMDDHHMI')
 %X = %X + 1000 * 60 * 60 * 15 /* Add 15 hours
 %X = #NM2DATE(%X, 'MM/DD/YY')
 REPORT %X

 Non-zero values of %rc, or terminating conditions, are shown in the following figure (see
 the discussion in “Run-time errors during standard #function calls” on page 100).

 Errors: if %rc present, set to corresponding number and set %dat to MISSING;
 if absent, cancel Fast/Unload with return code 8.

 4 fmt is not a valid datetime format.
 8 datn is out of range for fmt.

 Notes

 ● The inverse of this #function is #DATE2NM.

 ● “Datetime Formats” on page 172 explains valid datetime formats and valid dates.

——
Fast/Unload Reference 135

——
Standard #Functions
——

 6.26 #NS2DATE: Convert number of seconds to
 datetime string

 The #NS2DATE function converts a numeric datetime value expressed as the number of
 seconds since January 1, 1900 into a datetime string value according to a specified
 datetime format string. It requires a datetime numeric value and a datetime format
 string. An optional output return code argument allows the FUEL program to intercept
 error conditions.

 %dat = #NS2DATE(datn, fmt, %rc)

 where

 datn Numeric datetime value expressed as the number of seconds since 1 Jan 1900
 12:00 AM. This argument may not have the MISSING value.

 fmt Datetime format string to use for creating %dat.

 %rc Return code (optional, output)

 %dat Set to datetime string value, in format specified by fmt, corresponding to datn.

 For example, the following fragment prints the string 07/31/84 on the FUNPRINT
 dataset:

 %X = #DATE2NS('8407301230', 'YYMMDDHHMI')
 %X = %X + 60 * 60 * 15 /* Add 15 hours
 %X = #NS2DATE(%X, 'MM/DD/YY')
 REPORT %X

 Non-zero values of %rc, or terminating conditions, are shown in the following figure (see
 the discussion in “Run-time errors during standard #function calls” on page 100).

 Errors: if %rc present, set to corresponding number and set %dat to MISSING;
 if absent, cancel Fast/Unload with return code 8.

 4 fmt is not a valid datetime format.
 8 datn is out of range for fmt.

 Notes

 ● The inverse of this #function is #DATE2NS.

 ● “Datetime Formats” on page 172 explains valid datetime formats and valid dates.

——
136 Fast/Unload Reference

——
 #NUM2STR: Convert number to string with decimal point
——

 6.27 #NUM2STR: Convert number to string with
 decimal point

 The #NUM2STR function converts a number to a string with an integer part, followed by
 an optional decimal point and decimal fraction digits, with control over the number of
 integer and fraction digits, padding, and rounding. It requires a numeric value. Optional
 arguments specify the width of the resulting integer digits area, the width of the resulting
 fraction digits area, rounding vs. truncation and fixed width vs. variable/minimal width
 integer area, and the leading pad character for the integer digits area.

 The final optional argument is an output argument whose absolute value is set to the
 number of integer characters (after leading zeroes are stripped) in the number, plus 1 if
 the number is negative. Specifying this argument allows the Fast/Unload program to
 continue if the first argument cannot be represented by the result, either as a result of
 truncation of the high-order integer digits, or because the first argument can not be
 converted to a number.

 %str = #NUM2STR(num, intw, fracw, opt, pad, %intlen)

 where

 num Input number to be converted.

 intw Number of characters used to express the integer portion and leading minus
 sign, if any, of num. Optional, must be 0 or more if specified. If omitted, only
 the characters needed are used to represent the integer part: a leading
 minus sign, if num is negative, is followed by the integer portion with leading
 zeroes stripped (except if the integer portion is zero, a single digit 0 is used).

 If the fourth argument (opt) contains the letter 'V', intw is the minimal width
 used for the integer part, and the number of characters needed is used if that
 exceeds intw.

 fracw Number of digits used to express the fraction portion of num. Optional, must
 be 0 or more if specified. If this argument is omitted:

 ● only the characters needed are used to represent the fraction part
 ● if the fraction part is 0, no decimal point occurs in the result
 ● if the fraction part is not 0, trailing zeroes are removed

 %opt One or two characters, optional, with one choice from either of the following
 two pairs:

 ● R (round) or T (trunc)

 R Round up the final digit of the result, if the most significant
 discarded fraction digit is 5 or more. This is the default.

——
Fast/Unload Reference 137

——
Standard #Functions
——

 T Final digit of result unaffected by any discarded fraction digits.

 This character has no meaning if argument three (fracw) is omitted,
 since in that case no fraction digits are discarded.

 ● F (fixed width) or V (variable width)

 F The integer portion of the result is fixed width; that is, as many
 characters are used for the integer (and leading minus sign) as
 the value of argument two (intw). This is the default.

 V The integer portion of the result is variable/minimal width. That is,
 if w characters are needed for the integer (and leading minus sign)
 with leading zeroes removed, then w characters are used for the
 integer if w>intw; intw characters are used otherwise.

 This character has no meaning if argument two (intw) is omitted, since in
 that case exactly the characters needed for the integer are used.

 pad The leading pad character used to fill the integer portion to the width
 specified by argument two (intw). Optional, must be one character, defaults
 to blank. If the pad character is blank, a leading minus sign follows any
 blank pad characters; otherwise a leading minus sign precedes any pad
 characters.

 %intlen Set to the value len, where the absolute value of len is the number of
 characters needed for the integer part of the first argument (num), with any
 leading zeroes stripped (or one zero if the integer part is zero), including one
 additional character if num is negative.

 If %intlen is returned with a negative value, that indicates truncation of the
 integer part of num; this occurs if all of the following conditions hold:

 ● Argument two (intw) is specified.
 ● The absolute value of len is greater than intw.
 ● Intw>0, or num<0, or num>=1.
 ● Argument four (opt) does not contain the letter 'V'.

 If num cannot be converted to a number, then len is returned as zero, and
 the result (value of %str) of #NUM2STR is the MISSING value.

 Otherwise, len is positive.

 As these rules indicate, %intlen, if supplied, allows the Fast/Unload program
 to continue when the first argument is non-numeric or the integer part is
 truncated in the result. If either of these conditions occur and %intlen is
 omitted, the Fast/Unload program is cancelled.

——
138 Fast/Unload Reference

——
 #NUM2STR: Convert number to string with decimal point
——

 Examples:

 %N_HUMAN = 6 * 1000 * 1000 * 1000
 #NUM2STR(%N_HUMAN) -> "6000000000"

 %PI = 3.14159265
 #NUM2STR(%PI) -> "3.14159265"
 #NUM2STR(%PI, , 3) -> "3.142"
 #NUM2STR(%PI, , 3, 'T') -> "3.141"

 %PCT7_5 = 7.5/100
 #NUM2STR(%PCT7_5) -> "0.075"
 #NUM2STR(%PCT7_5, , 4) -> "0.0750"
 #NUM2STR(%PCT7_5, 0, , , '*', %W) -> ".075"
 with ... %W = 1
 #NUM2STR(%PCT7_5, 2, , , '*', %W) -> "*0.075"
 with ... %W = 1

 %NEGP7_5 = - %PCT7_5
 #NUM2STR(%NEGP7_5) -> "-0.075"
 #NUM2STR(%NEGP7_5, 1, , , '*') -> "-.075"
 #NUM2STR(%NEGP7_5, 2, , , '*') -> "-0.075"
 #NUM2STR(%NEGP7_5, 3, , , '*') -> "-*0.075"
 #NUM2STR(%NEGP7_5, 3, , , ' ') -> " -0.075"

 %TBIL = 6.025
 %VISA = 18.5
 #NUM2STR(%TBIL, 1, 3, , '0') -> "6.025"
 #NUM2STR(%VISA, 1, 3, , '0', %W) -> "8.500"
 with ... %W = -2
 #NUM2STR(%VISA, 1, 3, 'V', '0', %W) -> "18.500"
 with ... %W = 2

 %BAD = 'PIZZA'
 #NUM2STR(%BAD, , , , , %W) -> MISSING value
 with ... %W = 0

 Non-zero values of %intlen, or terminating conditions, are shown in the following figure
 (see the discussion in “Run-time errors during standard #function calls” on page 100).

——
Fast/Unload Reference 139

——
Standard #Functions
——

 Errors: if %intlen present, set to corresponding number; if absent, cancel
 Fast/Unload with return code 8.

 -N N is the length required for the integer part of num,
 and n>intw and opt does not contain the letter “V”.
 0 Num can not be converted to a numeric value (%str is
 set to MISSING).
 ** Negative or non-numeric value for intw or fracw (this
 error always cancels Fast/Unload, regardless of the
 presence of %intlen).
 ** Invalid character in opt (this error always cancels
 Fast/Unload, regardless of the presence of %intlen).
 ** Length of pad not 1 (this error always cancels
 Fast/Unload, regardless of the presence of %intlen).

 Note: If you are creating a string to place in the Fast/Unload output file, you can also
 use the PUT with the AS STRING or AS DECIMAL clauses (see “PUT” on page 70).

 One difference between #NUM2STR and PUT AS STRING or PUT AS DECIMAL is that
 all conversion of fractional values to fixed width output formats in the PUT statement
 causes low order fraction digits to be dropped without rounding, but #NUM2STR offers
 rounding of dropped low order digits.

 This #function is new in Fast/Unload version 4.0.

——
140 Fast/Unload Reference

——
 #N2DATE: Convert number of seconds*300 to datetime string
——

 6.28 #N2DATE: Convert number of seconds*300 to
 datetime string

 The #N2DATE function converts a numeric datetime value expressed as the number of
 seconds*300 since January 1, 1900 into a datetime string value according to a specified
 datetime format string. It requires a datetime numeric value and a datetime format
 string. An optional output return code argument allows the FUEL program to intercept
 error conditions.

 %dat = #N2DATE(datn, fmt, %rc)

 where

 datn Numeric datetime value expressed as 300 times the number of seconds since 1
 Jan 1900 12:00 AM. This argument may not have the MISSING value.

 fmt Datetime format string to use for creating %dat.

 %rc Return code (optional, output)

 %dat Set to datetime string value, in format specified by fmt, corresponding to datn.

 For example, the following fragment prints the string 07/31/84 on the FUNPRINT
 dataset:

 %X = #DATE2N('8407301230', 'YYMMDDHHMI')
 %X = %X + 300 * 60 * 60 * 15 /* Add 15 hours
 %X = #N2DATE(%X, 'MM/DD/YY')
 REPORT %X

 Non-zero values of %rc, or terminating conditions, are shown in the following figure (see
 the discussion in “Run-time errors during standard #function calls” on page 100).

 Errors: if %rc present, set to corresponding number and set %dat to MISSING;
 if absent, cancel Fast/Unload with return code 8.

 4 fmt is not a valid datetime format.
 8 datn is out of range for fmt.

 Notes

 ● The inverse of this #function is #DATE2N.

 ● “Datetime Formats” on page 172 explains valid datetime formats and valid dates.

——
Fast/Unload Reference 141

——
Standard #Functions
——

 6.29 #ONEOF: See if string is in delimited list of
 strings

 The #ONEOF function determines whether a string is found in a delimited list of strings.
 It requires an input string to search for and a delimited list of strings to search within. It
 accepts an optional delimiter character, which is used to separate the strings in the list.

 %test = #ONEOF(str, list, delim)

 where

 str String to find; required.

 list String containing words to be searched within; required.

 delim Character used to separate strings in list; optional. Default is semi-colon (;).

 %test Set to 1 if str is one of the strings in list, delimited by delim. Otherwise, %test
 is set to 0.

 Examples:

 #ONEOF('HOW', 'HOW NOW', ' ') returns 1
 #ONEOF('NOW', 'HOW;NOW') returns 1
 #ONEOF('ABC', 'ABC') returns 1
 #ONEOF('', 'HOW;;NOW') returns 1
 #ONEOF('', ';HOW;NOW') returns 1
 #ONEOF('', 'HOW;NOW;') returns 1
 #ONEOF('', 'HOW;NOW') returns 0
 #ONEOF('NO', 'HOW;NOW') returns 0
 #ONEOF('HOW;NOW', 'HOW;NOW') returns 0
 #ONEOF('', '') returns 0

 The Fast/Unload run is cancelled with a return code of 8 when:

 ● Delim supplied, and length not 1.

 Notes

 ● If argument 1 (str) contains delim, 0 is returned.

 ● If argument 2 (list) is the null string, 0 is returned.

 ● If argument 1 (str) is the null string, 1 is returned if, and only if, there is a leading,
 trailing, or two adjacent copies of, delim.

——
142 Fast/Unload Reference

——
 #ONEOF: See if string is in delimited list of strings
——

 ● This #function is similar to the #FIND function (“#FIND: Word position of one word
 sequence within another” on page 126). Note, however, that both #FIND and
 #ONEOF are inferior to the SELECT statement, when the only purpose is to test
 whether an entity has one of several values (see “SELECT entity” on page 80).

 This #function is new in Fast/Unload version 4.0.

——
Fast/Unload Reference 143

——
Standard #Functions
——

 6.30 #PAD: Final substring, preceded by pad
 characters to specified length

 The #PAD function returns a padded final substring from a source string. It expects a
 source string argument and a numeric length of the output string. It accepts an optional
 pad character. #PAD returns the string that ends at the last position of the source string
 and is of the specified output length. If the output length is less than or equal to the
 length of the source string, the last length characters of the source are returned.
 Otherwise, the source string is padded to the output length by preceding it with sufficient
 copies of the pad character.

 %out = #PAD(str, pad, len)

 where

 str Source string.

 pad Optional pad character. Default is blank. If supplied, must be a string of length
 1.

 len Length of the output string. Must be numeric >= 0.

 %out If len is greater then #LEN(str):

 ● len - #LEN(str) copies of the pad character, followed by all of str

 Otherwise:

 ● substring from str starting at position #LEN(str) - len+1 with length len

 For example:

 #PAD('ABC', , 0) returns ''
 #PAD('ABC', , 1) returns 'C'
 #PAD('ABC', , 3) returns 'ABC'
 #PAD('ABC', , 4) returns ' ABC'
 #PAD(456, 0, 4) returns '0456'

 The Fast/Unload run is cancelled with a return code of 8 when:

 ● Len not numeric, or less than 0.

 ● Pad supplied, and length not 1.

——
144 Fast/Unload Reference

——
 #PAD: Final substring, preceded by pad characters to specified length
——

 Notes

 ● This is the same as the #RIGHT function, except for the order of the arguments
 (“#RIGHT: Final substring, preceded by pad characters to specified length” on page
 149).

 This #function is new in Fast/Unload version 4.0.

——
Fast/Unload Reference 145

——
Standard #Functions
——

 6.31 #PADR: Initial substring, followed by pad
 characters to specified length

 The #PADR function returns a padded initial substring from a source string. It expects a
 source string argument and a numeric length of the output string. It accepts an optional
 pad character. #PADR returns the string that begins at the first position of the source
 string and is of the specified output length. If the output length is less than or equal to
 the length of the source string, the first length characters of the source are returned.
 Otherwise, the source string is padded to the output length by following it with sufficient
 copies of the pad character.

 %out = #PADR(str, pad, len)

 where

 str Source string.

 pad Optional pad character. Default is blank. If supplied, must be a string of length
 1.

 len Length of the output string. Must be numeric >= 0.

 %out If len is greater then #LEN(str):

 ● all of str, followed by len - #LEN(str) copies of the pad character

 Otherwise:

 ● substring from str starting at position 1 with length len

 For example:

 #PADR('ABC', , 1) returns 'A'
 #PADR('ABC', , 3) returns 'ABC'
 #PADR('ABC', , 4) returns 'ABC '
 #PADR(4.6, 0, 4) returns '4.60'

 The Fast/Unload run is cancelled with a return code of 8 when:

 ● Len not numeric, or less than 0.

 ● Pad supplied, and length not 1.

——
146 Fast/Unload Reference

——
 #PADR: Initial substring, followed by pad characters to specified length
——

 Notes

 ● This is the same as the #LEFT function, except for the order of the arguments
 (“#LEFT: Initial substring, followed by pad characters to specified length” on page
 130).

 This #function is new in Fast/Unload version 4.0.

——
Fast/Unload Reference 147

——
Standard #Functions
——

 6.32 #REVERSE: Get reverse of string

 The #REVERSE function returns a copy of the input string, with the order of the bytes
 reversed. It expects a source string argument.

 %out = #REVERSE(str)

 where

 str Source string; required.

 %out Copy of str, with all the last input byte first, followed by the next to last input
 byte, etc.

 For example:

 #REVERSE('abc') returns 'cba'

 This #function has no cancelling conditions.

 This #function is new in Fast/Unload version 4.0.

——
148 Fast/Unload Reference

——
 #RIGHT: Final substring, preceded by pad characters to specified length
——

 6.33 #RIGHT: Final substring, preceded by pad
 characters to specified length

 The #RIGHT function returns a padded final substring from a source string. It expects a
 source string argument and a numeric length of the output string. It accepts an optional
 pad character. #RIGHT returns the string that ends at the last position of the source
 string and is of the specified output length. If the output length is less than or equal to
 the length of the source string, the last length characters of the source are returned.
 Otherwise, the source string is padded to the output length by preceding it with sufficient
 copies of the pad character.

 %out = #RIGHT(str, len, pad)

 where

 str Source string.

 len Length of the output string.

 pad Optional pad character. Default is blank. If supplied, must be a string of length
 1. Must be numeric >= 0.

 %out If len is greater then #LEN(str):

 ● len - #LEN(str) copies of the pad character, followed by all of str

 Otherwise:

 ● substring from str starting at position #LEN(str) - len+1 with length len

 For example:

 #RIGHT('ABC', 0) returns ''
 #RIGHT('ABC', 1) returns 'C'
 #RIGHT('ABC', 3) returns 'ABC'
 #RIGHT('ABC', 4) returns ' ABC'
 #RIGHT(456, 4, 0) returns '0456'

 The Fast/Unload run is cancelled with a return code of 8 when:

 ● Len not numeric, or less than 0.

 ● Pad supplied, and length not 1.

——
Fast/Unload Reference 149

——
Standard #Functions
——

 Notes

 ● This is the same as the #PAD function, except for the order of the arguments (see
 “#PAD: Final substring, preceded by pad characters to specified length” on page
 144).

 This #function is new in Fast/Unload version 4.0.

——
150 Fast/Unload Reference

——
 #SNDX: Create SOUNDEX code for string
——

 6.34 #SNDX: Create SOUNDEX code for string

 The #SNDX function calculates a SOUNDEX code for a string, producing the same
 result as the Model 204 $SNDX function. It expects a single argument and returns the
 SOUNDEX code for the string value of the argument.

 %out = #SNDX(str)

 where

 str String, presumed to contain a name.

 %out Set to the SOUNDEX code corresponding to str.

 For example, the following fragment will build values for an INVISIBLE KEY field which is
 the $SNDX value of the field NAME:

 UAI OINDEX
 FOR EACH RECORD
 FOR I FROM 1 TO NAME(#)
 ADD NAME_SNDX = #SNDX(NAME(I))
 END FOR
 UNLOAD
 END FOR

 This #function has no cancelling conditions.

——
Fast/Unload Reference 151

——
Standard #Functions
——

 6.35 #STRIP: Remove leading and/or trailing copies of
 pad character

 The #STRIP function removes leading, trailing, or both, copies of a pad character from a
 string. It requires a string to be stripped. It accepts an optional specification of which
 characters to strip (Leading, Trailing, or Both). It accepts an optional pad character
 argument, specifying the character to be stripped.

 %out = #STRIP(str, B|L|T, pad)

 where

 str String to be stripped; required.

 B|L|T Optional indicator of the type of strip:

 ● 'B...' (any string beginning with uppercase B): to strip Both leading and
 trailing pad characters.

 ● 'L...' (any string beginning with uppercase L): to strip Leading pad
 characters only.

 ● 'T...' (any string beginning with uppercase T): to strip Trailing pad
 characters only.

 Defaults to B.

 %out Set to a copy of str, with leading, trailing, or both, as specified, copies of pad
 removed.

 Examples:

 #STRIP(' ABC ') returns 'ABC'
 #STRIP(' ABC ', 'L') returns 'ABC '
 #STRIP(' ABC ', 'T') returns ' ABC'
 #STRIP('000123', 'L', '0') returns '123'

 The Fast/Unload run is cancelled with a return code of 8 when:

 ● B|L|T does not begin with either uppercase B, uppercase
 L, or uppercase T.

 ● Pad specified and length is not 1.

——
152 Fast/Unload Reference

——
 #STRIP: Remove leading and/or trailing copies of pad character
——

 Notes

 ● This #function is similar to the #DEBLANK function (“#DEBLANK: Remove leading
 and trailing blanks from substring” on page 124).

 This #function is new in Fast/Unload version 4.0.

——
Fast/Unload Reference 153

——
Standard #Functions
——

 6.36 #SUBSTR: Substring

 The #SUBSTR function returns a substring from within a source string. It expects a
 source string argument and a numeric byte position within the source string. It accepts
 an optional numeric maximum length of the output substring. #SUBSTR returns the
 string that begins at the indicated position of the source string and ends either at the end
 of the source string or when the supplied maximum length has been reached.

 %out = #SUBSTR(str, pos, len)

 where

 str Source string. For Fast/Unload version 4.3 and later. str may be longer than
 255 bytes.

 pos Beginning position within the source string for the desired substring. Must be
 numeric >= 1.

 len Optional maximum length of substring; default is 255. Must be numeric >= 0.

 %out Substring from str starting at position pos with length that is the minimum of len
 and #LEN(str) +1 - pos.

 For example, you might want to get the "right hand half" of a string (it will be to the right
 of the middle character if the string length is odd):

 %LEN = #LEN(%STR)
 %RIGHT = %LEN / 2 + 1 /* See note below
 %RIGHT = #SUBSTR(%STR, %RIGHT)

 The Fast/Unload run is cancelled with a return code of 8 when:

 ● Pos not numeric, or less than 1.

 ● Len not numeric, or less than 0.

 Notes

 ● You can omit the + 1 in the "right hand half" example above if you want to include
 the middle character, but you must check that the string is not shorter than 2 bytes.
 If it is shorter, omitting the + 1 will cause your program to terminate, because pos
 must be 1 or more.

 ● The maximum length of %out is #LEN(str) - pos + 1.

——
154 Fast/Unload Reference

——
 #SUBSTR: Substring
——

 ● To take an initial or final substring, you can also use the #functions described in
 “#LEFT: Initial substring, followed by pad characters to specified length” on page
 130 or “#RIGHT: Final substring, preceded by pad characters to specified length” on
 page 149.

——
Fast/Unload Reference 155

——
Standard #Functions
——

 6.37 #TIME: Current time and/or date

 The #TIME function returns the current date and time in a datetime string. It accepts an
 optional datetime format string, with a default that returns just time information. An
 optional output return code argument allows the FUEL program to intercept error
 conditions.

 %tim = #TIME(fmt, %rc)

 where

 fmt Optional datetime format string for %tim. Defaults to HH:MI:SS.

 %rc Return code (optional, output).

 %tim Set to datetime string with current date and time, using fmt.

 For example, the following fragment stores the current time in the last occurrence of the
 REORG_TIME field:

 ADD REORG_TIME = #TIME()

 Non-zero values of %rc, or terminating conditions, are shown in the following figure (see
 the discussion in “Run-time errors during standard #function calls” on page 100).

 Errors: if %rc present, set to corresponding number and set %tim to MISSING;
 if absent, cancel Fast/Unload with return code 8.

 4 fmt is not a valid datetime format.

 Notes

 ● The only difference between #TIME and #DATE is the default value for fmt.

 ● “Datetime Formats” on page 172 explains valid datetime formats.

——
156 Fast/Unload Reference

——
 #TRANSLATE: Change characters of string using from/to pairings
——

 6.38 #TRANSLATE: Change characters of string using
 from/to pairings

 The #TRANSLATE function returns a copy of the input string, with all characters which
 are contained in the input table translated to the corresponding characters in the output
 table. It expects a source string argument, and at least one of 3 optional string
 arguments. It accepts optional output table, input table, and pad character (used to
 extend the output table if it is shorter than the input table).

 %out = #TRANSLATE(str, tbl_out, tbl_in, pad)

 where

 str Source string; required.

 tbl_out String of "to" characters (optional). Default is null string. Trailing pad
 characters are added to this string, if needed, so that its length is equal to the
 length of tbl_in.

 tbl_in String of "from" characters, optional. Defaults to 256 characters consisting of all
 byte values, in order, that is, X'00010203...FCFDFEFF'.

 pad Pad character for tbl_out (optional, must be length 1). Default blank.

 %out Copy of str, with all characters which are contained in the input table translated
 to the corresponding characters in the output table.

 For example:

 #TRANSLATE('ab', 'x', 'b') returns .ax.
 #TRANSLATE('ab', , '', 'z') returns .ab.
 #TRANSLATE('ab', , , 'z') returns .zz.
 #TRANSLATE('ab', 'AB', , 'z') returns .zz.
 #TRANSLATE('ab', '', , 'z') returns .zz.

 The Fast/Unload run is cancelled with a return code of 8 when:

 ● Only str argument supplied.

 ● Pad supplied, and length not 1.

 Notes

 ● As a consequence of the default rules, if neither tbl_out nor tbl_in are supplied,
 %out is set to as many copies of pad as #LEN(str).

——
Fast/Unload Reference 157

——
Standard #Functions
——

 ● If a character occurs more than once in tbl_in, all instances of it after the first are
 ignored.

 ● As noted, the default tbl_in is a 256 byte string; it is not possible to specify such a
 value in Fast/Unload. If you want to specify a translation for all 256 characters, you
 can do the following:

 %TBL_OUT = ... /* A 255 byte value
 %TBL_FF = ... /* Value that X'FF' translates to
 %OUT = #TRANSLATE(%STR, %TBL_OUT, , %TBL_FF)

 This #function is new in Fast/Unload version 4.0.

——
158 Fast/Unload Reference

——
 #UPCASE: Change lowercase letters of string to uppercase
——

 6.39 #UPCASE: Change lowercase letters of string to
 uppercase

 The #UPCASE function returns a copy of the input string, with all lowercase EBCDIC
 letters changed to the corresponding uppercase letters. It expects a source string
 argument.

 %out = #UPCASE(str)

 where

 str Source string; required.

 %out Copy of str, with all lowercase EBCDIC letters changed to their uppercase
 EBCDIC equivalents.

 For example:

 #UPCASE('?abc') returns '?ABC'
 #UPCASE('?ABC') returns '?ABC'
 #UPCASE('') returns ''

 This #function has no cancelling conditions.

 This #function is new in Fast/Unload version 4.0.

——
Fast/Unload Reference 159

——
Standard #Functions
——

 6.40 #VERPOS: Position in string of character not in or
 in list

 The #VERPOS function scans a search string from an optional starting position and then
 finds either the first character that is Not in a list of target characters, or the first
 character that Matches a character in a list of target characters. It expects a string
 argument that is searched and a string comprising the target characters. It accepts an
 optional argument indicating the type of search to perform and an optional position at
 which to start the search. #VERPOS returns the starting position of the identified
 character, or 0 as follows:

 ● For the Not matched (default) search, returns the position in the search string of the
 first character not in the target string, or 0 if all characters in the search string are in
 the target string.

 ● For the Matched search, returns the position in the search string of the first
 character which is in the target string, or 0 if no characters in the search string are in
 the target string.

 %opos = #VERPOS(search, target, NorM, pos)

 where

 search String to be searched.

 target String containing set of target characters.

 NorM Optional indicator of the type of search being formed:

 ● 'N...' (any string beginning with uppercase N): to find position of first
 character of search not present in target.
 ● 'M...' (any string beginning with uppercase M): to find position of first
 character of search present in target.

 Defaults to N.

 pos Optional position within search to begin scanning. Must be a positive numeric
 value, default is 1.

 %opos Set to position of first character in search that is not in ('N') or is in ('M') target,
 at or after the position identified by pos.

——
160 Fast/Unload Reference

——
 #VERPOS: Position in string of character not in or in list
——

 Examples:

 #VERPOS('SIRIUS', 'ETANOISHRDLU') returns 0
 #VERPOS('HOMER', 'MRH') returns 2
 #VERPOS('HOMER', 'MRH', 'M') returns 1
 #VERPOS('PLATO', 'AEIOU', , 3) returns 4
 #VERPOS('FRED', '', 'N', 2) returns 2
 #VERPOS('BETTY', '', , 'M', 3) returns 0
 #VERPOS('WILMA', 'AEIOU', 'M', 3) returns 5

 The Fast/Unload run is cancelled with a return code of 8 when:

 ● NorM does not begin with either uppercase N or uppercase
 M.

 ● Pos not numeric, or less than 1.

 Notes

 ● If search is null, #VERPOS returns 0, as long as the other arguments are not in
 error. If pos is greater than #LEN(search), #VERPOS returns 0.

 ● If search is non-null and target is null, #VERPOS returns 0 if NorM starts with 'M',
 otherwise #VERPOS returns pos.

 ● The function which performs this service is usually called "verify", but #VERPOS is
 used to distinguish it from CCA's $VERIFY function:

 ▪ $VERIFY has only a "Boolean" (0 or 1) return; #VERPOS returns a position or 0
 to indicate search "failed".
 ▪ $VERIFY only has a "nomatch" type of search.
 ▪ $VERIFY does not have a pos argument.
 ▪ $VERIFY returns 0 if there is a character in search which is not in target;
 #VERPOS (Nomatch) returns 0 if there is no such character.
 ▪ $VERIFY returns "some character in search is not in target" (0) if search is null
 and target is not null; #VERPOS returns "all characters in search are in target" if
 search is null, whether or not target is null.

——
Fast/Unload Reference 161

——
Standard #Functions
——

 6.41 #WORD: Return nth blank-delimited word from
 string

 The #WORD function returns the designated blank-delimited word within a string. It
 requires an input string and a word number within the string.

 %out = #WORD(str, word)

 where

 str
 String containing blank-delimited words; required.

 word Number of word within str to return; required. Must be numeric greater than or
 equal to 1.

 %out Set to the wordth blank-delimited word within str. If word is greater than the
 number of words in str, the null string is returned.

 Examples:

 #WORD('A B C', 1) returns 'A'
 #WORD('A B C', 2) returns 'B'
 #WORD('A B C', 3) returns 'C'
 #WORD('A B C', 4) returns ''
 #WORD(' ', 1) returns ''

 The Fast/Unload run is cancelled with a return code of 8 when:

 ● word is not numeric, or less than 1.

 Notes

 ● The User Language $WORD function also has an optional delimiter character
 argument, and its “word” argument is argument number 3.

 This #function is new in Fast/Unload version 4.0.

——
162 Fast/Unload Reference

——
 #WORDS: Count number of blank-delimited word in string
——

 6.42 #WORDS: Count number of blank-delimited word
 in string

 The #WORDS function returns the number of blank-delimited word in a string. It
 requires an input string.

 %count = #WORDS(str)

 where

 str String containing blank-delimited words; required.

 %count Set to number of word within str.

 Examples:

 #WORDS('A B C') returns 3
 #WORDS('ABC') returns 1
 #WORDS(' ') returns 0

 This #function has no cancelling conditions.

 Notes

 ● The User Language $WORDS function also has an optional delimiter character
 argument.

 This #function is new in Fast/Unload version 4.0.

——
Fast/Unload Reference 163

——
Standard #Functions
——

 6.43 #X2C: Convert hex representation to character
 string

 The #X2C function converts a string of hexadecimal characters (the digits 0-9 and the
 letters A-F) to the corresponding byte string. Each two characters in the input string
 become one character in the result string, with a leading 0 added to input strings of odd
 length.

 %str = #X2C(hex)

 where

 hex String to convert; contains only the characters 0-9 and A-F.

 %str Set to the string of bytes represented by hex.

 For example, in

 %JUNK = #X2C('F1F2F3')

 %JUNK would be set to the string 123 (EBCDIC X'F1F2F3'), and in

 %JUNK = #X2C('102')

 %JUNK would be set to EBCDIC X'0102' which is a non-displayable string.

 The Fast/Unload run is cancelled with a return code of 8 when:

 ● Non-hexadecimal digit character in hex.

 Notes

 ● The inverse of this #function is #C2X.

 ● If the number of characters of hex is odd, a leading character 0 is added for the
 conversion. The User Language $X2C function
 (http://m204wiki.rocketsoftware.com/index.php/$X2C) requires an even number of
 characters in hex.

 ● The $X2C function returns the null string if hex has an error.

 ● The User Language $IHEXA function
 (http://m204wiki.rocketsoftware.com/index.php/$IHexA) converts any non-hex
 characters in hex to 0.

——
164 Fast/Unload Reference

——
 BLOB/CLOB processing considerations
——

——————
CHAPTER 7 BLOB/CLOB processing considerations

 As of version 4.3, Fast/Unload includes the ability to operate on BLOB and CLOB
 (collectively called “Lob”) fields, which were introduced with V6R1 of Model 204.

 The following Fast/Unload 4.3 features support these fields:

 ● NEW field declaration statements may have a WITH CLOB or WITH BLOB
 designation (for example, for creating a Lob field by concatenating “old” non-Lob
 fields). See “NEW statement option for Lobs”.

 ● #functions may both accept arguments and produce results in excess of 255 bytes.
 See:
 ▪ “#CONCAT supports long string arguments and result” on page 166
 ▪ “#LEN supports a long string argument” on page 166
 ▪ “#SUBSTR supports a long string argument and result” on page 166

 ● The contexts where FUEL %variables may contain strings longer than 255 bytes,
 the statements, #functions, and directives that allow string values longer than 255
 bytes, and the contexts where Lob fields may be used are specified (see “Contexts
 for long strings and Lobs” on page 167).

 ● A job statistic reports Table E page usage for each Lob field (“Lob statistics” on
 page 169).

 The above features are discussed in the rest of this chapter, at the end of which is a pair
 of examples that use these features (“Lob field examples” on page 169).

 7.1 Statement and #function modifications

 The NEW statement and three #functions are changed to define Lob fields and work with
 strings longer than 255 bytes.

 7.1.1 NEW statement option for Lobs

 As of version 4.3, the NEW statement (“NEW fieldname [WITH BLOB | CLOB]” on page
 64) lets you specify that the new field you are defining is either a BLOB or CLOB field.
 This is primarily useful for a UAI type unload, allowing you to create values in the new
 field that are loaded by LAI as Lob occurrences.

——
Fast/Unload Reference 165

——
BLOB/CLOB processing considerations
——

 The syntax is:

 NEW fieldname WITH BLOB | CLOB

 Note: Version 4.3 also introduces a change to the default attributes that are assigned to
 fields defined with NEW. As of 4.3, the default attributes are NFRV, NKEY, NCOD,
 UPDATE IN PLACE (formerly, they were FRV, KEY, CODED, UPDATE AT END).

 See “Creating a NEW Lob field” on page 169 for an example that uses a Lob option.

 7.1.2 #CONCAT supports long string arguments and result

 The arguments of #CONCAT (“#CONCAT: Concatenate strings” on page 103) may now
 be string values that exceed 255 bytes in length (as the contents of %variables or Lob
 fields).

 The result of #CONCAT may now be a string longer than 255 bytes.

 There is no compatibility issue with previous use of the #CONCAT function: the
 maximum length of an argument was 255 bytes, and if the concatenation of the
 arguments exceeded 255 bytes, the FUEL program was terminated.

 See “Creating a NEW Lob field” on page 169 for an example that uses this #function
 with a long string value.

 7.1.3 #LEN supports a long string argument

 The first argument of #LEN (“#LEN: Length of string” on page 132) may now be a string
 value that exceeds 255 bytes in length (as the content of a %variable or Lob field).

 There is no compatibility issue with previous use of the #LEN function, because the
 maximum length of an argument was 255 bytes.

 See “Structured unload of Lob field” on page 170 for an example that uses this #function
 with a long string value.

 7.1.4 #SUBSTR supports a long string argument and result

 The first argument of #SUBSTR (“#SUBSTR: Substring” on page 154) may now be a
 string value that exceeds 255 bytes in length (as the content of a %variable or Lob field).

 The result of #SUBSTR may now be a string longer than 255 bytes.

 There is no compatibility issue with previous use of the #SUBSTR function, because the
 maximum length of an argument was 255 bytes.

——
166 Fast/Unload Reference

——
 Statement and #function modifications
——

 See “Structured unload of Lob field” on page 170 for an example that uses this #function
 with a long string value.

 7.2 Contexts for long strings and Lobs

 The version 4.3 Fast/Unload accommodations for Lob fields include allowing %variables
 to contain strings longer than 255 bytes and specifying the contexts that allow such
 strings and Lob fields.

 7.2.1 %Variables containing strings longer than 255

 The value of a %variable may be a string longer than 255 bytes. This can arise as the
 result of:

 %v1 = %v2 assignment from another %variable which contains a string
 longer than 255 bytes

 %v = fld assignment from a Lob field

 %v = #SUBSTR(...) assignment from a substring of a string value longer than 255
 bytes

 %v = #CONCAT(...) assignment from the concatenation of strings, whose lengths
 total more than 255 bytes

 “Permitted use of long string values” specifies the contexts in which a %variable may be
 used if it contains a string longer than 255 bytes.

 7.2.2 Permitted use of long string values

 A long string value may be used in the following contexts:

 ● as an argument of #CONCAT

 ● as the argument of #LEN

 ● as the first argument of #SUBSTR

 ● as the right hand side of an assignment to a %variable

 ● as the right hand side of a CHANGE or ADD[C] statement, when the field on the left
 hand side is a Lob

——
Fast/Unload Reference 167

——
BLOB/CLOB processing considerations
——

 If the value of a %variable is used in any other context, and it is a string longer than 255
 bytes, the FUEL program is terminated. For example, the following program creates one
 line of output, because the PUT statement does not allow a %variable containing a string
 longer than 255:

 OPEN MYFILE
 %X = #LEFT('ABC', 150, 'Z')
 PUT %X /* Length is 150
 OUTPUT
 %X = #CONCAT(%X, %X) /* Length is 300
 PUT %X /* FUEL program will be cancelled here
 OUTPUT
 FOR EACH RECORD /* Make it a legal FUEL program
 END FOR

 Other examples of contexts prohibiting a %variable containing a string longer than 255
 bytes include arithmetic expressions, comparisons in the IF statement, and more.

 Note that, since the EXISTS and MISSING clauses of the IF and ELSEIF statements do
 not reference the value of a %variable, you may use them to test a %variable even if it
 contains a string longer than 255 bytes. That is, the following statement is acceptable in
 all cases:

 IF %S MISSING THEN /* OK even if #LEN(%S) > 255

 7.2.3 Permitted use of Lobs

 The value of a Lob field may only be used in the contexts discussed above that allow a
 string longer than 255 bytes, even if the actual length of the Lob field occurrence does
 not exceed 255. Use of a Lob field in an invalid context causes the compilation of the
 FUEL program to fail; it never begins execution.

 There are four contexts in which any field, Lob or not, may be referenced:

 ● The UNLOAD(C) statement

 ● The EXISTS and MISSING clauses of an IF/ELSEIF statement

 ● The #IF/#ELSEIF directives

 ● Preceding the number sign (#) “qualifier,” which specifies the number of
 occurrences of the field

 For example, the following statement is valid for any type of field:

 FOR I FROM 1 TO BLOB(#) /* OK for any field

——
168 Fast/Unload Reference

——
 Lob statistics
——

 7.3 Lob statistics

 If you display field statistics in the Fast/Unload job statistics, the total number of pages
 used in Table E is shown for each Lob field on the second line of the field's display.

 Note that the length statistics given for a Lob field, just like other fields, is based on the
 field occurrence values: in this case, the number of bytes in Table E used by each field
 occurrence value (that is, unused bytes in Table E pages are not included in the length
 statistics).

 The Table B usage for a Lob field is:

 ● 27 bytes for a non-preallocated Lob field occurrence (in addition to the overhead, as
 usual, for a count byte and field code)

 ● 28 bytes for a preallocated Lob field occurrence

 For more information about the field statistics, see “FSTATS [AVGTOT | MINMAX]” on
 page 50.

 7.4 Lob field examples

 7.4.1 Creating a NEW Lob field

 The following example unloads file PRODFILE such that, when it is reloaded, all
 occurrences of field COMMENT are combined into a single Lob field named
 ALLCOMMENTS:

 OPEN PRODFILE
 UAI OINDEX
 NEW ALLCOMMENTS WITH BLOB
 FOR EACH RECORD
 IF COMMENT EXISTS THEN
 %X = '' /* Initialize BLOB value
 FOR I FROM 1 TO COMMENT(#)
 %X = #CONCAT(%X, COMMENT)
 DELETE COMMENT
 END FOR
 ADD ALLCOMMENTS = %X
 END IF
 UNLOAD
 END FOR

 Note that the first occurrence of COMMENT is used in each iteration of the FOR I loop;
 when it is deleted at the tail of the loop, the occurrence after it becomes the first
 occurrence on the next iteration.

——
Fast/Unload Reference 169

——
BLOB/CLOB processing considerations
——

 7.4.2 Structured unload of Lob field

 The following example unloads file PRODFILE, creating one output record for each 255
 bytes (the maximum for a PUT statement) of the Lob field named ALLCOMMENTS:

 OPEN PRODFILE
 FOR EACH RECORD
 PUT '* '
 PUT CUSTOMER_ID
 OUTPUT
 IF ALLCOMMENTS EXISTS THEN
 %COM = ALLCOMMENTS
 %LENGTH = #LEN(ALLCOMMENTS)
 %I = 1
 %LIM = %LENGTH - 254
 REPEAT
 IF +%I >= %LIM THEN
 LEAVE REPEAT
 END IF
 %X = #SUBSTR(%COM, %I, 255)
 PUT %X
 OUTPUT
 %I = %I + 255
 END REPEAT
 %X = #SUBSTR(%COM, %I)
 PUT %X
 OUTPUT
 END IF
 END FOR

 Important notes:

 ● The plus sign (+) in IF +%I >= %LIM is very important — otherwise a string
 comparison will be done, which is not correct. For example, if the length is
 1,000,000, the first 255 bytes would be unloaded and the final PUT will fail, because
 then the length of %X would be 1,000,000-254.

 ● The above approach is vastly superior to an approach that uses something like
 %COM = $SUBSTR(#COM, 256) to repeatedly remove the first 255 bytes, because
 that would involve unnecessary copying on the order of the square of the number of
 bytes in each field.

——
170 Fast/Unload Reference

——
 Datetime Processing Considerations
——

——————
CHAPTER 8 Datetime Processing Considerations

 This chapter presents date processing issues, including usage of Fast/Unload past the
 year 1999, an explanation of its processing of dates, and any rules and restrictions you
 must follow to achieve correct results using date values with Fast/Unload.

 Fast/Unload uses dates in the following ways:

 ● To examine the CPU clock (as returned by the STCK hardware instruction) to
 determine the current date, in case Fast/Unload is under a rental or trial agreement

 ● As arguments to various #functions, and returned values from them

 Please note that in addition to the above date processing performed by Fast/Unload, it
 also unloads Model 204 files and allows manipulation of other values which might
 contain two-digit year date values. The customer must ensure that any application using
 that data has an algorithm or rule for unambiguously determining the correct century for
 the values.

 For example, the UAI statement with the SORT clause allows you to sort by a Model 204
 field; if you are sorting by a two-digit year date field, you need to supply information to
 enable the sort program to determine the century. You can do this using the FORMAT
 keyword in the UAI SORT items, as described in “UNLOAD ALL INFORMATION or UAI”
 on page 88.

 For headers on pages or rows that occur on printed pages or displayed screens, Sirius
 Software products generally use a full four-digit year format, although they may display
 dates with two-digit years in circumstances where the proper century can be inferred
 from the context.

 You must examine all uses of date values in your applications to ensure that each of
 your applications produces correct results. Furthermore, both the operating system and
 Model 204 must correctly process and transmit dates beyond 1999 in order for
 Fast/Unload to operate properly.

 Most Sirius date processing involves the use of datetime #functions. Occasionally, we
 refer to the "#DATExxx" functions; this is meant to also include #TIME and the
 #Nxxx2DATE functions.

 In operational terms, there are two classes of datetime #functions:

 1. #Functions using a numeric value to represent a datetime, where 0 represents
 12:00 AM, 1 January 1900; for example, #DATE2NM and #NM2DATE (number of
 milliseconds since the start of 1900).

——
Fast/Unload Reference 171

——
Datetime Processing Considerations
——

 These #functions perform non-strict matching of date strings to date formats; for
 example, a leading blank is allowed for the HH token.

 2. Other #functions that only manipulate strings and associated datetime formats; for
 example, #DATECHG (add number of days to given date).

 These #functions perform strict matching of date strings to date formats; for
 example, a leading blank is not allowed for the HH token. These #functions
 generally produce the same results as CCA $DATExxx functions, with additional
 enhancements.

 See “Strict and non-strict format matching” on page 179 for a discussion of strict and
 non-strict format matching, including a technique for accomplishing strict date checking
 using the non-strict #functions.

 Notes:

 ● All #DATExxx functions that can have argument errors (that is, all #functions except
 #DATEFMT) accept an optional “return code” argument. If an argument error
 occurs and the return code argument is absent, Fast/Unload terminates; if the return
 code argment is present, an error will set the return code to a non-zero number and
 the result of the #function is the MISSING value.

 The User Language $DATExxx and $SIR_DATExxx functions take a different
 approach to error handling; each uses a special return value (or class of values) to
 indicate an argument error.

 ● The default format for #DATE is “YYYY-MM-DD”; the default for $DATE and
 $SIR_DATE is “YY-MM-DD”.

 The rest of this chapter contains a discussion of datetime formats, valid datetime strings,
 processing of two-digit year values, and datetime error handling. It also contains
 example datetime formats and corresponding example datetime strings. Finally, there is
 a list of benefits of Sirius datetime processing.

 8.1 Datetime Formats

 The representation of a date is determined by a datetime format. This value is a
 character string, composed of the concatenation of tokens (for example, "YYYY" for a
 four-digit year, and "MI" for minutes) and separator characters (for example, "/" in
 "MM/DD/YY" for two-digit month, day, and year separated by slashes).

 These datetime format strings are used in many products in addition to Fast/Unload.
 The products using datetime format strings are:

 ● Fast/Unload

——
172 Fast/Unload Reference

——
 Datetime Formats
——

 ● Janus Open Client
 ● Janus Open Server
 ● Janus Specialty Data Store
 ● Janus Web Server
 ● SirDBA
 ● Sirius Functions
 ● Sir2000 Field Migration Facility
 ● Sir2000 User Language Tools

 The rules for these datetime format strings are consistent throughout all these products,
 though certain uses of these strings might impose extra restrictions. For example, a
 leading blank is allowed for the HH, DD, and MM parts of a date argument using a non-
 strict date #function, such as #DATE2NS, but is not allowed for the strict date #functions.

 There are certain rules applied to determine if a format is valid. The basic rules are:

 1. If a format string contains a numeric datetime token (that is "ND", "NM", or "NS"),
 then the format string must consist of only one token. Numeric datetime tokens are
 only supported in format strings for the Sir2000 Field Migration Facility.

 2. You must specify at least one time, weekday, or date token.

 3. Except for "weekday", you can't specify redundant information. More specifically
 this means

 ● Except for "I", no token can be specified twice.

 ● At most one year format (contains Y) can be specified.

 ● At most one month format (contains MON, Mon, or MM) can be specified.

 ● At most one day format (DD or Day) can be specified.

 ● At most one weekday format (WKD, Wkd, WKDAY, or Wkday) can be specified.

 ● If AM is specified, then PM can not be specified.

 ● At most one fractions-of-a-second format (contains X) can be specified.

 ● If DDD is specified, then neither a day nor month format can be.

 4. If ZYY is specified in a format string, no other token that denotes a variable-length
 value may be used.

 5. If a format string contains other tokens that denote variable length values, then an *
 token may only appear as the last character of the format string.

——
Fast/Unload Reference 173

——
Datetime Processing Considerations
——

 6. The DAY token may not be immediately followed by another token whose value may
 be numeric, regardless of whether the following token repsents a variable length
 value. Thus, DAY may not be followed by *, I, YY, YYYY, CYY, MM, HH, MI, SS, X,
 XX, or XXX; DAY may not be followed by a decimal digit separator, and DAY may
 not be followed by a quote followed by a decimal digit.

 7. When a pair of format strings are used for transforming date values, for example for
 #DATECNV or processing of updates to SIRFIELD RELATEd fields, additional rules
 apply to the pattern matching tokens:

 ● If one of the format strings includes one or more "I" tokens, then the other
 format string must contain the same number of "I" tokens. Note that the
 placement of "I" tokens within the format strings is not restricted. The "I" tokens
 are processed left to right, with each character from the input string that
 corresponds to the nth "I" token in the input format being copied unchanged to
 the character position in the output string that corresponds to the nth "I" token in
 the output format.

 ● If one of the format strings contains an asterisk (*) token, then the other format
 string must also contain an asterisk token. All of the characters from the input
 string that correspond to the asterisk token in the input format, if any, are
 copied unaltered to the output string, begining in the position that corresponds
 to the asterisk token in the output format.

 SIRFIELD is part of the Sir2000 Field Migration Facility.

 8. The maximum length of a format string is 100 characters.

 Note: A common mistake is to use "MM" for minutes; it should be "MI".

 The valid tokens in a date format are shown in the following list. In general, the output
 format rule for a token is shown. For some of the #functions, the input format rule for a
 token is the same as the output format rule; this is the definition of "strict date format
 matching." However, non-strict #functions sometimes allow a string to match a token on
 input that would not be produced by that token on output.

 All of the tokens that match alphabetic strings (for example, "MON") match any case for
 non-strict matching. All other tokens that have differing strict and non-strict matching
 rules are listed under "Special date format rules" in the index at the back of the manual,
 and usage notes for them are contained in “Datetime and format examples” on page
 180. Each input datetime format argument in the description of a #function specificies
 whether the use of the format observes strict or non-strict format matching. See “Strict
 and non-strict format matching” on page 179.

 NM numeric datetime value containing the number of milliseconds (1/1000 of a
 second) since January 1, 1900 at 12:00 AM. (This token is allowed only in
 the Sir2000 Field Migration Facility.)

——
174 Fast/Unload Reference

——
 Datetime Formats
——

 NS numeric datetime value containing the number seconds since January 1,
 1900 at 12:00 AM. (This token is allowed only in the Sir2000 Field Migration
 Facility.)
 ND numeric date value containing the number of days since January 1, 1900.
 (This token is allowed only in the Sir2000 Field Migration Facility.)
 * Ignore entire variable-length substring matching pattern, if any, when only
 retrieving a date value. Substitute with null string when only creating a date
 value. When copying date values, copy entire variable-length substring
 matching pattern, if any, from input value to location identified by * token in
 output string. See “Datetime and format examples” on page 180.
 I Ignore corresponding input character when only retrieving a date value.
 Store a blank in corresponding output character when only creating a date
 value. When copying date values, copy each character matching an I token
 from from the input value to location in the output string identified by the
 corresping I token in the output format. See “Datetime and format examples”
 on page 180.
 " Following character is "quoted", that is, it acts as a separator character. See
 “Datetime and format examples” on page 180.
 YYYY Four-digit year
 YY Two-digit year
 CYY Year minus 1900 (three digits, including any leading zero). See “Datetime
 and format examples” on page 180.
 ZYY Year minus 1900, two-digit or three-digit year number, excluding any leading
 zero (variable length data). Non-strict #functions allow a three-digit number
 with leading zero on input, but any number less than 100 always produces a
 two-digit number on output. See “Datetime and format examples” on page
 180.
 MONTH Full-month name (uppercase variable length). Non-strict #functions allow
 any mixture of uppercase and lowercase on input, but all uppercase is
 always produced on output.
 Month Full-month name (mixed-case variable length). Non-strict #functions allow
 any mixture of uppercase and lowercase on input, but an initial uppercase
 letter followed by all lowercase is always produced on output.
 MON Three-character month abbreviation (uppercase). Non-strict #functions allow
 any mixture of upper and lowercase on input, but all uppercase is always
 produced on output.
 Mon Three-character month abbreviation (mixed case). Non-strict #functions
 allow any mixture of upper and lower case on input, but initial upper case
 letter followed by all lowercase is always produced on output.
 MM Two-digit month number. Non-strict #functions allow a two-character
 number with leading blank on input, but two decimal digits are always
 produced on output. See “Datetime and format examples” on page 180.
 BM Two-character month number; if less than 10, first character is blank. Non-
 strict #functions allow a two-digit number with leading zero on input, but any
 number less than 10 always produces a blank followed by a decimal digit on
 output. See “Datetime and format examples” on page 180.
 DDD Three-digit Julian day number

——
Fast/Unload Reference 175

——
Datetime Processing Considerations
——

 DD Two-digit day number. Non-strict #functions allow a two-character number
 with leading blank on input, but two decimal digits are always produced on
 output. See “Datetime and format examples” on page 180.
 BD Two-character day number; if less than 10, first character is blank. Non-
 strict #functions allow a two-digit number with leading zero on input, but any
 number less than 10 always produces a blank followed by a decimal digit on
 output. See “Datetime and format examples” on page 180.
 DAY One-digit or two-digit day number (variable length data). Non-strict
 #functions allow a two-digit number with leading zero on input, but any
 number less than 10 always produces a one-digit number on output. See
 “Datetime and format examples” on page 180.
 WKDAY Full day-of-week name (uppercase variable length). Non-strict #functions
 allow any mixture of uppercase and lowercase on input, but all uppercase is
 always produced on output.
 Wkday Full day-of-week name (mixed-case variable length). Non-strict #functions
 allow any mixture of uppercase and lowercase on input, but initial upper
 case letter followed by all lowercase is always produced on output.
 WKD Three-character day-of-week abbreviation (uppercase). Non-strict
 #functions allow any mixture of uppercase and lowercase on input, but all
 uppercase is always produced on output.
 Wkd Three-character day-of-week abbreviation (mixed case). Non-strict
 #functions allow any mixture of uppercase and lowercase on input, but initial
 upper case letter followed by all lowercase is always produced on output.
 HH Two-digit hour number. Non-strict #functions allow a two-character number
 with leading blank on input, but two decimal digits are always produced on
 output. See “Datetime and format examples” on page 180.
 BH Two-character hour number; if less than 10, first character is blank. Non-
 strict #functions allow a two-digit number with leading zero on input, but any
 number less than 10 always produces a blank followed by a decimal digit on
 output. See “Datetime and format examples” on page 180.
 MI Two-digit minute number
 SS Two-digit second number
 X Tenths of a second
 XX Hundredths of a second
 XXX Thousandths of a second (milliseconds)
 AM AM/PM indicator
 PM AM/PM indicator

 The valid separators in a date format are:

 blank (" ")
 apostrophe ("'")
 slash ("/")
 colon (":")
 hyphen ("-")
 back slash ("\")
 period (".")
 comma (",")

——
176 Fast/Unload Reference

——
 Datetime Formats
——

 underscore ("_")
 left parenthesis ("(")
 right parenthesis (")")
 plus ("+")
 vertical bar ("|")
 equals ("=")
 ampersand ("&")
 at sign ("@")
 sharp ("#")
 the decimal digits ("0" - "9").
 In addition, any character may be a separator character if preceeded by the quoting
 character (").

 See “Datetime and format examples” on page 180 for examples which include use of
 various separator characters.

 8.2 Valid Datetimes

 For a datetime string to be valid it must meet the following criteria:

 ● Its length must be less than 128 characters.
 ● It must be compatible with its corresponding format string.
 ● It must represent a valid date and/or time. For example, at most 23:59:59.999 for a
 time, 01-12 for a month, 01-31 or less (depending on the month) for a day, February
 29 is only valid in leap years (only centuries divisible by 4 are leap years: 2000 is
 but neither 1800, 1900, nor 2100 are).

 Note: Weekdays are not checked for consistency against the date; for example,
 both Saturday, 02/15/97 and Friday, 02/15/97 are valid.
 ● It must be within the date range allowed for the corresponding format. A datetime
 string used with a CYY or ZYY format can only represent dates from 1900 to 2899,
 inclusive. A datetime string used with a YY format can only represent dates in a
 range of 100 or less years, as determined by CENTSPAN and SPANSIZE. The
 valid range of dates for all other formats is from 1 January 1753 thru 31 December
 9999.

 8.3 Processing Dates With Two-Digit Year Values

 A date field with only two digits for the year value is capable of representing a range of
 up to one hundred years. When we compare a pair of two-digit year values we are
 accustomed to thinking of the century as fixed, so that all dates are either "19xx" or
 "20xx". However, a date field with two-digit year values can actually represent dates
 from two different centuries, provided that the range of dates does not exceed 100
 years.

——
Fast/Unload Reference 177

——
Datetime Processing Considerations
——

 8.3.1 CENTSPAN

 CENTSPAN provides a mechanism for unambiguously converting dates with two-digit
 year values into dates with four-digit year values. The CENTSPAN mechanism allows
 two-digit year values to span two centuries without confusion. CENTSPAN identifies the
 four-digit year value that is the start of a range of years represented by the two-digit
 year values.

 CENTSPAN may be specified as an absolute unsigned four digit value between 1753
 and 9999, or it may be specified as a relative signed value between -99 and +99,
 inclusive. A relative CENTSPAN value is dynamically converted to an effective absolute
 value before it is used to perform a YY to YYYY conversion. The effective CENTSPAN
 value is formed by adding the relative CENTSPAN to the current four-digit year value at
 the time the relative value is converted.

HHLL

Defines 100 year period

HHLL+99

Conversion rules, YY to YYYY
if YY < LL YYYY = (HH+1)YY
else YYYY = HHYY

HHLL = absolute or effective
CENTSPAN

1947 2046
19YY

2000
20YY

Example:

CENTSPAN = -50
current date = 1997
effective CENTSPAN = 1947

 A simple algorithm is used to convert a two-digit year value (YY) to a four-digit year
 value, using a four-digit absolute or effective CENTSPAN value (HHLL). If the two-digit
 year value is less than the low-order two digits of the CENTSPAN value, then the
 resulting century is one greater than the high-order two digits of the CENTSPAN value.
 Otherwise the resulting century is the same as the high-order two digits of the
 CENTSPAN value.

 Using all one hundred available years for mapping two-digit year values can cause
 significant confusion and result in data integrity errors: dates just above and just below
 the 100-year window are mapped to the other end of the window. From the previous
 example, the date "47" will be intepreted as 1947, when it could have conceivably been
 2047. Similarly, the date "46" will be intepreted as 2046, when it might have been 1946.

100 year periodCENTSPAN CENTSPAN+99

ambiguity at each endpoint

CENTSPAN too low
CENTSPAN too high

(1947) (2046)

 If CENTSPAN is set to a value that is too high, dates that are just prior to CENTSPAN
 will appear to occur 100 years hence. If CENTSPAN is set to a value that is too low,
 dates that fall just after CENTSPAN+99 will appear to have occured 100 years earlier. A
 full one-hundred year window also can not detect attempts to represent more than one
 hundred years of values with a two-digit year.

——
178 Fast/Unload Reference

——
 Processing Dates With Two-Digit Year Values
——

 8.3.2 SPANSIZE

 There is a method to protect from the ambiguities that can occur at each end of the
 100-year window defined by CENTSPAN. SPANSIZE is used to restrict the size of the
 window used for mapping two-digit year values. The effect is to create two guard bands,
 one just below the date window and one just above. An attempt to represent a date
 value that lands in a guard band produces an error.

 Each guard band contains CENTSPAN-SPANSIZE years, hence a SPANSIZE of 100
 removes the protection. SPANSIZE is a value which you can customize in your load
 module; see “CENTSPAN and SPANSIZE” on page 294. If you do not customize it, the
 value of SPANSIZE is 90, which provides protection for two ten year windows: one
 below the CENTSPAN setting and one starting at CENTSPAN+90. Note that in
 Fast/Unload version 3.0, SPANSIZE is 100 (and it can not be customized). From our
 previous example:

Example: CENTSPAN = -50
SPANSIZE = 90
current date = 1997

endpoint YY values illegal

19YY
1947 20362000

20YY
1937-1946 2037-2046

 An attempt to represent the values "37" through "46" will be rejected. This protects the
 range 1937 through 1946 as well as the range 2037 through 2046. Note that an
 intended value of 2047, expressed as "47" will be accepted and interpreted as 1947. In
 general a smaller SPANSIZE provides the highest assurance of correct mappings.
 However, any setting of SPANSIZE less than 100 will probably detect the case where a
 range greater than one hundred years is being used.

 8.4 Strict and non-strict format matching

 As mentioned in “Datetime Formats” on page 172, for some of the #functions, the input
 format rule for a token is the same as the output format rule; this is the definition of "strict
 date format matching". However, non-strict #functions sometimes allow a string to
 match a token on input that would not be produced by that token on output. The types of
 strict matching are as follows:

 Alpha tokens For alphabetic tokens (for example, Month), a strict match requires the
 input value to be the correct case. For example, the "MON" token is
 strictly matched by "JAN" but not by "Jan", and the reverse is true for the
 "Mon" token. For non-strict matching, the alphabetic tokens are
 matched by any combination of uppercase and lowercase input.

——
Fast/Unload Reference 179

——
Datetime Processing Considerations
——

 HH, MM, DD For these tokens, a strict match requires a leading zero for values less
 than 10. For non-strict matching, a value less than 10 can also be
 represented by a leading blank followed by a single numeric digit.

 BH, BM, BD For these tokens, a strict match requires a leading blank for values less
 than 10. For non-strict matching, a value less than 10 can also be
 represented by a leading zero followed by a numeric digit.

 DAY For this token, a strict match requires a single digit for values less than
 10. For non-strict matching, a value less than 10 can also be
 represented by a leading zero followed by a numeric digit.

 ZYY For this token, a strict match requires two digits for values less than 100.
 For non-strict matching, a value less than 100 can also be represented
 by a leading zero followed by a two numeric digits.

 If you want to check a datetime string using strict rules, you can use the following
 technique with the non-strict date #functions:

 IF <date> EQ '' OR <date> NE #NM2DATE(-
 #DATE2NM(<date>, <fmt>), -
 <fmt>) THEN
 <error handling>
 END IF

 8.5 Datetime and format examples

 There is an extensive set of format tokens, as shown in “Datetime Formats” on page
 172. These tokens and the various separator characters can be combined in almost
 limitless possibility, giving rise to an extremely large set of datetime formats. This
 section provides examples of some common datetime formats, and also tries to explain
 the use of some of the format tokens which might not be obvious. It also has examples
 for formats which have usage with the Fast/Unload which differs from their usage with
 other Sirius products. These are noted in the examples and are indexed at the back of
 this manual under the heading “Special date format rules”. Each example format is
 explained and also presented with some matching datetimes; again, bear in mind that
 these tokens can be combined in very many ways and only a very few are shown here.
 It is assumed that these examples are invoked sometime between the years 1998-2040,
 as the basis for relative CENTSPAN calculations.

 YYMMDD This is the common 6-digit date format which supports sort order if all dates
 are within a single century. The following FUEL fragment

 %X = #DATE2ND('960229', 'YYMMDD')
 IF %X > -9.E12 THEN
 REPORT 'OK'
 END IF

——
180 Fast/Unload Reference

——
 Datetime and format examples
——

 prints the value “OK”.

 YYYYMMDD
 This is the common 8-digit date format which supports sort order with dates
 in 2 centuries. The following FUEL fragment

 %N = #DATE2ND('921212', 'YYMMDD')
 %N = #ND2DATE(%N, 'YYYYMMDD')
 REPORT %N

 prints the value 19921212.

 MM/DD/YY
 This is the U.S. 6-digit date format for display. The following FUEL fragment

 %X = #DATE2ND('12/14/94', 'MM/DD/YY')
 IF %X > -9.E12 THEN
 REPORT 'OK'
 END IF

 prints the value “OK”.

 Notes:

 ● With non-strict format matching, such as #DATE2ND, the leading zero
 corresponding to an MM token may be given as a blank, thus allowing
 “ 7/15/98”. With strict matching, however, such leading blank is not
 allowed for MM; a leading blank month value with a strict #function
 requires the BM token. If the data contains leading zeroes in some
 month instances and leading blanks in others, you must use a non-strict
 #function. The BM token is available starting with version 3.2 of
 Fast/Unload.

 DD.MM.YY
 This is a European 6-digit date format for display. The following FUEL
 fragment

 %X = #DATE2ND('14.12.94', 'DD.MM.YY')
 IF %X > -9.E12 THEN
 REPORT 'OK'
 END IF

 prints the value “OK”.

 Notes:

 ● With non-strict format matching, such as #DATE2ND, the leading zero
 corresponding to a DD token may be given as a blank, thus allowing
 “ 1.01.00”. With strict matching, however, such leading blank is not

——
Fast/Unload Reference 181

——
Datetime Processing Considerations
——

 allowed for DD; a leading blank day value with a strict #function requires
 the BD token. If the data contains leading zero days in some instances
 and leading blanks in others, you must use a non-strict #function. The
 BD token is available starting with version 3.2 of Fast/Unload.

 Wkday, DAY Month YYYY "A"T HH:MI
 This is a format which could be used for report headers. The following FUEL
 fragment

 %N = #DATE -
 ('Wkday, DAY Month YYYY "A"T HH:MI')
 REPORT %N

 prints a value like “Friday, 7 February 1998 AT 21:33”.

 Notes:

 ● If an input format contains AM or PM, then the time (HH:MI) must be
 between 00:01 and 12:00 and must be accompanied by either AM or
 PM.

 ● If an input format contains DAY (e.g., “DAY MON YY”) with non-strict
 format matching, such as #DATE2ND, the string matching it may have a
 leading zero, thus allowing “06 MAY 98”. With strict matching #functions
 however, such leading zero is not allowed for DAY; a single digit must
 be supplied for days 1 through 9.

 ● If an input format contains HH with non-strict format matching, such as
 #DATE2ND, the string matching it may have a leading blank, thus
 allowing “ 8:30”. With strict matching, however, such leading blank is
 not allowed for HH; a leading blank hour value with a strict #function
 requires the BH token. If the data contains leading zero hours in some
 instances and leading blanks in others, you must use a non-strict
 #function. The BH token is available starting with version 3.2 of
 Fast/Unload.

 YYIIII This is a format which could be used for data which contains a 2-digit year
 prefixing other information, such as a sequence number. The following
 FUEL fragment

 %D = #DATE2ND('92ABCD', 'YYIIII')
 %D = %D + 10*365.25 + .8
 %N = #ND2DATE(%D, 'YY')
 REPORT %N

 prints the value “02”.

 Note:

——
182 Fast/Unload Reference

——
 Datetime and format examples
——

 ● When a pair of format strings are used for transforming date values, e.g.
 for #DATECNV or processing of updates to SIRFIELD RELATEd fields,
 both formats must have the same number of I tokens.

 SIRFIELD is part of the Sir2000 Field Migration Facility.

 YY* This is a format which could be used for data which contains a 2-digit year
 prefixing other information, such as a sequence number, when the other
 information is variable length. The following FUEL fragment

 %X = #DATE2ND('92', 'YY*')
 IF %X > -9.E12 THEN
 REPORT 'OK'
 END IF
 %X = #DATE2ND('1992ABC', 'YYYY*')
 IF %X > -9.E12 THEN
 REPORT 'OK'
 END IF

 prints the values “OK” and “OK”.

 Notes:

 ● At most one occurrence of the * token may appear in a datetime format.

 ● When a pair of format strings are used for transforming date values, e.g.
 for #DATECNV or processing of updates to SIRFIELD RELATEd fields,
 then if a * token appears in one of the formats, a * must also appear in
 the other format.

 SIRFIELD is part of the Sir2000 Field Migration Facility.

 CYYDDD This is a compact 6-digit date format with explicit century information, from
 1900 through and including 2899. The following FUEL fragment

 %X = #DATE2ND('097031', 'CYYDDD')
 IF %X > -9.E12 THEN
 REPORT 'OK'
 END IF

 prints the value “OK”.

 ZYYMMDD
 This is a compact 6- or 7-digit date format with explicit century information,
 from 1900 through and including 2899, that can often be used with “old”
 YYMMDD date values in the 1900's. The following FUEL fragment

——
Fast/Unload Reference 183

——
Datetime Processing Considerations
——

 * Check 1 Dec, 1997:
 %X = #DATE2ND('971201', 'ZYYMMDD')
 IF %X > -9.E12 THEN
 REPORT 'OK'
 END IF
 * Check 1 Dec, 2000:
 %X = #DATE2ND('1001201', 'ZYYMMDD')
 IF %X > -9.E12 THEN
 REPORT 'OK'
 END IF

 prints the values “OK” and “OK”.

 Notes:

 ● With non-strict format matching (such as #DATE2ND), a three digit
 number with a leading zero may correspond to a ZYY token, thus
 allowing “0971201”. With strict matching, however, a 3 digit value with
 leading zero is not allowed for ZYY; a 3-digit value less than 100 with a
 strict #function requires the CYY token. If the data contains values less
 than 100 as 3 digits in some instances and as 2 digits in others, you
 must use a non-strict #function.

 YY0000 Decimal digits can be used as separator characters. The following FUEL
 fragment

 %N = #DATE2ND('92000', 'YY000')
 %N = #ND2DATE(%N, 'YYYY"N"A')
 REPORT %N

 prints the value “1992NA”.

 Notes:

 ● Numeric separators, unlike alphabetic separators, do not need to be
 preceeded by a quote character (").

 ● Numeric separators are available starting with version 3.2 of
 Fast/Unload.

 8.6 Datetime Error Handling

 Due to an invalid argument value to a datetime #function, any of the following errors can
 occur:

 ● invalid datetime format specification

 ● datetime string not matching format

——
184 Fast/Unload Reference

——
 Datetime Error Handling
——

 ● datetime out of range for the format

 ● invalid CENTSPAN value

 ● datetime out of range for CENTSPAN/SPANSIZE combination

 One way to detect these errors is to check for the appropriate error return value:

 1. # Functions using a numeric value to represent a datetime, and #TIME and #DATE,
 have error return values of -9.E12 or a null string for numeric or string result
 #functions, respectively.

 2. # Functions (other than #TIME and #DATE) that only manipulate strings and
 associated datetime formats have error return values of a variable number of
 asterisks (or, in the case of #DATEDIF the value 99,999,999).

 Most of the standard #DATExxx functions have an optional output "return code"
 argument (see “Run-time errors during standard #function calls” on page 100). If you
 specify, for example, an invalid CENTSPAN argument and you specify the return code
 argument, you can test the return code for CENTSPAN errors. If you specify an invalid
 CENTSPAN argument and you do not specify the return code argument, the
 Fast/Unload run terminates with an error message indicating the type of error and the
 line number being executed; the argument values are dumped as well.

 8.7 #DATExxx Functions CENTSPAN Argument

 Many of the #DATExxx functions accept an optional argument containing a CENTSPAN
 value to be used for the call. The default value of any CENTSPAN argument is -50.
 You can customize the default value of CENTSPAN in your load module; see
 “CENTSPAN and SPANSIZE” on page 294. Note that in version 3.0 of Fast/Unload, the
 default CENTSPAN argument can not be customized. The default value should be
 adequate in most cases; if you have carefully determined it should be different in some
 application, code the value on the relevant #function invocations.

 For a different approach, see the description of the CENTSPLT and DEFCENT
 parameters (for example,
 http://m204wiki.rocketsoftware.com/index.php/CENTSPLT_parameter) and
 $function arguments.

 Note that the CENTSPAN argument may not be specified as an entity whose value is
 MISSING. For most #function numeric arguments, the MISSING value is allowed if a
 value of zero for the argument is allowed. Zero is allowed for CENTSPAN, but since it is
 an unusual CENTSPAN value, the MISSING value may not be supplied.

——
Fast/Unload Reference 185

——
Datetime Processing Considerations
——

 8.8 Benefits of Sirius datetime processing

 Following is a list of benefits offered by Sirius datetime processing. To provide concrete
 comparisons, there are some references to the standard User Language date
 $functions.

 SPANSIZE
 The SPANSIZE processing creates a very strong barrier to detecting
 otherwise un-noticed 2-digit year processing errors. This is unique to Sirius
 datetime processing.

 Relative CENTSPAN
 The relative CENTSPAN specification (for example, "-50") allows you to
 maintain a flexible "rolling" window for 2-digit year processing.

 Default CENTSPAN
 One significant advantage of a relative CENTSPAN is that it allows the
 default (-50) of a reasonable value without parameter changes in all batch
 and online jobs.

 Format tokens
 There is a very large set of tokens in the Sirius datetime formats. For
 example, there are 4 different tokens representing the day of the week, and
 time of day can be represented. Standard User Language date formats do
 not have any day of week nor time of day tokens, and other standard User
 Language token variations, for example, CYY vs. ZYY, is done by a complex
 argument setting.

 Pattern match tokens
 The Sirius datetime formats can contain single-character ("I") or variable
 length character ("*") match-any tokens in datetime formats. For example,
 you can specify that a string has an imbedded year, and process that year
 as a date.

 Format-free representations
 Non-string datetime values allow you to pass around dates simply as
 numbers, without the complexities of carrying the corresponding string
 format (you only need to establish the scale to operate on a value).

 Operating on numeric representations
 Numeric date values can be operated on directly with FUEL, especially
 allowing you to add datetime differences (for example, "+"), rather than
 calling a DATECHG #function and providing a format.

 Time All Sirius datetime #functions allow any reference to a "date" to include time
 of day. The only standard User Language datetime $function which provides
 a time of day is $TIME, the current time of day, in one fixed format.

——
186 Fast/Unload Reference

——
 Benefits of Sirius datetime processing
——

 #DATE formats
 #DATE allows you to specify any format to return the current date and time;
 $DATE has only a few numeric codes for a few formats.

 Error control args
 Fast/Unload provides error handling control that allows you to identify the
 specific cause of any datetime error.

 Error values of numeric date #functions
 The #functions that use non-string datetime values provide very uniform
 error return values: -9.E12 or a null string for numeric or string result
 #functions, respectively.

——
Fast/Unload Reference 187

——
Datetime Processing Considerations
——

——
188 Fast/Unload Reference

——
 DATESTAT Analysis
——

——————
CHAPTER 9 DATESTAT Analysis

 If the DATESTAT statement is present in the FUNIN dataset, Fast/Unload will determine
 which fields in the file contain date values. The determination of whether a field contains
 a date value is done in two passes; the first pass examines 1000 evenly-distributed
 records in the file, and the second pass analyzes all records. At the end of each pass,
 certain fields are retained for date analysis and reporting. A field is retained if:

 1. for pass one, the field is not found in the 1000 records

 2. at least one value of the field is found in the pass which conforms to a date format,
 except:

 * a field is not a date if all dates were all numeric, there were more than 5 distinct
 non-date values, and less than 50% of the instances are dates. This is to
 attempt to avoid situations in which a field such as zip code could be treated as
 a 5 digit (YYDDD) date.

 Note that Blob fields are not candidates for DATESTAT analysis.

 The analysis keeps tracks of various totals that are used in reporting, and also keeps
 some of the values found in the field. Up to 36 date formats, 20 nondate values, and
 120 year samples will be kept. When these overflow, the least-recently-found year and
 nondate samples are discarded, and the most-recently-found date format sample is
 discarded. Also, only up to 22 characters of nondate values are kept, so two different
 values which are the same in the first 22 characters will be considered to be the same
 value.

 The date formats searched for consist of the following list, plus each one of the formats
 in this list, followed by a blank and time in the form HH:MI:SS, if the date format contains
 a character other than M, D, or Y, or followed immediately by time in the form HHMMSS
 otherwise.

——
Fast/Unload Reference 189

——
DATESTAT Analysis
——

 MON DAY YY
 MON DAY YYYY
 DAY MON YY
 DAY MON YYYY
 DAY MONTH YY
 DAY MONTH YYYY
 DAY MON, YY
 DAY MON, YYYY
 DAY MONTH, YY
 DAY MONTH, YYYY
 DDMMYY
 DDIMMIYY
 DDMMYYYY
 DDIMMIYYYY
 MONTH DAY YY
 MONTH DAY YYYY
 MMDDYY
 MMIDDIYY
 MMDDYYYY
 MMIDDIYYYY
 YYDDD
 YY MON DAY
 YY MONTH DAY
 YYMMDD
 YYIMMIDD
 YYYYDDD
 YYYY MON DAY
 YYYY MONTH DAY
 YYYYMMDD
 YYYYIMMIDD

 For the meaning of the components of these formats, see “Datetime Formats” on page
 172.

 9.1 DATESTAT Reporting

 This section describes the reports created by the DATESTAT SUMMARY and
 DATESTAT DETAIL statements. Both of these statements indicate something about the
 "quality" of the date data in the field. The purposes of "date field quality" are:

 1. If you are running DATESTAT SUMMARY, and you have some values other than
 pure, you may want to do further investigation of the date fields.

 2. To indicate how much work might be involved to resolve the various values stored in
 the field. One tool to resolve the values is to run DATESTAT DETAIL; doing some
 ad-hoc work with User Language is another approach. The "worse" the quality of a
 field, the more work is likely to be required to resolve questions about the field
 values.

——
190 Fast/Unload Reference

——
 DATESTAT Reporting
——

 The quality is expressed as pure, good, fair, or poor; it is an attempt to measure the
 possible level of effort required to correct data on the file. The terms have the following
 meanings:

 Pure means that there are only date values, and all with a single date format.

 Poor means either there are more than 10 distinct non-date values and more than
 .01% of the field occurrences are non-date values, or the percent of date values
 which have uncommon formats, times the number of uncommon formats, is
 greater than .01%, or there are more than 20 date formats.

 If there are more than 20 date formats, or if the ratio of occurrences of the most
 common date format to occurrences of the next most common date format is
 less than 10 to 1, then Fast/Unload prints the string “Common date format not
 found”.

 Fair means either there are more than 5 distinct non-date values and more than
 .001% of the field occurrences are non-date values, or the percent of date
 values which have uncommon formats, times the number of uncommon
 formats, is greater than .001%.

 Good is anything else.

 9.2 DATESTAT SUMMARY

 DATESTAT SUMMARY creates a report with 1-3 lines for each date field, in the
 following form:

 1. ftag format (qual) span field...n: name

 2. tot occurrences of field format count

 3. nsmp occurrences of nondate value (len len): sample

 Where:

 1. This line is always present; the components are:

 ● ftag is either "Common date format not found", if there are more than 20 date
 formats, or "Common format:" otherwise.

 ● format is the most commonly occurring date format, if ftag is "Common format:",
 or blank otherwise.

 ● qual is either "pure", "good", "fair", or "poor".

 ● span is either:

——
Fast/Unload Reference 191

——
DATESTAT Analysis
——

 CENTSPAN: YYYY
 or No YY occurrences
 The former gives a recommended CENTSPAN, if the field has any 2-digit
 years, where YYYY is the oldest 2-digit year found; the latter occurs if the field
 does not have any 2-digit years. (2-digit years are interpreted using a
 CENTSPAN of 1900, or, if running DATESTAT after 1999, a CENTSPAN of
 -99.)

 ● n is a sequential numbering of the fields; this can be correlated to an FSTATS
 report.

 ● name is the name of the field.

 2. This line is always printed if the qual is not pure. The components are:

 ● tot is the total number of occurrences of the field in the file

 ● format count is either n different formats found, if n is more than 1, or blank
 otherwise.

 3. This line is always printed if there are any nondate values for the field. The line has
 one of the two following forms:

 a. nsmp occurrences of nondate value (len): truncated_value trunc_flag

 b. dist distinct nondate values

 Where nsmp is the number of occurrences of a nondate value, if it appears to be
 exactly one nondate value in the field, and len is its length and truncated_value is
 the first 22 characters of its value. Trunc_flag is (first 22 bytes) if the length is
 greater than 22. In fact, some of the nondate values in the field may differ, if their
 first 22 characters are the same.

 If there are 2 or more nondate values in the field, then the second form of this line is
 presented, where dist is the number of different nondate values that Fast Unload
 has kept as samples (up to the maximum of 20).

 Note that for the recommended CENTSPAN, Fast/Unload assumes that all 2-digit years
 occur in the 1900s, or, if running DATESTAT after 1999, 99 years before the date of the
 run up to and including the date of the run.

——
192 Fast/Unload Reference

——
 DATESTAT DETAIL
——

 9.3 DATESTAT DETAIL

 DATEST DETAIL creates a report with 1 page for each date field, which includes:

 1. The number of field occurrences.

 2. The number of date occurrences, with the minimum and maximum date value, for
 both 4 digit ("YYYY") and 2 digit ("YY") years.

 3. A sample of the discovered date formats.

 4. A sample of the year values occurring in the field.

 5. A sample of the non-date values occurring in the field.

 The sampling rules are described in “DATESTAT Analysis” on page 189; some values
 may be discarded. An asterisk (*) is printed after a sample if the sample occurrence
 count is incomplete.

 Note that for the recommended CENTSPAN and the min/max values of the DETAIL
 report, Fast/Unload assumes that all 2-digit years occur in the 1900s, or, if running
 DATESTAT after 1999, 99 years before the date of the run up to and including the date
 of the run.

——
Fast/Unload Reference 193

——
DATESTAT Analysis
——

——
194 Fast/Unload Reference

——
 Job Statistics
——

——————
CHAPTER 10 Job Statistics

 Because Fast/Unload is essentially a performance product, it is important to maintain
 statistics that indicate the cost of performing a Fast/Unload and provide information that
 might be useful in tuning future unloads. These statistics are reported on the report data
 set. These statistics are reported for the compile step, the unload step, and Ordered
 Index unload step separately.

 One of these stats, “Number of extension pages in base buffer”, along with some of the
 Table B statistics that are reported as part of FSTATS processing, can also help you
 detect a need for a reorganization for improving your file's performance with Model 204.
 (See “Description of Table B statistics” on page 51 for an explanation of the Table B
 statistics generated by FSTATS processing.)

 If you use Fast/Unload in an MVS environment, you can choose to generate SMF
 records in addition to the Fast/Unload report. See “SMF record format” on page 297 for
 more information about Fast/Unload SMF records. All of the statistics, of course, are
 reported on SMF records; the printing of statistics on the FUNPRINT dataset, however,
 is restricted to those statistics which have a value greater than zero.

 Many of the statistics refer to I/O processing of the input Model 204 file (or files, in the
 case of a group). There are two groups of these I/O statistics:

 Base buffer statistics These occur only during the Unload phase, and are for
 accessing Table B pages in page number order, that is,
 accessing the the base records processed during the
 unload.

 Extension page statistics
 These can apply during any phase, and are for directly
 reading pages from the Model 204 file in no pre-determined
 order. These are called extension page statistics because
 one type of direct page access is for extension record
 access during the Unload phase. There are other types of
 direct page access, such as reading the Table A field and
 coded value information during the Compile phase, reading
 the Existence Bit Map, and reading B-tree, list, and index
 bitmap pages during the Index unload phase.

 Note that the extension pages actually accessed in the
 unload phase depend on the type of processing in your
 FUEL program. A UAI operation will access all extensions
 of all records being unloaded; FSTATS processing will
 access all extensions of all records processed; some FUEL
 constructs, such as DELETE or using “#” or “*” for a field
——
Fast/Unload Reference 195

——
Job Statistics
——

 occurrence, cause all extensions of a record to be
 processed; otherwise, only as much of a logical Model 204
 record is processed as needed to reference the fields used
 in the FUEL program.

 The following is a description of statistics that are reported:

 Base buffer reads Total number of EXCPs issued to read a track or group of
 tracks into a base buffer. It is directly affected by the
 SEBUFF parameter and the number of Model 204 input
 records (that is, base records) processed.

 This statistic is new in Fast/Unload version 4.0.

 Base buffer waits Total number of WAITs issued after initiating reads into the
 base buffers; the ratio of EXCPs to WAITs indicates, to
 some extent, the degree of overlap of CPU with I/O
 processing.

 This statistic is new in Fast/Unload version 4.0.

 Extension pg in base buffs
 Total number of Model 204 file pages accessed “directly”
 which were currently available in pages read into base
 buffers. This indicates how many extension records were
 “physically close” to their base record during the Unload
 phase; specifically, within the SBBUFF times NBBUFF
 tracks starting with the group of SBBUFF tracks containing
 the base record. A large number for this indicates that
 Model 204 database processing can efficiently access the
 extension records accompanying a base record, with little
 physical disk manipulation (or even none, with caching
 devices). As mentioned in “Description of Table B
 statistics” on page 51, this information can be used in
 addition to the FSTATS information about extension
 records, to help you determine possible benefits obtained
 by reorganizing a file; if extension records are frequently
 accessed in Model 204 processing and a large number of
 them are not physically close to the base record,
 performance may suffer to some degree.

 This statistic is new in Fast/Unload version 4.0.

 Extension pg in exten pool
 Total number of Model 204 file pages accessed “directly”
 which were not currently available in pages read into base
 buffers but which were available in the pool of extension
 pages. The larger this number is, the fewer EXCPs are
 needed to re-read pages, and this statistic will increase (up

——
196 Fast/Unload Reference

——
 Job Statistics
——

 to the limit of the number of pages needed) as NEBUFF is
 increased; you can make the tradeoff of costs for real
 memory due to increased NEBUFF versus the the costs for
 I/O.

 This statistic is new in Fast/Unload version 4.0.

 Extension buffer reads Total number of EXCPs to read pages accessed “directly”.
 It is the number of such pages that could not be found
 either in the base buffers or in the extension buffer pool.

 This statistic is new in Fast/Unload version 4.0.

 CPU time This is the total CPU time used. If data is going out to a
 sort package, this CPU time value does not include the
 CPU used by the sort task. If this value is large, there is
 probably not much you can do about speeding up the
 unload without making changes to your FUEL program.

 Waiting for CPU time Total real time spent waiting for a CPU to run on. This
 figure is calculated by subtracting the total of all the wait
 times and the total CPU time from the total real time for the
 job. This value could actually include page wait time, or
 waits for synchronous BSAM I/O under CMS. If you have
 a high value for waiting for CPU time, it probably indicates
 severe system-wide contention for CPU or real memory
 resources.

 Report buffer wait time Total real time spent waiting for a report buffer to be
 written. This value should always be relatively small
 unless an unload produces a huge number of reported
 errors (conversion, hard or missing value). Fast/Unload is
 optimized for placing data into the output data set
 (FUNOUT). A large value for report buffer wait time
 indicates a misuse of the report data set for outputting
 large amounts of data. One can reduce report buffer wait
 time by using a relatively large block size on the report
 data sets (FUNPRINT) DD card or FILEDEF statement.

 Input wait time Total real time spent waiting for a program input record to
 be read in.

 Open wait time Total real time spent waiting for OPEN's of input or output
 data sets to complete. This would ordinarily be a relatively
 small value, unless one is using a data set that requires
 mounting or staging from a removable storage medium
 such as a magnetic tape.

——
Fast/Unload Reference 197

——
Job Statistics
——

 Output buffer wait time Total real time spent waiting for an output buffer to be
 written. If this value is a relatively large chunk of total real
 time one might be able to get better performance by
 increasing the blocksize on the output data set (on the
 output data set DD card or FILEDEF statement) or by
 using more output buffers (by setting the NOBUFF). If the
 output data set is on a disk device, better performance
 might be achieved by using a tape device. If you are going
 to an external sort routine and this value is large, your
 efforts might be best spent tuning the sort portion of the
 job.

 Base buffer wait time Total real time spent waiting for the next base record to be
 read in. If this value is a relatively large chunk of total real
 time, one might be able to get better performance by
 increasing the base record buffer size (by setting SBBUFF)
 or by increasing the number of base record buffers (by
 setting NBBUFF). In general, however, one is not likely to
 see a significant improvement from having more than 2
 base record buffers.

 Extension buffer wait time
 Total real time spent waiting for an extension record to be
 read in. If this value is a relatively large chunk of total real
 time one might be able to get better performance by
 increasing the number of extension record buffers (by
 setting (NEBUFF) or their size (by setting SEBUFF). If this
 value is extremely high (more than half of total run time)
 better performance might be achieved by actually setting
 the number of base buffers to 1 (setting NBBUFF to 1),
 preventing base buffer read ahead from blocking extension
 record retrieval.

 PST wait time Total real time spent waiting for the Fast/Unload User
 Language Interface PST. This can be either to access the
 next file in the Model 204 GROUP being unloaded, or to
 access a Model 204 page that was marked as being
 modified when the Fast/Unload job started.

 Total time Total time spent in the compile or unload step. This is both
 figuratively and literally the bottom line for Fast/Unload
 statistics. Since the object of Fast/Unload is to unload data
 as quickly as possible, this figure is a measure of your
 success. If you get an unexpectedly high total time value,
 you should examine the individual components of total time
 and attempt to correct the dominating components.

——
198 Fast/Unload Reference

——
 Fast/Unload User Language Interface
——

——————
CHAPTER 11 Fast/Unload User Language Interface

 The Fast/Unload User Language Interface, purchased as a separate Fast/Unload option,
 allows one to invoke Fast/Unload from a User Language program. With this approach,
 an application builds a set of records to be unloaded, using standard User Language
 statements; for example, you can reduce unload time by restricting the set of records
 using indexed Model 204 fields. There are two ways two invoke Fast/Unload from a
 User Language program:

 ● By passing the label of the record set or list to the $Funload function.

 ● By invoking the FastUnload or the FastUnloadTask method against a Recordset
 object.

 $Funload and the FastUnload/FastUnloadTask methods must be linked into the ONLINE
 or BATCH204 load module as part of the Sirius Mods installation process. $Funload or
 the FastUnload/FastUnloadTask methods send the record set to the Fast/Unload PST,
 which invokes the Fast/Unload load module in a subtask (or PST, under CMS) of
 Model 204. The full power of the FUEL language is available, including sorts, UAI, etc.

 When invoked via $Funload or the FastUnload/FastUnloadTask methods, Fast/Unload
 only accesses the records in the passed record set, and only issues reads for disk tracks
 containing those records. Whether or not the Fast/Unload User Language Interface is
 employed, Fast/Unload always issues reads only for disk tracks containing the records
 accessed, but, except for records skipped by the EVERY and SKIPREC parameters, a
 standalone Fast/Unload accesses all Table B records in a file until Fast/Unload
 processing ends.

 The Fast/Unload User Language Interface also provides the ability to unload data from a
 Model 204 group.

 Note that the Fast/Unload User Language Interface allows unloading to be performed (at
 the thread level) either synchronously, so that all processing is completed before
 control is returned from $Funload or the FastUnload/FastUnloadTask methods, or
 asynchronously so that control is returned to the User Language program as soon as
 the $function or method parameters are verified and accepted. (Fast/Unload processing
 is never synchronous at the Online level: threads not waiting for the completion of a
 Fast/Unload User Language Interface requests will continue to run while one or more
 unloads are progressing.) When processing is asynchronous (at the thread level) it is up
 to the user to verify successful completion of the unload much as a user would verify
 successful completion of a batch job.

 A User Language procedure is provided as part of the installation process to monitor and
 control Fast/Unload requests from the ONLINE region. Specifically, a system manager

——
Fast/Unload Reference 199

——
Fast/Unload User Language Interface
——

 can cancel or examine Fast/Unload requests. In addition, each user can perform the
 same functions on asynchronous requests that he or she initiated.

 To make it easier to diagnose problems where Fast/Unload User Language Interface is
 involved, under Sirius Mods version 6.7 and later, messages are also sent to the
 Model 204 journal/audit trail at each Fast/Unload request made and at each completed
 by the Fast/Unload User Language Interface. The message when the requests are
 started look like:

 MSIR.0890: Asynchronous request 2 made by $funload

 And the message when the requests are completed look like:

 MSIR.0891: Asynchronous request 2 completed, RC = 0

 The FastUnload and FastUnloadTask methods are documented in the Janus SOAP
 Reference Manual and are available only to customers licensed for Janus SOAP.
 $Funload, and the other $functions which are used for the Fast/Unload User Language
 Interface, are documented in the Sirius Functions Reference Manual.

 11.1 When to use the Fast/Unload User Language
 Interface

 If you have the Fast/Unload User Language Interface, you can use it, rather then a
 standalone Fast/Unload, to perform a given unload; in fact, you can usually use the
 Fast/Unload User Language Interface and expect it will run as well or better than the
 comparable standalone Fast/Unload. There are many factors which make use of the
 Fast/Unload User Language Interface clearly advantageous over a standalone
 Fast/Unload, such as:

 Sparse index-driven record set
 If you can use the FIND statement with indexed fields (i.e., no Table B scan)
 to determine a small fraction of the file which then can be processed by
 Fast/Unload, this will be a significant performance advantage.

 Model 204 Boolean processing
 The capabilities of Model 204 record list processing, and the ability to
 combine sets of records in the FIND statement, provide not only efficient
 index-driven record restriction, but also very powerful application capabilities.

 File enqueue
 When a file is open for update in an ONLINE environment, the only way to
 access that file in a standalone job is to bypass file enqueueing (with the
 NOENQ parameter, as described in “NOEnq” on page 15). A standalone
 Fast/Unload with NOENQ will only examine pages that have been written to
 disk, and so will not see any modified pages still in the buffer pool.

——
200 Fast/Unload Reference

——
 When to use the Fast/Unload User Language Interface
——

 Performing the unload with the Fast/Unload User Language Interface allows
 you to use normal Model 204 record-level locking so that a file can be
 unloaded while it is open for update, obtaining a current image of all pages
 accessed. There is a tradeoff, of course, involved in holding record locks
 over the duration of an unload job. You can use an unlocked set of records
 (record lists, or the User Language FIND WITHOUT LOCKS statement) with
 the Fast/Unload User Language Interface, and the current disk buffer page
 image is still used. Note, however, that unloading without a locked record
 set while the file is open for update is suitable for creating some kind of
 report or other file extract that can tolerate a degree of inconsistent data, but
 is generally not advisable if you are unloading in order to reorganize the file.

 Groups (prior to version 4.4)
 The Fast/Unload User Language Interface allows you to process a set of
 records derived from one or more files in a PERManent, TEMPorary, or ad
 hoc Model 204 group. Prior to version 4.4, a standalone Fast/Unload can
 only access the single file designated on the Fast/Unload OPEN directive.

 User Language pre-/post-processing, scheduling
 You can use the features of User Language to prepare the Fast/Unload input
 program. The program can be dynamically generated, or static and stored in
 an Html/Text block or in a separate procedure that's read with $procopn and
 $procdat. The Html/Text block is particularly useful for generating
 Fast/Unload input programs that are largely static but have some dynamic
 parts.

 The Fast/Unload User Language Interface can be used to manipulate and
 combine the results of one or more $Funload or FastUnload/FastUnloadTask
 calls. Besides offering the convenience of post-processing with User
 Language, this can be useful for merging, matching or cross-checking
 applications. The results can be processed conveniently and efficiently
 either with Sirius $lists, with the $FunImg function, with Stringlist objects, or
 with a FastUnloadTask object.

 You can combine scheduling and control of all “background” processing in
 your Model 204 online with initiating and controlling Fast/Unload User
 Language Interface processing.

 The CPU time consumed by the Fast/Unload task running under Model 204 will not
 interfere with online Model 204 users: the MVS dispatching priority of the Fast/Unload
 task is 4 less than that of the Model 204 main task.

 In some cases, the only appropriate environment to run Fast/Unload is a batch
 environment, but you can still obtain the relevant advantages of the Fast/Unload User
 Language Interface by invoking it in a single-user Model 204 job (“BATCH204”). Some
 of the reasons for running in a batch environment are:

——
Fast/Unload Reference 201

——
Fast/Unload User Language Interface
——

 Virtual storage use
 The virtual storage requirements of a Fast/Unload task running under
 Model 204 could significantly affect the virtual storage requirements of the
 whole region, especially if an external sort is being invoked by Fast/Unload
 as part of its processing. Care should be taken to ensure that these
 requirements do not cause paging in the Model 204 region, paging having
 potentially disastrous performance impact on a multi-user Model 204 region.

 Below-the-line storage
 If the below-the-line storage requirements of Fast/Unload are large, it may
 need to run in a separate address space from a Model 204 online job, and if
 they are extremely demanding, this might not even permit a BATCH204
 environment.

 Communication for current buffers
 As mentioned above under “File enqueue”, the Fast/Unload User Language
 Interface provides the current copy of any modified pages that the
 Fast/Unload subtask accesses. If a very large number of modified pages are
 in the buffer pool when $Funload or the FastUnload/FastUnloadTask method
 is called, this could, in some cases, lead to a noticable amount of overhead;
 one measure of this would be the PST wait time, described in “Job
 Statistics” on page 195. If this overhead is significant, you might evaluate
 the tradeoffs in either unloading the file in a standalone unload with the
 NOENQ parameter, or unloading it when there are fewer dirty pages in the
 buffer pool, for example, when updating activity is lower.

 11.2 Setting up the Fast/Unload User Language
 Interface environment

 To use the Fast/Unload User Language Interface the system manager must perform the
 following steps:

 1. Create a custom ONLINE or BATCH204 load module that has the Sirius Functions
 linked in.

 2. Either concatenate the load library containing the Fast/Unload load module to the
 load library containing the ONLINE or BATCH204 load module on the STEPLIB DD
 or copy the Fast/Unload load module into the load library containing the ONLINE or
 BATCH204 load module. For example, if the Model 204 ONLINE load module
 resides in M204.LOADLIB and the Fast/Unload load module resides in
 SIRIUS.LOAD then

 //STEPLIB DD DSN=M204.LOADLIB,DISP=SHR
 // DD DSN=SIRIUS.LOAD,DISP=SHR

 would be an appropriate STEPLIB DD for the ONLINE JCL.

——
202 Fast/Unload Reference

——
 Setting up the Fast/Unload User Language Interface environment
——

 Under CMS, the Fast/Unload TEXT file must be on a disk accessed by the
 Model 204 ONLINE service machine.

 3. Modify the JCL (or EXEC) used to run the Model 204 ONLINE or BATCH204 so that
 it invokes the custom load module from step one and so that it contains a DD card
 (or FILEDEF statement) for the Fast/Unload audit trail. This audit trail has DDNAME
 FUNAUDIT. For initial testing purposes, this DD could simply specify SYSOUT=*.

 4. Modify the user0 parm card to indicate the maximum number of concurrent
 Fast/Unload tasks to be allowed. This is specified with the FUNTSKN parameter.
 This parameter has a default of 0 and a maximum of 64. If this parameter is set to
 0, no user will be able to access Fast/Unload via $Funload or the
 FastUnload/FastUnloadtask methods. In addition, it might be necessary to specify
 the name of the Fast/Unload load module (or TEXT file, in CMS). This is done using
 the FUNPGM parameter. The default value of FUNPGM is 'FUNLOAD'.

 For example, the following would be valid parameters on user0's parm card :

 FUNTSKN=8,FUNPGM='MYFUN'

 5. The system manager might also need to increase the value of NSUBTKS on user0's
 parm card. Fast/Unload requires a PST and when running under CMS an additional
 PST for every active Fast/Unload task. Thus, the NSUBTKS requirement is
 increased by 1 for Fast/Unload under MVS and 1+FUNTSKN under CMS. The one
 exception to this rule is that when Fast/Unload is to be invoked in a single user run,
 it is possible to avoid the overhead of using the multi-user scheduler by setting
 NSUBTKS to 0. This will cause the single user to perform the work of the
 Fast/Unload PST whenever a $FunWait, $FunImg, $FunSStr or $FunSkip is
 executed.

 Once these tasks have been performed by the system manager, Fast/Unload is ready
 for use by the programmer. Communication with Fast/Unload is achieved via the Sirius
 $functions or methods that are provided when a site purchases the Fast/Unload User
 Language Interface. The $functions are documented in the Sirius Functions
 Reference Manual. The methods are documented in the Janus SOAP Reference
 Manual.

 11.3 System parameters for the Fast/Unload User
 Language Interface

 The parameters described in the following subsections provide useful controls for
 Fast/Unload User Language Interface requests.

——
Fast/Unload Reference 203

——
Fast/Unload User Language Interface
——

 11.3.1 FUNPARM

 The FUNPARM system parameter is a standard Model 204 bitmask-style parameter.
 introduced in Sirius Mods version 6.7. Setting the X'01' bit, the only bit currently defined,
 specifies that a synchronous Fast/Unload request is not to be allowed while an updating
 transaction is active. This is to prevent a Fast/Unload request that might take a long
 time to complete from being run while a user has resources enqueued for an updating
 transaction. These resources would, of course, include the blocking of checkpoints.

 If the FUNPARM X'01' bit is set, and a thread attempts a synchronous Fast/Unload User
 Language Interface request (via $Funload or the FastUnload method of the Recordset
 class) in the middle of an updating transaction, the transaction is cancelled with a
 message like the following:

 CANCELLING REQUEST: MSIR.0561: $FUNLOAD: Synchronous request during
 update transaction in line 43, procedure
 FUNTEST, file ALEXPROC

 11.3.2 FUNMAXT

 The FUNMAXT system parameter specifies the maximum amount of time, in seconds, a
 Fast/Unload User Language Interface request is to be given to complete. The timer
 begins when the Fast/Unload User Language Interface is requested, either by $Funload
 or by the Recordset class FastUnload or FastUnloadTask method.

 Introduced in Sirius Mods version 6.7, FUNMAXT is a numeric parameter with valid
 values from 0 to 36000. The default value of 0 means no time limit is placed on
 Fast/Unload User Language Interface requests.

 The purpose of FUNMAXT is to prevent user requests from being “hung up” indefinitely
 while queuing for busy Fast/Unload tasks or for unintentionally long-running requests.

 To override FUNMAXT for specific requests, you can use either:

 ● The MaxTime named parameter on the FastUnload and FastUnloadTask methods
 in the Recordset class.

 ● The sixth parameter on $Funload:

 * Make sure request completes in one minute
 %rc = %rs:fastUnload(%listi, %listo, -
 parameters='NEBUFF=10', maxTime=60)
 ...
 * Make sure request completes in one minute
 %rc = $funload('LABEL', %iList, %oList, , 'NEBUFF=10', 60)

 It is a reasonable strategy to set FUNMAXT to a fairly low value, then to selectively set it
 higher for requests that need more time. Of course, it can be very difficult to ensure that

——
204 Fast/Unload Reference

——
 System parameters for the Fast/Unload User Language Interface
——

 short-running requests complete quickly if the Online also has long-running requests that
 might tie up all the Fast/Unload tasks. You improve the odds of quick completion if you
 specify more Fast/Unload tasks (FUNTSKN bigger), but this may still not be enough:

 ● All tasks might be tied up anyway, if there are many long-running requests.
 ● Some of the Fast/Unload tasks might have trouble getting dispatched, because
 there are more of them than CPUs to run them.

——
Fast/Unload Reference 205

——
Fast/Unload User Language Interface
——

——
206 Fast/Unload Reference

——
 Using an External Sort Package
——

——————
CHAPTER 12 Using an External Sort Package

 Instead of having data for a particular output stream go directly to an output data set, it
 can be passed first to a SORT routine. This has the following advantages over sorting
 that data in a separate step:

 ● A total time savings, because sort processing and record extraction processing are
 overlapped.

 ● A disk space savings, because the intermediate output data set that would be used
 to pass data from Fast/Unload to your sort package is eliminated.

 Prior to version 4.1, any SORT directives apply to the single output stream, FUNOUT,
 and there is no “TO destination” qualifier on such directives.

 As of version 4.1 and the advent of multiple output streams in a single FUEL program, a
 SORT directive may indicate the output stream to which it applies:

 SORT TO destination ...

 The destination ties the SORT directive to the output stream that has the same
 destination declared in an OUT TO or UAI TO directive. These directives can occur in
 any order in your FUEL program.

 12.1 Specifying the sort

 For a UAI stream, you indicate that the output is to be sorted by using the SORT
 keyword on the UAI statement (see “UNLOAD ALL INFORMATION or UAI” on page 88).
 The only independent SORT directives you may use are the OPTION statement (at most
 one per stream) and the PGM statement (at most one per program).

 For a non-UAI stream (one declared with an “OUT TO destination” directive), to pass
 data to a SORT routine you must code two or more SORT statements before the start of
 the FOR EACH RECORD loop in your FUEL program. Fast/Unload interprets the
 information on a SORT directive as a control statement to be passed to your SORT
 package (not including the TO destination qualifier).

 The SORT FIELDS (“Using SORT FIELDS” on page 208) and SORT RECORD (“Using
 SORT RECORD” on page 209) statements are required for Fast/Unload to pass data to
 a SORT routine. In addition to these required SORT statements, Fast/Unload also
 supports the following statements:

 ● MODS
——
Fast/Unload Reference 207

——
Using an External Sort Package
——

 ● DEBUG
 ● ALTSEQ
 ● SUM
 ● INCLUDE
 ● OMIT
 ● OPTION
 ● OUTREC
 ● INREC

 In addition:

 ● When using a 31-bit extended parameter list to pass data to the sort package, any
 other sort statement accepted by your sort package can be used. For more
 information on using 31-bit parameter lists see the documentation on the SORTP
 parameter and also see “Customization of Defaults” on page 291.

 ● You can identify your sort program by using the following form of the SORT
 statement:

 SORT PGM=pgmname

 where pgmname is the name of your sort program (the default name is SORT).
 This form of the SORT statement does not allow the “TO destination” qualifier, and it
 may occur at most once in a FUEL program. You can also customize Fast/Unload
 to change the default SORT program name (see “Default SORT program name” on
 page 294).

 12.2 Using SORT FIELDS

 Since SORT FIELDS is a sort statement, one would expect to have to code the
 Fast/Unload version of this as “SORT [TO destination] SORT FIELDS,” where the first
 “SORT” indicates to Fast/Unload that what follows is a sort statement, and the second
 “SORT” is part of the actual sort statement. While this is, in fact, permitted, Fast/Unload
 will also allow you to specify simply “SORT FIELDS” as a shorthand.

 In addition to the standard form of the SORT FIELDS statement (explicitly specifying
 start position, length, and format), Fast/Unload provides a shorthand for specifying field
 positions in an output record: If you specify a fieldname as part of the SORT FIELDS
 statement, Fast/Unload will replace the name(s) of the field(s) with the starting position,
 length, and format in the output record.

 In addition, you can specify a %variable or a special variable (except for #RECOUT,
 #OUTPOS, #OUTLEN, and #UPARM) as a shorthand for specifying the position of that
 %variable or special variable in an output record.

——
208 Fast/Unload Reference

——
 Using SORT FIELDS
——

 Note: This shorthand is designed for relatively simple FUEL programs. It is not
 available if the FUEL program contains more than one OUT TO stream. In that case,
 you must use the standard form of SORT FIELDS.

 For example, if you code

 SORT FIELDS=(FIELD1,A)

 and later in your program you code

 PUT FIELD1 AT 15 AS STRING(10)

 Fast/Unload will pass

 SORT FIELDS=(15,10,CH,A)

 to the sort package if the record format is fixed, or

 SORT FIELDS=(19,10,CH,A)

 if the format is variable. The 19 position in the statement above also illustrates the fact
 that Fast/Unload does not consider the RDW (Record Descriptor Word) as part of the
 output record, while sorts do consider the RDW as part of the input record.

 Constant occurrence numbers are valid with the field names in the SORT FIELDS
 statement, while (loop control variable or %variable) variable occurrences are not.

 12.3 Using SORT RECORD

 Fast/Unload uses the SORT RECORD statement to determine the output record format
 and length.

 For example, Fast/Unload produces fixed length records with a length of 300 if you code:

 SORT RECORD TYPE=F,LENGTH=(300)

 The blocksize used is the largest valid blocksize less than or equal to 4096, or it is the
 record length, if the record length exceeds 4096. For example, if
 TYPE=F,LENGTH=(300), the blocksize is 3900. If TYPE=V,LENGTH=(300), the
 blocksize is 4096. If TYPE=V,LENGTH=8000, the blocksize is 8000.

 Data passed between Fast/Unload and the sort package is buffered, and the number of
 buffers used is set by the value of NOBUFF.

——
Fast/Unload Reference 209

——
Using an External Sort Package
——

 12.4 Sample code

 The following program is an example of the use of an external sort package with
 Fast/Unload.

 OPEN BIGFILE
 SORT TO SBIGFILE FIELDS=(KEY1,A,KEY3,D),EQUALS
 SORT TO SBIGFILE RECORD TYPE=F,LENGTH=(100)
 SORT TO SBIGFILE ALTSEQ -
 CODE=(F0B0,F1B1,F2B2,F3B3,F4B4,F5B5,F6B6,F7B7,F8B8,F9B9)
 OUT TO SBIGFILE DEFAULT
 FOR EACH RECORD
 PUT KEY1 AS STRING 10
 PUT KEY2 AS STRING 10
 PUT KEY3 AS FIXED 4
 PUT DATA(*) AS STRING(10)
 OUTPUT
 END FOR

 In this example, the SORT FIELDS statement passed to the sort would be

 SORT FIELDS=(1,10,CH,A,21,4,BI,D),EQUALS

——
210 Fast/Unload Reference

——
 Using Fast/Unload with DBCS data
——

——————
CHAPTER 13 Using Fast/Unload with DBCS data

 Fast/Unload understands the format of three varieties of DBCS shift sequences as
 defined by the hardware vendors IBM, Fujitsu, and Hitachi. You must tell Fast/Unload
 about your DBCS environment with either the DBCS parameter, or by customizing
 Fast/Unload. See “Customization of Defaults” on page 291 for information about
 customizing Fast/Unload. Fast/Unload also recognizes the two general types of DBCS
 data defined by Model 204. These are Pure DBCS and Mixed DBCS. Fast/Unload
 always converts DBCS data to the mixed format before output (except for the UAI
 format). Mixed DBCS means simply EBCDIC and DBCS data are permitted in the field,
 but all DBCS character strings within the string are enclosed in the appropriate Shift-Out
 and Shift-In sequences.

 When you code your FUEL program to PUT pure DBCS string data, the output length
 specification must allow for the Shift-Out Shift-In sequences. These are each one byte
 long for IBM and Fujitsu systems, and two bytes long for Hitachi. Thus, to correctly
 output a two byte pure DBCS field in an IBM environment, your PUT statement must
 have a length specification of at least 4 (one byte for the Shift-Out, two bytes for the
 DBCS character, and one byte for a Shift-In).

 Fast/Unload respects DBCS character context when DBCS string truncation occurs. If a
 DBCS string is truncated, whole DBCS characters are truncated, preserving the Shift-In
 sequence.

 Fast/Unload respects DBCS character context when a start position is specified on a
 PUT statement (parameter number 4 on the STRING format). That is, the start
 character counts each DBCS character as a single character whether it is 1 or 2 bytes
 long. Each Shift-In and Shift-Out sequence also counts as a single character. If the first
 character to be output is in the middle of a Shift-Out bracket, a Shift-Out is added to the
 start of the string before output.

 When Fast/Unload builds the sort key for a UAI SORT, DBCS fields are treated as byte
 strings (i.e., dshifts are not added to pure DBCS fields, and DBCS characters and shift
 sequences are not necessarily preserved).

 Assignment from a field or %variable preserves the DBCS type of the value.

 If a string constant which contains a Shift Out sequence is assigned to a %variable or
 field (with CHANGE or ADD), or passed as a #function argument, the value has type
 Mixed DBCS, otherwise it is not DBCS.

 The #CONCAT function calculates the appropriate DBCS type and appropriately
 combines shifts.

——
Fast/Unload Reference 211

——
Using Fast/Unload with DBCS data
——

 For all other #functions, all strings (input and output) are treated as non-DBCS strings.

 For example:

 %LEN = #LEN(PURE_DBCS) /* Returns number of bytes
 %STR = #SUBSTR(PURE_DBCS, 1, %LEN) /* %STR is non-DBCS
 %ST1 = PURE_DBCS /* %ST1 has same DBCS type
 %ST2 = #CONCAT(PURE_DBCS, PURE_DBCS) /* %ST2 has same DBCS type

——
212 Fast/Unload Reference

——
 Customer-written Assembler #Function Packages
——

——————
CHAPTER 14 Customer-written Assembler #Function
 Packages

 You can extend the set of #functions available at your site by writing one or more
 collections of them and making them available to FUEL. The items enabling you to do
 this are:

 ● The FUNCTIONS statement has been added to FUEL to identify the location of
 #functions you have written.

 ● An efficient, easy-to-use interface has been designed for matching a #function name
 to the code implementing that #function.

 ● An efficient, easy-to-use interface has been designed for performing common
 operations needed by #functions, such as obtaining the value of arguments and
 setting the result value and output arguments.

 ● The interfaces have been designed with compatibility in mind; with new releases of
 Fast/Unload you will not even need to reassemble your #functions.

 14.1 Members of SIRIUS.OBJLIB used in coding
 #Functions

 Some assembler language source files are included in your Fast/Unload distribution tape
 to assist you in developing #functions. They are described in this section.

 14.1.1 Run-time Interface Symbols: FUNCEQU COPY

 This COPY member should be made available in a MACLIB to assemble any #functions
 you write. The symbols defined in it consist of the values you can pass to the
 Fast/Unload #function service routine, for the various services being requested. The
 only value defined in this COPY member which will change is the symbol FUNQX, which
 will increase when additional services are added to the interface.

 Note: Prior to the release of version 4.0 of Fast/Unload, one of the symbols, FUNQAFS,
 was incorrectly defined. Be sure you are using the corrected FUNCEQU COPY, which
 contains the following assembler statement:

 FUNQAFS EQU 11 Assign float to arg...

——
Fast/Unload Reference 213

——
Customer-written Assembler #Function Packages
——

 14.1.2 Example #Function Package: UFUN ASSEMBLE

 This ASSEMBLE program contains the package-searching code, along with one sample
 #function available in the package. You can modify this program to write a #function
 package, using your own #function names in the table.

 Since future versions of Fast/Unload may contain new standard #functions, you should
 choose a naming convention for your #functions which is not likely to overlap the
 standard #functions.

 14.2 Compiler Call to Package to Locate #Function

 When a #function call is compiled in a FUEL program, if the #function name is not one of
 the standard Fast/Unload #functions, all #function packages are dynamically loaded and
 called, in the order specified, until the #function name is in the package.

 The registers passed to the #function package are:

 R1 The address of a byte, which contains the length of the #function name, followed
 by the #function name, blank padded to 255 bytes.

 R6 The address of a 4096 byte work area which is passed to all #function packages
 and to all #functions. This area is initally all binary zeroes and is aligned on a
 doubleword boundary. Fast/Unload does not modify this area.

 R13 The address of a 4096 byte work area which is passed only to this #function
 package and to all #functions within this package. This area is initially all binary
 zeroes and is aligned on a doubleword boundary. Fast/Unload does not modify
 this area.

 R14 The return address.

 R15 The entry point of the #function package.

 The registers returned by the #function package are:

 R0 Must contain 0.

 R1 One of the following two cases:

 ● 0 to indicate the #function is not part of the package.

 ● A positive number, which is the entry point of the #function.

 R2 A bit mask, to indicate which arguments are required. For example, X'A0000000'
 indicates the first and third arguments are required (a rather strange example).

——
214 Fast/Unload Reference

——
 Compiler Call to Package to Locate #Function
——

 R3 A bit mask, to indicate which arguments, if specified, must be %variables (i.e.,
 available as output). For example, X'30000000' indicates the third and fourth
 arguments are output arguments.

 R4 Maximum number of arguments the #function can accept.

 R5-R15
 Need not be restored, can contain any value.

 14.3 Run-time Invocation of #Function

 This section describes the registers passed to a #function (none need be returned by the
 #function), and the services that Fast/Unload makes available for use by a #function.

 The registers passed to a #function are:

 R5 The address of a service routine to retrieve from or assign to the #function
 arguments or perform other services. See the description of the interface to the
 service routine, presented next in this section.

 R6 The address of a 4096 byte work area which is passed to all #function packages
 and all to #functions. Fast/Unload does not modify this area.

 R13 The address of a 4096 byte work area which is passed only to a given #function
 package and to all #functions which were resolved by a call to that package.
 Fast/Unload does not modify this area.

 R14 The return address.

 R15 The entry point of the #function.

 The argument values can be returned by the service routine; various values (FUNQ2xxx)
 are used for different types.

 There is no information returned from a #function in the registers. No registers need be
 restored; they can contain any value. The result value and output arguments of a
 #function are set by passing various values (FUNQ2xxx) to the service routine.

 The service routine which is passed to a #function in register R5 is used to retrieve the
 value of or perform assignment into the #function arguments or result, issue error
 messages, terminate Fast/Unload, and manage memory.

 The registers at entry to the service routine are described below; individual services
 have some exceptions, which are explained in the description of the services in this
 section.

——
Fast/Unload Reference 215

——
Customer-written Assembler #Function Packages
——

 R0 Unless specified otherwise, the argument number for the service. Argument
 number 0 designates the #function result.

 R1 A code indicating the service required (symbols for this code are defined in
 FUNCQEU COPY).

 R2 As described for individual service descriptions in this section.

 F0 (Floating point register 0); as described for individual service descriptions in this
 section.

 R14 The return address.

 The registers on return from the service routine are explained in the description of the
 services in this section. For all services, the registers on return from the service routine
 are:

 R0-R2 Unless specified for an individual service, unpredictable.

 R3-R14 Unchanged from values at entry.

 R15 Usually a return code; if not specified by the service routine description,
 unpredictable.

 14.3.1 Get information about #function argument(s)

 This service obtains the number of arguments to the #function and optionally the type
 (omitted/present, MISSING value or not, and output or not) of a specified argument.

 This service is most often invoked for #functions which have a variable number of
 arguments (such as #CONCAT). For a different usage example, it can be invoked as
 follows to see if a particular argument is an output argument (although the function
 package makes sure that if an argument is declared as output, any function call using
 that argument is a %variable):

 LA R0,xxx Get info about arg xxx
 LA R1,FUNQAI Get service number
 BALR R14,R5 Call service
 LTR R15,R15 Is arg an output arg?
 BP ... No, handle condition

 Special input registers for this service are:

 R0 Argument number (0 means don't get single arg info).

 Output registers for this service are:

——
216 Fast/Unload Reference

——
 Run-time Invocation of #Function
——

 R0 Number of arguments (including omitted arguments after a comma) (i.e., 0 if no
 args, else 1 + number of commas).

 Following output registers only apply if this service is called with R0 > 0:

 R1 0: Argument has a value.
 4: Argument is not present.
 8: Argument is present but value is MISSING.

 R15 0: Argument is an output arg; assignment will be OK.
 4: Argument is not present.
 8: Argument present but not an output arg.

 14.3.2 Get string value of argument

 This pair of services obtains the string value of a specified argument. The strict service
 (FUNQ2SS) will terminate if the argument is omitted. The conditional service
 (FUNQ2SC) will allow all argument cases. Either service will reflect exception argument
 cases by a return code in register R15 and a zero length in register R0.

 For example, they can be invoked as follows:

 LA R0,xxx Get value of arg xxx
 LA R1,FUNQ2SS Service number: omitted CANCEL
 BALR R14,R5 Call service
 * Omit following two lines if null for MISSING is OK:
 CH R15,=H'8' Is value MISSING?
 BE ... Yes, handle condition
 LTR R15,R0 Is string zero-length?
 BZ ... Yes, handle condition
 BCTR R15,0 No, get length - 1
 EX R15,MVCA MVC xx(0,R13),0(R1) Copy to work area

 or

 LA R0,xxx Get value of arg xxx
 LA R1,FUNQ2SC Get service number - allow errors
 BALR R14,R5 Call service
 CH R15,=H'4' Is arg present?
 BE ... No, handle condition
 LTR R15,R0 Is string zero-length?
 BZ ... Yes, handle condition
 BCTR R15,0 No, get length - 1
 EX R15,MVCA MVC xx(0,R13),0(R1) Copy to work area
 * Omit following two lines if no DBCS data handled:
 LTR R2,R2 Is string DBCS?
 BC ... Handle condition

 These services have no special input registers.

——
Fast/Unload Reference 217

——
Customer-written Assembler #Function Packages
——

 Output registers for these services are:

 R0 Length of string value (0 if omitted or MISSING value).

 R1 Address of string value.

 R2 0: Not a DBCS string or not DBCS run
 > 0: Mixed DBCS string
 < 0: Pure DBCS string

 R15 0: Argument contains string value.
 4: Argument is not present.
 8: Argument present but value is MISSING.

 14.3.3 Get float value of argument

 This pair of services obtains the 8 byte floating point value of a specified argument. The
 strict service (FUNQ2FS) will terminate if the argument is omitted, has a non-numeric
 value, or has a value too large in absolute value to store in an eight byte floating point
 number (insignificant fractions will be truncated without error). The conditional service
 (FUNQ2FC) will allow all argument cases. Either service will reflect exception argument
 cases by a return code in register R15 and a zero in float register F0.

 For example, they can be invoked as follows:

 LA R0,xxx Get value of arg xxx
 LA R1,FUNQ2FS Service num: omit/non-num CANCEL
 BALR R14,R5 Call service
 * Omit following two lines if zero for MISSING is OK:
 CH R15,=H'8' Is value MISSING?
 BE ... Yes, handle condition
 STD F0,xxx(,R13) Save value in work area

 or

 LA R0,xxx Get value of arg xxx
 LA R1,FUNQ2FC Get service number - allow errors
 BALR R14,R5 Call service
 B *+4(R15) Handle conditions
 B OK Handle success
 B ... Handle arg omitted
 B ... Handle MISSING value
 B ... Handle conversion error
 OK STD F0,xxx(,R13) Save value in work area

 These services have no special input registers.

 Output registers for these services are:

——
218 Fast/Unload Reference

——
 Run-time Invocation of #Function
——

 F0 Float value (0 if omitted/unconvertible).

 R15 0: Argument contains float value.
 4: Argument is not present.
 8: Argument present but value is MISSING.
 12: Argument value can't be converted to float.

 14.3.4 Get fixed value of argument

 This pair of services obtains the 4 byte binary integer value of a specified argument.
 The strict service (FUNQ2BS) will terminate if the argument is omitted, has a non-
 numeric value, or has a value too large (positive) or too small (negative) to store in a four
 byte signed binary number (fractions will be truncated without error). The conditional
 service (FUNQ2FC) will allow all argument cases. Either service will reflect exception
 argument cases by a return code in register R15 and a zero in register R1.

 For example, they can be invoked as follows:

 LA R0,xxx Get value of arg xxx
 LA R1,FUNQ2BS Service num: omit/non-num CANCEL
 BALR R14,R5 Call service
 * Omit following two lines if zero for MISSING is OK:
 CH R15,=H'8' Is value MISSING?
 BE ... Yes, handle condition
 ST R1,xxx(,R13) Save value in work area

 or

 LA R0,xxx Get value of arg xxx
 LA R1,FUNQ2BC Get service number - allow errors
 BALR R14,R5 Call service
 B *+4(R15) Handle conditions
 B OK Handle success
 B ... Handle arg omitted
 B ... Handle MISSING value
 B ... Handle conversion error
 OK ST R1,xxx(,R13) Save value in work area

 These services have no special input registers.

 Output registers for these services are:

 R1 Binary value (0 if omitted/unconvertible).

 R15 0: Argument contains integer value (maybe truncated).
 4: Argument is not present.
 8: Argument present but value is MISSING.
 12: Argument value can't be converted to fullword int.

——
Fast/Unload Reference 219

——
Customer-written Assembler #Function Packages
——

 14.3.5 Assign string value to argument

 This pair of services sets the value of a specified argument to a specified byte string.
 The strict service (FUNQASS) will terminate if the argument is omitted or is not an output
 argument. The conditional service (FUNQASC) will reflect these errors by a return code
 in register R15.

 They are invoked as follows:

 LA R0,xxx Set value of arg xxx
 LA R1,FUNQASS Get service number - errors CANCEL
 LA R2,... Address of string to assign
 set R3,... Length of string to assign
 * Omit following line if no DBCS data handled:
 set R4,... Indicate DBCS string type
 BALR R14,R5 Call service

 or

 LA R0,xxx Set value of arg xxx
 LA R1,FUNQASC Get service number - allow errors
 LA R2,... Address of string to assign
 LA R3,... Length of string to assign
 * Omit following line if no DBCS data handled:
 set R4,... Indicate DBCS string type
 BALR R14,R5 Call service
 CH R15,=H'4' Is arg present/output?
 BC ... Handle condition

 Special input registers for these services are:

 R2 Address of value to assign.

 R3 Length of value to assign (must be < 256).

 R4 If a DBCS run:
 0: Not a DBCS string
 > 0: Mixed DBCS string
 < 0: Pure DBCS string

 Output registers for these services are:

 R15 0: Assignment successful.
 4: Assignment failed: arg omitted.
 8: Assignment failed: arg is not output.

 For FUNQASS, since the non-0 cases for R15 cause the Fast/Unload program to be
 terminated, if the service returns then R15 will be 0.

——
220 Fast/Unload Reference

——
 Run-time Invocation of #Function
——

 14.3.6 Assign float value to argument

 This pair of services sets the value of a specified argument to a specified 8 byte floating
 point value. The strict service (FUNQAFS) will terminate if the argument is omitted or is
 not an output argument. The conditional service (FUNQAFC) will reflect these errors by
 a return code in register R15.

 They are invoked as follows:

 LA R0,xxx Set value of arg xxx
 LA R1,FUNQAFS Get service number - errors CANCEL
 LD F0,... Value to assign
 BALR R14,R5 Call service

 or

 LA R0,xxx Set value of arg xxx
 LA R1,FUNQAFC Get service number - allow errors
 LD F0,... Value to assign
 BALR R14,R5 Call service
 CH R15,=H'4' Is arg present/output?
 BC ... Handle condition

 Special input registers for these services are:

 F0 Value to assign.

 Output registers for these services are:

 R15 0: Assignment successful.
 4: Assignment failed: arg omitted.
 8: Assignment failed: arg is not output.

 For FUNQAFS, since the non-0 cases for R15 cause the Fast/Unload program to be
 terminated, if the service returns then R15 will be 0.

 Note: Prior to the release of version 4.0 of Fast/Unload, FUNQAFS was incorrectly
 defined. Be sure you are using the corrected FUNCEQU COPY, which contains the
 following assembler statement:

 FUNQAFS EQU 11 Assign float to arg...

 14.3.7 Assign fixed value to argument

 This pair of services sets the value of a specified argument to a specified 4 byte binary
 integer value. The strict service (FUNQABS) will terminate if the argument is omitted or
 is not an output argument. The conditional service (FUNQABC) will reflect these errors

——
Fast/Unload Reference 221

——
Customer-written Assembler #Function Packages
——

 by a return code in register R15.

 They are invoked as follows:

 LA R0,xxx Set value of arg xxx
 LA R1,FUNQABS Get service number - errors CANCEL
 L R2,... Value to assign
 BALR R14,R5 Call service

 or

 LA R0,xxx Set value of arg xxx
 LA R1,FUNQABC Get service number - allow errors
 L R2,... Value to assign
 BALR R14,R5 Call service
 CH R15,=H'4' Is arg present/output?
 BC ... Handle condition

 Special input registers for these services are:

 R2 Value to assign.

 Output registers for these services are:

 R15 0: Assignment successful.
 4: Assignment failed: arg omitted.
 8: Assignment failed: arg is not output.

 For FUNQABS, since the non-0 cases for R15 cause the Fast/Unload program to be
 terminated, if the service returns then R15 will be 0.

 14.3.8 Allocate storage

 This pair of services allocates dynamic storage, above (FUNQGMA) or below
 (FUNQGMB) the 16 meg line, respectively.

 They are invoked as follows:

 LA R0,... Length of storage to allocate
 LA R2,=C'... Label for storage
 LA R1,FUNQGMB Get service number - below 16 MB
 BALR R14,R5 Call service

 or

 LA R0,... Length of storage to allocate
 LA R2,=C'... Label for storage
 LA R1,FUNQGMA Get service number - above 16 MB
 BALR R14,R5 Call service

——
222 Fast/Unload Reference

——
 Run-time Invocation of #Function
——

 Special input registers for these services are:

 R0 Length of storage in bytes.

 R2 Address of 8 character eyecatcher for storage.

 Output registers for these services are:

 R1 Address of storage allocated.

 If the storage is not available, the FUEL program is terminated (i.e., the service does not
 return).

 14.3.9 Release storage

 This service releases a block of storage which was previously allocated (partial blocks
 may not be released).

 It is invoked as follows:

 LR R0,... Address of storage to release
 LA R1,FUNQFM Get service number
 BALR R14,R5 Call service

 Special input registers for this service are:

 R0 Address of storage to release.

 This service has no output registers.

 14.3.10 Issue an error message and/or set return code

 This service issues the FUNL0111 message, with the specified text, and/or changes the
 Fast/Unload program return code.

 The FUNQMSG service is invoked in a variety of ways. To issue a message without
 changing the current return code:

 LA R0,MSG Address of message text
 LA R1,FUNQMSG Get service number
 LA R2,L'MSG Length of message text
 SLR R3,R3 Indicate no change to return code
 BALR R14,R5 Call service

——
Fast/Unload Reference 223

——
Customer-written Assembler #Function Packages
——

 To issue a message and ensure that the return code is set at least as large as a
 supplied value:

 LA R0,MSG Address of message text
 LA R1,FUNQMSG Get service number
 LA R2,L'MSG Length of message text
 LA R3,value Set minimum return code
 BALR R14,R5 Call service
 ST R15,xxx(,RD) Save prior value of return code

 To ensure that the return code is set at least as large as a supplied value, without
 printing a message:

 LA R1,FUNQMSG Get service number
 SLR R2,R2 Indicate no message text
 BCTR R2,0 Optionally suppress FUNL0111
 LA R3,value Set minimum return code
 BALR R14,R5 Call service
 ST R15,xxx(,RD) Save prior value of return code

 To force return code to specific value, without regard to previous value, with or without
 printing a message:

 LA R1,FUNQMSG Get service number
 IF ... Message desired
 LA R0,MSG Address of message text
 LA R2,L'MSG Length of message text
 ELSE , No message
 SLR R2,R2 No message text, but FUNL0111
 BCTR R2,0 Eliminate FUNL0111 header as well
 ENDIF ,
 LH R3,=H'-1' Change return code in any case
 LA R4,value Set new return code
 BALR R14,R5 Call service
 ST R15,xxx(,RD) Save prior value of return code

 Special input registers for this service are:

 R0 Address of message.

 R2 Length of message; if less than 0, message not issued. Must be less than 256.
 Trailing blanks preserved.

 R3 0: do not change return code.
 > 0: change return code to this value if it is less than that value.
 < 0: change return code to value in R4, regardless.

 R4 New return code, if R3 less than 0.

 Output registers for this service are:

——
224 Fast/Unload Reference

——
 Run-time Invocation of #Function
——

 R15 Prior value of return code.

 14.3.11 Terminate Fast/Unload, optionally set return code

 This service terminates Fast/Unload, and optionally changes the Fast/Unload program
 return code.

 The FUNQTRM service is invoked in a variety of ways. To terminate the current run
 without changing the return code:

 LA R1,FUNQTRM Get service number
 SLR R3,R3 Indicate no change to return code
 BALR R14,R5 Call service

 To terminate the current run and ensure that the return code is at least as high as a
 provided number:

 LA R1,FUNQTRM Get service number
 LA R3,value Set minimum return code
 BALR R14,R5 Call service

 To terminate the current run and set the return code to a given value without regard to its
 previous value:

 LA R1,FUNQTRM Get service number
 LH R3,=H'-1' Change return code in any case
 LA R4,value Set return code
 BALR R14,R5 Call service

 Special input registers for this service are:

 R0 Unused.

 R3 0: do not change return code.
 > 0: change return code to value in R3 if it is less than that value.
 < 0: change return code to value in R4, regardless.

 R4 New return code, if R3 less than 0.

 This service does not return.

——
Fast/Unload Reference 225

——
Customer-written Assembler #Function Packages
——

 14.4 Example - MVS

 This example demonstrates use of the sample #function package contained on the
 distribution tape, in the MVS environment.

 14.4.1 Installing a #Function Package

 This step consists of assembling and link-editing a #function package.

 //ASMLINK EXEC ASMCL
 //ASM.SYSIN DD DISP=SHR,DSN=SIRIUS.LIB(UFUN) Sample package
 //ASM.SYSLIB DD DISP=SHR,DSN=SIRIUS.LIB FUNCEQU macro
 //LINK.SYSLMOD DD DISP=(NEW,CATLG),DSN=USER.FUNCPKG
 //LINK.SYSIN DD *
 NAME LOCFUNCS(R)
 /*

 14.4.2 Using a #Function Package

 Shown here are the changes to the Fast/Unload JCL and FUEL needed to use a
 #function package.

 //FUNLOAD EXEC PGM=FUNLOAD
 //... Normal JCL
 //FUNCPKG DD DISP=SHR,DSN=USER.FUNCPKG Custom package
 //FUNIN DD *
 FUNCTIONS IN FUNCPKG LOCFUNCS
 OPEN PEOPLE
 FOR EACH RECORD
 %PALINDROME = #RVRSTR(NAME)
 %PALINDROME = #CONCAT(NAME, %PALINDROME)
 PUT %PALINDROME
 OUTPUT
 END FOR

 14.5 Example - CMS

 This example demonstrates use of the sample #function package contained on the
 distribution tape, in the CMS environment.

 14.5.1 Installing a #Function Package

 This step consists of assembling a #function package.

——
226 Fast/Unload Reference

——
 Example - CMS
——

 * Create a macro library with FUNCEQU:
 MACLIB GEN FUNLOAD FUNCEQU
 * Assemble the package:
 GLOBAL MACLIB FUNCEQU
 HASM UFUN

 14.5.2 Using a #Function Package

 If the TEXT file created in the preceding step is on an accessed CMS minidisk, you can
 use the following FUNIN file:

 FUNCTIONS UFUN
 OPEN PEOPLE
 FOR EACH RECORD
 %PALINDROME = #RVRSTR(NAME)
 %PALINDROME = #CONCAT(NAME, %PALINDROME)
 PUT %PALINDROME
 OUTPUT
 END FOR

——
Fast/Unload Reference 227

——
Customer-written Assembler #Function Packages
——

——
228 Fast/Unload Reference

——
 Using User Exits or Filters
——

——————
CHAPTER 15 Using User Exits or Filters

 Note: Fast/Unload has several extremely efficient features that may reduce the need for
 output filters: %variables, #functions, arithmetic expressions, FUEL outside FOR EACH
 RECORD, and the opportunity to write your own assembler language #functions.

 Before sending data to an output data set or to a sort package, one can have an output
 record passed through a user-written load module. This load module must be written in
 assembler and can be used to modify, replace, or prevent output of a record. In
 addition, the user exit can request that the run be terminated.

 Because of their function, these exits are referred to as filters. To have an output
 record pass through a user filter, one should code the FILTER option on an OUTPUT
 statement. For example, the statement

 OUTPUT FILTER HOHO

 indicates that you would like the current output record to be passed through the filter
 HOHO.

 In the above example HOHO must be a load module contained in a PDS concatenated
 to STEPLIB for the Fast/Unload step.

 Under CMS, a HOHO module would have to be linked as a MODULE file on an
 accessed disk. In addition HOHO would have to have been linked with either the
 RLDSAVE option or with an ORIGIN that does not overlap the Model 204 CMS interface
 or Fast/Unload. The CMS interface is typically loaded at address X'20000' and
 Fast/Unload is loaded at X'30000'. Any address greater than X'50000' or the transient
 area should be all right as an ORIGIN for your load module.

 The entry point of the load module indicated by OUTPUT FILTER is entered each time
 the OUTPUT statement is executed. The registers on entry to the filter load module are:

 R0 0 Indicates record is fixed format, 1 indicates record is variable format.

 R1 Address of output record. If record format is variable R1 points to the
 records RDW (record descriptor word).

 R2 Length of the record. If record format is variable, this includes the 4 byte
 length of the RDW.

 R3-R12 On first entry these registers are all 0. After first entry these registers are the
 same as they were on exit from the filter load module. If a filter is used on
 more than one OUTPUT statement these registers are the same as on exit

——
Fast/Unload Reference 229

——
Using User Exits or Filters
——

 from the last time a filter with the same name as the current filter was
 invoked.

 R13 Pointer to a 24 fullword save area.

 R14 Return address.

 R15 Entry point address for filter load module.

 The filter is only responsible for preserving R14 on return to Fast/Unload. In addition it
 must set R0 with a code indicating the required output action for Fast/Unload. These
 codes are:

 ● 0 - Put the current output record into output stream.

 ● 1 - Replace current output record with record pointed to by R1.

 ● 2 - Do not place the current output record into the output stream.

 Note that if code 1 is returned and the output format is variable, the record pointed to by
 R1 must have a valid RDW.

 If code 0 is returned the filter may also modify the current output record in the following
 ways :

 ● It may modify any part of it.

 ● It may decrease the length of a variable format part by modifying the RDW.

 Note that it may not increase the length of a variable format record by modifying the
 RDW. To increase the length of a record, code 1 must be returned and the extended
 record must be copied to a work area pointed to by R1.

 Fast/Unload will detect certain errors by a user filter and issue a user ABEND when one
 is detected. These ABEND codes and errors are:

 ● 001 - Storage corruption.

 ● 002 - Record length increased for variable format record.

 ● 003 - RDW corrupted.

 ● 004 - Negative code returned in R0.

 ● 005 - Invalid code returned in R0.

 When one of these abends is issued, R3 through R12 are loaded with the registers as
 they were on exit from the user filter. In addition, R1 on exit from the user filter is moved
 to R15.

——
230 Fast/Unload Reference

——
 Using Fast/Unload with Model 204 Groups
——

——————
CHAPTER 16 Using Fast/Unload with Model 204 Groups

 If you have purchased the Fast/Unload User Language Interface, you can directly unload
 groups with Fast/Unload. You can unload permanent groups, temporary groups, or ad
 hoc groups with this feature. No User Language changes are necessary to use groups
 with Fast/Unload. Fast/Unload automatically determines when a found set has a group
 context, and treats the group as a single database for the duration of the unload. This
 means that a single output dataset is produced for the entire group unload.

 All FUEL statements are supported with the use of groups, except the SORT and HASH
 options of UAI.

 You should be aware of the following special considerations:

 ● If a field referenced on a PUT statement does not exist in some of the databases in
 the group, the reference will be treated as a missing occurrence for each record in
 those files. This means that the PUT statement's MISSING clause will be executed
 for each record in those files in which the field is not defined.

 ● The #RECIN variable will always be set to the current record number for the current
 file. The #RECIN variable is reset at the completion of each file in the group. So,
 for groups, there can be multiple records unloaded with the same #RECIN value.

 ● The #RECOUT variable is not reset for the duration of a group unload. It always
 contains a running total of the number output records produced for the entire
 unload.

 ● The #GRPSIZ variable contains the number of files in the group.

 ● The #GRPMEM variable contains the number of the current file within the group (1
 for the first file, etc.).

 ● If you have any FUEL statements before the FOR EACH RECORD loop, those
 statements are executed once at the start of the job; they are not executed before
 each member in the group.

 ● If you have any FUEL statements following the end of the FOR EACH RECORD
 loop, those statements are executed once at the end of the job; they are not
 executed at the end of each member in the group.

 ● Field statistics are produced separately for each file in a group.

 ● Date statistics are produced separately for each file in a group.

——
Fast/Unload Reference 231

——
Using Fast/Unload with Model 204 Groups
——

 ● The FRECORD parameter only applies to the first file, if a group unload is being
 performed.

 For example, the following FUEL program prints the number of records in each file and
 the total number of records in the group (the latter is somewhat silly, since the total
 number of records is available from the standard Fast/Unload summary messages):

 OPEN INFILES
 %GTOT = 0 /* Initialize counters
 %FTOT = 0
 FOR EACH RECORD
 IF %GRP NE #GRPMEM THEN /* New group member?
 %GTOT = %GTOT + %FTOT
 %FTOT = 0
 %GRP = #GRPMEM
 END IF
 %FTOT = %FTOT + 1
 END FOR
 %GTOT = %GTOT + %FTOT /* Include last file
 REPORT %GTOT AND 'records in group'
 REPORT #GRPSIZ AND 'files in group'

——
232 Fast/Unload Reference

——
 Using Fast/Unload with the Sir2000 Field Migration Facility
——

——————
CHAPTER 17 Using Fast/Unload with the Sir2000 Field
 Migration Facility

 For the most part, the presence of a file which has been modified with the Sir2000 Field
 Migration Facility has no effect on Fast/Unload processing. The exceptions are as
 follows:

 1. The ADD, CHANGE, and DELETE statements may not be issued for a RELATED
 field.

 2. When doing an unload with UAI, the Fast/Unload output contains all of the Sir2000
 Field Migration Facility definitions, which can be used to recreate them during the
 Fast/Reload LAI operation.

 3. The UNLOAD field statement, if it references a RELATED field, will cause the other
 of the pair of RELATED fields to be unloaded. This ensures that if a partial record is
 unloaded, both occurrences of a RELATED pair of fields are always unloaded.

 4. If UAI SORT field_R or HASH field_R causes field_R to be implicitly unloaded
 (see “UAI SORT or HASH and field unload order” on page 95), and field_R is a
 RELATED field, then any UNLOAD field statement causes the other field of the
 RELATED pair to also be implicitly unloaded, after field_R.

——
Fast/Unload Reference 233

——
Using Fast/Unload with the Sir2000 Field Migration Facility
——

——
234 Fast/Unload Reference

——
 Floating Point Arithmetic and Numeric Conversion
——

——————
APPENDIX A Floating Point Arithmetic and Numeric
 Conversion

 Arithmetic operations in Fast/Unload (that is, arithmetic calculations, as defined in
 “Expressions” on page 32) are performed using the IBM/360 floating point arithmetic
 instructions. In addition, many operations in Fast/Unload involve converting to or from a
 numeric value, which uses a (power of 2) floating point representation.

 Many values that are exactly expressed in base 10 (that is, the usual decimal number
 system) are not represented exactly as power of 2 floating point values. Also, the
 floating point arithmetic instructions will, in many cases, produce results that are only
 approximately equal to the given operation and operands.

 To satisfy the requirements of manipulating these numeric values using the
 “hexadecimal” floating point instructions, certain approaches have been adopted in
 Model 204 User Language. In order to produce results in Fast/Unload that are identical
 to the results obtained in User Language, these same approaches have been adopted in
 Fast/Unload. However, this chapter only serves as documentation of float handling in
 Fast/Unload. The similarity of results with User Language has been extensively tested,
 but there may be edge cases in which Fast/Unload and User Language differ.

 Note also that Fast/Unload contains no exact provision for the floating point value
 handling provided by the Image feature in User Language. Information in this chapter
 must not be extrapolated to the operation with Images.

 Note: The contents of this chapter are refreshed as of Fast/Unload 4.3. It is highly
 recommended that you use at least Fast/Unload version 4.3 if your application involves
 calculations sensitive to the operation of floating point handling.

 A.1 Overview

 The IBM “hexadecimal” floating point instructions use an exponent based on a power of
 sixteen. If the value being represented contains a fractional part, or if it is beyond the
 range of integers that can be exactly represented, then the floating point representation
 of a value may be only an approximation of the value. For example, the value “one-
 tenth” is represented in base 16 as the infinite hexadecimal series .1AAAAAAA... These
 approximations can lead to surprising results, especially when dealing with decimal
 fractions that one commonly considers as having an exact representation, for example,
 the base 10 number .1 for the value one-tenth.

——
Fast/Unload Reference 235

——
Floating Point Arithmetic and Numeric Conversion
——

 To address this problem, the approach to floating point manipulation in Fast/Unload is
 based on the following:

 Decimal external inputs and outputs
 For external numeric inputs and outputs of Model 204 applications, the
 original source (for example, data entry fields) and final destination (for
 example, printed values) is expressed in decimal (base 10) notation.

 Arithmetic results mirror decimal operations
 When two numeric values are operated upon, in particular with addition and
 subtraction, the resulting value, when expressed in decimal, is as close as
 practical to the value that would occur if the operation were performed in
 decimal.

 The principles described above are accomplished using the following algorithms:

 15-digit decimal significance
 An 8-byte floating point value, in the IBM 360 architecture, contains 56 bits of
 significance for the fraction part. 56 bits can represent the numbers from 0
 to approximately 7.2E16 (7.2 times 10 to the 16th power). Therefore, the
 maximum significance, in decimal, of an 8-byte FLOAT is 16 (decimal) digits.
 User Language uses a more conservative limit to significance, and uses 15
 decimal digit significance with numeric operations.

 Float value preserved if target has same length
 A float value is exactly preserved if copied to a float target that has the same
 length. “Length-converting PUT statements” on page 240 specifies the rules
 for copying a float value to a float target that has a different length.

 Float length 4 conversions differ from length 8 or 16
 When a float value of length 4 is used in any context other than copying, it is
 converted as described in “Using a float value, with decimal digit precision”
 on page 237. When a float value of length 8 or 16 is used in any context
 other than copying or arithmetic, it is converted as described in “Using a float
 value, with decimal digit precision” on page 237.

 FLoat length 8 or 16 values in arithmetic expressions
 Float values of length 8 or 16 use the high order 8 bytes, without any
 modification, when they are used as entities in an arithmetic expression.

 The purpose of the above rules is to achieve (approximately) the same results for float
 numeric operations as would be given by operations with decimal numbers.

 A.1.1 Primitive operations

 As a brief background, note the following:

——
236 Fast/Unload Reference

——
 Overview
——

 ● Floating point values use the IBM hexadecimal floating point representation, which
 is a one-bit sign, a 7-bit base 16 exponent, and a binary fraction whose length is
 either 3 bytes (FLOAT LEN 4), 7 bytes (FLOAT LEN 8), or 14 bytes (FLOAT LEN
 16).

 ● In a normalized floating point number, the high-order nibble (the first four bits) of
 the fraction has a non-zero value.

 ● The normalized 8-byte add (AD/R) and subtract (SD/R) instructions are used for
 addition and subtraction in arithmetic expressions; the 8-byte multiply (MD/R) and
 divide (MD/R) instructions are used for multiplication and division. These
 instructions produce normalized results (except at the limits of normalized values)
 and do not round.

 See also “Arithmetic expressions” on page 241, which explains that after every float
 addition or subtraction, there is a decimal rounding step to preserve the proper
 number of significant digits.

 A.1.2 Using a float value, with decimal digit precision

 Except for the following cases:

 ● when an 8- or 16-byte floating point value is the input to an arithmetic expression
 (described in “Arithmetic expressions” on page 241);

 ● when a floating point value is the input to a PUT statement or is the right side of an
 assignment statement (described in “Assignments and length-preserved PUT
 statements” on page 239 and “Length-converting PUT statements” on page 240);

 ● when the argument of the #FLOAT8 function is a 4-byte floating point value
 (described in “#FLOAT8: Get 8-byte float, padding 4-byte input with 0” on page
 127);

 whenever FUEL requires the value of a floating point value, the value obtained is
 approximately the closest 8-byte floating point representation of a value, which depends
 on the length of the “input” floating point value:

 LEN 4 The result is the floating point value approximately closest to the
 decimal number with 6 significant digits closest to the LEN 4 float input.
 For example, if a FLOAT LEN 4 field contains the following value, shown
 in hexadecimal:

 41100004

 which in decimal is:

 1.000003814697265625

——
Fast/Unload Reference 237

——
Floating Point Arithmetic and Numeric Conversion
——

 then the nearest 6-digit decimal value is:

 1.00000

 so that value is used, represented exactly by the 8-byte float:

 4110000000000000

 LEN 8 or 16 The result is the floating point value approximately closest to the
 decimal number with 15 significant digits closest to the first 8 bytes of
 the float input. For example, if a FLOAT LEN 8 field contains the
 following value, shown in hexadecimal:

 4110000400000000

 which in decimal is:

 1.000003814697265625

 then the nearest 15-digit decimal value is:

 1.00000381469727

 so that value is used, represented by the 8-byte float that is
 approximately the nearest:

 4110000400000013

 Note: The low order 8 bytes of a 16-byte float are ignored.

 A.1.3 Obtaining numeric values from non-floats

 When a numeric value is required in FUEL from a string or constant that is a decimal
 number, the value obtained is approximately the closest 8-byte floating point
 representation of the decimal value to 15 significant digits. For example, after this FUEL
 fragment:

——
238 Fast/Unload Reference

——
 Overview
——

 %T = '1.000003814697265625' /* Note: string value
 %T = '1.000003814697265625' /* Note: string value
 CHANGE MYFIELD = %T /* So field set to string value
 %Z = MYFIELD * 1 /* %Z has float value
 %Y = %T * 1 /* %Y has (same) float value
 PUT MYFIELD /* Line 1: From string, 19 digits
 OUTPUT
 PUT %Y /* Line 2: From float, 15 digits
 OUTPUT
 IF %T EQ '1.000003814697265625' THEN /* No conversion here
 PUT 'String comparison 1 EQ, of course'
 OUTPUT
 END IF
 IF %T NE %X THEN /* Here converting %X->string: 15 digits
 PUT 'String comparison 2 should be NE'
 OUTPUT
 END IF
 IF %T EQ +%X THEN /* Here converting %T->float
 PUT 'Float comparison should be EQ'
 OUTPUT
 END IF

 The output file will contain:

 1.000003814697265625
 1.00000381469727
 String comparison 1 EQ, of course
 String comparison 2 should be NE
 Float comparison should be EQ

 And %X, %Y, and %Z will each contain the 8-byte floating point number
 X'4100000400000013'.

 A.2 Assignments and length-preserved PUT
 statements

 Assignments between fields and %variables
 Whenever a FLOAT field occurrence is assigned to a %variable, the entire 4,
 8, or 16 bytes are copied exactly to the %variable. Whenever a %variable
 that contains a floating point value is assigned (via the CHANGE or ADD[C]
 statement) as the value of a field occurrence, the %variable's entire 4, 8, or
 16 bytes are copied exactly to the field occurrence.

 Length-preserved PUT AS FLOAT
 Whenever a field occurrence or %variable that contains a floating point value
 is used in a PUT AS FLOAT statement, and the FLOAT format specifies a
 length that is the same as that of the occurrence or %variable, the entire 4,
 8, or 16 bytes are copied exactly to the ouput file.

——
Fast/Unload Reference 239

——
Floating Point Arithmetic and Numeric Conversion
——

 For example, if field FLT4 contains a 4-byte float value that in hexadecimal is
 X'41000004', then the following FUEL fragment:

 PUT FLT4 AS FLOAT(4)
 OUTPUT
 %X = FLT4
 PUT %X AS FLOAT(4)
 OUTPUT

 places two lines to the output file, each containing the 4 bytes that are
 hexadecimal X'41000004'.

 A.3 Length-converting PUT statements

 Other than obtaining the value of a float (for example, as part of an IF statement
 comparison or as an argument to a #function), which is explained in “Using a float value,
 with decimal digit precision” on page 237, the only context in FUEL in which a float value
 is transformed to a float value with a different length is in the PUT statement with a
 FLOAT format whose format length differs from the length of the float “input.” The cases
 are shown below:

 AS FLOAT(4) The first (and only, if the input is length 8) 8 bytes of the input are
 copied to a 4-byte float using the LEDR instruction, which produces the
 first 4 bytes of the input 8 bytes, or those 4 bytes plus 1 (times the sign
 of the value) if the high order bit of the second 4 bytes is 1.

 Note that there is no normalization of the input value prior to rounding;
 thus the low-order 31 fraction bits of an 8-byte float are ignored, and
 the low-order 31 + 56 fraction bits of a 16-byte float are ignored.

 LEN 16 -> 8 The AS FLOAT(8) clause for a 16-byte float input is obtained by taking
 the first 8 bytes of the 16-byte float value.

 Note that there is no rounding, as there is when converting from 8-byte
 to 4-byte floats, and there is no normalization; thus the low order 56
 fraction bits of the 16-byte float are ignored.

 LEN 4 -> 8/16 When a 4-byte float value is the input to AS FLOAT(8) or AS
 FLOAT(16), the 4-byte input float value is converted to an 8-byte value
 that is approximately nearest the input value expressed as the nearest
 6-significant-digit decimal number, as described in the LEN 4 case in
 “Using a float value, with decimal digit precision” on page 237. This is
 the result when the PUT format length is 8; an additional 8 bytes of
 zeroes are added when it is 16.

——
240 Fast/Unload Reference

——
 Length-converting PUT statements
——

 LEN 8 -> 16 The AS FLOAT(16) clause for a 8-byte float input is obtained by
 appending 8 additional bytes of zeroes to the unchanged 8-byte value.

 A.4 Arithmetic expressions

 The result of an arithmetic expression is always an 8-byte float; these are produced as
 described in “Primitive operations” on page 236. Also, after every addition or subtraction
 in the expression, a step is performed to ensure that the correct significance is retained
 as the result of that operation. This significance is based on the magnitude of the inputs
 and the result of the addition or subtraction.

 For example, after performing the SDR to operate on the following two values:

 %X = 123456789.1234 - 123456789
 /* = X'4775BCD151F97247'
 /* - X'4775BCD150000000'
 /* = X'401F972470000000'
 /* = .123399998992682 (rounded to 15 digits)

 Fast/Unload examines the magnitude of the absolute values of the result and addends,
 and it determines that 4 significant digits should be retained, so it rounds the result to 4
 significant digits:

 /* .1234 (result rounded to 4 digits)
 /* = X'401F972474538EF3' (float nearest to .1234)

 A.5 Example

 Following is one example of the behavior of Fast/Unload. Versions prior to 4.0 obtain
 the different result shown below.

——
Fast/Unload Reference 241

——
Floating Point Arithmetic and Numeric Conversion
——

 %T2 = 1
 FOR J FROM 1 TO 7 /* Get 1E-7
 %T2 = %T2 / 10
 END FOR
 PUT %T2
 OUTPUT
 FOR J FROM 1 TO 5 /* Get .01
 %T2 = %T2 * 10
 END FOR
 PUT %T2
 OUTPUT
 %T = 0
 FOR J FROM 1 TO 10 /* Get .1
 %T = %T + %T2
 END FOR
 PUT %T
 OUTPUT

 Results (starting with version 4.0):

 0.0000001
 0.00999999999999999
 0.1

 Results (prior to version 4.0):

 0.0000001
 0.00999999999999999
 0.0999999999999999

——
242 Fast/Unload Reference

——
 Messages
——

——————
APPENDIX B Messages
FUNL0002 Invalid parameter specification 'parm'.

 This indicates a parameter specified with the PARM option on the EXEC card under
 MVS or a parameter after the open parenthesis on the M204CMS command under CMS
 is invalid. Verify your job stream or EXEC against the documentation for Fast/Unload
 parameters.

FUNL0003 GETMAIN request failed, RC=n. Run terminated.

 This indicates that there is not enough storage in the region or address space to satisfy
 or free storage request. This could be caused by running in too small of a region or
 address space, or requesting too many buffers. Either increase the amount of virtual
 storage available to Fast/Unload or decrease the number of required buffers.
 Parameters which significantly affect the amount of virtual storage required are
 NOBUFF, NEBUFF and NBBUFF.

FUNL0004 End of Fast/Unload abend info

 This message indicates the termination of Fast/Unload and is a normal message. If you
 have used the ABENDERR parameter to request that Fast/Unload end with an ABEND if
 the return is greater than or equal to some value, and the return code is greater than that
 value, then a suffix is added to this message (abend info) indicating this.

FUNL0005 Unable to open input data set (FUNIN).

 This message is usually the result of a missing or invalid DD statement for FUNIN.

FUNL0007 First statement not OPEN, compile not performed.

 The first statement of every Fast/Unload program running in batch mode must be the
 OPEN statement followed by the name of the input database file. Correct the input
 program to contain the appropriate OPEN statement. Note that no OPEN statement is
 required when Fast/Unload is invoked via $FUNLOAD.

FUNL0008 Invalid OPEN DDNAME 'ddname', compile not performed.

 Either the OPEN statement is not followed by a data set DDNAME or the DDNAME is
 longer than 8 characters long. Put a valid DDNAME after the OPEN statement.

FUNL0009 Unable to open 'ddname', compile not performed.

 Either the data set indicated by the OPEN dataset or one of the secondary datasets that
 make up the logical database file could not be opened. This could be caused by an
 invalid DD card (FILEDEF under CMS). Validate and correct the DD cards or FILEDEFs
 for the input database file.
——
Fast/Unload Reference 243

——
Messages
——

FUNL0010 Unmatched quotes in input data.

 A quote was found in the input program (FUNIN) without a corresponding close quote.
 Correct the statement so that all quotes have a matching close quote. Note that if you
 wish to place a quote character in a literal string you should double the quote. For
 example, to place the literal THAT'S LIFE in a FUEL program you must code it as
 'THAT''S LIFE'.

FUNL0011 Logical input record is too long.

 A logical program input (FUNIN) record, the record created after processing continuation
 characters, is too long. You can either break the offending statement into 2 or more
 statements, or you can increase the value of the LIBUFF parameter.

FUNL0012 Start of compile

 This message indicates the start of the compile phase of Fast/Unload. In the phase, the
 input program (FUNIN) is compiled to machine language code.

FUNL0013 End of compile. Number of errors = n

 This message indicates the end of the compile phase of Fast/Unload. If number of
 errors is indicated to be greater than 0, the unload phase will not be performed.

FUNL0014 Invalid device type for ddname, compile not performed.

 Either the data set indicated by the OPEN dataset or one of the secondary datasets that
 make up the logical database file was on a device not supported by Fast/Unload. This is
 probably caused by an incorrect DD card or FILEDEF. Validate and correct the DD
 cards or FILEDEFs for the input database file. Note that Fast/Unload will only work
 against database files on Count Key Data disk devices.

FUNL0015 No extents defined for ddname.

 Either the data set indicated by the OPEN dataset or one of the secondary datasets that
 make up the logical database file was empty. This is probably caused by an incorrect
 DD card or FILEDEF. Validate and correct the DD cards or FILEDEFs for the input
 database file.

FUNL0016 DDNAME 'ddname' not found.

 Either the data set indicated by the OPEN dataset or one of the secondary datasets that
 make up the logical database file could not be opened. This could be caused by an
 missing DD card (FILEDEF under CMS). Validate the DD cards or FILEDEFs for the
 input database file against those use to process the file with Model 204 and correct the
 DD statements to match those used with Model 204.

——
244 Fast/Unload Reference

——
 Messages
——

FUNL0017 I/O error on ddname.

 An I/O error occurred trying to read the FPL page. Either the input database file is not
 formatted as a Model 204 database file, or there is a hardware problem with the disk
 pack on which the FPL resides. Verify the format of the database file by opening it with
 Model 204.

FUNL0018 DDNAME 'ddname' does not match internal name intname

 The DDNAME indicated on the OPEN statement did not match the database file name
 on the FPL page. Verify the name of the database file by opening it with Model 204.

FUNL0019 Invalid version for ddname.

 The database file was created by a release of Model 204 later than the latest release
 which Fast/Unload supports. Call Sirius Software Support to obtain the latest version of
 Fast/Unload.

FUNL0020 ddname already enqueued exclusive by jobname stepname.

 The input database file is being updated by a Model 204 job and hence cannot be
 enqueued in exclusive mode by Fast/Unload.load. Either wait until the updating job is
 completed or use the NOENQ Fast/Unload parameter to process the file without any
 enqueueing. Note that the latter option could result in errors in the unload phase of
 Fast/Unload.

FUNL0021 No room in file enqueueing table for ddname.

 The input database file is enqueued in share mode by the maximum number of jobs.
 Either wait until one or more of the other enqueued jobs is completed or use the
 Fast/Unload NOENQ parameter to run against the file without any enqueueing. Note
 that the latter option could result in errors in the unload phase of Fast/Unload.

FUNL0022 Error writing FPL page for ddname.

 An I/O error occurred trying to write the FPL page. Either the input database file has
 been overwritten after Fast/Unload has opened it or there is a hardware problem with the
 disk pack on which the FPL resides. Verify the integrity of the database file by opening it
 with Model 204.

FUNL0023 Error dequeueing ddname, file might be broken.

 The FPL page does not contain the Fast/Unload job's enqueueing data. Either the input
 database file has been overwritten after Fast/Unload has opened it or there is a bug in
 Fast/Unload Model 204. Verify the integrity of the database file by opening it with
 Model 204.

——
Fast/Unload Reference 245

——
Messages
——

FUNL0024 No multi-track reads allowed on ddname. SBBUFF and SEBUFF must be 1.

 The indicated DDNAME is not on cylinder boundaries but you have specified an
 SEBUFF or SBBUFF greater than 1. Either move the data set to cylinder aligned
 extents (using IEBGENER or DUMP/RESTORE) or use SEBUFF and SBBUFF values of
 1.

FUNL0025 Tracks per cylinder not divisible by n.

 You have specified an SEBUFF or SBBUFF greater than 1 which is not an even divisor
 of the number of tracks per cylinder for the disk device holding at least one of the
 physical files making up the logical database file. For example, 3380's and 3390's have
 15 tracks per cylinder. Hence, SEBUFF and SBBUFF must be 1, 3, 5 or 15 if you are
 using 3380's and/or 3390's.

FUNL0026 parm is too large.

 You have specified a value for NBBUFF or NEBUFF that would require an impossibly
 large amount of storage (more than 2**31 bytes). Correct the value for the offending
 parameter.

FUNL0027 Truncated file - ddname.

 A physical file making up a logical database file does not have enough space allocated
 to hold the pages that are indicated by the FPL data set list. This could be caused by
 inadvertent truncation of a physical file by a utility program such as IEBGENER or
 DUMP/RESTORE. This could also be caused by an invalid DD card or FILEDEF. Verify
 the correctness of your DD card or FILEDEF and, if correct, try to recover the file from a
 backup.

FUNL0028

 This message not used starting with version 3.0

FUNL0029

 This message not used starting with version 3.0

FUNL0030 Premature end of program.

 The Fast/Unload compiler had not read the END FOR to match the FOR EACH
 RECORD statement before the end of the input program (FUNIN). Correct the FUEL
 program to contain the appropriate END FOR statement to terminate the FOR EACH
 RECORD clause.

——
246 Fast/Unload Reference

——
 Messages
——

FUNL0031 Invalid statement.

 The Fast/Unload compiler encountered an unrecognized statement. Check the spelling
 of the indicated statement and if correct, verify the statement syntax in the Fast/Unload
 Reference Manual.

FUNL0032 Program too large to run.

 The compiled FUEL program would compile to more than 4 megabytes of object code.
 This is the current absolute size limit for compiled FUEL programs. Try to eliminate un-
 necessary statements, convert IF/ELSEIF/ELSE clauses to SELECT clauses or try to
 split the program into multiple programs.

FUNL0033

 This message not used starting with version 3.0

FUNL0034 Extra code at end of statement is invalid.

 The current FUEL statement contained extra, unexpected data at the end. This could be
 caused by misspelling, unintentional continuation characters, or syntax errors. Verify the
 syntax of the indicated statement.

FUNL0035 Too many nesting levels.

 The FUEL program contains a nesting level deeper than 256. This is the current
 absolute nesting limit for compiled FUEL programs. Try to convert nested IF clauses to
 IF/ELSEIF/ELSE clauses.

FUNL0036 Invalid syntax for stype statement.

 A syntax error was encountered in the indicated statement. Verify the syntax of the
 statement indicated by stype in the Fast/Unload Reference Manual.

 Prior to version 4.0 of Fast/Unload, this message often indicates a mis-spelled field
 name.

FUNL0037 END token1 expected but token2 token3 was found.

 The Fast/Unload compiler was expecting a particular kind of END statement and instead
 got something else. An example is a FUEL program with an IF clause terminated with
 an END FOR statement. Verify the nesting levels in your FUEL program and correct it to
 contain the appropriate END statement.

FUNL0038 Invalid PUT format specification.

 An invalid format was indicated in the specified PUT statement. Verify the PUT
 statement format in the Fast/Unload Reference Manual.

——
Fast/Unload Reference 247

——
Messages
——

FUNL0039 Unable to convert constant to output format.

 A PUT statement was encountered where the indicated constant could not be converted
 to the required format. For example, the statement PUT 'ABC' AS FLOAT(4) would
 receive this error message. Correct either the constant or the output format on the PUT
 statement.

FUNL0040 Output statements invalid with UAI.

 A statement or special variable which directly manipulates the Fast/Unload output file
 was included in a UAI type of unload. These are incompatible with UAI, since UAI
 determines the format and order of the output records. The incompatible statements
 and special variables are:

 #OUTLEN
 #OUTPOS
 OUTPUT
 PAI
 PUT
 SORT (but see below)

 Beginning with version 4.1, with Multiple-Output support, the statements above can be
 used with OUTPUT streams in a program that also includes UAI streams. This error
 message has therefore been retired as of version 4.1.

 Note that SORT PGM=sort program can be used (once) in any FUEL program.
 Moreover, even with a UAI stream, an associated SORT OPTION string statement can
 be used (at most one per UAI stream).

FUNL0041 UNLOAD statement only valid with UAI.

 An UNLOAD statement was encountered in a non-UAI type of unload. Either insert the
 UAI statement after the OPEN statement, or remove the UNLOAD statement.

 Beginning with version 4.1, with Multiple-Output support, an UNLOAD statement can be
 used with UAI streams in a program that also includes OUTPUT streams. This error
 message has therefore been retired as of version 4.1.

——
248 Fast/Unload Reference

——
 Messages
——

FUNL0042 I/O error for ddname, Table t Page p-lastpg, at cylinder cyl track trk.

 An I/O error occurred for the database indicated by ddname at the indicated cylinder
 and track, trying to read table t (0=FCT, 1=Table A, 2=Table B, 3=Table C, 4=Table D)
 and page p. This could be caused by an erroneous DD card or FILEDEF command,
 hardware problems, or a corrupted database file. Verify the DD card or FILEDEF
 command. If they seem valid try to examine the indicated extents with either Model 204
 or some other utility (DFDSS or DDR). Check your EREP logs for DASD I/O errors. For
 more help call Sirius Software Technical Support.

 If the read is for multiple Table B pages (e.g., a track of pages when SBBUF=1), the
 number of the first page being read (p) is followed by the last page number in the group
 of pages. This may be able to assist you in diagnosing the problem in the file. For
 example, the following message:

 I/O error for MYFIL, Table B Page 451-457, at cylinder 2165
 track 0.

 indicates that the error may have been in any of the 7 pages 451 through 457. You can
 use Model 204 to try to examine the records on these pages: multiply the page numbers
 by the BRECPPG parameter of the file, and the result is the mimimal and maximal
 numbers of the Model 204 records which may be contained in the group of pages.

FUNL0043 Unable to load loadmod.

 The indicated output filter program could not be loaded. Verify the spelling of the output
 filter name. Under MVS, verify that the output filter program is in a library concatenated
 to STEPLIB for the Fast/Unload job step. Under CMS, verify that the output filter
 program is a MODULE file on a disk accessed in the virtual machine running
 Fast/Unload.

FUNL0044

 This message not used starting with version 3.0

FUNL0045 Loop control variable already in use.

 A FOR statement was encountered inside of a FOR clause which used the same loop
 control variable. An example of this is a FOR A FROM ... occurring inside of a FOR A
 FROM ... clause. Correct the inner or outer loop to use a different loop control variable
 to eliminate the conflict.

——
Fast/Unload Reference 249

——
Messages
——

FUNL0046 Unable to open 'ddname'.

 The sequential output file could not be opened. This could be caused by a missing or
 invalid DD card (FILEDEF under CMS). Validate and correct the DD card or FILEDEF
 for the output file. When Fast/Unload is invoked as a standalone load module, a DD is
 required for each of the sequential data sets declared as an output stream. In versions
 of Fast/Unload prior to 4.1, the output file is always identified by the FUNOUT DD. If
 Fast/Unload is invoked via $FUNLOAD, the DDname of the output file is indicated by the
 fourth argument of the $FUNLOAD function, although this argument need not indicate an
 existing data set if there are multiple output streams.

FUNL0047 Too many buffers for 'ddname'.

 You have specified a value for NOBUFF that would require an impossibly large amount
 of storage (more than 2**31 bytes). Correct the value for the NOBUFF parameter.

FUNL0048 Invalid format for 'ddname' (reason).

 The sequential output file format is incorrectly defined. This may be the result of
 improper settings for one or more of the output file RECFM, LRECL, or BLKZSIZE
 parameters (for example, UAI output requires a VB record format and a minimum
 LRECL value that depends on the UAI options). Review the requirements for these
 parameter settings and correct at least the specific problem cited in the reason in the
 message.

 This message could also be caused by a missing or invalid DD card (FILEDEF under
 CMS). Validate and correct the DD card or FILEDEF for the output file.

 When Fast/Unload is invoked as a standalone load module, a DD is required for each of
 the sequential data sets declared as an output stream. In versions of Fast/Unload prior
 to 4.1, the output file is always identified by the FUNOUT DD. If Fast/Unload is invoked
 via $FUNLOAD, the DDname of the output file is indicated by the fourth argument of the
 $FUNLOAD function, although this argument need not indicate an existing data set if
 there are multiple output streams.

 The output file must have format F, FB, V or VB.

FUNL0049 Record recno unexpectedly missing.

 A record that was found in the existence bit map (or found set) was missing from the
 database file. This could be the result of running with the NOENQ parameter against a
 database file that is being updated, or of running against an unenqueued found set or list
 when using the Fast/Unload User Language Interface. You can change the action to be
 taken when this situation is encountered by setting the HARDERR parameter. The
 default action is to cancel the run.

——
250 Fast/Unload Reference

——
 Messages
——

FUNL0050 Record recno unexpectedly missing extension.

 An extension record was missing from the database file. This could be the result of
 running with the NOENQ parameter against a database file that is being updated, or of
 running against an unenqueued found set or list when using the Fast/Unload User
 Language Interface. You can change the action to be taken when this situation is
 encountered by setting the HARDERR parameter. The default action is to cancel the
 run.

FUNL0051 PUT errtype on line lineno for record recno in file filename, output record outrec.

 A conversion error or an unexpected missing value was encountered when executing a
 PUT statement. errtype will either indicate ERROR if there was a conversion error or
 MISSING if the value was missing. lineno indicates the line number of the compiled
 PUT statement being executed. recno indicates the Model 204 record number of the
 record being processed. This record could be examined under Model 204 with the FOR
 RECORD NUMBER statement or using the POINT$ facility. filename indicates the
 name of the file containing the record. This will be the name of the file being unloaded
 unless a group is being unloaded via the Fast/Unload User Language Interface, in which
 case the indicated file is one of the files in the group. outrec is the output record
 number on which the error occurred. If you wish to suppress these messages for a
 particular PUT statement use the NOREPORT option on the PUT statement. If this
 message is unexpected, verify the contents of the indicated record using either
 Model 204 or Fast/Unload (with the FRECORD and MAXREC parameters).

FUNL0052 Cancelling run because of PUT condition.

 The run is being cancelled because of the CANCEL option on the MISSING or ERROR
 clause of a PUT statement. Verify the contents of the indicated record using either
 Model 204 or Fast/Unload (with the FRECORD and MAXREC parameters). If you do
 not wish the run to be cancelled when the indicated PUT error is encountered, eliminate
 the CANCEL option from the PUT statement.

FUNL0053 operation started.

 This is a normal message which indicates the initiation of a scan of the records for
 Fast/Unload. The values of operation can be:

 ● Unload, to indicate the unload phase Fast/Unload not in group context.

 ● Group unload, to indicate the unload phase of the first file of a group found set
 passed by the Fast/Unload User Language Interface.

 ● Date scan pass 1, to indicate the first pass of DATESTAT processing.

 This message is only issued if the Fast/Unload compiler processed the FUEL program
 without any errors.

——
Fast/Unload Reference 251

——
Messages
——

FUNL0054 n input records processed.

 This message is issued at the end of the unload phase of Fast/Unload and is a normal
 message. n indicates the number of Model 204 records processed in the unload phase.

FUNL0055 steptype statistics :

 This message is issued at the end of the compile and unload phases of a Fast/Unload
 run and is a normal message. This message uses steptype to indicate either
 compilation or unload statistics.

FUNL0056 Unknown field in record recno (hexDiag).

 A record was found containing an unknown field code. This could be the result of
 running with the NOENQ parameter against a database file that has just had a fieldname
 or fieldnames added or of running against an unenqueued found set or list when using
 the Fast/Unload User Language Interface. This can also be an indication of an integrity
 problem in your database file. You can change the action to be taken when this situation
 is encountered by setting the HARDERR parameter. The default action is to cancel the
 run.

 Starting with version 4.4 of Fast/Unload, the end of this message shows a hexadecimal
 diagnostic code which may be useful if Sirius Software support needs to diagnose the
 situation.

FUNL0057 Cancelling run because of reason.

 This message indicates that a Fast/Unload run is being cancelled for the indicated
 reason. reason can be any of the following:

 ● INPUT error condition.

 The message follows either message FUNL0049, FUNL0050, FUNL0056, FUNL0083, or
 FUNL0100. See the description of these errors for more detail; for some of them, you
 can change the action to be taken when the indicated situation is encountered by setting
 the HARDERR parameter. The default action is to cancel the run.

 ● CHECK conditions

 The message follows message FUNL0131. See the description of message FUNL0131
 for more detail. You can change the action to be taken for various conditions by use of
 the CHECKxxx statement.

FUNL0058 n output records created.

 This message is issued at the end of the unload phase of Fast/Unload and is a normal
 message. This message indicates the number of output records written to the output
 data set (FUNOUT in batch mode).

——
252 Fast/Unload Reference

——
 Messages
——

FUNL0059 Mixed page sizes in ddname.

 The database represented by "ddname" has unlike page sizes in one or more of the
 physical files that comprise the logical file. Fast/Unload can only unload data from
 databases with like page sizes.

FUNL0060 Unsupported parameter 'parm'.

 A parameter was specified which requested an extra feature of Fast/Unload that is not
 installed at your site. For example, requesting field statistics via the FSTATS parameter
 will produce this message if the FSTATS feature is not installed at your site.

FUNL0061 Error reading input data set (FUNIN)

 This message is usually the result of an invalid DD statement for FUNIN or a corrupted
 input file. Verify the DD statement and format of the input program.

FUNL0062 No statement1 associated with statement2 statement.

 This indicates that a FUEL statement which should only occur inside a particular clause
 was encountered outside the appropriate clause. Examples of this include ELSE
 statements occurring outside of an IF clause or a WHEN statement occurring outside of
 a SELECT clause. Verify the nesting of your FUEL statements and check the syntax of
 the indicated statement in the Fast/Unload Reference Manual.

FUNL0063 Can't have statement2 after statement1 clause.

 This indicates that a FUEL statement inside a particular clause was encountered in
 incorrect order. Examples of this are ELSEIF statements occurring after an ELSE
 statement or a WHEN statement occurring after an OTHERWISE statement. Verify the
 nesting of your FUEL statements and check the syntax of the indicated statement in the
 Fast/Unload Reference Manual.

FUNL0064 Fast/Unload Version vnum at site on MM/DD/YYYY time job_ID CPU CPU_ID.

 This informational message is issued at the start of a Fast/Unload run. It indicates the
 version of Fast/Unload that you are running, your site ID for Sirius product support and
 distribution, and the date and time the Fast/Unload run started. Starting with version 3.2,
 the MVS job and step name, or the CMS user ID, will be shown, followed the CPU
 identifier, as the last portions of this message (job_ID ... CPU_ID).

FUNL0065 Parameter settings :

 This informational message is issued at the start of a Fast/Unload run. It indicates the
 settings of all Fast/Unload parameters that will be used for the run.

——
Fast/Unload Reference 253

——
Messages
——

FUNL0066 Unmatched parentheses in statement statement.

 An open parenthesis was found in the input program (FUNIN) without a corresponding
 close parenthesis. Correct the statement so that the open parenthesis has a
 corresponding close parenthesis or eliminate the open parenthesis.

FUNL0067 Statement too complex.

 The indicated statement was too complex for the Fast/Unload compiler to process it. Try
 to break the statement up into multiple statements.

FUNL0068 Unmatched quotes in statement statement.

 A quote was found in the input program (FUNIN) without a corresponding close quote.
 Correct the statement so that all quotes have a matching close quote. Note that if you
 wish to place a quote character in a literal string you should double the quote. For
 example, to place the literal THAT'S LIFE in a FUEL program you must code it as
 'THAT''S LIFE'.

FUNL0069 Error linking to name.

 The indicated SORT program could not be LINKed. Verify the name on a SORT PGM
 statement and ensure the appropriate SORT program is accessible from Fast/Unload.
 Under MVS this requires that the appropriate SORT load module be in the STEPLIB or
 JOBLIB concatenation or within the LINKLIB or LPALIB search order. Under CMS, this
 requires the appropriate SORT program in a TXTLIB made available with the GLOBAL
 TXTLIB statement.

FUNL0070 SORT terminated prematurely.

 The sort program to which data was being passed terminated prematurely. This could
 be caused by any number of SORT program errors. Check your job log and the sort
 program's report data set (usually the SYSOUT DD).

FUNL0071 Invalid SORT RECORD statement.

 A SORT RECORD statement was encountered that could not be interpreted by
 Fast/Unload. Check the format of the SORT RECORD statement in your sort program's
 reference manual.

FUNL0072 Multiple SORT statement statements.

 A particular SORT statement was encountered more than once. The interface between
 Fast/Unload and your sort package does not allow this. Eliminate the extra occurrence
 of the identified SORT statement.

——
254 Fast/Unload Reference

——
 Messages
——

FUNL0073 SORT FIELDS statement replaced by -

 This informational message is issued at the end of the compilation phase if you had
 specified a SORT FIELDS statement that used field names rather than column positions.
 Because sort packages require column positions, Fast/Unload must convert field names
 to column positions before passing the SORT FIELDS statement to the sort package.

FUNL0074 Unable to resolve fieldname in SORT FIELDS statement.

 This message is issued at the end of the compilation phase if you had specified a SORT
 FIELDS statement that used field names rather than column positions and Fast/Unload
 could not resolve the reference to fieldname into a column position. Because sort
 packages require column positions, Fast/Unload must convert field names to column
 positions before passing the SORT FIELDS statement to the sort package. This
 message occurs if the indicated field is not placed in an output record, or if the indicated
 field can occur at a variable position in the output record.

FUNL0075 SORT statement statement missing.

 This message is issued at the end of the compilation phase if you had specified one or
 more SORT statements but failed to code either a SORT FIELDS or a SORT RECORD
 statement. Either add the required statement or eliminate all SORT statements from
 your FUEL program.

FUNL0076 Invalid data in coded field dictionary.

 Invalid data was encountered in the field code dictionary for the current Model 204 file.
 This is the area that stores values for Model 204 fields that have the CODED attribute.
 This is an indication of a severe data integrity problem. Contact Sirius Software
 Technical Support for assistance.

FUNL0077 Cancelling run because of CANCEL statement.

 A CANCEL statement in the FUEL program resulted in the Fast/Unload run being
 cancelled.

FUNL0078 Unable to format type value.

 A MISSING or ERROR constant was encountered in a PUT statement where the
 indicated constant could not be converted to the required format. For example, the
 statement:

 PUT FIELD AS FLOAT(4) ERROR 'ABC'

 would receive this error message. Correct either the constant or the output format on
 the PUT statement.

——
Fast/Unload Reference 255

——
Messages
——

FUNL0079 Open DD ddname does not match found set DD ddname.

 This message indicates that an OPEN statement in the input FUEL program did not
 match the DDNAME associated with the found set passed to $FUNLOAD. This
 message can only occur when running the Fast/Unload User Language Interface.

FUNL0080 Online run terminated at Online region request.

 The Fast/Unload job that had been initiated with $FUNLOAD was terminated either
 because the initiating user had been bumped, as the result of a $FUNPURG function or
 as the result of the termination of the Model 204 ONLINE or BATCH204 that initiated the
 request.

FUNL0081 List output error.

 The Fast/Unload job that had been initiated via $FUNLOAD was sending output data to
 a $list (the fourth parameter of $FUNLOAD) and an error was encountered. This is most
 likely either the result of running out of CCATEMP or exceeding the internal limit on the
 maximum size of a $list (currently about 6 megabytes).

FUNL0082 Online run terminated because of intercepted program check.

 The Fast/Unload job initiated via $FUNLOAD was terminated because of an intercepted
 program check in Fast/Unload. This message only occurs when running the
 Fast/Unload User Language Interface under CMS. Contact Sirius Software Technical
 Support for assistance.

FUNL0083 UAI SORT field truncation error occurred for item n[/fieldname]; input record
 number recno.

 You specified a LENGTH value for a UAI SORT unload that was smaller than the length
 of an occurrence of the SORT field. Change the LENGTH parameter to the appropriate
 value, remove it from the UAI statement, or add the TRUNC option. If you remove the
 LENGTH parameter, the default of 255 will be used, which is probably excessive.

 n refers to the item number in the SORT fields specified on the UAI statement; that is, 1
 indicates the first item, 2 indicates the item after the first AND of the UAI statement, and
 so on. If the item in question is a field name, n will be followed by a slash (/) and the
 fieldname. recno indicates the record number in the Model 204 file being unloaded.

FUNL0084 Unable to initialize SORT task.

 Fast/Unload tried to start the SORT task, but it terminated. Your SORT package may
 have written diagnostic information to SYSOUT, or to SORTDIAG, if the DD card was
 present. Refer to these messages and your SORT package documentation. If there are
 no apparent SORT related errors, contact Sirius Software Technical Support for
 assistance.

——
256 Fast/Unload Reference

——
 Messages
——

FUNL0085 MAXREC out of range.

 For a UAI unload, the variable length records must be greater than or equal to 271 plus
 the length of any SORT fields, and less than 32756. You can increase the LRECL of the
 FUNOUT DD (or MAXREC, if specified on the UAI SORT statement) to a larger value.
 For the best SORT performance, MAXREC should be set to the approximate average
 length of a Table B record, plus the length of any SORT fields. (See “UNLOAD ALL
 INFORMATION or UAI” on page 88.)

FUNL0086 BSIZE required for UAI HASH.

 For a UAI HASH unload, you didn't specify the BSIZE for the target file. If the UAI data
 will be loaded to a file with a different Table B size, the Table B size must be specified in
 the UAI statement so that correct hash key values are generated.

FUNL0087 Can't mix SORT statement and UAI.

 Sort specifications for a UAI program must be part of the UAI statement. Remove the
 SORT statements and check the syntax of the UAI statement.

FUNL0088 Cancelling run because of attempt to action record recnum twice.

 This message indicates that your FUEL program attempted to “unload” a record
 (numbered recnum in the input Model 204 file) twice. The unload action that attempted
 this is either the PAI or the UNLOAD statement, as shown in the message. To ensure
 database integrity, Fast/Unload disallows this.

 Note that in the case of UNLOAD, the prior statement that was executed is one without a
 field occurrence; issuing UNLOAD with a field occurrence does not prevent subsequent
 UNLOAD statements. Change your FUEL program so that your IF or SELECT
 conditions are always mutually exclusive when they enclose a PAI statement, and a
 normal UNLOAD followed by a normal or field UNLOAD.

FUNL0089

 This message not used starting with version 3.0

FUNL0090 Index unload started.

 This informational message indicates the initiation of the index unload phase of a
 Fast/Unload run. This message is only issued if you specified the OINDEX option on a
 UAI statement.

——
Fast/Unload Reference 257

——
Messages
——

FUNL0091 Terminated because of 0 code Abend; PSW 0 FUNL 0

 Fast/Unload intercepted an ABEND condition. The unload terminated prematurely.
 type can be either System or User. For System codes, check your MVS messages and
 codes manual for the specific cause of the abend. If a dump was suppressed for the
 system abend, this message will be followed by FUNL0150. Program checks, (System
 codes 0C1 through 0CF) generally indicate a Fast/Unload internal error; for these, or if
 you are otherwise unable to correct the problem, you should contact Sirius Software
 Technical Support for assistance. Provide Sirius with the Fast/Unload version number, a
 copy of the report dataset (FUNPRINT), the Fast/Unload link map, if you have it, and the
 abend dump. Psw is the Program Status Word at the time of error, and load_addr is
 the memory address of the start of the Fast/Unload load module.

FUNL0092 Unloading index data for fieldname..

 This is an informational message that indicates Fast/Unload has started unloading index
 information for a particular field.

FUNL0093 Cancelling run because of OUTPUT error in record recnum.

 An error was detected writing the output file and the output record error action was set to
 CANCEL. Recnum indicates the output record sequence number.

FUNL0094 Group groupname does not match found set group name groupname.

 This message indicates that an OPEN statement for a group in the input FUEL program
 did not match the group name associated with the found set passed to the Fast/Unload
 User Language Interface.

FUNL0095

 This message not used starting with version 3.0

FUNL0096 UAI SORT or HASH not allowed in group context.

 This error message indicates that Fast/Unload User Language Interface was used to
 process a found set from a Model 204 group, and the FUEL program attempted to
 unload the file with a UAI statement that contained the SORT or HASH keyword.
 Fast/Unload currently only allows a group to be unloaded via UAI if no SORT or HASH
 key is specified.

FUNL0097 database is internally inconsistent.

 Invalid data was encountered in field dictionary portion of the identified Model 204 file.
 This is an indication of a severe data integrity problem with database. Contact Sirius
 Software Technical Support for assistance.

——
258 Fast/Unload Reference

——
 Messages
——

FUNL0098 product has expired.

 Your trial period for Fast/Unload, or for some component of it, has expired. Contact
 Sirius Software for further information.

FUNL0099 product not authorized for CPU CPUID.

 Fast/Unload, or some component of it, is running on a CPU with an ID that does not
 match an authorized CPU ID. Contact Sirius Software for further information.

FUNL0100 UAI SORT field conversion error occurred for item n[/field]; input record number
 recnum

 This indicates that Fast/Unload was unable to convert an item value to the datatype
 specified in a UAI SORT statement.

 n refers to the ordinal item number in the SORT fields specified on the UAI statement;
 that is, 1 indicates the first item, 2 indicates the item after the first AND of the UAI
 statement, and so on. If the item in question is a field name, n will be followed by a
 slash (/) and then the field name.

 recnum indicates the internal record number for the Model 204 record being unloaded.

FUNL0101 Invisible field invalid in UAI SORT: fieldname

 This indicates that Fast/Unload was unable to sort the unloaded data in sequence by the
 indicated field, since fieldname is INVISIBLE.

FUNL0102 Unknown or invalid item: phrase

 This indicates that a FUEL program contained phrase which is not valid for the item
 indicated. item can be special variable or #function.

FUNL0103 Invalid expression: phrase

 This indicates that a FUEL program contained phrase in a context in which an
 expression is required, but that phrase is not a valid expression.

FUNL0104 Call Sirius Software for a new authorization.

 This indicates a problem with authorization of Fast/Unload on your CPU. Please contact
 Sirius Software.

——
Fast/Unload Reference 259

——
Messages
——

FUNL0105 Type error loading #function package module from DDname.

 This indicates that a FUEL program contained a #function call, and that Fast/Unload was
 unable to load the #function package named module, either from the specified DDname
 or, if * is shown, from the STEPLIB/JOBLIB/link area in MVS, or from a TEXT file on an
 accessed CMS disk.

 Type is either LOAD, indicating the LOAD macro failed, or OPEN, indicating an OPEN
 macro failed for DDname.

 If the #function can be found in another package, processing continues.

FUNL0106 Unexpected return from #function package module in DDname: info; Fast/Unload
 cancelled.

 This message indicates that Fast/Unload is trying to compile a FUEL program that
 contains a call to a #function. The FUEL compiler calls various $function packages to
 locate the #function for the call being compiled. The #function package identified by
 module returned invalid information to the FUEL compiler, as noted by info.

 If module is **STDFUN, then the #function is a Sirius-provided function and this bug
 should be reported to Sirius Software. Otherwise, the #function package is user
 provided. The package was loaded as module, from either the specified DDname or, if
 * is shown, the STEPLIB/JOBLIB/link area in MVS, or a TEXT file on an accessed CMS
 disk. See “Customer-written Assembler #Function Packages” on page 213 for a
 description of the requirements and coding conventions for Fast/Unload #function
 packages. Contact Sirius Software Technical Support for assistance.

FUNL0107 Invalid symptom to service routine: value; Fast/Unload cancelled.

 This indicates that during execution of a #function call, the Fast/Unload #function
 services routine was called with invalid information. symptom indicates the type of
 information, and value specifies, in hexadecimal form, the value provided.

 The Fast/Unload FUEL program is ended when this error occurs.

 See “Customer-written Assembler #Function Packages” on page 213 for a description of
 the requirements of the Fast/Unload #function services routine.

FUNL0108 Too many arguments: arg.

 This indicates that a FUEL program contained a #function call that provided more
 arguments than allowed by that #function. The parameter in error is identified by arg.

——
260 Fast/Unload Reference

——
 Messages
——

FUNL0109 Attempt to extract type value from argument arg_number - cause; Fast/Unload
 cancelled.

 During execution of a #function call, the Fast/Unload #function services routine
 encountered an error while trying to extract the value for argument arg_number as
 type, which can be string, float, or fixed. The reason for the error is indicated by
 cause, which will either be omitted, which indicates that the argument was not supplied,
 or conversion error, which indicates that the value of the argument is incompatible with
 type.

 The Fast/Unload run is ended when this error occurs.

FUNL0110 Attempt to assign value to argument arg_number - cause; Fast/Unload cancelled.

 During execution of a #function call, the Fast/Unload #function services routine
 encountered an error while trying to set the value for argument arg_number (the
 #function result is argument 0). The reason for the error is indicated in cause, which will
 be set to either missing, which indicates that the argument was not supplied, or input
 only, which indicates that the argument is defined to be input only.

 The Fast/Unload program is ended when this error occurs.

 Please call Support at Sirius Software if this error occurs during execution of a #function
 provided by Sirius Software. See “Customer-written Assembler #Function Packages” on
 page 213, for a description of how to use the #function service routine and how the
 arguments of a #function are designated as input only.

FUNL0111 customer #function message

 A customer-provided #function called the Fast/Unload #function services routine to issue
 the message shown as customer #function message.

FUNL0112 Invalid argument number arg_number: it must be requirement.

 The FUEL compiler detected an invalid #function call, the Fast/Unload run will be
 cancelled. The argument number (zero for the #function result) is given in arg_number,
 while requirement indicates the detected requirement that was violated, as follows:

 supplied the #function declared the argument as required, but none was
 provided, or

 a %variable the #function declared the argument as an output argument, which
 means it must be a %variable.

——
Fast/Unload Reference 261

——
Messages
——

FUNL0113 Bad page trailer for ddname, Table t Page p, at cylinder n1 track n2: Xtrlr DD Xtrlr
 tpg.

 A page was read from the indicated database ddname, cylinder and track, which was
 expected to be page number p of table t: (0=FCT, 1=Table A, 2=Table B, 3=Table C,
 4=Table D). Each Model 204 page contains a trailer that includes the file name (DD
 name) for the file and the Model 204 table and page number. The trailer for the page
 read does not match the expected values for these fields. Rather, the page trailer
 contained the name Xtrlr DD (shown in hexadecimal) and the table concatenated with
 page number was Xtrlr tpg, also in hexadecimal. This could be caused by reading a
 database file that is being updated, or could be caused by an erroneous DD card or
 FILEDEF command, hardware problems, or a corrupted database file.

 If the error is in Table D, ensure that you are not using the UAI INVISIBLE nor UAI
 OINDEX statements with a file that is having the Ordered Index updated. Verify the DD
 card or FILEDEF command. Check your EREP logs for DASD I/O errors. Call Sirius
 Software Support for assistance.

 If Fast/Unload is able to continue in spite of this error, one of the messages FUNL0049,
 FUNL0050, or FUNL0056 will follow; the action taken for these messages depends on
 the HARDERR parameter. If Fast/Unload is unable to continue, it will abend with a
 diagnostic dump.

——
262 Fast/Unload Reference

——
 Messages
——

FUNL0114 update error in field fieldname.

 An error occurred performing an update to the field fieldname. The type of error is
 indicated by update error as follows:

 Attempt to ADD MISSING value
 This indicates that an ADD statement was executed, and the value on the right
 hand side is MISSING (for example, a %variable that had not been assigned to).
 If this does not indicate an error in your FUEL program, you can either test for the
 missing value explicitly, using the IF entity EXISTS phrase, or you can use the
 ADDC statement, which simply results in a no-op for the MISSING value.

 Attempt to CHANGE to MISSING value
 This indicates that a CHANGE statement was executed, and the value on the
 right hand side is MISSING (for example, a %variable that had not been
 assigned to).

 Attempt to CHANGE non-existing occurrence
 This indicates that a CHANGE statement was executed, and the occurrence
 subscript of the field on the left hand side is greater than the number of
 occurrences of the designated field in the current record.

 Attempt to DELETE non-existing occurrence
 This indicates that a DELETE statement was executed, and the occurrence
 subscript of the field is greater than the number of occurrences of the designated
 field in the current record. If this does not indicate an error in your Model 204 file
 or FUEL program, you can either test for the occurrence explicitly, using the IF
 field EXISTS phrase, or you can use the DELETEC statement, which simply
 results in a no-op for a missing field.

 This message indicates a FUEL programming error which must be corrected. The
 Fast/Unload run is cancelled as a result of this error.

FUNL0115 Error converting entity to number in line linenum.

 This indicates that the FUEL program contained a reference to a %variable or field
 occurrence that required a numeric value (for example, in the right hand side of an
 arithmetic assignment statement). The line number of the FUEL program being
 executed is shown in linenum.

FUNL0116 Value is non-numeric or is out of range in line linenum; Fast/Unload cancelled.

 This indicates that the FUEL program referenced an entity in a context that required a
 numeric value within a particular range, yet the value in the entity referenced was not
 within the required range. This error could occur, for example, when a %variable is used
 as a field occurrence number or as the FROM clause in a FOR statement, both of which
 must be numbers greater than or equal to 1.

 The line number of the FUEL program being executed is shown in linenum.

——
Fast/Unload Reference 263

——
Messages
——

FUNL0117 Duplicate field name.

 This indicates that the field name specified on a NEW statement is either a field name
 already defined in the Model 204 file, or has previously been defined using the NEW
 statement.

FUNL0118 Field dictionary full.

 This indicates that you attempted to define a new field using the NEW statement, but the
 number of fields in the file is already at the maximum allowed by Model 204.

FUNL0119 Error performing arithmetic in line linenum: intcode opcode op.

 This indicates that the FUEL program contained an arithmetic expression which resulted
 in an error, such as division by zero. The line number of the failing FUEL statement is
 indicated by linenum The interruption code for the error is given by intcode. The
 operation being performed is indicated by opcode.

FUNL0120 Unexpected END statement.

 This indicates that an END statement occurred with no FOR, IF, nor SELECT statement
 to match.

FUNL0121 String truncated in line linenum; Fast/Unload cancelled.

 This indicates an attempt to create a string longer than 255 bytes.

 The line number of the FUEL program being executed is shown in linenum.

FUNL0122 Invalid datetime or datetime format in line linenum; Fast/Unload cancelled.

 This indicates that a FUEL program called a #function which has datetime and datetime
 format arguments, and that the datetime or the datetime format is invalid. This error
 could occur in a call to #C2DATE, for example, if a constant for the format argument is
 incorrectly coded, or if the date string argument does not match the format (assuming
 the fourth argument is omitted; supplying a %variable for the fourth argument allows you
 to test for errors).

 The line number of the FUEL program being executed is shown in linenum.

 Refer to “Run-time errors during standard #function calls” on page 100 for a discussion
 of error return arguments in #function calls. Refer to “Datetime Formats” on page 172
 for an explanation of valid datetime formats and valid dates.

——
264 Fast/Unload Reference

——
 Messages
——

FUNL0123 Invalid argument in line linenum (designation); Fast/Unload cancelled.

 This indicates that the FUEL program contains a call to a #function and that an argument
 has an invalid string value. Designation specifies the purpose of the argument, in terms
 shown in the documentation of the #function being invoked; it can indicate one of the
 following purposes:

 option For example, the third argument to #VERPOS must be a string
 starting with either uppercase 'M' or 'N'.
 character For example, the third argument to #LEFT must be a single
 character.
 required argument(s) For example, #TRANSLATE requires either argument 2, 3, or
 4.

 The line number of the FUEL program being executed is shown in linenum.

FUNL0124 Feature not installed.

 This indicates that a Fast/Unload statement was entered which is not supported by the
 configuration of Fast/Unload being executed. Ensure that the statement is allowed by
 one of the features you have purchased and contact Sirius Software Support for
 assistance.

FUNL0125 File filename: n date fields detected.

 This message is issued at the end of the first pass of DATESTAT processing by
 Fast/Unload and is a normal message if the DATESTAT statement is present. This
 message indicates the number of fields in a file which have been determined to contain
 dates.

 The name of the file being processed is shown by filename, while the number of fields is
 shown as n.

FUNL0126 Fast/Unload cancelled by customer-written #function.

 This message indicates that a customer-written #function used the Fast/Unload
 #function service routine to terminate a Fast/Unload run.

FUNL0127 Fast/Unload cancelled unloading input record number recno in file filename.

 This message indicates that some event caused Fast/Unload to terminate prematurely
 during the unload phase of processing a file.

 The run was terminated while processing record number recno from the Model 204 file
 filename.

——
Fast/Unload Reference 265

——
Messages
——

FUNL0128 N argument positions passed to #function; values :

 This message indicates that a #function was active during the premature termination of a
 Fast/Unload run, that there were n comma-separated arguments supplied to the
 #function, and that the display of the arguments follows as a series of FUNL0129
 messages.

FUNL0129 argno argval.

 This message is used to display an argument to the active #function. It consists of the
 argument number, argno, followed by an indication of the argument value, argval, which
 will be one of the following:

 =value The value of the argument follows the equal sign.

 (MISSING)
 The value of the argument is MISSING; for example, a field occurrence was
 coded for the argument, but the given occurrence is not present on the
 record.

 (omitted) The argument is omitted; that is, the argument was not coded but a comma
 was coded to indicate the omission of the argument. For example, in the
 following statement:

 %OFF = #VERPOS(%STR, '1234567890', , 10)

 argument 3 is omitted.

FUNL0130 Fast/Unload cancelled during execution of line linenum.

 This message indicates that some event caused Fast/Unload to terminate prematurely
 during the unload phase of processing a file.

 The line number of the FUEL program being executed is shown in linenum.

——
266 Fast/Unload Reference

——
 Messages
——

FUNL0131 Check failed - [Cancel: condition ...] [Warn: condition ...].

 This message indicates that one or more conditions specified (or defaulted) on a
 CHECK statement were present. If CANCEL was the specified or default action for any
 detected condition, the Fast/Unload run is terminated with a minimum completion code
 of 8. If WARN was the specified or default action for all detected conditions, the
 Fast/Unload run will be allowed, but the completion code will be set to a minimum value
 of 4.

 condition ... is a condition specified on the CHECK statement (see “CHECK condition ...
 CANCEL | WARN | ALLOW” on page 41). The detected conditions are grouped and
 prefixed by their resulting action (Cancel: or Warn:).

 The CHECK statement can be used to override the default conditions that are checked
 for a Fast/Unload run (see “CHECK statement defaults” on page 43). These default
 conditions can also be customized at your site (see “Default CHECK conditions and
 actions” on page 293).

——
Fast/Unload Reference 267

——
Messages
——

FUNL0132 To avoid, primary-suggestion re-run with CHECK condition ALLOW.

 This message follows message FUNL0131 and suggests how to proceed given the
 conditions stated in FUNL0131. You may receive more than one instance of this
 message if multiple conditions are found in the file.

 The job step return code is set to a minimum of 4 when this message is issued.

 Note: If your FUNL0131 message did not specify a Cancel: action, and you don't
 need to follow the primary-suggestion right away, then this message can be used for
 reference in future Fast/Unload jobs.

 primary-suggestion provides information for handling the condition detected by
 Fast/Unload and reported as condition. The conditions that can be detected include all
 those that can be specified on the CHECK statement (see “CHECK condition ...
 CANCEL | WARN | ALLOW” on page 41).

 If a primary-suggestion is not present or is not applicable:

 ● You can force Fast/Unload to ignore the condition by specifying the CHECK
 condition ALLOW statement.

 ● The defaults in effect at your site can be customized (see “Default CHECK
 conditions and actions” on page 293).

 ● If condition is PROCS, this message indicates that the file has Model 204
 procedures, and you have specified CHECK PROCS WARN or CHECK PROCS
 CANCEL.

 Unloading procedures, invoked for UAI unloads by default or by including the
 PROCS option on the UAI statement, is supported as of Fast/Unload version 4.2.

 To complete the unload and not unload procedures, use UAI NOPROCS (and do
 not use CHECK PROCS CANCEL). To unload procedures, use UAI PROCS.

 primary-suggestion can be any of the following, some of which are version-dependent:

 ● run M204 recovery or

 This occurs when condition is either BROKE-PHYS or BROKE-LOGIC, which means
 that the value of the Model 204 FISTAT parameter indicates some corrective action
 needs to be taken to the data and/or indices stored in the file. If you are able to run
 Model 204 recovery, the "broken" file status should be corrected.

 ● run M204 Z command or

 This occurs when condition is DUPDT, which means that the value of the Model 204
 FISTAT parameter indicates that there may be deferred index updates which need
 to be applied to the file. If you are able to run the Model 204 process for applying

——
268 Fast/Unload Reference

——
 Messages
——

 the deferred updates, the index will be complete for unloading.

 ● may save procs via M204 COPY PROC command or Disp to USE dataset, then:

 This occurs when condition is PROCS, which indicates that the file has Model 204
 procedures; versions of Fast/Unload prior to 4.2 cannot unload procedures. To
 workaround:

 1. Ensure that any needed procedures have been saved, using either of the
 following:

 ▪ Copy the procedures to a work file using the Model 204 COPY PROC
 command.
 ▪ Copy the procedures to a USE dataset using the DISPLAY PROC
 command.

 2. Insert the following FUEL statement to avoid the cancellation or warning:

 CHECK PROCS ALLOW

 Note: If you are unloading for the purpose of a file reorganization, the COPY
 PROCEDURE command cannot copy an ALIAS and "reconnect" it to its underlying
 procedure.

 ● use UAI INV | OINDEX to unload ORD INVIS fields, or

 This occurs when condition is INVIS, which indicates that you are unloading data
 from a Model 204 file without the OINDEX or INV UAI options, and the file contains
 some ORDERED INVISIBLE fields. If you are performing a UAI job, these invisible
 fields can be unloaded by adding OINDEX or INV. If you are not running a UAI job,
 or you don't need to unload the fields, the cancellation or warning can be avoided by
 the suggested CHECK statements.

 ● use FUEL ADD for derived INVIS non-ORD fields, {or | and then}

 This occurs when condition is INVIS, which indicates that you are unloading a file
 with INVISIBLE non-ORDERED fields. Fast/Unload cannot unload these fields
 directly. However, if the invisible fields are deriveable from other visible fields in the
 file, and you have installed the Fast/Unload Fuel Compiler, you can use the ADD
 statement to create the values and then they can be unloaded by UAI, PAI, or the
 PUT method of unload.

 The end of this text, {or | and then}, is determined as follows:

 or If you did not code a CHECK INVIS WARN or CANCEL statement,
 your program does not contain a FOR EACH RECORD loop (and
 your site must have customized the CHECK defaults). In the process
 of inserting one or more ADD statements, you will need to enclose
 them within a FOR EACH RECORD loop, which, in the absence of

——
Fast/Unload Reference 269

——
Messages
——

 CHECK INVIS WARN or CANCEL, prevents the CHECK of invisible
 fields. You can add CHECK INVIS ALLOW if the ADD statement is
 not applicable to solving the problem.

 and then If you did code a CHECK INVIS WARN or CANCEL statement, you
 must remove it or change it to ALLOW to avoid the WARN or
 CANCEL with this file.

FUNL0133 Checking file filename initialized and [Cancel: condition ...] [Warn: condition ...].

 This message indicates the various conditions being checked for filename in the current
 Fast/Unload run. The various conditions, condition ... consist of the names of
 conditions that can be specified on the CHECK statement. See “CHECK condition ...
 CANCEL | WARN | ALLOW” on page 41.

FUNL0134 Inconsistent mixed DBCS string; Fast/Unload cancelled.

 This indicates that a mixed DBCS string had a missing or spurious Shift In or Shift Out
 sequence.

FUNL0135 Invalid hexadecimal string in line linenum; Fast/Unload cancelled.

 This indicates that the FUEL program contains a call to a #function and that an argument
 has an invalid hexadecimal string. This error could occur, for example, if the first
 argument passed to the #X2C function contains the string '123M'.

 The line number of the FUEL program being executed is shown in linenum.

FUNL0136 SIRFIELD block missing for 'filename', compile not performed.

 This indicates that SIRFIELD information has been added to the file named filename but
 the information is not available in Table D. Please call Sirius Software if you get this
 message.

FUNL0137 'Filename' has been updated with a version version of the Sir2000 Field Migration
 Facility.

 This message indicates that filename has been updated with an incompatible release of
 the Sir2000 Field Migration Facility. Fast/Unload must upgraded before it can open the
 indicated file. This message is followed by FUNL0138 which indicates the release of
 Sir2000 Field Migration Facility that had last updated filename.

FUNL0138 Version version of the Sir2000 Field Migration Facility is incompatible with this
 release of Fast/Unload.

 This indicates that the SIRFIELD information stored in Table D of the file can not be
 processed by the version of Fast/Unload in use. You should upgrade to a version of
 Fast/Unload that was released at or after the release of the Sirius Mods that updated the
 file. Version is an internal version number for use by Sirius Software.

——
270 Fast/Unload Reference

——
 Messages
——

FUNL0139 Type name referenced in file and CANCEL set by SIRFIELD command.

 This indicates that the FUEL program contains a reference to the field or alias name,
 and that references to name have been set to CANCEL by a SIRFIELD command for file
 file. Type will indicate whether name is a field or an alias.

FUNL0140 Type name referenced in file and WARN set by SIRFIELD command.

 This indicates that the FUEL program contained a reference to the field or alias name,
 and that references to name have been set to WARN by a SIRFIELD command for file
 file. Type will indicate whether name is a field or an alias.

FUNL0141 Stmt not supported for SIRFIELD RELATED field.

 This indicates that the FUEL program contains an ADD, DELETE, or CHANGE
 statement (as indicated by stmt) which references a field which has been related using
 the SIRFIELD command. ADD, CHANGE, and DELETE of related fields is not
 supported in version 3.1 of Fast/Unload.

FUNL0142 Stmterr statement may not occur outside FOR EACH RECORD loop.

 This indicates that the FUEL program contains a stmterr statement, and it may only
 occur within the FOR EACH RECORD loop. You must either delete the stmterr
 statement or move it inside the FOR EACH RECORD loop.

 For example, an UNLOAD statement may only occur within the FOR EACH RECORD
 loop.

FUNL0143 Fast/Unload program must have UAI or FOR EACH RECORD.

 This indicates that the FUEL program contains neither a UAI, UNLOAD ALL
 INFORMATION, nor FOR EACH RECORD statement. One of these statements is
 required to specify the processing for each record in the input. Note that FOR EACH
 RECORD can be combined with UAI (or UNLOAD ALL INFORMATION, which is
 synonymous with UAI).

FUNL0144 PTCH usage.

 This indicates the offsets in the PTCH CSECT which have been changed from the initial
 value of zero, which approximates the maintenance level of the executing load module.
 PTCH usage can have one of the two following forms:

 1. No PTCH used , which indicates that the entire patch space is zero.

 2. PTCH usage: beg-end ... , which indicates the ranges (in hexadecimal) in the patch
 area which have been changed from zero.

——
Fast/Unload Reference 271

——
Messages
——

FUNL0145 Authorization zap produced date time.

 This informational message is issued at the start of a Fast/Unload run. It shows the date
 and time at which the Fast/Unload authorization zap was produced.

FUNL0146 Invalid checksum in authorization zap.
 This message indicates that the Fast/Unload authorization zap was incorrectly entered.
 If the zap was manually entered, double check the contents from the original copy. If the
 zap was received electronically from Sirius Software, either it was modified during
 receipt or was incorrectly transmitted. You should double check your steps for receiving
 it or obtain a new zap from Sirius Software.

FUNL0147 Authorization status feature.
 This informational message is issued at the start of a Fast/Unload run. It indicates the
 authorization status (such as Permanently authorized) of the indicated feature (such
 as Fast/Unload Extraction Language).

FUNL0148 Multiple stmt statements.

 The statement indicated by stmt has occurred more than once in your FUEL program,
 and this is not allowed for that particular statement. Remove the incorrect statement(s).

FUNL0149 Error in line linenum:

 An error has occurred in your FUEL program, and the source listing is suppressed,
 either due to the NOLIST parameter, or because you are using the Fast/Unload User
 Language Interface and you did not use the ALLMSG parameter.

 The number, within the FUEL program, of the line in error is shown as linenum, and the
 message that applies to the error will follow FUNL0149.

FUNL0150 Cause of error: description:

 A system error has occurred, and the dump has been bypassed. The cause of the error
 is shown in description; if you need more help determining the action to take to correct
 the error, see the IBM documentation for the abend code (which is shown in message
 FUNL0091) and for any messages that we generated by the operating system and
 accompany the job.

FUNL0151 Item expected.

 This indicates the FUEL compiler expected a particular item in the input program, but it
 was not found. For example, this message is issued if you place a statement other than
 WHEN or OTHERWISE immediately after a SELECT statement.

——
272 Fast/Unload Reference

——
 Messages
——

FUNL0152 Attempt to UNLOAD sibinfo SORT or HASH field.

 This message indicates that the FUEL program contained the UAI SORT or UAI HASH
 statement, and it also contained an UNLOAD statement with a field, and that field is
 either:

 1. the HASH field or the first SORT field (in this case the string sibinfo is omitted from
 the message).

 2. the field RELATED to the HASH field or the first SORT field (in this case the string
 sibinfo is is related to).

 Since the unload process produces the HASH field (or in cases the first sort field) at the
 beginning of each record, the order of unloading that field cannot be changed.

 For UAI HASH, you may not control the order of the HASH field, so you must not have
 an UNLOAD field statement (other than UNLOAD field(*)) which references the HASH
 field occurrence. For SORT, if you need to use the UNLOAD field statement and it may
 reference the first SORT field occurrence, you can use AS PLACED on the UAI
 statement, indicating that the field will not automatically be unloaded first.

 If the UNLOAD field statement uses a %variable or a loop control variable as the
 occurrence, and you are sure that the value of that variable will not be the same as the
 HASH field or first SORT field, you may use AS FIRST on the UAI statement, which will
 cause that duplicate unloading to be checked at run time.

 See “UAI SORT or HASH and field unload order” on page 95.

FUNL0153 Attempt to UNLOAD non-existent occurrence occ of field field.

 This message indicates that you attempted to unload occurrence number occ of the field
 named field using the UNLOAD field statement, and that this occurrence does not exist
 in the current record. If this does not indicate an error in your Model 204 file or FUEL
 program, you can either test for the occurrence explicitly, using the IF field EXISTS
 phrase, or you can use the UNLOADC statement, which allows specification of a missing
 field occurrence.

FUNL0154 Attempt to re-UNLOAD occurrence occ of field field.

 This message indicates that you used the UNLOAD field statement to unload a field
 occurrence in a record that had already been unloaded, or the UNLOAD followed a
 NOUNLOAD for the field. This is not allowed; you must correct your FUEL program to
 remove the duplicate field unload.

——
Fast/Unload Reference 273

——
Messages
——

FUNL0155 Partial UNLOAD, ordered index invalidated.

 This message indicates that you attempted a partial unload of a record, in a UAI
 OINDEX or UAI INVISIBLE unload. If the purpose of the job is to unload partial records,
 you must remove OINDEX or INVISIBLE from the UAI command. Otherwise, you
 should ensure that a normal UNLOAD statement, which unloads the entire record, is
 executed for every Model 204 record which has any UNLOAD field statement executed.

FUNL0156 Attempt to UNLOAD SORT or HASH field: occurrence occ of field field.

 This message indicates that you used the UNLOAD field statement to unload the HASH
 or SORT field occurrence in a record which has already been implicitly unloaded. This is
 not allowed; you must correct your FUEL program to remove the UNLOAD field
 statement with this field and occurrence, or change the field and/or occurrence of the
 UAI HASH or SORT statement, or use the AS PLACED clause, if you are using UAI
 SORT.

 If you use AS PLACED and you are unloading any partial records, note that the first
 SORT field will not be unloaded unless you explicitly execute an UNLOAD field
 statement for it.

 See “UAI SORT or HASH and field unload order” on page 95.

FUNL0157 Integer truncated in line linenum; Fast/Unload cancelled.

 This indicates an attempt to create a number with more significant digits for the integer
 part than the number of places provided.

 The line number of the FUEL program being executed is shown in linenum.

FUNL0158 Null extension record (extnum) of record number basenum.

 This informational message indicates that a zero-length extension record (at number
 extnum) occurs in the chain of extensions of base record basenum. This message is
 only produced if you are using the FSTATS parameter to Fast/Unload, and it indicates
 an unnecessary condition in the Model 204 file which can have negative impact on
 performance.

FUNL0159 Invalid construct in stmt statement: string.

 This message indicates a syntax error in a statement in the FUEL program. The type of
 statement with the error is shown as stmt. string is the portion of the statement which
 is invalid, and construct shows the type of FUEL construct that is expected.

 See the documentation of the type of statement (stmt) for a description of the valid
 constructs that you may use for construct.

——
274 Fast/Unload Reference

——
 Messages
——

FUNL0161 Only one SORT PGM= statement allowed.

 To override the default and specify an alternate sort package, you may provide a SORT
 PGM=sortprogramname statement. However, only one such statement is allowed. All
 sorted output streams will use the same sortprogramname for sorting.

FUNL0162 SORT statement for destination has no matching OUT TO or UAI TO declaration.

 The compiler encountered a SORT statement that: a) specified an invalid (that is,
 undeclared) destination, or b) in a FUEL program with multiple destinations, had no TO
 qualifier indicating the stream to which it applied.

FUNL0163 Premature EOF while in an #IF block.

 While in a #IF block, the program ended before it encountered the #END IF line.

FUNL0164 Illegal nested #IF.

 While in a #IF block, the program encountered another #IF line. #IF blocks cannot be
 nested.

FUNL0165 Ill-formed #END IF.

 A line beginning with #END contained something other than IF.

FUNL0166 #END IF without #IF.

 A #END IF line was encountered while outside of any #IF blocks. This is possibly due to
 an error on the #IF line itself.

FUNL0167 Ill-formed #ELSE.

 Something beside #ELSE was found on the #ELSE line.

FUNL0168 #ELSE without #IF.

 A #ELSE line was encountered while outside of any #IF blocks. This is possibly due to
 an error on the #IF line itself.

FUNL0169 #ELSEIF without #IF.

 A #ELSEIF line was encountered while outside of any #IF blocks. This is possibly due to
 an error on the #IF line itself.

FUNL0170 Ill-formed #IF or #ELSEIF.

 #IF and #ELSEIF lines must contain a field name followed by one of the keywords
 DEFINED or UNDEFINED. A line beginning with #IF or #ELSEIF did not match this
 syntax.

——
Fast/Unload Reference 275

——
Messages
——

FUNL0171 Illegal preprocessor (#) line.

 A line beginning with # did not contain a valid preprocessor statement
 (#IF/#ELSEIF/#ELSE/#END IF).

FUNL0172 Invalid destination name 'string'.

 The string specified as a destination name was ill-formed (longer than 8 characters), or
 it was never declared in an OUT TO or UAI TO statement.

FUNL0173 Destination 'string' already used.

 The string specified as a destination name in an OUT TO or UAI TO declaration was
 already used. Each output stream must have a unique name.

FUNL0174 More than one default destination specified.

 The DEF[AULT] attribute was specified on more than one OUT TO or UAI TO
 declaration. At most one default destination may be specified for all the OUT TO
 streams, and at most one may be specified for all the UAI to streams.

FUNL0175 No default destination specified.

 A PUT or OUTPUT statement was encountered without a TO clause, but no default OUT
 TO destination was declared. Or, an UNLOAD statement without a TO clause was
 encountered, but no UAI TO default destination was declared.

FUNL0176 Invalid syntax in TO dest prefix.

 A TO dest clause was specified but the rest of the statement was either missing or
 invalid.

FUNL0177 Invalid statement with TO dest prefix.

 A TO dest prefix was specified but the rest of the statement was not one that allows a
 destination. The statements that do allow a destination are

 PUT
 OUTPUT
 PAI
 PRINT ALL INFORMATION
 UNLOADC
 UNLOAD

FUNL0178 Must specify TO dest for all UAIs if more than one output stream is declared.

 If the FUEL program has more than one output stream (UAI or OUT TO), all UAI
 declarations must have the TO dest qualifier.

——
276 Fast/Unload Reference

——
 Messages
——

FUNL0179 Only one UAI allowed with empty program.

 If the FUEL program has no FOR EACH RECORD loop, it must have exactly one UAI
 declaration and no other output stream declarations.

FUNL0180 number output records created on destination 'destination'.

 Issued at the end of the unload phase of Fast/Unload, this informational message
 indicates that number output records were written to the output data set destination.

FUNL0181 Cannot have multiple outputs in online mode if output is directed to a list.

 The multiple-output feature is not supported when running Fast/Unload in online mode
 with output going to a list.

FUNL0182 Cannot exceed 2048 output destinations.

 The maximum number of output declarations is 2048.

FUNL0183 With multiple destinations, #RECOUT must specify destination.

 The #RECOUT special variable can be used with both OUT TO and UAI TO streams. If
 the FUEL program has more than one output stream, #RECOUT must be qualified with
 the destination, as in #RECOUT(destination), even if default destinations are declared.

FUNL0184 TO * but no {OUT|UAI} destinations declared.

 You specified TO * on an UNLOAD[C] statement, but you did not declare any UAI output
 streams. Or, you specified TO * with one or more PUT, OUTPUT, PAI, or PRINT ALL
 INFORMATION statements, but you did not declare an OUT stream.

FUNL0185 Can't sort by field name (fieldname) with multiple OUT TO streams.

 If your FUEL program declares more than two streams for PUT/OUTPUT operations
 (that is, OUT TO streams), you cannot use the sort-by-field-name feature. (See “Using
 SORT FIELDS” on page 208). You must specify all sort fields with "start,length,type"
 notation.

FUNL0186 Attempt to UNLOAD[C] [field] after a blanket NOUNLOAD.

 After a “blanket” NOUNLOAD statement is executed for a particular output stream, no
 further UNLOADs can be executed for that stream, neither an UNLOAD nor UNLOADC
 of specified field occurrence(s) nor a “blanket” unload.

FUNL0187 Procs, Aliases not unloaded on destination 'destName'.

 This indicates that the file has been unloaded with UAI, and that procedures in the file
 were not unloaded.

——
Fast/Unload Reference 277

——
Messages
——

FUNL0188 numberProc Procs, numberAlias Aliases unloaded on destination 'destName.'.

 This indicates that the file has been unloaded with UAI, with the indicated number of
 procedures unloaded, and the indicated number of procedure aliases unloaded.

FUNL0189 Procs, Aliases not unloaded.

 This indicates that the file has been unloaded with UAI, and that procedures in the file
 were not unloaded.

FUNL0190 numberProc Procs, numberAlias Aliases unloaded.

 This indicates that the file has been unloaded with UAI, with the indicated number of
 procedures unloaded, and the indicated number of procedure aliases unloaded.

FUNL0191 Unable to enqueue destinationname: reason.

 This indicates that the file has been unloaded with UAI, with the indicated number of
 procedures unloaded, and the indicated number of procedure aliases unloaded. reason
 is one of the following:

 ● Can't find DDname
 The destination data set specified or implied in the FUEL program is not defined or
 its DDname does not match the DDname of a defined data set.

 ● Model 204 ALLOCATE command required
 A Model 204 DEFINE DATASET command was issued for the destination data set,
 but no ALLOCATE command was issued.

 ● Enqueue failed
 Some other process has already enqueued the data set.

 The FUNLOAD program validates that a data set that is to be the output destination for
 Fast/Unload unloaded data exists (is defined and allocated), is referenced within the
 FUEL program by a single, unique DDname, and is available for exclusive enqueue.

——
278 Fast/Unload Reference

——
 Messages
——

FUNL0192 Can't use multiple outputs with this version of product

 The text that replaces product in this message depends on your versions of
 Fast/Unload and Sirius Mods. You receive the message if both the following are true:

 ● The FUEL program specifies an output stream that has a destination name that
 differs from the one passed as the fourth argument in the $FUNLOAD call.
 ● You are using a combination of product versions other than Fast/Unload 4.2 (or
 higher) and Sirius Mods 6.5 (or higher).

 To use multiple output streams and the Fast/Unload User Language Interface, you must
 be running (at least) Fast/Unload 4.2 and (at least) Sirius Mods 6.5. The multiple output
 feature was introduced in Fast/Unload 4.1, but not supported for the Fast/Unload User
 Language Interface until Fast/Unload version 4.2.

——
Fast/Unload Reference 279

——
Messages
——

FUNL0193 SORTOUT[D] cannot be used with PROCS or with OINDEX/INV. SORT/HASH
 forced FUNOUT on destination destinationname.

 You get the FUNL0193 informational message in version 4.3 or later if the following are
 all true:

 ● For one or more output streams, UAI SORT (or UAI HASH) is specified and
 NOPROCS is not.
 ● The run-time parameter is SORTOUT or SORTOUTD.
 ● The file to be unloaded contains procedures.

 The destinationname reported in FUNL0193 is the specified or implied destination for the
 UAI SORT or UAI HASH statement that provoked the message.

 To prevent Fast/Unload from sending procedure and alias records to the sort program,
 which the sort would be likely to mis-arrange, Fast/Unload automatically forces
 SORTOUT or SORTOUTD to FUNOUT for and only for the UAI SORT or UAI HASH
 stream or streams. If the FUNOUT parameter is used instead of SORTOUT or
 SORTOUTD, only Table B records go through the sort, and all records are ultimately
 output to their destination data set (the FUNOUT DD) by Fast/Unload, not by the sort
 program.

 Prior to version 4.2, if the SORTOUT or SORTOUTD program parameters were
 specified or the default for UAI SORT or UAI HASH streams, all file records ultimately
 went through the sort program, which output them to their destination data set.

 This forcing of FUNOUT is also in effect (but “silent,” without notification) for UAI
 OINDEX and UAI INV streams, if those indexes are indeed present in the file.

 Note: If FUNOUT is forced ON for one or more output streams, the Fast/Unload report
 data set will still show the SORTOUT or SORTOUTD parameter setting as ON and
 FUNOUT = OFF, since these parameters apply to the whole run, for all streams where
 possible. Message FUNL0193, generated after the report data set is written, is citing the
 exceptional streams where SORTOUT or SORTOUTD is overridden.

——
280 Fast/Unload Reference

——
 Messages
——

FUNL0194 24-bit sort parm list forced FUNOUT on destination destinationname.

 You get this informational message if the following are all true:

 ● For one or more output streams, UAI SORT (or UAI HASH) is specified.
 ● The run-time parameter SORTOUT or SORTOUTD is specified or implied.
 ● The specified or implied setting of the run-time parameter SORTP is 24 (31 is the
 shipped default).

 If SORTOUT or SORTOUTD is in effect, the sort program and not Fast/Unload is
 responsible for outputting all file records to their destination sequential data set. In some
 cases (see FUNL0193, for example), the sort program cannot properly handle this task,
 and the sorted records are passed back to Fast/Unload for outputting. This passing
 back is, in effect and equivalent to, a resetting of the SORTOUT or SORTOUTD
 parameter to the FUNOUT parameter.

 FUNL0194 marks another instance where FUNOUT is forced in place of SORTOUT or
 SORTOUTD: if a SORTP parameter setting of 24 is also specified for the Fast/Unload
 run.

FUNL0195 Unknown type, field name cannot be processed: xxxxxx.

 This message indicates that a field definition is either in error or has attributes that are
 not processed by this version of Fast/Unload. The field name is name, and xxxxxx is
 the hexadecimal value of the definition of the field in Table A.

 This is an informational message; the Fast/Unload job can continue if the following are
 all true:

 ● There is no UAI nor PAI output.
 ● The field is not referenced.
 ● Neither FSTATS nor DATESTATS is requested.
 ● The NEW statement is not present.

FUNL0196 stmt invalid; file contains field of unknown type.

 This message indicates that the operation denoted by stmt was attempted in the FUEL
 program, but the operation cannot be performed, because a field definition is in error.

 For example, stmt can be UAI, indicating that a UAI operation was specified, but it
 cannot be performed because one or more unknown fields cannot be successfully
 unloaded.

FUNL0197 FPL version used by online is too new: xx.

 In the online issuing a $Funload invocation, the default database file version that was
 created is later than the latest version that Fast/Unload supports. Call Sirius Software
 Technical Support to obtain the latest release of Fast/Unload.

——
Fast/Unload Reference 281

——
Messages
——

FUNL0198 Illegal reference to BLOB/CLOB field 'fld' in file filNam.

 The value of the BLOB or CLOB field named fld in file filNam is referenced in an illegal
 context, for example, as a #function argument which is limited to strings of length 255, or
 in a comparison in an IF statement.

FUNL0199 BUG evaluating #function at line n: symptom.

 An error occurred while evaluating a standard #function in line n of the FUEL program.
 Please call Sirius Support and have the listing of the FUEL program available (from the
 FUNPRINT output), and provide the contents of the line in error.

FUNL0200 Getmain failure attempting to append to long string at line n; Fast/Unload
 cancelled.

 The most likely cause of this error is a very large number of %variables being assigned
 strings longer than 255, or a very large number of CHANGE, or especially, ADD,
 statements for BLOB or CLOB fields. While it is possible that increasing the region size
 available to Fast/Unload will correct the program, you should first examine your FUEL
 program logic.

 The error occurred while executing line n of the FUEL program, although if there is an
 error in your logic, it may be at a different line which updates a %variable or BLOB or
 CLOB field.

FUNL0204 Truncation of %variable with length exceeding 255 operation.

 An attempt to use a %variable to perform some operation (described as operation; for
 example, assigning to a non-Lob field) is disallowed, because the %variable contains a
 string longer than 255.

FUNL0205 Attempt to use %variable with length exceeding 255 as context.

 An attempt was made to use a %variable whose length exceeds 255 in a context that
 does not allow this. Context indicates the usage that was attempted; for example,
 “operand of IF/ELSEIF statement:”.

FUNL0206 Attempt to PUT or convert %variable with length exceeding 255.

 An attempt was made to use a %variable whose length exceeds 255 as the operand of a
 PUT statement.

FUNL0207 Attempt to ADD or CHANGE non-Lob field with string longer than 255.

 An attempt was made to update a field, which is neither a BLOB nor a CLOB, with a
 string whose length is greater than 255.

——
282 Fast/Unload Reference

——
 Messages
——

FUNL0208 Record pageNum missing page for Lob field.

 While obtaining the value of a BLOB or CLOB field, one of the Table E pages that should
 contain part of the field's value could not be read. The identifier of the missing page is
 shown in the message as pageNum. This indicates a physical inconsistency in the file,
 and an error should also occur in trying for the same page, if you attempt to obtain the
 same field occurrence with Model 204.

FUNL0209 Assignment with Lob field on right hand side followed by extraneous token.

 The most likely cause of this error is an attempt to use a BLOB or CLOB field as part of
 an arithmetic expression.

FUNL0210 Terminated because of System Abend in line n: abendCode.

 An error occurred while executing line n of the FUEL program. Please call Sirius
 Support and have the listing of the FUEL program available (from the FUNPRINT
 output), and provide both the contents of the line in error and the value of the abend
 shown as abendCode.

FUNL0211 Nonsense IF condition due to explanation.

 A condition in an IF or ELSEIF statement is illegal, and the explanation is shown in the
 message as explanation. For example, a test such as +%X IS FLOAT will be rejected
 with the explanation “type comparison against forced type”, because using “+” to obtain
 the float value of “%X” would always give a float value. If you were using such a
 statement to determine whether the value of %X conformed to a float value, use the
 above test without the “+”.

FUNL0212 Invalid customization zap: one of X'illegal' bits on at PTCH+X'&bitalic(offset)'.

 The load module being executed has had a customization zap applied to the offset in
 PTCH shown as offset, setting to the value 1 a bit that is not defined for Fast/Unload
 customization. The subset of the byte at offset that is not allowed to be 1 is shown in
 hexadecimal as illegal.

FUNL0213 File 'ddName' is duplicated in ad-hoc group.

 This indicates that the OPEN command specified multiple DD names, two of which are
 the same.

FUNL0214 Multiple file names in single-file 'OPEN FILE' command.

 This indicates that the OPEN FILE command contained two or more DD names.

FUNL0215 Comma missing between ddName and following file name in OPEN command.

 This indicates that the OPEN command contained two consecutive DD names without
 an intervening comma.

——
Fast/Unload Reference 283

——
Messages
——

FUNL0216 Trailing comma in OPEN command.

 This indicates that the OPEN command contained a comma without a subsequent DD
 name.

FUNL0217 Missing filename before comma in OPEN command.

 This indicates that the OPEN command contained either two consecutive commas, or a
 comma before the first DD name.

FUNL0218 Found set contained in nullOrGroup foundNumberFiles file(s), OPEN command
 specifies openNumberFiles file(s).

 This indicates that Fast/Unload was invoked with the Fast/Unload User Language
 Interface which passed a record set contained either:

 ● in a group of files (in which case nullOrGroup is the phrase “Group of”), and the
 number of files in the group (foundNumberFiles) differs from the number of DD
 names in the OPEN command (openNumberFiles), or,

 ● in a single file (in which case nullOrGroup is the null string), and there is more than
 one DD name in the OPEN command.

FUNL0219 Found set file number memberNum (foundFileName) does not match
 corresponding in OPEN command (ddName).

 This indicates that Fast/Unload was invoked with the Fast/Unload User Language
 Interface which passed a record set from one or more files, and that the file name of the
 member number memberNum in the found set (foundFileName) differs from the
 corresponding DD name in the OPEN command (ddName).

FUNL0220 Starting unload for fileName.

 This indicates that Fast/Unload is unloading a group of files, and is about to unload the
 file indicated in the message.

FUNL0221 numberRecs input records processed for member of group.

 This indicates that Fast/Unload is unloading a group of files, and has just read the
 indicated number of records from the current file, whose name was reflected in message
 FUNL0220.

FUNL0222 -------- Group totals --------'

 This indicates that Fast/Unload is unloading a group of files, and that the following sets
 of messages (e.g., FUNL0221 and FUNL0220) apply to individual members in the group.

——
284 Fast/Unload Reference

——
 Return Codes
——

——————
APPENDIX C Return Codes

 Fast/Unload will terminate with one of the following program return codes:

 0 Fast/Unload successfully completed.

 4 Fast/Unload encountered a potentially non-fatal error.

 8 Fast/Unload encountered a probably fatal error.

 12 An invalid PARM card value was encountered.

 16 Insufficient storage.

 32 Fast/Unload trial has expired or is not authorized for CPU.

 40 Fast/Unload could not open the FUNPRINT DD.

 48 Insufficient storage to even intialize Fast/Unload.

 64 Fast/Unload User Language Interface called an incompatible Fast/Unload load
 module.

 128 Fast/Unload abend.

 -1 Fast/Unload PST became unavailable after request accepted.

 n A Fast/Unload CANCEL n statement was executed.

——
Fast/Unload Reference 285

——
Return Codes
——

——
286 Fast/Unload Reference

——
 Installation
——

——————
APPENDIX D Installation

 Fast/Unload can be installed from a product tape or can be installed from an object deck
 downloaded from the Sirius Software web site. Installation from tape is described in
 “MVS Installation” on page 288 and “CMS Installation” on page 289 while installation
 from the web is described in “Installation from the web”. In any case, all Fast/Unload
 distributions come with all maintenance pre-applied: up to the time the tape was cut for
 tape installations and up to the time the object deck was downloaded for web
 installations.

 If you are a user of a previous version of Fast/Unload, see the Release Notes for the
 version you are installing. This document is available on the Sirius Software web site
 Documentation page (http://sirius-software.com/maint/manlist). The Release Notes
 highlight changes in the new version, and list any compatibility issues with the previous
 version.

 D.1 Installation from the web

 You can download the Fast/Unload object files from the Sirius Software web site
 (http://sirius-software.com). The download process requires a userid and password.

 1. Click the Support navigation link to go to the Customer Service page
 (http://sirius-software.com/support.html), a public page that explains how to get
 the required userid and password and that also contains links to the various
 download pages.

 2. Click the Download object files link to go to a protected page
 (https://sirius-software.com/maint/objlist) that contains a dynamically-generated
 list of the various Sirius products that you may download.

 The page also contains a Click here link that causes the page to be re-displayed
 with detailed download and installation instructions. These instructions supercede
 any information in this manual.

 3. On the Download object files page, select the link to the currently available
 Fast/Unload object file for the version you require. This file is used for all the
 versions of Model 204 that are currently supported by Fast/Unload.

——
Fast/Unload Reference 287

——
Installation
——

 D.2 MVS Installation

 Fast/Unload is distributed on a magnetic tape which also contains the all the other Sirius
 products you purchased. If you are a user of a previous version of Fast/Unload, see the
 Release Notes accompanying the tape, highlighting the changes in the new version,
 and listing any compatibility issues with the previous version.

 If you have purchased the Fast/Unload User Language Interface, please refer to the
 Sirius Mods Installation Guide when you have completed the basic Fast/Unload
 install. In addition, your tape will contain the SirZap facility; use of SirZap is optional.
 SirZap usage and installation instructions are described in the Rocket Model 204
 SirZap User's Guide and Reference Manual.

 To install Fast/Unload you must simply load two files from tape onto disk. Use the
 following JCL to perform the load: Note: This job will also load any other Sirius products
 you have purchased.

 //FUNTAPEL JOB (0),'McBain',MSGCLASS=A,CLASS=C,NOTIFY=MCBAIN
 //*
 //* Load Sirius products from tape
 //*
 //IEBCOPY EXEC PGM=IEBCOPY,REGION=0M
 //T1 DD UNIT=TAPE,VOL=SER=SIRIUS,LABEL=(1,SL),DISP=(OLD,PASS),
 // DSN=SIRIUS.LIB
 //T2 DD UNIT=TAPE,VOL=SER=SIRIUS,LABEL=(2,SL),DISP=(OLD,PASS),
 // DSN=SIRIUS.LOAD
 //T3 DD UNIT=TAPE,VOL=SER=SIRIUS,LABEL=(3,SL),DISP=(OLD,PASS),
 // DSN=SIRIUS.ULSPF
 //*
 //D1 DD DISP=(,CATLG),DSN=SIRIUS.LIB,UNIT=SYSDA,
 // SPACE=(CYL,(10,0,5))
 //D2 DD DISP=(,CATLG),DSN=SIRIUS.LOAD,UNIT=SYSDA,
 // SPACE=(CYL,(5,0,2))
 //D3 DD DISP=(,CATLG),DSN=SIRIUS.ULSPF,UNIT=SYSDA,
 // SPACE=(CYL,(25,0,2))
 //SYSPRINT DD SYSOUT=*
 //SYSIN DD *
 COPY I=T1,O=D1
 COPY I=T2,O=D2
 COPY I=T3,O=D3
 /*

 You must, of course, change the job card and possibly the output data set names to
 conform to your local standards.

 After loading these files, Fast/Unload is ready to use. The second tape file contains the
 Fast/Unload load module and may be all you need for running Fast/Unload. After
 unloading the Fast/Unload load module, you can customize it to your site's needs, if
 necessary; see “Customization of Defaults” on page 291.

 You may need the first and third tape files for other Sirius products you have installed.
 The first tape file also contains some Fast/Unload sample material; the members are:

 ● FUNCEQU - a macro instruction to be used if you write any assembler language
 #functions. See “Customer-written Assembler #Function Packages” on page 213.

——
288 Fast/Unload Reference

——
 MVS Installation
——

 ● FUNLIST - sample User Language procedure which provides a simple facility to
 monitor Fast/Unload requests.
 You should simply load this into a Model 204 procedure file. Note that this
 procedure can be placed into a subsystem as a pre-compiled request.

 ● FUNLOAD - input to LINKFUN.
 See the description below of the LINKFUN member

 ● LINKFUN - a sample link job.
 This job can be used to re-link the Fast/Unload load module should this become
 necessary. It should not be necessary since the second tape file contains a library
 which contains a fully linked Fast/Unload load module.

 ● UFUN - a sample program which you can use as a starting point for writing
 assembler language #functions. See “Customer-written Assembler #Function
 Packages” on page 213.

 D.3 CMS Installation

 Fast/Unload is distributed on a magnetic tape. This magnetic tape always contains all
 the Sirius products you have purchased. If you are a user of a previous version of
 Fast/Unload, see the Release Notes accompanying the tape, highlighting the changes
 in the new version, and listing any compatibility issues with the previous version.

 If you have purchased the Fast/Unload User Language Interface, please refer to the
 Sirius Mods Installation Guide when you have completed the basic Fast/Unload
 install. In addition, your tape will contain the SirZap facility; use of SirZap is optional.
 SirZap usage and installation instructions are described in the Rocket Model 204
 SirZap User's Guide and Reference Manual.

 The files that will be loaded are:

 ● FUNLOAD MODULE
 ● FUNLOAD MAP
 ● FUNLOAD TEXT
 ● FUN EXEC
 ● FUN FUNLOAD
 ● FUNLIST CCAIN

 To install Fast/Unload you must simply

 1. Have the Fast/Unload tape mounted on a tape drive attached at virtual address 181.

 2. Issue the command 'VMFPLC2 REW' to ensure the tape is properly positioned.

——
Fast/Unload Reference 289

——
Installation
——

 3. Issue the command 'VMFPLC2 LOAD' to load the object, utility files, and the load
 module to your 'A' disk. Allocate a minidisk with sufficient space to contain all the
 Sirius products you ordered. Refer to the tapemap shipped with your installation
 package for the actual number of blocks required, or allocate a minidisk large
 enough to hold all Sirius products; about 3,400 4K blocks.

 4. Customize FUN EXEC to conform to local standards.

 5. Place the customized FUN EXEC and FUNLOAD MODULE on a disk accessible to
 users who you want to have access to Fast/Unload. Note that Fast/Unload requires
 access to the Model 204 CMS interface (typically called M204CMS MODULE).

 Note that the distributed FUN EXEC takes as its only parameter the filename of a file
 containing the FUEL program. The filetype of the FUEL program is assumed to be
 FUNLOAD. FUN FUNLOAD is sent as an example of a simple FUEL program and can
 be run by issuing the command

 FUN FUN

 Note that FUN EXEC and FUN FUNLOAD both refer to the CLIENTS database
 distributed with Model 204. To use it against another database you must customize both
 FUN EXEC and FUN FUNLOAD. You might simply want to use a separate exec for
 each unload application or you might want to write a generalized exec that suits your
 environment.

 After unloading FUNLOAD MODULE and FUNLOAD TEXT, you can customize them to
 your site's needs, if necessary; see “Customization of Defaults” on page 291.

——
290 Fast/Unload Reference

——
 Customization of Defaults
——

——————
APPENDIX E Customization of Defaults

 In the descriptions below of the customization patches, you should note that each of the
 VER (VERify) commands presume that no prior patching has been done (i.e., they
 require the particular byte to be all zero). They are shown this way merely as a template
 and this is obviously wrong if you've made a prior customization run.

 If you are doing all your patches in one run, you can indeed verify that the byte in
 question is all zero and then provide only the necessary REP commands after that one
 VER command. If you have in fact made any prior runs, you must replace the zero-byte
 in the VER command with the logical-or of whatever flag bits you turned on in prior
 patches.

 E.1 Sort Parameter List

 Fast/Unload communicates with an external sort package via a parameter list or plist.
 There are two basic standards for sort parameter lists:

 ● The 24-bit “old-fashioned” parameter list. This is supported by virtually all sort
 packages.

 ● The 31-bit extended parameter list. This is supported by DFSORT, SYNCSORT,
 and several other "modern" sort packages.

 You can use the SORTP parameter to tell Fast/Unload which type of parameter list to try
 to use. Note, however, that Fast/Unload makes no attempt to verify that your sort
 package actually supports the requested type of plist.

 The 31-bit extended parameter lists are more flexible and allow a greater variety of
 SORT statements to be passed to the sort package. For this reason, the default value
 for SORTP is 31.

 If you do not have a sort package that supports 31-bit extended parameter lists at your
 site, you may want to change the SORTP default. To do so, simply apply the following
 ZAP to Fast/Unload.

 NAME FUNLOAD PTCH
 VER 1200 00
 REP 1200 80

——
Fast/Unload Reference 291

——
Customization of Defaults
——

 E.2 Changing the default sort parameter

 The parameter that controls the selection of the destination data set for sorted output is
 set by Fast/Unload by default to SORTOUTD. Prior to version 4.1, the default was
 SORTOUT. You can change this default setting to be either FUNOUT or SORTOUT.
 These parameters are described in “FUnout” on page 11 and “SORTOut | SORTOUTD”
 on page 17.

 To make FUNOUT the default at your site, apply the following ZAP to Fast/Unload:

 NAME FUNLOAD PTCH
 VER 1200 00
 REP 1200 20

 To make SORTOUT the default at your site, apply the following ZAP to Fast/Unload:

 NAME FUNLOAD PTCH
 VER 1214 00
 REP 1214 10

 E.3 Default for ERROR clause on PUT statement

 Fast/Unload by default sets the ERROR clause to be the same as the MISSING clause
 on the PUT statement (except when AS STRING is specified, in which case TRUNCATE
 is the default for ERROR).

 If you want CANCEL to be the default for the ERROR clause at your site, apply the
 following ZAP to Fast/Unload:

 NAME FUNLOAD PTCH
 VER 1200 00
 REP 1200 01

 This will be the default whether AS STRING is specified or not.

 E.4 Default for MISSING clause on PUT statement

 Fast/Unload by default sets the MISSING clause to be -1 on the PUT statement (except
 when AS STRING is specified, in which case blank fill is the default for MISSING).

 To make 0 the default for the MISSING clause at your site, apply the following ZAP to
 Fast/Unload:

 NAME FUNLOAD PTCH
 VER 1200 00
 REP 1200 10
——
292 Fast/Unload Reference

——
 Default for MISSING clause on PUT statement
——

 This will not change the default if AS STRING is specified.

 E.5 Default CHECK conditions and actions

 During an individual run of Fast/Unload, you can use the CHECK statement to specify
 the conditions to check and the action to take if a condition is found. The CHECK
 statement overrides the default checks, if any, for the conditions it specifies. The
 defaults shipped by Rocket Software are shown in “CHECK statement defaults” on page
 43.

 To change any of the defaults for CHECK at your site, you can ZAP the defaults. Each
 of the defaults consists of a single byte, with the following values:

 0 or 1 IGNORE
 2 WARN
 3 or greater CANCEL

 The PTCH offsets for the 6 default bytes are:

 X'1202' BROKE-PHYS
 X'1203' BROK-LOGIC
 X'1204' DUPDT in Fast/Unload run with neither UAI OINDEX nor UAI INV
 X'1205' PROCS in Fast/Unload run with no FOR EACH RECORD statement
 X'1206' INVIS in Fast/Unload run with no FOR EACH RECORD statement
 X'1207' DUPDT in Fast/Unload run with UAI OINDEX or UAI INV

 Example customization of FISTAT actions:

 ● To unload any file, regardless of FISTAT, without affecting the job step return code:

 NAME FUNLOAD PTCH
 VER 1202 0303,0303,0003
 REP 1202 0000,0000,0000

 ● To set the job step return code to a minimum of 4 for Fast/Unload runs where the
 file contains definitions of either procedures or INVISIBLE fields that are not
 unloaded:

 NAME FUNLOAD PTCH
 VER 1202 0303,0303,0000
 REP 1202 0303,0302,0200

——
Fast/Unload Reference 293

——
Customization of Defaults
——

 E.6 CENTSPAN and SPANSIZE

 If you want to change the default value of CENTSPAN used in your load module,
 calculate the hexadecimal value (as a signed 2-byte number) and place that value (vvvv)
 into the following zap:

 NAME FUNLOAD PTCH
 VER 1208 FFCE Change default CENTSPAN of -50
 REP 1208 vvvv to ...

 If you want to change the value of SPANSIZE used in your load module, calculate the
 hexadecimal value (as a 2-byte number - it must be between 1 and 100) and place that
 value (vvvv) into the following zap:

 NAME FUNLOAD PTCH
 VER 120A 005A Change SPANSIZE of 90
 REP 120A vvvv to ...

 E.7 Default SORT program name

 If you want to change the default name used for external sorts, calculate the
 hexadecimal value of the 8-character EBCDIC program name, and place that value into
 the following zap:

 NAME FUNLOAD PTCH
 VER 120C E2D6D9E3,404040 Change name from SORT
 REP 120C vvvvvvvv,vvvvvv to ...

 For example, to change the name to XSORT, use the following zap:

 NAME FUNLOAD PTCH
 VER 120C E2D6D9E3,404040 Change name from SORT
 REP 120C E7E2D6D9,E34040 to XSORT

 E.8 Setting NOLIST as default

 If you want to suppress the listing of FUEL programs by default at your installation, you
 can use the following zap:

 NAME FUNLOAD PTCH
 VER 1214 00 Unzapped byte
 REP 1214 80 NOLIST is default

 Note that when the Fast/Unload User Language Interface is used, NOLIST is the default
 unless the ALLMSG parameter is specified.

——
294 Fast/Unload Reference

——
 Setting default FSTATS processing
——

 E.9 Setting default FSTATS processing

 If you want to change the default behavior of FSTATS processing to be that performed
 by FSTATS MINMAX, use the following zap:

 NAME FUNLOAD PTCH
 VER 1214 00 Unzapped byte
 REP 1214 20 MINMAX is default for FSTATS

 E.10 Setting default ABENDERR

 If you want to change the default of the ABENDERR parameter, you can use the
 following zap:

 NAME FUNLOAD PTCH
 VER 1216 0000 Old default was ABENDERR=0
 REP 1216 00vv New default is vv in hex

 For example, the following zap sets the default ABENDERR to 8:

 NAME FUNLOAD PTCH
 VER 1216 0000 Old default was ABENDERR=0
 REP 1216 0008 New default is ABENDERR=8

 Note that when the Fast/Unload User Language Interface is used, ABENDERR=0 is
 always the default.

 E.11 DBCS Environment

 If your database files frequently contain DBCS data, you may want to tell Fast/Unload to
 automatically assume a specific DBCS environment. This way, you can avoid coding
 the DBCS parameter on all your Fast/Unload runs. The distribution version of
 Fast/Unload defaults to DBCS=NONE.

 E.11.1 IBM DBCS Environment

 To set an IBM default DBCS environment, apply the following zap.

 NAME FUNLOAD PTCH
 VER 1200 00
 REP 1200 02

——
Fast/Unload Reference 295

——
Customization of Defaults
——

 E.11.2 Fujitsu DBCS Environment

 To set a Fujitsu default DBCS environment, apply the following zap.

 NAME FUNLOAD PTCH
 VER 1200 00
 REP 1200 04

 E.11.3 Hitachi DBCS Environment

 To set a Hitachi default DBCS environment, apply the following zap.

 NAME FUNLOAD PTCH
 VER 1200 00
 REP 1200 08

——
296 Fast/Unload Reference

——
 SMF record format
——

——————
APPENDIX F SMF record format

 Offset Length Type Description
 ------- ------- ------- -------------------------
 000 2 Signed Binary Record length
 002 2 Reserved Block Descriptor
 004 1 Bit System indicator
 005 1 Unsigned Binary SMF record type
 006 4 Signed Binary Time in 1/100ths seconds
 since midnight
 010 4 Packed Date (00YYDDDF)
 014 4 Character System ID
 018 8 Character Job ID
 026 10 Character Originating Model 204 userid
 036 10 Character Originating Model 204 account name
 046 1 Character Fast/Unload record type
 'U' Unload record
 'I' Index Unload record
 'C' Compile record
 047 5 Reserved
 052 4 Signed Binary User Language Interface request number
 056 4 Signed Binary Return code
 Times are in milliseconds
 060 4 Signed Binary Real time used (total job time)
 064 4 Signed Binary Wait for CPU time
 070 4 Signed Binary CPU Time
 072 4 Signed Binary Base buffer wait time
 076 4 Signed Binary Extension buffer wait time
 080 4 Signed Binary Output buffer wait time
 084 4 Signed Binary Report buffer wait time
 088 4 Signed Binary Input buffer wait time
 092 4 Signed Binary Open wait time
 096 4 Signed Binary PST wait time
 100 4 Signed Binary Maximum 24-bit storage used
 104 4 Signed Binary Maximum 31-bit storage used
 108 4 Signed Binary Number of base buffer reads
 112 4 Signed Binary Number of base buffer waits
 116 4 Signed Binary Number of extension pgs in base buffer
 120 4 Signed Binary Number of extension pgs in exten pool
 124 4 Signed Binary Number of extension buffer reads
 128 4 Signed Binary Number of Longstring items acquired

 Note: The statistics for “Number of base buffer reads” through “Number of extension
 buffer reads” are new in Fast/Unload version 4.0; prior to that, the record length of the
 Fast/Unload SMF records was 105 bytes. The statistic for “Number of Longstring items
 acquired ” is new in Fast/Unload version 4.3.

——
Fast/Unload Reference 297

——
SMF record format
——

——
298 Fast/Unload Reference

——
 Index
——

——————
 Index

% #FIND: Word position of one word sequence
 within another ... 126%Variables, FUEL ... 31
#Function call ... 25 long string values, see Strings, long-value
#Function prototypes ... 99
 #ABDUMP(ccode) -> (does not#
 return) ... 102#ABDUMP: End Fast/Unload with ABEND and
 #CONCAT(stra, strb, ...) -> %out ... 103 dump ... 102
 #CONCAT_TRUNC(%lenrc, stra, strb, ...) ->#CONCAT_TRUNC: Concatenate strings,
 %out ... 104 allowing truncation ... 104
 #C2X(str) -> %hex ... 106#CONCAT: Concatenate strings ... 103
 #DATE(fmt, %rc) -> %dat ... 107#C2X: Convert character string to hex
 #DATECHG(fmt, dat, n, span, %rc) -> representation ... 106
 %odat ... 108#DATE: Current date and/or time ... 107
 #DATECHK(fmt, dat, span, %rc) ->#DATECHG: Add some days to
 %tst ... 110 datetime ... 108
 #DATECNV(infmt, outfmt, dat, span, %rc) ->#DATECHK: Check if datetime matches
 %odat ... 112 format ... 110
 #DATEDIF(fmta, data, fmtb, datb, span, %rc)#DATECNV: Convert datetime to different
 -> %dif ... 113 format ... 112
 #DATEFMT(fmt) -> %tst ... 115#DATEDIF: Difference between two
 #DATE2N(dat, fmt, span, %rc) -> dates ... 113
 %num ... 116#DATEFMT: Validate datetime format
 #DATE2ND(dat, fmt, span, %rc) -> string ... 115
 %num ... 118#DATE2N: Convert datetime string to number of
 #DATE2NM(dat, fmt, span, %rc) -> seconds*300 ... 116
 %num ... 120#DATE2ND: Convert datetime string to number
 #DATE2NS(dat, fmt, span, %rc) -> of days ... 118
 %num ... 122#DATE2NM: Convert datetime string to number
 #DEBLANK(str, pos, len) -> %out ... 124 of milliseconds ... 120
 #DELWORD(str, word, count) ->#DATE2NS: Convert datetime string to number
 %out ... 125 of seconds ... 122
 #FIND(haystack, words) -> %pos ... 126#DEBLANK: Remove leading and trailing blanks
 #FLOAT8(in) -> %out ... 127 from substring ... 124
 #INDEX(haystack, needle, pos) ->#DELWORD: Remove blank-delimited words
 %opos ... 129 from string ... 125
 #LEFT(str, len, pad) -> %out ... 130#ELSE statement ... 36
 #LEN(str) -> %len ... 132#ELSEIF statement ... 36
 #LOWCASE(str) -> %out ... 133#END IF statement ... 37
 #ND2DATE(datn, fmt, %rc) -> %dat ... 134#ERROR special variable ... 28
 #NM2DATE(datn, fmt, %rc) -> %dat ... 135#FILENAME special variable ... 28

#FIND - SELECT statement more
 efficient ... 81

——
Fast/Unload Reference 299

——
Index
——

 #NS2DATE(datn, fmt, %rc) -> %dat ... 136 Datetime format validation:
 #NUM2STR(num, intw, fracw, opt, pad, #DATEFMT ... 115
 %intlen) -> %str ... 137 Datetime incremented by days:
 #N2DATE(datn, fmt, %rc) -> %dat ... 141 #DATECHG ... 108
 #ONEOF(str, list, delim) -> %test ... 142 Datetime string converted to number of days:
 #PAD(str, pad, len) -> %out ... 144 #DATE2ND ... 118
 #PADR(str, pad, len) -> %out ... 146 Datetime string converted to number of
 #REVERSE(str) -> %out ... 148 milliseconds: #DATE2NM ... 120
 #RIGHT(str, len, pad) -> %out ... 149 Datetime string converted to number of
 #SNDX(str) -> %out ... 151 seconds*300: #DATE2N ... 116
 #STRIP(str, B|L|T, pad) -> %out ... 152 Datetime string converted to number of
 #SUBSTR(str, pos, len) -> %out ... 154 seconds: #DATE2NS ... 122
 #TIME(fmt, %rc) -> %tim ... 156 Datetime subtraction: #DATEDIF ... 113
 #TRANSLATE(str, tbl_out, tbl_in, pad) -> End Fast/Unload with ABEND and dump:
 %out ... 157 #ABDUMP ... 102
 #UPCASE(str) -> %out ... 159 Final substring, preceded by pad characters
 #VERPOS(str, chars, NorM, pos) -> to specified length: #PAD ... 144
 %opos ... 160 Final substring, preceded by pad characters
 #WORD(str, word) -> %out ... 162 to specified length: #RIGHT ... 149
 #WORDS(str) -> %count ... 163 Get reverse of string: #REVERSE ... 148
 #X2C(hex) -> %str ... 164 Get 8-byte float, padding 4-byte input with 0:
#Functions ... 99 #FLOAT8 ... 127
 $SNDX code: #SNDX ... 151 Hex string converted to character string:
 Change characters of string using from/to #X2C ... 164
 pairings: #TRANSLATE ... 157 Initial substring, followed by pad characters to
 Change lowercase letters of string to specified length: #LEFT ... 130
 uppercase: #UPCASE ... 159 Initial substring, followed by pad characters to
 Change uppercase letters of string to specified length: #PADR ... 146
 lowercase: #LOWCASE ... 133 Length of string: #LEN ... 132
 Character string converted to hex Number converted to string with decimal
 representation: #C2X ... 106 point: #NUM2STR ... 137
 Concatenate strings, allowing truncation: Number of days converted to datetime string:
 #CONCAT_TRUNC ... 104 #ND2DATE ... 134
 Concatenate strings: #CONCAT ... 103 Number of milliseconds converted to datetime
 Count number of blank-delimited word in string: #NM2DATE ... 135
 string: #WORDS ... 163 Number of seconds converted to datetime
 Date and/or time: #DATE ... 107 string: #NS2DATE ... 136
 Datetime check against format: Number of seconds*300 converted to
 #DATECHK ... 110 datetime string: #N2DATE ... 141
 Datetime converted to different format: Position in string of character not in or in list:
 #DATECNV ... 112 #VERPOS ... 160

 Position of second string within first:
 #INDEX ... 129
 Remove blank-delimited words from string:
 #DELWORD ... 125
 Remove leading and trailing blanks from
 substring: #DEBLANK ... 124

——
300 Fast/Unload Reference

——
 Index
——

 Remove leading and/or trailing copies of pad #SUBSTR: Substring ... 154
 character: #STRIP ... 152 #TIME: Current time and/or date ... 156
 Return nth blank-delimited word from string.: #TRANSLATE: Change characters of string
 #WORD ... 162 using from/to pairings ... 157
 See if string is in delimited list of strings: #UPARM special variable ... 30
 #ONEOF ... 142 #UPCASE: Change lowercase letters of string to
 Substring: #SUBSTR ... 154 uppercase ... 159
 Time and/or date: #TIME ... 156 #VERPOS: Position in string of character not in
 Word position of one word sequence within or in list ... 160
 another: #FIND ... 126 #WORD: Return nth blank-delimited word from
#GRPMEM special variable ... 28 string ... 162
#GRPSIZ special variable ... 28 #WORDS: Count number of blank-delimited
#IF statement ... 37 word in string ... 163
#INDEX: Position of second string within #X2C: Convert hex representation to character
 first ... 129 string ... 164
#LEFT: Initial substring, followed by pad
 characters to specified length ... 130 A
#LEN: Length of string ... 132 ABENDERR parameter ... 7
#LOWCASE: Change uppercase letters of string ADD statement ... 24, 44, 51, 64, 233
 to lowercase ... 133 ADD[C] statements ... 38
#ND2DATE: Convert number of days to ADDC statement ... 39
 datetime string ... 134 ALLMSG parameter ... 8
#NM2DATE: Convert number of milliseconds to Arithmetic, floating point ... 235
 datetime string ... 135 Assignment statement ... 25, 35
#NS2DATE: Convert number of seconds to ASYNCH parameter ... 8
 datetime string ... 136 AT-MOST-ONE ... 45
#NUM2STR: Convert number to string with Audit trail messages ... 200
 decimal point ... 137
#N2DATE: Convert number of seconds*300 to B
 datetime string ... 141 Base buffer statistics ... 195
#ONEOF - SELECT statement more Base buffer wait reads ... 196
 efficient ... 81 Base buffer wait time ... 198
#ONEOF: See if string is in delimited list of Base buffer wait waits ... 196
 strings ... 142 BLOB and CLOB fields
#OUTLEN special variable ... 28 cannot UAI SORT ... 90
#OUTPOS special variable ... 29 BLOB field processing ... 26, 39, 41, 59, 71,
#PAD: Final substring, preceded by pad 165
 characters to specified length ... 144 BROKE-LOGIC option, CHECK
#PADR: Initial substring, followed by pad statement ... 42
 characters to specified length ... 146 BROKE-PHYS option, CHECK statement ... 42
#RECIN special variable ... 29 BSIZE option, UAI statement ... 89
#RECOUT special variable ... 30
#REVERSE: Get reverse of string ... 148 C
#RIGHT: Final substring, preceded by pad

CANCEL statement ... 40 characters to specified length ... 149
CENTSPAN ... 34, 112-113, 116, 118, 120,#SNDX: Create SOUNDEX code for
 122, 178, 185, 191-193 string ... 151
CENTSPLT argument ... 185#STRIP: Remove leading and/or trailing copies
CENTSPLT parameter ... 185 of pad character ... 152

——
Fast/Unload Reference 301

——
Index
——

CHANGE statement ... 40, 44, 51, 233 Error messages ... 243
CHECK statement ... 41, 293 EVERY parameter ... 8, 199
CLOB field processing ... 26, 39, 41, 59, 71, Executable statement, FUEL ... 19
 165 EXISTS operator ... 31, 59
Coded fields ... 75 Expression ... 25
Comments ... 24 Extension buffer reads ... 197
Compiler ... 1 Extension buffer wait time ... 198
Constants ... 27 Extension page statistics ... 195
Conversion errors ... 75 Extension pg in base buffs ... 196
Conversion of data types ... 73 Extension pg in exten pool ... 196
Conversion, numeric ... 235
CPU time ... 197 F
Customer-written assembler #functions ... 33, Field names ... 26
 57, 213 Fields, Large Object (Lob)

 see BLOB field or CLOB field
D FILEDEFs ... 5
Date processing ... 34, 112-113, 116, 118, 120, FISTAT parameter, Model 204 ... 42
 122, 171, 185, 191-193 FIXED format output ... 71
 CENTSPAN ... 34, 112-113, 116, 118, 120, FLOAT format output ... 72
 122, 191-193 Floating Point handling ... 235
DATESTAT directive ... 44 FNVMASK parameter ... 9
DATESTAT processing ... 189 FOR EACH RECORD ... 19, 50
DBCS ... 8, 295 FOR statement ... 31, 48
DBCS parameter ... 8, 295 FRECORD parameter ... 10, 231
DDNAMEs ... 3, 5 FSTATS directive ... 10, 50
DECIMAL format output ... 72 FSTATS parameter ... 10, 51
Defaults, customizing of ... 291 FSTATS processing ... 44
DEFCENT argument ... 185 FUEL (Fast/Unload Extraction Language) ... 19
DEFCENT parameter ... 185 FUEL directives ... 19
DELETE statement ... 44, 51, 233 DATESTAT ... 44
DELETE[C] statements ... 44 Fast/Reload ... 88
DELETEC field statement ... 46 FSTATS ... 10, 50
destination DD ... 3, 5 FUNCTIONS ... 57
Directive statement, FUEL ... 19 MSGCTL ... 64
DUPDT option, CHECK statement ... 42 NEW ... 64

 OPEN ... 67
E SORT [TO destination] ... 82

 SORT PGM ... 83ELSE statement ... 46
 UAI ... 88, 207ELSEIF statement ... 46
 UNLOAD ALL INFORMATION ... 88END FOR statement ... 47
FUEL outside FOR EACH RECORD ... 23, 29,END IF statement ... 47
 229, 231END REPEAT statement ... 48

END SELECT statement ... 48
Entities ... 25-27
 Constants ... 27
 Field names ... 26
 Loop control variables ... 27
ERROR default ... 292
Error handling ... 75, 100
——
302 Fast/Unload Reference

——
 Index
——

FUEL statements ... 24 FUNTSKN ... 203
 #ELSE ... 36
 #ELSEIF ... 36 H
 #END IF ... 37 HARDERR parameter ... 11
 #IF ... 37 HASH option, UAI statement ... 89
 ADD ... 24, 44, 51, 64, 233
 ADD[C] ... 38 I
 ADDC ... 39 IF statement ... 57
 Assignment ... 25, 35 Input wait time ... 197
 CANCEL ... 40 Installation ... 287-289
 CHANGE ... 40, 44, 51, 233 CMS ... 289
 CHECK ... 41 Download from web ... 287
 DELETE ... 44, 51, 233 MVS ... 288
 DELETE[C] ... 44 INVIS option, CHECK statement ... 42
 DELETEC ... 46 INVISIBLE fields
 ELSE ... 46 ADDing ... 38
 ELSEIF ... 46 cannot UAI SORT ... 90
 END FOR ... 47 checking for, before unloading ... 42
 END IF ... 47 derived KEY ... 151
 END REPEAT ... 48 unloading ORDERED ... 89
 END SELECT ... 48 INVISIBLE option, UAI statement ... 89
 Fast/Reload ... 83 Invoking Fast/Unload under CMS ... 5
 FOR ... 31, 48 Invoking Fast/Unload under MVS ... 3
 FOR EACH RECORD ... 19, 50 IOAPP parameter ... 12
 IF ... 57 IS FIXED operator ... 31, 59
 LEAVE ... 61 IS FLOAT operator ... 31, 59
 NOUNLOAD ... 65
 OTHERWISE ... 67 J
 OUT TO destination ... 68

Job statistics ... 195-198 OUTPUT ... 30, 69
 Base buffer statistics ... 195 PAI ... 30, 38, 40, 70
 Base buffer wait reads ... 196 PRINT ALL INFORMATION ... 70
 Base buffer wait time ... 198 PUT ... 70
 Base buffer wait waits ... 196 REPEAT ... 78
 CPU time ... 197 REPORT ... 79-80
 Extension buffer reads ... 197 SKIP ... 82
 Extension buffer wait time ... 198 SORT ... 207
 Extension page statistics ... 195 TO destination ... 83
 Extension pg in base buffs ... 196 UNLOAD ... 19, 38, 40, 83
 Extension pg in exten pool ... 196 UNLOAD[C] field ... 83-84
 Input wait time ... 197 WHEN ... 96
 Open wait time ... 197FUNCTIONS directive ... 57
 Output buffer wait time ... 197FUNIN DD ... 3, 5
 PST wait time ... 198FUNMAXT system parameter ... 204
 Report buffer wait time ... 197FUNOUT DD ... 3, 5
 Total time ... 198FUNOUT parameter ... 11, 292
 Waiting for CPU time ... 197FUNPARM system parameter ... 204

FUNPGM ... 203
FUNPRINT DD ... 3, 5, 19

——
Fast/Unload Reference 303

——
Index
——

L O
LEAVE statement ... 61 Occurrence number ... 26
LIBUFF parameter ... 12 OINDEX option, UAI statement ... 89
LIST parameter ... 13 ONEOF testing - best approach ... 81
Lob (Large Object) fields OPEN directive ... 67
 see BLOB field or CLOB field Open wait time ... 197
Long-valued strings, see Strings, long-value Ordered index data (unloading) ... 89
Loop control variables ... 27 ORECERR parameter ... 15

OTHERWISE statement ... 67
M OUT TO destination statement ... 68

Output buffer wait time ... 197MAXREC option, UAI statement ... 89
Output filters ... 229MAXREC parameter ... 13
Output formats ... 71-73MAXRECO option, UAI statement ... 89
 DECIMAL ... 72Messages ... 243
 FIXED ... 71MISSING default ... 292
 FLOAT ... 72MISSING operator ... 31, 59
 PACKED ... 72MISSING value, FUEL %variable ... 31
 STRING ... 72Missing values ... 75
 ZONED ... 73Model 204 groups ... 1, 10, 28, 88, 90, 93, 199,
Output records ... 21 231
OUTPUT statement ... 30, 69Model 204 parameters ... 203-204

 FUNMAXT ... 204
P FUNPARM ... 204

 FUNPGM ... 203 PACKED format output ... 72
 FUNTSKN ... 203 PAI statement ... 30, 38, 40, 70
 NSUBTKS ... 203 Parameters ... 7
MSGCTL directive ... 64 ABENDERR ... 7
Multiple output streams ... 20-22 ALLMSG ... 8, 13, 15
 Optimization ... 21 ASYNCH ... 8
 Output records ... 21 DBCS ... 8, 295
 Sample program ... 22 EVERY ... 8, 199

 FNVMASK ... 9
N FRECORD ... 10, 231

 FSTATS ... 10, 51NBBUFF parameter ... 13
 FUNOUT ... 11NEBUFF parameter ... 14
 HARDERR ... 11NEW directive ... 64, 165
 IOAPP ... 12NOBUFF parameter ... 14
 LIBUFF ... 12NOENQ parameter ... 15, 43, 94, 200
 LIST ... 13, 15NOLIST parameter ... 15
 MAXREC ... 13NOPROCS option, UAI statement ... 89-90
 NBBUFF ... 13NOTIFY parameter ... 15
 NEBUFF ... 14NOUNLOAD statement ... 65
 NOBUFF ... 14NSUBTKS ... 203

——
304 Fast/Unload Reference

——
 Index
——

 NOENQ ... 15, 43, 94, 200 SORT PGM directive ... 83
 NOLIST ... 8, 13, 15 SORT statement ... 207
 NOTIFY ... 15 SORT TO destination directive ... 82
 ORECERR ... 15 SORTOUT parameter ... 17, 292
 SBBUFF ... 16 SORTOUTD parameter ... 17, 292
 SEBUFF ... 16 SORTP parameter ... 18
 SEQ ... 17, 25 Special date format rules ... 174-176, 180-184
 SKIPREC ... 17, 199 * ... 183
 SORTOUT ... 17 BD with leading zero ... 181
 SORTOUTD ... 17 BH with leading zero ... 182
 SORTP ... 18 BM with leading zero ... 181
 UPARM ... 18, 30 CYY with leading zero ... 184
 UPPER ... 18 DAY with leading zero ... 182
PRINT ALL INFORMATION statement ... see DD with leading blank ... 181
 “PAI statement” HH with leading blank ... 182
PROCS option I ... 183
 CHECK statement ... 42 MM with leading blank ... 181
 UAI statement ... 89-90 Numeric digit separators ... 184
PST wait time ... 198 3 character ZYY with leading blank ... 184
PUT statement ... 70 Special variables ... 28-30

 #ERROR ... 28
Q #FILENAME ... 28

 #GRPMEM ... 28Quotes ... 27
 #GRPSIZ ... 28
 #OUTLEN[(destination)] ... 28R
 #OUTPOS[(destination)] ... 29REPEAT statement ... 78
 #RECIN ... 29Report buffer wait time ... 197
 #RECOUT[(destination)] ... 30Report data set ... 3, 5
 #UPARM ... 30REPORT statement ... 79-80
Statistics
 Field ... 10, 50, 53S
 Job ... 195

Sample EXEC ... 5 Procedure ... 10, 50, 56
Sample JCL ... 3 Table B ... 10, 50-51
Sampling ... 8 Table E ... 50, 169
 FULL ... 8 String %variables
 RECOVERED ... 8 long values of, see Strings, long-value
SBBUFF parameter ... 16 STRING format output ... 72
SEBUFF parameter ... 16 Strings, long-value ... 32, 39, 41, 59, 71, 165,
SEQ parameter ... 17, 25 167
Sir2000 Field Migration Facility ... 233
SKIP statement ... 82 T
SKIPREC parameter ... 17, 199

TO *SMF records ... 297
 See TO destination SMF record format ... 297

SORT directive ... 82
SORT OPTION statement ... 93, 207
SORT option, UAI statement ... 89
Sort parameter list ... 18, 291

——
Fast/Unload Reference 305

——
Index
——

TO destination ... 83 UPARM parameter ... 18, 30
 NOUNLOAD statement ... 65 UPPER parameter ... 18
 OUTPUT statement ... 69 User exits ... see “Output filters”
 PAI statement ... 70 User Language Interface ... 1, 199
 PRINT ALL INFORMATION statement ... 70 Asynchronous ... 1, 199
 PUT statement ... 70 Synchronous ... 1, 199
 UAI statement option ... 89 Using a SORT package ... 207
 UNLOAD ALL INFORMATION Using user exits or filters ... 229
 directive ... 83 Abend codes ... 230
 UNLOAD statements ... 83
Total time ... 198 W
Truncation ... 76 Waiting for CPU time ... 197

WHEN statement ... 96
U
UAI directive ... 88, 207 Z
UNLOAD ALL INFORMATION directive ... see Z command, Model 204 ... 42
 “UAI directive” ZONED format output ... 73
UNLOAD statement ... 19, 38, 40, 83
UNLOAD[C] field statement ... 83-84

——
306 Fast/Unload Reference

	Title
	Notices
	Contacting Global Technical Support
	Contents
	Summary of Changes
	Fast/Unload Version 4.4
	Fast/Unload Version 4.3
	Fast/Unload Version 4.2
	Sirius Mods Version 6.7
	Fast/Unload Version 4.1
	Fast/Unload Version 4.0
	Fast/Unload Version 3.1
	Fast/Unload Version 3.0

	1. Introduction
	2. Invoking Fast/Unload as a Standalone MVS Program
	3. Invoking Fast/Unload as a Standalone CMS Program
	4. Parameters
	4.1. ABenderr=rc
	4.2. ALlmsg
	4.3. Asynch
	4.4. Dbcs={IBM|FUJITSU|HITACHI|NONE}
	4.5. Every=n
	4.6. FNvmask=X"yz"
	4.7. Frecord=n
	4.8. FStats[=AVGTOT|MINMAX]
	4.9. FUnout
	4.10. Harderr= {ABEND|CANCEL|SKIP|SKIP0|IGNORE|IGNORE0}
	4.11. Ioapp=pp
	4.12. LIBuff=n
	4.13. List
	4.14. Maxrec=n
	4.15. Nbbuff=n
	4.16. NEbuff=n
	4.17. NObuff=n
	4.18. NOEnq
	4.19. NOList
	4.20. NOTify
	4.21. Orecerr={CANCEL|SKIP|IGNORE}
	4.22. Sbbuff=n
	4.23. SEbuff=n
	4.24. SEQ
	4.25. SKiprec=n
	4.26. SORTOut | SORTOUTD
	4.27. SOrtp={31|24}
	4.28. UPArm="string"
	4.29. Upper

	5. Fast/Unload Extraction Language
	5.1. Program Structure
	5.1.1. Output Streams
	5.1.2. Output Records
	5.1.3. Sample Program with Multiple Outputs
	5.1.4. Outside the FOR EACH RECORD loop

	5.2. Input Program (FUNIN) Conventions
	5.3. Program Elements
	5.3.1. Entities
	5.3.1.1. Field name with occurrences
	5.3.1.2. Constants
	5.3.1.3. Loop control variables
	5.3.1.4. Special variables
	5.3.1.5. %Variables

	5.3.2. Expressions
	5.3.3. #Function calls
	5.3.4. Assignment statement

	5.4. #ELSE
	5.5. #ELSEIF
	5.6. #END IF
	5.7. #IF
	5.8. ADD[C] field = expr
	5.9. ADDC field = expr
	5.10. CANCEL [ccode]
	5.11. CHANGE field [(occurrence)] = expr
	5.12. CHECK condition ... CANCEL | WARN | ALLOW
	5.12.1. CHECK statement actions
	5.12.2. CHECK statement defaults

	5.13. DATESTAT [SUMMARY | DETAIL]
	5.14. DELETE[C] field [(occurrence)]
	5.15. DELETEC field[(occurrence)]
	5.16. ELSE
	5.17. ELSEIF cond [THEN]
	5.18. END FOR
	5.19. END IF
	5.20. END REPEAT
	5.21. END SELECT
	5.22. FOR v FROM begin TO end
	5.23. FOR EACH RECORD
	5.24. FSTATS [AVGTOT | MINMAX]
	5.24.1. Description of Table B statistics
	5.24.2. Description of field statistics
	5.24.3. Description of procedure statistics

	5.25. FUNCTIONS [IN *|DDname] member member ...
	5.26. IF cond [THEN]
	5.26.1. Using EXISTS, MISSING, IS FIXED, or IS FLOAT
	5.26.2. Using AND and OR

	5.27. LEAVE clause_type
	5.27.1. LEAVE FOR example
	5.27.2. LEAVE SELECT example

	5.28. MSGCTL [FUNL]n ABDUMP
	5.29. NEW fieldname [WITH BLOB | CLOB]
	5.30. NOUNLOAD [field [(occurrence | *)]]
	5.31. OPEN datafile
	5.32. OTHERWISE
	5.33. OUT TO destination
	5.34. OUTPUT [FILTER loadmod]
	5.35. PRINT ALL INFORMATION or PAI
	5.36. PUT
	5.37. REPEAT
	5.38. REPORT entity [AND | WITH entity] ...
	5.39. SELECT entity
	5.40. SKIP
	5.41. SORT [TO destination]
	5.42. SORT PGM sortprogramname
	5.43. TO [destination | *]
	5.44. UNLOAD[C] [field [(occur | *)]]
	5.44.1. UNLOAD (all fields)
	5.44.2. UNLOAD[C] (specified fields)
	5.44.2.1. Using UNLOAD[C] field
	5.44.2.2. Examples

	5.45. UNLOAD ALL INFORMATION or UAI
	5.45.1. UAI statement options
	5.45.2. UAI SORT or HASH and field unload order

	5.46. WHEN value(s)

	6. Standard #Functions
	6.1. Run-time errors during standard #function calls
	6.2. #ABDUMP: End Fast/Unload with ABEND and dump
	6.3. #CONCAT: Concatenate strings
	6.4. #CONCAT_TRUNC: Concatenate strings, allowing truncation
	6.5. #C2X: Convert character string to hex representation
	6.6. #DATE: Current date and/or time
	6.7. #DATECHG: Add some days to datetime
	6.8. #DATECHK: Check if datetime matches format
	6.9. #DATECNV: Convert datetime to different format
	6.10. #DATEDIF: Difference between two dates
	6.11. #DATEFMT: Validate datetime format string
	6.12. #DATE2N: Convert datetime string to number of seconds*300
	6.13. #DATE2ND: Convert datetime string to number of days
	6.14. #DATE2NM: Convert datetime string to number of milliseconds
	6.15. #DATE2NS: Convert datetime string to number of seconds
	6.16. #DEBLANK: Remove leading and trailing blanks from substring
	6.17. #DELWORD: Remove blank-delimited words from string
	6.18. #FIND: Word position of one word sequence within another
	6.19. #FLOAT8: Get 8-byte float, padding 4-byte input with 0
	6.20. #INDEX: Position of second string within first
	6.21. #LEFT: Initial substring, followed by pad characters to specified length
	6.22. #LEN: Length of string
	6.23. #LOWCASE: Change uppercase letters of string to lowercase
	6.24. #ND2DATE: Convert number of days to datetime string
	6.25. #NM2DATE: Convert number of milliseconds to datetime string
	6.26. #NS2DATE: Convert number of seconds to datetime string
	6.27. #NUM2STR: Convert number to string with decimal point
	6.28. #N2DATE: Convert number of seconds*300 to datetime string
	6.29. #ONEOF: See if string is in delimited list of strings
	6.30. #PAD: Final substring, preceded by pad characters to specified length
	6.31. #PADR: Initial substring, followed by pad characters to specified length
	6.32. #REVERSE: Get reverse of string
	6.33. #RIGHT: Final substring, preceded by pad characters to specified length
	6.34. #SNDX: Create SOUNDEX code for string
	6.35. #STRIP: Remove leading and/or trailing copies of pad character
	6.36. #SUBSTR: Substring
	6.37. #TIME: Current time and/or date
	6.38. #TRANSLATE: Change characters of string using from/to pairings
	6.39. #UPCASE: Change lowercase letters of string to uppercase
	6.40. #VERPOS: Position in string of character not in or in list
	6.41. #WORD: Return nth blank-delimited word from string
	6.42. #WORDS: Count number of blank-delimited word in string
	6.43. #X2C: Convert hex representation to character string

	7. BLOB/CLOB processing considerations
	7.1. Statement and #function modifications
	7.1.1. NEW statement option for Lobs
	7.1.2. #CONCAT supports long string arguments and result
	7.1.3. #LEN supports a long string argument
	7.1.4. #SUBSTR supports a long string argument and result

	7.2. Contexts for long strings and Lobs
	7.2.1. %Variables containing strings longer than 255
	7.2.2. Permitted use of long string values
	7.2.3. Permitted use of Lobs

	7.3. Lob statistics
	7.4. Lob field examples
	7.4.1. Creating a NEW Lob field
	7.4.2. Structured unload of Lob field

	8. Datetime Processing Considerations
	8.1. Datetime Formats
	8.2. Valid Datetimes
	8.3. Processing Dates With Two-Digit Year Values
	8.3.1. CENTSPAN
	8.3.2. SPANSIZE

	8.4. Strict and non-strict format matching
	8.5. Datetime and format examples
	8.6. Datetime Error Handling
	8.7. #DATExxx Functions CENTSPAN Argument
	8.8. Benefits of Sirius datetime processing

	9. DATESTAT Analysis
	9.1. DATESTAT Reporting
	9.2. DATESTAT SUMMARY
	9.3. DATESTAT DETAIL

	10. Job Statistics
	11. Fast/Unload User Language Interface
	11.1. When to use the Fast/Unload User Language Interface
	11.2. Setting up the Fast/Unload User Language Interface environment
	11.3. System parameters for the Fast/Unload User Language Interface
	11.3.1. FUNPARM
	11.3.2. FUNMAXT

	12. Using an External Sort Package
	12.1. Specifying the sort
	12.2. Using SORT FIELDS
	12.3. Using SORT RECORD
	12.4. Sample code

	13. Using Fast/Unload with DBCS data
	14. Customer-written Assembler #Function Packages
	14.1. Members of SIRIUS.OBJLIB used in coding #Functions
	14.1.1. Run-time Interface Symbols: FUNCEQU COPY
	14.1.2. Example #Function Package: UFUN ASSEMBLE

	14.2. Compiler Call to Package to Locate #Function
	14.3. Run-time Invocation of #Function
	14.3.1. Get information about #function argument(s)
	14.3.2. Get string value of argument
	14.3.3. Get float value of argument
	14.3.4. Get fixed value of argument
	14.3.5. Assign string value to argument
	14.3.6. Assign float value to argument
	14.3.7. Assign fixed value to argument
	14.3.8. Allocate storage
	14.3.9. Release storage
	14.3.10. Issue an error message and/or set return code
	14.3.11. Terminate Fast/Unload, optionally set return code

	14.4. Example - MVS
	14.4.1. Installing a #Function Package
	14.4.2. Using a #Function Package

	14.5. Example - CMS
	14.5.1. Installing a #Function Package
	14.5.2. Using a #Function Package

	15. Using User Exits or Filters
	16. Using Fast/Unload with Model 204 Groups
	17. Using Fast/Unload with the Sir2000 Field Migration Facility
	A. Floating Point Arithmetic and Numeric Conversion
	A.1. Overview
	A.1.1. Primitive operations
	A.1.2. Using a float value, with decimal digit precision
	A.1.3. Obtaining numeric values from non-floats

	A.2. Assignments and length-preserved PUT statements
	A.3. Length-converting PUT statements
	A.4. Arithmetic expressions
	A.5. Example

	B. Messages
	FUNL0002 - FUNL0009
	FUNL0002
	FUNL0003
	FUNL0004
	FUNL0005
	FUNL0007
	FUNL0008
	FUNL0009

	FUNL0010 - FUNL0019
	FUNL0010
	FUNL0011
	FUNL0012
	FUNL0013
	FUNL0014
	FUNL0015
	FUNL0016
	FUNL0017
	FUNL0018
	FUNL0019

	FUNL0020 - FUNL0029
	FUNL0020
	FUNL0021
	FUNL0022
	FUNL0023
	FUNL0024
	FUNL0025
	FUNL0026
	FUNL0027
	FUNL0028
	FUNL0029

	FUNL0030 - FUNL0039
	FUNL0030
	FUNL0031
	FUNL0032
	FUNL0033
	FUNL0034
	FUNL0035
	FUNL0036
	FUNL0037
	FUNL0038
	FUNL0039

	FUNL0040 - FUNL0049
	FUNL0040
	FUNL0041
	FUNL0042
	FUNL0043
	FUNL0044
	FUNL0045
	FUNL0046
	FUNL0047
	FUNL0048
	FUNL0049

	FUNL0050 - FUNL0059
	FUNL0050
	FUNL0051
	FUNL0052
	FUNL0053
	FUNL0054
	FUNL0055
	FUNL0056
	FUNL0057
	FUNL0058
	FUNL0059

	FUNL0060 - FUNL0069
	FUNL0060
	FUNL0061
	FUNL0062
	FUNL0063
	FUNL0064
	FUNL0065
	FUNL0066
	FUNL0067
	FUNL0068
	FUNL0069

	FUNL0070 - FUNL0079
	FUNL0070
	FUNL0071
	FUNL0072
	FUNL0073
	FUNL0074
	FUNL0075
	FUNL0076
	FUNL0077
	FUNL0078
	FUNL0079

	FUNL0080 - FUNL0089
	FUNL0080
	FUNL0081
	FUNL0082
	FUNL0083
	FUNL0084
	FUNL0085
	FUNL0086
	FUNL0087
	FUNL0088
	FUNL0089

	FUNL0090 - FUNL0099
	FUNL0090
	FUNL0091
	FUNL0092
	FUNL0093
	FUNL0094
	FUNL0095
	FUNL0096
	FUNL0097
	FUNL0098
	FUNL0099

	FUNL0100 - FUNL0109
	FUNL0100
	FUNL0101
	FUNL0102
	FUNL0103
	FUNL0104
	FUNL0105
	FUNL0106
	FUNL0107
	FUNL0108
	FUNL0109

	FUNL0110 - FUNL0119
	FUNL0110
	FUNL0111
	FUNL0112
	FUNL0113
	FUNL0114
	FUNL0115
	FUNL0116
	FUNL0117
	FUNL0118
	FUNL0119

	FUNL0120 - FUNL0129
	FUNL0120
	FUNL0121
	FUNL0122
	FUNL0123
	FUNL0124
	FUNL0125
	FUNL0126
	FUNL0127
	FUNL0128
	FUNL0129

	FUNL0130 - FUNL0139
	FUNL0130
	FUNL0131
	FUNL0132
	FUNL0133
	FUNL0134
	FUNL0135
	FUNL0136
	FUNL0137
	FUNL0138
	FUNL0139

	FUNL0140 - FUNL0149
	FUNL0140
	FUNL0141
	FUNL0142
	FUNL0143
	FUNL0144
	FUNL0145
	FUNL0146
	FUNL0147
	FUNL0148
	FUNL0149

	FUNL0150 - FUNL0159
	FUNL0150
	FUNL0151
	FUNL0152
	FUNL0153
	FUNL0154
	FUNL0155
	FUNL0156
	FUNL0157
	FUNL0158
	FUNL0159

	FUNL0161 - FUNL0169
	FUNL0161
	FUNL0162
	FUNL0163
	FUNL0164
	FUNL0165
	FUNL0166
	FUNL0167
	FUNL0168
	FUNL0169

	FUNL0170 - FUNL0179
	FUNL0170
	FUNL0171
	FUNL0172
	FUNL0173
	FUNL0174
	FUNL0175
	FUNL0176
	FUNL0177
	FUNL0178
	FUNL0179

	FUNL0180 - FUNL0189
	FUNL0180
	FUNL0181
	FUNL0182
	FUNL0183
	FUNL0184
	FUNL0185
	FUNL0186
	FUNL0187
	FUNL0188
	FUNL0189

	FUNL0190 - FUNL0199
	FUNL0190
	FUNL0191
	FUNL0192
	FUNL0193
	FUNL0194
	FUNL0195
	FUNL0196
	FUNL0197
	FUNL0198
	FUNL0199

	FUNL0200 - FUNL0209
	FUNL0200
	FUNL0204
	FUNL0205
	FUNL0206
	FUNL0207
	FUNL0208
	FUNL0209

	FUNL0210 - FUNL0219
	FUNL0210
	FUNL0211
	FUNL0212
	FUNL0213
	FUNL0214
	FUNL0215
	FUNL0216
	FUNL0217
	FUNL0218
	FUNL0219

	FUNL0220 - FUNL0222
	FUNL0220
	FUNL0221
	FUNL0222

	C. Return Codes
	D. Installation
	D.1. Installation from the web
	D.2. MVS Installation
	D.3. CMS Installation

	E. Customization of Defaults
	E.1. Sort Parameter List
	E.2. Changing the default sort parameter
	E.3. Default for ERROR clause on PUT statement
	E.4. Default for MISSING clause on PUT statement
	E.5. Default CHECK conditions and actions
	E.6. CENTSPAN and SPANSIZE
	E.7. Default SORT program name
	E.8. Setting NOLIST as default
	E.9. Setting default FSTATS processing
	E.10. Setting default ABENDERR
	E.11. DBCS Environment
	E.11.1. IBM DBCS Environment
	E.11.2. Fujitsu DBCS Environment
	E.11.3. Hitachi DBCS Environment

	F. SMF record format
	Index

