
Sirius Software, Inc.

Introducing The Janus XML Parser

John Thickstun
Sirius Software Inc. -

Sirius Software, Inc.

XML Parsing

● XML is defined as a character stream
● But it describes hierarchical data

● Sirius already has the XmlDoc API to convert XML
character stream into an internal tree structure
● Similar to MS/XML, Java DOM, etc.
● Allows easy and efficient navigation of data hierarchy using

method calls
● API also converts back from tree structure to XML
● The entire XML document is always parsed by the XmlDoc

API

Sirius Software, Inc.

The Janus XmlParser Class

● A new class for doing XML parsing
● A stream/event oriented API

● User Language application is notified when potentially
interesting parts of the XML document are encountered

● Does not convert the entire XML document to any
structured object

● Can even only parse the start of an XML document

Sirius Software, Inc.

So Why Are We Interested in an Event-
Based XML Parser for User Language?

● Because sometimes one is only interested in a small
part of an XML document
● So want to avoid the overhead of parsing and structuring

the entire document

● Because it illustrates some interesting aspects of
recent Janus SOAP user Language Enhancements
● And illustrates how Janus SOAP User Language Interface is

at the forefront of modern programming language
developments

● But keep in mind: for most applications it is better to
use the XmlDoc API to process XML documents

Sirius Software, Inc.

SAX, the Industry Standard

● Simple API for XML
● More of a recommended framework than a standard

● The Java implementation of SAX is considered to be
normative
➔ http://en.wikipedia.org/wiki/Simple_API_for_XML

● Event-based
● When parser hits a certain XML entity, it calls an

application-specific handler for that entity
➔ The start and end of an XML element being the most commonly

used

● Inheritance based
● Callbacks are specified via methods that implement an

abstract class

http://en.wikipedia.org/wiki/Simple_API_for_XML

Sirius Software, Inc.

The Problems With SAX

● It's the application's job to filter interesting elements
from uninteresting elements
● Inefficiency – a call for every element, even if uninteresting

● It's the application's job to keep track of element
context
● So application might need to maintain its own stack

● Both problems fall out of the fact that SAX callbacks
are defined using inheritance
● So can't have element/context-specific handlers
● Because only one method can override another in a single

class
● Inheritance is also a bit of a heavyweight approach to doing

XML parsing

Sirius Software, Inc.

The Janus XML Parser API

● Event-based like SAX
● But does not use inheritance for specifying event

handlers
● Instead uses method variables

➔ This option was not available in SAX because many languages
(including Java) don't support method variables

● So context and element-specific handlers supported

● Handlers are only set for the elements the user cares
about

Sirius Software, Inc.

XML For Examples

<collection>
 <artist name="Radiohead">
 <album name="The Bends">
 <song length="4:51" title="Fake Plastic Trees">
 Her green plastic watering can
 </song>
 <song length="3:43" title="Sulk">
 You bite through the big wall, the big wall bites back
 </song>
 </album>
 <album name="OK Computer">
 <song length="4:44" title="Airbag">
 In the next world war
 </song>
 <song length="6:24" title="Paranoid Android">
 Please could you stop the noise, I'm trying to get some rest
 </song>
 <song length="4:22" title="Karma Police">
 Karma police, arrest this man
 </song>
 </album>
 </artist>
</collection>

Sirius Software, Inc.

Listing Names and Titles from the XML
Document
%xml is longstring
%parser is object xmlParser
...
local function (xmlParser):startSong(%name is unicode namerequired, -
 %attrlist is object xmlAttributeList) -
 is object xmlSelector
 printText title = {%attrlist:value('title')}, length = {%attrlist:value('length')}
 return null
end function

%parser = new
%parser:string = %xml
%parser:defaultSelector = startElement('song', startSong)
%parser:parse
...
title = Fake Plastic Trees, length = 4:51
title = Sulk, length = 3:43
title = Airbag, length = 4:44
title = Paranoid Android, length = 6:24
title = Karma Police, length = 4:22

Sirius Software, Inc.

That's Not Very Interesting

● No data being returned to application that tells the
parser to do the parse

● The solution is to use an Expose[d] local function to
share data with the calling/containing code
● This will be very common for XmlParser applications

Sirius Software, Inc.

Extracting Names and Titles from the XML
Document
%xml is longstring
%parser is object xmlParser
%songLength is namedArraylist of string len 8
...
local function (xmlParser):startSong(%name is unicode namerequired, -
 %attrlist is object xmlAttributeList) -
 is object xmlSelector expose
 %songLength(%attrlist:value('title')) = %attrlist:value('length')
 return null
end function
...
%parser = new
%parser:string = %xml
%parser:defaultSelector = startElement('song', startSong)
%songLength = new
%parser:parse
for %i from 1 to %songLength:count
 printText Length of "{%songLength:nameByNumber(%i)}” = ...
 printText {%songLength:itemByNumber(%i)}
end for
...
Length of "Airbag” = 4:44
Length of "Fake Plastic Trees” = 4:51
Length of "Karma Police” = 4:22
Length of "Paranoid Android” = 6:24
Length of "Sulk” = 3:43

Sirius Software, Inc.

That's a Little Tacky

● We use the DefaultSelector method to avoid worrying
about the XML document hierarchy

● But this means we could accidentally pick up a
<song> element in the wrong context

● Also slightly less efficient because parser must do
checks for every element

● So let's see how the code looks if done “properly”
● Note in the following code that we match on any outer

element name

Sirius Software, Inc.

Extracting Names and Titles from the XML
Document
local function (xmlParser):startSong(%name is unicode namerequired, -
 %attrlist is object xmlAttributeList) -
 is object xmlSelector expose
 %songLength(%attrlist:value('title')) = %attrlist:value('length')
 return null
end function

local function (xmlParser):startAlbum is object xmlSelector expose
 return startElement('song', startSong)
end function

local function (xmlParser):startArtist is object xmlSelector expose
 return startElement('album', startAlbum)
end function

local function (xmlParser):startOuter is object xmlSelector expose
 return startElement('artist', startArtist)
end function
...
%parser = new
%parser:string = %xml
%songLength = new
%parser:parse(startElement('collection', startOuter))
... (same as previous example)

Sirius Software, Inc.

But That's Still a Little Tacky

● The relationship of the StartElement methods is
unclear

● If there are several elements being selected, things
can get really messy

● So let's see a nicer way of doing this

Sirius Software, Inc.

Extracting Names and Titles from the XML
Document
%path is arraylist of unicode
%path = list('collection', 'artist', 'album', 'song')

local function (xmlParser):startPush -
 (%attrlist is object XmlAttributeList nameRequired) -
 is object xmlSelector expose
 if %this:depth eq %path:count then
 %songLength(%attrlist:value('title')) = %attrlist:value('length')
 return null
 end if

 return startElement(%path(%this:depth + 1), startPush)
end function

%parser = new
%parser:string = %xml
%songLength = new
%parser:parse(startElement('collection', startOuter))
... (same as previous example)

Sirius Software, Inc.

Suppose You Want to Extract Element
Text (First Line of Song)

● EndElement selector required instead of StartElement
● But only for the elements whose text is required
● Generally this would be only be for innermost elements
● Avoid EndElement for elements whose values you're not

interested in
➔ Can significantly increase overhead

Sirius Software, Inc.

Listing First Lines of Songs from XML
Document
...
local function (xmlParser):startOuter is object xmlSelector expose
 local function (xmlParser):startArtist is object xmlSelector expose
 local function (xmlParser):startAlbum is object xmlSelector expose
 local subroutine (xmlParser):endSong(%name is unicode namerequired, -
 %text is unicode) expose
 print %text:unspace(spaces='4025':x)
 end subroutine
 return endElement('song', endSong)
 end function
 return startElement('album', startAlbum)
 end function
 return startElement('artist', startArtist)
end function

%parser = new
%parser:string = %xml
%songLength = new
%parser:parse(startElement('*', startOuter))
%parser:parse
...
Her green plastic watering can
You bite through the big wall, the big wall bites back
In the next world war
Please could you stop the noise, I'm trying to get some rest
In the next world war Please could you stop the noise, I'm trying to get some rest
Karma police, arrest this man

Sirius Software, Inc.

That's Not Likely to Be Very Useful

● Probably want to associate first line of song with title
● But title is an attribute and first line is element text

● So title only available in StartElement handler
● And first line only available in EndElement handler
● So need some place to store the title (or attribute list)

between StartElement handler and EndElement handler
➔ A Shared variable is probably the best solution
➔ Mumble, mumble, closures, mumble, mumble

Sirius Software, Inc.

Extracting First Lines of Songs by Title
from XML Document
...
local function (xmlParser):startOuter is object xmlSelector expose
 local function (xmlParser):startArtist is object xmlSelector expose
 local function (xmlParser):startAlbum is object xmlSelector expose
 %title is unicode shared
 local function (xmlParser):startSong(%name is unicode namerequired, -
 %attrlist is object xmlAttributeList) -
 is object xmlSelector expose
 %title = %attrlist:value('title')
 return null
 end function
 local subroutine (xmlParser):endSong(%name is unicode namerequired, -
 %text is unicode) expose
 %songFirstLine(%title) = %text:unspace(spaces='4025':x)
 end subroutine
 return list(startElement('song', startSong), endElement('song', endSong))
 end function
 return startElement('album', startAlbum)
 end function
 return startElement('artist', startArtist)
end function
...
%parser = new
%parser:string = %xml
%songFirstLine = new
%parser:parse(startElement('*', startOuter))
...

Sirius Software, Inc.

Taking a Deep Breath

● Yes, there are some fairly deep concepts at play in the
XmlParser API
● SAX revolving around inheritance has similarly complex

issues
● Don't worry if you don't completely “get it” right away

● You can use this presentation (and eventually the doc)
as a pattern for your own applications

● Probably most people won't need to do event-based
XML parsing anyway
● But worthwhile learning the concepts anyway in case they

apply to some other problem

● Let's quickly go over the pieces

Sirius Software, Inc.

The XmlParser Class
● Drives the XML parsing process

● Current parsing state held inside class
● Responsible for calling the event handlers

● Contains a unicode string with the XML
● Yes, the whole process is unicode
● Beware conversion issues, but usually there aren't any

● Parse started with the Parse method
● Always zero or one XmlSelector active
● If no XmlSelector active, the XML is scanned for validity but

nothing else is done with it
● Current active XmlSelector pushed/pop at start/end of

element tag

● StopParsing method will stop parsing

Sirius Software, Inc.

The XmlSelector Class

● Used to tell the XmlParser the XML bits of interest and
the event handlers for those bits

● Objects are immutable (read-only after creation)
● So consist mostly of constructors

● StartElement – For element start tag
➔ Name of element and handler are arguments

● EndElement – For element end tag
➔ Name of element and handler are arguments

● ProcessingInstruction
➔ Name of PI and handler are arguments

● List
➔ One or more XmlSelector objects are arguments

Sirius Software, Inc.

XmlAttributeList Class

● Contains list of attributes passed to StartElement
handler
● More or less like a NamedArrayList
● But has namespace support so two indexes to each item

➔ Default namespace is none

● Attribute values can be retrieved by name
● The Value method

● Attribute names and values can be looped over
● Using the Count, LocalName, and ValueByNumber methods
● Also a bunch of methods for dealing with namespaces

➔ Won't bore you with them here

Sirius Software, Inc.

XmlStartHandler, XmlEndHandler, and
XmlPIHandler Types

● Implicit type of handler name in XmlSelector
constructor

● But can declare variables of this type
● %foo is type XmlStartHandler
● For variables in XmlSelector constructor

 return startElement('foo', %foo)
● Also:

➔ %foo is type XmlEndHandler
➔ %foo is type XmlPIHandler

Sirius Software, Inc.

Conclusions
● XmlParser API provides a new, powerful way of

extracting a few bits of info out of an XML document
● The XmlParser API is based on a fairly small set of

classes and methods
● But is based on a fairly deep set of concepts

● Well worth learning the concepts even if you never need the
API

● Many of the same concepts apply to managing collections
● These concepts will probably appear more often as we

figure out more useful ways to apply them

● Much more powerful than what poor Java
programmers have available to them (SAX)
● More efficient
● More convenient to code

Sirius Software, Inc.

Questions?

Comments?

Yes, It's True,
The Janus
XmlParser

is
Better than SAX!

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

