MRocket

Rocket Model 204

Host Language Interface
Reference Manual

Version 7 Release 5.0

September 2014
204-75-HLIREF-01

www.rocketsoftware.com

Notices

Edition

Publication date: September 2014
Book number: 204-75-HLIREF-01
Product version: Version 7 Release 5.0

Copyright
© Rocket Software, Inc. or its affiliates 1989—2014. All Rights Reserved.

Trademarks

Rocket is a registered trademark of Rocket Software, Inc. For a list of Rocket registered trademarks go
to: www.rocketsoftware.com/about/legal. All other products or services mentioned in this document
may be covered by the trademarks, service marks, or product names of their respective owners.

Examples

This information might contain examples of data and reports. The examples include the names of
individuals, companies, brands, and products. All of these names are fictitious and any similarity to
the names and addresses used by an actual business enterprise is entirely coincidental.

License agreement

This software and the associated documentation are proprietary and confidential to Rocket Software,
Inc. or its affiliates, are furnished under license, and may be used and copied only in accordance with
the terms of such license.

Note: This product may contain encryption technology. Many countries prohibit or restrict the
use, import, or export of encryption technologies, and current use, import, and export regulations
should be followed when exporting this product.

Corporate Information

Rocket Software, Inc. develops enterprise infrastructure products in four key areas: storage,
networks, and compliance; database servers and tools; business information and analytics; and
application development, integration, and modernization.

Website: www.rocketsoftware.com

Rocket Global Headquarters

77 4th Avenue, Suite 100

Waltham, MA 02451-1468
USA

Contacting Technical Support

If you have current support and maintenance agreements with Rocket Software and CCA,
contact Rocket Software Technical support by email or by telephone:

Email: m204support@rocketsoftware.com
Telephone:

North America +1.800.755.4222

United Kingdom/Europe +44 (0) 20 8867 6153
Alternatively, you can access the Rocket Customer Portal and report a problem, download an
update, or read answers to FAQs. You will be prompted to log in with the credentials supplied as
part of your product maintenance agreement.

To log in to the Rocket Customer Portal, go to:

www.rocketsoftware.com/support

Contents

About this Manual
1 Introduction to the HLI Facility

L@ YT = 1
Advantages of the HLI facility............coooviiiiiiiii 1
Utilizes the unique advantages of Model 204............ccccviiiiiiiiiiiiiie e 1
Minimizes the introduction of data dependenciescccvvvvvveeevieeeieeeeeeeeeeeeeeeeeeeee, 1
Provides flexibility in design of databases and applications.............cccccvvvvvvivveneinnee. 2
Ensures database INTEQIILYcooeceiiiiieeiies e e e e e e e e e 2
L | =T o = o111 =P 2
(O] o Tot U =T 1 o] fo 1ot 2=] o [2
BatCh MOdE OPEIAtiONoviiiiiiiiie e 2
31-Dit AAAIESSING...cceiiiiiiiiieiieee e 3
Subroutine calls to Model 204 ... 3
[oTe [T B2 0 72 R oo] o Vi o [0 = 11 (o] o = 3
Model 204 host [anguage ProCESSINGcccuvvrrriiieeeiiiiiiee e e e s e 3
Model 204’s Inverted File Access Method (IFAM)..........eevviiieiiiiiiiiiieeee e 3
Thread connections to Model 204 ... 4
MOdEl 204 ThrEaATeveiiiiiee e 4
IFSTRT and IFDIAL thr@ads.ttt seeeeeeeeeeeeeeeeees 4
UsiNg an IFSTRT threadcooo oo e e 4
USING @N IFDIAL thrEad.......ccooiiiiiiiiiieee e 5
FOr MOre iNfOrMatioNcccieeiii e e e aeseeneeeennnes 5
| HLI Jobs
2 HLI Job Design Factors
L@ YT = 9
FOr More iNfOrMEALIONoiiiiiiiie e 9
Processing in different Model 204 enviroNMEeNtsuuiieiiiieeeieeeeiiice e 9
L= 1| I] £0] (oo 0] £ RPN 10
IFSTRT and IFDIAL ProtOCOISceiiiiiiiiiiiiiiiieee et 10
Lo 0N 1 T =T 10
IFSTRT threadccoooeii i 11
Multiple cursor and single cursor IFSTRT threads..........ccccccuvvviviiiieiiiniiiiiiniiiniinnn, 11
Multiple cursor IFSTRT threadooiiiiiiiiieee e 11
Recovery considerations for single and multicursor IFAM2 threadsc............ 12
SYSIEM CONTIGUIALIONSeeeeiieeeeei et e e e e s aeens 12
1 AN B SRR 12
1 AN SRR 12
IFAMA e a e s 13
Setting UP an HLI JOD....uvi e e ee e 13

Contents v

vi

Call protocols and Model 204 configurationsccccccceuuuriniiueeiieiiie. 13

For more iNformationooooiiiiiioeee e 13
IFAML CONFIQUIALIONSuuiiicecccieeiiiec s e e e e e e e et e e e e e e e e e e et e e e e e e e eeeennnannas 14
IFAML under Z/OS and VSE ... e 14
LN AV T o 1= 4 T 14
[FAM2 CONFIQUIATIONS ...ttt e e e e e e e e e 15
Logical view of IFAM2 under z/OS and VSE.........cccoooiiiiiiiinenaeaenes 15
IFAM2 UNAEI CIMS ...ttt e e e e e et e e e e e e e e nnne e eeeaens 16
1N Y, oo e U] = 1 [0 o 18
Logical view of IFAM4 UNder Z/OSoooiiiiiieieeee e 19
Converting HLI applications for different environmentsccccoeieeiiiiiiiiiiieee s 19
Running in different Model 204 enVirONMENTS.........ccuvviiiiiieiiiiiee e 19
Applications using different call protoCoIScoevviiviiiiiiiiiiiiiieieeeeeeeeeeeeeee e 20
Applications using IFSTRT threads, from [IFAM2 to IFAM4ccccceeiiiiiviiieeiiinnnn, 20
Applications from IFAM4 t0 IFAMZ........oouiii i 20
Applications that require coding Changes..........cccvviiiiiiiiiiiie e 20

3 HLIJob Requirements

OVEIVIBW ...ttt ettt e oo e ettt et e e e oo ek b bttt e e e e e e e bt bbbt e e e e e e e s nbbbneeeaeas 23
Contents of thisS ChaPLEIcoo i e 23
FOr more informationoooioii oo 24

IFAML JODS .ottt e et e nnnnees 24
IFAML dynamiC [08GINGccoeiiiiiiiiiiii e 24
Advantages of dynamic 10adingcovvvviiiiiiiiiiiiiiii 25

IFAM1 jobs: Compiling under Enterprise PL/I for Z/IOS..........cccccco . 25

IFAML jobs: Link-editing under z/OS ..o 25
LINK WIth IFIFLOS ... ettt e e e e e e e e e e e e e s snnna e eaaeens 25

IFAML jobs: RUNNING UNET Z/OSoiiiiiieiiiiieee e 26
Execute with dynamiC 10adingccooiiiiiiiiiiiii e 26
Using the STEPLIB StateMeENtuuuuiiiiiiiiiiiitineeeiaenreeeeaannreneennennnrnrernnne 27
Using the EXEC Statementccoooiiiiii i e anennnrennes 27

IFAML jobs: Link-editing UNAer VSEooouiiiiiii i e e 28
LINK With IFIFLDOSceiiiiiiie ettt e e e e e e et e e e e e e e e snnnnneeeaaens 28

IFAM1 jobs: RUNNING UNAET VSE ..ottt 28
Execute with dynamicC 10adingccoouiiiiiiiiiii e 28
Using the LIBDEF State€mMent........ccccoieiiiiiiiiiecie s 29
FOr More iNfOrMELIONcoiiiiiiiiiiee e 29

IFAML1 jobs: Link-editing under CMSoooiiii i 29
Execute with dynamicC l0adingcccooiiiiiiiiiiiee e 29
Using the IFAML COMMANG..........uiiiiiiiiiiiiiiii e e e 30
Example Of the FILES EXECooiiiiiiiiiiieee et 30
FOr More iNfOrMELIONcoiiiiiiii e 31

IFAM1 jobs: JOb coNtrol StatemMentS.........ccovvvviiiiiiiiiiee e, 31
EXEC StAtEIMENL.... ..ot e e e e ettt e e e e e e eeerene s 32
MOAEL 204 fIlES ... e 32
Application Program filESu i 32

IFAML1 jobs: Using an IFSTRT or IFDIAL thread...........coooviiiiiiiiiiiiiiiieeeeeee e 32
Using @ single threadoccooooiiiiic e 32
Specifying Model 204 runtime parameters........ccccoeee e, 33

IFAMZ JODS ..ot e e e e e e e e e e e 33

Rocket Model 204 Host Language Interface Reference Manual

Communications facilities (CRAM 0Or IJUCV)ccoooiieiiiiccnees 33

Subsystem names, channel names, and IODEV settingS.........cccvvvvvviiiiiieeeeeeeennns 33
Compiling under Enterprise PL/I fOr Z/OS ..o 35
IFAM2 jobs: Running under z/OS and VSE ..o 35
USING the CRAM TACIHITY......coiiiiiiiiii e 35
Linking with the TFIF MOdUIEoooiiiii e 35
Link-editing and executing the application program.............cccccvvvvvvvveeeeeeeeeeeeeeennnne. 36
IFAM2 jobs: RUNNING UNAEr CIMS ...t e e e e e e 36
Using the M204IFAM object ModuIesccooeviiiiiiiii e 36
Using the M204IFAM EXEC.........uuiiiiiiiieeiiie ettt 37
Using VM immediate COMMEANGS.........couiiiiiiiiiiieee et 37
Loading and executing an IFAM2 Programooccueeeeeeeeeniiniiieeiee e essiiieeeeee e 38
FOr More iNfOrMELIONcoiiiiiiiiiiiei e 39
IFAM2 jobs: Using an IFDIAL thread under CMSoiiiiiiiii e, 39
Specifying the IFDIAL operand in the ONLINE commandcccceevvvciiniieneennnns 39
IFAM2 jobs: RUNNING UNEr CICS...... ..o 39
Transaction MANAGEIMENTuiiiiiiiiiiiii e e e e e e e e s e e e e e e e aanae 39
Using the CICS-resident program (DFHPSF)cccuiiiiiiiiiiieeeeee e 40
Linking to the IFENTPS MOdUIEccoooiiiiiceeee e 40
Using macro or command level program Code..........cccoovviiiiiiiiiiiiiiiin e 40
Addressing and Storage reqUIrEMENTScoiiiiuurrirreeeeee e e e e e e e e e 40
First and last calls in the Program ... 41
Abend handling iS rEQUITEMooiiiiiiiiiiiii e 41
FOr More iNfOrMEaLIONcoiiiiiiiiieee e 41
IFAMA JODS ... 42
Running the IFAM4 application and Model 204cccoooii i, 42
USING IFSTRT thrEaUS.eeeieiiiiiiieie et 42
Running concurrent IFAM4 appliCatioNScooviiiiiiiiiiieeiieee e 42
IFAML1 jobs: Compiling under Enterprise PL/I for Z/OS ... 43
IFAM4 jobs: Link-editing under z/OS ... 43
LINK WILh TFTFZ ..ot e e e e e e s 43
IFAM4 jobs: RUNNING UNAEE Z/OS ... e e e e 44
EXECULE IFAMA ... e e e e e e e et e e e e e e e s e aeaae s 44
IFAMA4 jobs: CoNtrol StAtEMENTS ..ot 45
Overview of IFAM4 job control StatemMENtS...........euvieiieeeiiiiiiiiiee e 45
EXEC STAEIMENL. ...t e e e e e e e e e eeeenne s 46
STEPLIB StAtEMENT......eeiiii et e e e e e e e e e e e eennnes 47
(@07 A 1\ I 1= O PEEUR PO 47
1A N 1 SRR a7
MOAEL 204 fIlES ... e 48
Application Program filESueeiiii e 48
IFAM4 jobs: Job errors and ABENDS..........covviiiiiiiii 48
Lo Y (=T oI =] (0T o Lo [T 49

Il HLI Functions

4 HLI Coding Conventions
L@ YT oY= 53

Contents vii

FOr MOFE INTOIMATION ...ttt ettt e et e et e e e et e e eaeeeetareetreeeneees 53

General coding QUIAEIINESciiii i e e e e e e e e e e e eeanees 53
Using the host language call protocol (the CALL verb)........cveeeiiiiiiiiiee, 53
Using function names and aliaSes.........oooiiiiiiiiiieiiieeee e 54
USiNg fUNCHION NUMDETSoooiiiiiiii e 54
Specifying HLI call parameters...........oviiiiiiiiiiiiieieee e 54
Defining HLI call parameter data typesuuuurururimmiiniiiiiiiiiiiirinieiinninnneennnennnann. 55
Length restrictions on character string parameters in HLI callscccceennnnen. 55
Using the completion return code (RETCODE)........cccooiiiiiiiiiiiiiiiiiin e 56

COBOL COUING QUIAEINES ..ot 56

FORTRAN coding QUIAEIINESeeiiiiiiiiiiiie e 57

PL/I cOAING QUIAEIINESooiiiiiiiiiiieieee et e e e e e e 58
Coding CONVENLIONS......ccci e e 58
Passing a channel name as a string in IFSTRTN or IFDIALNccovvvviiiiennnnn. 59

Assembler language coding gUIdeliNeS............ciiiiiiiii e 60

Pascal/VS coding QUIAEIINESooiiiiiiiiie e 60

Coding guidelines for other lanQUAagES.uuviiiiiiiiiii e 61

5 HLI Function Summary

L@ YT = 63
FOr more informationooooiiii i 63
IFDIAL thre@d CallS.......eeeiiiiiiieieeee e 63
Lo 0N 1 T = T 63
Summary Of IFDIAL CallS.......ccoovviiiiiiiiii e, 64
IFSTRT thre@d CallScooooiiiiiiiiiiie et 64
1S I 4 1 £ T RSP 64
Different operational |EVEIS............cooii i 64
Enqueuing action and record locking behaviorccccccccciiiiiiiiiiiiiiiiiiee 65
System leVel IFSTRT CallSccooiiiiiiiieee e 65
Transaction level IFSTRT CallSuuuiiiiiiii e 66
File or group 1eVel IFSTRT CallS.......uuuiiuiiiiiiiiiiiiiiiiiiiiieeiireieereeessesseeeeeeeseeeeeereeeeerreeeeeee 66
Record set level IFSTRT CallS..........uuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeieeeeeeeiee e e e eeeeeeeeeeeeees 67
Record set level calls on any IFSTRT thread............cvevviiieiiiiiiiieeceeeeece e 68
Record set level calls on a multiple cursor IFSTRT threadccccoooviiiiiiiiieeiis 69
Record set level calls on a single cursor IFSTRT threadcccovvvevivvviiiiiieiiieniennennn, 69
Individual record level IFSTRT CallS........uuuiiiiiiiiiiiiieee e 69
Individual record level calls on a multiple cursor IFSTRT thread...............coooeeeeee. 70
Individual record level calls on a single cursor IFSTRT thread..........cccccoevveeivvieiiinnnnnn. 71
IFSTRT thread calls and compiled IFAMooiiiiiiii e 72
Compiled IFAM FACHITY.......uuieiiieei e 72
Three forms of Compiled IFAM CallSoooiiiiiiiiiiiiie e 72
Complete listing of HLI function Callscooooiiiei oo 73
6 HLI Function Calls
L@ YT = 81
FOr more informationoooiiii oo 81
Function call Notation CONVENTIONSuueiieiiiiiiiiiieeeeeeeeeeeeeee e eeeeeeee e e eeeeereeeeeeeereereeeees 81
Identifying which type of thread for the call..............cccvviviiiiiiiiiiiiieeeeeee 82
Call NAME AN SYNTAX.....ccceiii e 82
Different forms of call SYNTaXccooviiiiiiiiii e 82

viii Rocket Model 204 Host Language Interface Reference Manual

(o =T L] (=] 83

AN =y I I o= L 0T T 85
17N I N 0= 11 o | 86
1=l SO 1 o= 1] R 1 o= o2 87
[l S O o= 1 = o 89
[O 7= 1 I 0 [o 93
[T O L0] = 071 I o Lo 97
(O o S I o= | 1 (= o 99
O @] o7 | I o (o= T 105
1 OF IS I o= | I ¢ Lo 107
1OV Y, ot= 1| I Lo = 109
1O or= | o T 111
IFCOUNT CaAll “INIC,SC ..ttt e e e e e e e e e e e e e e e e e aaaa s 112
L ORCY AN 7= | I 1 4T3 = o 114
1 O 1O o= | = o 115
1l B 7= 1 0 [= o2 117
11 = I o= 1| TR 119
1l B I o= | Lo T 121
IFDEQ Call “INIC,SC covtuiiiii ettt e et ettt s e e e e e e e e e bbb e e e e e e e eeessaraaanans 123
IFDEQL CAll “SC ..ot e s 124
1l BT I D oz | I 0 4 2K o 125
(11D VY o= | e | 128
IFDIALN CAIL =i ..ttt et e et e e e ettt e e e e et e e e e et e e e e e e e e aseranas 131
131D RSy o= 1 I ¢ o3 Yo T 134
11D = O or=1| 1 4T o 137
Lt IS o 7= 1] B ¢ o2~ o ST 139
IFDTHRD CaAll “INIC,SC ettt e e e et e e e e et e e e s e e sb e e san e anbaaes 141
1l DAY AN oz | I 1 4 o2 o 143
|l = O O or= | I o o3 o 145
IFENQ CaAll “INIC,SC covtitiiiii ettt e e e e e e e e et e e e e e e e e e esraraaan s 148
1 = N (@ o= | BT o PP PPUUPPR 150
Lt o 1Y or= | 01T o 152
L] IO o= 1 I o (o =Y o2 154
Ll R or= | I o 0 o2 o 156
[l o N O o= | 0 o [o 158
11 DAY A o7 | I 0 Lo Y o 161

SQL PEfOrMANCEceeiiieiieeieeee e, 162
Lt T o= | o = TR 165
Ll TN o= 1] 0 [o= o 167
1l ISR o= | I 1 4 T2 o 172
1l IS o = 1 (o = o2 174
11 N D) or= | I 0 (o] T 176
11 NN Y I or= 1 | I 0 (o oo | T 179
Ll V= 1 o Lo 182
1l O = 1 o (o 184
1l VY @ I or= | 1 o o3 o 189
IFGERR CaAll -INIC, S ittt e et e et e et e e et s e et e e e e e eeanreees 192
| 31T 7= 1L =Y o 194
| ST CT o I or= 1| It T 199
1 I or= | = o 201

Contents ix

IFHNGUP CAIl ~Qi....viiiiiiiiiiie et 205

Lt N LI o7= 1 1 0 028 o TP 207
1l IS o= | = o 210
IO TR ox=1 | I o 1 [T TP 212
1Y (@ T = d S ot= 1| IR o2 214
LY (@ T o qor= 1 | =Y T 217
1 AL I o= 1 0 (o2 Y o T 221
1@ 1O O o= 1| I o oS 223
1@ T OL 0] o= 1 I o 226
O o o N o= | o Lo =Y o 234
IFOPENX CAIl “ITIC,SC vttt et e et e et e e et e e et e e st e e eaaeeeraneees 239
1l =@ A I o= 1| = o 241
1312 =@] I or= | I 0 s (o = o 243
[l = O] ISR o= 1| R o [N 245
Ll O o= | Y o N 247
IFREAD CAl Qi e e e e e e e e e et e e e e a e e e s ebaaas 252
Ll AN o= | 1 4T 258
Ll I = 1 o (T 259
1] B o= 1 I 4 To 2K Y o T 261
Ll V1O o= | o o 263
1l R o R LY o= 1 [o 265
1l R R oz | | 1 4 2= o 268
[l R R o= 1 I o (o 270
1Y = U] o7 | o | 272
[T S R o= | 1 4 o= o2 274
1T @] = I or= 1 | I (o= TP 277
LSy = Y W or= | 4 (o2 o 283
LS VA= | 4 1 (o= o2 285
IFSTHRD CaAll “MNC,SC.ctniiiiiiiii ettt ettt e et e et e e et e e e e e e et e e st s easbeees 288
SR O] = o= 1 I o 290
IFSTRT Call (IFAML) “IMIC,SC.uuuvuriiririirireeiierseeeeeessesseeessessssseeesseresserereseeerrrerrerrrrrrrereee 295
IFSTRT call (IFAM2/IFAMA) “MIC,SC .euvviiiiiiiieieiieeeaeeeeeaaaeees 298
[FSTRTN Call (IFAM2) “ITIC,SC ..eeteeeeiiiiiiteie e e e et e s r e e e e 302
1O 1= B o7 | o o Vo 306
1O I = 7= | o Lo =Y o 310
1A TAT A I o7= 1 o | 312

7 Field Formatting Options for HLI Calls

L@ YT = 317
FOr Mmore iNfOrmMationoooiiei e eeeeennee 318
Using a LIST specification for a retrieval callooevviiiiiiiiiiiiieeee e 318
Using a DATA specification for a retrieval callccvvvviiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee 318
Using an EDIT specification for a retrieval call...............ccvvviivviiiiiiiiieiiiiiieeeieeeieeeeeeeee 319
Guidelines for specifying an EDIT format...........ccccooiiieieiiieiiiiiii e 319
USING the V TOIMMAL ..o 320
Handling fields that do not occur in the record................eeeeeeiiiiiiiiiiiiieiieeeieeeeeeeee, 320
Examples of numeric edit format CONVEISIONccuviiiiieieeiiiiieeee e 321
Using EDIT format codes for a retrieval Call..............cccvvvvviiiiiiiiiiieiiiiiiiiiieeeeeeeeeeeeee 321
Using a LIST specification for an updating Calluvvveeeiieiiiiieeiiiiiiieeeeeeeeeeeeeeee 323
Using a DATA specification for an updating callccccoooo i, 324

X Rocket Model 204 Host Language Interface Reference Manual

Using an EDIT specification for an updating call.................eevviviiiiviiiiiiiiieeiieeiieeeeeeee, 325

Guidelines for specifying an EDIT format...........cccccooviiiieiiieiiiiiii e 325
Specifying significant digits using A, E, J, L, M, and U formats...................ceeeeeee 325
Specifying a length for the E format.............cccviiiiiiiiiiiiiieeee e 325
USING the G FOMMIALeeeieiiiiiiiiee e 326
Specifying the U format with floating-point values..............ccccccoiiiiiiiiiiiiienniiiee, 328
Specifying Vand M formatsccccovviiii 328
Updating a FLOAT field using A, J, L, M, or U formats.........ccccccceeeeiiiievneveeniinnnnnn, 328
Using EDIT format codes for an updating call............cccccoooiiiiiiiiiiiiiin e, 328
8 Completion and ABEND Codes
L@ YT = 333
FOr more iNfOrMEaLIONcoiiiiiiiiiie e 333
Completion return COAES 0—3coiiiiiiiii e e e e e e e e e e e e e 334
Completion return codes 4 and greater..........covvveeviiiiiiiie e e 335
JOb ruN ABEND COUES ... 340
A IFAM1 Job Program Samples
OVBIVIBW ...ttt ettt ettt e e e e ettt e e e e ettt e e e e e e e e et bbbt e e e e e e e e s bbb b e e eaeeeas 341
FOr Mmore iNfOrmMationcooiii e eeeee 341
COBOL EXAMPIE ...ttt e e e s e e e e e e e e e e 341
UsSIiNG @ VENICIES fIl@ ... 342
IFAM1 COBOL eXample (VSE)uuiiiiiiiiiiiiiiiie ettt 342
IFAM1 COBOL example (CMS)uuiiiiieiiiiiiiiiiie ettt 349
I o= g 1] o] [P 350
USINg @ ClaiMS fIl@ ..o e e 350
IFAML PL/I @Xample (ZIOS) ..ccoeeeeiieee ettt e e e e 351
IFAML1 jobs: Compiling under Enterprise PL/I for z/OS ... 355
FORTRAN EXAMPIEeeiiiiieeiiiitee ittt e e e e e et e e e e e e e aans 356
UsiNg @ Claims fileooooe oo ——a e 356
IFAM1 FORTRAN eXxample (Z/OS)uooiiiiiiiiiiiiviaeaeaeveenresvaenneennennnees 356
ASSEMDIET EXAMPIE.....ui e e e 360
USING @ ClaIMS FIl€ ... 361
IFAM1 Assembler example (Z/OS)ooooi i 361
SOUL (User Language) EXaMPIEccoeiiiiiiiiiiieee e e e s 363
B IFAM2/IFAM4 Job Program Samples
L@ YT = 365
FOr Mmore iNformMationoooiiie e eneee 365
Multiple cursor IFSTRT thread @Xampleuueuuiiuiiiimiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeeeee 365
Sample outpUL frOM PrOgraM........c.uuiiiiiie e 370
Multithreaded (single cursor) IFSTRT @XamPleuvuviiiiiiiiiiiiiiiieiieeirieieeeeeeeeeeeeeeeees 370
Sample output from Program........cccccceevviiiiiiii 374
CMS EXEC EXAMPIES . .cceeiiiiiiii ittt s e e e e e e e e e et s e e e e e e e e e eaa e e e e e 375
Example of an EXEC that compiles and links the program...........ccccccooiiiiiienneenn. 375
Example of M204IFAM EXEC that must be accessible ... 376
Compiled IFAM on a single cursor IFSTRT threadccccceeviiiiiiiiiiee e 377
IFDIAL thread example (Z/OS)ouvuiiiiiiiiieiiie e, 380
Example of a COBOL program using IFDIAL (Z/OS)vvvvvvvivvvviiiiieeeieeeiveveeeene 381
IFDIAL thread example (CIMS)ciii i e e e e e e e s 383

Contents xi

Example of an EXEC that compiles, links, and loads the program.........c.cc.......... 383

Example of an EXEC that runs the programcccccceeeiiiiiiiiiecien e, 384

Example of the M204IFAM EXEC that must be accessiblecccevvieiinnnnnnn. 385

Sample input t0 IFAMZ2UL PrOGIramM.........cooiiiuiiiiieieeee i ee e s e e e e 386

Sample output from IFAM2UL Programeeeeeeeeriiiiimmereeeeeassiiieeeeee e e sineees 386
Index

xii Rocket Model 204 Host Language Interface Reference Manual

Audience

About this Manual

Model 204 provides a functionally complete Host Language Interface (HLI),
which enables you to invoke nearly all the system functions from applications
written in programming languages such as COBOL, FORTRAN, PL/1,
Assembler, Pascal, and C. This manual describes the HLI jobs and functions
that are used with the Host Language Interface.

This manual is a companion to the Model 204 Host Language Interface
Programming Guide.

This manual serves as the primary reference source for the application
programmer using the Model 204 Host Language Interface facility.

A note about User Language and SOUL

Model 204 version 7.5 provides a significantly enhanced, object-oriented,
version of User Language called SOUL. All existing User Language programs
will continue to work under SOUL, so User Language can be considered to be
a subset of SOUL, though the name "User Language” is now deprecated. In
this manual, the name "User Language" has been replaced with "SOUL."

Model 204 documentation set

To access the Rocket Model 204 documentation, see the Rocket
Documentation Library (http://docs.rocketsoftware.com/), or go directly to the
Rocket Model 204 documentation wiki (http://m204wiki.rocketsoftware.com/).

About this Guide xiii

Documentation conventions

This manual uses the following standard notation conventions in statement
syntax and examples:

Convention

Description

TABLE

Uppercase represents a keyword that you must enter exactly as
shown.

TABLE tablename

In text, italics are used for variables and for emphasis. In examples,
italics denote a variable value that you must supply. In this example,
you must supply a value for tablename.

READ [SCREEN]

Square brackets ([]) enclose an optional argument or portion of an
argument. In this case, specify READ or READ SCREEN.

UNIQUE | PRIMARY KEY

A vertical bar (|) separates alternative options. In this example,
specify either UNIQUE or PRIMARY KEY.

TRUST | NOTRUST

Underlining indicates the default. In this example, NOTRUST is the
default.

IS {NOT | LIKE}

Braces ({}) indicate that one of the enclosed alternatives is
required. In this example, you must specify either IS NOT or IS
LIKE.

item ...

An ellipsis (. . .) indicates that you can repeat the preceding item.

item ,...

An ellipsis preceded by a comma indicates that a commai is required
to separate repeated items.

All other symbols

In syntax, all other symbols (such as parentheses) are literal
syntactic elements and must appear as shown.

nested-key ::=
column_name

A double colon followed by an equal sign indicates an equivalence.
In this case, nested-key is equivalent to column_name.

Enter your account:
salesll

In examples that include both system-supplied and user-entered
text, or system prompts and user commands, boldface indicates
what you enter. In this example, the system prompts for an account
and the user enters sales11.

File > Save As

A right angle bracket (>) identifies the sequence of actions that you
perform to select a command from a pull-down menu. In this
example, select the Save As command from the File menu.

EDIT

Partial bolding indicates a usable abbreviation, such as E for EDIT
in this example.

xiv. Rocket Model 204 Host Language Interface Reference Manual

Introduction to the HLI Facility

Overview

The Host Language Interface facility of Model 204 serves the following
principal purposes in a data processing installation:

» Makes the database available to host language programs and
programmers, which enables existing systems and organizations to
take advantage of the information resources managed by
Model 204.

« Improves and accelerates the process of host language system
maintenance by providing high-level facilities for database access
and update.

Advantages of the HLI facility

Utilizes the unigue advantages of Model 204

Many unique advantages of using Model 204 are developed from the
logical concepts used in structuring Model 204 databases and from the
physical techniques used in organizing and accessing them. Using the
Model 204 HLI facility allows you to access the Model 204 database
utilizing those underlying structures and methods.

Minimizes the introduction of data dependencies

Function call parameters specify information such as the name of the
file to be opened, the criteria by which records are selected, the names

Introduction to the HLI Facility 1

of fields to be retrieved from a record, and the content of data to be stored in
an updated record.

The HLI call parameters provide a high-level logical view of the data and
minimize the introduction of physical data dependencies into application
programs.

Provides flexibility in design of databases and applications

The entire Model 204 system makes the design of databases and applications
as flexible as possible and eases the dynamic growth of both databases and
applications after implementation.

For example, record composition can vary from record to record within a file,
and within the same record over time. Field length can vary in similar fashion.
You can define new fields at any time, usually without reloading the databases
and without altering application programs.

Ensures database integrity

Use of the Host Language Interface shields you from certain operational
parameters and problems that can vary from run to run.

For example, Model 204 maintains data buffering, control of concurrent access
to data, protection of data from unauthorized use, and protection and recovery
of the database in the event of system failures and some application failures.

To enable external recovery systems and procedures to be coordinated with
those builtinto Model 204, the Host Language Interface also provides functions
for the synchronization of checkpointing from application programs.

HLI capabilities

Concurrent processing

With the HLI facility, a host language program using Model 204 can
concurrently use other data accessing facilities and can run under the control
of teleprocessing systems such as CICS.

Host language programs can also run under the IBM Conversational Monitor
System (CMS) within the Virtual Machine Facility (VMF).

The Host Language Interface facility provides a bridge between Model 204 and
other systems and between Model 204 databases and other data.

Batch mode operation

Host language programs that use Model 204 operate in batch mode.

2 Rocket Model 204 Host Language Interface Reference Manual

Model 204 Host Language Interface programs can share a copy of Model 204
with other HLI application programs and online users in IFAM2, or they can use
a private copy in IFAM1 and IFAMA4.

Host language programs can run in the same or different job and address
space as Model 204 itself. Using the IBM inter-user communication vehicle
(IUCV), programs can run in a different virtual machine than the one that hosts
Model 204.

31-bit addressing

Model 204 Host Language Interface programs can run with 31-bit addressing.

Subroutine calls to Model 204

Host language programs communicate with Model 204 through the subroutine
calls, that is, the HLI function calls, described in this manual.

Each call specifies an operation to be performed by Model 204. A complete
transaction is ordinarily accomplished through a sequence of calls, as
illustrated on page 4.

Model 204 configurations

Model 204 host language processing

The following Model 204 configurations support host language processing
using the HLI facility:

« IFAM1
 IFAM2
« |FAM4

Model 204’'s Inverted File Access Method (IFAM)

IFAM is an acronym for Inverted File Access Method, which is Model 204’s
database I/0O access mechanism.

IFAM1, IFAM2, and IFAM4 denote different configurations of the Model 204
environment that provide IFAM type access to the Model 204 database from an
application program written in a host language such as COBOL, FORTRAN,
PL/1, or Assembler, using the Host Language Interface. The host language
programmer must design an application to run in one of these environments.

Refer to Chapter 2 for more information about the IFAM1, IFAM2, and IFAM4
environments.

Introduction to the HLI Facility 3

Thread connections to Model 204

Model 204 thread

A host language program starts a thread which provides a connection to
Model 204. A thread is a logical connection between Model 204 and the host
language application program. The host language program must start at least
one thread in order to access the Model 204 database using the HLI facility. A
thread corresponds to an IODEV definition in the Model 204 ONLINE.

IFSTRT and IFDIAL threads

There are three types of threads that are available using the HLI facility:
* Single cursor IFSTRT thread

* Multiple cursor IFSTRT thread

* |IFDIAL thread

The IFSTRT and IFDIAL threads each utilize a different set of communications
protocols which support different types of functionality. In addition, the single
and multiple cursor IFSTRT threads allow you to access the Model 204
database in different ways. The host language programmer must code an
application corresponding to the type of threads that are started.

Single and multiple cursor IFSTRT threads

The basic difference in functionality between single cursor and multiple cursor
IFSTRT threads is that a multiple cursor IFSTRT thread functions very much
like SOUL by allowing access to multiple files and record sets, and a single
cursor IFSTRT thread limits access to one file and one record set at a time.

The differences between single cursor and multiple cursor IFSTRT threads is
described in greater detail in “Multiple cursor and single cursor IFSTRT
threads” on page 11 and in the Rocket Model 204 Host Language Interface
Programming Guide.

Note: For host language applications that use IFSTRT threads, we suggest
that you use a multiple cursor IFSTRT thread.

Using an IFSTRT thread

Using an IFSTRT thread allows the host language program to specify
operations to be performed by Model 204 against the database.

The following set of calls exemplify the Host Language Interface functionality
that is available with a multiple cursor IFSTRT thread:

1. Start the multiple cursor thread (IFSTRT).

4 Rocket Model 204 Host Language Interface Reference Manual

Open Customer file (IFOPEN).
Open Orders file (IFOPEN).
In Customers, find all records (IFFIND).

Open the cursor to the Customers found set (IFOCUR).

o o > w N

Loop until there are no more Customer records:
— Fetch the customer name (IFFTCH).
— In Orders, find Order records for this customer (IFFIND).
— Open a cursor to the Orders found set (IFOCUR).
— Loop until there are no more Order records:
a. Fetch the order name (IFFTCH).
b. Print a report line.
— Close the cursor to the Orders found set (IFCCUR).

7. Close the cursor to the Customers found set (IFCCUR).

8. Finish processing (IFFNSH).

Using an IFDIAL thread

Using an IFDIAL thread allows the host language program to transfer data to
and from Model 204 using line-by-line terminal emulation mode.

The following set of calls exemplify the Host Language Interface functionality
that is available with an IFDIAL thread:

1. Start a Host Language Interface thread (IFDIAL).
2. Send a line input to Model 204 (IFWRITE).

3. Get a line of output from Model 204 (IFREAD).
4. Send an attention interrupt signal (IFATTN).

5. End the thread (IFHNGUP).

For more information

Refer to Chapter 2 for more information about using the IFSTRT and IFDIAL
threads in HLI jobs. Refer to Chapter 5 for information about the calls that are
available using the two different types of threads.

For examples of application program code using the HLI calls, refer to the
appendixes at the back of this manual. For information describing how to code
applications using IFSTRT and IFDIAL threads, refer to the Rocket Model 204
Host Language Interface Programming Guide.

Introduction to the HLI Facility 5

6 Rocket Model 204 Host Language Interface Reference Manual

Part |
HLI Jobs

Part | describes in detail the information that is required to
set up and execute a job to use the Model 204 Host
Language Interface. Use the information to identify which
type of HLI job to run and to structure your HLI job with all
of the necessary components.

HLI Job Design Factors

Overview

This chapter gives the application programmer an overview of the
IFAM1, IFAM2, and IFAM4 Model 204 environments that support HLI
processing.

This chapter presents the factors that determine the type of job to run
using the Model 204 Host Language Interface facility. Each type of job
provides certain processing capabilities within a particular system
environment.

For more information

Refer to Chapter 3 for details about setting up and running HLI jobs.
Refer to the Rocket Model 204 Host Language Interface Programming
Guide for more information about coding applications.

Processing in different Model 204 environments

Table 2-1 summarizes host language application program processing in
the different Model 204 environments.

Table 2-1. Summary of HLI processing environments

Item IFAM1 IFAM2 IFAM4
Operating system z/0S, VSE, CMS z/0S, VSE, CMS z/OS
Teleprocessing — CICS —
monitors INTERCOMM

HLI Job Design Factors 9

Table 2-1. Summary of HLI processing environments

Item IFAM1 IFAM2 IFAM4

Model 204 copy Private Shared Private

Threads Single Multiple Multiple

Protocol IFSTRT IFSTRT IFSTRT
IFDIAL IFDIAL

Enqueuing, File Record, File

with other application with those sharing

programs Model 204

Recovery RESTART RESTART RESTART
(rollback only)

Performance — Cross-region Scheduler

overhead overhead

Refer to the Rocket Model 204 Host Language Interface Programming Guide
for more information about enqueuing and recovery in the HLI processing
environment.

Call protocols

IFSTRT and IFDIAL protocols

The Model 204 Host Language Interface facility supports two types of call
protocols: IFSTRT and IFDIAL.

Each of the protocols is available using a different type of thread connection to
Model 204. The protocols operate differently and provide different types of host
language functionality.

To use IFSTRT protocols, you start an IFSTRT thread (by coding an IFSTRT

or IFTSTRTN call in your HLI application). To use IFDIAL protocols, you start
an IFDIAL thread (by coding an IFDIAL or IFDIALN call). The functionality that
is available using a particular thread is determined by the type of protocol that
it uses.

See Chapter 6 for descriptions of the IFSTRT and IFDIAL calls. For more
information about coding applications using the two protocols, refer to the
Rocket Model 204 Host Language Interface Programming Guide.

IFDIAL thread

An IFDIAL thread provides a line-at-a-time terminal type interface between
Model 204 and a host language program that is running in batch. An IFDIAL
connection allows an HLI application to issue commands (such as LOGWHO,
MONITOR, and LOGCTO) and run SOUL requests, and to receive responses
from Model 204.

10 Rocket Model 204 Host Language Interface Reference Manual

IFSTRT thread

An IFSTRT thread provides a user interface between Model 204 and a program
that uses the Host Language Interface (which runs in batch).

IFSTRT protocols allow an application that is written in a host language to issue
calls to Model 204 that perform functions against the database which are
similar to Model 204 commands and SOUL statements.

Each IFSTRT connection supports either multiple cursor or single cursor
IFSTRT functionality.

Multiple cursor and single cursor IFSTRT threads

An IFSTRT or IFSTRTN call starts either a multiple cursor or single cursor
thread by setting a thread type parameter. A multiple cursor type thread
supports only multiple cursor HLI functionality, and a single cursor type thread
supports only single cursor HLI functionality.

A multiple cursor IFSTRT thread supports host language program access to
multiple files and to multiple record sets, using a single thread. By contrast,
each single cursor IFSTRT thread allows only single file, single record set
database access.

With a multiple cursor IFSTRT thread, the file, set, or record that is specified in
the HLI call is the one that is current for processing. In contrast, the current item
to be processed on a single cursor IFSTRT thread is always relative to the last
file opened, the last set created, and the record last referenced.

Certain IFSTRT calls are supported for use only on a multiple cursor or a single
cursor IFSTRT thread, while other IFSTRT calls are supported for use on both
multiple cursor and single cursor IFSTRT threads. The application programmer
must code only the calls, specifications, and corresponding program logic that
are valid for use with the particular type of IFSTRT thread that is started.

See “Multiple cursor and single cursor IFSTRT threads” on page 11 for an
overview of the calls that are valid for use with a multiple cursor IFSTRT thread.
Refer to the Rocket Model 204 Host Language Interface Programming Guide
for more information about multiple cursor IFSTRT functionality.

Multiple cursor IFSTRT thread

For an application that requires access to multiple files concurrently, Rocket
recommends that you use a multiple cursor IFSTRT thread and that you do not
run a multithreaded job (IFAM2 or IFAM4).

For an application that requires access to a single file, or to one file at a time,
you can use either a multiple cursor IFSTRT thread or a single cursor IFSTRT
thread. Note, however, that if you are performing update processing using one
thread, checkpointing is easier on a multiple cursor IFSTRT thread.

HLI Job Design Factors 11

Recovery considerations for single and multicursor IFAM2 threads

Single cursor IFAM update threads differ from SOUL and multicursor IFAM
threads in that the single cursor threads start an update unit during their
IFSTRTN call and end the update unit when IFFNSH is issued. This means that
with single cursor IFAM threads active, all transaction checkpoints fail—
meaning: time-out. For these threads, you must use IFCHKPT calls to end
single cursor update units, wait for a transaction checkpoint attempt, and then
start new single cursor update units.

Multicursor IFAM, like SOUL, starts an update unit at the first file update and
ends the update unit at update commit (IFCMMT ccall in IFAM). Therefore,
multicursor IFAM threads do not require IFCHKPT calls to let a transaction
checkpoint proceed, although they may issue IFCHKPT calls to initiate
transaction checkpoint attempts or query transaction checkpoint status.

You can use sub-transaction checkpoints to recover files in active update by
either single or multicursor IFAM threads; they require no form of IFCHKPT call.
When IFAM threads on a sub-transaction enabled Online issue IFCHKPT calls,
they are requesting transaction checkpoints. If no IFCHKPT calls are made,
IFAM updates are recoverable with sub-transaction checkpoints.

System configurations

IFAM1

IFAM2

The Host Language Interface facility is supported in the IFAM1 configuration
running under an z/OS, VSE, or CMS operating system.

IFAM1 supports a single program (that is, a single user), in a single region (that
is, the IFAML1 job runs in a region that is separate from the Model 204 Online
region using a private copy of Model 204), using a singly-threaded connection
(that is, using one thread, either IFSTRT or IFDIAL).

IFAM1 provides the most efficient system access which is useful for testing
program modules and applications.

The Host Language Interface facility is supported in the IFAM2 configuration
running under an z/OS, VSE, or CMS operating system. IFAM2 is supported in
CICs.

IFAM2 supports one or more programs (that is, multiple users sharing the same
copy of Model 204), running in separate regions or machines or partitions (that
is, the user program runs in a separate region from Model 204 requiring
communications between the regions), using a multithreaded connection (that
is, using one or more threads, and except for IFDIAL under CMS, can be both
IFSTRT and IFDIAL threads).

12 Rocket Model 204 Host Language Interface Reference Manual

Note: A batch utility program, BATCHZ2, is provided by Rocket for use in the
IFAM2 environment. For information about the BATCHZ2 utility, refer to the
Rocket Model 204 documentation wiki:

http://m204wiki.rocketsoftware.com/index.php/Program_communications_faci
lities#BATCH2_facility

IFAM4

The Host Language Interface facility is supported in the IFAM4 configuration
running under the z/OS operating system.

IFAM4 supports a single program (that is, a single user), running in a single
region (that is, the user program and Model 204 run in the same region), using
a multithreaded connection (that is, using one or more IFSTRT threads).

IFAM4 provides the most core-efficient way to run a multithreaded HLI
application and is useful in certain test and batch production situations.
Setting up an HLI job

You must set up your HLI job for the particular Model 204 configuration (that is,
IFAM1, IFAM2, or IFAM4) in which it will run. To connect to Model 204, the job
references a particular link module or set of link modules.

For detailed information about setting up jobs, refer to Chapter 3.

Call protocols and Model 204 configurations

Each of the HLI protocols may be used in several different Model 204
configurations as summarized below.

Protocol Model 204 configuration
IFSTRT IFAM1, IFAM2, IFAM4
IFDIAL IFAM1, IFAM2

For more information

The diagrams of HLI application processing in the IFAM1, IFAM2, and IFAM4
configurations on the following pages show the basic components of each
configuration.

For more information about the Model 204 configurations, see the Rocket
Model 204 documentation wiki:

http://m204wiki.rocketsoftware.com/index.php/Model_204 configurations_an
d_operating_environments

HLI Job Design Factors 13

IFAM1 configurations

In IFAM1, the HLI batch application program and Model 204 run together in the
same region, which is separate from the Online region. There are two basic
configurations of the IFAM1 processing environment, one for z/OS and VSE,
and one for CMS.

IFAM1 under z/OS and VSE

Figure 2-1 shows the logical view of the IFAM1 processing environment for an
HLI application running under z/OS or VSE. Figure 2-1 shows the application
program linking to Model 204 with the IFIF1 interface (IFIF1OS for z/OS or
IFIF1DOS for VSE).

Note that the Model 204 system manager must build the IFAM1 link with the
IFID module included for a user to allow an HLI program to access Model 204
using an IFDIAL thread.

Figure 2-1. IFAM1 under z/OS and VSE

Model 204

Model 204 basic routines

HLI application interface
(IFN1 for IFSTRT
IFID for IFDIAL)

IFAM

Model 204 Interface
(IFIF1)

HLI application program

Single region

IFAM1 under CMS

Figure 2-2 shows the logical view of the IFAM1 processing environment for an
HLI application running under CMS.

The HLI application program is loaded to include a library (not shown) that
contains the IFIF1 object module (IFIFLCMS) which must be linked to the

14 Rocket Model 204 Host Language Interface Reference Manual

program as shown below. Figure 2-2 shows the saved segments in a common
storage area separate from the user’s CMS application.

Figure 2-2. IFAM1 under CMS

M204IFM1 saved segments

* |[FAM modules
 [FII1 for IFSTRT
« [FID for IFDIAL

M204CMS saved segment

<unused space>

CMS

<used by the application program>

Model 204 Interface
(IFIF1)

HLI application program

CMS

CMS virtual machine

IFAM2 configurations

In IFAM2, the HLI application program runs as a job in a separate region from
Model 204, sharing a copy of Model 204 with other users who access the
database from host language and SOUL applications.

IFAM2 requires communications between regions, using the Model 204 Cross-
Region Access Method (CRAM).

There are two basic configurations of the IFAM2 processing environment, one
for z/OS and VSE, and one for CMS.

Logical view of IFAM2 under z/OS and VSE

Figure 2-3 shows the logical view of the IFAM2 processing environment for an
HLI application running under z/OS or VSE.

HLI Job Design Factors 15

Figure 2-3 shows the following components:

* A host language program is running in Region 1 as a batch job. The HLI
application communicates to Model 204 through CRAM. The HLI
application program links to Model 204 with the IFIF object module.

* Model 204 resides in Region 2 and runs with the interfaces that enable
CRAM communications and teleprocessing.

* An Online application is running in Region 3 under a teleprocessing
monitor. The Online application also communicates to Model 204 through
CRAM.

Figure 2-3. IFAM2 under z/OS and VSE

[[

| | | |

4 4

Direct teleprocessing Teleprocessing
(TP) interfaces (TP) monitor
(CICS/ INTERCOMM)
Model 204
Application
IFAM program
o (Online)
HLI application HLI application
program interface Model 204
(batch) (IFIl for IFSTRT Interface
CRIO for IFDIAL)
Model 204 ¢) ¢) Model 204
Interface (IFIF) CRAM Interface Interface
Region 1 Region 2 Region 3

Operating system

IFAM2 under CMS

Figure 2-4 shows the logical view of the IFAM2 processing environment for an
HLI application running under CMS.

The IBM inter-user communication vehicle (IUCV) allows a host language
program running under CMS to communicate with a Model 204 system running
in a separate virtual machine under CMS.

16 Rocket Model 204 Host Language Interface Reference Manual

The HLI application program is loaded to include a library (not shown) that
contains the following object modules (shown in Figure 2-2) which must be
linked to the program: CMIF, IFIF, IFCM, and IUCV.

HLI Job Design Factors 17

Figure 2-4 shows the following components:

* Model 204 runs under the CMS interface in virtual machine 1 with the VMIF
interface that enables IUCV communications.

* Ahostlanguage program is running in virtual machine 2 as a batch job. The
HLI application communicates to Model 204 through IUCV.

« Another host language application is running in virtual machine 3 as a batch
job, and communicates to Model 204 through IUCV.

Figure 2-4. IFAM2 under CMS

Virtual machine 1

Model 204

IFAM

HLI application interface
(IFN for IFSTRT
CRIO for IFDIAL)

Virtual machine 2 VMIF Interface Virtual machine 3

CMS Interface

IUCV Interface CMS IUCV Interface
Model 204 Model 204
Interfaces: Interfaces:

« CMIF * CMIF
o |IFIF e IFIF
¢ |[FCM * |[FCM

HLI application

HLI application

program program
(batch) (batch)
CMS CMS

IFAM4 configuration

There is one basic configuration of the IFAM4 processing environment, for
z/OS. The HLI application program and Model 204 run in the same region as

separate subtasks of a single batch job.

18 Rocket Model 204 Host Language Interface Reference Manual

Logical view of IFAM4 under z/OS

Figure 2-5 below shows the logical view of the IFAM4 processing environment
for an HLI application running under z/OS.

Figure 2-5. IFAM4 under z/OS

Model 204 monitor

Model 204 basic routines
Subtask A

IFAM

HLI application interface (IFIF4)

Model 204 Interface
(IF14)

HLI application program Subtask B
IFSTRT

Single region
Converting HLI applications for different environments

Running in different Model 204 environments

In many cases, applications written to operate with the Host Language
Interface in one Model 204 environment require little or no change to operate
in another environment.

Before you can run a host language program with any version of the Host

Language Interface, you must link-edit it with one or more Model 204 modules.
In general, you can convert a host language application program which runs in
one environment to run in another by linking the appropriate interface module.

Use the guidelines in the following sections to convert HLI applications to run
in the different Model 204 environments that support HLI processing.

HLI Job Design Factors 19

Applications using different call protocols

Note the following restrictions on converting applications that use different call
protocols or different types of threads:

* You cannot convert an application program using IFSTRT protocols to
IFDIAL, and vice versa.

* For applications using IFSTRT threads, a user may choose to convert
applications from single cursor IFSTRT processing to multiple cursor
IFSTRT processing. Note, however, that this conversion requires modifying
existing code in both the calls and the logic.

Applications using IFSTRT threads, from IFAM2 to IFAM4

Converting an IFAM2 application program that uses IFSTRT threads to run in
IFAM4 does not require recompilation of the IFAM2 program. Only the interface
module changes.

To convert an IFAM2 application program to run in IFAM4, modify the link-edit
job step to reference the IFIF4 link module (instead of IFIF) and run IFAM4 to
execute the application program.

Note that IFAM4 applications cannot use IFDIAL. You cannot convert an
IFAM2 application program that is using an IFDIAL connection to run in IFAM4.
See “Applications that require coding changes” on the next page.

Applications from IFAM4 to IFAM2

With simple link-edit modifications, IFAM4 applications can be converted to run
in IFAM2. To convert an IFAM4 application program to run in IFAM2, modify the
link-edit job step to reference the IFIF link module (instead of IFIF4) and
execute the application program.

Converting from IFAM4 to IFAM2 is useful for allowing multiple applications or
copies to share a single copy of Model 204.

Applications that require coding changes

Certain of the HLI calls that are supported in one environment may not be
supported in another. For example, the same calls that are valid for use in
IFAM2 can be used in IFAM4, and vice versa, with the following exceptions:

e IFSTRTN, which can be used only in IFAM2
* IFABXIT and IFCSA, which are valid only for IFAM2 under CICS

There are differences in using certain calls in the different environments. For
example, there are two different forms of IFSTRT (using different parameter
lists); one is for IFAM1 and the other is for IFAM2 and IFAM4.

20 Rocket Model 204 Host Language Interface Reference Manual

In general, you must modify an application program to convert the following
types of HLI applications (using IFSTRT threads):

* From IFAML1 to IFAM2 or IFAM4

* From IFAM2 or IFAM4 to IFAM1

Use the following guidelines when converting to or from IFAM1.:

* You can use IFCALL (with function numbers) only in IFAM2 or IFAMA4.

* Note that IFGERR functions somewhat differently in IFAM2 and IFAM4
than in IFAM1.

« The following calls are valid for use only in IFAM1: IFSETUP (which can
only be used with an IFDIAL connection) and IFLOG.

« In general, you cannot use calls that perform thread management or
checkpointing functions in IFAM1, including: IFDTHRD, IFSTHRD, and
IFCHKPT.

Refer to Chapter 6 for information about individual calls and their usage.

HLI Job Design Factors 21

22 Rocket Model 204 Host Language Interface Reference Manual

HLI Job Requirements

Overview

This chapter details the job requirements for the application
programmer using the Host Language Interface facility in the IFAM1,
IFAM2, and IFAM4 Model 204 environments.

Contents of this chapter

There are three broad categories of batch jobs that you can run
corresponding to the IFAM1, IFAM2, and IFAM4 Model 204
environments that support HLI processing. This chapter presents job
information in the following order:

* |FAML1 jobs
— Under z/OS, VSE, CMS

 |FAM2 jobs
— Under z/0OS, VSE, CMS
— Using the CICS interface

Note: The INTERCOMM interface (supporting the use of Teletype
and 3270 terminals in line-at-a-time mode) is no longer supported
as of Model 204 version 7.5.

* IFAM4 jobs (under z/OS only)

This chapter describes each type of job and includes examples of job
setup and execution in the different operating environments.

HLI Job Requirements 23

For more information

See Chapter 6 for a detailed description of HLI calls and call parameters. Refer
to the appendices at the back of this manual for examples of applications using
HLI calls.

IFAML1 jobs

IFAM1 applications can run under z/OS, VSE, or CMS operating systems. An
IFAML1 job involves a two-step procedure: step one is to link-edit the application
program and step two is to run it.

Examples of the IFAM1 job steps are provided in the sections which follow.
Sample setups are shown for each of the operating systems. The following
topics are covered for each system:

» Link-editing the application program
* Running the application program

See page 31 for a description of the control statements that are used with an
IFAM1 job. See page 32 for more information about applications in the IFAM1
environment.

IFAM1 dynamic loading

Rocket recommends that the IFAM1 application load the Model 204 portion of
the application at runtime.

Invoke IFAM1 dynamic loading by link-editing the IFAM1 application program
with the appropriate module:

* |FIF10S for z/OS
 |FIF1DOS for VSE
e |FIF1 for CMS

See the examples of link-editing with IFIF1OS for z/OS on page 25 and with
IFIFADOS for VSE on page 28. Note that the IFIF1 module is automatically
invoked at runtime for CMS.

Note: In order to use the dynamic loading facility, the Model 204 system
manager must initially build the IFAM1 load module for your installation site.

Contact your Model 204 system manager to get the name of the Model 204
load library that is used to run IFAM1 programs at your site. For more
information about creating the IFAM1 module, refer to the Rocket Model 204
installation instructions for your operating system.

24 Rocket Model 204 Host Language Interface Reference Manual

Advantages of dynamic loading

IFAM1 jobs:

IFAML1 jobs:

The IFAM1 dynamic loading facility reduces application maintenance and
storage by allowing the Model 204 IFAML interface to dynamically load the
IFAM1 code at runtime.

Dynamic loading provides the application programmer with the easiest and
most efficient method for running IFAM1 applications and is the preferred
method recommended by Rocket.

Note that the direct link-edit method which statically link-edits IFAM1
applications with Model 204 routines can be used by the application
programmer to run IFAM1 jobs. However, using this method requires that:

« All IFAM1 application programs must be link-edited again each time any
Model 204 routines change.

e Each IFAM1 application must carry its own copy of all the Model 204
routines, thereby increasing the application’s load module size and load
library disk space requirements.

Examples of directly link-editing IFAM1 applications are not provided in this
document.

Compiling under Enterprise PL/I for z/OS

When compiling a PL/I application under the Enterprise PL/I for z/OS compiler,
the following compiler parameter is required:

DEFAULT (L INKAGE (SYSTEM))

This causes the parameter list to be built in the same way that it was built by
the old compilers (including turning on the high-order bit of the address of the
last parameter).

For example:
//PLICMPL EXEC PGM=IBMZPLI ,PARM="0BJECT,OPTIONS,
// DEFAULT(LINKAGE(SYSTEM)) " ,REGION=512K, . . .

If this compiler option is not specified, subsequent executions of the application
will fail with 0C4 abends.

Link-editing under z/OS

Link with IFIF1OS

To link-edit your IFAML1 job running under z/OS, link the IFAM1 application with
the Model 204 module IFIF10S using the INCLUDE CCA statementin SYSLIN
DD.

HLI Job Requirements 25

Figure 3-1 shows an example of the JCL that may be used to link-edit an IFAM1
application to build the application load module. In this example, the program
name is IFAMTEST.

Figure 3-1. Example of z/OS JCL to Link-Edit Application (IFAM1)

//LINKAPPL JOB,LINKAPPL ,MSGLEVEL=(1,1),CLASS=T,MSGCLASS=C
//LINK EXEC PGM=IEWL,PARM="LIST,MAP,LET,NCAL,SIZE=(250K, 150K)"
//SYSPRINT DD SYSOUT=C

//SYSUT1 DD UNIT=WORK,SPACE=(TRK, (40,20))

//USEROBJ DD DSN=LOCAL .M204_.0BJLIB,DISP=SHR

//0BJLIB DD DSN=M204.V220.0BJLIB,DISP=SHR

//SYSLMOD DD DSN=LOCAL .M204 . 1FAM1._APPLIC,DISP=0LD
//SYSLIN DD *

INCLUDE USEROBJ(IFAMTEST)

INCLUDE OBJLIB(IFIF10S)

ENTRY IFAMTEST

NAME IFAMTEST(R)

/*

Note: Before the individual Host Language Interface application programmer
can link an IFAM1 application, the Model 204 system manager must build the
IFAM1 load module containing the IFII1 member. Contact your Model 204
system manager to get the name of the Model 204 object and load libraries that
are used to link-edit and run IFAM1 programs at your site.

IFAM1 jobs: Running under z/OS

Execute with dynamic loading

Once you have link-edited the application program, run the IFAM1 application
in z/OS.

Figure 3-2 shows a sample excerpt of the JCL that may be used to run an
IFAM1 application which was link-edited as shown in Figure 3-1. In this
example, the program name is IFAMTEST.

Figure 3-2. Example of z/OS JCL to Run Application (IFAM1)

//RUNIFAM1 JOB, RUNIFAM1~ ,MSGLEVEL=(1,1) ,MSGCLASS=C,CLASS=T
/7*

//1FAM1EXEC PGM=I1FAMTEST

//7*

//STEPLIB DD DSN=LOCAL .M204.1FAM1._APPLIC,DISP=SHR
// DD DSN=M204.V220.LOADLIB,DISP=SHR

//CCAAUDITDD SYSOUT=C

//CCAPRINTDD SYSOUT=C

//CCASNAP DD SYSOUT=C

//SYSUDUMPDD SYSOUT=C

//CCATEMPDD DISP=NEW,UNIT=SYSDA, SPACE=(TRK,20)
//CCASTATDD DSN=M204.CCASTAT ,DISP=0LD

26 Rocket Model 204 Host Language Interface Reference Manual

e_..application program DD statements

Using the STEPLIB statement

The STEPLIB file points to the load module libraries where the application
program and the Model 204 IFAML1 interface program reside.

This statement must specify the load module library or libraries that contain
IFAM1 and the Host Language Interface user’s application program.

Note: One of the following requirements must be met for IFAM1 applications:

e M204XSVC must be installed as an SVC and that SVC number must be
passed to Model 204 in the IFSTRT or IFLOG call as the value of the
XMEMSVC parameter. XMEMOPT must also be setto 2 or 4, or

e The load library where the IFAM1 application resides (and all run-time
concatenated libraries) must be APF authorized.

Unless one of these requirements is met, IFAM1 applications will terminate
with:

MODEL 204 1S NOT AUTHORIZED FOR THIS CPUID: 0000000000000000

Use the DSN of the Model 204 load library that is used to run IFAM1 programs
atyour site. If the Model 204 load module library and application load library are
in separate libraries, use concatenated data set or file definition statements.

Using the EXEC statement

You can specify the following parameters in the EXEC statement:

« PGM—Required; Indicates the name of the application program being run.
Note that application programs cannot be called IFAML1.

* REGION — Optional; Indicates the size of the memory area to be allocated
for IFAM1 and the application. Note that REGION may be specified
depending on your site’s Model 204 configuration. Refer to the Rocket
Model 204 documentation wiki for information about setting the REGION
parameter:

http://m204wiki.rocketsoftware.com/index.php/Defining_the_runtime_envir
onment_(CCAIN)#Runtime_environment_specifications

e TIME — Optional; Indicates how much time the application program and
Model 204 together can use before being cancelled by the operating
system. TIME depends on the requirements of the application.

« PARM — Optional; Indicates any application runtime parameters to be set.

See page 31 for more information about the job control statements that are
used with an IFAML1 job.

HLI Job Requirements 27

IFAML1 jobs: Link-editing under VSE

Link with IFIF1DOS

To link-edit your IFAM1 job running under VSE, link the IFAM1 application with
the Model 204 module IFIF1DOS using the INCLUDE statement in OPTION
CATAL.

Figure 3-3 shows an example of the JCL that may be used to link-edit an IFAM1
application to build the application load module. In this example, the program
name is IFAMTEST.

Figure 3-3. Example of VSE JCL to Link-Edit Application (IFAM1)

// JOB LINKAPPL FOR IFAMITEST
// DLBL PRIVLIB,’PRIV.USER.LIBRARY”
// EXTENT,SYSnnn,volser,balance of extent information
// LI1BDEF CL,TO=PVTCL
// DLBL M204LI1B,>M204.PROD.LIBRARY”
// EXTENT,SYSnnn,volser,balance of extent information
// LIBDEF OBJ.SEARCH=(M204LI1B.V220,PRIVLIB.XXXX)
// LIBDEF PHASE.CATALOG=PRIVLIB .xxXXX
// OPTION CATAL
PHASE IFAMTEST,*
INCLUDE usermodule
INCLUDE IFIF1DOS
/*
// EXEC LNKEDT
/&

Note: Before the individual Host Language Interface application programmer
can link an IFAM1 application, the Model 204 system manager must build the
IFAM1 load module containing the IFII1 member. IFAM1 is provided as a phase
in the distribution sublibrary and may need to be relinked by the Model 204
system manager.

Contact your Model 204 system manager to get the name of the Model 204
object and load sublibraries that are used to link-edit and run IFAM1 programs
at your site.

IFAM1 jobs: Running under VSE

Execute with dynamic loading

Once you have link-edited the application program, run the IFAM1 application
in VSE.

Figure 3-4 shows a sample excerpt of the JCL that may be used to run an
IFAM1 application which was link-edited as shown in Figure 3-3. The EXEC

28 Rocket Model 204 Host Language Interface Reference Manual

statement specifies the name of the application program to be executed. In this
example, the program name is IFAMTEST.

Figure 3-4. Example of VSE JCL to run application (IFAM1)

// JOB DOS IFAM1 DYNAMIC LINKEDIT TEST

// DLBL PRIVLIB,”PRIV.USER.LIBRARY”

// EXTENT,SYSnnn,volser,balance of extent information
// LI1BDEF CL,TO=PVTCL

// DLBL M204LI1B,>M204.PROD.LIBRARY”

// EXTENT ,SYSnnn,volser,balance of extent information
// LIBDEF PHASE.SEARCH=(PRIVLIB.xxxx,M204L1B.V220)

// DLBL CCAJRNL,”>MODEL204.CCAJRNL”

// EXTENT SYS001,balance of extent information

// DLBL CCATEMP,”>MODEL204.CCATEMP”, ,DA

// EXTENT SYS001

// DLBL CCASTAT,>MODEL204.CCASTAT”

// EXTENT SYS001,balance of extent information

// ASSGN SYS001,DISK,VOL=SYSWK1,SHR

// UPSI1 10111000

// EXEC IFAMTEST,SIZE=AUTO

/*

/&

Using the LIBDEF statement

In VSE, a LIBDEF JCL card must point to the library and sublibrary that contain
the Model 204 IFAM1 interface program and the HLI user’s application
program. Use the name of the Model 204 load sublibrary that is used to run
IFAM1 programs at your site.

If the Model 204 load module library and application load library are in separate
libraries, the LIBDEF must specify both the library and the sublibrary in the
search chain.

For more information

See page 31 for more information about the job control statements that are
used with an IFAM1 job. Note that VSE allows a seven-character file name to
be used for DLBL in the JCL.

IFAML1 jobs: Link-editing under CMS

Execute with dynamic loading

In CMS, the process of generating an application module that uses IFAM1 can
be done at runtime. No additional facility is required to make the process
dynamic.

HLI Job Requirements 29

Figure 3-5 shows an example of the CMS commands that may be used to run
an IFAML1 application. This set of commands loads the application module and
executes the program. In this example, the program name is IFM1PRGM.

Figure 3-5. Example of CMS link-edit and execution (IFAM1)

&CONTROL OFF
* EXAMPLE TO GENERATE AN APPLICATION MODULE THAT USES
* 1FAM1. PROGRAM NAME = IFM1PRGM

GLOBAL TXTLIB M2041FM1
LOAD IFM1PRGM IFIF1 (RESET IFM1PRGM)

GENMOD I1FM1PRGM

&TYPE

&TYPE I1FM1PRGM MODULE A HAS BEEN GENERATED FOR YOUR USE.
&TYPE

&EXIT O

IFAM1 FILES

Using the IFAM1 command

Figure 3-5 uses the IFAM1 command to execute a host language application
that uses IFAM1.

The IFAM1 command in Figure 3-5 specifies the name of an EXEC (FILES) that
defines system and database files for IFAM1 and stacks the name of the
application program to be executed. See Figure 3-6 for an example of the
FILES EXEC that is used.

Note that you can use the IFAM1 EXEC command to run your IFAM1 program
assuming that CMS Model 204 has been correctly installed and configured at
your site. For IFAM1 under CMS, the IFAM1 saved segments must have been
generated and the appropriate minidisks that contain Model 204 EXECs and
MODULEs must be accessible.

Note: A return code of O from the EXEC invokes the application program. A
return code of 1 bypasses the invocation of the program. Any other return code
is considered an error condition and ends the response to the IFAM1 EXEC
command.

Example of the FILES EXEC

Figure 3-6 below shows FILES EXEC, the EXEC named in the IFAM1
command in Figure 3-5 on the previous page, which might contain the following
statements (shown in REXX):

Figure 3-6. Example of the FILES EXEC

"FILEDEF * CLEAR~

30 Rocket Model 204 Host Language Interface Reference Manual

>FILEDEF
>FILEDEF
>FILEDEF
>FILEDEF
>FILEDEF
>FILEDEF
>FILEDEF
>FILEDEF

/**/

/*! inclu
/**/

push ”IFM
exit O

For more information

CCATEMPDISK CCATEMP M204SYS A~
CCAJRNLDISK CCAJRNL M204SYS A~
CCAGRPDISK CCAGRP M204SYS A~

CCASTATDISK CCASTAT M204SYS A~
CCASNAPDISK CCASNAP M204SYS A~

CCAPRINTDISK CCAPRINT M204SYS A~
CCAAUDITDISK CCAAUDIT M204SYS A~
CHKPOINTDISK CHKPOINT M204SYS A~

de additional FILEDEF commands for database files */

1PGRM”

See page 31 for more information about the job control statements that are
used with an IFAM1 job.

IFAM1 jobs: Job control statements

The control statements in Table 3-1 are used in an IFAML1 job.

Table 3-1. IFAM1 control statements
Statement Use
EXEC required
STEPLIB/LIBDEF/TXTLIB required

CCAJRNL optional (used for audit information only)
CCAJLOG optional (used for audit information)
CCAAUDIT optional

CHKPOINT required for roll-back recovery
CCATEMP required

CCASNAP, SYSUDUMP

required for error diagnostics

CCAPRINT required

CCASTAT required for security

CCAGRP required for permanent file groups
Model 204 files required

Application program files optional

Note: VSE allows a seven-character DLBL name while z/OS allows an eight-
character DD name. The actual names that are used in VSE JCL may differ in

this regard

from those that are listed above.

HLI Job Requirements 31

General information about the EXEC, Model 204 file, and application program
file statements for IFAML1 jobs is provided on the next page.

For a detailed description of the Model 204 data sets that are used for HLI jobs,
refer to the Rocket Model 204 Host Language Interface Programming Guide.
For additional information about the Model 204 job control statements, refer to
the Rocket Model 204 documentation wiki:

http://m204wiki.rocketsoftware.com/index.php/Using_HLI_and_batch_configu
rations

EXEC statement

For IFAM1, the EXEC statement does not refer to Model 204 directly. When
an IFAM1 job is running, Model 204 parameters cannot be specified in the
EXEC statement, that is, not in the PARM field for z/OS, and not in the OPTION
SYSPARM statement for VSE.

In IFAM1, any Model 204 parameter settings must be passed to Model 204
inside the application program using HLI calls. See page 32 for more
information about using IFSTRT and IFDIAL threads in IFAM1.

Model 204 files

The control statements must contain a data set or file definition statement for
each data set of each Model 204 file to be used in the run.

A disposition of either SHR or OLD can be specified, depending whether the
Host Language Interface job runs concurrently with other Model 204 programs
which use the file. Usually SHR is the recommended disposition. Model 204
uses its own system of enqueuing to resolve updating conflicts.

Application program files

The application program may need data set or file definition statements of its

own for various data sets. Be careful not to specify file names that are the same
as the names of any of the data set or file definition statements needed by the
IFAM1 Host Language Interface itself.

IFAML1 jobs: Using an IFSTRT or IFDIAL thread

Using a single thread

IFAM1 is a single-region configuration of Model 204 that supports a single user
using a private copy of Model 204. IFAM1 supports a single thread, either an
IFSTRT thread or an IFDIAL thread.

The specific Model 204 interface modules that are used by the Host Language
Interface for the IFAM1 job run are automatically invoked by Model 204 and

32 Rocket Model 204 Host Language Interface Reference Manual

depend on whether you are using an IFSTRT or an IFDIAL thread in your
application program.

Specifying Model 204 runtime parameters

IFAM2 jobs

In IFAM1 the EXEC parameter which is specified in the job control EXEC
statement is not available to Model 204.

The IFAM1 application programmer can optionally specify Model 204 system
and User 0 runtime parameters inside the application program using either the
IFSTRT call, if the job starts an IFSTRT thread, or the IFSETUP call, if the job
starts an IFDIAL thread.

Note that there are other differences in coding calls when using either an
IFSTRT or an IFDIAL thread. See Chapter 6 for detailed descriptions of the
IFSTRT (IFAM1) and IFSETUP calls. Refer to Appendix A to see sample IFAM1
applications.

IFAM2 jobs can run under z/OS, VSE, or CMS.

Except for IFDIAL under CMS, an IFAM2 job can establish multiple threads.
Under z/OS and VSE, an IFAM2 job can start one or more IFSTRT threads and
one IFDIAL thread. Under CMS, a IFAM2 job can start either an IFSTRT thread
(or threads) or an IFDIAL thread.

The Model 204 service program operates in its own region or virtual machine.
The region processes requests from an arbitrary number of host language
programs, each of which operates in its own region or virtual machine. IFAM2
requires the use of communications facilities.

Communications facilities (CRAM or IUCV)

For z/OS and VSE, communication between Model 204 and a host language
program in a different region is enabled by the Model 204 Cross-Region
Access Method (CRAM), a special inter-region communications facility.

For CMS, a host language program communicates with Model 204 in a
separate virtual machine through the IBM inter-user communication vehicle
(lucv).

See the next section for specific information about the subsystem name,
channel names and IODEYV settings that are used for IFAM2 jobs running under
z/0S, VSE, and CMS.

Subsystem names, channel names, and IODEV settings

Model 204 uses the following subsystem names, channel names, and IODEV
settings for IFAM2 threads:

HLI Job Requirements 33

e For IFSTRT threads Model 204 uses the default channel name supplied by
Rocket.

* For IFSTRTN threads Model 204 uses the channel name that is specified
in the HLI call.

 For IFSTRTN threads and z/OS with XDM, Model 204 uses the default
subsystem name found in the IGCLM244 load module or the subsystem
name found in the HLI as well as the channel name in the HLI call.

The following default channel names and IODEV settings are used for

IFSTRT threads:
Default subsystem Default IODEV
Facility = Parameter name channel name setting
CRAM IFAMCHNL Value in the IGCLM244 IFAMPROD 23
load module
ljucv VMIFCHNL Not Applicable M204VMIF 43

* For IFDIAL threads Model 204 uses the default channel name supplied by
Rocket.

e For IFDIALN threads Model 204 uses the channel name that is specified in
the HLI call.

* For IFDIALN threads and z/OS with XDM, Model 204 uses the default
subsystem name found in the IGCLM244 load module or the subsystem
name found in the HLI as well as the channel name in the HLI call.

The following default channel names and IODEV settings are used for
IFDIAL threads:

Facility = Parameter Default subsystem Default channel IODEV

name name setting
CRAM CRIOCHNL Value in the M204PROD 29
IGCLM244 load
module
IUCV VMIOCHNL Not Applicable M204VMIO 39

Note that the IODEYV settings listed above are the ones that are used by
Model 204 for IFAM2 processing. You can specify VMIOCHNL and VMIFCHNL
(and the corresponding IODEVSs) only for CMS; you can specify CRIOCHNL
and IFAMCHNL (and the corresponding IODEVSs) only for z/OS and VSE.

These threads must be defined in the Model 204 Online run to provide IFAM2
communications. One IODEV is required by Model 204 for each thread that is
started in the HLI program.

34 Rocket Model 204 Host Language Interface Reference Manual

Compiling under Enterprise PL/I for z/OS

When compiling a PL/I application under the Enterprise PL/I for z/OS compiler,
the following compiler parameter is required:

DEFAULT (L INKAGE (SYSTEM))

This causes the parameter list to be built in the same way that it was built by
the old compilers (including turning on the high-order bit of the address of the
last parameter).

For example:

//PLICMPL EXEC PGM=1BMZPLI ,PARM="0BJECT,OPTIONS,
// DEFAULT(LINKAGE(SYSTEM)) " ,REGION=512K, . . .

If this compiler option is not specified, subsequent executions of the application
will fail with 0C4 abends.

IFAM2 jobs: Running under z/OS and VSE

Using the CRAM facility

CRAM is an interregion facility that allows two or more programs to
communicate with each other over an arbitrary number of distinct connections,
called channels.

In any communication handled by CRAM, one program is the master and the
other is a user. The master is always the Model 204 service program, which can
communicate with several users over the same channel. After a connection is
established, the user thread can issue requests, as required, for the
application.

Several versions of Model 204 can run concurrently by establishing a distinct
CRAM channel name for each version. Also, one user program can
simultaneously communicate with multiple Model 204 service programs in
different regions. For more information about CRAM, refer to the Rocket
Model 204 documentation wiki:

http://m204wiki.rocketsoftware.com/index.php/Defining_the _User_Environme
nt_(CCAIN)#CRAM_.28I0DEV.3D11.2C_23.2C_29.29

Linking with the IFIF module

A batch IFAM2 program running under z/OS and VSE must be linked with the
IFIF object module, which condenses the data pertinent to each Host
Language Interface call, passes it to CRAM, and sends the information to an
interface routine in the Model 204 region.

Model 204 services the call and returns the information to the appropriate host
language program that uses CRAM as the intermediary.

HLI Job Requirements 35

Link-editing and executing the application program

The IFAM2 application program requires its own job control statements to
execute.

Note that the IFAM2 job control statements are independent of the Model 204
job because the IFAM2 application program executes as a separate job in its
own region. The control statements for Model 204 files are included in the
Model 204 run.

IFAM2 programs must be link-edited with the NODYNAM option set. If
NODYNAM is not set, your program may abend when executed.

Figure 3-7 is a sample job excerpt showing the z/OS JCL which runs an IFAM2
application program. In this example, COBUCLG is a COBOL compile-link-
and-go procedure.

Figure 3-7. Example of z/OS JCL to run application (IFAM2)

//CPLLKGO EXEC COBUCLG,
//PARM_COB="L0OAD,NOSEQ,NODYNAM, APOST”,
//REGION.LKED=200K,
//PARM_LKED="LIST,LET,SI1ZE=(192K, 100K) ,MAP~ ,REGION,GO=64K
//COB.SYSIN DD *

IDENTIFICATION DIVISION.

PROGRAM-ID. CRAMDIAL.

STOP RUN.
//LKED.OBJLIBDD DSN=M204.V220.0BJLIB,DISP=SHR
//LKED.SYSINDD *
INCLUDE OBJLIB(IFIF)
//GO_SYSUDUMPDD SYSOUT=A
//GO_SYSOUTDD SYSOUT=A
//GO_INFILEDD *

/*
//

To link-edit your IFAM2 job running under z/OS, link the IFAM2 application with
the Model 204 module IFIF using the INCLUDE OB statement in SYSIN DD.

IFAM2 jobs: Running under CMS

Using the M204IFAM object modules
The IBM inter-user communication vehicle (iUCV) allows HLI programs running

under CMS to communicate with a Model 204 system running in a separate
virtual machine.

36 Rocket Model 204 Host Language Interface Reference Manual

The application program must be loaded to include a library of object modules,
named M204IFAM TXTLIB, that contains the CMIF, IFIF, IFCM, and I[UCV
interface routines that are necessary for this communication.

Using the M204IFAM EXEC

The CMIF routine in M204IFAM TXTLIB invokes a procedure called M204IFAM
EXEC to obtain the name of the virtual machine that is running Model 204 and
to obtain the needed IUCV communications method.

Both M204IFAM TXTLIB and M204IFAM EXEC must be available on the CMS
machine for an IFAM2 host language program.

You can use any of the following values in the line that indicates the
communication type to the M204IFAM EXEC:

« IUCVVMCF (the default)

 JUCV
* VMCF
« VMCFIUCV

Note: Regardless of the option specified, Model 204 establishes
communications with IUCV. The VMCEF facility is not supported as of Version 2,
Release 2 of Model 204. To ensure compatibility with existing programs, the
VMCF option is still accepted but has no effect. The VMCF option may be
dropped in future releases of Model 204. If this occurs, you will need to change
your HLI programs to eliminate all references to VMCF.

See Appendix A and Appendix B for examples of a CMS M204IFAM EXEC,
which establishes the IUCV link.

Using VM immediate commands

You can use the HX, HT, and RT VM immediate commands described below
when an IFAM2 host program is executing.

If one of the following commands is entered after the attention key for the
terminal is pressed, VM takes the immediate actions summarized below:

e The HX command abnormally terminates (ABENDs) execution of a
program. Control returns to CMS. This is equivalent to cancelling a program
under z/OS.

* The HT command halts the display of output on the terminal, but continues
execution. Use the RT command to resume output.

HLI Job Requirements 37

Loading and executing an IFAM2 program

To load and execute an IFAM2 application program under CMS, use the
following steps as guidelines. The specific procedures for loading and running
IFAM2 programs depend upon the particular language in which the program is
written.

1. Use the GLOBAL TXTLIB command to specify the list of object libraries
(called TXTLIBS) that are used to resolve references by the IFAM2
program to library subroutines.

Note that the GLOBAL TXTLIB command includes M204IFAM TXTLIB in
the list of libraries, which enables the CMS Loader to include the IFAM2

interface in the program. Specify the following command in the GLOBAL
TXTLIB command:

GLOBAL TXTLIB M2041FAM

M204IFAM TXTLIB contains the interface routines necessary for
communication with Model 204 using IUCV.

2. Load the application program using the CMS Loader.

Note that the LOAD command that is hormally used to invoke the CMS
Loader must specify the Model 204 IFCM module in the list of programs to
be loaded. If this is not done, IFCM is not included and an error occurs when
the application program attempts to load the module named IGCLM244.

To load a program named IFAMTEST, for example, specify the following
command:

LOAD IFAMTEST IFCM CLEAR

3. To run the program immediately, specify START in the command line as
follows:
LOAD IFAMTEST IFCM (START CLEAR
or specify START as a separate command:
LOAD IFAMTEST IFCM CLEAR
START

Or, use the GENMOD command to create a nonrelocatable program
module (with external references resolved).

For example, for the program named IFAMTEST, specify the following
command:

LOAD IFAMTEST IFCM

GENMOD 1FAMTEST

IFAMTEST is the file name assigned to the module (and the file type is
MODULE).

And next, enter the name of the program to run it. For example,

38 Rocket Model 204 Host Language Interface Reference Manual

IFAMTEST

For more information

IFAM2 jobs:

Refer to Appendix B for examples of CMS EXECs to compile and link and to
run an IFAM2 application.

For more information about running application programs under CMS, refer to
the appropriate IBM User’s Guide for your operating system.

Using an IFDIAL thread under CMS

Specifying the IFDIAL operand in the ONLINE command

IFAM2 jobs:

Under CMS, an IFAM2 job can start an IFDIAL thread, and this is the only
connection that is allowed in the job.

Use the IFDIAL operand in the ONLINE command to specify a single-user
IFDIAL connection to be made (saved segment mandatory).

The IFDIAL connection must be made on the main (nhonrecovery) step.
Execution of the ONLINE command creates a Model 204 Online environment.
For more information about this facility, refer to the Rocket Model 204
installation instructions for the IBM z/VM platform.

If you specify IFDIAL, the main (nonrecovery) EXEC must provide only one
parameter, the user program name, in the stack. IFDIAL connections require
that the user program be placed first on the stack.

When defining subsystems that contain Model 204 calls in the SCT for IFDIAL,
do not set the DBASE parameter.

Running under CICS

IFAM2 pseudo conversational support allows CICS users to include pseudo
conversational applications in their IFAM2 programs. This allows the host
IFAM2 program to enter a pseudo conversational wait at any time during an
IFAM2 session with Model 204. The CICS interfaces are compatible with CICS
Release 2.1 and later.

Transaction management

The CICS pseudo conversational programming technique ensures that no
resources are held by a task during each conversational iteration with the
terminal operator.

Such resources include VSAM strings, file record enqueues, enqueues on
Temporary Storage queues or transient data destinations, as well as the
storage acquired by the transaction during execution. Note, however, that
Model 204 found sets are retained.

HLI Job Requirements 39

The pseudo conversational feature prevents potentially serious bottlenecks
between transactions that could cause longer response times and deadlocks.

Using the CICS-resident program (DFHPSF)

Linking to the

For applications running under CICS, the IFIF module along with a CICS-
specific appendage called IFPS, are linked as a CICS-resident program, such
as DFHPSF, when the CICS interface is installed.

Once the CICS interface is installed using the CICS-resident program, CICS
users can submit IFAM2 jobs to run by link-editing to IFENTPS, which is
described in the next section.

Note: The CICS-resident program name is site-specific and can be named on
the CICFG configuration section of the CICS batch program. Several types of
DFHPSF (IFIF/IFPS) CICS-resident programs can be available in the CICS
environment. The particular copy can be selected through the configuration
name.

For more information about CICS-resident programs, refer to the Rocket
Model 204 Host Language Interface Programming Guide.

IFENTPS module

The IFENTPS module provides the IFAM2 application program interface for
pseudo conversational CICS transactions and must be link-edited with the user
CICS program.

To use the IFAM2 CICS interface, link-edit your program with the IFENTPS
module. No other direct changes to your program are required.

Include the data set or file definition statements for Model 204 files that are
accessed by CICS applications in the JCL for the Model 204 region, not the
CICS region.

Note: The IFENTPS module may be used with either macro-level or command-
level CICS application programs. The configuration copy member, CICFG,
contains a conditional assemble switch that determines whether a macro-level
or command-level version is generated. The Model 204 system manager must
ensure that the correct version of IFENTPS is used with the appropriate
application programs.

Using macro or command level program code

The version of IFENTPS that is link-edited with your IFAM2 CICS program must
be assembled specifically for either macro or command level program code.

Addressing and storage requirements

Note the following IFAM2 CICS requirements:

40 Rocket Model 204 Host Language Interface Reference Manual

e The following CICS areas must be addressable: CSA, TWA, and TCA.
* IFAM2 requires 88 bytes of CICS TWA.

« Atemporary storage queue is created for each HLI transaction when the
first IFSTRT or IFDIAL call is issued.

First and last calls in the program
The following calls are required in the IFAM2 CICS program:

» Before Version 3.1 of Model 204, the IFCSA call was required and needed
to be the first call issued during the IFAM2 session. For Model 204
Version 3.1 and later, the IFCSA call no longer performs any function and
is not required. For purposes of upward compatibility, the IFCSA call can
remain in your current programs.

e The IFFNSH or IFHNGUP call is necessary as the last call in the program
to ensure that all CRAM resources are released at program termination.

Abend handling is required

Using the Model 204 IFAM2 CICS interface successfully depends on correct
abend handling to prevent hung CRAM channels.

A program must establish its own abend handler or use the IFABXIT call to
establish the IFAM2 abend handler. The program must establish the abend
handler or issue IFABXIT after any pseudo conversational waits, that is, after
the initial connection is established.

If you run CICS IFAM2 applications written in COBOL I, set the &IFABEND
parameter in CICFG to ‘NO’. This prevents the abend handler in IFENTPS from
causing ASRAs.

If you do this, you may want to include an abend handler routine in your COBOL
Il applications to prevent hanging threads after an abend. If you do, the abend
handler routine must issue an IFFNSH call.

For more information

Refer to the Rocket Model 204 Host Language Interface Programming Guide
for detailed information about abend handling in an IFAM2 CICS program. Also
refer to that guide for the following information about IFAM2 CICS programs:

* The IFENTPS link module
* Addressable CICS areas (CSA, TCA, TWA) and coding example
* TWA requirements, using the CICFG copy member

« Temporary storage queue

HLI Job Requirements 41

IFAMA4 jobs

Refer to Chapter 6 for a description of the IFCSA, IFFNSH, and IFABXIT calls.

An IFAM4 job involves a two-step procedure: step one is to link-edit the
application program and step two is to execute the IFAM4 batch job which runs
Model 204 and the application program.

IFAM4 applications can run under the z/OS operating system. Examples of the
IFAM4 job steps showing sample setups are provided in the sections which
follow. The following topics are covered:

« Link-editing the application program
* Running the application program

See “IFAM4 jobs: Control statements” on page 45 for a description of the
control statements that are used with an IFAM4 job.

Running the IFAM4 application and Model 204

IFAM4 is a single-region configuration of Model 204 that supports a single user
using a private copy of Model 204.

When you use the IFAM4 interface, your application program and the
Model 204 service routines run as separate tasks in a single region or virtual
machine.

Note: In order to use the IFAM4 facility, the Model 204 system manager must
initially build the IFAM4 load module for your installation site. IFAM4 must be
link-edited with the REUS option and must be named IFAM4.

Contact your Model 204 system manager to get the name of the Model 204
load library that is used to run IFAM4 programs at your site. For more
information about creating the IFAM4 module, refer to the Rocket Model 204
installation instructions for your operating system.

Using IFSTRT threads

IFAM4 supports an application that uses one or more threads. An IFAM4
application can use only IFSTRT threads.

If your application uses single cursor IFSTRT threads, IFAM4 provides the most
efficient way to run a multithreaded batch HLI program. IFAM4 is also useful in
certain test and batch production situations.

Running concurrent IFAM4 applications

Ordinarily, two concurrently running HLI programs do not use IFAM4 to
interface with a single copy of Model 204. Each IFAM4 application program
runs in its own region and must have its own copy of Model 204.

42 Rocket Model 204 Host Language Interface Reference Manual

However, the capability to use multiple applications or copies of an application
with a single copy of Model 204 exists. To run multiple applications or copies,
the host installation must provide a single controlling or monitor program to
attach as subtasks each application program that is to communicate with
Model 204.

This monitor program is then considered to be the application referred to
subsequently in the IFAM4 control statements. Each of these application
programs must have its own copy of IFIF4 link-edited to do the Host Language
Interface calls and data transfers.

IFAM1 jobs: Compiling under Enterprise PL/I for z/OS

When compiling a PL/I application under the Enterprise PL/I for z/OS compiler,
the following compiler parameter is required:

DEFAULT (L INKAGE (SYSTEM))

This causes the parameter list to be built in the same way that it was built by
the old compilers (including turning on the high-order bit of the address of the
last parameter).

For example:

//PLICMPL EXEC PGM=1BMZPLI ,PARM="0BJECT,OPTIONS,
// DEFAULT(LINKAGE(SYSTEM)) " ,REGION=512K, . . .

If this compiler option is not specified, subsequent executions of the application
will fail with 0C4 abends.

IFAM4 jobs: Link-editing under z/OS

Link with IFIF4

To link-edit your IFAM4 job running under z/OS, link the IFAM4 application with
the Model 204 object module IFIF4 using the INCLUDE OB statement in
SYSIN DD.

Figure 3-8 shows an example of the JCL that may be used to link-edit an IFAM4
application to build the application load module. In this example, COBUCL is a
COBOL compile-and-link procedure and the program name is COBOLTST.

Figure 3-8. Example of z/OS JCL to link-edit COBOL application
(IFAM4)

//EXECCOBUCL

//LKED.SYSLMODDDDISP=(NEW,CATLG),
//DSNAME=LOCAL .M204 . IFAM4 _APPLIC

HLI Job Requirements 43

//LKED.OBDDDSN=LOCAL -M204 .0BJECT ,DISP=SHR
//LKED.SYSINDD*

INCLUDE OB(IFIF4)

NAME COBOLTST(R)

Figure 3-9 below shows another example of the JCL that may be used to link-
edit an IFAM4 application to build the application load module. In this example,
PL1LFCL is a PL/1 compile-and-link procedure and the program name is
PLITEST.

Figure 3-9. Example of z/OS JCL to link-edit PL/1 application (IFAM4)

//EXECPL1LFCL

//LKED . SYSLMODDDD I SP=(NEW, CATLG)
//DSNAME=LOCAL _M204 . IFAM4 . APPLIC

//LKED .OBDDDSN=LOCAL .M204 .OBJECT,D1SP=SHR
//LKED.SYSINDD*

INCLUDE OB(IFIF4)

NAME PL1TEST(R)

IFAM4 jobs: Running under z/OS

Execute IFAM4

Once you have link-edited the application program, run the IFAM4 application
in z/OS.

Figure 3-10 shows a sample excerpt of the JCL that may be used to run an
IFAM4 application which was link-edited as shown in Figure 3-9. The sample
job stream runs Model 204 and an IFAM4 application program (executing
IFAM4) with three IFSTRT threads (IODEV=23). In this example, the program
name in IFAM4IN DD is PLITEST.

Figure 3-10. Example of z/OS JCL to run application (IFAM4)

//RUN EXEC PGM=I1FAM4,REGION=1024K,TIME=10,

// PARM="SYSOPT=160, LIBUFF=1024"
//STEPLIB DD DSN=LOCAL.M204.1FAM4 _APPLIC,DISP=SHR
// DD DSN=LOCAL.M204.LOAD,DISP=SHR

//CCAAUDIT DD SYSOUT=A

//CCAJRNL DD DSN=M204.JRNL,DISP=0LD
//CCATEMP DD UNIT=3380,SPACE=(TRK,40),

// DISP=(NEW,DELETE)

//CCASNAP DD SYSOUT=A

//SYSUDUMP DD SYSOUT=A

//VEHICLES DD DSN=M204.FILE.VEHICLES,DISP=SHR
//CUSTOMER DD DSN=M204.FILE.CUSTOMER,DISP=SHR
//EMPLOYEE DSN=M204 .FILE.EMPLOYEE,DISP=SHR
//CCAPRINT DD SYSOUT=A

//CCASERVR DD UNIT=3380,DISP=(NEW,DELETE),

44 Rocket Model 204 Host Language Interface Reference Manual

7/ SPACE=(CYL,2)

//CCAIN DD *

NUSERS=4 ,NSERVS=3,NFILES=3,NDIR=3
I10DEV=23

I10DEV=23

I10DEV=23

*SLEEP 3600

/*

//1FAM4IN DD *

PL1TEST

P1=149,P2=ANDREW

/*

//SYSOUT DD SYSOUT=A
//INFILE DD DSN=RANDOM. INPUT.DATA,DISP=SHR

See page 48 for information about IFAM4 job step return codes and job run
ABENDSs. Note that the IFAM4 load module must be installed at your site and
must be named IFAM4.

IFAM4 jobs: Control statements

Overview of IFAM4 job control statements
The control statements listed in Table 3-2 are used in an IFAM4 job.

Table 3-2. IFAM4 control statements

Statement Use

EXEC Required

STEPLIB Required

CCAJRNL Required for roll-forward recovery
CHKPOINT Required for roll-back recovery
CCAAUDIT Optional

CCATEMP Required

CCASNAP, SYSUDUMP

Required for error diagnostics

CCAPRINT Required

CCAIN Required

CCASERVR Required for server swapping
CCASTAT Required for security

CCAGRP Required for permanent file groups
IFAMA4IN Required

HLI Job Requirements 45

Table 3-2. IFAM4 control statements (Continued)

Statement Use
Model 204 files Required
Application program files Optional

Information about the EXEC, STEPLIB file, CCAIN, IFAM4IN, Model 204 files,
and application program file statements for IFAM4 jobs starts on the next page.

For a detailed description of the Model 204 data sets that are used for HLI jobs,
refer to the Rocket Model 204 Host Language Interface Programming Guide.
For additional information about the Model 204 job control statements, refer to
the Rocket Model 204 documentation wiki:

http://m204wiki.rocketsoftware.com/index.php/Using_HLI_and_batch_configu
rations

EXEC statement

You can specify the following parameters in the EXEC statement:

PGM — Required; Must specify IFAM4 (and not the name of the application
program).

 REGION — Required; Indicates the size of the memory area to be allocated
for both IFAM4 and the application. Refer to the Rocket Model 204
documentation wiki for information about setting the REGION parameter:

http://m204wiki.rocketsoftware.com/index.php/Defining_the_runtime_envir
onment_(CCAIN)#Runtime_environment_specifications

 TIME — Required; Indicates how much time the application program and
Model 204 together can use before being cancelled by the operating
system.

e PARM — Optional; Indicates any Model 204 runtime parameters, to be
passed to Model 204. Note that user application parameters are not
specified in the EXEC statement for IFAM4 and are handled instead by
IFAM4IN, which is described below.

Specify any Model 204 parameters that can be set in the EXEC statement
using the following format:
,PARM="parameter=value[,parameter=value]ee=’

Note that the following guidelines apply for specifying SYSOPT parameter
settings:

— If option 16 is set, a valid LOGIN account must be specified in the
IFSTRT call for each application thread that is started by the job.

— Setting option 32 (print RK lines) provides an audit trail or journal log of
each Host Language Interface call made to Model 204. This log is

46 Rocket Model 204 Host Language Interface Reference Manual

invaluable for debugging the application.

STEPLIB statement

CCAIN file

IFAMA4IN file

The STEPLIB file points to the load module libraries where the application
program and the Model 204 IFAM4 interface program reside.

The STEPLIB file statement must specify the Model 204 load module library or
the library that contains IFAM4 and the user’s application program. If the
Model 204 load module library and application load library are in separate
libraries, use concatenated DD data set definition statements.

The CCAIN input file is required for IFAM4 to specify Model 204 User O
parameters that apply for the rest of the job run. For IFAM4 the following
parameters and statements are required in the CCAIN DD:

NUSERS — Required; NUSERS is required on the User 0 parameter line.
Set NUSERS equal to the number of threads to be used (that is, the number
of IODEV statements) plus one.

IODEV=23 — Required; Following the User 0 parameter lines, insert an
IODEV=23 statement for each thread to be started in the application
program.

*SLEEP — Required; You must use the *SLEEP command following the
IODEYV lines to specify an elapsed time in seconds longer than the time the
application program needs to finish processing. *SLEEP suspends
processing of the CCAIN input stream but allows the application program
threads to continue.

Note that IFAM4 immediately terminates when the application program
ends. If *SLEEP times out before the application program completes,
IFAM4 ends and, if the application is updating the database, file damage
may occur.

Note: Model 204 expects the CCAIN data set to consist of 80-character
lines. Data is in columns 1 through 71. Any nonblank character in column
72 indicates continuation of the line in to the next line. Refer to the Rocket
Model 204 documentation wiki for a complete description of the CCAIN file:

http://m204wiki.rocketsoftware.com/index.php/Defining_the_runtime_envir
onment_(CCAIN)

Use the IFAMA4IN file definition statement to specify a data set that contains the
following two control statements:

1. The first statement is required and contains the name of the your

application program as specified in the compile-and-link job. It must start in

HLI Job Requirements 47

Column 1.

2. The second statement is used to specify parameters to be passed to the
application program, as necessary.

Note: If you are running the application program named APATTACH, omit
the entire IFAM4IN data set.

Model 204 files

The control statements must contain a data set or file definition statement for
each data set of each Model 204 file to be used in the run.

A disposition of either SHR or OLD can be specified, depending whether the
Host Language Interface job runs concurrently with other Model 204 programs
which use the file. Usually SHR is the recommended disposition. Model 204
makes use of operating system enqueuing to resolve updating conflicts.

Application program files

The application program may need data set or file definition statements of its

own for various data sets. Be careful not to specify file names that are the same
as the names of any of the data set or file definition statements needed by the
Host Language Interface itself.

IFAM4 jobs: Job errors and ABENDs

Follow the guidelines in Table 3-3 below for troubleshooting IFAM4 job ABEND
codes.

Table 3-3. IFAM4 job ABEND codes

Code Solution

S806 Check that the following items are correctly specified:
1. Verify that IFAM4 is named IFAM4 in the link-edit.

2. Verify that the STEPLIB DD statement points to the library or
libraries containing IFAM4 and the application program.

3. Verify that the application program is correctly specified in
Column 1 of the first statement of IFAM4IN.

48 Rocket Model 204 Host Language Interface Reference Manual

Table 3-3. IFAM4 job ABEND codes (Continued)

Code

Solution

S804 or S80A

Verify that the REUS option was specified in the link-edit of IFAM4.
The following conditions indicate that the REUS option was not
specified in the link-edit of IFAM4:

e |IFSTRT returns a completion code of 1001.

A message appears that monitor requested IFAM4 termination.

* IBM messages indicate that there is not enough storage for
GETMAINS.

Follow either step one or two:
1. If the REUS option was not specified, relink IFAM4.

2. Ifthe REUS option was specified, increase REGION by 10K and
add 3000 to the SPCORE parameter.
Note: The SPCORE parameter defaults to 12288 in IFAM4 and can be

set in the PARM field of the EXEC statement or on User 0's
parameter line.

Job step return codes

IFAMA4 sets the return code for the job step according to the highest completion
code from Model 204 and the application program.

IFAM4 returns the job step return codes for the error conditions listed below.

Code

Error condition

999

Model 204 is not initialized properly.

998

Either the application or Model 204 ABENDs.

Note that option 64 of the SYSOPT parameter can be set to force an ABEND
without a dump at termination when the return code is nonzero. The SYSOPT
parameter is specified in the EXEC statement, which is described on page 32.

HLI Job Requirements 49

50 Rocket Model 204 Host Language Interface Reference Manual

Part Il
HLI Functions

Part Il describes in detail each of the calls that is available
using the Model 204 Host Language Interface facility. Use
this information to code the calls in your HLI application
program.

HLI Coding Conventions

Overview

This chapter gives the application programmer guidelines for coding
HLI call parameters that apply in general, and conventions to follow
when using particular programming languages.

For more information

Refer to Chapter 6 for descriptions of all of the HLI calls and their
parameter lists. See Appendix A and Appendix B for examples of HLI
programs written in different programming languages.

General coding guidelines

Using the host language call protocol (the CALL verb)

Host Language Interface functions are called by the host language
program according to the host language subroutine call protocol. Each
HLI function is an external subroutine and is called with a CALL verb of
the host language.

For example:
Language Example using call verb
COBOL CALL “IFOPEN” USING RET-CODE, FILE-NAME
FORTRAN CALL IFOPEN(RETCD,FILEN)

HLI Coding Conventions 53

Language Example using call verb

PL/ CALL IFOPEN (RET_CODE,FILE_NAME)

Assembler CALL IFOPEN,(RETCD,FILEN),VL

Note: If you are using COBOL, your COBOL compiler determines whether or
not you use double quotes.

Using function names and aliases

All Host Language Interface function names begin with the letters IF and are
seven characters or less in length, for example, IFFIND and IFCOUNT.

Function names that are seven characters in length also have an alias (six
characters or less in length) that is used in FORTRAN programming.

The alias name, if available, is provided in the Syntax description of a call. The
full name is first, followed by a vertical bar separator, followed by the alias. For
example, IFFINDC | IFFDC, where IFFDC is the alias.

See Chapter 5 for a complete listing of HLI calls by name.

Using function numbers

All Host Language Interface functions except IFCALL, IFLOG, and IFSTRT (in
IFAM1) have an associated function number. You can use IFCALL to call
functions that have numbers only if you are running an IFAM2 or IFAM4 job.

The function number, where available, is provided in the Syntax description of
the individual call, enclosed inside parentheses. See Chapter 6 for a
description of the standard convention used to identify function numbers in this
document.

See Chapter 5 for a complete listing of HLI calls and their numbers.

Specifying HLI call parameters

The following guidelines apply for specifying HLI call parameters:
» The same set of parameters for each call is required with all languages.

» The order of the parameters in each call is important. Follow the syntax that
is specified for each call.

* Except where noted, you cannot omit a parameter. If you do not want to
specify a value for a parameter, supply a null placeholder parameter. If, for
example, parameters 3 and 4 are optional and you select one, you include
both. Note that a missing parameter is not a null parameter.

54 Rocket Model 204 Host Language Interface Reference Manual

Defining HLI call parameter data types

With the exception of one parameter of IFCHKPT that is in packed format, all
parameters are defined as one of the following types:

* Fullword aligned binary integers in COBOL

* Fullword integer in FORTRAN

e Fullword fixed binary integer in PL/I

» Short character string whose maximum length is 32 bytes

* Full length character string whose maximum length is the buffer size; the
input buffer size is determined by the LIBUFF User 0 parameter; the output
buffer size is determined by the LOBUFF User O parameter.

For example:
Language Example of integer variable
COBOL 05 INTEGER-ARG PIC 9(5) COMP SYNC.
FORTRAN INTEGER*4 INTARG
PL/I DECLARE INTEGER_ARG FIXED BIN(31):
Assembler INTARG DC F'O’

Length restrictions on character string parameters in HLI calls

Character string parameters are passed to Model 204, but Model 204 does not
always know the length. For example, length is known with PL/I dope vectors,
but length is not known with COBOL. Length is language-dependent.

The mechanism that governs the maximum length that an HLI call may pass in
a single parameter is determined by the setting of the language indicator that
is specified (in the IFSTRT, IFSTRTN, IFDIAL, or IFDIALN call) in the HLI
application.

For a language indicator equal to 2 (that is, COBOL, FORTRAN, and
Assembler), the Model 204 User 0 parameter LIBUFF determines the
maximum length of a character string that may be passed by the HLI program
in an individual parameter; the Model 204 User O parameter LOBUFF
determines the maximum character string length to return.

For a language indicator equal to 1 or 3, that is, PL/I, the length of each
argument is supplied as part of the parameter. PL/l passes dope vectors in
parameter lists which contain the exact length of the parameters.

In the examples of character string variable definitions below, the actual length
of the input parameter is specified for COBOL and FORTRAN, and a maximum
length of 255 is specified for PL/I.

HLI Coding Conventions 55

For example:

Language Example of character string variable

COBOL 05 STRING-ARG PIC X(6) VALUE ‘value;’

FORTRAN LOGICAL*1 STRING(5)/'value’/

PL/ DECLARE STRING_ARG CHAR(255) VAR INIT
(‘value’)

Assembler STRING DC C'value’

Note: Except where noted, it is important to indicate the end of a character
string passed as an parameter with a semicolon (;).

Refer to the Rocket Model 204 Host Language Interface Programming Guide
for more information about character string variables used in HLI call
parameters.

Using the completion return code (RETCODE)

Except for IFABXIT, IFCALL, and IFCSA, the first parameter of each call is a
completion return code (RETCODE). In some cases RETCODE is the only
parameter that is specified for a call.

Your application program must check return codes because they indicate
success or failure or informative messages. Note that nonzero codes do not
always mean failure and vice versa.

Completion codes corresponding to particular error conditions are described in
the “Notes and Tips” section for individual calls to aid you in coding.

Refer to Chapter 8 for a list of completion return codes. Refer to the Rocket
Model 204 Host Language Interface Programming Guide for more information
about using completion return codes.

COBOL coding guidelines

Use the following coding conventions when COBOL is the host language:

e Call Host Language Interface functions by using a CALL in the
PROCEDURE DIVISION. For example:

CALL *1FOPEN” USING ERROR FILE-NAME.

e Declare all parameters in the WORKING STORAGE or LINKAGE
SECTION of the DATA DIVISION.

— You must define integer parameters as fullword, aligned, binary num-
bers. For example:

1 ERROR PIC 9(5) COMP SYNC.
— Define character parameters as alphanumeric. You must end input of a

56 Rocket Model 204 Host Language Interface Reference Manual

parameter string with a semicolon (;). For example:
FILE-NAME PIC X(14) VALUE “TESTFILE;PASS;”.
« Model 204 ignores extra embedded blanks within input parameters.

« The maximum character string length that can be passed to a Host
Language Interface function in a single parameter is determined by the
value of the LIBUFF parameter, which defaults to 255.

Note that LIBUFF is a Model 204 User O parameter that cannot be changed
once the Host Language Interface/Model 204 service program is initialized.

« The maximum character string length that a Host Language Interface
function returns to the application program is determined by LOBUFF.

Note that LOBUFF is a Model 204 User 0 parameter that cannot be
changed once the Host Language Interface/Model 204 service program is
initialized.

» The Host Language Interface function cannot determine the actual length
of a COBOL data area parameter.

Model 204 moves values into the data area, beginning with the first
character in the area and continuing until the function has finished
processing or until the maximum of LIBUFF character positions has been
filled.

Note: If the data area is longer than the returned values, the remaining
data area characters are not filled. If the data area is shorter than
the returned values, the characters following the data area are
overwritten.

* Some character string parameters are specially designated as short
strings. Short strings can be used for input or output.
The maximum length of a short string in IFAM2 is 32 bytes. In IFAM1 or
IFAM4, the maximum length is set by LIBUFF.

e Ifyourun CICS IFAM2 applications written in COBOL Il, set the &IFABEND
parameter in CICFG to ‘NO’. This prevents the abend handler in IFENTPS
from causing ASRAs.

If you do this, you may want to include an abend handler routine in your
COBOL Il applications to prevent hanging threads after an abend. If you do,
the abend handler routine must issue an IFFNSH call.

Refer to the Rocket Model 204 Host Language Interface Programming
Guide for detailed information about abend handling in an IFAM2 CICS
program.

FORTRAN coding guidelines

Use the following coding conventions when FORTRAN is the host language:

HLI Coding Conventions 57

Call Host Language Interface functions by using the CALL statement. For
example:

CALL IFOPEN (ERROR, FILENAME)

Define integer arguments as fullword integers. For example:
INTEGER*4 ERROR

End character string arguments with a semicolon. For example:

INTEGER*4 FILENAME(4)
DATA FILENAME/’TEST”,’FILE”,”;PAS”,”S; */

The conventions concerning the lengths of string arguments passed to or
returned from Host Language Interface functions are the same as those for
COBOL (see page 56).

For FORTRAN 77, the language indicator is 2 in releases prior to
Release 1.3. Add the following @PROCESS command listing all functions:
@PROCESS SC (IFSTRT,IFFIND, eee)

This compiles the FORTRAN program without dope vectors, which are not
supported.

PL/l coding guidelines

Coding conventions

Use the following coding conventions when PL/I is the host language:

Call Host Language Interface functions by using the CALL statement. For
example:

CALL IFOPEN (ERROR, FILENAME);

Declare all Host Language Interface functions called in a PL/l application
program in that program as external entry points.

Describe integer parameters as fullword, fixed, binary; describe string
parameters as character strings. For example:

DCL IFOPEN EXT ENTRY (FIXED BIN(31), CHAR(*)):;
Declare integer arguments as fixed, binary, fullword. For example:
DCL ERROR FIXED BIN (31);

Declare string arguments as character strings, either FIXED or VARYING.
For example:

DCL FINDSPEC CHAR(8) INITIAL (CSTATE=MA?);
DCL OUTDATA CHAR(256) VARYING;

58 Rocket Model 204 Host Language Interface Reference Manual

Note that in PL/I application programs, character string arguments do not
need to end with semicolons. All types of PL/I, that is, PL/I F-level (IFSTRT
language indicator = 1) or PL/lI Optimizer or Checkout (language indicator
= 3), pass to Model 204 a dope vector that contains the value length along
with the value string itself. A semicolon delimiter at the end of each string
argument is not needed.

However, semicolons within argument strings are still required where
appropriate. For example:

L FILEARGS CHAR(10) INITIAL (CCEN1;PASSW?);

e The maximum lengths for string arguments that are passed to or returned
from Host Language Interface functions are governed by the value of the
LIBUFF parameter.

e Astring returned from a Host Language Interface function is truncated if the
area in the PL/l program to which it is being returned is shorter than the
returned value. If the returned value is shorter than the return data area, the
unused portion of the data area remains unchanged for FIXED strings, and
a string’s length is set for VARYING strings.

» The special argument designation of short string does not apply to PL/I.

Passing a channel name as a string in IFSTRTN or IFDIALN

When an IFSTRTN or IFDIALN call is made (in IFAM2) with a language
indicator of 1 or 3, Model 204 expects the channel name to be a string and not
a PL/I dope vector.

To force the compiler to pass the address of the string instead of the dope
vector, you can use a data type that does not use dope vectors, such as FIXED
BIN. Either a based or defined variable of this type can overlay the original
argument. The variable is passed to the call. A based variable, unlike a defined
variable, does not produce any compiler error messages.

The following example passes the address of the string independent of the PL/I
compiler in use:

DCL

IFSTRTN EXTERNAL ENTRY(FIXED BIN(31),/* completion code */
FIXED BIN(31),/* language ind */

CHAR(*),/* login info */

FIXED BIN(31),/* update indicator */

FIXED BIN(31),/* thread id */

FIXED BIN(31));/* CRAM [subsysname:]channelname */

DCL

RETURN_CODE FIXED BIN(31),
LANGUAGE_INDICATOR FIXED BIN(31),
LOGIN_INFO CHAR(15),
UPDATE_INDICATOR FIXED BIN(31),
THREAD_ID FIXED BIN(31),

HLI Coding Conventions 59

CRAM_CHANNEL CHAR(13) INIT(”SSN1:MYCHAN®),
CRAM_CHANNEL_ARG FIXED BIN(31) BASED(P);

/* THE FOLLOWING STATEMENT SETS THE POINTER P TO THE */
/* ADDRESS OF CRAM_CHANNEL. P 1S ALSO THE ADDRESS OF */
/* CRAM_CHANNEL_ARG. */

P = ADDR(CRAM_CHANNEL);

CALL IFSTRTN(RETURN_CODE,LANGUAGE_INDICATOR,LOGIN_INFO,
THREAD_1D,CRAM_CHANNEL_ARG);

The following call is for IFDIALN:

CALL IFDIALN(RETURN_CODE,LANGUAGE_INDICATOR,
CRAM_CHANNEL_ARG)

Assembler language coding guidelines

Assembler language programs usually adhere to the standard calling
sequence used by COBOL and FORTRAN and are subject to the same
conventions that govern parameter formats and lengths.

Note, however, when starting an IFSTRT, IFSTRTN, IFDIAL, or IFDIALN
thread, any of the three language indicator values (1, 2, or 3) can be used with
an Assembler language application program.

Accordingly, the calling sequences and data structures that correspond to the
particular language specified in the thread call must be used in the Assembler
application program.

Regardless of the language indicator specified, use the following coding
conventions when Assembler is the host language:

e The IFFIND call must have the following format:
CALL IFFIND, (ERR,QUAL1),VL

* Under z/OS, all calls must end with the VL parameter.

Pascal/VS coding guidelines
Use the following conventions when Pascal/VS is the host language:
» Declare integer arguments as type INTEGER. For example:
VAR 1:INTEGER;

» Declare character string parameters as PACKED ARRAY OF CHAR, and
end their values with a semicolon. For example:

TYPE M204_.STR = PACKED ARRAY (-1..255.) OF CHAR;
VAR FILENAME: M204.STR;
FILENAME:="TESTFILE;PASS;~;

60 Rocket Model 204 Host Language Interface Reference Manual

Declare HLI functions as external FORTRAN procedures and pass all
arguments by REFERENCE, using the VAR keyword. For example:

PROCEDURE IFOPEN (VAR ERROR: INTEGER;VARFILENAME:M204.STR);
FORTRAN;;

Use language indicator 2 in the IFSTRT call.

Coding guidelines for other languages

You can use Host Language Interface functions for languages other than
COBOL, FORTRAN, PL/l, Assembler, and Pascal.

Follow the conventions below for passing parameters depending on the
language indicator specified in the IFSTRT, IFSTRTN, IFDIAL, or IFDIALN call
that establishes the thread:

For language indicator 1, you can call a Host Language Interface function
if the compiler can generate parameter lists that adhere to standard register
usage.

Note: Register 1 must point to the parameter list and consist of a list of
memory addresses.

For language indicator 2, the addresses point directly to the parameter
values. The last valid parameter is flagged by setting the high-order byte of
the parameter address.

Many language compilers that do not ordinarily follow the parameter
passing conventions listed above have special options for calling external
FORTRAN and Assembler language routines. For example, Pascal/VS
passes parameters by value in some cases.

These special options allow Host Language Interface functions to be
invoked using language indicator 2.

HLI Coding Conventions 61

62 Rocket Model 204 Host Language Interface Reference Manual

HLI Function Summary

Overview

This chapter summarizes the calls that are available using the
Model 204 Host Language Interface facility. Read this chapter if you are
using the HLI facility for the first time.

See page 73 for a complete listing of HLI function calls.

For more information

See Chapter 6 for a detailed description of each call.

This chapter does not provide specific descriptions of HLI calls or
information about coding an application program using the calls. For
information about coding application programs using HLI calls, refer to
the Rocket Model 204 Host Language Interface Programming Guide.

IFDIAL thread calls

IFDIAL thread

An IFDIAL thread provides a line-at-a-time terminal type interface
between Model 204 and a host language program that is running in
batch.

With an IFDIAL thread, an application that is written in a host language
can transmit data to and from Model 204 using the IFWRITE and
IFREAD calls.

HLI Function Summary 63

See Chapter 3 for information about setting up and running the batch
Model 204 job using an IFDIAL thread.

Summary of IFDIAL calls

Table 5-1 summarizes the HLI calls that are available for use only with an
IFDIAL thread. See Chapter 6 for a detailed description of each call.

Table 5-1. IFDIAL functions

Call Function

IFATTN Sends an attention interrupt.

IFDIAL Starts an IFDIAL thread.

IFDIALN Starts an IFDIAL thread using a specified communications
channel name.

IFHNGUP Ends all threads that are started in a job.

IFREAD Gets a line of output from Model 204.

IFSETUP Initiates contact with Model 204 and sets the PARM

parameters and CCAIN statements for the IFAML1 job.

IFWRITE Sends a line of input to Model 204.

IFSTRT thread calls

IFSTRT thread

An IFSTRT thread provides a user interface between Model 204 and a host
language program that is running in batch.

With an IFSTRT thread, an application that is written in a host language can
issue calls to Model 204 that perform operations against the database which
are similar to Model 204 commands and SOUL statements.

See Chapter 3 for information about setting up and running the Online or batch
Model 204 job using an IFSTRT thread. See Chapter 6 for a detailed
description of the IFSTRT call.

Different operational levels

The HLI calls that are available for use with an IFSTRT thread are categorized
by functionality and operate at the following levels:

* System
* Transaction

e File or group

64 Rocket Model 204 Host Language Interface Reference Manual

 Set
» Single record

A typical application program works at all levels, using the HLI calls that are
available at each level. The calls that are available in each of these categories
are summarized in the tables on the following pages.

Enqueuing action and record locking behavior

When several users have access to the same files or groups, Model 204
prevents conflicting, simultaneous use of records with a facility called
enqueuing. Enqueuing is performed at the thread level.

With an IFSTRT thread, most HLI function calls automatically enqueue and
dequeue on the resources, such as the files, groups, sets, or records, to which
they refer.

See Chapter 6 for detailed information about the record locking behavior of
individual calls. Refer to the Rocket Model 204 Host Language Interface
Programming Guide for more information about enqueueing on an IFSTRT
thread.

System level IFSTRT calls

System level functions constitute the highest level of access to the Host
Language Interface Model 204 service routines. At the system level, most
functions do not require a file or group context.

Table 5-2 summarizes the IFSTRT calls that function at the system level.

Table 5-2. System level IFSTRT calls

Call Function

IFCALL Calls another HLI function by number.

IFCHKPT Requests a checkpoint, checkpoint status information, or both.
(Note that IFCHKPT is also a transaction-level function.)

IFDTHRD Deletes the current thread and switches to another thread.

IFEFCC Returns specific information about field values or record numbers
that cause a field constraint conflict using the IFSTOR, IFUPDT, or
IFPUT HLI calls

IFEPRM Reads a parameter.

IFERLC Returns a file name, record number, and user name after a record

locking conflict occurs in an HLI program that issues a call that
requires locking a record

IFERR Places a message on the journal, requests a snap dump of the
Model 204 region, or both.

HLI Function Summary 65

Table 5-2. System level IFSTRT calls

Call Function

IFCALL Calls another HLI function by number.

IFFNSH Deallocates all threads; finishes HLI portion of program.
IFGERR Reads the latest error message produced by Model 204.
IFLOG Logs in user with user ID and password (IFAM1).

IFRPRM Resets a parameter.

IIFSPRM Sets a parameter.

IFSTHRD Switches from one thread to another.

IIFSTRT Establishes an IFSTRT thread connection.

IFSTRTN Establishes an IFSTRT thread connection to an alternate HLI

Model 204 service program.

IFUTBL Resets the size of a user’s server tables.

Transaction level IFSTRT calls

Transaction level functions operate in a job that uses the Host Language
Interface facility to manage transactions for a logical unit of work processing
against the Model 204 database.

Table 5-3 summarizes the IFSTRT calls that function at the transaction level.

Table 5-3. Transaction level IFSTRT calls

Call Function

IFBOUT Backs out current transaction.

IFCHKPT Requests a checkpoint or checkpoint status or both. (Note that
IFCHKPT is also a system-level function.)

IFCMMT Commits the current transaction.

IFCMTR Releases all record sets and commits the current transaction.

IFRELA Releases all record sets.

File or group level IFSTRT calls

HLI functions at the file or group level operate with a file or group.

For example, whenever an application program requires access to a Model 204
file, a file or group must be opened. IFOPEN must be called before any other
file or group level functions. IFOPEN establishes the current file or group on
which subsequent file or group level, record level, and set level functions
operate.

66 Rocket Model 204 Host Language Interface Reference Manual

Note: On a single cursor IFSTRT thread, each thread may have only one
current file or group. All functions operate against this file or group. On a
multiple cursor IFSTRT thread multiple files or groups may be accessed, and
the file or group that is specified in the HLI call is the one that is current for
processing. If the file specification is optional and no file is specified, the file that
was opened last is current, by default.

Table 5-4 summarizes the IFSTRT calls that function at the file or group level.

Table 5-4. File or group level IFSTRT calls

Call Function

IFCLOSE Closes all files and groups for the current thread.

IFDELF Deletes a field definition in a file. IFDELF can be used only
if the current context is a file.

IFDFLD Defines new fields in a file.

IFDISP Displays file, group, and other information.

IFFLS Checks for field-level security violations.

IFINIT Initializes a file. IFINIT can be used only if the current

context is a file.

IFNFLD Renames fields in a file. IFNFLD can be used only if the
current contest is a file.

IFOPEN Opens a file or group.

IFOPENX Opens a file or group, enqueuing upon the file(s) in

exclusive status.

IFRFLD Redefines fields in a file. IFRFLD can be used only if the
current context is a file.

Record set level IFSTRT calls

Functions at the record set level operate with sets of records or field values.

For example, the IFFIND function must be called to establish a current set
before any other set level functions can operate successfully.

On a multiple cursor IFSTRT thread, the set that is specified in the HLI call is
the one that is current for processing. On a single cursor IFSTRT thread, the
current set is the one last created.

The IFSTRT calls that function at the record set level are summarized in
Tables 5-5, 5-6, and 5-7 on the following pages. The tables are described
briefly below.

e Table 5-5 beginning on page 68 lists those calls that may be used on both
multiple cursor and single cursor IFSTRT threads.

HLI Function Summary 67

» Table 5-6 on page 69 lists those calls that may be used only on a multiple
cursor IFSTRT thread.

e Table 5-7 on page 69 lists those calls that may be used only on a single
cursor IFSTRT thread.

Record set level calls on any IFSTRT thread

Table 5-5 lists calls that can be used on both multiple cursor and single cursor
IFSTRT threads.

Table 5-5. Record set level calls on any IFSTRT thread

Call Function

IFCOUNT Counts the number of records in the current set.

IFDSET Deletes the current set of records from the file or group.
IFFAC Finds and returns record count.

IFFACC Compiles an IFFAC specification.

IFFACE Executes a precompiled IFFAC specification.

IFFDV Selects a set of field values to become the current value set.
IFFDVC Compiles an IFFDV specification.

IFFDVE Executes a precompiled IFFDV specification.

IFFILE Adds an invisible key field to all records in the current set.
IFFIND Selects a set of records as the current set.

IFFINDC Compiles an IFFIND specification.

IFFINDE Executes a precompiled IFFIND specification.

IFFNDX Selects a set of records and enqueues upon them exclusively.
IFFNDXC Compiles an IFFNDX specification.

IFFNDXE Executes a precompiled IFFNDX specification.

IFFWOL Selects a set of records as the current set, without locking.

IFFWOLC Compiles an IFFWOL specification.

IFFWOLE Executes a precompiled IFFWOL specification.

IFSKEY Sorts the records in the current IFFIND set; only the record key is
written to the sort records.

IFSKYC Compiles the IFSKEY specification.

IFSKYE Executes the precompiled IFSKEY specification.

IFSORT Sorts the records in the current set.

IFSRTC Compiles the IFSORT sort specification.

68 Rocket Model 204 Host Language Interface Reference Manual

Table 5-5. Record set level calls on any IFSTRT thread (Continued)

Call Function

IFSRTE Executes the precompiled IFSORT or IFSRTC specification.
IFSRTV Sorts the values in the current value set.

IFSTVC Compiles the IFSRTV specification.

IFSTVE Executes the precompiled IFSRTV specification.

Record set level calls on a multiple cursor IFSTRT thread

Table 5-6 lists those calls that may be used only on a multiple cursor IFSTRT
thread.

Table 5-6. Record set level calls on a multiple cursor IFSTRT thread

Call Function

IFCCUR Closes a cursor on a set.

IFCLST Clears a list.

IFOCUR Opens a cursor on a set.

IFOCURC Compiles the IFOCUR specification.

IFOCURE Executes the precompiled IFOCUR specification.
IFPROLS Places records from a found set onto a list.
IFRELR Releases records in a found set.

IFRRFLS Removes records in a found set from a list.

Record set level calls on a single cursor IFSTRT thread

Table 5-7 lists those calls that may be used only on a single cursor IFSTRT
thread.

Table 5-7. Record set level calls on a single cursor IFSTRT thread

Call Function

IFDEQL Dequeues the set of records on a specified list.

IFENQL Enqgueues in share or exclusive mode on the set of records of the
specified list.

IFLIST Places the records in the current set onto a named list.

Individual record level IFSTRT calls

Individual record functions operate on a record.

HLI Function Summary 69

On asingle cursor IFSTRT thread, IFGET, IFBREC, and IFPOINT establish the
current record on which they and other functions at this level operate. On a
multiple cursor IFSTRT thread, the current record in the cursor that is specified
in the HLI call is the record that is current for processing. The current record in
a cursor is established by an IFFTCH, IFSTOR, or IFFRN call.

The IFSTRT calls that function at the single record level are summarized in
Table 5-8, and in Tables 5-9 and 5-10. The tables are described briefly below.

« Table 5-8 lists those calls that may be used on both multiple cursor and
single cursor IFSTRT threads.

« Table 5-9 on page 70 lists those calls that may be used only on a multiple
cursor IFSTRT thread.

» Table 5-10 on page 71 lists those calls that may be used only on a single
cursor IFSTRT thread.

Table 5-8.

Individual record level calls on any IFSTRT thread

Call

Function

IFDALL

Deletes all the occurrences of a field from the current record.

IFDREC

Deletes the current record from its file.

IFDVAL

Deletes a field name = value pair.

IFPROL

Places the current record on a named list.

IFRRFL

Removes the current record from a named list.

Individual record level calls on a multiple cursor IFSTRT

thread
Table 5-9 lists those calls that may be used only on a multiple cursor IFSTRT
thread.
Table 5-9. Individual record level calls on a Multiple Cursor IFSTRT
thread
Call Function
IFFRN Points to the specified record in the specified file and makes it the
current record.
IFFRNC Compiles the IFFRN specification.
IFFRNE Executes the precompiled IFFRN specification.
IFFTCH Processes the next logical record or value and returns the
specified data.
IFFTCHC Compiles the IFFTCH specification.
IFFTCHE Executes the precompiled IFFTCH specification.

70 Rocket Model 204 Host Language Interface Reference Manual

Table 5-9. Individual record level calls on a Multiple Cursor IFSTRT
thread (Continued)

Call Function

IFOCC Counts the number of occurrences of the specified field in the
current record and returns a count.

IFOCCC Compiles the IFOCC specification.

IFOCCE Executes the precompiled IFOCC specification.

IFRNUM Returns the number of the current record in the specified cursor.

IFSTOR Creates a new record with the specified data and adds the record
to the specified file.

IFSTRC Compiles the IFSTOR specification.

IFSTRE Executes the precompiled IFSTOR specification.

IFUPDT Updates the current record with the specified data.

IFUPDTC Compiles the IFUPDT specification.

IFUPDTE Executes the precompiled IFUPDT specification.

Individual record level calls on a single cursor IFSTRT thread

Table 5-10 lists those calls that may be used only on a single cursor IFSTRT

thread.
Table 5-10. Individual record level calls on a single cursor IFSTRT
thread
Call Function
IFBREC Creates a new record.
IFCTO Counts the number of field occurrences in the current record.
IFCTOC Compiles an IFCTO specification.
IFCTOE Executes a precompiled IFCTO specification.
IFGET Reads information from the next record in the current set.
IFGETC Compiles an IFGET specification.
IFGETE Executes a precompiled IFGET specification.
IFGETV Reads the next value from the current value set.
IFGETX Reads information from the next record, enqueuing upon it
exclusively.
IFGETXE Executes a precompiled IFGET specification, enqueuing upon the

record exclusively.

IFGTVC Compiles the IFGETYV specification.

HLI Function Summary 71

Table 5-10. Individual record level calls on a single cursor IFSTRT
thread (Continued)

Call Function

IFGTVE Executes the precompiled IFGETV.

IFMORE Reads more information from the current record.

IFMOREC Compiles an IFMORE specification.

IFMOREE Executes a precompiled IFMORE specification.

IFMOREX Reads more information from the current record, enqueuing upon
the record exclusively.

IFMORXE Executes a precompiled IFMORE specification, enqueuing upon
the record exclusively.

IFPOINT Specifies a new current record.

IFPUT Updates the current record.

IFPUTC Compiles an IFPUT record.

IFPUTE Executes a precompiled IFPUT specification.

IFSTRT thread calls and compiled IFAM

Compiled IFAM facility

The Compiled IFAM (Inverted File Access Method) facility allows IFSTRT
thread calls to be compiled and stored.

Using the Compiled IFAM facility, you can execute a compilation at a later time
by specifying the name under which it was stored. You do not need to
recompile the stored call.

A compilation must be uniquely identified so that multiple calls can use it. The
name parameter included in all Compiled IFAM calls specifies a character
string that is used to identify the compilation. A null name string is the same as
an omitted parameter.

Three forms of Compiled IFAM calls

Three forms of IFSTRT calls are available using the Compiled IFAM facility:
compile and execute, compile-only, and execute-only. The following options
are available to accommodate different programming styles:

* Using a single call that compiles and executes with the name parameter
that identifies the compilation. The call executes and the compiled version
of the call is saved.

72 Rocket Model 204 Host Language Interface Reference Manual

When the same call is executed again or when another call containing the
same name parameter is executed, the stored compilation is executed
without requiring recompilation.

» Using two calls, one is compile-only and one is execute-only, with the name
parameter that identifies the compilation for the two phases of Compiled
IFAM processing: compilation and execution.

This option involves a two-call procedure, useful in loop processing. The
compilation form of the call is used outside the loop to compile (but not
execute) the call specification. Within the loop, the execution form of the call
is issued, thereby executing the previously compiled call.

See Table 5-11 for an overview of the calls that provide Compiled IFAM
functionality for IFSTRT thread processing.

Refer to the Rocket Model 204 Host Language Interface Programming Guide
for more information about IFSTRT calls and the Compiled IFAM facility.

Complete listing of HLI function calls

Table 5-11 lists the HLI calls in alphabetical order. Names that are underlined
indicate an IFDIAL thread call, all others are IFSTRT thread calls. For each call,
this table provides the following information:

» # lists the number which may be used to reference the function using
IFCALL. Note that IFCALL, IFLOG, and IFSTRT (in IFAM1) do not have
numbers.

» An asterisk under Alias indicates that the name is an alias, that is, it is the
shortened COBOL form (six characters or less in length) for the equivalent
call (under Equivalent). A dash indicates that the call name is not an alias.

e Anentry under Compiled IFAM indicates whether the call performs compile
and execute, compile only, or execute only processing. Related call(s) lists
functionally similar calls which provide alternate Compiled IFAM
processing. For example, for IFCTO (which compiles and executes),
related calls are: IFCTOC (compiles only) and IFCTOE (executes only).

« An asterisk under MC indicates that the call is valid for use with a multiple
cursor IFSTRT thread.

Table 5-11 provides a summary overview of the calls that are available using
the HLI facility, including their Compiled IFAM and multiple cursor (MC)
functionality.

Table 5-11. HLI function calls

Name # Alias Equivalent Compiled IFAM Related call(s) MC
IFABXIT 97 - - - - *
IFATTN 43 - - - - -

HLI Function Summary 73

Table 5-11. HLI function calls (Continued)

Name # Alias Equivalent Compiled IFAM Related call(s) MC
IFBOUT 71 - - - - *
IFBREC 20 - - - - -
IFCALL - - - - - *
IFCCUR 125 - - - - *
IFCHKP 30 * IFCHKPT - - *
IFCHKPT 30 - IFCHKP - - *
IFCLOS 12 * IFCLOSE - - *
IFCLOSE 12 - IFCLOS - - *
IFCLST 108 - - - - *
IFCMMT 72 - - - - *
IFCMTR 105 - - - - *
IFCNT 14 * IFCOUNT - - *
IFCOUNT 14 - IFCNT - - *
IFCSA 96 - - - - *
IFCTO 65 - - Compile and IFCTOC, IFCTOE -
execute
IFCTOC 66 - - Compile only IFCTO, IFCTOE -
IFCTOE 67 - - Execute only IFCTO, IFCTOC -
IFDALL 73 - - - - *
IFDELF 62 - - - - *
IFDEQ 38 - - -] %
IFDEQL 41 - - - - -
IFDFLD 24 - - - - *
IFDIAL 6 - - - - -
IFDIALN 7 - IFDILN - - -
IFDILN 7 * IFDIALN - - -
IFDISP 60 - - - - *
IFDREC 19 - - - - *
IFDSET 21 - - - - *
IFDTHRD 42 - IFDTRD - - *

74 Rocket Model 204 Host Language Interface Reference Manual

Table 5-11. HLI function calls (Continued)

Name # Alias Equivalent Compiled IFAM Related call(s) MC
IFDTRD 42 * IFDTHRD - - *
IFDVAL 32 - - - - *
IFEFCC 139 - - - - *
IFENQ 39 - - - - *
IFENQL 40 - - - - -
IFEPRM 25 - - - - *
IFERLC 138 - - - - *
IFERR 28 - - - - *
IFFAC 126 - - Compile and IFFACC, IFFACE *
execute
IFFACC 127 - - Compile only IFFAC, IFFACE *
IFFACE 128 - - Execute only IFFAC, IFFACC *
IFFCHC 99 * IFFTCHC Compile only IFFTCH, IFFCHE *
IFFCHE 100 * IFFTCHE Execute only IFFTCH, IFFCHC *
IFFD 13 * IFFIND Compile and IFFDC, IFFDE *
execute
IFFDC 46 * IFFINDC Compile only IFFD, IFFDE *
IFFDE 47 * IFFINDE Execute only IFFD, IFFDC *
IFFDV 74 - - Compile and IFFDVC, IFFDVE *
execute
IFFDVC 75 - - Compile only IFFDV, IFFDVE *
IFFDVE 76 - - Execute only IFFDV, IFFDVC *
IFFDX 56 * IFFNDX Compile and IFFDXC, IFFDXE *
execute
IFFDXC 57 * IFENDXC Compile only IFFDX, IFFDXE *
IFFDXE 58 * IFFNDXE Execute only IFFDX, IFFDXC *
IFFILE 22 - - - - *
IFFIND 13 - IFFD Compile and IFFINDC, IFFINDE *
execute
IFFINDC 46 - IFFDC Compile only IFFIND, IFFINDE *
IFFINDE 47 - IFFDE Execute only IFFIND, IFFINDC *
IFFLS 61 - - - - *

HLI Function Summary 75

Table 5-11. HLI function calls (Continued)

Name # Alias Equivalent Compiled IFAM Related call(s) MC

IFFLSH 45 * IFFLUSH - - *

IFFLUSH 45 - IFFLSH - - *

IFENDX 56 - IFFDX Compile and IFENDXC, *
execute IFFNDXE

IFFNDXC 57 - IFFDXC Compile only IFFNDX, IFFNDXE *

IFFNDXE 58 - IFFDXE Execute only IFFNDX, IFFNDXC *

IFEFNSH 3 - - - - *

IFFRN 118 - - Compile and IFFRNC, IFFRNE *
execute

IFFRNC 119 - - Compile only IFFRN, IFFRNE *

IFFRNE 120 - - Execute only IFFRN, IFFRNC *

IFFTCH 98 - - Compile and IFFTCHC, *
execute IFFTCHE

IFFTCHC 929 - IFFCHC Compile only IFFTCH, IFFTCHE *

IFFTCHE 100 - IFFCHE Execute only IFFTCH, IFFTCHC *

IFFWO 87 * IFFWOL Compile and IFFWOC, IFFWOE *
execute

IFFWOC 88 * IFFWOLC Compile only IFFWO, IFFWOE *

IFFWOE 89 * IFFWOLE Execute only IFFWO, IFFWOC *

IFFWOL 87 - IFFWO Compile and IFFWOLC, *
execute IFFWOLE

IFFWOLC 88 - IFFWOC Compile only IFFWOL, *

IFFWOLE
IFFWOLE 89 - IFFWOE Execute only IFFWOL, *
IFFWOLC

IFGERR 29 - - - - *

IFGET 15 - - Compile and IFGETC, IFGETE -
execute

IFGETC 48 - - Compile only IFGET, IFGETE -

IFGETE 49 - - Execute only IFGET, IFGETC -

IFGETV 77 - - Compile and IFGTVC, IFGTVE -
execute

IFGETX 36 - - Compile and IFGETXE, IFGETC -
execute

76 Rocket Model 204 Host Language Interface Reference Manual

Table 5-11. HLI function calls (Continued)

Name # Alias Equivalent Compiled IFAM Related call(s) MC
IFGETXE 50 - IFGTXE Execute only IFGETX -
IFGTVC 78 - - Compile only IFGETV, IFGTVE -
IFGTVE 79 - - Execute only IFGETV, IFGTVC -
IFGTXE 50 * IFGETXE Execute only IFGETX -
IFHNGP 8 * IFHNGUP - - -
IFHNGUP 8 - IFHNGP - - -
IFINIT 23 - - - - *
IFLIST 17 - - - - -
IFLOG - - - - - *
IFMORE 16 - - Compile and IFMREC, IFMREE, -
execute IFMOREC,
IFMOREE
IFMOREC 51 - IFMREC Compile only IFMORE, -
IFMOREE
IFMOREE 52 - IFMREE Execute only IFMORE, -
IFMOREC
IFMOREX 37 - IFMREX Compile and IFMORXE, -
execute IFMOREC
IFMORXE 53 - IFMRXE Execute only IFMOREX -
IFMREC 51 * IFMOREC Compile only IFMORE, IFMREE -
IFMREE 52 * IFMOREE Execute only IFMORE, IFMREC -
IFMREX 37 * IFMOREX Compile and IFMRXE -
execute
IFMRXE 53 * IFMORXE Execute only IFMREX -
IFNFLD 63 - - - - *
IFOCC 122 - - Compile and IFOCCC, IFOCCE *
execute
IFOCCC 123 - - Compile only IFOCC, IFOCCE *
IFOCCE 124 - - Execute only IFOCC, IFOCCC *
IFOCRC 106 * IFOCURC Compile only IFOCUR, IFOCRE *
IFOCRE 107 * IFOCURE Execute only IFOCUR, IFOCRC *
IFOCUR 95 - - Compile and IFOCRC, IFOCRE, *
execute IFOCURC,
IFOCURE

HLI Function Summary 77

Table 5-11. HLI function calls (Continued)

Name # Alias Equivalent Compiled IFAM Related call(s) MC
IFOCURC 106 - IFOCRC Compile only IFOCUR, *
IFOCURE
IFOCURE 107 - IFOCRE Execute only IFOCUR, *
IFOCURC
IFOPEN 1 - - - - *
IFOPENX 35 - IFOPNX - - *
IFOPNX 35 * IFOPENX - - *
IFPNT 44 * IFPOINT - - -
IFPOINT 44 - IFPNT - - -
IFPRLS 109 * IFPROLS - - *
IFPROL 33 - - - - *
IFPROLS 109 - IFPRLS - - *
IFPUT 18 - - Compile and IFPUTC, IFPUTE -
execute
IFPUTC 54 - - Compile only IFPUT, IFPUTE -
IFPUTE 55 - - Execute only IFPUT, IFPUTC -
IFREAD 9 - - - - -
IFRELA 104 - - - - *
IFRELR 103 - - - - *
IFRFLD 59 - - - - *
IFRFLS 110 * IFRRFLS - - *
IFRNUM 121 - - - - *
IFRPRM 27 - - - - *
IFRRFL 34 - - - - *
IFRRFLS 110 - IFRFLS - - *
IFSETP 86 * IFSETUP - - -
IFSETUP 86 - IFSETP - - -
IFSKEY 83 - - Compile and IFSKYC, IFSKYE *
execute
IFSKYC 84 - - Compile only IFSKEY, IFSKYE *
IFSKYE 85 - - Execute only IFSKEY, IFSKYC *

78 Rocket Model 204 Host Language Interface Reference Manual

Table 5-11. HLI function calls (Continued)

Name # Alias Equivalent Compiled IFAM Related call(s) MC
IFSORT 68 - - Compile and IFSRTC, IFSRTE *
execute
IFSPRM 26 - - - - *
IFSRTC 69 - - Compile only IFSORT, IFSRTE *
IFSRTE 70 - - Execute only IFSORT, IFSRTC *
IFSRTV 80 - - Compile and IFSTVC, IFSTVE *
execute
IFSTHRD 2 - IFSTRD - - *
IFSTOR 112 - - Compile and IFSTRC, IFSTRE *
execute
IFSTRC 113 - - Compile only IFSTOR, IFSTRE *
IFSTRD 2 * IFSTHRD - - *
IFSTRE 114 - - Execute only IFSTOR, IFSTRC *
IFSTRN 4 * IFSTRTN - - *
IFSTRT?! - - - - - *
IFSTRT2 - - - - ’
IFSTRTN 4 - IFSTRN - - *
IFSTVC 81 - - Compile only IFSRTV, IFSTVE *
IFSTVE 82 - - Execute only IFSRTV, IFSTVC *
IFUPDC 116 * IFUPDTC Compile only IFUPDT, IFUPDE *
IFUPDE 117 * IFUPDTE Execute only IFUPDT, IFUPDC *
IFUPDT 115 - - Compile and IFUPDC, IFUPDE, *
execute IFUPDTC,
IFUPDTE
IFUPDTC 116 - IFUPDC Compile only IFUPDT, IFUPDTE *
IFUPDTE 117 - IFUPDE Execute only IFUPDT, IFUPDTC *
IFUTBL 64 - - - - *
IFWRIT 10 * IFWRITE - - -
IFWRITE 10 - IFWRIT - - -
1. In IFAM1

2. In IFAM2 and IFAM4

HLI Function Summary 79

80 Rocket Model 204 Host Language Interface Reference Manual

HLI Function Calls

Overview

This chapter describes in detail all of the calls that are available using
the Host Language Interface. Use the information in this chapter to
code the HLI calls in your application program.

The calls are arranged in alphabetical order to allow for quick reference.

For more information

When designing program logic, the application programmer must be
familiar with the basic difference between IFSTRT and IFDIAL call
protocols. Also, when coding the calls the programmer needs to know
about differences in functionality using the different types of threads,
and must be aware of the difference between using multiple cursor and
single cursor IFSTRT threads.

For more information about differences in HLI functionality, see the
Rocket Model 204 Host Language Interface Programming Guide.

See Chapter 4 for information about coding HLI call parameters using
different host languages.

Function call notation conventions
Standard notation conventions are used in the detailed description of

each call. The conventions for call syntax and parameters that are
described in this section are used in this document.

HLI Function Calls 81

Identifying which type of thread for the call

The code(s) beside the call name at the top of a page indicate(s) the type of
thread usage that is valid for the call. The following codes are used:

mc Indicates a multiple cursor IFSTRT thread
sc Indicates a single cursor IFSTRT thread
di Indicates an IFDIAL thread

For example, the IFFIND call, which selects records and creates a found set, is
identified in the section “IFFIND call -mc,sc” on page 167 as:

IFFIND Call "M, SC

Both the mc and sc codes indicate that IFFIND may be used with either a
multiple cursor (mc) or a single cursor (sc) IFSTRT thread.

Call name and syntax
The syntax of host language calls is presented in the following format:
callname | alias (parmi, parmZ2,eeeparmsm)
where:

« callname is a keyword which specifies the name of the HLI function; an
alias, if available, is also provided. The alias is a name that is six characters
or less in length to be used for FORTRAN programming. A vertical bar
separates the callname from the alias, for example:

IFFIND | IFFD

* parmlis the first parameter in the call list. Parameters must be specified in
the proper syntax order, as shown (parm2 follows parm1, and so on, parmn
is last).

* A comma delimiter (,) separates parameters in the list, and the entire
parameter listis enclosed inside parentheses, for illustrative purposes only.
(When coding calls, use the delimiter and format that is valid in your host
language.)

Different forms of call syntax

The individual call description includes the full syntax and, where available, the
compile-only and execute-only forms of the call. For example, with IFFIND (full
syntax), the IFFINDC (compile-only syntax) and IFFINDE (execute-only
syntax) forms are also provided. Compile-only or execute-only syntax is used
with the Compiled IFAM facility.

82 Rocket Model 204 Host Language Interface Reference Manual

Parameters

Also, each form of the call, that is, full syntax, compile-only syntax, and
execute-only syntax, is identified by a call number inside parentheses, where
available. Note that you can use IFCALL to call functions that have numbers.

For example, for the three forms of the find function call:
e IFFIND Full syntax (13)

e |IFFINDC Compile-only syntax (46)

* IFFINDE Execute-only syntax (47)

Each parameter description provides a three-character code having the
following format:

[X.y.z]
where:

X Specifies that the parameter is used for input or output operations,
and is either of the following codes:

| (input)

O (output)

y Specifies that the parameter, if coded, must be defined in the host
language program as one of three possible data type variables,
and is one of the following codes:

i For an integer whose maximum length is 4 bytes

S For a short character string whose maximum length is 32 bytes

c For a character string whose maximum length is the buffer size

z Specifies whether the parameter must be coded in the call, and is

either (or both) of the following codes:

r (required)

o (optional)

For example, RETCODE [O,i,r] where:

0] Specifies that RETCODE is an output parameter

i Specifies an integer type variable (maximum length is 4 bytes)

r Specifies that RETCODE is required

Certain parameters may be either r or o depending, in some cases, on whether
the call is being coded on a multiple cursor IFSTRT thread or, in other cases,
whether the call is used for Compiled IFAM.

HLI Function Calls 83

For example, for IFFAC, the compilation name parameter is FAC_NAME
[l,s,r/0] where:

I Specifies that FAC_NAME is an input parameter

s Specifies a short character string type variable (maximum length is 32
bytes)
r/o Specifies that FAC_NAME is required for use with a multiple cursor

IFSTRT thread, and is only required for a single cursor IFSTRT thread
if using the compiled IFAM facility (IFFACC and IFFACE).

For an r/o code, read the parameter description to determine usage
requirements.

84 Rocket Model 204 Host Language Interface Reference Manual

IFABXIT call me:se

Function

Full syntax (97)

Compile-only
syntax

Execute-only
syntax

Parameters

Notes and tips

Coding
example
(CoBOL)

The IFABXIT call (ABEND EXIT) establishes the IFAM2 abend handler.
IFABXIT is available only for use with the IFAM2 CICS interface.

IFABXIT

A compile-only form of IFABXIT is not available.

An execute-only form of IFABXIT is not available.

No parameters available for use with the IFABXIT call.

Use the IFABXIT call with an IFAM2 connection to Model 204 only in a CICS
environment.

Use IFABXIT if the host language application does not require its own abend
handler. Using IFABXIT protects the application against a hung CRAM channel
in the event of an abend prior to the first functional IFAM2 call.

Issue the IFABXIT call as soon as possible after entering the program, after the
initial IFCSA call.

See the Rocket Model 204 Host Language Interface Programming Guide for
more information about CICS abend handling in IFAM2.

PROCEDURE DIVISION.

CALL “IFABXIT™.

85

IFATTN call

Function
Full syntax (43)

Compile-only
syntax

Execute-only
syntax

Parameters

Notes and tips

Completion
return code
(RETCODE)

Coding
example
(COBOL)

The IFATTN call (ATTENTION) sends an attention interrupt signal.
IFATTN(RETCODE)

A compile-only form of IFATTN is not available.

An execute-only form of IFATTN is not available.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is the required output

parameter. The code is a binary integer value.

Use the IFATTN call only with an IFDIAL connection.

The IFATTN call can be issued when a completion code of 1, 2, or 12 is
returned from the previous call to IFREAD or IFWRITE call.

When the IFATTN call is issued, any current SOUL request is purged. Follow
IFATTN with IFWRITE if processing is to continue.

If the IFATTN call is unsuccessful, Model 204 returns an error code of 4 if the
connection was lost.

PROCEDURE DIVISION.

CALL “IFATTN” USING RETCODE.

86 Rocket Model 204 Host Language Interface Reference Manual

IFBOUT call -mc.sc

Function

Full syntax (71)

Compile-only
syntax

Execute-only
syntax

Parameters

Notes and tips

Completion
return code
(RETCODE)

The IFBOUT call (BACK OUT) backs out an incomplete transaction on the
thread or threads that are active for the transaction in which the thread
participates.

IFBOUT (RETCODE)

A compile-only form of IFBOUT is not available.

An execute-only form of IFBOUT is not available.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is the required output
parameter. The code is a binary integer value.

Use the IFBOUT call to activate the Model 204 backout mechanism. The
backout function is valid only for transaction backout (TBO) files.

You can issue the IFBOUT call on the following IFSTRT threads:

* InIFAM2/IFAM4, a single cursor IFSTRT thread with update privileges or a

multiple cursor IFSTRT thread.

Note that you cannot issue IFBOUT on a single cursor IFSTRT thread with

read-only privileges, that is, with a thread type indicator of 0.

e InIFAML1, a single cursor or multiple cursor IFSTRT thread

Note: Only the thread, or threads, that participate in the current transac-

tion are backed out. Any IFAML1 type IFSTRT thread involves a

single-threaded transaction.

Single cursor IFSTRT threads that are started in a multithreaded IFAM2 or

IFAM4 HLI job participate in a multithreaded transaction. See the Rocket

Model 204 Host Language Interface Programming Guide for more information

about transaction processing in an HLI job.

IFBOUT is not valid on a read-only type thread, that is, any thread that is started

by IFSTRT with an update indicator of O for an IFAM2 / IFAM4 connection.

87

Coding
example
(COBOL)

If the IFBOUT call is unsuccessful, Model 204 returns the following error
completion codes:

Code Error condition

4 IFBOUT called for a non-transaction backout (non-TBO) file or for a read-
only thread.
40 IFBOUT call is encountered on a single cursor IFSTRT thread having

read-only privileges.

Record locking behavior

IFBOUT releases the lock pending updates (LPU) exclusive lock on updated
records and the single record enqueue (SRE) on the current record (if one
exists) that were obtained by this thread. The transaction is ended for all
participating threads and the backout and constraints log are freed.

Found sets are not released and the current record does not change. In a
multithreaded transaction the LPU and SRE locks obtained by other threads
are still held.

To ensure that all of the records and resource locks are released after the
IFBOUT call executes in a multithreaded transaction, issue IFCMMT on all of
the other single cursor IFSTRT threads participating in the transaction.

Note that a completed transaction cannot be backed out. For more information
about transaction backout, see the Rocket Model 204 Host Language Interface
Programming Guide.

WORKING-STORAGE SECTION.
01 ARGS-FOR-CALL.
05 RETCODE PIC 9(5) COMP SYNC.

PROCEDURE DIVISION.

CALL “IFBOUT” USING RETCODE.

88 Rocket Model 204 Host Language Interface Reference Manual

IFBREC call ®°°

Function

Full syntax (20)

Compile-only
syntax

Execute-only
syntax

Parameters

The IFBREC call (BEGIN RECORD) creates a new record and adds it to the
specified file or to the file that is current.

IFBREC(RETCODE,KEY_SPEC,FILE_SPEC,%VARBUF , %VARSPEC)

A compile-only form of IFBREC is not available.

An execute-only form of IFBREC is not available.

Specify the parameters in the syntax order shown above.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is the required first
parameter. The code is a binary integer value.

KEY_SPEC [l,c,0] The key specification is an optional input parameter

which specifies a key value. If the file is sorted or hashed,
the record’s sort key value or hash key value must be
supplied, and the value is automatically placed in the record
by IFBREC. If the file is not sorted or hashed, a null value
must be supplied to avoid receiving an error message.

You may specify the key value as a single %variable. If you
use a %variable, records that contain floating-point or bit
string keys can be stored. Model 204 processes the
%VARBUF and %VARSPEC parameters before
KEY_SPEC.

If you specify a %variable, do not include quotation marks in
the entry. If you specify a character string instead of a
%variable, you must use a single quotation mark to start and
end the string if the key contains a reserved word, equal
sign, or parenthesis.

If the file is not hashed or sorted, you must enter a semicolon
or null string.

89

Parameter Description

FILE_SPEC [1,s,0] The file specification is an optional input parameter
which identifies the Model 204 file that will be updated to
contain the new record. The guidelines for this optional
parameter are:

In individual file context, the file parameter is not required. If
you specify the parameter, it must contain the name of the
current file.

In a group context, this parameter is not required if IFBREC
is to create the record in the group update file. The group
update file, named in the group CREATE command,
receives all new records in the group unless you specify
otherwise.

In a group context, if a group update file has not been
defined for the group, or if IFBREC is to create the record in
a file of the group other than the group update file, the file
parameter must contain the name of the file in which the new
record is to be placed.

Specify the file name as a short character string.
Alternatively, you can use one of the following special
functions in place of a known file name string constant:

$CURFILE function (the current file of the group)
$UPDATE function (the group update file)

See the Rocket Model 204 documentation wiki for
information about the $file functions:

http://m204wiki.rocketsoftware.com/index.php/$Curfile
http://m204wiki.rocketsoftware.com/index.php/$Update

%VARBUF [l,c,0] The variable buffer is an optional input parameter that
addresses a data area which accommodates up to 255
bytes of data per value. The buffer contains values which
are defined by the %VARSPEC parameter, below, to be
assigned to %variables. Specify a character string.

See the Rocket Model 204 documentation wiki for
information about %variables:

http://m204wiki.rocketsoftware.com/index.php/Using_varia
bles_and_values_in_computation#Declaring_.25variables_
and_.25variable_arrays

%VARSPEC [l,c,0] The variable specification describes the format of the
data that is contained in the %VARBUF parameter, and lists
the %variables to be assigned. %VARSPEC specifies the
contents of the variable buffer, described above. Specify a
character string which follows a LIST, DATA, or EDIT
syntax.

%VARSPEC is a required input parameter if %VARBUF is
specified.

90 Rocket Model 204 Host Language Interface Reference Manual

Notes and tips

Completion
return code
(RETCODE)

Coding
example (PL/1)

Coding
examples
(COBOL)

Use the IFBREC call to create and store a record. The new record becomes the
current record. Use the IFPUT call after IFBREC to fill in the data fields in the
record. See the IFPUT call.

When FOPT=X'10" and the date/time stamp feature is installed, the IFBREC
function is not supported for DTS files.

If the IFBREC call is unsuccessful, Model 204 returns one of the following
completion return codes:

Code Error condition

4 The sort or hash key is a preallocated field that has a LENGTH attribute
and the value specified in IFBREC is null or too long.

10 Model 204 encountered invalid data values for BINARY and FLOAT
numeric field for a file having FILEMODL set to NUMERIC VALIDATION.

200 A uniqueness violation (field level constraint) has occurred.

Note: The current record number is not changed if an error occurs. If an error
occurs, avoid IFPUT calls that are aimed at building the new record.

See the Rocket Model 204 documentation wiki for information about BINARY
and FLOAT field values:

http://m204wiki.rocketsoftware.com/index.php/Data_maintenance#Storing_da
ta_in_fields

The PL/1 coding example below is for a sorted file, and the key is a required
entry.

KEY="JONES, JACK~;
CALL IFBREC (ERROR, KEY);

The COBOL coding example below is for an unsorted file.

WORK ING-STORAGE SECTION.
01 CALL-ARGS.
05 RETCODE PIC 9(5) COMP SYNC.
05 NULL PIC X(1) VALUE *;~.

PROCEDURE DIVISION.

CALL “IFBREC” USING RETCODE, NULL.

91

The COBOL example below is for an unsorted file in a group. In this example,
FILE-NAM is nine characters long, which enables you to store the maximum file
name size. Blanks following the file name or the semicolon are ignored.

WORKING-STORAGE SECTION.
01 CALL-ARGS.
05 RETCODE PIC 9(5) COMP SYNC.
05 NULL PIC X(1) VALUE”;~.
05 FILE-NAM PIC x(9) VALUE”ACCTPAY;”.

PROCEDURE DIVISION.

CALL ““IFBREC” USING RETCODE, NULL, FILE-NAM.
The COBOL example below is for the current file in the group.

WORK ING-STORAGE SECTION.
01 CALL-ARGS.
05 RETCODE PIC 9(5) COMP SYNC.
05 NULL PIC X(1) VALUE®;”.
05 FILE-NAM PIC x(9) VALUE”$CURFILE;”.

PROCEDURE DIVISION.

CALL “IFBREC” USING RETCODE, NULL, FILE-NAM.

92 Rocket Model 204 Host Language Interface Reference Manual

IFCALL call -mec.sc

Function

Full syntax

Compile-only
syntax

Execute-only
syntax

Parameters

Notes and tips

The IFCALL call (CALL) issues a call to a Host Language Interface function by

number.

IFCALL(FUNC_NO,RETCODE ,PARM_LIST)

A compile-only form of IFCALL is not available.

An execute-only form of IFCALL is not available.

Specify the parameters in the syntax order shown above.

Parameter

Description

FUNC_NO

[1,i,r] The function number is the required first parameter
(input) which specifies the preassigned number of a
particular HLI call to be run. Specify the function number as
an integer value using one of the values listed on page 94.
You can specify one number per call.

RETCODE

[O,i,r] The Model 204 return code is a required output
parameter. Model 204 returns a completion code for the call
whose function number is specified. The code is a binary
integer value.

PARM_LIST

[l,c,r] The parameter list is a required input parameter which
specifies the parameter(s) that is(are) required by the call
(excluding return code) whose function number is specified.
Specify a character string using the following format:

parml [,parm2eee];

See the parameter description, excluding the return code,
for the call whose number is specified.

The IFCALL call is not valid on an IFAM1 type of IFSTRT thread, or on an
IFDIAL thread. The form and action of the IFCALL call are no different on a
multiple cursor or single cursor IFSTRT thread.

You can use IFCALL to call by number any Host Language Interface call that
is assigned a number in Table 6-1, below. Note that IFCALL does not have its
own function number. There are also no function numbers for IFSTRT (in

IFAM1) and IFLOG.

93

Function numbers are only available for use with IFCALL. IFCALL provides an
alternative for coding calls where the host language limits the name variable

length.

Table 6-1. Host Language Interface function numbers

Number-Call Name

Number-Call Name

Number-Call Name

0 - reserved 47 - IFFINDE | IFFDE 94 - reserved

1 - IFSTRT (in IFAM2 48 - IFGETC 95 - IFOCUR
and IFAM4)

2 - IFSTHRD | IFSTRD 49 - IFGETE 96 - IFCSA

3 - IFFNSH 50 - IFGETXE | IFGTXE 97 - IFABXIT

4 - IFSTRTN | IFSTRN 51 - IFMOREC | IFMREC 98 - IFFTCH

5 - reserved 52 - IFMOREE | IFMREE 99 - IFFTCHC | IFFCHC

6 - IFDIAL 53 - IFMORXE | IFMRXE 100 - IFFTCHE | IFFCHE

7 - IFDIALN | IFDILN 54 - IFPUTC 101 - reserved

8 - IFHNGUP | IFHNGP 55 - IFPUTE 102 - reserved

9 - IFREAD 56 - IFFNDX | IFFD 103 - IFRELR

10 - IFWRITE | IFWRIT 57 - IFFNDXC | IFFDXC 104 - IFRELA

11 - IFOPEN 58 - IFFNDXE | IFFDXE 105 - IFCMTR

12 - IFCLOSE | IFCLOS 59 - IFRFLD 106 - IFOCURC |
IFOCRC

13 - IFFIND | IFFD 60 - IFDISP 107 - IFOCURE | IFOCRE

14 - IFCOUNT | IFCNT 61 - IFFLS 108 - IFCLST

15 - IFGET 62 - IFDELF 109 - IFPROLS | IFPRLS

16 - IFMORE 63 - IFNFLD 110 - IFRRFLS | IFRFLS

17 - IFLIST 64 - IFUTBL 111 - reserved

18 - IFPUT 65 - IFCTO 112 - IFSTOR

19 - IFDREC 66 - IFCTOC 113 - IFSTRC

20 - IFBREC 67 - IFCTOE 114 - IFSTRE

21 - IFDSET 68 - IFSORT 115 - IFUPDT

22 - IFFILE 69 - IFSRTC 116 - IFUPDTC | IFUPDC

23 - IFINIT 70 - IFSRTE 117 - IFUPDTE | IFUPDE

24 - IFDFLD 71 - IFBOUT 118 - IFFRN

25 - IFEPRM 72 - IFCMMT 119 - IFFRNC

94 Rocket Model 204 Host Language Interface Reference Manual

Coding
example
(COBOL)

Table 6-1. Host Language Interface function numbers (Continued)

Number-Call Name

Number-Call Name

Number-Call Name

26 - IFSPRM 73 - IFDALL 120 - IFFRNE
27 - IFRPRM 74 - IFFDV 121 - IFRNUM
28 - IFERR 75 - IFFDVC 122 - IFOCC

29 - IFGERR 76 - IFFDVE 123 - IFOCCC
30 - IFCHKPT | IFCHKP 77 - IFGETV 124 - IFOCCE
31 - reserved 78 - IFGTVC 125 - IFCCUR
32 - IFDVAL 79 - IFGTVE 126 - IFFAC

33 - IFPROL 80 - IFSRTV 127 - IFFACC
34 - IFRRFL 81 - IFSTVC 128 - IFFACE
35 - IFOPENX | IFOPNX 82 -IFSTVE 129 - reserved
36 - IFGETX 83 - IFSKEY 130 - reserved
37 - IFMOREX | IFMREX 84 - IFSKYC 131 - reserved
38 - IFDEQ 85 - IFSKYE 132 - reserved
39 - IFENQ 86 - IFSETUP | IFSETP 133 - reserved
40 - IFENQL 87 - IFFWOL | IFFWO 134 - reserved
41 - IFDEQL 88 - IFFWOLC | IFFWOC 135 - reserved

42 - IFDTHRD | IFDTRD

89 - IFFWOLE | IFFWOE

136 - reserved

43 - IFATTN 90 - reserved 137 - reserved
44 - IFPOINT | IFPNT 91 - reserved 138 - IFERLC
45 - IFFLUSH | IFFLSH 92 - reserved 139 - IFEFCC

46 - IFFINDC | IFFDC

93 - reserved

WORKING-STORAGE SECTION.

01 ARGS-FOR-CALL.

05 FUNC-NUM PIC 9(5) VALUE 14.

05 RETCODE
05 COUNT

PROCEDURE DIVISION.

PIC 9(5) COMP SYNC.
PIC 9(5).

CALL “IFCALL” USING FUNC-NUM, RETCODE, COUNT.

95

In this example, IFCALL calls function number 14, IFCOUNT, which requires a
single parameter for the output parameter, called COUNT.

96 Rocket Model 204 Host Language Interface Reference Manual

IFCCUR call ™°

Function

Full syntax
(125)

Compile-only
syntax

Execute-only
syntax

Parameters

Notes and tips

Coding
example
(CoBOL)

The IFCCUR call (CLOSE CURSOR) closes the named cursor on the current
thread.

IFCCUR(RETCODE , CURSOR_NAME)

A compile-only form of IFCCUR is not available.

An execute-only form of IFCCUR is not available.

Specify the parameters in the syntax order shown above.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is the required first
parameter. The code is a binary integer value.

CURSOR_NAME [I,s,r] Is arequired input parameter which specifies the name
of the cursor to be closed. This is a short character string
(maximum 32 characters), the name previously assigned to
the cursor in a corresponding IFOCUR call.

See CURSOR_NAME on page 226 for a description of the
cursor name for the IFOCUR call.

Use the IFCCUR call to close a cursor that is open on a thread. The IFCCUR
call indicates that processing against the cursor is complete.

You can reference a cursor again after it has been closed by reopening it. For
example, before referencing a closed cursor in a subsequent IFFTCH
statement, reopen it by issuing an IFOCUR call.

Note that when you reopen a cursor, Model 204 locates the cursor one position
before the first record or value in the found set.

The IFCCUR call provides companion functionality to the IFOCUR call in the
host language multiple cursor environment. See the IFOCUR call.

WORKING-STORAGE SECTION.
01 CALL-ARGS.
05 RETCODE PIC 9(5) COMP SYNC.

05 CURSOR-NAME PIC X(7) VALUE ““CRFORD;™.

97

PROCEDURE DIVISION.

CALL “IFCCUR” USING RETCODE, CURSOR-NAME.

Note: In the example, IFCCUR closes a cursor (named CRFORD) that was
opened and named by a previous IFOCUR call (not shown). See the coding
example for IFOCUR on page 226. An IFCCUR call can only be used to close
a cursor that is open.

98 Rocket Model 204 Host Language Interface Reference Manual

IFCHKPT call -mese

Function

Full syntax (30)

Compile-only
syntax

Execute-only
syntax

Parameters

The IFCHKPT call (CHECKPOINT) accesses the Model 204 checkpoint facility
and performs the specified function. The following functions can be performed
using IFCHKPT:

* Query checkpointing status
* Indicate that a checkpoint can take place
« Initiate an attempt to take a checkpoint

* Wait for a checkpoint to complete or time out
I FCHKPT | 1FCHKP (RETCODE , FUNC_CODE,CHK_1D)

A compile-only form of IFCHKPT is not available.

An execute-only form of IFCHKPT is not available.

Specify the parameters in the syntax order shown above.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is a required output
parameter. The code is a binary integer value. See the
completion codes in Table 6-2 on page 102.

99

Parameter

Description

FUNC_CODE

[1,i,r] The function code is a required input parameter which
specifies the code number for the checkpointing function to
be performed. Specify the code number as an integer value
using one of the codes listed below. You can specify one
code (0-3) per call.

0— Samples checkpoint status. (Does not initiate
checkpoint Model 204 returns the status in the return code
output parameter.

1— Quiesces the thread, initiates an attempt to take a
checkpoint, and returns immediately.

In a multithreaded transaction, this code is valid only for
single cursor IFSTRT threads with update indicator 1 that
are participating in the transaction.

This function code is not valid for a multiple cursor IFSTRT
thread.

2— Quiesces the thread, indicates that a checkpoint can be
taken, and waits for a checkpoint to occur or time out. (Does
not initiate an attempt to take a checkpoint.)

In a multithreaded transaction, this code is valid only if all the
other single cursor updating IFSTRT threads that are
participating in the transaction have called IFCHKPT with
function code 1.

In a multithreaded transaction, this code is valid only if all the
other single cursor updating IFSTRT threads that are
participating in the transaction have called IFCHKPT with
function code 1.

See “Notes and Tips” below for information about quiescing
threads.

CHK_ID

[O,c,rlo] The checkpoint ID is an output parameter that is
required only for a corresponding function code of 1, 2, or 3
in the IFCHKPT call. The ID identifies the checkpoint by
date and time on return from the IFCHKPT call. Model 204
returns an eight-byte packed value in the following format:
YYYYDDDutttttttt

where:

YYYYDDD is the year and day (in Julian date format) that
the checkpoint is taken or attempted.

tttttttt is the exact time that the checkpoint is taken or
attempted.

Notes and tips The IFCHKPT call can be used to take checkpoints that are used for recovery
on IFSTRT threads from within an IFAM2 or IFAM4 job.

IFCHKPT automatically closes all files or groups that are open on the thread.

There are other differences in IFCHKPT processing between single cursor
IFSTRT update threads and multiple cursor IFSTRT threads. On a multiple

100 Rocket Model 204 Host Language Interface Reference Manual

cursor IFSTRT thread, a transaction is activated only when, and if, updating
calls are executed. This allows checkpoints to be taken using IFCHKPT
between update units while the host language program is still in execution.

See the Rocket Model 204 Host Language Interface Programming Guide for
more information about checkpoints and transaction management in the HLI
processing environment.

Checkpointing for a multithreaded job
For a job that uses only multiple cursor IFSTRT threads, follow the steps below:

1. Call IFCMMT on all but the last thread with update units active.

2. Call IFCHKPT with function code 3 on the last updating thread.

Note: Typically, a job would only have one multiple cursor IFSTRT
thread which would eliminate step 1 above.

For a job that mixes both single cursor and multiple cursor IFSTRT threads,
follow the steps below:

1. Call IFCMMT on all multiple cursor IFSTRT threads with update units
active.

2. Follow guidelines for checkpointing on single cursor IFSTRT threads
which are described on the next page.

Note: Rocket does not recommend that you mix multiple cursor and sin-
gle cursor IFSTRT threads in an HLI application.

Checkpointing on single cursor IFSTRT threads

Once a host language job issues a single cursor IFSTRT (or IFSTRTN) call with
the update indicator set to 1, Model 204 considers an update unit to be in
progress and checkpoint requests from other sources time out.

With a multithreaded transaction, each single cursor IFSTRT update thread in
the job must indicate to Model 204 that it is quiescing in preparation for an
attempt to take a checkpoint.

Using single cursor IFSTRT update threads, in order to enable a checkpoint
request to be completed, the host language job must perform one of the
following:

* Issue an IFFNSH, which effectively resets the update indicator, but also
terminates the connection to Model 204.

e Call IFCHKPT with function code 1, 2, or 3. With multiple threads, call
IFCHKPT following these steps:

a. Issue IFCHKPT with function code 1 on all but the last single cursor
IFSTRT updating thread.

101

Completion
return code
(RETCODE)

b. Issue IFCHKPT with function code 2 or 3 on the last single cursor
IFSTRT updating thread. See the following sections.

IFCHKPT on last updating thread with function code 2

If the last updating thread issues IFCHKPT with function code 2, the thread
waits until the next attempt to take a checkpoint. It does not start an attempt to
take a checkpoint. It is impossible to predict how long the thread waits.

Note: The IFCHKPT function code 1 also initiates an attempt to take a
checkpoint on a single cursor IFSTRT updating thread. If a job has more than
one single cursor IFSTRT thread, and issues IFCHKPT with function code 1 on
all but the last thread, the IFCHKPT function code 2 on the last thread may wait
on the checkpoint attempt that was started by the first IFCHKPT call.

Whether or not this is the case depends on the setting of the CPTQ User 0
parameter and the amount of time between the first (function code 1) IFCHKPT
call and the last (function code 2) IFCHKPT call.

IFCHKPT on last updating thread with function code 3

If the last updating thread issues IFCHKPT with function code 3, an attempt to
take a checkpoint is initiated. The thread waits for the checkpoint to complete
or time out.

Note: The maximum time that the thread may wait is approximately CPTO +
CPTQ. CPTO and CPTQ are Model 204 User 0 parameters which control the
number of seconds to wait for threads to quiesce before timing out a
checkpoint.

See the Rocket Model 204 Host Language Interface Programming Guide for a
information about CPTO and CPTQ parameters in the HLI processing
environment.

Table 6-2 lists the Model 204 completion codes (RETCODE) for the IFCHKPT
call. Each completion code corresponds to a particular function code
(FUNC_CODE).

Table 6-2. IFCHKPT completion return codes (RETCODE)

Return code Function code Completion condition
0 0 Checkpoint is not currently in progress.
CHK_ID set to ID of last successful
checkpoint.
1 0 Checkpoint is in progress.
1 Checkpoint is started; CHK_ID set.
2,3 Checkpoint completed successfully;
CHK_ID set.

102 Rocket Model 204 Host Language Interface Reference Manual

Table 6-2. IFCHKPT completion return codes (RETCODE) (Continued)

Return code Function code Completion condition

2 2,3 Checkpoint timed out or was cancelled.
Checkpoint has not been taken, CHK_ID is
set to the time the checkpoint attempt was
started.

3 2,3 Caller is not allowed to wait for checkpoints,
and call is ignored. Indicates either that the
caller is online (CICS) or that the caller’s
thread belongs to a batch job with other
updating threads that have not called
IFCHKPT.

4 1 Call has been issued on a multiple cursor
IFSTRT thread. IFCHKPT with a function
code 1 is not allowed on a multiple cursor
IFSTRT thread.

all Checkpointing is not active, and call is
ignored. Either module CHKP is not linked
with the Host Language Interface/Model 204
load module being used, or the CHKPOINT
data set definition statement is absent. A
return code of 4 is also returned for invalid
function codes.

5 all Roll forward recovery is running.
Checkpointing is not active and the call is
ignored.

Sub-transaction checkpoints and IFAM

Sub-transaction checkpoints are transparent to IFAM users. You can
implement transaction-only or transaction and sub-transaction checkpoints in
IFAM4, as for an Online. You may use them to recover files in active update by
IFAM threads at the time of the sub-transaction checkpoint.

Continuing as transaction checkpoints

Checkpoints that accompany the following messages continue to be
transaction checkpoints:

M204.0962 "SIGN ON, JOB NAME = *
M204.0963 "SIGN OFF. JOB NAME = *

Checkpoints requested and/or waited for by IFAM threads issuing various
IFCHKPT function codes also continue to be transaction checkpoints. And,
checkpoint status queried by IFCHKPT function code 0, refers only to the status
of the last transaction checkpoint attempted, whether an intervening sub-
transaction checkpoint has occurred or not.

103

An IFCHKPT call issues only transaction checkpoints. Thus to use sub-
transaction checkpoints an IFCHKPT call is not necessary. If not IFCHKPT
calls are made, IFAM updates are recoverable with sub-transaction
checkpoints.

Coding The following example is for checkpointing on a multiple cursor IFSTRT thread
example (in an IFAM2 or IFAM4 job). A function code of 3 initiates an attempt to take a
(COBOL) checkpoint and waits for it to complete or time out.

WORKING-STORAGE SECTION.

01 CALL-ARGS.
05 RETCODE PIC 9(5) COMP SYNC.
05 FUNCTION PIC 9(5) VALUE 3.
05 CHKPTID PIC X(8).

PROCEDURE DIVISION.

CALL “IFCHKPT” USING RETCODE, FUNCTION, CHKPTID.

104 Rocket Model 204 Host Language Interface Reference Manual

IFCLOSE call -mec.sc

Function

Full syntax (12)

Compile-only
syntax

Execute-only
syntax

Parameters

Notes and tips

Coding
example
(CoBOL)

The IFCLOSE call (CLOSE FILE) closes a Model 204 file or group that is open,
or closes all the Model 204 files or groups that are open on the thread.

IFCLOSE| IFCLOS(RETCODE, FILE_SPEC)

A compile-only form of IFCLOSE is not available.

An execute-only form of IFCLOSE is not available.

Specify the parameters in the syntax order shown above.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is the required first
parameter. The code is a binary integer value.

FILE_SPEC [1,s,0] The file specification is an optional input parameter
for use only with a multiple cursor IFSTRT thread for
specifying the name of a particular Model 204 file or group
to be closed. Specify the name as a short character string.
If a file or group that is not open is specified, the call is
unsuccessful and Model 204 returns a completion code
equal to 4.

If the file specification parameter is omitted, IFCLOSE
closes all files and groups that are open on the thread.

Use the IFCLOSE call to close files or groups that are open on a thread.
IFCLOSE indicates that processing against the file or group for the current
request is complete.

The IFCLOSE call is valid on all types of IFSTRT threads. On a single cursor
IFSTRT thread, IFCLOSE closes all files or groups that are open. The action is
the same on a multiple cursor IFSTRT thread, unless you specify a particular
file or group to be closed.

Note that, in group file context, IFCLOSE ends the transaction only if it results
in the closing of a file and all files opened outside of the group have been
closed. IFCLOSE does not end the transaction if all files in the group are
opened singly.

Note that IFCLOSE causes all saved compilations to be discarded.
WORKING-STORAGE SECTION.
01 CALL-ARGS.

05 RETCODE PIC 9(5) COMP SYNC.
05 FILESPEC PIC X(5) VALUE “CARS;™.

105

PROCEDURE DIVISION.

CALL “IFCLOSE” USING RETCODE, FILESPEC.

Note: This example illustrates the use of the file specification parameter
(FILESPEC) which is available for use only with a multiple cursor IFSTRT
thread.

106 Rocket Model 204 Host Language Interface Reference Manual

IFCLST call ™°

Function

Full syntax
(108)

Compile-only
syntax

Execute-only
syntax

Parameters

The IFCLST call (CLEAR LIST) performs a clear list function for a specified list
on the current thread.

IFCLST(RETCODE,LIST_SPEC,%VARBUF ,%VARSPEC)

A compile-only form of IFCLST is not available.

An execute-only form of IFCLST is not available.

Specify the parameters in the syntax order shown above.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is the required first
parameter. The code is a binary integer value.

LIST_SPEC [l,c,r] The list specification is a required input parameter
which specifies the name of a list. Specify the list as a
character string using the following format:

LIST listname [{IN FILE filename | GROUP
groupname}]

where:

listname is required and specifies the name of a particular
list;

IN clause is optional and specifies a file or group context
other than the default.

filename specifies the name of a particular file context for
the list.

groupname specifies the name of a particular group
context for the list.

Note: If the specified list exists, Model 204 removes all records
from it. If the specified list does not exist and the IN
FILE/GROUP clause is not coded, Model 204 creates and
initializes a list within the context of the default file or group
on the thread.

107

Parameter Description

%VARBUF [l,c,0] The variable buffer is an optional input parameter
that addresses a data area which accommodates up to 255
bytes of data per value. The buffer contains values which
are defined by the %VARSPEC parameter, below, to be
assigned to %variables. Specify a character string. See the
Rocket Model 204 documentation wiki for more information
about %variables:
http://m204wiki.rocketsoftware.com/index.php/Using_vari
ables_and_values_in_computation#Declaring_.25variable
s_and_.25variable_arrays

%VARSPEC [I,c,0] The variable specification describes the format of the
data that is contained in the %variable parameter, and lists
the %variables to be assigned. %VARSPEC specifies the
contents of the variable buffer, described above. Specify a
character string which follows a LIST, DATA, or EDIT
syntax.

%VARSPEC is a required input parameter if %VARBUF is
specified.

Notes and tips Use the IFCLST call to remove records from an existing list, or to create a new
cleared list.

The IFCLST call is the equivalent of the CLEAR LIST statement in SOUL in the
host language multiple cursor environment. See the Rocket Model 204
documentation wiki for information about the CLEAR LIST statement:

http://m204wiki.rocketsoftware.com/index.php/Lists#Clearing_a_list

The %VARBUF and %VARSPEC parameters can be used to pass a value for
the MEMBER %variable when using the following syntax:

IN GROUP groupname MEMBER %variable

Coding
example
(CoBOL)

WORKING-STORAGE SECTION.
01 CALL-ARGS.
05 RETCODE PIC 9(5) COMP SYNC.
05 LISTSPEC PIC X(23) VALUE "LIST FORD IN FILE CARS;™.

PROCEDURE DIVISION.

CALL ““IFCLST” USING RETCODE, LISTSPEC.

108 Rocket Model 204 Host Language Interface Reference Manual

IFCMMT call -me.sc

Function

Full syntax (72)

Compile-only
syntax

Execute-only
syntax

Parameters

Notes and tips

The IFCMMT call (COMMIT) commits and ends the current update unit for the
active thread or threads.

IFCMMT (RETCODE)

A compile-only form of IFCMMT is not available.

An execute-only form of IFCMMT is not available.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is the required output
parameter. The code is a binary integer value.

Use the IFCMMT call to end an update unit. IFCMMT applies to the active
threads in a host language job. You can issue the IFCMMT call on the following
types of threads:

e Single cursor IFSTRT update thread (thread type is 1)
* Multiple cursor IFSTRT thread

Note: If an IFCMMT call is encountered on a read-only single cursor IFSTRT
thread, Model 204 returns an error completion code of 40.

Record locking behavior

IFCMMT releases the lock pending updates (LPU) exclusive lock on updated
records and the single record enqueue (SRE) on the current record (if one
exists) that were obtained by this thread. The transaction is ended for all
participating threads and the backout and constraints logs are freed.

Found sets are not released and the current record does not change. In a
multithreaded transaction the LPU and SRE locks obtained by other threads
are still held. Also, you must issue IFCMMT on all of the single cursor IFSTRT
threads participating in a multi-transaction if you issue the call on any one of the
threads.

For more information about transaction management, see the Rocket
Model 204 Host Language Interface Programming Guide.

109

Coding WORKING-STORAGE SECTION.
example 01 ARGS-FOR-CALL.
(COBOL) 05 RETCODE PIC 9(5) COMP SYNC.

PROCEDURE DIVISION.

CALL “IFCMMT” USING RETCODE.

110 Rocket Model 204 Host Language Interface Reference Manual

IFCMTR call ™°

Function

Full syntax
(105)

Compile-only
syntax

Execute-only
syntax

Parameters

Notes and tips

Coding
example
(CoBOL)

The IFCMTR call (COMMIT RELEASE) releases all record sets held by the
thread and commits the current transaction.
IFCMTR(RETCODE)

A compile-only form of IFCMTR is not available.

An execute-only form of IFCMTR is not available.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is the only required
parameter. The code is a binary integer value.

Use the IFCMTR call to end the current transaction and release all records. The
IFCMTR call is the equivalent of the SOUL COMMIT RELEASE statement in
the host language multiple cursor environment. See the Rocket Model 204
documentation wiki for information about the COMMIT RELEASE statement:

http://m204wiki.rocketsoftware.com/index.php/Files,_groups, _and_reference_
context#Using_ COMMIT_and_COMMIT_RELEASE_statements

To ensure that all of the records and resource locks associated with a
transaction are released after the IFCMTR call executes on one of the single
cursor IFSTRT threads in a multithreaded transaction, issue IFCMTR on all of
the other single cursor IFSTRT threads participating in the transaction.

WORKING-STORAGE SECTION.
01 CALL-ARGS.
05 RETCODE PIC 9(5) COMP SYNC.

PROCEDURE DIVISION.

CALL “IFCMTR” USING RETCODE.

111

IFCOUNT call ™¢s¢

Function

Full syntax (14)

Compile-only
syntax

Execute-only
syntax

Parameters

Notes and tips

The IFCOUNT call (COUNT) counts the number of records in a found set or list
and returns the record count in an output parameter.

IFCOUNT | IFCNT(RETCODE, COUNT, SET_QUAL)

A compile-only form of IFCOUNT is not available.

An execute-only form of IFCOUNT is not available.

Specify the parameters in the syntax order shown above.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is the required first
parameter. The code is a binary integer value.

COUNT [O,i,r] The count parameter is a required parameter which
specifies the location of the output parameter for the return
count value. Specify an integer variable. Model 204 returns
the record count as a fullword binary number.

SET_QUAL [l,c,r] The set qualifier is available only for use with a
multiple cursor IFSTRT thread and it is required for
specifying the record set or list whose records will be
counted. Specify a character string using either one of the
following formats:

{IN label | ON [LIST] listname}
where:

label is the name of a saved IFFIND, IFFNDX, IFFWOL, or
IFFAC compilation from the previously compiled call which
established the record set.

listhame specifies the name of a list.

Note: The set qualifier is not a valid parameter for use with a
single cursor IFSTRT thread.

Use the IFCOUNT call to count the records in a found set. IFCOUNT returns a
value of 0 for a null set. You can use IFCOUNT after an IFFIND call having a
completion code of 0 to check for a null set.

The IFCOUNT call is valid on all types of IFSTRT threads. You must specify the
found set to be counted on a multiple cursor IFSTRT thread. On a single cursor
IFSTRT thread, IFCOUNT returns the count for the set that is current.

Note that the count that is returned by the IFCOUNT call is written to the
Model 204 audit trail if RK lines are written to the journal. See the Rocket

112 Rocket Model 204 Host Language Interface Reference Manual

Coding
example
(CoBOL)

Model 204 documentation wiki for information about Model 204 journals and

audit trails:

http://m204wiki.rocketsoftware.com/index.php/Tracking_system_activity

WORK ING-STORAGE SECTION.
01 ARGS-FOR-CALL COMP SYNC.
05 RETCODE PIC 9(5).-
05 COUNT PIC 9(5).

PROCEDURE DIVISION.

CALL “IFCOUNT” USING RETCODE,

COUNT.

113

IFCSA call -me.sc

Function

Full syntax (96)

Compile-only
syntax

Execute-only
syntax

Parameters

Notes and tips

Coding
examples

The IFCSA call (Common System Area) passes the address of the Common
System Area to the CICS interface in IFAM2.

IFCSA(CSA_ADDR)

A compile-only form of IFCSA is not available.

An execute-only form of IFCSA is not available.

Parameter Description

CSA_ADDR [1,i,r] The CSA (Common System Area) address is a
required input parameter for the CICS interface. Specify
the address as an integer value.

Use the IFCSA call only for an IFAM2 host language job with CICS. IFCSA is
valid for use Model 204 releases before Version 3.1. For Model 204 Version 3.1
and later, the CSA control block is no longer needed and therefore, the IFCSA
call is not required. For purposes of upward compatibility, the IFCSA call
remains; however, it no longer performs any function.

Before a program issues any operational Host Language Interface calls, the
address of the CSA must be passed to the interface by using one of the
following special calls in the host language program:

COBOL: CALL 'IlFCSA' USING DFHCSADS

PL/1Optimizer: CALL IFCSA (DFHCSADS)

Assembler: CALL IFCSA, ((13)),VL

where the address is declared as:

DCL IFCSA ENTRY OPTIONS (ASM ENTER):

114 Rocket Model 204 Host Language Interface Reference Manual

IFCTO call ¢

Function

Full syntax (65)

Compile-only
syntax (66)

Execute-only
syntax (67)

Parameters

The IFCTO call (COUNT OCCURRENCES) counts the number of occurrences
of the specified field, or fields, in the current record and returns a count value
for each field in an output parameter.

IFCTO(RETCODE ,BUFFER,FIELD_LIST,CTO_NAME,%VARBUF , %VARSPEC)

IFCTOC(RETCODE,FIELD_LIST,CTO_NAME)

IFCTOE(RETCODE , BUFFER,CTO_NAME , %VARBUF , %VARSPEC)

Specify the parameters in the syntax order shown above.

Parameter

Description

RETCODE

[O,i,r] The Model 204 return code is the required first
parameter. The code is a binary integer value.

BUFFER

[O,c,r] The buffer location is a required output parameter
which specifies the address of the user’s data area. Specify
a character string. The buffer contains the occurrence
counter, or counters, returned by IFCTO for each field that
is defined by the FIELD_LIST parameter, described below.
For each field specified, a four-byte value is returned.

Multiple count values are positioned in order corresponding
to the location of the fields in the current record. If a
specified field does not occur in the record, its counter is set
to zero.

FIELD_LIST

[l,c,r] The field specification is a required input parameter
which defines the field, or fields, that are to be counted in
the current record. Specify the name of a field as a
character string. You must list at least one field to be
counted in the current record. You may list additional fields
by separating field names with a comma.

CTO_NAME

[1,s,0/r] The name of the IFCTO compilation is a required
input parameter with IFCTOC and optional with IFCTO or
IFCTOE. If specified, Model 204 saves the compilation
using this name. Specify the name as unique, and as a
short character string (maximum 32 characters). Any
characters except the following are valid in the name:
blank, comma, parenthesis, equal sign, or semicolon. The
first character in the name must be alphanumeric. A null
value is equivalent to omitting the name parameter.

115

Parameter Description

%VARBUF [l,c,0] The variable buffer is an optional input parameter
that addresses a data area which accommodates up to 255
bytes of data per value. The buffer contains values which
are defined by the %VARSPEC parameter, below, to be
assigned to %variables. Specify a character string. See the
Rocket Model 204 documentation wiki for information
about %variables:
http://m204wiki.rocketsoftware.com/index.php/Using_vari
ables_and_values_in_computation#Declaring_.25variable
s_and_.25variable_arrays

%VARSPEC [l,c,0] The variable specification describes the format of the
data that is contained in the %variable parameter, and lists
the %variables to be assigned. %VARSPEC specifies the
contents of the variable buffer, described above. Specify a
character string which follows a LIST, DATA, or EDIT
syntax.

%VARSPEC is a required input parameter if %VARBUF is
specified.

Notes and tips Use the IFCTO call to count occurrences of fields in the current record. Issue
the IFCTO call after a current record is selected by IFGET, IFPOINT, or
IFBREC. The record is enqueued with share status.

IFCTO is available for use only on a single cursor IFSTRT thread. IFCTO
operates similarly to the IFOCC call that is used with multiple cursor IFSTRT.
See the IFOCC call.

The IFCTO call is the equivalent of the SOUL COUNT OCCURRENCES OF
statement in the host language environment. See the Rocket Model 204
documentation wiki for information about the COUNT OCCURRENCES OF
statement:

http://m204wiki.rocketsoftware.com/index.php/Processing_multiply _occurring
_fields_and_field_groups#COUNT_OCCURRENCES_OF _statement

Coding DCLERROR FIXED BIN (31),

example (PL/1) BUFFER CHAR (8)
FIELDS CHAR (20) VARYING INITIAL (°CAR,CHILD NAME?);

CALL IFCTO (ERROR,BUFFER,FIELDS)

Note: After the IFCTO call shown above is issued to count the number of field
occurrences in a record that contains two cars and five children, BUFFER
contains the following hexadecimal value:

0000000200000005

116 Rocket Model 204 Host Language Interface Reference Manual

IFDALL call -mesc

Function

Full syntax (73)

Compile-only
syntax

Execute-only
syntax

Parameters

Notes and tips

The IFDALL call (DELETE ALL) deletes all occurrences of a specified
Model 204 field from the current record.

IFDALL(RETCODE, FIELD_NAME , CURSOR_NAME)

A compile-only form of IFDALL is not available.

An execute-only form of IFDALL is not available.

Specify the parameters in the syntax order shown above.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is the required first
parameter. The code is a binary integer value.

FIELD_NAME [l,c,r] The field name is a required input parameter which
specifies the name of the Model 204 field to be deleted.
You can specify only one field to be deleted per call.
Specify a character string variable.

CURSOR_NAME [I,s,r] The name of the cursor is an input parameter that is
available only for use with a multiple cursor IFSTRT thread
and is required for specifying the current record from which
the field will be deleted. Specify the cursor name as a short
character string, using the name previously assigned to the
cursor in a corresponding IFOCUR call. See
CURSOR_NAME on page 226 for a description of the
cursor name for the IFOCUR call.

Note: The cursor name is not a valid parameter for use with a
single cursor IFSTRT thread.

You can issue the IFDALL call only when a current record exists. The IFDALL
call is valid on all types of IFSTRT threads. On a single cursor IFSTRT thread,
issue the IFDALL call for the current record after using an IFBREC, IFPOINT,
or IFGET call.

When FOPT=X'10" and the date/time stamp feature is installed, the IFDALL
function is not supported for DTS files.

On a multiple cursor IFSTRT thread, you must specify the cursor for the current
record. The cursor that is specified must have a current record from a previous
IFSTOR, IFFRN, or IFFTCH call.

Use the IFDALL call to delete a Model 204 field except for a field that has been
defined as having one of the following attributes:

117

* INVISIBLE attribute
e Sort key
e Hash key

Note: You cannot use IFDALL on a sorted record set.

Coding WORKING-STORAGE SECTION.
example 01 CALL-ARGS.
(COBOL) 05 RETCODE PIC 9(5) COMP SYNC.

05 DELETE-FIELD-NAME PIC X(4) VALUE "VIN;™.

PROCEDURE DIVISION.

CALL "IFDALL™ USING RETCODE, DELETE-FIELD-NAME.

118 Rocket Model 204 Host Language Interface Reference Manual

IFDECL call

Function

Full syntax

Parameters

Notes and tips

Coding
example
(COBOL)

The IFDECL call lets you declare STRING %variables to support the use and
display of double-byte character set (DBCS) characters.

IFDECL %variable [IS] [EBCDIC | MIXED {DBCS | KANJI} | DBCS
| KANJI] [options]

The parameters for IFDECL are the same as for the Model 204 DECLARE
statement.

To support the use and display of Kanji characters, which require two bytes
each, the IFDECL call declares STRING %variables as one of three types for
use in an IFFIND:

» STRING EBCDIC—the default type, contains single byte characters, in the
EBCDIC collating sequence

e« STRING DBCS—can contain only pure DBCS characters (double-byte
data only, with no shift sequences)

« STRING MIXED DBCS—Model 204 assumes the field contains both
DBCS and EBCDIC data and that all DBCS characters are contained within
balanced shift sequence pairs. (The shift sequences define whether a
series of bytes is interpreted as DBCS or EBCDIC.)

When you use a pure or mixed DBCS %variable in an IFFIND statement,
Model 204:

1. Performs the appropriate data type conversions, following the conversion
rules for assignment types.

1. Compares the pure and mixed DBCS fields.

IFDECL declares only simple string variables. You cannot use IFDECL for
arrays, ASCII, FLOAT, or BINARY strings, or for lists, labels, or subroutines.

IFDECL is allowed only on Multi-Cursor IFAM threads.

WORKING-STORAGE SECTION.

01 CALL-ARGS.

77 DECLARE-MIXED PIC X(35) VALUE “%MIXED IS STRING MIXED DBCS LEN 20;~.
77 DECLARE-PURE PIC X(28) VALUE “%PURE IS STRING DBCS LEN 20;”.

77 FIND-DBCS PIC X(31) VALUE “PURE.DBCS = ~Kanjr-data’;END;”.

77 FIND-NAME P1C X(08) VALUE “FIND.DBCS;”

119

PROCEDURE DIVISION.

CALL IFDECL WITH DECLARE-MIXED.
CALL IFDECL WITH DECLARE-PURE.
CALL IFFIND WITH RETCODE, FIND-DBCS, FIND

120 Rocket Model 204 Host Language Interface Reference Manual

IFDELF call me.sc

Function

Full syntax (62)

Compile-only
syntax

Execute-only
syntax

Parameters

Notes and tips

The IFDELF call (DELETE FIELD) deletes a Model 204 field definition and all
occurrences of data for that field. IFDELF requires Model 204 file manager
privileges.

IFDELF(RETCODE, FIELD_NAME, FILE_SPEC)

A compile-only form of IFDELF is not available.

An execute-only form of IFDELF is not available.

Specify the parameters in the syntax order shown above.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is the required first
parameter. The code is a binary integer value.

FIELD_NAME [l,c,r] The field name is a required input parameter which
specifies the name of the Model 204 field to be deleted.
Specify a character string variable.

FILE_SPEC [1,s,0] The file specification is an optional input parameter
for use only with a multiple cursor IFSTRT thread for
specifying the name of the Model 204 file containing the
field that is to be deleted. Specify the name of the file as a
short character string using the following format:

IN [FILE] filename

The specified file must be open on the thread, otherwise
the call is unsuccessful and Model 204 returns a
completion code of 4.

The IFDELF call is valid on all types of IFSTRT threads. Use the IFDELF call
to delete field definitions except for the following types of fields:

* Record security is defined using the field
* The field is defined as a sort key

e Thefield is used as a hash key

Note: The file context can change on a multiple cursor thread and, if the file
specification parameter (FILE_SPEC) is omitted, IFDELF deletes the field
definition for the default file on the thread (that is, the last file opened).

When FOPT=X'10" and the date/time stamp feature is installed, the IFDELF
function is supported for DTS files.

121

Coding
example
(CoBOL)

The IFDELF call requires Model 204 file manager privileges. Additional
privileges are required for the following security conditions:

Type of security Required privileges

File defined with record security Record security override

Security level field definition Field level security (FLS) allows update access

For more information about Model 204 field security, see the Rocket Model 204
documentation wiki page on Security:

http://m204wiki.rocketsoftware.com/index.php/Security#Field-level_security

WORKING-STORAGE SECTION.
01 CALL-ARGS.
05 RETCODE PIC 9(5) COMP SYNC.
05 STATUS PIC X(7) VALUE “STATUS;™.

PROCEDURE DIVISION.

CALL “IFDELF” USING RETCODE, STATUS.

122 Rocket Model 204 Host Language Interface Reference Manual

IFDEQ call ™**°

Function The IFDEQ call (DEQUEUE) dequeues a resource previously specified in a call
to IFENQ.

Full syntax (38) 1FDEQ(RETCODE,RESOURCE)

Compile-only A compile-only form of IFDEQ is not available.
syntax

Execute-only An execute-only form of IFDEQ is not available.

syntax
Parameters Specify the parameters in the syntax order shown above.
Parameter Description
RETCODE {O,i,r]The Model 204 return code is the required first
parameter. The code is a binary integer value.
RESOURCE [I,s,r] The resource is a required input parameter which
specifies the name of the previously enqueued resource to
be dequeued. Specify a short character string, up to 32
characters in length. You may specify any data in the input
string except for 32 bytes of binary zeroes.
Coding WORKING-STORAGE SECTION.
example 01 CALL-ARGS.
(COBOL) 05 RETCODE PIC 9(5) COMP SYNC.

05 RNAME PIC X(9) VALUE "CUSTFILE;".

PROCEDURE DIVISION.

CALL "IFDEQ"™ USING RETCODE, RNAME.

123

IFDEQL call =°

Function

Full syntax (41)

Compile-only
syntax

Execute-only
syntax

Parameters

Coding
example
(CoBOL)

The IFDEQL call (DEQUEUE LIST) dequeues that set of records on the
specified list.

IFDEQL (RETCODE, L1ST_NAME)

A compile-only form of IFDEQL is not available.

An execute-only form of IFDEQL is not available.

Specify the parameters in the syntax order shown above.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is the required first
parameter. The code is a binary integer value.

LIST_NAME [l,c,r] The list name is a required input parameter which
specifies the name of a list. Specify the list as a character
string.

WORKING-STORAGE SECTION.
01 CALL-ARGS.
05 RETCODE PIC 9(5) COMP SYNC.
05 LISTNAME PIC X(9) VALUE "CARSLIST;".

PROCEDURE DIVISION.

CALL "IFDEQL™ USING RETCODE, LISTNAME.

124 Rocket Model 204 Host Language Interface Reference Manual

IFDFLD call -me.sc

Function
Full syntax (24)

Compile-only
syntax

Execute-only
syntax

Parameters

The IFDFLD call (DEFINE FIELD) defines a new field for a Model 204 file.

IFDFLD(RETCODE, FIELD_DESC,FILE_SPEC)

A compile-only form of IFDFLD is not available.

An execute-only form of IFDFLD is not available.

Specify the parameters in the syntax order shown above.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is the required first
parameter. The code is a binary integer value.

125

Parameter Description

FIELD_DESC [l,c,r] The field description is a required input parameter
which specifies the name of the new field and a list of its
attributes. Specify the field as a character string using the
following format:

fieldname [(attribute e=<)];
where:
fieldname is required and specifies the name of the new

field. The name must be unique within the context of the file
where it will be stored.

Specify the name as a character string, up to 255
characters in length. The name must begin with a letter and
it can contain any alphanumeric character except the
following:

e Atsign (@)

* Pound sign (#)

e Semi-colon (;)

* Double question marks (??)

* Question mark followed by a dollar sign (?$)

e Question mark followed by an ampersand (?&)

See the Rocket Model 204 documentation wiki for the
detailed list of rules that apply to naming fields:

http://m204wiki.rocketsoftware.com/index.php/Field_name
s

attribute is optional and specifies a particular characteristic
that controls how the field is used, stored, or accessed. You
may specify more than one attribute, separating each by a
comma or a blank.

The attributes that may be specified using the IFDFLD call
are identical to those that are used with the SOUL DEFINE
FIELD command. See the Rocket Model 204
documentation wiki for a description of field attributes used
with the SOUL DEFINE command:

http://m204wiki.rocketsoftware.com/index.php/Field_desig
n#Field_descriptions_and_attributes

Note: If no attributes are specified, Model 204 defines the field
assigning all of the default attributes.

FILE_SPEC [I,s,0] The file specification is an optional input parameter
for use only with a multiple cursor IFSTRT thread for
specifying the name of the Model 204 file that will contain
the new field. Specify the name of the file as a short
character string variable using the following format:

IN [FILE] filename

The specified file must be open on the thread, otherwise
the call is unsuccessful and Model 204 returns a
completion code equal to 4.

126 Rocket Model 204 Host Language Interface Reference Manual

Notes and tips

Coding
example
(COBOL)

Use the IFDFLD call to define a new field in a Model 204 file. The IFDFLD call
is valid on all types of IFSTRT threads. You can use the IFDFLD call once the
Model 204 file has been initialized (using the IFINIT call).

When FOPT=X'10" and the date/time stamp feature is installed, the IFDFLD
function is supported for DTS files.

Note: The file context can change on a multiple cursor thread and, if the file
specification parameter (FILE_SPEC) is omitted, IFDFLD defines the field for
the default file on the thread.

Note that certain types of fields must be defined using IFINIT rather than
IFDFLD. You cannot use IFDFLD to define fields when:

* Record security is defined using the field
» The field is defined as a sort key

e The field is used as a hash key

See the IFINIT call.

Note also that IFDFLD follows the same basic rules for specifying field attribute
definitions as the Model 204 DEFINE FIELD command.

See the Rocket Model 204 documentation wiki for information about using the
DEFINE FIELD command and about field names and attributes:

http://m204wiki.rocketsoftware.com/index.php/Field_design#Field_description
s_and_attributes

WORK ING-STORAGE SECTION.
01 CALL-ARGS.
05 RETCODE PIC 9(5) COMP SYNC.
05 FIELDA PIC X(20) VALUE "FIELDA(BINARY KEY);".
05 FIELDB PIC X(32) VALUE "FIELDB(FEW-VALUED,CODED,
RANGE) ;™.

PROCEDURE DIVISION.

CALL "IFDFLD™ USING RETCODE, FIELDA, FIELDB.

127

IFDIAL call -9

Function

Full syntax (6)

Compile-only
syntax

Execute-only
syntax

Parameters

Notes and tips

The IFDIAL call (DIAL) starts an IFDIAL thread which establishes a direct
connection to the Model 204 SOUL facility through the default CRAM
communications channel.

IFDIAL(RETCODE, LANG_IND,BUFFER, I0_LEN)

A compile-only form of IFDIAL is not available.

An execute-only form of IFDIAL is not available.

Specify the parameters in the syntax order shown above.

Parameter

Description

RETCODE

[O,i,r] The Model 204 return code is the required first
parameter. The code is a binary integer value.

LANG_IND

[1,i,r] The language indicator is a required input parameter
which establishes the calling sequence convention to be
used corresponding to the host language. The indicator
specifies the format of parameters that are passed in
subsequent calls. Specify one of the following integer
values:

1 = PL/1 F-level, and BAL languages
2 = COBOL, FORTRAN, and BAL languages

3 = PL/1 with +Optimizer/Checkout compilers,
VS/FORTRAN, and BAL languages
Note: Any convention may be specified for use with the BAL

language, and the BAL programmer must adhere to the
convention that is specified when coding parameters.

BUFFER

[0O,i,0] The buffer size is an optional output parameter that
specifies the size of the CRAM buffer which is the
maximum buffer length for 1/O to Model 204. Model 204
returns the size of the buffer as an integer value.

BUFFER is required if IO_LEN is specified.

I0_LEN

[1,i,0] The I/O length is an optional input parameter which
specifies the default length for I/0 to Model 204. This is the
length that is used if a length parameter is not specified in
an IFREAD or IFWRITE call. See the LINE_LEN parameter
for IFREAD on page 252.

Use the IFDIAL call to establish an IFDIAL connection through the default
CRAM channel M204PROD.

128 Rocket Model 204 Host Language Interface Reference Manual

Completion
return code
(RETCODE)

An HLI job can start both IFDIAL and IFSTRT threads. Note, however, that any
single HLI job may have only one active IFDIAL thread.

Releasing an IFDIAL thread

To release an IFDIAL thread, use either one of the following HLI functions:

e IFHNGUP, which disconnects the IFDIAL thread.

« |IFFNSH, which deletes all outstanding threads, including the IFDIAL
connection.

Note: If your job started both IFSTRT and IFDIAL threads and you use the
IFDTHRD call to detach threads, IFDTHRD releases an IFSTRT thread without
disconnecting the IFDIAL thread.

Using the image feature to transmit data

The image feature of SOUL allows a request to process terminal input and
output, such as an IFDIAL connection. Large blocks of data can thus be
transferred from a host language program to Model 204.

See the Rocket Model 204 documentation wiki for more information about
READ IMAGE and WRITE IMAGE:

http://m204wiki.rocketsoftware.com/index.php/Images

If the IFDIAL call is unsuccessful, Model 204 returns one of the following error
codes:

Code Error condition

80 No current thread. (Action: Call IFSETUP.)

90 An IFDIAL connection already exists for this application program. The
attempt to establish more than one simultaneous connection for this
application is ignored.

101 Invalid module load. (Action: Check STEPLIB for correct release.)

500 Invalid function called.

800 All Model 204 IFDIAL connections are busy. (Action: Check to see that the
proper number of IODEV 29 initialization statements were included in the
HLI Model 204 service program.)

1001 HLI Model 204 service program is not up, the HLI is halted or drained, or
no host language threads were defined in Model 204. (This may indicate
that the IFAM4 load module was link-edited without the REUS option.)

1003 Not enough memory for CRAM.

129

Coding WORKING-STORAGE SECTION.

example 01 CALL-ARGS.

(COBOL) 05 RETCODE PIC 9(5) COMP SYNC.
05 COBOL-IND PIC 9(5) VALUE 2.

PROCEDURE DIVISION.
OPEN INPUT. ..
CALL "IFDIAL™ USING RETCODE, COBOL-IND.

Coding -
example -
(Assembler) -

CALL IFDIAL, (RETCODE,LANGID),VL

RETCODE DC F’0’
LANGID DC F*2”
END

130 Rocket Model 204 Host Language Interface Reference Manual

IFDIALN call -

Function

Full syntax (7)

Compile-only
syntax

Execute-only
syntax

Parameters

The IFDIALN call (DIAL) starts an IFDIAL thread which establishes a direct
connection to the Model 204 SOUL facility with a specified Host Language
Interface/Model 204 service program through the named channel (in IFAM2).

IFDIALN] IFDILN(RETCODE, LANG_IND,CHAN,BUFFER, 10_LEN)

A compile-only form of IFDIALN is not available.

An execute-only form of IFDIALN is not available.

Specify the parameters in the syntax order shown above.

Parameter

Description

RETCODE

[O,i,r] The Model 204 return code is the required first
parameter. The code is a binary integer value.

LANG_IND

[1,i,r] The language indicator is a required input parameter
which establishes the calling sequence convention to be
used corresponding to the host language. The indicator
specifies the format of parameters that are passed in
subsequent calls. Specify one of the following integer
values:

1 =PL/1 F-level, and BAL languages
2 =COBOL, FORTRAN, and BAL languages

3 =PL/1 with +Optimizer/Checkout compilers,
VS/FORTRAN, and BAL languages
Note: Any convention may be specified for use with the BAL

language, and the BAL programmer must adhere to the
convention that is specified when coding parameters.

CHAN

[l,c,r] The channel name is a required input parameter
which specifies the CRAM, or IUCV/ VMCF
communications channel name for a particular service
program. Specify the name as an eight-character string.
See “Subsystem names, channel names, and IODEV
settings” on page 33 for the default channel names.

Note: Do not append a semicolon.

If the host language is PL/1, pass the address of the string
using a based variable that overlays the original parameter.

BUFFER

[0O,i,0] The buffer size is an optional output parameter that
specifies the size of the CRAM buffer which is the
maximum buffer length for I/O to Model 204. Model 204
returns the size of the buffer as an integer value.

BUFFER is required if IO_LEN is specified.

131

Parameter Description

IO_LEN [1,i,0] The I/O length is an optional input parameter which
specifies the default length for I/O to Model 204. This is the
length that is used if a length parameter is not specified in
an IFREAD or IFWRITE call. See the LINE_LEN parameter
for IFREAD on page 252.

Notes and tips Use the IFDIALN call to establish an IFDIAL connection using a specific Host
Language Interface/Model 204 service program. IFDIALN performs the same
basic function as IFDIAL. The IFDIALN call includes a parameter which is not
available with IFDIAL that is used to specify the communications channel name
for the service program.

Note: When an IFDIALN call is made with a language indicator of 1 or 3,
Model 204 expects the channel name to be a string and not a PL/1 dope vector.

For more information about IFAM2, CRAM, and the Host Language
Interface/Model 204 service program, see Chapter 3, and to the Rocket
Model 204 Host Language Interface Programming Guide.

Completion If the IFDIALN call is unsuccessful, Model 204 returns one of the following error
return code codes:
(RETCODE)

Code Error condition

80 No current thread. (Action: Call IFSETUP.)

90 An IFDIAL connection already exists for this application program. The
attempt to establish more than one simultaneous connection for this
application is ignored.

101 Invalid module load. (Action: Check STEPLIB for correct release.)

500 Invalid function called.

800 All Model 204 IFDIAL connections are busy. (Action: Make sure the proper
number of IODEV 29 init statements were included in the HLI Model 204
service program.)

1001 HLI Model 204 service program is not up, the HLI is halted or drained, or no
host language threads were defined in Model 204. (This may indicate that
the IFAM4 load module was link-edited without the REUS option.)

1003 Not enough memory for CRAM.

Coding WORKING-STORAGE SECTION.
example 01 CALL-ARGS.
(COBOL) 05 RETCODE PIC 9(5) COMP SYNC.

05 COBOL-IND PIC 9(5) VALUE 2.
05 CHAN-NAME PIC X(8) VALUE "M204CHNB".

132 Rocket Model 204 Host Language Interface Reference Manual

Coding
example
(Assembler)

PROCEDURE DIVISION.

OPEN INPUT. ..

CALL "IFDIALN™ USING RETCODE, COBOL-IND, CHAN-NAME.

CALL IFDIALN, (RETCODE,LANGID,CHANO,CRAMSIZE),VL

RETCODE DC

LANGID DC

CHANO DC

CRAMSIZE DC
END

F,os
F,Z’
C?USR204C0”
F,O’

133

IFDISP call -mec.sc

Function

Full syntax (60)

Compile-only
syntax

Execute-only
syntax

Parameters

The IFDISP call (DISPLAY) returns display output for the specified Model 204
field, file, group, record, or stored procedure.

IFDISP(RETCODE, BUFFER,DISP_SPEC)

A compile-only form of IFDISP is not available.

An execute-only form of IFDISP is not available.

Specify the parameters in the syntax order shown above.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is a required output
parameter. The code is a binary integer value.

BUFFER [O,c,r] The buffer location is a required output parameter

which specifies the address of the user’s data area. The
buffer contains the information that is returned by IFDISP
for the field, file, group, record, or stored procedure that is
specified by the DISP_SPEC parameter, described on
page 135. Specify a character string.

Note: The format of the data area is identical to that produced by
the SOUL DISPLAY command, except that Model 204
inserts semicolons, instead of terminal end-of-line
characters, between lines of output. There is no limit to the
length of each line. The maximum length of the display
output depends on the host language. If the actual display
is longer than the maximum, the display is truncated and
no semicolon is appended to the truncated line.

See the Rocket Model 204 documentation wiki for
examples of output from the DISPLAY command:

http://m204wiki.rocketsoftware.com/index.php/DISPLAY_
command

134 Rocket Model 204 Host Language Interface Reference Manual

Parameter Description

DISP_SPEC [I,c,r] The display specification is a required input
parameter which specifies the entity for which information
is to be displayed. Specify a character string using one of
the following formats:

FIELD [(display option[,display option
eee]]

{ALL | fieldname[,fieldname...]}

where, if you specify ALL, the display options apply to all of
the fields in the currently open file, and all the fields are
listed.

FILE (display option[,display option e==])]
{ALL | filename[,filenamee==]}

where if you specify ALL, the display options apply to all
open files, otherwise, the command applies to only those
files that are listed.

[PERM | TEMP] GROUP

[(display option[,display option e=<])]
{ALL | groupname[,groupname ee<]}

where if you specify ALL, the display options apply to all
existing permanent groups, otherwise the command
applies to only those group that are listed.

RECORD [(NOUSE)]

You can use the record option only in file context.

Note: Alternatively, you may specify the name of a stored
procedure to be displayed; do not specify any of the
display clauses (keywords FIELD, FILE, GROUP,
RECORD) listed above.

See the Rocket Model 204 documentation wiki for a list of

the options and specifications for the DISPLAY command.

http://m204wiki.rocketsoftware.com/index.php/DISPLAY _
command

These options are also available for use with the IFDISP
call.

Notes and tips Use the IFDISP call to access information about a Model 204 field, record, file,
group, or stored procedure from inside a host language program. You can use
the IFDISP call on any type of connection to Model 204 from a host language

program.
Completion If the IFDISP call is unsuccessful, Model 204 returns a completion code of 4 if
return code any one of the following error conditions occurs:

(RETCODE) .
« The parameter syntax is incorrect.

* A specified field is undefined.

« The specified file or group is not currently open.

135

Coding
example (PL/1)

Coding
example
(COBOL)

The example below shows a PL/1 code excerpt which calls IFDISP to display
the names of all the fields for the current file.

DCL IFDISP ENTRY (FIXED BIN(16), CHAR(*) VAR, CHAR(*));
DCL BUFFER CHAR(500) VARYING;

CALL IFDISP (RETCODE,BUFFER, “FIELD (NAMES) ALL%);

The example below shows a COBOL code excerpt which calls IFDISP to
display the value of the file characteristics parameters for the file named FILEX.

WORKING-STORAGE SECTION.
01 ARGS-FOR-CALL.
05 RETCODE PIC 9(5) COMP SYNC.
05 BUFFER PIC X(500) VALUE SPACES.
05 DISPLAY PIC X(20) VALUE "FILE (FPARMS) FILEX;".

PROCEDURE DIVISION.

CALL "IFDISP" USING RETCODE, BUFFER, DISPLAY.

136 Rocket Model 204 Host Language Interface Reference Manual

IFDREC call M**¢

Function
Full syntax (19)

Compile-only
syntax

Execute-only
syntax

Parameters

Notes and tips

The IFDREC call (DELETE RECORD) deletes the current record from its file.
IFDREC(RETCODE , CURSOR_NAME)

A compile-only form of IFDREC is not available.

An execute-only form of IFDREC is not available.

Specify the parameters in the syntax order shown above.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is the required first
parameter. The code is a binary integer value.

CURSOR_NAME [1,s,r] The name of the cursor is an input parameter that is
available only for use with a multiple cursor IFSTRT thread
and is required for specifying the current record to be
deleted. Specify the cursor name as a short character
string, using the name previously assigned to the cursor in
a corresponding IFOCUR call. See CURSOR_NAME on
page 226 for a description of the cursor name for the
IFOCUR call.

Note: The cursor name is not a valid parameter for use with a
single cursor IFSTRT thread.

Use the IFDREC call to delete a record from a file. Note that you cannot use
IFDREC with a sorted record set.

When FOPT=X"10" and the date/time stamp feature is installed, the IFDREC
function is supported for DTS files.

IFDREC reclaims the file storage space that is occupied by the deleted record
and allows the record numbers to be reused. In order to reuse record numbers
from records that will be deleted, first use the IFDVAL call to eliminate any
INVISIBLE fields in the record, then use IFDREC to delete the record. See the
IFDVAL call.

The IFDREC call is valid on all types of IFSTRT threads. On a multiple cursor
IFSTRT thread, you must specify the cursor name whose current record is to
be deleted. On a single cursor IFSTRT thread, IFDREC deletes the current
record from the current record set.

Note: There is another call, IFDSET, that also deletes records from a file and
executes faster than IFDREC, but does not reclaim storage space. See the
IFDSET call.

137

Completion
return code
(RETCODE)

Coding
example
(COBOL)

If the IFDREC call is unsuccessful, Model 204 returns an error completion code
of 4 if there is no current record.

WORKING-STORAGE SECTION.
01 ARGS-FOR-CALL.
05 RETCODE PIC 9(5) COMP SYNC.

05 CURSOR-NAME PI1C X(7) VALUE "CRFORD;".
PROCEDURE DIVISION.

CALL "IFDREC™ USING RETCODE, CURSOR-NAME.

Note: In the example, IFDREC deletes a field on a multiple cursor IFSTRT
thread. The IFDREC call references the cursor (named CRFORD) that was
opened to a found set by a previous IFOCUR call (not shown) and deletes the
record that was last fetched. See the IFOCUR coding example on page 226.

138 Rocket Model 204 Host Language Interface Reference Manual

IFDSET call M®*¢

Function

Full syntax (21)

Compile-only
syntax

Execute-only
syntax

Parameters

Notes and tips

The IFDSET call (DELETE SET) deletes the records that are in a found set
from a file or group.

IFDSET(RETCODE, SET_QUAL)

A compile-only form of IFDSET is not available.

An execute-only form of IFDSET is not available.

Specify the parameters in the syntax order shown above.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is the required first
parameter. The code is a binary integer value.

SET_QUAL [l,c,r] The set qualifier is available only for use with a
multiple cursor IFSTRT thread and it is required for
specifying the record set or list that will be used to delete
records from a file or group. Specify a character string
using either one of the following formats:

{IN label | ON [LIST] listname}
where:

label is the name of a saved IFFIND, IFFNDX, IFFWOL, or
IFFAC compilation from the previously compiled call, which
established the record set.

listhame specifies the name of a list.

Note: The set qualifier is not a valid parameter for use with a
single cursor IFSTRT thread.

Use the IFDSET call to delete records from a file or group. Note that you cannot
use IFDSET with a sorted record set.

When FOPT=X"'10" and the date/time stamp feature is installed, the IFDSET
function is supported for DTS files.

There is another call, IFDREC, that also deletes records from a file or group.
IFDSET executes faster than IFDREC. However, with IFDSET the file storage
space that is occupied by the deleted set of records is not reclaimed and the
record numbers are not reused. See the IFDREC call.

The IFDSET call is valid on all types of IFSTRT threads. You must specify the
found set for records that are to be deleted on a multiple cursor IFSTRT thread.
On a single cursor IFSTRT thread, IFDSET deletes records from the current
set.

139

Coding WORKING-STORAGE SECTION.
example 01 ARGS-FOR-CALL.
(COBOL) 05 RETCODE PIC 9(5) COMP SYNC.
05 DEL-SET PIC X(10) VALUE "IN PREVFD;".

PROCEDURE DIVISION.

CALL "IFDSET™ USING RETCODE, DEL-SET.

Note: The example above illustrates the use of the set qualifier parameter
(DEL-SET) which is available for use only with a multiple cursor IFSTRT thread.

140 Rocket Model 204 Host Language Interface Reference Manual

IFDTHRD call me:sc

Function

Full syntax (42)

Compile-only
syntax

Execute-only
syntax

Parameters

Notes and tips

The IFDTHRD call (DETACH THREAD) detaches the current thread and
activates the specified IFSTRT thread.

IFDTHRD | IFDTRD(RETCODE ,NEW_1D,OLD_1D)

A compile-only form of IFDTHRD is not available.

An execute-only form of IFDTHRD is not available.

Specify the parameters in the syntax order shown above.

Parameter

Description

RETCODE

[O,i,r] The Model 204 return code is a required output parameter.
The code is a binary integer value.

NEW_ID

[1,i,r] The new thread identifier is a required input parameter which
identifies the thread to be made current. This is the thread identifier
previously assigned by the IFSTRT or IFSTRTN call which started
the thread. (See the THRD_ID parameter for IFSTRT
(IFAM2/IFAM4) on page 295.) Specify an integer value.

OLD_ID

[O,i,r] The old thread identifier is a required output parameter
which identifies the thread that is being detached. Model 204
returns the integer value which identifies the current thread.

Use the IFDTHRD call to switch from the current thread to another, while
freeing the old thread. IFDTHRD entails low overhead. You cannot use
IFDTHRD to detach the current thread without specifying a new thread.

Note: Update units must begin and end on the same thread. To assure that any

in-progress update unit ends on the current thread, issue an IFCMMT or

IFCMTR on the current thread before the call to IFDTHRD.

The IFDTHRD call is useful for switching threads in a multithreaded IFAM2 or
IFAM4 transaction using single cursor IFSTRT threads. IFDTHRD is not valid

for use with an IFAM1 thread.

Note: IFDTHRD is valid for use only with an IFSTRT thread. If your job started

both IFSTRT and IFDIAL threads and you use the IFDTHRD call to detach
threads, IFDTHRD releases an IFSTRT thread without disconnecting the

IFDIAL thread.

141

Completion If the IFDTHRD call is unsuccessful, Model 204 returns one of the following
return code error codes

(RETCODE)
Code Error condition
95 Nonexistent new thread specified. Call ignored.
96 New thread is already the current thread and is not detached.
Coding WORKING-STORAGE SECTION.
example 01 ARGS-FOR-CALL.
(COBOL) 05 RETCODE PIC 9(5) COMP SYNC.
05 NEWID PIC 9(5).
05 OLDID PIC 9(5).

PROCEDURE DIVISION.

CALL "IFDTHRD™ USING RETCODE, NEWID, OLDID.

142 Rocket Model 204 Host Language Interface Reference Manual

IFDVAL call -mese

Function The IFDVAL call (DELETE VALUE) deletes from the current record the first
occurrence of a Model 204 field that matches the specified name=value pair.

Full syntax (32) 1FDVAL(RETCODE,FIELD_NAME,VALUE, CURSOR_NAME)

Compile-only A compile-only form of IFDVAL is not available.

syntax

Execute-only An execute-only form of IFDVAL is not available.

syntax
Parameters Specify the parameters in the syntax order shown above.
Parameter Description
RETCODE [O,i,r] The Model 204 return code is the required first
parameter. The code is a binary integer value.
FIELD_NAME [l,c,r] The field name is a required input parameter which
specifies the name of the Model 204 field to be deleted.
You can specify only one field to be deleted per call.
Specify a character string variable followed by a semicolon
()
VALUE [l,c,r] The value is a required input parameter which

specifies the field value corresponding to the specified field
name. Taken together, the field name and value form a pair
for matching against the record. You can specify only one
value for the field. Specify a character string variable
followed by a semicolon (;).

CURSOR_NAME

[1,s,r] The name of the cursor is an input parameter that is
available only for use with a multiple cursor IFSTRT thread
and is required for specifying the record to be deleted.
Specify the cursor name as a short character string, using
the name previously assigned to the cursor in a
corresponding IFOCUR call. See CURSOR_NAME on
page 226 for a description of the cursor name for the
IFOCUR call.
Note: The cursor name is not a valid parameter for use with a
single cursor IFSTRT thread.

Notes and tips Use the IFDVAL call to delete a Model 204 field that has been defined as
having an INVISIBLE or VISIBLE attribute. Note the following rules:

« IfaVISIBLE field is multiply occurring and the same field name = value pair
occurs more than once, IFDVAL deletes only the first occurrence of the

identical pairs.

143

» Use IFDVAL to delete any INVISIBLE fields for a record before using the
IFDREC call to delete the record. This allows record numbers to be reused
in the current file. See the Rocket Model 204 documentation wiki for
information about reusing record numbers:

http://m204wiki.rocketsoftware.com/index.php/File_design#Reuse_Recor
d_Number_.28X.2740.27.29

Note: You cannot use IFDVAL on a sorted record set.

The IFDVAL call is valid on all types of IFSTRT threads. On a multiple cursor
IFSTRT thread, you must specify the cursor name for the record that is to be
deleted. On a single cursor IFSTRT thread, IFDVAL deletes a field from the
current record using the current record set.

When FOPT=X'10’ and the date/time stamp feature is installed, the IFDVAL
function is not supported for DTS files.

Coding The following PL/1 call deletes from the current record the field name = value
example (PL/1) pair COLOR = BLUE.

CALL IFDVAL (RETCODE, “COLOR;”,”BLUE;”);

144 Rocket Model 204 Host Language Interface Reference Manual

IFEFCC call ™¢*s¢

Function

Full syntax
(139)

Compile-only
syntax

Execute-only
syntax

Parameters

The IFEFCC call (EXAMINE FIELD CONSTRAINT CONFLICT) returns
specific information about field values or record numbers that cause a field
constraint conflict using the IFSTOR, IFUPDT, or IFPUT HLI calls.

IFEFCC is similar to the SOUL ON FCC statement and its related $functions.
IFEFCC(RETCODE, FIELDNAME , VALUE ,RECNUM, STATEMENT ,OLD-VALUE,
OLD-RECNUM, FILENAME)

A compile-only form of IFEFCC is not available.

An execute-only form of IFEFCC is not available.

Specify the parameters in the syntax order shown above.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is the required output
parameter. The code is a binary integer value.

FIELDNAM [O,c,0] The field name is an optional output parameter which
returns the name of the field in which the constraint violation
occurred. In SOUL this name is available through $UPDFLD.
The name is a character string.

VALUE [O,c,0] The value is an optional output parameter which returns
the field value causing the constraint violation. In SOUL this
value is available through $UPDVAL. The value is returned as
a character string.

RECNUM [O,c,0] The record number is an optional output parameter that
returns the internal number of the record whose update causes
the conflict. In SOUL this name is available through SUPDREC.
This parameter is a character string.

145

Notes and tips

Parameter Description

STATEMENT [O,c,0] The statement is an optional output parameter that
returns the type of update operation causing the conflict. In
SOUL it is available through SUPDSTMT.

The possible values are:

Value Use

STORE For IFSTOR call

ADD When the field name(*) form is used in the
IFUPDT call

INSERT When the field name(+n) form is used in the
IFUPDT call

CHANGE When the field name or field name(n) form is
used in the IFUPDT call

This parameter is a character string.

OLD-VALUE [O,c,0] The old value is an optional output parameter that, in
the case of an AT-MOST-ONE violation, returns the value of
the original field occurrence causing the constraint violation.
Otherwise, it returns a blank. In SOUL this value is available
through $UPDOVAL. The value is returned as a character
string.

OLD-RECNUM [O,c,0] The old record number is an optional output parameter
that, in the case of a uniqueness violation, returns the internal
record number of the record already containing the field=value
pair. Otherwise, it returns a -1. In SOUL this name is available
through SUNQREC. This parameter is a character string.

FILENAME [O,c,0] The file name is an optional output parameter that
returns the name of the file in which the constraint violation
occurred. In SOUL this name is available through $UPDFILE.
The name is a character string.

Use the IFEFCC call to determine the exact cause of a field constraint conflict
when updating or storing data. Field constraint conflicts are caused when fields
within a file violate either the UNIQUE or AT-MOST-ONE Model 204 field-level
attribute.

A uniqueness conflict (return code 200) occurs when you try to store a non-
unique field value (such as a duplicate telephone number) into a file. An AT-
MOST-ONE conflict (return code 202) occurs when you try to store a second
occurrence of a field into a record (such as a HEIGHT or EYE_COLOR field).

See the Rocket Model documentation wiki for more information about
uniqueness and AT-MOST-ONE violations:

http://m204wiki.rocketsoftware.com/index.php/Field_design#AT-MOST-
ONE.2C_REPEATABLE.2C_and_EXACTLY-ONE_attributes

146 Rocket Model 204 Host Language Interface Reference Manual

Completion
return code
(RETCODE)

Coding
example
(COBOL)

If no field constraint conflict is found, IFEFCC returns an error code of 15.

WORKING-STORAGE SECTION.

01 CALL-ARGS.

05
05
05
05
05
05
05
05

PROCEDURE DIVISION.

CALL "IFEFCC™ USING RETCODE, FIELDNAM, VALUE, RECNUM,

RETCODE
F1ELDNAM
VALUE
RECNUM
STATEMENT
OLD-VALUE
OLD-RECNUM
FI1LENAME

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

9(5) COMP SYNC.
X(255) .

X(255) .

X(11).

X(6) -

X(255) .

X(11).

X(8) VALUE "FN1;".

STATEMENT, OLD-VALUE, OLD-RECNUM, FILENAME.

147

IFENQ call ™**¢

Function The IFENQ call (ENQUEUE) enqueues on the arbitrary resource name
specified.

Full syntax (39) 1FENQ(RETCODE,RESOURCE,ACTION,TIME)

Compile-only A compile-only form of IFENQ is not available.
syntax

Execute-only An execute-only form of IFENQ is not available.

syntax
Parameters Specify the parameters in the syntax order shown above.
Parameter Description
RETCODE [O,i,r] The Model 204 return code is the required first

parameter. The code is a binary integer value.

RESOURCE [l,s,r] The resource is a required input parameter which
specifies the name of the resource to be enqueued. Specify
a short character string, up to 32 characters in length. You
may specify any data in the input string except for 32 bytes
of binary zeroes.

ACTION [1,i,r] The action is a required input parameter which
specifies whether to enqueue on the named resource in
share or exclusive mode. Specify one of the following
integer values:

1 = Enqueues in share mode

2 = Enqueues in exclusive mode

TIME [1,i,r] The time is a required input parameter. Specify an
integer value which is the wait time in seconds.

Notes and tips All users share an internal enqueuing table and should develop standard
resource naming conventions to make arbitrary resource enqueuing effective.

Completion Model 204 returns the following completion codes for IFENQ:
return code
(RETCODE)

Code Condition

0 Resource was enqueued successfully.

3 Control of the requested resource could not be obtained within the
specified time limit.

148 Rocket Model 204 Host Language Interface Reference Manual

Coding
example
(CoBOL)

If the first attempt to enqueue on the specified resource fails, Model 204 waits
the number of seconds specified in the time parameter, then tries again. If the
second attempt to enqueue fails, Model 204 returns a completion code of 3 to
the HLI program.

See the Rocket Model 204 documentation wiki page for more information on
the ENQRETRY parameter:

http://m204wiki.rocketsoftware.com/index.php/ENQRETRY _parameter

WORKING-STORAGE SECTION.
01 ARGS-FOR-CALL.

05 RETCODE PIC 9(5) COMP SYNC.

05 RESOURCE PIC X(9) VALUE "CUSTFILE;".
05 ACTION PIC 9(5) COMP SYNC VALUE 1.
05 TIME PIC 9(5) COMP SYNC VALUE 10.

PROCEDURE DIVISION.

CALL "IFENQ'™ USING RETCODE, RESOURCE, ACTION, TIME.

149

IFENQL call =°

Function The IFENQL call (ENQUEUE LIST) enqueues that set of records on the
specified list.

Full syntax (40) 1FENQL(RETCODE,LIST_NAME,ACTION,TIME)

Compile-only A compile-only form of IFENQL is not available.
syntax

Execute-only An execute-only form of IFENQL is not available.

syntax
Parameters Specify the parameters in the syntax order shown above.
Parameter Description
RETCODE [O,i,r] The Model 204 return code is the required first
parameter. The code is a binary integer value.
LIST_NAME [l,c,r] The list name is a required input parameter which
specifies the name of a list. Specify the list as a character
string.
ACTION [1,i,r] The action is a required input parameter which

specifies whether to enqueue on the set of records in share
or exclusive mode. Specify one of the following integer
values:

1 = Enqueues in share mode
2 = Enqueues in exclusive mode

TIME [1,i,r] The time is a required input parameter. Specify an
integer value which is the number of times to retry; the wait
time is in three second periods.

Notes and tips On a single cursor IFSTRT thread, a subsequent call to IFPROL places the
current record on the list and enqueues on the record itself with the status
specified for the list. On a single cursor IFSTRT thread, a subsequent call to
IFRRFL removes the record from the list and dequeues it.

On a single cursor IFSTRT thread, a call to IFLIST following a call to IFENQL
dequeues the set of records currently on the list, clears the list, and places the
current set on it with no enqueuing.

Note that calls to IFLIST, IFPROL, and IFRRFL do not perform any enqueuing
operations if IFENQL has not first been executed.

If a call to IFENQL results in an enqueuing conflict, Model 204 waits at most
three seconds and then tries again, for as many times as specified in the time
parameter (the wait time is in three-second periods). After trying unsuccessfully

150 Rocket Model 204 Host Language Interface Reference Manual

for the number of times indicated in the time parameter, Model 204 returns a
completion code of 3 to the HLI program.

Coding WORKING-STORAGE SECTION.

example 01 ARGS-FOR-CALL.

(COBOL) 05 RETCODE PIC 9(5) COMP SYNC.
05 LISTNAME PIC X(9) VALUE "CARSLIST;".
05 ACTION PIC 9(5) COMP SYNC VALUE 1.
05 TIME PIC 9(5) COMP SYNC VALUE 5.

PROCEDURE DIVISION.

CALL "IFENQL™ USING RETCODE, LISTNAME, ACTION, TIME.

151

IFEPRM call -me.se

Function The IFEPRM call (EXAMINE PARAMETER) returns the value of the specified
Model 204 parameter.

Full syntax (25) 1FEPRM(RETCODE ,PARM_NAME,PARM_VALUE,FILE_SPEC)

Compile-only A compile-only form of IFEPRM is not available.
syntax

Execute-only An execute-only form of IFEPRM is not available.

syntax
Parameters Specify the parameters in the syntax order shown above.
Parameter Description
RETCODE [O,i,r] The Model 204 return code is the required first

parameter. The code is a binary integer value.

PARM_NAME [l,c,r] The parameter name is a required input parameter,
which specifies the name of the Model 204 parameter
whose value will be returned. Specify a character string,
the keyword name of any Model 204 system, file or user
parameter. Note that on a multiple cursor IFSTRT thread
you may specify the file context for a Model 204 file
parameter by using FILE_SPEC, described below.

PARM_VALUE [O,c,r] Value is a required output parameter which specifies
the location of the output parameter for the return
parameter value. Specify a character string variable.
Model 204 returns the value as a character string or as a
character representation of a numeric value, up to eleven
characters in length.

FILE_SPEC [1,s,0] The file specification is an optional input parameter
for use only with a multiple cursor IFSTRT thread for
specifying the name of the file for which the Model 204 file
parameter will be returned. Specify the Model 204 file
name as a short character string using the following format:

IN [FILE] Ffilename

The specified file must be open on the thread, otherwise
the call is unsuccessful and Model 204 returns a
completion code equal to 4.

Notes and tips Use the IFEPRM call to examine or to retrieve a Model 204 parameter value.

The IFEPRM call is valid on all types of IFSTRT threads. IFEPRM can be used
on a single cursor IFSTRT thread to access the current record number when it
is executed following an IFGET call and specifies CURREC as the parameter
name.

152 Rocket Model 204 Host Language Interface Reference Manual

Alternatively, on a multiple cursor thread every cursor has a current record, so
CURREC need not be specified and its use is illegal. You can use IFRNUM to
get the current record from the specified cursor. See the IFRNUM call.

Note: The file context can change on a multiple cursor thread. If a Model 204
file parameter is specified for PARM_NAME and the file specification parameter
(FILE_SPEC) is omitted, IFEPRM returns a value for the default file on the
thread (that is, the last file opened).

Completion If the IFEPRM call is unsuccessful, Model 204 returns an error code of 4 if an
return code attempt was made to view a parameter that cannot be viewed.

(RETCODE)

Coding The IFEPRM call below sets the string variable INVAR to the value of the

example (PL/1) Model 204 system parameter LIBUFF:

CALL IFEPRM (RETCODE, *LIBUFF”, INVAR);

153

IFERLC call ™¢s¢

Function

Full syntax
(138)

Compile-only
syntax

Execute-only
syntax

Parameters

Notes and tips

The IFERLC call (EXAMINE RECORD LOCKING CONFLICT) returns a file
name, record number, and user name after a record locking conflict occurs in
an HLI program that issued IFFIND, IFUPDT, or any other call that requires
locking a record. See the Rocket Model 204 Host Language Interface
Programming Guide for information about which calls lock records and record
sets.

IFERLC is similar to the SOUL ON RLC statement.

IFERLC(RETCODE ,RECNUM, USERNUM , FILENAME)

A compile-only form of IFERLC is not available.

An execute-only form of IFERLC is not available.

Specify the parameters in the syntax order shown above.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is the required output
parameter. The code is a binary integer value.

RECNUM [O,c,0] The record number is an optional output parameter
that returns the internal record number for which the record
locking conflict occurred. This parameter is a character
string.

USERNUM [O,c,0] The user number is an optional output parameter
that returns the user number of the user with which the
IFAM program conflicted. The parameter is a character
string.

FILENAME [O,c,0] The file name is an optional output parameter which
returns the name of the file in which the record locking
conflict occurred. The name is a character string.

Use the IFERLC call after a record locking conflict (return code 3) is returned
by Model 204 to an HLI program that issued a call that locks a record (such as
IFFIND, IFSTOR or IFUPDT). See the Rocket Model 204 documentation wiki
for more information about record locking conflicts:

http://m204wiki.rocketsoftware.com/index.php/Record_level_locking_and_con
currency_control

154 Rocket Model 204 Host Language Interface Reference Manual

Completion
return code
(RETCODE)

Coding
example
(COoBOL)

If no record locking conflict is found, IFERLC returns an error code of 15.

See the descriptions of the $RLCFILE, $RLCREC, and $RLCUSER functions

in the Rocket Model 204 documentation wiki for more information:

http://m204wiki.rocketsoftware.com/index.php/Category:SOUL_$functions

WORKING-STORAGE SECTION.
01 CALL-ARGS.

05
05
05
05

RETCODE
RECNUM
USERNUM
FI1LENAME

PIC 9(5) COMP SYNC.
PIC X(11).
PIC X(5).
PIC X(8) VALUE "FN1;"

PROCEDURE DIVISION.

CALL "IFERLC™ USING RETCODE, RECNUM, USERNUM, FILENAME.

155

IFERR call -me.sc

Function The IFERR call (ERROR) places an error message on the Model 204 journal.
Full syntax (28) 1FERR(RETCODE,PRINT_OP,ERR_MSG)

Compile-only A compile-only form of IFERR is not available.
syntax

Execute-only An execute-only form of IFERR is not available.

syntax
Parameters Specify the parameters in the syntax order shown above.
Parameter Description
RETCODE [O,i,r] The Model 204 return code is a required output

parameter. The code is a binary integer value.

PRINT_OP [1,i,r] The print option is a required input parameter. Specify
any of the following integer values for printing the message,
or sum any of the values:

0 = Print the message only on the journal.

1 = Print the message on the operator’s console and on the
journal.

128 = Print the message on the journal and snap the
current thread’s storage areas including the Host
Language Interface/Model 204 server area and control
blocks.

ERR_MSG [l,c,r] The error message is a required input parameter
which specifies the message to be printed. Specify a
character string less than 256 characters in length.

Notes and tips Use the IFERR call to document errors encountered during host language
program processing. Model 204 writes the message in the journal as an AD
line. You can use the IFERR call on any type of IFSTRT thread.

Coding In the example below, a message is written to the Model 204 journal.
example
(COBOL)

WORK ING-STORAGE SECTION.

01 CALL-ARGS.
05 RETCODE PIC 9(5) COMP SYNC.
05 AUDIT-ERROPT PIC 9(5) VALUE O.

156 Rocket Model 204 Host Language Interface Reference Manual

01 MESSAGES.
05 MESSAGE-A PIC X(19) VALUE "™INPUT CODE INVALID;".
05 MESSAGE-B PIC X(19) VALUE "RECORD NOT FOUND;".

PROCEDURE DIVISION.

CALL "IFERR™ USING RETCODE, AUDIT-ERROPT, MESSAGE-B.

157

IFFAC call ™¢®°

Function

Full syntax
(126)

Compile-only
syntax (127)

Execute-only
syntax (128)

Parameters

The IFFAC call (FIND AND COUNT) creates a found set and returns the record
count in an output parameter.

IFFAC(RETCODE,FIND_SPEC,COUNT ,FAC_NAME , %VARBUF ,%VARSPEC)
IFFACC(RETCODE, FIND_SPEC,FAC_NAME)

I FFACE(RETCODE , COUNT , FAC_NAME , %VARBUF , %VARSPEC)

Specify the parameters in the syntax order shown above.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is the required first parameter.
The code is a binary integer value.

FIND_SPEC [I,c,r] The find specification is a required input parameter which is
the selection criteria to be used for retrieving records. Specify a
character string. See FIND_SPEC on page 168 for a detailed
description of the find specification used for the IFFIND call that
is also valid for IFFAC.

The file context can change on a multiple cursor thread and, if the
file specification is omitted, IFFAC processes records from the file
or group that is the default on the thread at the time that the
IFFAC is compiled.

COUNT [O,i,rf] The count parameter is a required parameter which
specifies the location of the output parameter for the return count
value. Specify an integer variable. Model 204 returns the record
count as a fullword binary number.

FAC_NAME [I,s,r/0] The name of the IFFAC compilation is an input parameter
that is required for use with a multiple cursor IFSTRT thread, and
is only required for a single cursor IFSTRT thread if using the
Compiled IFAM facility (IFFACC and IFFACE). Model 204 saves
the compilation using this name.

Specify the name as unique, and as a short character string
(maximum 32 characters). On a single cursor IFSTRT thread,
any characters except the following are valid in the name: blank,
comma, parenthesis, equal sign, or semicolon. On a multiple
cursor IFSTRT thread, the first character in the name must be
alphanumeric, and the name must begin with a letter (A—Z or a—
z) which may be followed by a letter, a digit (0-9), a period (.), or
underscore ().
Note: A null value is equivalent to omitting the name parameter, and is
not valid for a multiple cursor thread.

158 Rocket Model 204 Host Language Interface Reference Manual

Notes and tips

Coding
example
(COBOL)

Parameter Description

%VARBUF [l,c,0] The variable buffer is an optional input parameter that
addresses a data area which accommodates up to 255 bytes of
data per value. The buffer contains values which are defined by
the %VARSPEC parameter, below, to be assigned to %variables.
Specify a character string. See the Rocket Model 204
documentation wiki for information about %variables:

http://m204wiki.rocketsoftware.com/index.php/Using_variables_
and_values_in_computation

%VARSPEC [I,c,0] The variable specification describes the format of the data
that is contained in the %variable parameter and lists the
%variables to be assigned. %VARSPEC specifies the contents of
the variable buffer, described above. Specify a character string
which follows a LIST, DATA, or EDIT syntax.

%VARSPEC is a required input parameter if %VARBUF is
specified.

Use the IFFAC call to retrieve records and to obtain a count of the records that
meet the retrieval conditions.

Note: The IFFAC call is permitted on all types of IFSTRT threads and is useful
for reducing CRAM overhead.

The IFFAC call is the equivalent of the FIND AND PRINT COUNT statement in
SOUL in the host language environment. See the Rocket Model 204
documentation wiki for information about the FIND AND PRINT COUNT
statement:

http://m204wiki.rocketsoftware.com/index.php/Basic_SOUL _statements_and
_commands#Counting_records

Processing records from a found set

There are differences between single cursor and multiple cursor IFSTRT
threads in processing records from a found set.

When a setis found on a single cursor IFSTRT thread, and while itis the current
set, you can use IFGET to retrieve individual records. On a single cursor

IFSTRT thread, you must save the current found set on a list before issuing any
call which creates a new set if you want to access the previously found records.

On a multiple cursor thread, use IFOCUR to open a cursor to a found set any
time after it is established and use the IFFTCH call to retrieve individual
records.

WORKING-STORAGE SECTION.
01 CALL-ARGS.
05 RETCODE PIC 9(5) COMP SYNC.
05 COUNT PIC 9(5) COMP SYNC.
05 FDSPEC PIC X(12) VALUE *"MAKE="FORD";END;".

159

05 FDNAME PIC X(7) VALUE "FDFORD;™".

PROCEDURE DIVISION.

CALL "IFFAC™ USING RETCODE, FDSPEC, COUNT, FDNAME.

160 Rocket Model 204 Host Language Interface Reference Manual

IFFDV call ™M¢*°

Function

Full syntax (74)

Compile-only
syntax (75)

Execute-only
syntax (76)

Parameters

The IFFDV call (FIND ALL VALUES) finds all values of a specified Model 204
field and creates a value set. The field must be defined having either KEY and
FRV or ORDERED attributes.

IFFDV(RETCODE, FIELD_NAME , FDV_NAME , %VARBUF , %VARSPEC)

IFFDVC(RETCODE, FIELD_NAME , FDV_NAME)

I FFDVE(RETCODE , FDV_NAME , %VARBUF , %VARSPEC)

Specify the parameters in the syntax order shown above.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is the required first parameter.
The code is a binary integer value.

FIELD_NAME [l,c,r] The field name is a required input parameter which specifies

the name of the Model 204 field whose values are to be found. A
field name variable or a %variable is valid. Specify the field as a
character string using the following format:

[IN {FILE filename; | GROUP groupname;}]
FDV fieldname; [FROM valuel] [TO valuen];
[INOT] LIKE pattern];END;

where:

* IN clause is available only for a multiple cursor thread and its use is
optional for specifying a file or group context other than the
default.The file context can change on a multiple cursor thread, and
if the file specification is omitted, IFFDV processes values from the
file or group that is the default on the thread at the time that the IFFDV
call is compiled.

» filename|groupname specifies the name of a particular file or group
context for the value set.

« FDVis a required keyword that must be specified if the IN clause is
used.

« fieldname is required and specifies the name of a particular
Model 204 field or field name variable.

« FROM and TO clauses are optional and specify a minimum (greater
than or equal to) value (FROM), a maximum (less than or equal to)
value (TO), or arange of values (FROM and TO) for selection criteria.

« LIKE|NOT LIKE clause is optional and specifies a string pattern for
selection criteria.

See the Rocket Model 204 documentation wiki for information

about value specifications:

http://m204wiki.rocketsoftware.com/index.php/Statement_syntax
#Value_specification_syntax

161

Parameter

Description

FDV_NAME

[I,s,r/0] The name of the IFFDV compilation is an input parameter
that is required for use with a multiple cursor IFSTRT thread, and
is only required for a single cursor IFSTRT thread if using the
Compiled IFAM facility (IFFDVC and IFFDVE). Model 204 saves
the compilation using this name.

Specify the name as unique, and as a short character string
(maximum 32 characters). On a single cursor IFSTRT thread, any
characters except the following are valid in the name: blank,
comma, parenthesis, equal sign, or semicolon. On a multiple
cursor IFSTRT thread, the first character in the name must be
alphanumeric, and the name must begin with a letter (A—Z or a-z)
which may be followed by a letter, a digit (0-9), a period (.), or
underscore ().

A null value is equivalent to omitting the name parameter, and is
not valid for a multiple cursor thread.

%VARBUF

[l,c,0] The variable buffer is an optional input parameter that
addresses a data area which accommodates up to 255 bytes of
data per value.

The buffer contains values which are defined by the %VARSPEC
parameter, below, to be assigned to %variables. Specify a
character string. See the Rocket Model 204 documentation wiki
for information about %variables:
http://m204wiki.rocketsoftware.com/index.php/Using_variables_a
nd_values_in_computation

%VARSPEC

[l,c,0] The variable specification describes the format of the data
that is contained in the %VARBUF parameter and lists the
%yvariables to be assigned. %VARSPEC specifies the contents of
the variable buffer, described above. Specify a character string
which follows a LIST, DATA, or EDIT syntax.

%VARSPEC is a required input parameter if %VARBUF is
specified

SQL performance

The SQL driver, if possible, uses the IFFDV call to process the DISTINCT
qualifier in SQL, which avoids triggering Model 204 Long Requests and
improves performance. This behavior applies to any SQL interface, such as
Connect* or a C program. Model 204 stipulates that an IFFDV call contain
only one field with either an FRV attribute or an ORDERED attribute.

IFFDV applies to all SQL aggregate functions, AVG, COUNT, MAX, MIN and
SUM. The MIN (DISTINCT column-name) requires only one fetch of the value
set in question if the corresponding Model 204 field has an ORDERED

attribute.

162 Rocket Model 204 Host Language Interface Reference Manual

Notes and tips

Limiting considerations

Because of the discrepancy between Model 204 and SQL, a Model 204
string field must have either the ORDERED or the FRYV attribute; a binary
or float field must have the ORDERED attribute.

The WHERE clause in the SELECT statement is limited to the scope of the
arguments in an IFFDV call. For example:

SELECT DISTINCT LAST_NAME FROM firlename
WHERE LAST_NAME BETWEEN "A® AND *"C*
AND LAST_NAME NOT LIKE “ABC%"

If SELECT statements reference only a single column in the query, the
IFFDV performance enhancement is used. For example, the following
query does not invoke an IFFDV call because the query references two
columns, LAST_NAME and FIRST_NAME.

SELECT DISTINCT LAST_NAME FROM frlename
WHERE LAST_NAME BETWEEN "A" AND "C-
AND FIRST_NAME (NOT) LIKE “ABC%*

If you have more than one FROM or more than one TO clause, then IFFDV
optimization is not performed, as the following query illustrates:

SELECT DISTINCT LAST_NAME FROM frlename
WHERE LAST_NAME BETWEEN "A" AND *"C-
AND LAST_NAME <> "ABC%"

A query that contains an OR keyword is not optimized by IFFDV, as the
following example illustrates:

SELECT DISTINCT LAST_NAME FROM firlename
WHERE LAST_NAME BETWEEN "A® AND *"C-
OR LAST_NAME LIKE “NEL%"

A query that contains a NOT BETWEEN clause is not optimized by IFFDV,
as the following example illustrates:

SELECT DISTINCT LAST_NAME FROM filename
WHERE LAST_NAME NOT BETWEEN “A® AND *M*®

Use the IFFDV call to retrieve the stored values of a particular field. You can
specify only one field per call. You may specify retrieval conditions, a range or
a pattern, to limit values in the found set. Note that in group context, the found
value set is automatically sorted in ascending order, following the standard
EBCDIC collating sequence.

The IFFDV call is permitted on all types of IFSTRT threads.

The IFFDV call is the equivalent of the FIND ALL VALUES statement in SOUL
in the host language environment. See the Rocket Model 204 documentation
wiki for information about the FIND ALL VALUES statement:

163

http://m204wiki.rocketsoftware.com/index.php/Value_loops

Processing records from a value set

There are differences between single cursor and multiple cursor IFSTRT
threads in processing records from a value set.

When a setis found on a single cursor IFSTRT thread, and while it is the current
set, you can use IFGETYV to retrieve individual values. On a multiple cursor
thread, use IFOCUR to open a cursor to a value set any time after it is
established using Compiled IFAM and use the IFFTCH call to retrieve
individual values.

Coding The examples below find all the values of the field COLOR. In this example,
examples IFFDV is called without the compilation name or a %variable:
(COBOL)

WORKING-STORAGE SECTION.
01 CALL-ARGS.
05 RETCODE PIC 9(5) COMP SYNC.
05 FIELD-NAME PIC X(6) VALUE "COLOR;™.

PROCEDURE DIVISION.

CALL "IFFDV' USING RETCODE, FIELD-NAME.

In the example below, IFFDV is called using the compilation name and a
Y%variable:

WORKING-STORAGE SECTION.
01 CALL-ARGS.

05 RETCODE PIC 9(5) COMP SYNC.

05 FIELD-NAME PIC X(8) VALUE "%%FNVAR;".

05 FD-NAME PIC X(23) VALUE "I1FFDV COMPILATION NAME;".
05 PCV PIC X(6) VALUE "COLOR;".

05 PCV-SPEC PIC X(20) VALUE "EDIT(%FNVAR)(A(5));"-

PROCEDURE DIVISION.

CALL "IFFDV"™ USING RETCODE, FIELD-NAME, FD-NAME, PCV,
PCV-SPEC.

164 Rocket Model 204 Host Language Interface Reference Manual

IFFILE call mese

Function

Full syntax (22)

Compile-only
syntax

Execute-only
syntax

Parameters

The IFFILE call (FILE) adds the specified field to each record in a found set and
saves the updated records.

IFFILE(RETCODE, FIELD_SPEC,SET_QUAL)

A compile-only form of IFFILE is not available.

An execute-only form of IFFILE is not available.

Specify the parameters in the syntax order shown above.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is the required first
parameter. The code is a binary integer value.

FIELD_SPEC [l,c,r] The field specification is a required input parameter
which specifies the name and value pair for the field that will
be added to the records in the set. Specify a character string
using the following name=value pair format:

fieldname=Fieldvalue;
where:

fieldname is the name of the pre-defined Model 204 field to
be added to each record in the set. You may specify only
one field per IFFILE call. The field must be predefined to
Model 204 as having both KEY and INVISIBLE attributes.
Specify the name as a character string, up to 255 characters
in length.

fieldvalue is the value for the specified field in the pair. A
value is required. Values may be specified in decimal form,
such as 193, in hexadecimal form, such as X'C1', or in
character form, such as C'A'.

165

Notes and tips

Coding
example
(COBOL)

Parameter Description

SET_QUAL [l,c,r] The set qualifier is available only for use with a
multiple cursor IFSTRT thread and it is required for
specifying the record set or list that will be used to add fields
to records in a file or group. Specify a character string using
either one of the following formats:

{IN label | ON [LIST} listname}
where:
label is the name of a saved IFFIND, IFFNDX, IFFWOL, or

IFFAC compilation from the previously compiled call which
established the record set.

listhame specifies the name of a list which contains the
found set.

Note: The set qualifier is not a valid parameter for use with a
single cursor IFSTRT thread.

Use the IFFILE call to update and retain a set of records for future use. The
IFFILE call adds the specified field to all the records that are in the found set.
IFFILE does not enqueue on a set of records. Note that you cannot use IFFILE
with a sorted record set.

When FOPT=X'10" and the date/time stamp feature is installed, the IFFILE
function is supported for DTS files.

Once records are updated with the IFFILE call, you can retrieve all the records
in the found set by referencing the added field in a retrieval call. Overall, this is
more efficient than updating records one at a time.

The IFFILE call is valid on all types of IFSTRT threads. You must specify the
found set of records that are to be updated on a multiple cursor IFSTRT thread.
On a single cursor IFSTRT thread, IFFILE updates records using the found set
that is current.

Note: IFFILE deletes a field from a record in a file or group if the field already
exists. Use IFFILE with caution because it can delete a field from records which
are not in the current set.

WORKING-STORAGE SECTION.
01 ARGS-FOR-CALL.
05 RETCODE PIC 9(5) COMP SYNC.
05 KEY-INV-FIELD PIC X(10) VALUE "SAVREC=2;".

PROCEDURE DIVISION.

CALL "IFFILE"™ USING RETCODE, KEY-INV-FIELD.

166 Rocket Model 204 Host Language Interface Reference Manual

IFFIND call ™¢*¢

Function The IFFIND call (FIND) selects records from a Model 204 file or group in share
mode and creates a found set.

Full syntax (13) I1FFIND|IFFD(RETCODE,FIND_SPEC,FIND_NAME,%VARBUF ,%VARSPEC)

Compile-only IFFINDC| I1FFDC(RETCODE, FIND_SPEC, FIND_NAME)
syntax (46)

Execute-only IFFINDE | 1FFDE(RETCODE, FIND_NAME , %VARBUF , %VARSPEC)
syntax (47)

Parameters Specify the parameters in the syntax order shown above.
Parameter Description
RETCODE [O,i,r] The Model 204 return code is the required first

parameter. The code is a binary integer value.

167

Parameter Description

FIND_SPEC [l,c,r] The find specification is a required input parameter
which is the selection criteria to be used for retrieving
records. This find specification may also be used for the
IFFAC call. Specify the selection criteria as a character
string using the where:

[IN {FILE filename: | GROUP groupname;}]
FD [set qualifier]

specl;...specn; END;

where:

IN clause is available only for a multiple cursor thread and
its use is optional for specifying a file or group context other
than the default.

Note: The file context can change on a multiple cursor thread
and, if the file specification is omitted, IFFIND is compiled
against the last file opened which is the default file or group
on the thread.

filename|groupname specifies the name of a particular file

or group context for the record set.

FD is a required keyword that must be specified if the IN

clause is used.

set qualifier is available only for a multiple cursor thread and

its use is optional for specifying the previously established

record set or list from which records will be retrieved. Note
that a set qualifier is illegal if the IN FILE clause is specified.

Specify the set qualifier as a character string using one of

the following formats:

{IN label | ON [LIST} listname}

where:

« label is the name of a saved IFFIND or IFFAC compilation

from a previously compiled call.

* listhname specifies the name of a list.

spec is a valid retrieval specification (1 through n). End the

specification with a semicolon (;).

168 Rocket Model 204 Host Language Interface Reference Manual

Parameter Description

Note: To be selected, a record must meet all of the retrieval
specifications. A specification can be any Boolean
combination of conditions using the following elements:

e Files from the current group

e Lists of records

e Physical record numbers

e Sortfields

* KEY or NON-KEY fields

« NUMERIC RANGE or NON-RANGE (alphanumeric) fields
« ORDERED or NON-ORDERED fields.

END:; is the required keyword and semicolon delimiter which
indicates the end of the find specification.

See the Rocket Model 204 documentation wiki for
information about retrieval conditions and selection results:

http://m204wiki.rocketsoftware.com/index.php/Basic_SOU
L_statements_and_commands#Find_statement

FIND_NAME [1,s,r/0] The name of the IFFIND compilation is an input
parameter that is required for use with a multiple cursor
IFSTRT thread, and is only required for a single cursor
IFSTRT thread if using the Compiled IFAM facility (IFFINDC
and IFFINDE). Model 204 saves the compilation using this
name.

Specify the name as unique, and as a short character string
(maximum 32 characters). On a single cursor IFSTRT
thread, any characters except the following are valid in the
name: blank, comma, parenthesis, equal sign, or
semicolon. On a multiple cursor IFSTRT thread, the first
character in the name must be alphanumeric, and the name
must begin with a letter (A—Z or a—z) which may be followed
by a letter, a digit (0-9), a period (.), or underscore ().
Note: A null value is equivalent to omitting the name parameter,
and is not valid for a multiple cursor thread.

%VARBUF [1,c,0] The variable buffer is an optional input parameter that
addresses a data area which accommodates up to 255
bytes of data per value. The buffer contains values which
are defined by the %VARSPEC parameter, below, to be
assigned to %variables. Specify a character string. See the
Rocket Model 204 documentation wiki for information about
%variables:

http://m204wiki.rocketsoftware.com/index.php/Using_varia
bles_and_values_in_computation

169

Parameter Description

%VARSPEC [l,c,0] The variable specification describes the format of the
data that is contained in the %variable parameter and lists
the %yvariables to be assigned. %VARSPEC specifies the
contents of the variable buffer, described above. Specify a
character string which follows a LIST, DATA, or EDIT
syntax.

%VARSPEC is a required input parameter if %VARBUF is
specified.

Notes and tips Use the IFFIND call to retrieve records. The find specification is based on a
specified combination of retrieval conditions, the selection criteria.

Note that IFFIND does not verify the number of records in the found set. A
return code of 0 indicates normal completion of the call whether none, one, or
many records are found. To determine whether or not the selected set is empty,
use the IFCOUNT call.

The IFFIND call is permitted on all types of IFSTRT threads.

Completion A Model 204 return code of 4 indicates abnormal completion of the IFFIND call
return code for any of the following error conditions:
(RETCODE)

* Anincorrect find specification (Model 204 does not save the compilation,
the compilation name that is specified is not defined).

» Afield name variable replaced by a nonexistent field (Model 204 saves the
compilation but does not execute the find function).

* Anincorrect %variable parameter

Record locking behavior

Records in the found set are retrieved in share mode. Alternatively, to lock the
records of the current set in exclusive mode, use the IFFNDX call, or to select
records without obtaining any locks, use the IFFWOL call.

The IFFIND call is the equivalent of the FIND statement in SOUL in the host
language environment. See the Rocket Model 204 documentation wiki for
information about the FIND statement:

http://m204wiki.rocketsoftware.com/index.php/Basic_SOUL _statements_and
_commands
Processing records from a found set

There are differences between single cursor and multiple cursor IFSTRT
threads in processing records from a found set.

When a setis found on a single cursor IFSTRT thread, and while it is the current
set, you can use IFGET to retrieve individual records. On a single cursor

170 Rocket Model 204 Host Language Interface Reference Manual

IFSTRT thread, you must save the current found set on a list before issuing any
call which creates a new set if you want to access the previously found records.

On a multiple cursor thread, use IFOCUR to open a cursor to a found set any
time after it is established. Use the IFFTCH call to retrieve individual records.

Coding WORKING-STORAGE SECTION.
example 01 CALL-ARGS.
(COBOL) 05 RETCODE PIC 9(5) COMP SYNC.

05 QUAL-1 PIC X(75) VALUE "SEX=FEMALE;
OCCUPATION=DOCTOR OR DENTIST;
CITY=BOSTON;NAME LIKE "PAT*";END;".

PROCEDURE DIVISION.

CALL "IFFIND™ USING RETCODE, QUAL-1.

171

IFFLS call -me-sc

Function

Full syntax (61)

Compile-only
syntax

Execute-only
syntax

Parameters

The IFFLS call (FIELD LEVEL SECURITY) checks security access level to a
specified field, or to all fields, in a file or group on the current thread.

IFFLS(RETCODE, FIELD_NAME ,ACCESS_SPEC,FILE_IND)

A compile-only form of IFFLS is not available.

An execute-only form of IFFLS is not available.

Specify the parameters in the syntax order shown above.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is a required output
parameter. The code is a binary integer value.

FIELD_NAME [l,c,0] The field name is an optional input parameter which

specifies the name of the field or identifies a field name
variable for a field whose security access level is to be
checked.

Note: If the field name is not specified, IFFLS defaults to
checking all of the fields in the indicated file or group. In this
case, Model 204 returns a completion code of 0 only if the
thread has the requested access to every field. Use IFFLS
without specifying a field name with caution; since this
requires that Model 204 examine every field, it can slow
performance.

ACCESS_SPEC

[1,s,0] The access specification is an optional input
parameter which summarizes the needed field access.
Specify a short character string which contains any of the
following character codes:

S = SELECT
R = READ

U = UPDATE
A =ADD

Note: If you do not specify the access codes, the specification
defaults to a value of SRUA, for all privileges.

172 Rocket Model 204 Host Language Interface Reference Manual

Notes and tips

Completion
return code
(RETCODE)

Coding
example
(CoBOL)

Parameter Description

FILE_IND [1,s,0] The file indicator is an optional input parameter which
specifies the file or group context for the access check. If
you do not specify the file indicator, IFFLS uses the context
established by the IFOPEN call. You may specify the file
indicator in one of the following ways on a single cursor
IFSTRT thread:

« Ifthe access is to be checked for a particular file in the group,
specify that file name.

« Ifthe accessis to be checked for the file containing the current
record, specify the $CURFILE string.

« Toindicate the group update file, specify the SUPDATE string.
In group context, IFFLS returns a completion code of O if
there is a set of files in the group for which the access would
be allowed.

On a multiple cursor IFSTRT thread, you may specify any
file or group using the following format:

filename

Note: On a multiple cursor IFSTRT thread, $UPDATE and
$CURFILE are illegal.

Use the IFFLS call to avoid or diagnose errors that occur because of field level
security violations. You can use the IFFLS call on any type of IFSTRT thread.

If the IFFLS call is unsuccessful, Model 204 returns an error code of 4 if any
one of the following error conditions occurs:

e The indicated access (ACCESS_SPEC) is not allowed.
« The access string (ACCESS_SPEC) is invalid.

e The field name (FIELD_NAME) is not defined.

* No file or group is open.

e The file indicator (FILE_IND) is invalid.

WORKING-STORAGE SECTION.

01 ARGS-FOR-CALL.
05 RETCODE PIC 9(5) COMP SYNC.
05 FIELDNAME PIC X(7) VALUE *"SALARY;".
05 ACCESS PIC X(2) VALUE "U;™.

PROCEDURE DIVISION.

CALL "IFFLS'™ USING RETCODE, FIELDNAME, ACCESS.

173

IFFLUSH call -me.sc

Function

Full syntax (45)

Compile-only
syntax

Execute-only
syntax

Parameters

Notes and tips

The IFFLUSH call (FLUSH) flushes compilations and %variables from the
Model 204 server tables for the current thread.

IFFLUSH| IFFLSH(RETCODE ,NAME_SPEC)

A compile-only form of IFFLUSH is not available.

An execute-only form of IFFLUSH is not available.

Specify the parameters in the syntax order shown above.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is a required output
parameter. The code is a binary integer value.

NAME_SPEC [l,c,0] The name specification is an optional input parameter

which specifies a list of one or more compilation names, or

%variables, or both, to be deleted from the server tables.

Specify a short character string. Separate names in the list

using a comma and end the string with a semicolon.

Note: If the name string is not specified, IFFLUSH deletes all
compilations and %variables from the corresponding
server tables for the current thread.

Use the IFFLUSH call to control space management for the Model 204 server
tables, such as QTBL and STBL, that are occupied by compilations and
%variables. You can delete items from storage that are no longer needed and
make room for new compilations.

You can use the IFFLUSH call on any type of IFSTRT thread. IFFLUSH is only
valid for use with the Compiled IFAM facility.

Using IFFLUSH on a multiple cursor IFSTRT thread

On a multiple cursor IFSTRT thread, except for IFFTCH, IFUPDT, and IFOCC
compilations which may be flushed individually, IFFLUSH does not allow the
flushing of individual compilations or %variables.

IFFLUSH flushes everything. If IFFLUSH is coded without a name list (as
shown in the example below), it empties the server tables and frees all record
sets and CCATEMP pages that are held by the HLI program. On a multiple
cursor IFSTRT thread, IFFLUSH operates similarly to an END statement in
SOUL.

174 Rocket Model 204 Host Language Interface Reference Manual

Coding WORKING-STORAGE SECTION.
example 01 ARGS-FOR-CALL.
(COBOL) 05 RETCODE PIC 9(5) COMP SYNC.

PROCEDURE DIVISION.

CALL "IFFLS'™ USING RETCODE.

175

IFFNDX call ™*¢

Function The IFFNDX call (FIND EXCLUSIVE) selects records from a Model 204 file or
group, enqueuing in exclusive mode, and creates a found set.

Full syntax (56) 1FFNDX|IFFDX(RETCODE,FIND_SPEC, TIME_SPEC,FNDX_NAME,

%VARBUF , %VARSPEC)

Compile-only ~ IFFNDXC| IFFDXC(RETCODE, FIND_SPEC, FNDX_NAME)

syntax (57)

Execute-only I FFNDXE | I1FFDXE(RETCODE, TIME_SPEC , FNDX_NAME , %VARBUF , %VARSPEC)

syntax (58)

Parameters Specify the parameters in the syntax order shown above.

Parameter Description

RETCODE [O,i,rf] The Model 204 return code is the required first
parameter. The code is a binary integer value.

FIND_SPEC [l,c,r] The find specification is a required input parameter
which is the selection criteria to be used for retrieving
records. Specify the selection criteria as a character string.
See FIND_SPEC on page 168 for a detailed description of
the find specification used for IFFIND that is also valid for
IFFNDX.

TIME_SPEC [1,i,r] The time specification is a required input parameter.
Specify an integer value which is the number of times to try
the find in the event of an enqueuing conflict; the wait time
is in 3-second periods.

FNDX_NAME [I,s,r/0] The name of the IFFNDX compilation is an input

parameter that is required for use with a multiple cursor
IFSTRT thread, and is only required for a single cursor
IFSTRT thread if using the Compiled IFAM facility
(IFFNDXC and IFFNDXE). Model 204 saves the
compilation using this name.

Specify the name as unique, and as a short character string
(maximum 32 characters). On a single cursor IFSTRT
thread, any characters except the following are valid in the
name: blank, comma, parenthesis, equal sign, or
semicolon. On a multiple cursor IFSTRT thread, the first
character in the name must be alphanumeric, and the name
must begin with a letter (A—Z or a—z) which may be followed
by a letter, a digit (0-9), a period (.), or underscore ().
Note: A null value is equivalent to omitting the name parameter,
and is not valid for a multiple cursor thread.

176 Rocket Model 204 Host Language Interface Reference Manual

Parameter Description

%VARBUF [l,c,0] The variable buffer is an optional input parameter that
addresses a data area which accommodates up to 255
bytes of data per value. The buffer contains values which
are defined by the %VARSPEC parameter, below, to be
assigned to %variables. Specify a character string. See the
Rocket Model 204 documentation wiki for information about
Y%variables:

http://m204wiki.rocketsoftware.com/index.php/Using_varia
bles_and_values_in_computation

%VARSPEC [l,c,0] The variable specification describes the format of the
data that is contained in the %VARBUF parameter and lists
the %yvariables to be assigned. %VARSPEC specifies the
contents of the variable buffer, described above. Specify a
character string which follows a LIST, DATA, or EDIT
syntax.

%VARSPEC is a required input parameter if %VARBUF is
specified.

Notes and tips Use the IFFNDX call to retrieve records and to hold the found set in exclusive
mode. The find specification is based on a specified combination of retrieval
conditions and is identical to the one that is used with the IFFIND call.

If a call to IFFNDX results in an enqueuing conflict, Model 204 waits at most
three seconds and then tries again, for as many times as specified in the time
parameter (the wait time is in 3-second periods). After trying unsuccessfully for
the number of times specified in the time parameter, Model 204 returns a
completion code of 3 to the HLI program.

For more information, see the description of the ENQRETRY parameter in the
Rocket Model 204 documentation wiki:

http://m204wiki.rocketsoftware.com/index.php/ENQRETRY _parameter

Coding
example
(CoBOL)

WORKING-STORAGE SECTION.
01 CALL-ARGS.
05 RETCODE PIC 9(5) COMP SYNC.
05 QUAL-1 PIC X(75) VALUE "SEX=FEMALE;
OCCUPATION=DOCTOR OR DENTIST;
CITY=BOSTON;NAME LIKE "PAT*";END;".
05 NUMRTRY PIC 9(5) COMP SYNC VALUE 3.

PROCEDURE DIVISION.

177

CALL "IFFNDX"™ USING RETCODE, QUAL-1, NUMRTRY.

178 Rocket Model 204 Host Language Interface Reference Manual

IFFNSH call -me.sc.di

Function

Full syntax (3)

Compile-only
syntax

Execute-only
syntax

Parameters

Notes and tips

The IFFNSH call (FINISH) closes, dequeues, and deallocates all files and
threads to terminate Host Language Interface processing.

IFFNSH(RETCODE ,USER_RETCODE , URC_TYPE)

A compile-only form of IFFNSH is not available.

An execute-only form of IFFNSH is not available.

Parameter Specifies...

RETCODE [O,i,r] Model 204 return code, the required output parameter.

The code is a binary integer value.

Model 204 return code for the current user. The code is
a binary integer value and is output only.

USER_RETCODE
[O,i,0]

URC_TYPE [l,c,0] Type of return code to return in USER_RETCODE.
Values are:

* Nforreturn code =0

e O for Online value

« B for batch value

USER_RETCODE and URC_TYPE are optional; however, if you enter one,
you must enter both. Incorrect URC_TYPE parameter values are equivalent to
entering N.

If the connection to Model 204 is lost prior to the call to IFFNSH, the RETCODE
is 1000, indicating a successful disconnect. The USER_RETCODE value
returned, however, is -1, indicating that the USER_RETCODE value is
unknown.

Use the IFFNSH call to complete the update unit and end the current
transaction. Call IFFNSH when the application program no longer needs the
Host Language Interface/Model 204 service program.

IFFNSH closes, dequeues, and deallocates all files and threads in the current
host language job, including any thread initiated by an IFDIAL call. You can use
IFFNSH on any type of IFSTRT thread. IFFNSH, together with IFSTRT,
initiates CPSORT checkpointing. For more information about CPSORT
checkpointing, see the Rocket Model 204 Host Language Interface
Programming Guide.

179

Coding
example
(CoBOL)

Model 204 returns the completion codes for the IFFNSH call that are listed in

Table 6-3.
Table 6-3. IFFNSH completion codes (RETCODE)
Code Job Condition
1nnn IFAM1 nnnis the highest journal error message return code
encountered during the run. For example, the message FILE IS
FULL... has an associated return code of 48 and may cause an
IFAM1 IFFNSH return code of 1048. Completion codes greater
than 1080 indicate that severe system errors were encountered
during the run and prohibit further calls to IFSTRT.
1000 IFAM2 The application program disconnected from Model 204 normally.
Otherwise, the system returns one of the completion codes listed
IFAM4 in Table 8-2 on page 335.

All Host Language Interface functions return with register 15 set
to 0. The return code that the application program returns to the
operating system is not set by Model 204 or the Host Language
Interface, but must be set by the application program itself.

IFAM2 CICS Interface

An application that uses the IFAM2 CICS interface must issue IFFNSH before
the program ends.

If IFFNSH is not issued, Model 204 does not detect that the IFAM2 program
ended. In addition, Model 204 leaves the Host Language Interface threads,
which were established through IFSTRT and IFDIAL, unusable by any other

user.

See the Rocket Model 204 Host Language Interface Programming Guide for
more information about using IFFNSH for abend handling in an IFAM2 CICS

program.

WORKING-STORAGE SECTION.

01 CALL-ARGS.

05 RETCODE PIC 9(5) COMP SYNC.

PROCEDURE DIVISION.
OPEN-FILES.
OPEN OUTPUT. ..
CALL "IFSTRT"™ USING. ..

CLOSE-FILES.

180 Rocket Model 204 Host Language Interface Reference Manual

CALL "IFFNSH"™ USING RETCODE.

181

IFFRN call ™¢

Function

Full syntax
(118)

Compile-only
syntax (119)

Execute-only
syntax (120)

Parameters

The IFFRN call (FOR RECORD NUMBER) creates a cursor, or opens an
existing cursor on the current thread. The IFFRN cursor points to the specified
record in the specified file and makes it the current record in the cursor.
IFFRN(RETCODE,FILE_SPEC,RECNUM, FRN_NAME ,%VARBUF ,%VARSPEC)
IFFRNC(RETCODE, FILE_SPEC,FRN_NAME)

I FFRNE(RETCODE , RECNUM, FRN_NAME , %VARBUF , %VARSPEC)

Specify the parameters in the syntax order shown above.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is the required first
parameter. The code is a binary integer value.

FILE_SPEC [l,c,r] The file specification is a required input parameter
which identifies the Model 204 file that contains the current
record. Specify a character string using a standard
Model 204 IN FILE clause. See the Rocket Model 204
documentation wiki for information about the IN FILE
clause:

http://m204wiki.rocketsoftware.com/index.php/Record_loo
ps
If a group is specified, a MEMBER clause is required.

RECNUM [I,s,r] The record number is a required input parameter
which specifies the internal record number. This is the
current record to be processed in the specified file. Specify
the record number as a short character string.

FRN_NAME [I,s,r] The unique name of the IFFRN compilation is a
required input parameter. A null string is not valid.
Model 204 saves the compilation using this name.

Specify the name as unique, and as a short character string
(maximum 32 characters). The first character in the name
must be alphanumeric, and the name must begin with a
letter (A—Z or a—z) which may be followed by a letter, a digit
(0-9), a period (.), or underscore (). A null value is
equivalent to omitting the name parameter, and is not valid.
Note: Model 204 allocates a cursor as part of the saved IFFRN
compilation. The cursor points to the record specified in the
RECNUM parameter. You can reference this cursor using
the compilation name in any single record host language
function.

182 Rocket Model 204 Host Language Interface Reference Manual

Notes and tips

Coding
example
(CoBOL)

Parameter Description

%VARBUF [l,c,0] The variable buffer is an optional input parameter that
addresses a data area which accommodates up to 255
bytes of data per value. The buffer contains values which
are defined by the %VARSPEC parameter, below, to be
assigned to %variables. Specify a character string. See the
Rocket Model 204 documentation wiki for information about
Y%variables:

http://m204wiki.rocketsoftware.com/index.php/Using_varia
bles_and_values_in_computation

%VARSPEC [l,c,0] The variable specification describes the format of the
data that is contained in the %variable parameter, and lists
the %yvariables to be assigned. %VARSPEC specifies the
contents of the variable buffer, described above. Specify a
character string which follows a LIST, DATA, or EDIT
syntax.

%VARSPEC is a required input parameter if %VARBUF is
specified.

Use the IFFRN call to establish a cursor pointing to a particular record in a
particular file. IFFRN opens a cursor to a record which allows the record to be
operated on by the IFFTCH and IFUPDT calls.

The IFFRN call is the equivalent of the FOR RECORD NUMBER statement in
SOUL and replaces the IFPOINT call in the multiple cursor environment.

See the IFPOINT call. See the Rocket Model 204 documentation wiki for
information about the FOR RECORD NUMBER statement:

http://m204wiki.rocketsoftware.com/index.php/Record_loops#FOR_RECORD
_NUMBER_processing

WORKING-STORAGE SECTION.
01 CALL-ARGS.
05 RETCODE PIC 9(5) COMP SYNC.
05 FILESPEC PIC X(5) VALUE "IN FILE CARS;".
05 RECNUM PIC X(4) VALUE "175;".
05 FRNCURS PIC X(8) VALUE "FRNCURS;™".

PROCEDURE DIVISION.

CALL "IFFRN"™ USING RETCODE, FILESPEC, RECNUM, FRNCURS.

183

IFFTCH call ™¢

Function The IFFTCH call (FETCH) processes the next logical record or value and
returns specified data to the user. IFFTCH specifies the cursor for the next
logical record from which data is to be processed.

Full syntax (98) 1FFTCH(RETCODE,BUFFER,DIRECTION,CURSOR_NAME,EDIT_SPEC,
FTCH_NAME , %VARBUF , %VARSPEC , RECNUM)

Compile-only IFFTCHC| IFFCHC(RETCODE ,CURSOR_NAME ,EDIT_SPEC, FTCH_NAME)

syntax (99)

Execute-only IFFTCHE | IFFCHE(RETCODE ,BUFFER,DIRECTION, FTCH_NAME,
syntax (100) %VARBUF , %VARSPEC , RECNUM)

Parameters Specify the parameters in the syntax order shown above.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is the required first
parameter. The code is a binary integer value.

BUFFER [O,c,r] The buffer location is a required output parameter
which specifies the address of the user’s data area. The
buffer contains the data returned by IFFTCH for the fields
that are defined by the EDIT_SPEC parameter, described
on page 184. Specify a character string.

DIRECTION [1,i,r] The direction is a required input parameter which

indicates the direction to move in the cursor for the specified
found set. Specify the direction as a fullword binary number
using a value in the range of -2,147,483,647 to
2,147,483,647. The cursor moves forward or backward a
number of positions equal to your DIRECTION value. For
example, if you specify a DIRECTION of 5, Model 204
processes every fifth record.

CURSOR_NAME

[l,c,r] Is a required input parameter which specifies the
name of the cursor that points to the current record or value
from which data is to be selected. This is a character string,
the name previously assigned to the cursor in a
corresponding IFOCUR call.

See CURSOR_NAME on page 229 for a description of the
cursor name for the IFOCUR call.

EDIT_SPEC

[l,c,r] The edit specification is a required input parameter
which defines the fields that are to be returned from the
specified record or value set. The specification describes
the format of the data which is returned at the buffer location
(see BUFFER on the previous page).

For a record set, specify a character string using one of the
following LIST, DATA, or EDIT format options:

184 Rocket Model 204 Host Language Interface Reference Manual

Parameter

Description

LIST (fieldname list);

DATA (Fieldname list);

DATA;

EDIT (fieldname list) (edit format);
EDIT (fieldname listl) (edit formatl)
(fieldname list2) (edit format2);

where:
fieldname list is required and specifies a field name or

names. Specify elements in the field name list using one of
the following options:

« fieldname

« fieldname(n)

e fieldname(*)

e fieldname(%variable)

where:

« fieldname retrieves the first occurrence of the named field.

« fieldname(n) retrieves the nth occurrence of the named field.

« fieldname(*) retrieves all occurrences of the named field in the
order of occurrence.
« fieldname(%variable) retrieves the occurrence of the field
specified by the %VARBUF and %VARSPEC parameters.
edit format is required in the EDIT specification and
specifies a code or codes which indicate(s) the format of the
data to be returned for the named field in the fieldname list-
edit format pair. See page 184 for a detailed description of
the EDIT format codes that are used with IFFTCH.

For a value set, specify a character string using either of the
following LIST or EDIT format options:

LIST;

IT (edit format);

» editformatis required in the EDIT specification. See page 184
for a detailed description of the EDIT format codes that are
used with IFFTCH. See Chapter 7 for a description of LIST,
DATA, and EDIT formatting.

See “Special data handling” on page 186 for information

about using multiple edit specifications for a data record.

FTCH_NAME

[1,s,0] The name of the IFFTCH compilation is an optional
input parameter. If specified, Model 204 saves the
compilation using this name.

Specify the name as unique, and as a short character string
(maximum 32 characters). The first character in the name
must be alphanumeric, and the name must begin with a
letter (A—Z or a—z) which may be followed by a letter, a digit
(0-9), a period (.), or underscore (_). A null value is
equivalent to omitting the name parameter, and is not valid.

185

Notes and tips

Parameter Description

%VARBUF [l,c,0] The variable buffer is an optional input parameter that
addresses a data area which accommodates up to 255
bytes of data per value. The buffer contains values which
are defined by the %VARSPEC parameter, below, to be
assigned to %variables. Specify a character string. See the
Rocket Model 204 documentation wiki for information about
%variables:

http://m204wiki.rocketsoftware.com/index.php/Using_varia
bles_and_values_in_computation

%VARSPEC [l,c,0] The variable specification describes the format of the
data that is contained in the %variable parameter, and lists
the %variables to be assigned. %VARSPEC specifies the
contents of the variable buffer, described above. Specify a
character string which follows a LIST, DATA, or EDIT
syntax. %VARSPEC is a required input parameter if
%VARBUF is specified.

RECNUM [0O,i,0] Record number is an optional output parameter that
will return the Model 204 internal record number. The
number is displayed as an integer. For value set cursors,
RECNUM always returns a zero.

Use the IFFTCH call to access records or data. For a record set, the IFFTCH
call operates in the following ways:

* No single record lock is obtained on the record that is being processed
« The record is not removed from the base record set after being returned.

Except for the record processing operations listed above, the IFFTCH call
operates in the multiple cursor environment similarly to the single cursor IFGET
and IFGETV calls, and (using DIRECTION=0) the IFMORE call. See the
IFGET, IFGETV, and IFMORE calls.

Special data handling

You may need to use more than one IFFTCH call to assemble a record. To
fetch data in segments, issue two or more successive IFFTCH calls, each
having an EDIT_SPEC for a different portion of the record. Note that the
second IFFTCH call must specify DIRECTION=0.

Specifying a cursor for IFFTCH

To successfully issue an IFFTCH call, you must specify a cursor which is open
on the thread. See the IFOCUR (open cursor) call.

186 Rocket Model 204 Host Language Interface Reference Manual

Coding
example
(COBOL)

Using forward and backward skip processing

IFFTCH allows you to skip records or values when going either forward or
backward. IFFTCH accepts either a positive or negative value of n and will skip
to the next nth record. For example, if you specify a DIRECTION of 5, Model
204 will process every fifth record. Specify the direction as a fullword binary
number using a value in the range of -2,147,483,647 to 2,147,483,647. If you
set DIRECTION to 0, Model 204 assumes that you are fetching the same
record.

Forward and backward skip processing can be used with the following types of
record sets:

* Ordered Index record or value sets
« UNORDERED record or value sets
e SORTED record or value sets

« SORTED file record sets

Backward skip processing

You may use backward skip processing with Ordered Index record sets if one
of the following is true:

e EACH is specified in the IFOCUR call.
» the field being processed is defined as OCCURS 1.
« the field being processed is defined as AT-MOST-ONE.

Negative settings invoke backward skipping. However, you may not skip
backward in a given record set until you have first skipped forward in the record
set. That is, you may not start at the beginning of the record set and skip
backward.

In the coding example below, Model 204 fetches every second (every other)
record as specified by the DIRECTION option.

WORKING-STORAGE SECTION.

01 WORK-REC.
05 WORK-SSN PIC 9(Q9).
05 WORK-NAME PIC X(30).

01 CALL-ARGS.
05 RETCODE PIC 9(5) COMP SYNC.
05 DIRECTION PIC 9(9) COMP SYNC VALUE ™2".
05 CURSOR-NAME PIC X(5) VALUE "CUR1;™".
05 EDIT-SPEC PIC X(28) VALUE "EDIT (SSN,NAME)

(A(9),A(30));"-

187

PROCEDURE DIVISION.

CALL "IFFTCH"™ USING RETCODE, WORK-REC, DIRECTION,
CURSOR-NAME, EDIT-SPEC.

188 Rocket Model 204 Host Language Interface Reference Manual

IFFWOL call ™®°

Function

Full syntax (87)

Compile-only
syntax (88)

Execute-only
syntax (89)

Parameters

The IFFWOL call (FIND WITHOUT LOCKS) selects records from a Model 204
file or group without obtaining record locks and creates a found set.

IFFWOL | IFFWO(RETCODE, FIND_SPEC, FWOL_NAME , %VARBUF , %VARSPEC)

IFFWOLC | IFFWOC(RETCODE, FIND_SPEC, FWOL_NAME)

I FFWOLE | IFFWOE(RETCODE , FWOL_NAME , %VARBUF , %VARSPEC)

Specify the parameters in the syntax order shown above.

Parameter

Description

RETCODE

[O,i,r] The Model 204 return code is the required first
parameter. The code is a binary integer value.

FIND_SPEC

[l,c,r] The find specification is a required input parameter
which is the selection criteria to be used for retrieving
records. Specify the selection criteria as a character string.

See FIND_SPEC on page 168 for a detailed description of
the find specification used for IFFIND that is also valid for
IFFWOL.

FWOL_NAME

[1,s,r/0] The name of the IFFWOL compilation is an input
parameter that is required for use with a multiple cursor
IFSTRT thread, and is only required for a single cursor
IFSTRT thread if using the Compiled IFAM facility
(IFFWOLC and IFFWOLE). Model 204 saves the
compilation using this name.

Specify the name as unique, and as a short character string
(maximum 32 characters). On a single cursor IFSTRT
thread, any characters except the following are valid in the
name: blank, comma, parenthesis, equal sign, or
semicolon. On a multiple cursor IFSTRT thread, the first
character in the name must be alphanumeric, and the name
must begin with a letter (A—Z or a—z) which may be followed
by a letter, a digit (0-9), a period (.), or underscore ().
Note: A null value is equivalent to omitting the name parameter,
and is not valid for a multiple cursor thread.

189

Notes and tips

Completion
return code
(RETCODE)

Coding
example
(COBOL)

Parameter Description

%VARBUF [l,c,0] The variable buffer is an optional input parameter that

addresses a data area which accommodates up to 255
bytes of data per value. The buffer contains values which
are defined by the %VARSPEC parameter, below, to be
assigned to %variables. Specify a character string. See the
Rocket Model 204 documentation wiki for information about
Y%variables:

http://m204wiki.rocketsoftware.com/index.php/Using_varia
bles_and_values_in_computation

%VARSPEC [l,c,0] The variable specification describes the format of the

data that is contained in the %VARBUF parameter and lists
the %variables to be assigned. %VARSPEC specifies the
contents of the variable buffer, described above. Specify a
character string which follows a LIST, DATA, or EDIT
syntax.

%VARSPEC is a required input parameter if %VARBUF is
specified.

Use the IFFWOL call to retrieve records without locks. The find specification is
based on a specified combination of retrieval conditions and is identical to the
one that is used with the IFFIND call.

A completion code of 4 indicates an IFFWOL error. If the IFFWOL call is
unsuccessful, Model 204 returns a completion code of 4 for the following error
conditions:

An error in an IFFWOL specification. Note that Model 204 does not save
the compilation and does not define the compilation name.

A field name variable is replaced by a non-existent field. In this case,
Model 204 does not execute the IFFWOL, but does save the compilation is
if the name parameter is specified.

An error is encountered in a %variable parameter.

WORKING-STORAGE SECTION.

01 CALL-ARGS.

05 RETCODE PIC 9(5) COMP SYNC.

05 QUAL-1

PIC X(75) VALUE "SEX=FEMALE;

OCCUPATION=DOCTOR OR DENTIST;
CITY=BOSTON;NAME LIKE "PAT*";END;".

PROCEDURE DIVISION.

190 Rocket Model 204 Host Language Interface Reference Manual

CALL "IFFWOL™ USING RETCODE, QUAL-1.

191

IFGERR call -mc.sc

Function

Full syntax (29)

Compile-only
syntax

Execute-only
syntax

Parameters

Notes and tips

Coding
example
(CoBOL)

The IFGERR call (GET ERROR) returns the text of the most recent error
message issued by Model 204 for the current thread.

IFGERR(RETCODE ,MSG_AREA)

A compile-only form of IFGERR is not available.

An execute-only form of IFGERR is not available.

Specify the parameters in the syntax order shown above.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is a required output
parameter. The code is a binary integer value.

MSG_AREA [O,c,r] The message area is a required output parameter
which specifies the address of the user’s data area. The
work area contains the text of the error message that is
returned by IFGERR. Specify a character string.

Use the IFGERR call to retrieve the text of the latest error message issued by
Model 204 for the current thread. IFGERR returns either the latest call
cancellation message or the latest counting error message. Note that a
counting error message is written to the audit trail as an ER line and is
refreshed only when a new message is generated or when the thread is ended.

Note that IFGERR truncates messages that are longer than 80 bytes. Using an
IFAM2 or IFAM4 thread, IFGERR also returns the completion code of the
previous call.

For more information about Model 204 messages, see the Rocket Model 204
messages documentation.

WORKING-STORAGE SECTION.

01 CALL-ARGS.
05 RETCODE PIC 9(5) COMP SYNC.
05 M204-ERROR-MESSAGE PIC X(80) VALUE SPACES.

01 ERROR-REPORT.
05 CONTROL-REPORT-CODE PIC X.
05 CONTROL-REPORT-DATA PIC X(132).

192 Rocket Model 204 Host Language Interface Reference Manual

WRITE-ERROR-REPORT .

CALL "I1FGERR" USING RETCODE, M204-ERROR-MESSAGE.
WRITE ERROR-REPORT FROM M204-ERROR-MESSAGE.

193

IFGET call ®°

Function The IFGET call (GET) processes the next logical record and returns specified
data to the user.

Full syntax (15) 1FGET(RETCODE,BUFFER,EDIT_SPEC,GET_NAME, %VARBUF,
%VARSPEC ,ORD_SPEC)

Compile-only IFGETC(RETCODE,EDIT_SPEC,GET_NAME,ORD_SPEC)
syntax (48)

Execute-only IFGETE(RETCODE ,BUFFER, GET_NAME , %VARBUF , %VARSPEC)
syntax (49)

Parameters Specify the parameters in the syntax order shown above.
Parameter Description
RETCODE [O,i,rf] The Model 204 return code is the required first

parameter. The code is a binary integer value.

BUFFER [O,c,r] The buffer location is a required output parameter
which specifies the address of the user’s data area. The
buffer contains the data returned by IFGET for the fields that
are defined by the EDIT_SPEC parameter, described
below. Specify a character string.

Note: The data is placed in the data area from left to right. If
parameters are being passed without dope vectors
(IFSTRT language indicator = 2), the data is placed in the
area as specified. No length checking is attempted
because the Host Language Interface does not know the
length of the data area

EDIT_SPEC [l,c,r] The edit specification is a required input parameter
which defines the fields that are to be returned from the
specified record. The specification describes the format of
the data which is returned at the buffer location (see
BUFFER above). Specify a character string using one of the
following LIST, DATA, or EDIT format options:

LIST (fieldname list);

DATA (Fieldname list);

DATA;

EDIT

EDIT
(fieldname list2) (edit format2);
where:

fieldname list is required and specifies a field name or
names. Specify elements in the field name list using one of
the following options:

194 Rocket Model 204 Host Language Interface Reference Manual

Parameter

Description

e fieldname

e fieldname(n)

« fieldname(*)

« fieldname(%variable)

where:

- fieldname retrieves the first occurrence of the named field.

- fieldname(n) retrieves the nth occurrence of the named field.

« fieldname(*) retrieves all occurrences of the named field in the
order of occurrence.
« fieldname(%variable) retrieves the occurrence of the field
specified by the %VARSPEC and %VARBUF parameters.
edit format is required in the EDIT specification and
specifies a code or codes which indicate(s) the format of the
data to be returned for the named field in the field name list-
edit format pair. See page 194 for a detailed description of
the EDIT format codes that are used with IFGET.

See Chapter 7 for a description of LIST, DATA, and EDIT
formatting.

GET_NAME

[1,s,r/0] The name of the IFGET compilation is an input
parameter that is only required if using the Compiled IFAM
facility (IFGETC and IFGETE). Model 204 saves the
compilation using this name. Specify the name as unique,
and as a short character string. Any characters except the
following are valid in the name: blank, comma, parenthesis,
equal sign, or semicolon. A null value is equivalent to
omitting the name parameter.

%VARBUF

[l,c,0] The variable buffer is an optional input parameter that
addresses a data area which accommodates up to 255
bytes of data per value. The buffer contains values which
are defined by the %VARSPEC parameter, below, to be
assigned to %variables. Specify a character string. See the
Rocket Model 204 documentation wiki for information about
Y%variables:

http://m204wiki.rocketsoftware.com/index.php/Using_varia
bles_and_values_in_computation

%VARSPEC

[l,c,0] The variable specification describes the format of the
data that is contained in the %variable parameter, and lists
the %yvariables to be assigned. %VARSPEC specifies the
contents of the variable buffer, described above. Specify a
character string which follows a LIST, DATA, or EDIT
syntax. %VARSPEC is a required input parameter if
%VARBUF is specified.

195

Notes and tips

Parameter

Description

ORD_SPEC

[l,c,0] The order specification is an optional input parameter
that provides ordered index functionality. This parameter
works with multicursor IFAM only. The order specification
specifies the ORDERED index field that is used to order the
return of the records. Specify the order using an IN ORDER
clause with the following format:

IN [ASCENDING | DESCENDING] ORDER
[BY [EACH] fieldname]

[FROM valuel] [TO value2]

[INOT] LIKE pattern]

where:

ASCENDING and DESCENDING are keywords that
indicate the order in which the record set will be processed.
ASCENDING order is the default.

fieldname specifies the name of the field to be used for
ordering the records.

The FROM and TO clauses specify the range of values for
fieldname, where valuel specifies the beginning value, and
value2 specifies the ending value. You may specify the
range using both FROM and TO, or using only FROM (for
all values greater than or equal to), or only TO (for all values
less than or equal to).

Specifying a range limits the selection of records to be
processed. If a range is specified, records that do contain
the field are not processed.

pattern specifies a field value in the form of a character
string that is used to match against the record. Enclose the
pattern string inside single quotation marks. See the Rocket
Model 204 documentation wiki for a description of the valid
pattern characters and examples of their use:
http://m204wiki.rocketsoftware.com/index.php/Record_loo
ps

Specifying a pattern limits the selection of records to be
processed. Only records which meet the pattern matching
criteria are processed.

Note: Order specification works with multicursor programs only.
Change your program to a multicursor program, is
necessary.

For more information about the order specification, see the

Rocket Model 204 documentation wiki:

http://m204wiki.rocketsoftware.com/index.php/Record_loo

ps

Use IFGET to retrieve the next record from the current set. Only fields that you
specify are returned to the application program.

196 Rocket Model 204 Host Language Interface Reference Manual

Completion
return code
(RETCODE)

Coding
example
(Assembler)

The call to IFGET specifies a data area into which the Host Language Interface
places the retrieved data. IFGET also specifies the needed fields and the
manner in which they are to be formatted in the data area.

Records from a sorted file are returned from the current set in sort key
sequence. As each record is retrieved from the current set, its physical record
number is stored in the parameter CURREC and it becomes the current record.

Note that execution of an IFEPRM call on a sorted set returns the record
number of the database record. The record is then removed from the current
set and the record set count is decreased by one.

Call IFCOUNT and IFLIST before the first IFGET from the current set.
Otherwise, IFCOUNT and IFLIST do not reflect the entire set of records
selected with IFFIND.

Note the following special conditions about three of the possible completion
codes for IFGET:

Code Condition

1 Conversion of a nonnumeric value was attempted for a B, P, Z, or F edit
format, or the integer portion of a numeric value was too large for the
output area. The value returned in the data area is binary (HIGH-VALUES
in COBOL). Processing of the field name list continues, with the result that
more than one value may be in error.

2 Indicates the end of the found set.

4 If a nonexistent field name is encountered, the IFGET specification is
executed and saved if appropriate, with the nonexistent field being
ignored. Any other type of error prevents the specification from being
executed or saved.

Suppose that a particular record contains the following pairs:
SCHOOL=HARVARD, SCHOOL=YALE,SCHOOL=MICHIGAN STATE
The application program might include the following:

CALL IFGET, (ERR,WORKAREA, EDIT LIST),VL

WORKAREA DS CL120
EDITLIST (DC) CL20 "EDIT(SCHOOL(*)) (M);"

After the IFGET function completed, WORKAREA would contain the following:

X*0307C8C1D9ES5C1D9C404E8C1D3C50AD6C8CIOD640E2E3C1E3CS ™

197

Coding 01 RETCODE PIC 9(5) COMP SYNC.

example 01 WORK-REC.
(COBOL) 05 WORK-SSN PIC 9(9).
05 WORK-NAME PIC X(30).
05 WORK-BDATE PIC 9(6).
05 WORK-SCDATE PIC 9(6).
05 FILLER PIC X(2).
05 WORK-GRADE PIC 9(2).
05 WORK-STEP PIC 9(2).
01 EDITLIST-1 PIC X(68) VALUE

"EDIT(SSN,NAME , BDATE,, SCDATE , GRADE , STEP) (A(9) ,
- A(30),2A(6),"X(2),23(2));"-
CALL "IFGET" USING RETCODE, WORK-REC, EDITLIST-1.

198 Rocket Model 204 Host Language Interface Reference Manual

IFGETV call *¢

Function

Full syntax (77)

Compile-only
syntax (78)

Execute-only
syntax (79)

Parameters

The IFGETYV call (GET VALUE) extracts the next field value from the current
value set and returns the specified data to the user.

IFGETV(RETCODE, BUFFER,EDIT_SPEC,GETV_NAME)

IFGTVC(RETCODE,EDIT_SPEC,GETV_NAME)

IFGTVE(RETCODE, BUFFER ,GETV_NAME)

Specify the parameters in the syntax order shown above.

Parameter

Description

RETCODE

[O,i,r] The Model 204 return code is the required first
parameter. The code is a binary integer value.

BUFFER

[O,c,r] The buffer location is a required output parameter
which specifies the address of the user's data area. The
buffer contains the data returned by IFGETV as defined by
the EDIT_SPEC parameter, described below. Specify a
character string.

EDIT_SPEC

[l,c,r] The edit specification is a required input parameter
which defines the format of the data to be returned from the
specified value. The specification describes the format of
the data which is returned at the buffer location (see
BUFFER above). Specify a character string using either of
the following LIST or EDIT format options:

LIST;
EDIT (edit format);
where:

edit format is required in the EDIT specification and
specifies a code or codes which indicate(s) the format of the
data to be returned for the current value. See page 199 for
a detailed description of the EDIT format codes that are
used with IFGETV.

See Chapter 7 for a description of LIST, DATA, and EDIT
formatting.

GETV_NAME

[l,s,r/o] The name of the IFGETV compilation is an input
parameter that is only required if using the Compiled IFAM
facility (IFGTVC and IFGTVE). Model 204 saves the
compilation using this name. Specify the name as unique,
and as a short character string. Any characters except the
following are valid in the name: blank, comma, parenthesis,
equal sign, or semicolon. A null value is equivalent to
omitting the name parameter.

199

Notes and tips

Completion
return code
(RETCODE)

Coding
example
(Assembler)

Use IFGETYV to retrieve the next value from the current set.

IFGETV is used to extract one field value from the value set built by IFFDV or
IFSRTV.

IFGETV must be called after IFFDV is called. Otherwise, Model 204 returns an
error code of 2, which indicates that no value exists in the current set. Note that
an error code of 2 may also indicate that the current set has been exhausted.

The following z/OS ASSEMBLER example provides an IFGETV call. In the
example, IFFDV has been called first to find all the values of field COLOR:

CALL IFGETV, (RETCODE,DATA,SPEC),VL

RETCODE DC F"0O*
DATA DC CL256" -

*

SPEC DC C"LIST;™

*

In this example, if you specify LIST; the retrieved data appears in the data area
with single quotation marks, for example, ‘RED'. Or, if you specify EDIT as
shown in the example below, the retrieved data appears in the data area
without quote marks, that is, as RED.

*

SPEC DC C"EDIT (A(3));"

200 Rocket Model 204 Host Language Interface Reference Manual

IFGETX call *¢

Function

Full syntax (36)
Compile-only
syntax

Execute-only
syntax (50)

Parameters

The IFGETX call (GET EXCLUSIVE) retrieves the next logical record from the
current set, enqueuing on the record in exclusive mode, and returns the

specified fields.

IFGETX(RETCODE, BUFFER,EDIT_SPEC, TIME,GETX_NAME,
%VARBUF , %VARSPEC,ORD_SPEC)

A compile-only form of IFGETX is not available; you can use IFGETC; see

page 194.

IFGETXE| IFGTXE(RETCODE ,BUFFER, TIME, GETX_NAME , %VARBUF , %VARSPEC)

Specify the parameters in the syntax order shown above.

Parameter

Description

RETCODE

[O,i,r] The Model 204 return code is the required first
parameter. The code is a binary integer value.

BUFFER

[O,c,r] The buffer location is a required output parameter
which specifies the address of the user’s data area. The
buffer contains the data returned by IFGETX for the fields
that are defined by the EDIT_SPEC parameter, described
below. Specify a character string.

EDIT_SPEC

[l,c,r] The edit specification is a required input parameter
which defines the fields that are to be returned from the
specified record. The specification describes the format of
the data which is returned at the buffer location (see
BUFFER above).

Specify a character string using one of the following LIST,
DATA, or EDIT format options:

LIST (Ffieldname list);

DATA (Fieldname list);

DATA;

EDIT (fieldname list) (edit formats);
EDIT (Ffieldname listl) (edit formatl)
(fieldname list2) (edit format2);
where:

fieldname list is required and specifies a field name or
names. Specify elements in the field name list using one of
the following options:

o fieldname

« fieldname (n)

« fieldname(*)

« fieldname(%variable)

201

Parameter

Description

where:
fieldname retrieves the first occurrence of the named field.
« fieldname(n) retrieves the nth occurrence of the named field.

- fieldname(*) retrieves all occurrences of the named field in the
order of occurrence.
« fieldname(%variable) retrieves the occurrence of the field
specified by the %VARBUF and %VARSPEC parameters.
edit format is required in the EDIT specification and
specifies a code or codes which indicate(s) the format of the
data to be returned for the named field in the fieldname list-
edit format pair. See page 201 for a detailed description of
the EDIT format codes that are used with IFGETX.

See Chapter 7 for a description of LIST, DATA, and EDIT
formatting.

TIME

[1,i,r] The time is a required input parameter. Specify an
integer value which is the number of times to try the retrieval
in the event of an enqueuing conflict; the wait time is in
three-second periods.

GETX_NAME

[l,s,r/0] The name of the IFGETX compilation is an input
parameter that is only required if using the Compiled IFAM
facility (IFGETXE). Model 204 saves the compilation using
this name. Specify the name as unique, and as a short
character string. Any characters except the following are
valid in the name: blank, comma, parenthesis, equal sign, or
semicolon. A null value is equivalent to omitting the name
parameter.

%VARBUF

[l,c,0] The variable buffer is an optional input parameter that
addresses a data area which accommodates up to 255
bytes of data per value. The buffer contains values which
are defined by the %VARSPEC parameter, below, to be
assigned to %variables. Specify a character string. See the
Rocket Model 204 documentation wiki for information about
%variables:

http://m204wiki.rocketsoftware.com/index.php/Using_varia
bles_and_values_in_computation

%VARSPEC

[l,c,0] The variable specification describes the format of the
data that is contained in the %variable parameter, and lists
the %variables to be assigned. %VARSPEC specifies the
contents of the variable buffer, described above. Specify a
character string which follows a LIST, DATA, or EDIT
syntax.

%VARSPEC is a required input parameter if %VARBUF is
specified.

202 Rocket Model 204 Host Language Interface Reference Manual

Notes and tips

Coding
example
(CoBOL)

Parameter Description

ORD_SPEC [l,c,0] The order specification is an optional input parameter
that provides ordered index functionality. The order
specification specifies the ORDERED index field that is
used to order the return of the records.

Specify the order using an IN ORDER clause, such as is
used with IFGET. See ORD_SPEC on page 196 for a
description of the order specification used for IFGET that is
also valid for IFGETX.

Note: The order specification is interpreted only on the first
IFGETX call following an IFFIND. Thereafter, it is only
necessary to provide the first seven parameters on
subsequent IFGETX calls for the same IFFIND. If you use
the order specification parameter, all eight parameters
must be coded, even if some contain dummy parameters.

For more information about the order specification, see the

Rocket Model 204 documentation wiki:

http://m204wiki.rocketsoftware.com/index.php/Record_loo
ps

Use IFGETX to retrieve the next record from the current set. Only fields that you
specify are returned to the application program.

IFGETX performs the same operations as IFGET. However, the record is
engueued upon in exclusive rather than in share status.

Use IFGETX if several users share a file and extensive processing is to be
done between the IFGET which retrieves the record and an update operation
on the record.

If a call to IFGETX results in an enqueuing conflict, Model 204 waits at most
three seconds and then tries again, for as many time as specified in the time
parameter (the wait time is in 3-second periods).

After trying unsuccessfully for the number of times specified in the time
parameter, Model 204 returns a completion code of 3 to the HLI program. For
more information, see the Rocket Model 204 documentation wiki:

http://m204wiki.rocketsoftware.com/index.php/ENQRETRY _parameter

01 RETCODE PIC 9(5) COMP SYNC.
01 WORK-REC.

05 WORK-SSN PIC 9(9).

05 WORK-NAME PIC X(30).

05 WORK-BDATE PIC 9(6).

05 WORK-SCDATE PIC 9(6).

05 FILLER PIC X(2).

05 WORK-GRADE PIC 9(2).

05 WORK-STEP PIC 9(2).

203

01 TIME PIC 9(5) COMP SYNC VALUE 5.
01 EDITLIST-1 PIC X(68) VALUE
"EDIT(SSN,NAME, BDATE, SCDATE , GRADE , STEP) (A(9),
- A(30),2A(6),"X(2),23(2)); " -

CALL "IFGETX" USING RETCODE, WORK-REC, EDITLIST-1, TIME.

204 Rocket Model 204 Host Language Interface Reference Manual

IFHNGUP call
Function The IFHNGUP call (HANGUP) ends an IFDIAL or IFDIALN connection.
Full syntax (8) IFHNGUP | IFHNGP(RETCODE,USER_RETCODE,URC_TYPE)

Compile-only A compile-only form of IFHNGUP is not available.
syntax

Execute-only An execute-only form of IFHNGUP is not available.

syntax
Parameters
Parameter Specifies
RETCODE [O,i,r] Model 204 return code, the required output parameter.
The code is a binary integer value.
USER_RETCODE Model 204 return code for the current user. The code is
[0O,i,0] a binary integer value and is output only.
URC_TYPE [l,c,0] Type of return code to return in USER_RETCODE.

Return values are:

* N forreturn code =0

e O for highest Online value
» B for highest batch value

Notes and tips USER_RETCODE and URC_TYPE parameters are optional, however, if you
enter one, you must enter both.

If the connection to Model 204 was lost prior to the call to IFHNGUP, the
RETCODE value returned is 0. In this case, the USER_RETCODE value
returns -1, indicating that it is unknown. If an IFDIAL application explicitly
includes the LOGOUT command in the CCAIN stream, the connection is
disconnected and a subsequent call to IFHNGUP returns an unknown
USER_RETCODE.

Use the IFHNGUP call only with an IFDIAL connection. IFHNGUP ends a
connection to the Model 204 SOUL facility that was established by a call to
IFDIAL or IFDIALN.

IFHNGUP issues an IFATTN call and then sends a LOGOUT command to
ensure that the caller’s session is terminated.

Completion If the IFHNGUP call is unsuccessful, Model 204 returns an error code of 100
return code which indicates that the connection was lost prior to the call.
(RETCODE)

205

Coding WORKING-STORAGE SECTION.
example 01 CALL-ARGS.
(COBOL) 05 RETCODE PIC 9(5) COMP SYNC.

PROCEDURE DIVISION.
OPEN-FILES.
OPEN INPUT. ..
CALL "IFDIAL"...

CLOSE-FILES.

CALL "IFHNGUP™ USING RETCODE.

206 Rocket Model 204 Host Language Interface Reference Manual

IFINIT call ™*¢

Function The IFINIT call (INITIALIZE) initializes a Model 204 file. IFINIT deletes all
records in the file and reformats all corresponding Model 204 file tables.

Full syntax (23) 1FINIT(RETCODE,FIELD_DESC,FILE_SPEC)

Compile-only A compile-only form of IFINIT is not available.
syntax

Execute-only An execute-only form of IFINIT is not available.

syntax
Parameters Specify the parameters in the syntax order shown above.
Parameter Description
RETCODE [O,i,r] The Model 204 return code is the required first

parameter. The code is a binary integer value.

207

Parameter Description

FIELD_DESC [l,c,r] The field description is a required input parameter
which names a field, or fields, and lists the field attributes.
You may specify a sort or hash key field description, or a
record security field description, or both, for the file that is
being initialized. Specify a character string using the
following format:

[{SORT | HASH} RECSCTY] field description;
where:

SORT is the keyword which specifies that a sorted file is
being initialized. A sorted file cannot be a hash key file
(SORT and HASH are mutually exclusive).

HASH is the keyword which specifies that a hash key file is
being initialized. A hash key file cannot be a sorted file
(SORT and HASH are mutually exclusive).

RECSCTY is the keyword which specifies that a file having
record security in effect is being initialized. A sorted or hash
key file can also be initialized with record security.

field description is the name of the field, followed by a list of
field attributes enclosed in parentheses. Use commas or
blanks to separate attributes. Model 204 automatically
supplies the following field attributes:

e Sort field: NON-CODED, VISIBLE, STRING

. Hash key field: NON-CODED, VISIBLE, STRING, NON-KEY
* Record security field: KEY

You cannot specify the UPDATE option for sort or hash key
field attributes. For sort or hash key fields, if a key is
required in every record, specify OCCURS 1 LENGTH m,
otherwise, if keys are not required in each record, you
cannot specify the OCCURS attribute.

For a record security field that is defined with the LENGTH
m option, specify the value of m to be larger than the length
allowed for LOGIN accounts.

Note: If no attributes are specified, Model 204 defines the field
assigning all of the default attributes for the file that is being
initialized. For a description of field attributes for the
DEFINE command in SOUL, see the Rocket Model 204
documentation wiki:

http://m204wiki.rocketsoftware.com/index.php/Field
_design

[+e¢] indicates that a second field description may be
optionally specified. If you specify both a sort or hash key
field description and a record security field description, enter
the record security description second. Separate each
description with a comma (,). End the field description with
a semicolon (;).

Note: The field description parameter is required; specify a
semicolon (;) for no field description.

208 Rocket Model 204 Host Language Interface Reference Manual

Parameter Description

FILE_SPEC [1,s,0] The file specification is an optional input parameter for
use only with a multiple cursor IFSTRT thread for specifying
the name of the Model 204 file that is to be initialized.
Specify the Model 204 file name as a short character string.

IN [FILE] Filename

The specified file must be open on the thread, otherwise the
call is unsuccessful and Model 204 returns a completion
code of 4.

Notes and tips Use the IFINIT call to clear a file and prepare it for use. Note that IFINIT cannot
be used in a group context.

The IFINIT call is permitted on all types of IFSTRT threads. On a single cursor
IFSTRT thread, IFINIT always initializes the current file (that is, the last file
opened). On a multiple cursor IFSTRT thread, the file context can change. And
if you do not specify a particular file using the FILE_SPEC parameter, IFINIT
initializes the default file (that is, the last file opened).

The IFINIT call is the equivalent of the Model 204 INITIALIZE command in the
host language environment and follows the same basic rules for use. See the
Rocket Model 204 documentation wiki for information about using the
INITIALIZE command:

http://m204wiki.rocketsoftware.com/index.php/Initializing_files

Coding WORKING-STORAGE SECTION.
example 01 CALL-ARGS.
(COBOL) 05 RETCODE PIC 9(5) COMP SYNC.

05 INITVALS PIC X(28) VALUE "SORT ITEMNO,
RECSCTY RECSEC; ".

PROCEDURE DIVISION.

CALL "IFINIT"™ USING RETCODE, INITVALS.

209

IFLIST call ®°°

Function
Full syntax (17)

Compile-only
syntax

Execute-only
syntax

Parameters

Notes and tips

Coding
example
(COBOL)

The IFLIST call (LIST) places the current set of found records on a list.
IFLIST(RETCODE,LIST_NAME)

A compile-only form of IFLIST is not available.

An execute-only form of IFLIST is not available.

Specify the parameters in the syntax order shown above.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is the required first
parameter. The code is a binary integer value.

LIST_NAME [1,c,r] The list name is a required input parameter which
specifies the name of a list. Specify the name as a character
string, up to 255 alphanumeric characters in length. Blank
characters are not valid.

Use IFLIST to place records on a list. The list name can then be used in an
IFFIND with the LIST$ specification.

If a list name is reused in a call to IFLIST, the old list is cleared and the original
set of records on the list is no longer available. Otherwise, lists are available
until the file is closed.

Lists built by IFLIST contain only pointers to records; they do not contain the
actual data records. In a group context, the list can contain records from all files
in the group.

Restrictions on using IFLIST
The following restrictions apply to using IFLIST:
» Lists cannot be shared across threads.

¢ You cannot use IFLIST with sorted record sets.

WORKING-STORAGE SECTION.
01 ARGS-FOR-CALL.
05 RETCODE PIC 9(5) COMP SYNC.
05 LISTSAVE PIC X(5) VALUE “SAVE;".

PROCEDURE DIVISION.

210 Rocket Model 204 Host Language Interface Reference Manual

CALL "IFFIND™ USING RETCODE, SPEC-1.
CALL "IFLIST™ USING RETCODE, LISTSAVE.
CALL "IFFIND"™ USING RETCODE, SPEC-2.
CALL "IFLIST"™ USING RETCODE, LISTSAVE.

In this example, only records from the second IFFIND are on the list named
SAVE after the last IFLIST call is executed.

211

IFLOG call -me.sc

Function
Full syntax

Compile-only
syntax

Execute-only
syntax

Parameters

Notes and tips

The IFLOG call (LOGIN) identifies the user to Model 204 if a login is required.
IFLOG(RETCODE,LOGIN)

A compile-only form of IFLOG is not available.

An execute-only form of IFLOG is not available.

Specify the parameters in the syntax order shown above.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is a required output
parameter. The code is a binary integer value. See “Notes
and tips” on the next page.

LOGIN [l,c,r] The login information is a required parameter which
supplies a valid Model 204 user ID and password that
permit entry to the system. Specify the login as a character
string using the following format:

userid [account]; password;
where:

userid is required and is a character string that identifies the
user who is logging into Model 204.

account is an optional character string, from one to ten
characters in length, that supplies an account under which
the user is logging into Model 204.

password is a character string that allows the specified user

to access Model 204, and is required unless an external
security package is being used. See Notes on the next

page.

Use the IFLOG call to provide login information for an IFAM1 HLI application,
as necessary. IFLOG is required in an IFAM1 program where the user
authorization is to be validated by a security interface.

Note: IFLOG is available for use only in IFAM1 using an IFSTRT thread.

When an external security interface is performing login validation, Rocket
recommends the following:

* Do not specify a user ID in the login for User O.

e Ifauser ID is supplied on the LOGIN command, it must match the user ID
of the owner of the address space, or this user ID must exist on CCASTAT.
Otherwise, the login fails.

212 Rocket Model 204 Host Language Interface Reference Manual

Completion
return code
(RETCODE)

Coding
example
(COBOL)

When using an external security interface, do not code the password in the host
language program unless the user ID exists on CCASTAT. In this case, if a
password is encountered, Model 204 interprets IFLOG as an invalid command.

Model 204 returns either of the following completion codes for IFLOG:

Code Condition

0 Indicates that the login was successful.

100 Indicates that the login failed.

The COBOL coding example below specifies the following IFLOG parameter
arguments: login account name USERABC, and login password ECP.

WORKING-STORAGE SECTION.
01 ARGS-FOR-CALL.
05 RETCODE PIC 9(5) COMP SYNC.
05 LOGIN PIC X(12) VALUE "USERABC;ECP;".

PROCEDURE DIVISION.

CALL "IFLOG"™ USING RETCODE, LOGIN.
IF RETCODE 1S NOT EQUAL TO ZERO, GO TO ERROR-ROUTINE.

213

IFMORE call ®°°

Function The IFMORE call (MORE) continues the IFGET function to retrieve more data
from the current record.

Full syntax (16) 1FMORE(RETCODE,BUFFER,EDIT_SPEC,MORE_NAME,
%VARBUF , %VARSPEC)

Compile-only IFMOREC | IFMREC(RETCODE,EDIT_SPEC,MORE_NAME)
syntax (51)

Execute-only I FMOREE | IFMREE (RETCODE , BUFFER ,MORE_NAME , %VARBUF , %VARSPEC)
syntax (52)

Parameters Specify the parameters in the syntax order shown above.
Parameter Description
RETCODE [O,i,rf] The Model 204 return code is the required first

parameter. The code is a binary integer value.

BUFFER [O,c,r] The buffer location is a required output parameter
which specifies the address of the user’s data area. The
buffer contains the data returned by IFMORE for the fields
that are defined by the EDIT_SPEC parameter, described
below. Specify a character string.

Note: The data is placed in the data area from left to right. If
parameters are being passed without dope vectors
(IFSTRT language indicator = 2), the data is placed in the
area as specified. No length checking is attempted because
the Host Language Interface does not know the length of
the data area.

EDIT_SPEC [l,c,r] The edit specification is a required input parameter
which defines the fields that are to be returned from the
specified record. The specification describes the format of
the data which is returned at the buffer location (see
BUFFER above).

Specify a character string using one of the following LIST,
DATA, or EDIT format options:

LIST (fieldname list);

DATA (Fieldname list);

DATA;

EDIT (fieldname list) (edit formats);
EDIT (Ffieldname listl) (edit formatl)
(fieldname list2) (edit format2);
where:

fieldname list is required and specifies a field name or
names. Specify elements in the fieldname list using one of
the following options:

214 Rocket Model 204 Host Language Interface Reference Manual

Parameter

Description

e fieldname

e fieldname (n)

o fieldname(*)

« fieldname(%variable)

where:

- fieldname retrieves the first occurrence of the named field.

- fieldname(n) retrieves the nth occurrence of the named field.

« fieldname(*) retrieves all occurrences of the named field in the
order of occurrence.
« fieldname(%variable) retrieves the occurrence of the field
specified by the %VARBUF and %VARSPEC parameters.
edit format is required in the EDIT specification and specifies
a code or codes which indicate(s) the format of the data to
be returned for the named field in the fieldname list-edit
format pair. See page 214 for a detailed description of the
EDIT format codes that are used with IFMORE.

See Chapter 7 for a description of LIST, DATA, and EDIT
formatting.

MORE_NAME

[1,s,r/0] The name of the IFMORE compilation is an input
parameter that is only required if using the Compiled IFAM
facility (IFMOREC and IFMOREE). Model 204 saves the
compilation using this name. Specify the name as unique,
and as a short character string. Any characters except the
following are valid in the name: blank, comma, parenthesis,
equal sign, or semicolon. A null value is equivalent to
omitting the name parameter.

%VARBUF

[l,c,0] The variable buffer is an optional input parameter that
addresses a data area which accommodates up to 255
bytes of data per value.

The buffer contains values which are defined by the
%VARSPEC parameter, below, to be assigned to
%variables. Specify a character string. See the Rocket
Model 204 documentation wiki for information about
%variables:

http://m204wiki.rocketsoftware.com/index.php/Using_varia
bles_and_values_in_computation

%VARSPEC

[1,c,0] The variable specification describes the format of the
data that is contained in the %variable parameter, and lists
the %variables to be assigned. %VARSPEC specifies the
contents of the variable buffer, described above. Specify a
character string which follows a LIST, DATA, or EDIT
syntax.

%VARSPEC is a required input parameter if %VARBUF is
specified.

215

Notes and tips Use IFMORE to get more data from the current record after using IFGET.
IFMORE does not affect the current set and does not change the current
record. You can use IFMORE until you have completed all necessary
operations on the current record.

Coding WORKING-STORAGE SECTION.
example 01 ARGS-FOR-CALL.
(COBOL) 05 RETCODE PIC 9(5) COMP SYNC.

05 WORK-AREA-1 PIC x(256).
05 WORK-AREA-2 PIC X(256).

01 SPEC-1 PIC X(64) VALUE
EDIT (SSN,NAME,BDATE,SCDATE, GRADE, STEP)
(A(9),A(30),2A(6),23(2));" -

01 SPEC-2 PIC X(34) VALUE
"EDIT (STATUS,SALARY)(A(11),A(12));".

PROCEDURE DIVISION.

CALL "IFGET'" USING RETCODE, WORK-AREA-1, SPEC-1
IF GRADE IS EQUAL TO 9 THEN PERFORM GETMORE.

GETMORE.
CALL "IFMORE™ USING RETCODE, WORK-AREA-2, SPEC-2.

216 Rocket Model 204 Host Language Interface Reference Manual

IFMOREX call *°

Function The IFMOREX call (MORE EXCLUSIVE) continues the IFGETX function to
retrieve more data from the current record, enqueuing on the record in
exclusive mode.

Full syntax (37) 1FMOREX]1FMREX(RETCODE,BUFFER,EDIT_SPEC,TIME,
MOREX_NAME , %VARBUF , %VARSPEC)

Compile-only A compile-only form of IFMOREX is not available. You can use IFMOREC,; see
syntax page 214.

Execute-only I FMORXE | 1 FMRXE(RETCODE , BUFFER , MOREX_NAME , %VARBUF , %VARSPEC)
syntax (53)

Parameters Specify the parameters in the syntax order shown above.
Parameter Description
RETCODE [O,i,r] The Model 204 return code is the required first

parameter. The code is a binary integer value.

BUFFER [O,c,r] The buffer location is a required output parameter
which specifies the address of the user’s data area. The
buffer contains the data returned by IFMORE for the fields
that are defined by the EDIT_SPEC parameter, described
below. Specify a character string.

Note: The data is placed in the data area from left to right. If
parameters are being passed without dope vectors
(IFSTRT language indicator = 2), the data is placed in the
area as specified. No length checking is attempted
because the Host Language Interface does not know the
length of the data area.

217

Parameter Description

EDIT_SPEC [l,c,r] The edit specification is a required input parameter
which defines the fields that are to be returned from the
specified record. The specification describes the format of
the data which is returned at the buffer location (see
BUFFER above).

Specify a character string using one of the following LIST,
DATA, or EDIT format options:

LIST (fieldname list);

DATA (Fieldname list);

DATA;

EDIT (fieldname list) (edit formats);
EDIT (fieldname listl) (edit formatl)
(fieldname list2) (edit format2);
where:

fieldname list is required and specifies a field name or
names. Specify elements in the field name list using one of
the following options:

« fieldname

e fieldname (n)

o fieldname(*)

« fieldname(%variable)

where:

« fieldname retrieves the first occurrence of the named field.

« fieldname(n) retrieves the nth occurrence of the named field.

« fieldname(*) retrieves all occurrences of the named field in the
order of occurrence.
« fieldname(%variable) retrieves the occurrence of the field
specified by the %VARBUF and %VARSPEC parameters.
edit format is required in the EDIT specification and
specifies a code or codes which indicate(s) the format of the
data to be returned for the named field in the fieldname list-
edit format pair. See page 217 for a detailed description of
the EDIT format codes that are used with IFMOREX.

See Chapter 7 for a description of LIST, DATA, and EDIT
formatting.

TIME [1,i,r] The time is a required input parameter. Specify an
integer value which is the number of times to try the retrieval
in the event of an enqueuing conflict; the wait time is in
three-second periods.

218 Rocket Model 204 Host Language Interface Reference Manual

Notes and tips

Coding
example
(CoBOL)

Parameter

Description

MOREX_NAME

[I,s,r/0] The name of the IFMOREX compilation is an input
parameter that is only required if using the Compiled IFAM
facility (IFMORXE). Model 204 saves the compilation using
this name. Specify the name as unique, and as a short
character string. Any characters except the following are
valid in the name: blank, comma, parenthesis, equal sign, or
semicolon. A null value is equivalent to omitting the name
parameter.

%VARBUF

[l,c,0] The variable buffer is an optional input parameter that
addresses a data area which accommodates up to 255
bytes of data per value. The buffer contains values which
are defined by the %VARSPEC parameter, below, to be
assigned to %variables. Specify a character string. See the
Rocket Model 204 documentation wiki for information about
%variables:

http://m204wiki.rocketsoftware.com/index.php/Using_varia
bles_and_values_in_computation

%VARSPEC

[l,c,0] The variable specification describes the format of the
data that is contained in the %variable parameter, and lists
the %variables to be assigned. %VARSPEC specifies the
contents of the variable buffer, described above. Specify a
character string which follows a LIST, DATA, or EDIT
syntax. %VARSPEC is a required input parameter if
%VARBUF is specified.

IFMOREX performs the same operations as IFMORE. However, the record is

engueued upon in exclusive rather than in share status.

If a call to IFMOREX results in an enqueuing conflict, Model 204 waits at most
three seconds and then tries again, for as many times as specified in the time

parameter (wait time is in three-second periods).

After trying unsuccessfully for the number of times specified, Model 204 returns

a completion code of 3 to the HLI program. For more information, see the
description of the ENQRETRY parameter in the Rocket Model 204

documentation wiki:

http://m204wiki.rocketsoftware.com/index.php/ENQRETRY _parameter

WORKING-STORAGE SECTION.

01 ARGS-FOR-CALL.
05 RETCODE PIC 9(5) COMP SYNC.
05 WORK-AREA-1 PIC x(256).
05 WORK-AREA-2 PIC X(256).

01 SPEC-1 PIC X(64) VALUE
"EDIT (SSN,NAME,BDATE,SCDATE,GRADE,STEP)

219

(A(9),A(30),2A(6),23(2)); " -

01 SPEC-2 PIC X(34) VALUE
"EDIT (STATUS,SALARY)(A(11),A(12));".
01 TIME PIC 9(5) COMP SYNC VALUE 5.

PROCEDURE DIVISION.

CALL "IFGET'" USING RETCODE, WORK-AREA-1, SPEC-1
IF GRADE IS EQUAL TO 9 THEN PERFORM GETMORE.

GETMORE.
CALL "IFMOREX™ USING RETCODE, WORK-AREA-2, SPEC-2, TIME.

220 Rocket Model 204 Host Language Interface Reference Manual

IFNFLD call -me.sc

Function

Full syntax (63)

Compile-only
syntax

Execute-only
syntax

Parameters

The IFNFLD call (RENAME FIELD) renames a field that has been defined as
VISIBLE for a Model 204 file. IFNFLD requires Model 204 file manager
privileges.

IFNFLD(RETCODE, FIELD_NAMES,FILE_SPEC)

A compile-only form of IFNFLD is not available.

An execute-only form of IFNFLD is not available.

Specify the parameters in the syntax order shown above.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is the required first
parameter. The code is a binary integer value.

FIELD_NAMES [l,c,r] This is a required input parameter which specifies the
name of an existing field and its new name. Specify the
names as a character string using the following format:
oldname, newname;
where:
oldname is required and specifies the existing name that is
defined for the field.

newname is required and specifies the replacement name
for the field. The name must be unique within the context of
the file where it will be stored.

Specify the name as a character string, up to 255 characters
in length. The name must begin with a letter and it can
contain any alphanumeric character except the following:
* Atsign (@)

e Pound sign (#)

e Semi-colon (;)

e Double question marks (??)

* Question mark followed by a dollar sign (?$)

e Question mark followed by an ampersand (?&)

See the Rocket Model 204 documentation wiki for the
detailed list of rules that apply to field names:

http://m204wiki.rocketsoftware.com/index.php/Field_name
S

221

Notes and tips

Completion
return code
(RETCODE)

Coding
example
(CoBOL)

Parameter Description

FILE_SPEC [1,s,0] The file specification is an optional input parameter for
use only with a multiple cursor IFSTRT thread for specifying
the name of the Model 204 file that contains the field to be
renamed. Specify the name of the file as a short character
string variable using the following format:

IN [FILE] Filename

The specified file must be open on the thread, otherwise the
call is unsuccessful and Model 204 returns a completion
code equal to 4.

Use the IFNFLD call to rename a field in a Model 204 file, only for a field which
is defined as VISIBLE. The IFNFLD call is valid only in file context, not for a
group. The IFNFLD call is valid on all types of IFSTRT threads.

When FOPT=X"10" and the date/time stamp feature is installed, the IFNFLD
function is supported for DTS files.

Note: The file context can change on a multiple cursor thread and, if the file
specification parameter (FILE_SPEC) is omitted, IFNFLD renames the field for
the default file on the thread.

If the field being renamed has a security level, the Model 204 file manager must
have field level security (FLS) access privileges.

The IFNFLD call is not successful under either of the following conditions:
e The old field name that is specified does not exist.

» The new field name that is specified cannot be added to the Model 204
dictionary for either of the following reasons:

— The new name that is specified already exists.
— Space cannot be allocated.

WORK ING-STORAGE SECTION.
01 CALL-ARGS.

05 RETCODE PIC 9(5) COMP SYNC.

05 NAMES PIC X(20) VALUE "SALARY,COMPENSATION;".

PROCEDURE DIVISION.

CALL "IFNFLD™ USING RETCODE, NAMES.

222 Rocket Model 204 Host Language Interface Reference Manual

IFOCC call ™

Function

Full syntax
(122)

Compile-only
syntax (123)

Execute-only
syntax (124)

Parameters

The IFOCC call (COUNT OCCURRENCES) counts the number of occurrences
of the specified field, or fields, in the current record and returns a count value
for each field in an output parameter. IFOCC specifies the cursor for the current

record.

IFOCC(RETCODE , BUFFER, CURSOR_NAME ,FIELD_LIST,OCC_NAME,

%VARBUF , %VARSPEC)

IFOCCC(RETCODE, CURSOR_NAME ,FIELD_LI1ST,O0CC_NAME)

IFOCCE(RETCODE , BUFFER ,OCC_NAME , %VARBUF , %VARSPEC)

Specify the parameters in the syntax order shown above.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is the required first
parameter. The code is a binary integer value.

BUFFER [O,c,r] The buffer location is a required output parameter

which specifies the address of the user’s data area. Specify
a character string. The buffer contains the occurrence
counter, or counters, returned by IFOCC for each field that
is defined by the FIELD_LIST parameter, described on
page 223. For each field specified, a four byte value is
returned.

Multiple count values are positioned in order corresponding
to the location of the fields in the field list. If a specified field
does not occur in the record, its counter is set to zero.

CURSOR_NAME

[I,c,r] Is a required input parameter, which specifies the
name of the cursor that points to the current record for which
the field count(s) is (are) performed. This is a character
string, the name previously assigned to the cursor in a
corresponding IFOCUR call.

See CURSOR_NAME on page 229 for a description of the
cursor name for the IFOCUR call.

FIELD_LIST

[l,c,r] The field specification is a required input parameter
which defines the field, or fields, that are to be counted in the
current record. Specify the name of a field as a character
string. You must list at least one field to be counted in the
current record. You may list additional fields by separating
field names with a comma.

OCC_NAME

[I,s,0] The name of the IFOCC compilation is an optional
input parameter. If specified, Model 204 saves the
compilation using this name.

223

Parameter Description

Specify the name as unique, and as a short character string
(maximum 32 characters). The first character in the name
must be alphanumeric, and the name must begin with a
letter (A—Z or a—z) which may be followed by a letter, a digit
(0-9), a period (.), or underscore (). A null value is
equivalent to omitting the name parameter, and is not valid.

%VARBUF [l,c,0] The variable buffer is an optional input parameter that
addresses a data area which accommodates up to 255
bytes of data per value. The buffer contains values which
are defined by the %VARSPEC parameter, below, to be
assigned to %variables. Specify a character string. See the
Rocket Model 204 documentation wiki for information about
%variables:

http://m204wiki.rocketsoftware.com/index.php/Using_varia
bles_and_values_in_computation

%VARSPEC [l,c,0] The variable specification describes the format of the
data that is contained in the %variable parameter, and lists
the %variables to be assigned. %VARSPEC specifies the
contents of the variable buffer, described above. Specify a
character string which follows a LIST, DATA, or EDIT
syntax.

%VARSPEC is a required input parameter if %VARBUF is
specified.

Notes and tips Use the IFOCC call to count occurrences of fields in a record.

IFOCC requires a cursor to specify the current record, but otherwise operates
similarly to the single cursor IFCTO call. See the IFCTO call.

The IFOCC call is the equivalent of the COUNT OCCURRENCES statement in
SOUL in the host language multiple cursor environment. See the Rocket
Model 204 documentation wiki for information about the COUNT
OCCURRENCES statement:

http://m204wiki.rocketsoftware.com/index.php/Operations_on_multiply_occurr

ing_fields
Coding WORKING-STORAGE SECTION.
example 01 CALL-ARGS.
(COBOL) 05 RETCODE PIC 9(5) COMP SYNC.
05 BUFFER PIC X(8)-

05 CURSOR-NAME PIC X(5) VALUE "CUR1;".
05 FIELD-LIST PIC X(12) VALUE '""COLOR, MAKE;".

PROCEDURE DIVISION.

224 Rocket Model 204 Host Language Interface Reference Manual

CALL "IFOCC'" USING RETCODE, BUFFER, CURSOR-NAME,
FIELD-LIST.

225

IFOCUR call ™¢

Function The IFOCUR call (OPEN CURSOR) opens a cursor on the thread to a
previously established found set.

Full syntax (95) 1FOCUR(RETCODE,CURSOR_SPEC,CURSOR_NAME ,%VARBUF ,%VARSPEC,

FILE_SPEC)
Compile-only IFOCURC| IFOCRC(RETCODE ,CURSOR_SPEC,CURSOR_NAME,FILE_SPEC)
syntax (106)
Execute-only IFOCURE | IFOCRE(RETCODE , CURSOR_NAME , %VARBUF , %VARSPEC)
syntax (107)
Parameters Specify the parameters in the syntax order shown above.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is the required first

parameter. The code is a binary integer value.

226 Rocket Model 204 Host Language Interface Reference Manual

Parameter Description

CURSOR_SPEC [l,c,r] The cursor specification is a required input parameter
which indicates an existing found set of records or values that
was established by a previously compiled call. Specify the
found set as a character string using one of the following
formats:

{IN setname [ordering clause] | ON [list]
listname [ordering clause] | OF fieldname
[value set specification]}

where:

IN setname specifies the compilation name for the previously
compiled IFFIND, IFFNDX, IFFWOL, IFFAC, IFSORT, IFFDV,
or IFSRTV call which established the set.

ON listname specifies the name of a list of records. If the list
does not exist, it is created in context of the default file or group.

ordering clause is optional and specifies ordering criteria and is
valid only for cursors opened against an unsorted record set.
Ordering criteria may not be specified for cursors opened
against a value set, or against a record set that is sorted (with
IFSORT).

Specify the ordering clause using only the IN ORDER clause
for sorted file ordering, or the following format line in full for B-
tree ordering:

IN [ASCENDING | DESCENDING] ORDER [BY [EACH}
fieldname] [(FROM valuel) (TO value2)] [LIKE
pattern] [BY [ASCENDING | DESCENDING] RECORD]
where:

ASCENDING and DESCENDING are mutually exclusive
keywords that indicate the order in which the record set will be
processed. ASCENDING order is the default.

fieldname specifies the name of the field to be used for ordering
the records.

227

Parameter Description

The FROM and TO clauses specify the range of values for
fieldname, where valuel specifies the beginning value, and
value?2 specifies the ending value. You may specify the range
using both FROM and TO, or using only FROM, for all values
greater than or equal to, or only TO, for all values less than or
equal to).

Note: Specifying a range limits the selection of records to process. If
a range is specified, records that do contain the field are not
processed.

pattern specifies a field value as a character string that is used

to match against the record. Enclose the pattern string inside

single quotation marks.

Note: Specifying a pattern limits the selection of records to process.
Only records which meet the pattern matching criteria are
processed. See the Rocket Model 204 documentation wiki for
a description of the valid pattern characters and examples of
their use:

http://m204wiki.rocketsoftware.com/index.php/Record
_loops

The BY ASCENDING|DESCENDING RECORD clause
specifies how records within each Ordered Index value are
processed by IFFTCH. IF BY DESCENDING RECORD is not
specified, IFFTCH processes records in ascending order.

Ordering clause options are similar to the ordering options
available in a FOR EACH RECORD statement in SOUL. For
IFOCUR, the WHERE|WITH retrieval conditions clause is not
supported. See the Rocket Model 204 documentation wiki for
information about the FOR EACH RECORD IN ORDER
statement:

http://m204wiki.rocketsoftware.com/index.php/Operations_on
_multiply_occurring_fields

OF fieldname specifies a value set specification that is
compiled and saved as a part of the IFOCUR/IFOCURC
compilation. At execution time (IFOCUR or IFOCURE) this
specification is executed and a value set is created. A cursor
then opens against this value set. Subsequent IFFTCH or
IFFTCHE calls fetch the values from the value set. When the
cursor is closed using IFCCUR, the value set empties.

IFOCUR with OF fieldname is similar to the Model 204 FOR
EACH VALUE OF statement.

value set specification is optional and allows you to specify
selection or ordering criteria against a value set.

[FROM valuel] [TO value2] [[NOT] LIKE pattern]

[IN [ASCENDING | DESCENDING] [NUMERIC |
CHARACTER | RIGHT-ADJSTED] ORDER]

228 Rocket Model 204 Host Language Interface Reference Manual

Parameter

Description

where:

FROM and TO clauses are optional and specify a minimum
(greater than or equal to) value (FROM), a maximum (less than
or equal to) value (TO), or a range of values (FROM and TO)
for selection criteria.

LIKE|NOT LIKE clause is optional and specifies a string pattern
for selection criteria. See the Rocket Model 204 documentation
wiki for a description of the valid pattern characters and
examples of their use:

http://m204wiki.rocketsoftware.com/index.php/Record_loops
ASCENDING and DESCENDING are mutually exclusive

keywords that indicate the order in which the value set will be
processed. ASCENDING order is the default.

CHARACTER, RIGHT-ADJUSTED, and NUMERIC are
mutually exclusive keywords.

CHARACTER specifies values sorted in standard EBCDIC
collating sequence.

RIGHT-ADJUSTED specifies that values are temporarily right-
justified before sorting so that shorter fields sort first.

NUMERIC specifies a sort of number values with the usual
numeric order relationships.

CURSOR_NAME

[1,s,r] The name to be assigned to the cursor is a required input
parameter. Specify the cursor name as a short character string
variable, from 1 to 32 characters in length. The cursor name
must be unique, and must begin with a letter (A—Z or a-z)
followed by one or more of the following characters: a letter, a
digit (0-9), a period (.), or an underscore ().

%VARBUF

[l,c,0] The variable buffer is an optional input parameter that
addresses a data area which accommodates up to 255 bytes
of data per value. The buffer contains values which are defined
by the %VARSPEC parameter, below, to be assigned to
%variables. Specify a character string. See the Rocket

Model 204 documentation wiki for information about
Y%variables:

http://m204wiki.rocketsoftware.com/index.php/Using_variable
s_and_values_in_computation

%VARSPEC

[l,c,0] The variable specification describes the format of the
data that is contained in the %variable parameter, and lists the
%variables to be assigned. %VARSPEC specifies the contents
of the variable buffer, described above. Specify a character
string which follows a LIST, DATA, or EDIT syntax.
%VARSPEC is a required input parameter if %VARBUF is
specified.
Note: For IFOCUR, use these parameters to assign values to the
%variables in the ordering clause before executing the call.

229

Notes and tips

Parameter Description

FILE_SPEC [l,c,0/r] The file specification is a required input parameter only
when using the OF fieldname form of the IFOCUR call.
FILE_SPEC identifies the Model 204 file that will be updated to
contain the new record. Specify the file as a character string
using a standard Model 204 IN clause. See the Rocket
Model 204 documentation wiki for information about the IN
clause:

http://m204wiki.rocketsoftware.com/index.php/Basic_SOUL _s
tatements_and_commands#IN_clauses

Use the IFOCUR call to open a cursor to a record or a value in a set which has
been named on a thread. You may open more than one cursor against the
same named set to maintain different positions within the set. You may also
open several cursors against several different record sets.

When executing an IFOCURC (compile-only) call, Model 204 maps the cursor
to the specified named set. The initial cursor position is located prior to the first
record or value in the set. If ordering criteria is specified, Model 204 also
validates the ordering criteria.

When executing an IFOCURE (execute-only) call, Model 204 performs the
following actions:

1. Resets the cursor position prior to the first record or value in the set.

2. Assigns percent variables (Y%variable) in the ordering clause, for any
FROM/TO conditions or ordered field names that are specified.

Using OF fieldname to create value set specifications

The OF fieldname form of IFOCUR allows you to use IFOCUR to create a value
set without first calling either IFFDV or IFSRTV. If OF fieldname... is specified,
an IFOCUR/IFOCURC call does not reference a previously compiled HLI call.
Instead, a value set specification is compiled and saved as a part of the
IFOCUR/IFOCURC compilation. At execution time this specification is
executed and a value set is created. A cursor is then opened against this value
set. Subsequent IFFTCH or IFFTCHE calls will fetch the values from the value
set. When the cursor is closed using IFCCUR, the value set is emptied.

Choosing IFOCUR or IFFDV and IFSRTV

IFOCUR with the OF fieldname clause performs much the same function as
IFFDV. The main difference is that IFFDV creates a value set (and if IFSRTV
is called, sorts it) and stores it in CCATEMP while IFOCUR does not use
CCATEMP space to save the compilation. We suggest the following:

« The IFFDV call is more efficient if you are fetching through the same value
set multiple times. This is especially true if you have a large value set or are
sorting the values using the IFSRTV call.

230 Rocket Model 204 Host Language Interface Reference Manual

* The IFOCUR call with the OF fieldname clause is more efficient if you use
this value set only once.

The IFOCUR call with the OF fieldname clause is similar to the Model 204 FOR
EACH VALUE OF statement. IFFDV and IFSRTV are similar to the FDV (FIND
ALL VALUES) and SORT VALUES statements. See the IFFDV call on

page 161 and the IFSRTV call on page 285 for more information about those
calls.

See the Rocket Model 204 documentation wiki for information about doing
efficient value retrievals:

http://m204wiki.rocketsoftware.com/index.php/Basic_SOUL _statements_and
_commands#Find_statement

Record number processing for ORDERED fields

With IFOCUR, Ordered Index records can be processed in either ascending or
descending order. Use the BY ASCENDING | DESCENDING RECORD option
on the IFOCUR call to specify how you want records within each Ordered Index
value to be processed by IFFTCH.

e The first two columns of Table 6-4 show how IFFTCH processes records
within the Ordered Index value when IN DESCENDING ORDER is
specified and no record order is specified (or BY ASCENDING RECORD is
specified).

Note: If no record order is specified, BY ASCENDING RECORD is
assumed.

e The last two columns of Table 6-4 show how IFFTCH processes the
records within Ordered Index value when IN DESCENDING ORDER and
BY DESCENDING RECORD are hoth specified.

Table 6-4. IFFTCH processing of records within an Ordered Index

When IN DESCENDING ORDER and
When either no record order or BY BY DESCENDING RECORD both are
ASCENDING ORDER is specified ... | specified ...
LAST_NAME RECNO LAST_NAME RECNO
SMITH 08 SMITH 09
SMITH 09 SMITH 08
MARTIN 05 MARTIN 07
MARTIN 06 MARTIN 06
MARTIN 07 MARTIN 05
JONES 01 JONES 04
JONES 02 JONES 03

231

Coding
example
(CoBOL)

Table 6-4. IFFTCH processing of records within an Ordered Index

When IN DESCENDING ORDER and
When either no record order or BY BY DESCENDING RECORD both are
ASCENDING ORDER is specified ... | specified ...

LAST_NAME RECNO LAST_NAME RECNO
JONES 03 JONES 02
JONES 04 JONES 01

Rules for cursor processing

The following rules apply to cursor processing:

WO
01

PR

You can only open a cursor to a record, value set, or list that has been
established (named) by the saved compilation of one of the following calls:
IFFIND, IFFNDX, IFFWOL, IFFAC, IFSORT, IFFDV, or IFSRTV.

You cannot modify a record set that is established by an IFFIND, IFFNDX,
IFFWOL, IFFAC, IFFDV, IFSORT, or IFSRTV while a cursor is open
against it.

See the IFFIND, IFFAC, IFSORT, IFFDV, and IFSRTYV calls.

You can issue calls that modify a list while a cursor is open in it. Note,
however, that a record that is added to a list while a cursor is open may or
may not be processed, depending on its position relative to the current
cursor location.

You can successfully issue the IFOCUR call to be executed only for a
cursor that is in a “closed” state. A cursor is in a closed state before it is first
allocated in response to an IFOCUR call and thereafter, after an IFCCUR
call is executed.

RKING-STORAGE SECTION.
CALL-ARGS.
05 RETCODE PIC 9(5) COMP SYNC.
05 FDSPEC PIC X(12) VALUE "MAKE="FORD";".
05 DNAME PIC X(7) VALUE "FDFORD;".
05 CURSPEC PIC X(10) VALUE "IN FDFORD;™".

05 CURSOR-NAME PIC X(7) VALUE "CRFORD;".

OCEDURE DIVISION.

CALL "IFFIND"™ USING RETCODE, FDSPEC, FDNAME.
CALL "IFOCUR'"™ USING RETCODE, CURSPEC, CURSOR-NAME.

232 Rocket Model 204 Host Language Interface Reference Manual

Note: This example illustrates a key concept in multiple cursor processing. In
the example, IFOCUR opens a cursor (named CRFORD) to a found set (saved
as FDFORD) that was established by the IFFIND call. Alternatively, the found
set could have been established by an IFFNDX, IFFWOL, IFFDV, IFFAC,
IFSORT, or IFSRTYV call. In any case, a cursor can only reference an existing
found set or a list, one that was established by a previously compiled call.

233

IFOPEN call -mc.sc

Function The IFOPEN call (OPEN) opens the specified file or group.
Full syntax (11) I1FOPEN(RETCODE,FILE_SPEC)

Compile-only A compile-only form of IFOPEN is not available.
syntax

Execute-only An execute-only form of IFOPEN is not available.

syntax
Parameters Specify the parameters in the syntax order shown above.
Parameter Description
RETCODE [O,i,r] The Model 204 return code is a required output
parameter. The code is a binary integer value. See
page 237.

234 Rocket Model 204 Host Language Interface Reference Manual

Parameter

Description

FILE_SPEC

[l,c,r] The file specification is a required parameter which
specifies the file or group to be opened. Specify a character
string using the following format:

[FILE | GROUP] name [,deferred ddname];
[deferred ddname2];
[password[:newpassword]];

where:

FILE or GROUP is the keyword which specifies that either a
file or a group is to be opened. The keyword is optional. If
you do not specify FILE or GROUP, Model 204 attempts to
find a group with the specified name before searching for a
file.

name is required and specifies the name of the file or group
to be opened. This name corresponds to a single file name
or to a permanent group definition.

deferred ddname is optional and specifies the name of the

sequential data set used for deferred updates. If specified,

this name must correspond to a DD statement in the JCL of
the Host Language Interface/Model 204 service program.

When you specify a deferred ddname, to select the deferred

form of file maintenance, file maintenance functions are

divided into two phases, as described in “Notes and tips”
below. If the deferred ddname is specified, insert a comma
separator immediately following the file name.

Note: The deferred update option is not available when a group
open is performed. See “Notes and tips” below for more
information about opening files in deferred update mode.

deferred ddname?2 is optional and specifies the name of a

second data set in which deferred updates to the file are to

be stored. This data set is for variable-length records.

password is optional and specifies the user’s identification
which allows access to the file or group. You can omit the
password for public and semipublic files and groups.

Note: The update indicator in the IFSTRT function for IFAM2 or
IFAM4 takes precedence over the password in IFOPEN. If
the IFSTRT update indicator is 0, no updates are allowed,
regardless of the password. If the IFSTRT update indicator
is 1, the password indicates the privileges given.

new password is an optional character string that changes
the login password for the specified user, for future logins.
Specify a new password if you need to replace the existing
password. Note that changing passwords at open time
requires special login privileges. If the new password is
specified, insert a colon separator immediately following the
password.

235

Notes and tips Use the IFOPEN call before any data records are accessed to open a file or
group. When IFOPEN is called, the named file or group becomes the current
file or group.

On a single cursor IFSTRT thread, a file or group named in a previous call to
IFOPEN is no longer available to the thread. On a multiple cursor IFSTRT
thread, files or groups named in a previous IFOPEN call remain accessible.

If the file or group has already been opened by another thread or user,
complete open processing is not performed by Model 204 and the file or group
is made available to the new user.

Files and groups that are no longer needed should be closed explicitly with
IFCLOSE to lessen memory requirements. However, IFCLOSE causes all
server tables to be reinitialized, and saved compilations are lost.

Opening files in deferred update mode

When you specify a deferred data set name to select the deferred form of file
maintenance, file maintenance functions are divided into the following two
phases:

1. The first phase updates records in the data area and is completed immedi-
ately.

2. Information for the second phase, the index update, is written onto the
deferred update data set. Subsequent job steps must be run to complete
phase two.

See the Rocket Model 204 documentation wiki for information about job
steps required for phase two:

http://m204wiki.rocketsoftware.com/index.php/Deferred_update_feature

Note: The deferred update mode can produce unexpected results if retrieval is
attempted before phase two has been completed because the record updates
are not yet reflected in the index. Deferred updates are used to speed
processing when major file maintenance is being performed.

The deferred update option is not available when a group open is performed.
However, prior to the group open, the HLI program can open selected files
individually in deferred update mode, and the following conditions apply:

« All updates to those files, even in group context, are written to the
appropriate deferred data sets.

» Each deferred update file in the group must have its own deferred update
data set, and phase two must be run for each file.

236 Rocket Model 204 Host Language Interface Reference Manual

Completion IFOPEN returns the value (RETCODE) of the file’s FISTAT parameter. In a
return code group context, the file, or files, from which a nonzero FISTAT is returned cannot
(RETCODE) be determined. The settings of FISTAT are listed below.

Code Condition

0 File is normal.

1 File is not initialized.

2 File is physically inconsistent.

8 File is full.

16 File has been recovered.

32 File is in deferred update mode.

64 File may be logically inconsistent.

260 The file or group could not be opened. A journal message further explains
the problem.

325 IQB not large enough. Adjust the MODEL 204 parameters LIBUFF,

LOBUFF, and IFAMBS as necessary.

Note: If two or more FISTAT values are appropriate simultaneously, Model 204
returns the sum of these values.

Not

e the following conditions when evaluating IFOPEN completion codes:

A nonzero completion code does not necessarily indicate a problem with
the file, for example:

— A code of 0 or 16 indicates that file or group processing can proceed
without further conditional testing. Any other return code indicates a
potential problem and should be tested further.

— Codes 32 and 16 do not indicate broken files.

The logically inconsistent condition (code 64) does not prevent use of the
file. It is set by a soft restart of an updating request and indicates that data
relationships that are maintained by the application may not be complete.

We suggest that if you get a completion code that is not listed above, you
first check Chapter 8 to see if the code is listed. If it is not, the completion
code is the sum of the codes listed above.

FISTAT codes are examined in subsequent calls

The Host Language Interface examines the FISTAT setting before any function

is a
IFR

llowed to operate. After IFOPEN, any operation on a broken file except
PRM, results in a completion code of 61, which indicates that the function

was rejected. Note that although privileged users may reset the FISTAT
parameter, subsequent operations on the file may cause further damage or
unpredictable results.

237

Coding
examples
(COBOL)

Opening a file or group during system recovery

During system recovery, a file or group that is not participating in the system
recovery can be opened.

However, updates are not allowed, and the file or group is opened with read-
only privileges. The IFOPEN returns a normal completion code, but the first
function call that tries to update the file or group returns a completion code of
40. To update, reissue the IFOPEN after system recovery has been completed.
You can call IFEPRM to test the CURPRIV parameter for update privileges
before attempting the update.

The COBOL coding example below opens a file and a group using the IFOPEN
call:

» Afile called FILEA with a password of MYSECRET. (In this example, the
group name FILEA does not exist.)

* A group called WEEK without a password.

WORKING-STORAGE SECTION.

01 ARGS-FOR-CALL.
05 RETCODE PIC 9(5) COMP SYNC.
05 FILE-INFO PIC X(15) VALUE “FILEA;MYSECRET;".
05 GROUP-INFO PIC X(12) VALUE “GROUP WEEK;;".

PROCEDURE DIVISION.

CALL "IFOPEN"™ USING RETCODE, FILE-INFO.

CALL "IFOPEN"™ USING RETCODE, GROUP-INFO.

238 Rocket Model 204 Host Language Interface Reference Manual

IFOPENX call me:sc

Function

Full syntax (35)

Compile-only
syntax

Execute-only
syntax

Parameters

Notes and tips

Coding
examples
(COBOL)

The IFOPENX call (OPEN EXCLUSIVE) opens the specified file or group,
engueuing in exclusive mode.

I FOPENX| IFOPNX(RETCODE, FILE_SPEC, TIME)

A compile-only form of IFOPENX is not available.

An execute-only form of IFOPENX is not available.

Specify the parameters in the syntax order shown above.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is a required output
parameter. The code is a binary integer value.

FILE_SPEC [l,c,r] The file specification is a required parameter which
specifies the file or group to be opened. Specify a character
string. See FILE_SPEC on page 235 for a detailed
description of the file specification used for IFOPEN that is
also valid for IFOPENX.

TIME [1,i,r] The time is a required parameter which specifies the
wait time (in seconds). Specify an integer value.

Use the IFOPENX call before any data records are accessed to open a file or
group. When IFOPENX is called, the named file or group becomes the current
file or group. IFOPENX performs the same operations as IFOPEN, however,
IFOPENX enqueues on the file in exclusive rather than in share status.

IFOPENX prevents any other user from accessing the file until the current user
closes it. If you issue IFOPENX for a group, all files in the group are enqueued
upon in exclusive status and the group itself is enqueued upon in share status.
See the Rocket Model 204 documentation wiki for more information about
enqueuing:

http://m204wiki.rocketsoftware.com/index.php/Transaction_back out#Concur
rency_control_and_locking_mechanisms

If the first attempt to enqueue on a file fails, Model 204 waits the number of
seconds specified in the time parameter, then tries again. If the second attempt
fails, Model 204 returns a completion code of 3 to the HLI program.

The COBOL coding example below opens a file using the IFOPENX call. The
file is called FILEB and requires a password of OURSECRET. (In this example,
the group name FILEB does not exist.)

239

WORKING-STORAGE SECTION.
01 ARGS-FOR-CALL.

05 RETCODE PIC 9(5) COMP SYNC.
05 FILE-INFO PIC X(15) VALUE “FILEB;OURSECRET;".
05 TIME PIC 9 COMP SYNC VALUE 3.

PROCEDURE DIVISION.

CALL "IFOPENX"™ USING RETCODE, FILE-INFO, TIME.

240 Rocket Model 204 Host Language Interface Reference Manual

IFPOINT call ¢

Function

Full syntax (44)

Compile-only
syntax

Execute-only
syntax

Parameters

Notes and tips

The IFPOINT call (POINT) changes the current record number and, in group
context, optionally changes the current file.

IFPOINT | IFPNT(RETCODE,,REC_NUM,FILE_SPEC)

A compile-only form of IFPOINT is not available.

An execute-only form of IFPOINT is not available.

Specify the parameters in the syntax order shown above.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is the required first
parameter. The code is a binary integer value.

REC_NUM [l,c,r] The record number is a required input parameter
which specifies the number of a record from a previously
found set. Specify the number as a character string. Upon
successful completion of IFPOINT, the record number
specified becomes the current record number.

FILE_SPEC [1,s,r/o] The file specification is an input parameter that is
required in group context to specify the name of a file which
is a member of the open group. In individual file context, the
file name is optional and, if specified, must specify the name
of the current file.

You may specify the following $functions in the place of a

known file name string constant: $CURFILE for the current
file of the group, or SUPDATE for the group update file.

Use IFPOINT to change the current record. Upon successful completion, the
record number specified becomes the current record number and is the next
record to be operated upon by an IFMORE or IFPUT function.

IFPOINT does not affect the current record set and does not enqueue the new
current record. The new current record is enqueued when it is operated on by
IFMORE and IFPUT. The old current record is dequeued by the next IFMORE,
IFPUT, or IFGET.

In a group context, IFPOINT can change both the current record and the
current file. Be sure that the record number and the file name are consistent.

In files that contain record security, IFPOINT does not allow you to retrieve
records lacking an appropriate record security field value.

241

Coding The COBOL example below, which takes place in an individual file context, sets
examples CURREC to 175.

(COBOL)
WORKING-STORAGE SECTION.

01 ARGS-FOR-CALL.
05 RETCODE PIC 9(5) COMP SYNC.
05 RECNO PIC X(4) VALUE “175;~.

PROCEDURE DIVISION.

CALL "IFPOINT"™ USING RETCODE, RECNO.

The COBOL example below, which takes place in a file group context, sets
CURREC to O (first record) for file PAYROLL.

WORK ING-STORAGE SECTION.
01 ARGS-FOR-CALL.

05 RETCODE PIC 9(5) COMP SYNC.

05 RECNO PIC XX VALUE <0;~.

05 FILE-NAM PIC X(8) VALUE “PAYROLL;”.

PROCEDURE DIVISION.

CALL "IFPOINT™ USING RETCODE, RECNO, FILE-NAM.

The COBOL example below, which takes place in a group context, sets
CURREC to 0 which is the first record.

WORKING-STORAGE SECTION.
01 ARGS-FOR-CALL.
05 RETCODE PIC 9(5) COMP SYNC.
05 RECNO PIC XX VALUE “0;”.
05 FILE-NAM PIC X(8) VALUE “$UPDATE;”.

PROCEDURE DIVISION.

CALL "IFPOINT™ USING RETCODE, RECNO, FILE-NAM.

242 Rocket Model 204 Host Language Interface Reference Manual

IFPROL call -me:sc

Function

Full syntax (33)

Compile-only
syntax

Execute-only
syntax

Parameters

Notes and tips

Coding
example
(CoBOL)

The IFPROL call (PLACE RECORD ON LIST) places the current record on the
specified list.

IFPROL(RETCODE, L1ST_NAME , CURSOR_NAME)

A compile-only form of IFPROL is not available.

An execute-only form of IFPROL is not available.

Specify the parameters in the syntax order shown above.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is the required first
parameter. The code is a binary integer value.

LIST_NAME [l,c,r] The list name is a required input parameter which
specifies the name of the list to be used. If the list does not
already exist, Model 204 creates a new list using this
name. Specify a character string variable which is the
name of a list, existing or new.

CURSOR_NAME [I,s,r] The name of the cursor is an input parameter that is
available only for use with a multiple cursor IFSTRT thread
and is required for specifying the current record to be
placed on the list. Specify the cursor name as a short
character string (maximum 32 characters), using the name
previously assigned to the cursor in a corresponding
IFOCUR call. See CURSOR_NAME on page 226 for a
description of the cursor name for the IFOCUR call.

Note: The cursor name is not a valid parameter for use with a
single cursor IFSTRT thread.

Use the IFPROL call to add a record to a list if the record is not already on the
list. You may use IFPROL to add records from a sorted set to a list.

The IFPROL call is valid on all types of IFSTRT threads. On a multiple cursor
IFSTRT thread, you must specify the cursor whose current record is to be
placed on the list. On a single cursor IFSTRT thread, IFPROL places the
current record on the list.

WORKING-STORAGE SECTION.
01 ARGS-FOR-CALL.
05 RETCODE PIC 9(5) COMP SYNC.
05 LISTNAME PIC X(11) VALUE *"NEWEMPLOYS;".

243

PROCEDURE DIVISION.

CALL "IFPROL"™ USING RETCODE, LISTNAME.

In this example, processing is done on a single cursor IFSTRT thread, and the
IFPROL call is preceded by IFFIND and IFGET calls (not shown).

244 Rocket Model 204 Host Language Interface Reference Manual

IFPROLS call ™

Function

Full syntax
(109)

Compile-only
syntax

Execute-only
syntax

Parameters

Notes and tips

Coding
example
(CoBOL)

The IFPROLS call (PLACE RECORDS ON LIST) places a set of found records
on a list. IFPROLS creates a list or references an existing list on the current
thread.

IFPROLS| IFPRLS(RETCODE, LIST_SPEC)

A compile-only form of IFPROLS is not available.

An execute-only form of IFPROLS is not available.

Specify the parameters in the syntax order shown above.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is the required first
parameter. The code is a binary integer value.

LIST_SPEC [l,c,r] The list specification is a required input parameter
which specifies an existing set of found records to be added
to a list. Specify the records and the list as a character
string using the following format:

set qualifier ON [LIST] listname
where:

set qualifier is required; specify the setname using the IN
label clause, where label is the name of a saved IFFIND,
IFFNDX, IFFWOL, IFFAC, IFSORT, IFFDV, or IFSRTV
compilation from a previously compiled call.

listname is required and specifies the name of a particular
list. If the list does not exist, it is created.

Use the IFPROLS call to add records to a list.

The IFPROLS call is the equivalent of the PLACE RECORDS ON LIST
statement in SOUL in the host language multiple cursor environment. See the
Rocket Model 204 documentation wiki for information about the PLACE
RECORDS ON LIST statement:

http://m204wiki.rocketsoftware.com/index.php/DML_statements_in_Parallel_
Query_Option/204

WORKING-STORAGE SECTION.
01 CALL-ARGS.
05 RETCODE PIC 9(5) COMP SYNC.
05 LISTSPEC PIC X(20) VALUE "IN PREVFD ON LIST L;".

245

PROCEDURE DIVISION.

CALL "IFPROLS™ USING RETCODE, LISTSPEC.

246 Rocket Model 204 Host Language Interface Reference Manual

IFPUT call ¢

Function
Full syntax (18)

Compile-only
syntax (54)

Execute-only
syntax (55)

Parameters

The IFPUT call (PUT) updates the current record.

IFPUT (RETCODE ,BUFFER,EDIT_SPEC, PUT_NAME , %VARBUF , %VARSPEC)

IFPUTC(RETCODE,EDIT_SPEC, PUT_NAME)

IFPUTE(RETCODE , BUFFER , PUT_NAME , %VARBUF , %VARSPEC)

Specify the parameters in the syntax order shown above.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is the required first
parameter. The code is a binary integer value.

BUFFER [l,c,r] The buffer location is a required input parameter which
specifies the address of the data that will be used to update
the fields defined in the EDIT_SPEC parameter. Specify a
character string variable.

EDIT_SPEC [l,c,r] The edit specification is a required input parameter

which defines the fields that are to be returned from the
specified record. The specification describes the format of
the data which is returned at the buffer location (see
BUFFER above).

Specify a character string using one of the following LIST,
DATA, or EDIT format options:

LIST (Ffieldname list);

DATA;

EDIT (Ffieldname list) (edit formats);
where:

fieldname list is required for the LIST or EDIT specification
and specifies a field name or names. Specify elements in
the field name list using one of the following options:

« fieldname

o fieldname(n)

e fieldname(*)

e fieldname(%variable)

o fieldname(+n)

e fieldname(+%variable)
where:

- fieldname updates the first occurrence of the named field.
Note that this is equivalent to fieldname(1). If the field does not
occur in the current record, IFPUT adds it.

247

Parameter Description

« fieldname(n) updates the nth occurrence of the named field for
a multiply occurring field. If the nth occurrence does not exist
in the current record, IFPUT adds it.

» fieldname(*) adds the named field to the current record. If the
field already exists in the current record, IFPUT adds another
occurrence of the field.

« fieldname(%variable) retrieves the occurrence of the field
specified by the %VARBUF and %VARSPEC parameters. If
the nth occurrence does not exist in the current record, IFPUT
adds it.

» fieldname(+n) inserts a new occurrence of the named field to
the current record. This is analogous to the SOUL INSERT
statement and is useful for adding new occurrences of a field
where the order of the values is important. Insert the new
occurrence as the nth occurrence.

« fieldname (+%variable) inserts a new occurrence of the field
into the current record. The occurrence number is retrieved
from the %VARBUF and %VARSPEC parameters.

Note: If there is a current nth (or %variable) occurrence, make it
the one after the nth occurrence. If n is greater than the
current number of occurrences, add the new occurrence at
the end. If the field does not occur in the current record, add
it. If n is O or is not specified, treat it as though n=1 and
insert the field as the first occurrence.

edit formats is required in the EDIT specification and
specifies a code or codes which indicate(s) the format of the
data to be returned for the named field in the field name list-
edit format pair. See “Using EDIT format codes for an
updating call” on page 328 for a detailed description of the
EDIT format codes that are used with IFPUT.

Note: See Chapter 7 for a description of LIST, DATA, and EDIT
formatting.

PUT_NAME [1,s,r/o] The name of the IFPUT compilation is an input
parameter that is only required if using the Compiled IFAM
facility (IFPUTC and IFPUTE). Model 204 saves the
compilation using this name. Specify the name as unique,
and as a short character string. Any characters except the
following are valid in the name: blank, comma, parenthesis,
equal sign, or semicolon. A null value is equivalent to
omitting the name parameter.

%VARBUF [I,c,0] The variable buffer is an optional input parameter that
addresses a data area which accommodates up to 255
bytes of data per value. The buffer contains values which
are defined by the %VARSPEC parameter, below, to be
assigned to %variables. Specify a character string. See the
Rocket Model 204 documentation wiki for information about
%variables:

http://m204wiki.rocketsoftware.com/index.php/Using_varia
bles_and_values_in_computation

248 Rocket Model 204 Host Language Interface Reference Manual

Notes and tips

Completion
return code
(RETCODE)

Parameter Description

%VARSPEC [I,c,0] The variable specification describes the format of the
data that is contained in the %variable parameter, and lists
the %yvariables to be assigned. %VARSPEC specifies the
contents of the variable buffer, described above. Specify a
character string which follows a LIST, DATA, or EDIT
syntax. %VARSPEC is a required input parameter if
%VARBUF is specified.

Use IFPUT to update the current record. IFPUT changes or deletes fields in an
existing record and adds new fields to an existing or newly created record.
Typically, you issue the IFPUT call after an IFGET, IFBREC, or IFPOINT
function.

When FOPT=X'10" and the date/time stamp feature is installed, the IFPUT
function is not supported for DTS files.

You cannot update the sort key field in a sorted file or the hash key field in a
hashed file. In these cases, the old record must be deleted and a new record
built. The new record contains the updated sort or hash key field.

You can use IFPUT to add INVISIBLE fields to the current record. To change
an INVISIBLE field, first call IFDVAL to delete the field. Then, use IFPUT to add
the new value. Also, use IFDVAL to delete an INVISIBLE field or to delete a
particular occurrence of a field when the occurrence order is not known. You
can also use IFPUT with the G edit format to delete field occurrences. See
“Using EDIT format codes for an updating call” on page 328 for information
about using the G edit format.

To use IFPUT to delete fields, update the field with a null value.

If the IFPUT call is unsuccessful, Model 204 returns the following completion
codes:

Code Error condition

4 An undefined field is encountered in a precompiled field name list. The
IFPUT updating operation for the current call stops (error message begins
with CANCELLING CALL).

Note: If the IFPUT specification is not precompiled, an undefined field name
prevents all updating for the current call.

10 Model 204 encountered invalid data values for BINARY and FLOAT
numeric field for a file having FILEMODL set to NUMERIC VALIDATION.

200 A uniqueness violation has occurred (field level constraint).

202 An AT_MOST_ONE violation has occurred (field level constraint).

See the Rocket Model 204 documentation wiki for information about field level
constraints:

249

http://m204wiki.rocketsoftware.com/index.php/Field_design#Field_and_conte
nt_constraints

http://m204wiki.rocketsoftware.com/index.php/Field_attributes#AT-MOST-
ONE_versus_UNIQUE_attributes

Also see the documentation wiki for information about BINARY and FLOAT
field values:

http://m204wiki.rocketsoftware.com/index.php/Data_maintenance#Storing_da
ta_in_fields

Updating with UPDATE IN PLACE fields

Field values are read from left to right from the data area to correspond to
names in the field name list. Changes to existing fields are applied to a record
one field at a time. If the UPDATE IN PLACE attribute has been specified for a
field (see IFDFLD), then the order of the fields is not affected when the contents
of the field are changed.

When many occurrences of an UPDATE IN PLACE field are being changed, a
subscripted field name should appear in the IFPUT name list for each value to
be changed. If a field name appears more than once with the same or no
subscript, the specified occurrence is changed many times and all the other
occurrences remain unchanged.

Updating with UPDATE AT END fields

If you specify UPDATE AT END for a field, as each occurrence is updated the
old occurrence is deleted and the new one is added following other
occurrences of the same field. New fields are added to the end, regardless of
the update option in effect. Deletions always preserve the order of the
remaining occurrences.

For example, suppose that you specify UPDATE AT END and a record appears
as:

LAST NAME=SMITH CHILD=TOM CHILD=DICK CHILD=HARRY

Then, if the field name list specifies (CHILD(1), CHILD(2)), the system first
updates CHILD=TOM and the record appears as:

LAST NAME=SMITH CHILD=DICK CHILD=HARRY CHILD=THOMAS

The field list specification then directs Model 204 to change the second
occurrence of CHILD, which is now CHILD=HARRY. The result is:

LASTNAME=SMITH CHILD=DICK CHILD=THOMAS CHILD=HAROLD

Specifying (CHILD,CHILD), which is equivalent to (CHILD(1), CHILD(1)),
would have changed CHILD=TOM and then CHILD=DICK in the original
record.

250 Rocket Model 204 Host Language Interface Reference Manual

Coding
example
(COBOL)

If the current record contains the following information:
NAME=SMITH, SALARY=15000, SCHOOL=HIGH

and the work area contains the following information (in most applications, the
values would be moved into the work area and not set up by VALUE clauses):

WORKING-STORAGE SECTION.
01 ARGS-FOR-CALL.

05 RETCODE PIC 9(5) COMP SYNC.
01 WORKAREA.

05 NAME1 PIC X(5) VALUE “SMITH”.
05 SCHOOL1 PIC X(7) VALUE “COLLEGE~.
05 SALARY1 PIC 9(5) VALUE ”16000”.
05 AGE PIC 9(2) VALUE “29°.

05 EDITLIST PI1C X(54) VALUE
“EDIT(NAME, SALARY , SCHOOL (*) ,AGE)

(A(20),3(6),A(7),I(2));"-

PROCEDURE DIVISION.

CALL "IFPUT' USING RETCODE, WORKAREA, EDITLIST.

The current record is updated. If SALARY is UPDATE IN PLACE, the current
record appears after the changes as:

NAME=SMITH, SALARY=16000, SCHOOL=HIGH , SCHOOL=COLLEGE , AGE=29

251

IFREAD call ¢
Function The IFREAD call (READ) obtains a line of output from Model 204.
Full syntax (9) IFREAD(RETCODE,LINE_AREA,MSG_DESC,LINE_LEN)

Compile-only A compile-only form of IFREAD is not available.
syntax

Execute-only An execute-only form of IFREAD is not available.

syntax
Parameters Specify the parameters in the syntax order shown above.
Parameter Description
RETCODE [O,i,r] The Model 204 return code is the required output

parameter. The code is a binary integer value.

LINE_AREA [O,c,r] The line area is a required output parameter which is

set to the output line from Model 204.

Note: If Model 204 generates a logical line of output which is
longer than a connection’s line size, the logical line is
broken into two or more physical lines that do not exceed
the connection’s line size. A hyphen (-) is placed in the
continuation character position of each continued line and
a completion code of 2 is returned until the entire logical
line has been transmitted.

For example, suppose that the line size was set to 4 and

Model 204 is to print the string ABCDEFGH. Three calls to
IFREAD are required, as summarized below:

Programs using a language indicator of 2, for example,
COBOL and FORTRAN, must blank out the line area before
each call to IFREAD.

252 Rocket Model 204 Host Language Interface Reference Manual

Notes and tips

Parameter

Description

MSG_DESC [0,i,0] The message descriptor is an optional output
parameter. Model 204 returns the descriptor as an integer
value in the following format:

BytesOand 1 Contain the message length +4, in binary.

Byte 2 Is a bit string that describes the message
returned in LINE_AREA.

Byte 3 Reserved

Note: Since the bits can be used in combination, host language

programs should test the bits individually. The bits for byte
2 are summarized below.

Bit 0 (X'80") If one, output is a class E message.

Bit 1 (X'40") If one, output begins a new page.

Bit 2 (X'20") If one, user is being restarted.

Bit 3 (X'10") If one, output is a nondisplay input
prompt.

Bit 4 (X'08") If one, output is a SREAD prompt.

Bit 5 (X'04") If one, output is a class | message or any
other special message such as a
broadcast or file open message.

Bits 6 and 7 Reserved

LINE_LEN [1,i,0] The line length is an optional input parameter which

specifies the transfer length for IFREAD.

This parameter determines the maximum line length for the
IFREAD call. If this parameter is present, it overrides any
value specified on IFDIAL or IFDIALN. For PL/1, the length
is the minimum of this value plus the string length. See
page 254 for more information about the IFREAD line
length.

Use the IFREAD call only with an IFDIAL connection to receive data from

Model 204.

See the Rocket Model 204 Host Language Interface Programming Guide for an
coding example of a subroutine that translates the message descriptor
(MSG_DESC) values returned by Model 204.

You may specify a different buffer length with each call by specifying the line
lengthin IFREAD. See the next page for detailed information about the IFREAD

line length.

253

Completion Code your IFDIAL application to check the return code for the following values:
return code
(RETCODE)

Code Required action

1 Call IFWRITE next to provide Model 204 with input.

2 Call IFREAD next to get more output from Model 204.

See the Rocket Model 204 Host Language Interface Programming Guide for
more information about coding IFDIAL applications.

If the IFREAD call is unsuccessful, Model 204 returns an error code for either
of the following error conditions:

Code Condition

12 No output ready from Model 204 call IFWRITE to provide more input. In
this case, the answer area is not altered. IFREAD call not accepted
(IFWRITE call expected).

100 No current Model 204 connection exists or the connection is lost.

Transfer length for output from Model 204

The parameters in effect during the execution of the IFREAD call determine the
length of data transferred from Model 204 and the actions taken when the
receiving area is a different size than the Model 204 output line.

The following factors determine the length:

The first factor is PL/1 string length; for PL/1 compilers (F-level, Optimizer and
Checkout) use a dope vector when passing character string arguments. This
dope vector contains the maximum length of the string and its address. For
strings declared as VARYING, it also contains the current length.

Additionally, the transfer length for output from Model 204; this value is based
on the following order of precedence, from highest to lowest:

1. The optional length parameter in the IFREAD call. The HLI application pro-
gram may optionally specify a buffer length in the IFREAD call (see the
LINE_LEN parameter on page 253) which is different from the CRAM
buffer size returned by the IFDIAL or IFDIALN call.

For PL/1, if this length is greater than the maximum string length, the
maximum string length is used.

Note: This value is in effect only for this specific IFREAD call.

2. The optional default length parameter in the IFDIAL call; this new default
remains in effect until IFHNGUP is called.

254 Rocket Model 204 Host Language Interface Reference Manual

For PL/1, if this length is greater than the maximum string length, the string
length is used.

3. The standard default length, which is set relative to the host language (that
is, the language indicator parameter specified in the IFDIAL or IFDIALN
call); Model 204 uses either of the following lengths:

— 252 for COBOL, FORTRAN, and Assembler
— PL/1 maximum string length (dope vector)

Note that the maximum length of a data area that can be transferred over an
IFDIAL thread is 32763 bytes. See the Rocket Model 204 documentation wiki
for more information about buffer size parameters:

http://m204wiki.rocketsoftware.com/index.php/Defining_the Runtime_Environ
ment_(CCAIN)
When transfer length differs from output line size

The maximum length of data that can be transferred is a result of the transfer
length. If this value is different than the actual Model 204 output line size,
truncation or padding may occur.

Note: For all languages, when the output transfer length is less than the
Model 204 output line size, Model 204 truncates the data.

However, if the transfer length is greater than the output line size, Model 204
performs either of the following actions:

e For COBOL, FORTRAN, and PL/1 fixed string areas, pads the remaining
area with spaces.

e For PL/1, Model 204 sets the current string length to the output line size.
The remaining answer area is unchanged.
Overview of IFREAD data transfer

Table summarizes the relationship between the parameters that determine the
IFREAD data transfer length and the actions taken by Model 204.

Table uses the following codes:

e Lang=n, which is the language indicator specified in the IFDIAL or IFDIALN
call.

e LENGTHZ1, which is the default length parameter in the IFDIAL call.

e LENGTH2, which is the length parameter in the IFREAD call.

* FIXED, which is a PL/1 string argument that is declared as fixed.

* VARYING, which is a PL/1 string argument that is declared as varying.
« MAXLEN, which is the maximum length of the PL/1 string.

255

« Pad, which indicates that Model 204 pads the remaining answer area with
spaces.

» Setlength, which indicates that PL/1 string length field (CURRLEN) is set
to the Model 204 output line size, and the remaining answer area is

unchanged.
Table 6-5. IFREAD data transfer length
Parameters in effect Transfer length Action
IFDIAL IFREAD
Lang=1 LENGTH1 LENGTH2 min(LENGTH2,MAXLEN) Set length
LENGTH1 —LENGTH2 min(LENGTH1,MAXLEN)
—LENGTH1 LENGTH2 min(LENGTH2,MAXLEN)
—LENGTH1 —LENGTH2 MAXLEN
Lang=2 LENGTH1 LENGTH2 LENGTH2 Pad
LENGTH1 —LENGTH2 LENGTH1
—LENGTH1 LENGTH2 LENGTH2
—LENGTH1 —LENGTH2 252
Lang=3 LENGTH1 LENGTH2, FIXED min(LENGTH2,MAXLEN) Pad
LENGTH1 —LENGTH2, FIXED min(LENGTH1,MAXLEN)
—LENGTH1 LENGTH2, FIXED min(LENGTH2,MAXLEN)
—LENGTH1 —LENGTH2 FIXED MAXLEN
Lang=3 LENGTH1 LENGTH2, VARYING min(LENGTH2,MAXLEN) Set length
LENGTH1 —LENGTHZ2, VARYING min(LENGTH1,MAXLEN)
—LENGTH1 LENGTH2, VARYING min(LENGTH2,MAXLEN)
—LENGTH1 —LENGTHZ2, VARYING MAXLEN
Legend:
LENGTHnN Parameter was specified
—LENGTHn Parameter was not specified
min(l,m) Transfer length is determined to be the minimum value of and m
Coding -
example -
(Assembler) -
CALL IFDIAL...
CALL IFWRITE...
MVC RLEN(4),=F*30~
CALL IFREAD, (RETCODE, INPUT ,MDF,RLEN), VL
CLI MDF+2,X”14> DO WE NEED A PASSWORD

256 Rocket Model 204 Host Language Interface Reference Manual

RETCODE DC F*0”

INPUT DC CL30” ~
MDF DS OF
MDFLEN DS H
MDFTYPE DS BL2 X?807=CLASS E ERROR MESSAGE
* X?407=NEW PAGE
* X?207=RESTART
* X?10”=PASSWORD PROMPT
* X”08”=$READ PROMPT
* X?04>=CLASS 1 MESSAGE
RLEN DC F’0’
END

257

IFRELA call ™

Function

Full syntax
(104)

Compile-only
syntax

Execute-only
syntax

Parameters

Notes and tips

Coding
example
(CoBOL)

The IFRELA call (RELEASE ALL RECORDS) releases all record sets held by
the current thread.

IFRELA(RETCODE)

A compile-only form of IFRELA is not available.

An execute-only form of IFRELA is not available.

Enclose the parameter inside parentheses, as shown above.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is the only required
parameter. The code is a binary integer value.

Use the IFRELA call to explicitly release all found sets of records.

When executing an IFRELA call, Model 204 performs an IFRELR function on
each record set and list that is held by the current thread. See the IFRELR call.

The IFRELA call is the equivalent of the RELEASE ALL RECORDS statement
in SOUL in the host language multiple cursor environment. See the Rocket
Model 204 documentation wiki for information about the RELEASE ALL
RECORDS statement:

http://m204wiki.rocketsoftware.com/index.php/Record_level_locking_and_con
currency_control#RELEASE_ALL RECORDS_statement

WORK ING-STORAGE SECTION.
01 CALL-ARGS.
05 RETCODE PIC 9(5) COMP SYNC.

PROCEDURE DIVISION.

CALL "IFRELA™ USING RETCODE.

258 Rocket Model 204 Host Language Interface Reference Manual

IFRELR call ™

Function The IFRELR call (RELEASE RECORDS) releases a particular record set held
by the current thread.

Full syntax IFRELR(RETCODE, SET_QUAL)
(103)

Compile-only A compile-only form of IFRELR is not available.
syntax

Execute-only An execute-only form of IFRELR is not available.

syntax
Parameters Specify the parameters in the syntax order shown above.
Parameter Description
RETCODE [O,i,r] The Model 204 return code is the required first

parameter. The code is a binary integer value.

SET_QUAL [l,c,r] The set qualifier is required for specifying the record
set or list whose records will be released. Specify the set
qualifier as a character string using either one of the
following formats:

[IN label | ON [LIST] listname]
where:

label is the name of a saved IFFIND, IFFNDX, IFFWOL,
IFFAC, IFSORT, IFFDV, or IFSRTV compilation from a
previously compiled call.

listhame specifies the name of a list which contains the
found set.

Notes and tips Use the IFRELR call to explicitly release a single found set of records.

If you issue an IFRELR call on a sorted set, Model 204 frees the records in the
scratch file. If you issue an IFRELR call on a list, Model 204 performs a CLEAR
LIST function. See the IFCLST (CLEAR LIST) call.

The IFRELR call is the equivalent of the RELEASE RECORDS statement in
SOUL in the host language multiple cursor environment. See the Rocket
Model 204 documentation wiki for information about the RELEASE RECORDS
statement:

http://m204wiki.rocketsoftware.com/index.php/Record_level_locking_and_con
currency_control#RELEASE_RECORDS_ statement

259

Coding WORKING-STORAGE SECTION.
example 01 CALL-ARGS.
(COBOL) 05 RETCODE PIC 9(5) COMP SYNC.
05 REL-SPEC PIC X(10) VALUE "IN PREVFD;".

PROCEDURE DIVISION.

CALL "IFRELR™ USING RETCODE, REL-SPEC.

260 Rocket Model 204 Host Language Interface Reference Manual

IFRFLD call -me.sc

Function

Full syntax (59)

Compile-only
syntax

Execute-only
syntax

Parameters

The IFRFLD call (REDEFINE FIELD) redefines one or more fields that have
been previously defined for a Model 204 file. IFRFLD requires Model 204 file

manager privileges.

IFRFLD(RETCODE, FIELD_DESC,FILE_SPEC)

A compile-only form of IFRFLD is not available.

An execute-only form of IFRFLD is not available.

Specify the parameters in the syntax order shown above.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is the required first
parameter. The code is a binary integer value.

FIELD_DESC [l,c,r] The field description is a required input parameter

which specifies the name of the field to be redefined and a
list of its new attributes. You may specify more than one
field to be redefined. Specify the field description as a
character string using the following format:

fieldname (attribute eee)
[fieldname (attribute ee<)];
where:

fieldname is required and specifies the name of the
Model 204 field that is being redefined. Specify the name
as a character string, up to 255 characters in length.

attribute is required and specifies a particular characteristic
that controls how the field is used, stored, or accessed. You
may specify more than one attribute, separating each by a
comma or a blank. Specify only the attributes to be
changed.

The attributes that may be specified using the IFRFLD call
are identical to those that are used with the Model 204
REDEFINE command. See the Rocket Model 204
documentation wiki for a description of field attributes used
with the REDEFINE command:

http://m204wiki.rocketsoftware.com/index.php/REDEFINE
_command

261

Notes and tips

Coding
example
(CoBOL)

Parameter Description

FILE_SPEC [1,s,0] The file specification is an optional input parameter
for use only with a multiple cursor IFSTRT thread for
specifying the name of the Model 204 file that contains the
field to be redefined. Specify the name of the file as a short
character string variable using the following format:

IN [FILE] filename

The specified file must be open on the thread, otherwise
the call is unsuccessful and Model 204 returns a
completion code of 4.

Use the IFRFLD call to redefine a previously defined field in an open Model 204
file. Using the IFRFLD call allows a field definition to be altered without
requiring that the file be reinitialized or reloaded. The IFRFLD call is valid only
in file context, not for a group. The IFRFLD call is valid on all types of IFSTRT
threads.

When FOPT=X'10’ and the date/time stamp feature is installed, the IFRFLD
function is supported for DTS files.

Note: The file context can change on a multiple cursor thread and, if the file
specification parameter (FILE_SPEC) is omitted, IFRFLD redefines the field for
the default file on the thread.

If the field being redefined has a security level, the Model 204 file manager
must have field level security (FLS) access privileges. Note that changing a
field’s security level to O desecures the field. See the Rocket Model 204
documentation wiki for information about field security:

http://m204wiki.rocketsoftware.com/index.php/Security#Field-level_security

Note also that IFRFLD follows the same basic rules for specifying field attribute
definitions as the Model 204 REDEFINE FIELD command. See the Rocket
Model 204 documentation wiki for information about using the REDEFINE
FIELD command:

http://m204wiki.rocketsoftware.com/index.php/REDEFINE_command

WORK ING-STORAGE SECTION.
01 CALL-ARGS.

05 RETCODE PIC 9(5) COMP SYNC.

05 MODIFY PIC X(20) VALUE °FIELDA (UP,LEVEL 0);-.

PROCEDURE DIVISION.

CALL "IFRFLD™ USING RETCODE, MODIFY.

262 Rocket Model 204 Host Language Interface Reference Manual

IFRNUM call ™

Function

Full syntax
(121)

Compile-only
syntax

Execute-only
syntax

Parameters

Notes and tips

The IFRNUM call (EXTRACT RECORD NUMBER) returns the number of the
current record in the specified cursor in an output parameter.
IFRNUM(RETCODE , CURSOR_NAME , RECNUM)

A compile-only form of IFRNUM is not available.

An execute-only form of IFRNUM is not available.

Specify the parameters in the syntax order shown above.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is the required first
parameter. The code is a binary integer value.

CURSOR_NAME [1,s,r] Is a required input parameter which specifies the
name of the cursor whose record number is to be returned.
This is a short character string, the name previously
assigned to the cursor in a corresponding IFOCUR call.

See CURSOR_NAME on page 226 for a description of the
cursor name for the IFOCUR call.

RECNUM [O,c,1] Is a required output parameter which returns the
number of the current record for the specified cursor.
Specify a character string variable. Model 204 returns a
number in display format, up to eleven characters in length.

Use the IFRNUM call to access the internal number of the record, that is, the
database record number, at the location where the specified cursor is currently
positioned.

The IFRNUM call is the equivalent of the $CURREC function in SOUL in the
multiple cursor environment.

See the Rocket Model 204 documentation wiki for information about the
$CURREC function:

http://m204wiki.rocketsoftware.com/index.php/$Currec

IFRNUM returns a -1 for the current record number (RECNUM) to indicate that
there is no current record for the specified cursor. This result occurs if no fetch
is issued or if an IFRELA call was issued to release the record set.

Note: To successfully issue the IFRNUM call, you must specify a cursor that
meets both of the following requirements:

263

e The cursor was declared in a previously compiled IFOCUR call on the
thread. See the IFOCUR (open cursor) call.

* The cursor is open.

Coding WORKING-STORAGE SECTION.
example 01 CALL-ARGS.
(COBOL) 05 RETCODE PIC 9(5) COMP SYNC.

05 RECNUM PIC X(11).
05 CURNAME PIC X(4) VALUE "CR1;".

PROCEDURE DIVISION.

CALL "IFRNUM"™ USING RETCODE, CURNAME, RECNUM.

264 Rocket Model 204 Host Language Interface Reference Manual

IFRPRM call me:s¢

Function

Full syntax (27)

Compile-only
syntax

Execute-only
syntax

Parameters

The IFRPRM call (RESET PARAMETER) resets the value of one or more
specified Model 204 parameters.

IFRPRM(RETCODE , PARM_LIST,FILE_SPEC)

A compile-only form of IFRPRM is not available.

An execute-only form of IFRPRM is not available.

Specify the parameters in the syntax order shown above.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is the required first
parameter. The code is a binary integer value.

PARM_LIST [I,c,r] The parameter list is a required input parameter,

which specifies the name and value pair for each
Model 204 parameter whose value is to be reset. Specify a
character string using the following format:

parml=valuel [,parm2=value2 ee<];
where:

parm1l is the name of the Model 204 parameter to be reset,
and parm2 is the name of a second parameter to be reset.
Additional parameters may be specified in a name-value
pair. Specify the keyword name of the Model 204 system,
file, or user parameter.

valuel is the new value for the specified parameter in the
first pair, and value2 is the new value for the specified
parameter in the second pair. A value is required for each
name that is specified in the list. Values may be specified
in decimal form, such as 193, in hexadecimal form, such as
X'C1', or in character form, such as C'A'. For example, the
specification OPENCTL=128 is equivalent to
OPENCTL=X'80'".

You may specify more than one name=value pair,
separating each by a comma or a blank.

265

Notes and tips

Parameter Description

FILE_SPEC [1,s,0] The file specification is an optional input parameter
for use only with a multiple cursor IFSTRT thread for
specifying the name of the file for which the Model 204 file
parameter will be reset. Specify the Model 204 file name as
a short character string using the following format:

IN [FILE] filename;

The specified file must be open on the thread, otherwise
the call is unsuccessful and Model 204 returns a
completion code equal to 4.

Use the IFRPRM call to reset certain Model 204 system, file, or user
parameters. The IFRPRM call is valid for resetting individual file parameters
only in file context, not for a group. IFRPRM follows the same basic rules for
specifying parameter settings as the Model 204 RESET PARAMETER
command. See the Rocket Model 204 documentation wiki for information about
using the RESET command to set file parameters:

http://m204wiki.rocketsoftware.com/index.php/RESET_command
The IFRPRM call is equivalent to the IFSPRM call.

The IFRPRM call is valid on all types of IFSTRT threads. Note that the file
context can change on a multiple cursor thread. If a Model 204 file parameter
is specified for PARM_LIST and the file specification parameter (FILE_SPEC)
is omitted, IFRPRM resets the value for the default file on the thread.

Note: Use IFRPRM with caution to avoid resetting sensitive parameters that
may affect the entire operating environment. See the Rocket Model 204
documentation wiki for information about Model 204 parameters:

http://m204wiki.rocketsoftware.com/index.php/List_of Model 204 parameter
s

Resetting TBO or non-TBO files

If a file is the only file open for all threads on a job, you may reset the file
parameters to change the file from transaction backout (TBO) to non-TBO or
vice versa. Note, however, that changing a file from TBO to non-TBO (or non-
TBO to TBO) will cause a file discontinuity for backout and recovery. Therefore,
if you use the IFRPRM call to change TBO status, Rocket suggests that you
reset the TBO parameters as soon as possible as described in the steps below.
In this example, the job starts with TBO files in use.

1. Before you start, commit all current updates and close all open files

2. Openjust the file you want to change, reset that file from TBO to non-TBO,
and close the file.

3. Open the non-TBO files that you need, and perform whatever work needs
to be done with the file set as non-TBO. When you are done, commit the

266 Rocket Model 204 Host Language Interface Reference Manual

updates and close all files.

4. As soon as possible, reopen the file that you originally changed, set it back
to TBO, and close the file.

5. At this point, you can reopen files and continue working.

Coding WORKING-STORAGE SECTION.
example 01 CALL-ARGS.
(COBOL) 05 RETCODE PIC 9(5) COMP SYNC.

05 RESET PIC X(12) VALUE ~“OPENCTL=128;".

PROCEDURE DIVISION.

CALL "IFRPRM™ USING RETCODE, RESET.

267

IFRRFL call -me:sc

Function The IFRRFL call (REMOVE RECORD FROM LIST) removes the currentrecord
from the specified list.

Full syntax (34) 1FRRFL(RETCODE,LIST_NAME,CURSOR_NAME)

Compile-only A compile-only form of IFRRFL is not available.
syntax

Execute-only An execute-only form of IFRRFL is not available.

syntax
Parameters Specify the parameters in the syntax order shown above.
Parameter Description
RETCODE [O,i,r] The Model 204 return code is the required first

parameter. The code is a binary integer value.

LIST_NAME [l,c,r] The list name is a required input parameter which
specifies the name of the list to be used. Specify a
character string variable which is the name of an existing
list.

CURSOR_NAME [I,s,r] The name of the cursor is an input parameter that is
available only for use with a multiple cursor IFSTRT thread
and is required for specifying the current record to be
removed. Specify the cursor name as a short character
string, using the name previously assigned to the cursor in
a corresponding IFOCUR call. See CURSOR_NAME on
page 226 for a description of the cursor name for the
IFOCUR call.

Note: The cursor name is not a valid parameter for use with a
single cursor IFSTRT thread.

Notes and tips Use the IFRRFL call to remove a record from a list.

The IFRRFL call is valid on all types of IFSTRT threads. On a multiple cursor
IFSTRT thread, you must specify the cursor name for the current record. On a
single cursor IFSTRT thread, IFRRFL processes the current record using the
set that is current for the file or group most recently opened.

Coding WORKING-STORAGE SECTION.
example 01 ARGS-FOR-CALL.
(COBOL) 05 RETCODE PIC 9(5) COMP SYNC.

05 LISTNAME PIC X(5) VALUE "SAVE;".

PROCEDURE DIVISION.

268 Rocket Model 204 Host Language Interface Reference Manual

CALL "IFRRFL"™ USING RETCODE, LISTNAME.

In this example, processing is done on a single cursor IFSTRT thread, and the
IFRRFL call is preceded by IFFIND, IFLIST, and IFGET calls (not shown).

269

IFRRFLS call ™

Function

Full syntax
(110)

Compile-only
syntax

Execute-only
syntax

Parameters

Notes and tips

The IFRRFLS call (REMOVE RECORDS FROM LIST) removes records from
a particular list on the current thread.

IFRRFLS| IFRFLS(RETCODE, LIST_SPEC)

A compile-only form of IFRRFLS is not available.

An execute-only form of IFRRFLS is not available.

Specify the parameters in the syntax order shown above.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is the required first
parameter. The code is a binary integer value.

LIST_SPEC [l,c,r] The list specification is a required input parameter
which specifies an existing set of found records to be
matched against and removed from a particular list. Specify
the record set and the list as a character string using the
following format:
set qualifier FROM [LIST] listname
where:
set qualifier is required and specifies the name of a
previously established found set or list using the IN label
format, where label is the name of a saved IFFIND,
IFFENDX, IFFWOL, IFFAC, IFSORT, IFFDV, or IFSRTV
compilation from a previously compiled call.
listname is required and specifies the name of a particular
list from which records (having a match in the found set) will
be removed.

Use the IFRRFLS call to delete from a particular list any records that match
those in the specified found set or list.

The IFRRFLS call is the equivalent of the REMOVE RECORDS FROM LIST
statement in SOUL in the host language multiple cursor environment. See the
Rocket Model 204 documentation wiki for information about the REMOVE
RECORDS FROM LIST statement:

http://m204wiki.rocketsoftware.com/index.php/DML_statements_in_Parallel_
Query_Option/204

270 Rocket Model 204 Host Language Interface Reference Manual

Coding
example
(COBOL)

WORKING-STORAGE SECTION.

01 CALL-ARGS.
05 RETCODE PIC

05 LISTSPEC PIC X(22) VALUE "IN PREVFD FROM LIST L;™.

PROCEDURE DIVISION.

CALL "IFRRFLS"™ USING

9(5) COMP SYNC.

RETCODE, LISTSPEC.

271

IFSETUP call

Function

Full syntax (86)

Compile-only
syntax

Execute-only
syntax

Parameters

The IFSETUP call (SETUP) initiates contact with Model 204 and sets the
PARM parameters and the CCAIN control statements for the IFDIAL IFAM1
Host Language Interface job.

IFSETUP| IFSETP(RETCODE, LANG_IND,EXEC,PROLOGUE)

A compile-only form of IFSETUP is not available.

An execute-only form of IFSETUP is not available.

Specify the parameters in the syntax order shown above.

Parameter

Description

RETCODE

[O,i,r] The Model 204 return code is a required output
parameter. The code is a binary integer value.

LANG_IND

[1,i,r] The language indicator is a required input parameter,
which establishes the calling sequence convention to be
used corresponding to the host language. The indicator
specifies the format of parameters that are passed in
subsequent calls.

Specify one of the following integer values:
1 = PL/1 F-level, and BAL languages
2 = COBOL, FORTRAN, and BAL languages

3 = PL/1 with +Optimizer/Checkout compilers,
VS/FORTRAN, and BAL languages
Note: Any convention may be specified for use with the BAL

language, and the BAL programmer must adhere to the
convention that is specified when coding parameters.

EXEC

[l,c,0] The EXEC specification is an optional input
parameter, which specifies the value of the PARM
parameter of the EXEC JCL statement for the IFAML1 job.
Specify a character string, up to 100 bytes in length, and
separate parameters with a comma (,). If the language
indicator (LANG_IND) setting is 2, append a semicolon (;)
to the end of the input string. A null string indicates that no
PARM values are to be set.

Note: If the LIBUFF and LOBUFF parameters are to be set,
include them in the parameter list. Do not specify the
following parameters in the PARM list: ALTIODEYV,
NUSERS, and NSERVS.

272 Rocket Model 204 Host Language Interface Reference Manual

Notes and tips

Completion
return code
(RETCODE)

Coding
example (PL/1
Optimizer)

Parameter Description

PROLOGUE [l,c,0] The prologue specification is an optional input
parameter which is the first logical line of the CCAIN input
stream that is used to specify User 0 parameters. Specify a
character string, and separate parameters with a comma
(,). If the language indicator (LANG_IND) setting is 2,
append a semicolon (;) to the end of the input string. A null
string indicates that no Model 204 parameters are to be
set.

Note: Do not specify the following parameters in the User O line:
ALTIODEV, NUSERS, and NSERVS.

Use the IFSETUP call to set the job control statements for a Host Language
Interface IFAM1 IFDIAL job. Issue the IFSETUP call before IFDIAL in the
IFAM1 job.

If the IFSETUP call is unsuccessful, Model 204 returns an error code of 400 for
an invalid language code (LANG_IND).

DCL NERRFIXED BIN(31)INIT(O);

DCL LANG_CODEFIXED BIN(31)INIT(3); /* LANG=3 for PL/1 Opt */
DCL EXEC_PARMCHAR(100) INIT(>SYSOPT=144,L1BUFF=500;");

DCL CCAIN_PARMCHAR(256) INIT(”>SPCORE=5000;");

DCL IFSETUPENTRY(FIXED BIN(31), FIXED BIN(31),

CHAR(*), CHAR(*)):

CALL IFSETUP (NERR, LANG_CODE, EXEC_PARM, CCAIN_PARM);

273

IFSKEY call -mec.sc

Function

Full syntax (83)

Compile-only
syntax (84)

Execute-only
syntax (85)

Parameters

The IFSKEY call (SORT KEYS) sorts the records in a found set or list in the
specified order using the record keys.

IFSKEY (RETCODE, SORT_SPEC, SKEY_NAME , %VARBUF , %VARSPEC)

IFSKYC(RETCODE, SORT_SPEC, SKEY_NAME)

IFSKYE(RETCODE , SKEY_NAME , %VARBUF , %VARSPEC)

Specify the parameters in the syntax order shown above.

Parameter

Description

RETCODE

[O,i,r] The Model 204 return code is the required first
parameter. The code is a binary integer value.

SORT_SPEC

[l,c,r] The sort specification is required to specify ordering
criteria for a found record set. Specify the ordering clause
as a character string.

See SORT_SPEC on page 278 for a detailed description of

the sort specification used with IFSORT that is also valid for

IFSKEY.

Note: The SORT_SPEC options that are available in an IFSKEY
call are similar to the sort options available in a SOUL
SORT RECORD KEYS statement. For IFSKEY, the EACH
term is not supported.

See the Rocket Model 204 documentation wiki for

information about sorting:

http://m204wiki.rocketsoftware.com/index.php/Sorting

SKEY_NAME

[1,s,r/0] The name of the IFSKEY compilation is an input
parameter that is required for use with a multiple cursor
IFSTRT thread, and is only required for a single cursor
IFSTRT thread if using the Compiled IFAM facility (IFSKYC
and IFSKYE).

Model 204 saves the compilation using this name. Specify
the name as unique, and as a short character string
(maximum 32 characters). On a single cursor IFSTRT
thread, any characters except the following are valid in the
name: blank, comma, parenthesis, equal sign, or
semicolon. On a multiple cursor IFSTRT thread, the first
character in the name must be alphanumeric, and the
name must begin with a letter (A—Z or a—z) which may be
followed by a letter, a digit (0-9), a period (.), or underscore
Q).
Note: A null value is equivalent to omitting the name parameter,
and is not valid for a multiple cursor thread.

274 Rocket Model 204 Host Language Interface Reference Manual

Notes and tips

Completion
return code
(RETCODE)

Parameter Description

%VARBUF [l,c,0] The variable buffer is an optional input parameter
that addresses a data area that accommodates up to 255
bytes of data per value.

The buffer contains values that are defined by the

%VARSPEC parameter to be assigned to %variables.
Specify a character string. See the Rocket Model 204
documentation wiki for information about %variables:

http://m204wiki.rocketsoftware.com/index.php/Using_varia
bles_and_values_in_computation

%VARSPEC [I,c,0] The variable specification describes the format of the
data that is contained in the %variable parameter and lists
the names of %variables to be assigned. %VARSPEC
specifies the contents of the variable buffer. Specify a
character string that follows LIST, DATA, or EDIT syntax.

%VARSPEC is a required input parameter if %VARBUF is
specified.

Use the IFSKEY call to sort a found set; the record number of the Model 204
record is added to the temporary sort record. On a single cursor IFSTRT
thread, the sorted set replaces the IFFIND or IFFAC set and becomes the
current set.

The sorted records contain only the keys and the Table B record numbers, so
the records are very small. The sorted set acts as an index into Table B. Any
reference to the sorted record directly accesses the Table B record.

IFSKEY conserves the amount of CCATEMP space that is used and provides
relatively fast sort processing. In comparison to IFSORT, IFSKEY processing
is faster and more efficient. See the IFSORT call.

The IFSKEY call is valid on all types of IFSTRT threads. You must specify the
found set of records that are to be sorted on a multiple cursor IFSTRT thread.
On a single cursor IFSTRT thread, IFSKEY sorts records using the current
IFFIND or IFFAC set.

Record enqueuing

IFSKEY does not lock the original Table B records. Another Model 204 user
can update them while the sorted records are being processed.

If the IFSKEY call is unsuccessful, Model 204 returns an error code of 4 for
either of the following error conditions:

* General syntax error

« Attempt to sort an already sorted set

275

Coding
example
(CoBOL)

Processing sorted records

Once records are sorted, you can issue subsequent retrieval calls, such as
IFGET on a single cursor IFSTRT thread or IFFTCH on a multiple cursor
thread, to retrieve fields from the sorted records. On a single cursor IFSTRT
thread, you can also use the IFMORE call or the IFCTO call after IFSKEY, and
you can use IFOCC on a multiple cursor IFSTRT thread.

On either a single cursor or multiple cursor IFSTRT thread, you can use
IFPROL or IFRRFL to update a list with records from a sorted set. Because lists
are named sets of record numbers that exist as bit patterns, lists that contain
records from sorted sets are not maintained in sorted order. However, you can
explicitly sort any list.

Restrictions on processing sorted records

You cannot use IFSKEY with a record set that is already sorted. On a single
cursor IFSTRT thread, a sorted set cannot be resorted without an intervening
call to IFFIND or IFFAC to rebuild the original set.

On a single cursor IFSTRT thread, any call to IFFIND replaces the sorted set
and discards any unprocessed sorted records. This means that an HLI program
that uses single cursor IFSTRT threads and finds new records within a loop on
sorted records must use one thread for the sorted records and another thread
for the inner IFFINDs.

You cannot use updating calls, such as IFPUT on a single cursor IFSTRT
thread or IFUPDT on a multiple cursor thread, with sorted records. You cannot
use IFLIST, IFDSET, and IFFILE to process a sorted set.

WORKING-STORAGE SECTION.
01 ARGS-FOR-CALL.
05 RETCODE PIC 9(5) COMP SYNC.
05 SORT-SPEC PIC X(53) VALUE "CUSTOMER NAME AND
PRODUCT CODE VALUE DESCENDING;™.
05 SKYNAME PIC X(8) VALUE ”SAVSORT;”.

PROCEDURE DIVISION.

CALL "IFSKEY"™ USING RETCODE, SORT-SPEC, SKYNAME.

This example operates similarly to the example shown for IFSORT on
page 282.

276 Rocket Model 204 Host Language Interface Reference Manual

IFSORT call me.sc

Function The IFSORT call (SORT) sorts the records in a found set in the specified order
and creates a record set.

Full syntax (68) 1FSORT(RETCODE,SORT_SPEC,SORT_NAME ,%VARBUF, %VARSPEC)

Compile-only IFSRTC(RETCODE, SORT_SPEC, SORT_NAME)
syntax (69)

Execute-only IFSRTE(RETCODE , SORT_NAME , %VARBUF ,%VARSPEC)
syntax (70)

Parameters Specify the parameters in the syntax order shown above.
Parameter Description
RETCODE [O,i,r] The Model 204 return code is the required first

parameter. The code is a binary integer value.

277

Parameter Description

SORT_SPEC [l,c,r] The sort specification is required to specify ordering
criteria for a found record set. Specify the ordering clause
using the following format line:

[set qualifier] BY keyl [AND key2 see AND
keyn] [VALUE [ASCENDING | DESCENDING]]

where:

set qualifier is available only for use with a multiple cursor
IFSTRT thread and it is required for specifying the record
set or list whose records will be sorted. Note that the set
qualifier is not a valid parameter for use with a single cursor
IFSTRT thread. Specify the set qualifier as a character
string using one of the following formats:

[IN label | ON [LIST} listname]
where

* label is the name of a saved IFFIND, IFFNDX, IFFWOL, or
IFFAC compilation from a previously compiled call.

e listname specifies the name of a list.

BY clause specifies the key, or keys, for ordering records.
Each key is the name of a field to be used for ordering the
records, keyl is the highest order for the sort, key2 is next
highest, and so on, keyn is the lowest sort level. Separate
keys with the keyword AND.

ASCENDING and DESCENDING are mutually exclusive
keywords that indicate the order in which the record set will
be processed. ASCENDING order is the default.

Note: The sort specification is required for a record set. To
specify default sorted order (ASCENDING) on a multiple
cursor IFSTRT thread, specify the IN label or ON listname
clause followed by a semicolon (;). On a single cursor
IFSTRT thread, specify a semicolon for default ordering.

The SORT_SPEC options that are available in an IFSORT
call are similar to the sort options available in a SORT
statement in SOUL. See the Rocket Model 204
documentation wiki for information about sorting:

http://m204wiki.rocketsoftware.com/index.php/Sorting

278 Rocket Model 204 Host Language Interface Reference Manual

Parameter

Description

SORT_SPEC

[l,c,r] The sort specification is required to specify ordering
criteria for a found record set. Specify the ordering clause
using the following format line:

[set qualifier] BY keyl [AND key2 see AND
keyn] [VALUE [ASCENDING | DESCENDING]]

where:

set qualifier is available only for use with a multiple cursor
IFSTRT thread and it is required for specifying the record
set or list whose records will be sorted. Note that the set
qualifier is not a valid parameter for use with a single cursor
IFSTRT thread. Specify the set qualifier as a character
string using one of the following formats:

[IN label | ON [LIST} listname]
where

* label is the name of a saved IFFIND, IFFNDX, IFFWOL, or
IFFAC compilation from a previously compiled call.

e listname specifies the name of a list.

BY clause specifies the key, or keys, for ordering records.
Each key is the name of a field to be used for ordering the
records, keyl is the highest order for the sort, key2 is next
highest, and so on, keyn is the lowest sort level. Separate
keys with the keyword AND.

ASCENDING and DESCENDING are mutually exclusive
keywords that indicate the order in which the record set will
be processed. ASCENDING order is the default.

Note: The sort specification is required for a record set. To
specify default sorted order (ASCENDING) on a multiple
cursor IFSTRT thread, specify the IN label or ON listname
clause followed by a semicolon (;). On a single cursor
IFSTRT thread, specify a semicolon for default ordering.

The SORT_SPEC options that are available in an IFSORT
call are similar to the sort options available in a SORT
statement in SOUL. See the Rocket Model 204
documentation wiki for information about sorting:

http://m204wiki.rocketsoftware.com/index.php/Sorting

279

Notes and tips

Parameter Description

SORT_NAME [l,s,r/0] The name of the IFSORT compilation is an input
parameter that is required for use with a multiple cursor
IFSTRT thread, and is only required for a single cursor
IFSTRT thread if using the Compiled IFAM facility (IFSRTC
and IFSRTE). Model 204 saves the compilation using this
name.

Specify the name as unique, and as a short character string
(maximum 32 characters). On a single cursor IFSTRT
thread, any characters except the following are valid in the
name: blank, comma, parenthesis, equal sign, or
semicolon.

On a multiple cursor IFSTRT thread, the first character in

the name must be alphanumeric, and the name must begin

with a letter (A—Z or a—z), which can be followed by a letter,

a digit (0-9), a period (.), or an underscore ().

Note: A null value is equivalent to omitting the name parameter,
and is not valid for a multiple cursor thread.

%VARBUF [l,c,0] The variable buffer is an optional input parameter
that addresses a data area, which accommodates up to
255 bytes of data per value.

The buffer contains values that are defined by the

%VARSPEC parameter to be assigned to %variables.
Specify a character string. See the Rocket Model 204
documentation wiki for information about %variables:

http://m204wiki.rocketsoftware.com/index.php/Using_varia
bles_and_values_in_computation

%VARSPEC [I,c,0] The variable specification describes the format of the
data that is contained in the %variable parameter and lists
the names of %variables to be assigned. %VARSPEC
specifies the contents of the variable buffer. Specify a
character string that follows LIST, DATA, or EDIT syntax.
%VARSPEC is a required input parameter if %VARBUF is
specified.

Use the IFSORT call to sort a found set of records. The sorted records are
temporary copies of the original records. The record number of the Model 204
record is added to the temporary sort record.

On asingle cursor IFSTRT thread, the sorted set replaces the IFFIND or IFFAC
set and becomes the current set. On a multiple cursor IFSTRT thread, the
IFFIND or IFFAC set is not replaced and may be accessed again.

IFSORT makes a copy of the original Table B record in CCATEMP and sorts
the copies. All references to fields on the sorted records are references to
CCATEMP.

Because of the space limitations of CCATEMP and the performance
characteristics of Model 204 sort processing, Rocket does not recommend

280 Rocket Model 204 Host Language Interface Reference Manual

Completion
return code
(RETCODE)

using IFSORT to sort very large numbers of records. The IFSKEY call provides
an efficient alternative to IFSORT processing. See the IFSKEY call.

The IFSORT call is valid on all types of IFSTRT threads. You must specify the
found set of records that are to be sorted on a multiple cursor IFSTRT thread.
On a single cursor IFSTRT thread, IFSORT sorts records using the current
IFFIND or IFFAC set.

If the IFSORT call is unsuccessful, Model 204 returns an error code of 4 for
either of the following error conditions:

* General syntax error

* Attempt to sort an already sorted set

Record enqueuing

On a single cursor IFSTRT thread, enqueuing on the found set is released
when the sort is performed. IFSORT does not lock the original Table B records.
Another Model 204 user can update the original records while the sorted
records are being processed, but the sorted records are not updated.

Processing sorted records

Once records are sorted, you can issue subsequent retrieval calls, such as
IFGET on a single cursor IFSTRT thread or IFFTCH on a multiple cursor
IFSTRT thread, to retrieve fields from the sorted records. On a single cursor
IFSTRT thread, you can also use the IFMORE call or the IFCTO call after
IFSORT, and you can use IFOCC on a multiple cursor IFSTRT thread.

On either a single cursor or a multiple cursor thread, you can use IFPROL or

IFRRFL to update a list with records from a sorted set. Since lists are named

sets of record numbers that exist as bit patterns, lists that contain records from
sorted sets are not maintained in sorted order. However, you may explicitly sort
any list.

Restrictions on processing sorted records

Note that on a single cursor IFSTRT thread, you cannot use IFSORT with a
record set that is already sorted. On a single cursor IFSTRT thread, a sorted
set cannot be resorted without an intervening call to IFFIND or IFFAC to rebuild
the original set.

On a single cursor IFSTRT thread, any call to IFFIND replaces the sorted set
and discards any unprocessed sorted records.

Therefore, a host language program that uses single cursor IFSTRT threads
and finds new records within a loop on sorted records must use one thread for
the sorted records and another thread for the inner IFFINDs.

281

You cannot use updating calls, such as IFPUT on a single cursor IFSTRT
thread or IFUPDT on a multiple cursor IFSTRT thread, with sorted records. You
cannot use the IFLIST, IFDSET, and IFFILE to process a sorted set.

Coding WORKING-STORAGE SECTION.
example 01 ARGS-FOR-CALL.
(COBOL) 05 RETCODE PIC 9(5) COMP SYNC.

05 SORT-SPEC PIC X(53) VALUE "CUSTOMER NAME AND
PRODUCT CODE VALUE DESCENDING;™.

PROCEDURE DIVISION.

CALL "IFSORT"™ USING RETCODE, SORT-SPEC.

This example takes the found record set and generates a sorted set of
temporary records. Each element of the sorted set contains a customer name
and a product code, and the records are ordered alphabetically by customer
name. When there are multiple product codes for a given customer name, the
record with the higher product code precedes the one with the lower code.

282 Rocket Model 204 Host Language Interface Reference Manual

IFSPRM call -me.sc

Function

Full syntax (26)

Compile-only
syntax

Execute-only
syntax

Parameters

The IFSPRM call (SET PARAMETER) sets the value of one or more specified
Model 204 parameters.

IFSPRM(RETCODE , PARM_LIST,FILE_SPEC)

A compile-only form of IFSPRM is not available.

An execute-only form of IFSPRM is not available.

Specify the parameters in the syntax order shown above.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is the required first
parameter. The code is a binary integer value.

PARM_LIST [I,c,r] The parameter list is a required input parameter that

specifies the name and value pair for each Model 204
parameter whose value is to be set. Specify a character
string using the following format:

parml=valuel [,parm2=value2eee];
where:

parml is the name of the Model 204 parameter to be set,
and parmz2 is the name of a second parameter to be set.
Additional parameters may be specified in a name-value
pair. Specify the keyword name of the Model 204 system,
file or user parameter.

valuel is the new value for the specified parameter in the
first pair, and value2 is the new value for the specified
parameter in the second pair. A value is required for each
name that is specified in the list. Values may be specified in
decimal form, such as 193, in hexadecimal form, such as
X'C1', or in character form, such as C'A'". For example, the
specification OPENCTL=128 is equivalent to
OPENCTL=X'80".

You may specify more than one name=value pair,
separating each by a comma or a blank.

283

Notes and tips

Coding
example
(CoBOL)

Parameter Description

FILE_SPEC [I,s,0] The file specification is an optional input parameter for
use only with a multiple cursor IFSTRT thread for specifying
the name of the file for which the Model 204 file parameter
is set. Specify the Model 204 file name as a short character
string using the following format:

IN [FILE] filename;

The specified file must be open on the thread, otherwise the
call is unsuccessful and Model 204 returns a completion
code equal to 4.

Use the IFSPRM call to set or, in effect, to reset certain Model 204 system, file
or user parameters. The IFSPRM call is valid for resetting individual file
parameters only in file context, not for a group. The IFSPRM call is equivalent
to the IFRPRM call and IFSPRM follows the same basic rules for specifying
parameter settings as the Model 204 RESET PARAMETER command.

See the Rocket Model 204 documentation wiki for information about using the
RESET command to set file parameters:

http://m204wiki.rocketsoftware.com/index.php/RESET_command

The IFSPRM call is valid on all types of IFSTRT threads. Note that the file
context can change on a multiple cursor thread. If a Model 204 file parameter
is specified for PARM_LIST and the file specification parameter (FILE_SPEC)
is omitted, IFSPRM sets the value for the default file on the thread.

Note: Use IFSPRM with caution to avoid resetting sensitive parameters that
may affect the entire operating environment. See the Rocket Model 204
documentation wiki for information about Model 204 parameters:

http://m204wiki.rocketsoftware.com/index.php/List_of Model 204 parameter
s

WORK ING-STORAGE SECTION.
01 CALL-ARGS.

05 RETCODE PIC 9(5) COMP SYNC.

05 SET PIC X(12) VALUE *OPENCTL=128;”.

PROCEDURE DIVISION.

CALL "IFSPRM™ USING RETCODE, SET.

284 Rocket Model 204 Host Language Interface Reference Manual

IFSRTV call -mec.sc

Function

Full syntax (80)

Compile-only
syntax (81)

Execute-only
syntax (82)

Parameters

The IFSRTV call (SORT VALUES) sorts the values in a found set in the
specified order and creates a sorted value set.

IFSRTV(RETCODE, SORT_SPEC, SRTV_NAME)

IFSTVC(RETCODE, SORT_SPEC, SRTV_NAME)

IFSTVE(RETCODE, SRTV_NAME)

Specify the parameters in the syntax order shown above.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is the required first
parameter. The code is a binary integer value.

SORT_SPEC [l,c,r] The sort specification is required to specify ordering

criteria and is valid for an unsorted or a sorted value set. To
indicate default ordering for the value set, specify a
semicolon (;). Specify the ordering clause using the
following format line with an IN ORDER clause:

[set qualifier] [IN [ASCENDING |
DESCENDING] [NUMERICAL | CHARACTER | RIGHT-
ADJUSTED] ORDER]

where:

set qualifier is available only for use with a multiple cursor

IFSTRT thread and it is required for specifying the value set

whose values will be sorted.

Note: The set qualifier is not a valid parameter for use with a
single cursor IFSTRT thread. Specify the set qualifier as a
character string using the IN label clause, where label is
the name of a saved IFFDV or IFSRTV compilation from a
previously compiled call that established the value set.

ASCENDING and DESCENDING are mutually exclusive

keywords that indicate the order in which the value set is

processed. ASCENDING order is the default.

CHARACTER, RIGHT-ADJUSTED and NUMERIC are
mutually exclusive keywords.

« CHARACTER specifies values sorted in standard EBCDIC
collating sequence.

« RIGHT-ADJUSTED specifies that values are temporarily
right-justified before s

* NUMERICAL specifies a sort of number values with the usual
numeric order relationships.

285

Notes and tips

Coding
example
(CoBOL)

Parameter Description

Note: The sort specification is required for a value set. To
specify default sorted order (ASCENDING) on a multiple
cursor IFSTRT thread, specify the IN label clause followed
by a semicolon (;). On a single cursor IFSTRT thread,
specify a semicolon for default ordering.

See the Rocket Model 204 documentation wiki for more

information about sorting:

http://m204wiki.rocketsoftware.com/index.php/Sorting

SRTV_NAME [I,s,r/0] The name of the IFSRTV compilation is an input
parameter that is required for use with a multiple cursor
IFSTRT thread, and is only required for a single cursor
IFSTRT thread if using the Compiled IFAM facility (IFSTVC
and IFSTVE). Model 204 saves the compilation using this
name.

Specify the name as unique, and as a short character string
(maximum 32 characters). On a single cursor IFSTRT
thread, any characters except the following are valid in the
name: blank, comma, parenthesis, equal sign, or
semicolon.

On a multiple cursor IFSTRT thread, the first character in

the name must be alphanumeric, and the name must begin

with a letter (A—Z or a—z) which may be followed by a letter,

a digit (0-9), a period (.), or underscore ().

Note: A null value is equivalent to omitting the name parameter,
and is not valid for a multiple cursor thread.

Use the IFSRTYV call to sort a value set. On a single cursor IFSTRT thread, the
sorted set replaces the IFFDV or IFSRTV set and becomes the current set. On
a multiple cursor IFSTRT thread, the IFFDV or IFSRTYV set is not replaced and
may be accessed again.

You can issue more than one IFSRTV call and you can sort a value set that is
already sorted. Note that if you issue IFSRTV after some values have been
extracted using IFGETV on a single cursor IFSTRT thread, Model 204 sorts the
values that are remaining in the set.

The IFSRTYV call is valid on all types of IFSTRT threads. You must specify the
found value set that is to be sorted on a multiple cursor IFSTRT thread. On a
single cursor IFSTRT thread, IFSRTV sorts values using the current IFFDV or
IFSRTV set.

If the value set does not exist, Model 204 does not perform the sort and returns
an error completion code.

WORKING-STORAGE SECTION.
01 ARGS-FOR-CALL.
05 RETCODE PIC 9(5) COMP SYNC.
05 SORT-SPEC PIC X(26) VALUE
"IN FDV IN ASCENDING ORDER;'.

286 Rocket Model 204 Host Language Interface Reference Manual

05 NAME PIC X(8) VALUE "SAVEVAL;".

PROCEDURE DIVISION.

CALL "IFSORT"™ USING RETCODE, SORT-SPEC.

287

IFSTHRD call -me.s¢

Function

Full syntax (2)

Compile-only
syntax

Execute-only
syntax

Parameters

Notes and tips

Completion
return code
(RETCODE)

The IFSTHRD call (SWITCH THREAD) deactivates the current thread and
activates the specified thread.

IFSTHRD| IFSTRD(RETCODE ,NEW_1D,0LD_1D)

A compile-only form of IFSTHRD is not available.

An execute-only form of IFSTHRD is not available.

Specify the parameters in the syntax order shown above.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is a required output parameter.
The code is a binary integer value.

NEW_ID [1,i,r] The new thread identifier is a required input parameter which
identifies the thread to be made current. This is the thread identifier
previously assigned by the IFSTRT or IFSTRTN call which started
the thread. (See the THRD_ID parameter for IFSTRT on page 300.)
Specify an integer value.

OLD_ID [O,i,rf] The old thread identifier is a required output parameter which
identifies the thread that is being deactivated. Model 204 returns
the integer value which identifies the current thread.

Use the IFSTHRD call to switch from the current thread to another, while
holding the connection with the old thread. IFSTHRD involves low overhead.
Note that you cannot use IFSTHRD to deactivate the current thread without
specifying a new thread.

You can use the IFSTHRD call on any type of IFSTRT thread except for IFAML1.
IFSTHRD is not valid for use with an IFAM1 thread.

The IFSTHRD call is useful for switching threads in a multithreaded IFAM2 or
IFAM4 application using single cursor IFSTRT threads, for parallel processing
of several sets of records, or for cross-referencing between records in different
files.

See Appendix B for an example of a multithreaded application. See the Rocket
Model 204 Host Language Interface Programming Guide for information about
multithreaded IFSTRT transactions.

If the IFSTHRD call is unsuccessful, Model 204 returns an error code of 95 if a
nonexistent new thread is specified and ignores the call.

288 Rocket Model 204 Host Language Interface Reference Manual

Coding
example
(COBOL)

WORKING-STORAGE SECTION.
01 START-ARGS.
05 COBOL-IND PIC
05 LOGIN-INFO PIC
05 ACCESS-MODE PIC
01 THREAD-NBR.
05 FILEA-THREAD-NBR PIC

05 FILEB-THREAD-NBR PIC

05 THREAD-NBR PIC
01 WORK-ARGS.

05 RETCODE PIC

05 FILE-NAME PIC

PROCEDURE DIVISION.
BEGIN-RTN.
MOVE "APPLES" TO FILE-NAME.
PERFORM START-THREAD.
IF (RETCODE = ZERO) OR (RETC
MOVE THREAD-NBR TO FILEA-T
MOVE "BANANA" TO FILE-NAME
PERFORM START-THREAD.
IF (RETCODE = ZERO) OR (RETC
MOVE THREAD-NBR TO FIL
START-THREAD.
CALL "IFSTRT" USING RETCODE,

9(8) VALUE 2.
X(12) VALUE >USERX;PASSW;”.
9(8) VALUE 0.

9(8).
9(8).
9(8).

9(5) COMP SYNC.
X(6) -

ODE =16) THEN
HREAD-NBR.

ODE =16) THEN
EB-THREAD-NBR.

COBOL-IND, LOGIN-INFO,

ACCESS-MODE, THREAD-NBR.

GET-FILEA-REC.
CALL "IFSTHRD™ USING RETCODE

GET-FILEB-REC.
CALL "IFSTHRD™ USING RETCODE

, FILEA-THREAD-NBR, THREAD-NBR.

, FILEB-THREAD-NBR, THREAD-NBR.

289

IFSTOR call ™¢

Function

Full syntax
(112)

Compile-only
syntax (113)

Execute-only
syntax (114)

Parameters

The IFSTOR call (STORE RECORD) creates a new record and adds it to the
specified file. IFSTOR specifies the data fields that comprise the new record.
Note that, for a saved compilation, IFSTOR allocates a cursor that points to the

stored record.

IFSTOR(RETCODE, FILE_SPEC,BUFFER,EDIT_SPEC,STOR_NAME,
%VARBUF , %VARSPEC , RECNUM)

IFSTRC(RETCODE,FILE_SPEC,EDIT_SPEC,STOR_NAME)

IFSTRE(RETCODE , BUFFER , STOR_NAME , %VARBUF , %VARSPEC , RECNUM)

Specify the parameters in the syntax order shown above.

Parameter

Description

RETCODE

[O,i,r] The Model 204 return code is the required first
parameter. The code is a binary integer value.

FILE_SPEC

[l,c,r] The file specification is a required input parameter
which identifies the Model 204 file that will be updated to
contain the new record. Specify the file as a character
string using a standard Model 204 IN clause. See the
Rocket Model 204 documentation wiki for information
about the IN clause:

http://m204wiki.rocketsoftware.com/index.php/Files,_grou
ps,_and_reference_context#IN_clause

If a group is specified, the member clause may be used to
specify a particular file within the group. Note that if a group
name is specified in the IN clause and the member name is
not coded, the group update file is specified by default.

BUFFER

[1,c,r] The buffer location is a required input parameter that
specifies the address of the user’s data area. Specify a
character string variable.

The buffer supplies the data, the actual values, for the fields
that are defined by the EDIT_SPEC parameter, described
on page 291.

290 Rocket Model 204 Host Language Interface Reference Manual

Parameter Description

EDIT_SPEC [l,c,r] The edit specification is a required input parameter
which defines the fields that are to be added to form the
new record. The EDIT_SPEC describes the format of the
data which is read at the buffer location, described on
page 290.

Note: If the file is a sorted or hash key file and the key is
required, the first field name in the EDIT_SPEC must be
the key field.

Specify a character string using one of the following LIST,

DATA, or EDIT format options:

LIST (fieldname list);
DATA;
EDIT (fieldname list) (edit formats);

291

Parameter Description

where:

fieldname list is required for the LIST or EDIT specification
and specifies a field name or names. Specify elements in
the field name list using one of the following options:

fieldname
fieldname(n)
fieldname(*)
fieldname(%variable)
fieldname(+n)
fieldname(+%ovariable)

where:

fieldname updates the first occurrence of the named field.
Note that this is equivalent to fieldname(1). If the field does
not occur in the current record, IFSTOR adds it.

fieldname(n) updates the nth occurrence of the named field
for a multiply occurring field. If the nth occurrence does not
exist in the current record, IFSTOR adds it.

fieldname(*) adds the named field to the current record. If the
field already exists in the current record, IFSTOR adds
another occurrence of the field.

fieldname(%variable) retrieves the occurrence of the field
specified by the %VARBUF and %VARSPEC parameters. If
the nth occurrence does not exist in the current record,
IFSTOR adds it.

fieldname(+n) inserts a new occurrence of the named field to
the current record. This is analogous to the INSERT
statement in SOUL and is useful for adding new occurrences
of a field where the order of the values is important. Insert the
new occurrence as the nth occurrence.

fieldname (+%variable) inserts a new occurrence of the field
into the current record. The occurrence number is retrieved
from the %VARBUF and %VARSPEC parameters.

Note: Ifthere is a current nth (or %variable) occurrence, make it

the one after the nth occurrence. If n is greater than the
current number of occurrences, add the new occurrence
at the end. If the field does not occur in the current record,
add it. If nis O or is not specified, treat it as though n=1 and
insert the field as the first occurrence.

edit formats is required in the EDIT specification and
specifies a code or codes which indicate(s) the format of
the data to be returned for the named field in the field name
list-edit format pair. See “Using EDIT format codes for an
updating call” on page 328 for a detailed description of the
EDIT format codes that are used with IFSTOR.

Note: See Chapter 7 for a description of LIST, DATA, and EDIT

formatting.

292 Rocket Model 204 Host Language Interface Reference Manual

Notes and tips

Parameter Description

STOR_NAME [I,s,0] The name of the IFSTOR compilation is an optional
input parameter. If specified, Model 204 saves the
compilation using this name.

Specify the name as unique, and as a short character string
(maximum 32 characters). The first character in the name
must be alphanumeric, and the name must begin with a
letter (A—Z or a—z) which may be followed by a letter, a digit
(0-9), a period (.), or underscore (). A null value is
equivalent to omitting the name parameter, and is not valid.
Note: Model 204 allocates a cursor as part of the saved IFSTOR
compilation. The cursor points to the stored record. You
can reference this cursor using the STOR_NAME in an
IFUPDT call to add additional fields to the record.

%VARBUF [l,c,0] The variable buffer is an optional input parameter
that addresses a data area, which accommodates up to
255 hytes of data per value. The buffer contains values,
which are defined by the %VARSPEC parameter to be
assigned to %variables. Specify a character string. See the
Rocket Model 204 documentation wiki for information
about %variables:

http://m204wiki.rocketsoftware.com/index.php/Using_varia
bles_and_values_in_computation

%VARSPEC [I,c,0] The variable specification describes the format of the
data that is contained in the %variable parameter, and lists
the %variables to be assigned. %VARSPEC specifies the
contents of the variable buffer. Specify a character string
that follows LIST, DATA, or EDIT syntax. %VARSPEC is a
required input parameter if %VARBUF is specified.

RECNUM [O,i,0] Record number is an optional output parameter that
returns the Model 204 internal record number. The number
is displayed as an integer.

Use the IFSTOR call to create and store a record. IFSTOR optionally opens a
cursor to the new record which allows it to be operated on by subsequent single
record functions such as the IFUPDT call.

When FOPT=X"10’ and the date/time stamp feature is installed, the IFSTOR
function is not supported for DTS files.

The IFSTOR call is the equivalent of the STORE RECORD statement in SOUL
and replaces the single cursor IFBREC and IFPUT call sequence in the multiple
cursor environment.

See the IFBREC call, and the IFPUT call.

See the Rocket Model 204 documentation wiki for information about the
STORE RECORD statement:

293

Completion
return code
(RETCODE)

Coding
example
(COBOL)

http://m204wiki.rocketsoftware.com/index.php/Data_maintenance#STORE_R
ECORD_statement

If the IFSTOR call is unsuccessful, Model 204 returns an error code for either
of the following error conditions:

Code Error condition

10 Model 204 encountered invalid data values for BINARY and FLOAT
numeric field for a file having FILEMODL set to NUMERIC VALIDATION.

200 A uniqueness violation has occurred (field level constraint).

202 An AT-MOST-ONE violation occurred (field level constraint).

See the Rocket Model 204 documentation wiki for information about BINARY
and FLOAT field values:

http://m204wiki.rocketsoftware.com/index.php/Data_maintenance#Storing_da
ta_in_fields

WORK ING-STORAGE SECTION.

01 WORK-REC.
05 WORK-SSN PIC 9(9).
05 WORK-NAME PIC X(30).

01 CALL-ARGS.
05 RETCODE PIC 9(5) COMP SYNC.
05 FILESPEC PIC X(13) VALUE "IN FILE EMPS;".
05 EDITSPEC PIC X(28) VALUE "EDIT (SSN,NAME)
(A(9),A(30));".
PROCEDURE DIVISION.

CALL "IFSTOR™ USING RETCODE, FILESPEC, WORK-REC, EDITSPEC.

294 Rocket Model 204 Host Language Interface Reference Manual

IFSTRT call (IFAM1) mesc

Function The form of the IFSTRT call (START THREAD) that starts an IFAM1 thread
connection to Model 204 performs the following actions:

e Allocates a single active thread
» Specifies the calling protocol to be used for the host language
» Sets certain Model 204 job parameters

e Establishes either a single or a multiple cursor type thread
Full syntax IFSTRT(RETCODE, LANG_IND,PARM_LIST,PRO_LIST,THRD_TYP)

Compile-only A compile-only form of IFSTRT is not available.
syntax

Execute-only An execute-only form of IFSTRT is not available.

syntax
Parameters Specify the parameters in the syntax order shown above.
Parameter Description
RETCODE [O,i,rf] The Model 204 return code is the required first

parameter. The code is a binary integer value.

LANG_IND [I,i,r] The language indicator is a required input parameter
that establishes the calling sequence convention to be
used corresponding to the host language. The indicator
specifies the format of parameters that are passed in
subsequent calls. Specify one of the following integer
values:

1 = PL/1 F-level, and BAL languages
2 = COBOL, FORTRAN, and BAL languages

3 = PL/1 with +Optimizer/Checkout compilers,
VS/FORTRAN, and BAL languages
Note: Any convention may be specified for use with the BAL

language, and the BAL programmer must adhere to the
convention that is specified when coding parameters.

295

Notes and tips

Parameter

Description

PARM_LIST

[I,c,r] The parameter list is a required input parameter
which specifies PARM entries that are set on the EXEC
statement for the IFAM1 job. Specify a character string and
append a semicolon (;), or specify a semicolon if no
parameters are to be set. See the Rocket Model 204
documentation wiki for a description of the Model 204
parameters:

http://m204wiki.rocketsoftware.com/index.php/List_of Mo

del_204 parameters

Note: If the LIBUFF and LOBUFF parameters are to be set,
include them in the parameter list. Do not specify the
following parameters in the PARM list: ALTIODEV,
NUSERS, and NSERVS.

PRO_LIST

[l,c,r] The prologue list is a required input parameter which
specifies Model 204 User 0 parameters, such as page size
and lengths of various work areas. Specify a character
string and append a semicolon (;), or specify a semicolon if
no parameters are to be set. (This entry corresponds to the
first line of the SYSIN data set in a BATCH204 run.)

See “Notes and tips” in the following section for restrictions
that apply to User O login entries. See the Rocket

Model 204 documentation wiki for a description of the
Model 204 User 0 parameters:

http://m204wiki.rocketsoftware.com/index.php/Defining_th
e_runtime_environment_(CCAIN)#Structure_of CCAIN

THRD_TYP

[1,i,0] The thread type indicator is an optional parameter,
which indicates either a single cursor or a multiple cursor
IFSTRT thread. Specify either of the following integer
values:

0 = Single cursor thread (default)
2 = Multiple cursor thread

Note: If not specified, the thread indicator defaults to O; you must
specify a value of 2 to use a multiple cursor IFSTRT
thread.

Use the IFSTRT call to establish a connection to the Host Language Interface
Model 204 service program.

Note that an IFAM1 job is single-threaded, and only one IFSTRT thread can be
started in the job. You can specify a multiple cursor IFSTRT thread or use the
default single cursor IFSTRT thread.

The IFSTRT protocol allows applications written in a host language to process
against the Model 204 database using a particular class of HLI calls. See
Chapter 5 for an overview of IFSTRT calls.

296 Rocket Model 204 Host Language Interface Reference Manual

User 0 login restrictions

Certain restrictions apply for specifying User 0 login parameters (the
PRO_LIST parameter). Rocket recommends the following actions when using
a security subsystem, such as Security Server (formerly RACF), that performs
login validation:

» Do not specify a user ID in the login for User 0. Note that if you do supply a
user ID in the login, it must match the user ID of the owner of the address
space; otherwise, the login fails.

* When the IFSTRT call processes the login parameter, do not code the
password in the host language program. Model 204 interprets a password
that is passed in the IFSTRT call as an invalid command.

Completion If the IFSTRT call is unsuccessful, Model 204 returns an error code for either
return code of the following error conditions:
(RETCODE)

Code Error condition

4 No IFSTRT thread was started; do not attempt to issue any other HLI
calls. The HLI program code should check the return code from IFSTRT
and continue processing only if the call was successful; for a return code
of 4, either reissue IFSTRT until it is successful or stop job processing and
give an error message.

80 No current thread. (Action: Call IFSTRT.)

90 An illegal IFSTRT call was made when a thread already exists.
Coding -
example (PL/1 =
Optimizer) <

DCL NERR FIXED BIN (31) INIT (0);
DCL PARM CHAR (80) INIT(”SYSOPT=144,LI1BUFF=500,L0BUFF=500;");
DCL IFSTRT ENTRY(FIXED BIN(31), FIXED BIN(31),CHAR(*),CHAR(*));

CALL IFSTRT (NERR,3,PARM, *PAGESZ=6184,SPCORE=5000;");

297

IFSTRT call (IFAM2/IFAM4) -me.s¢

Function

Full syntax (1)

Compile-only
syntax

Execute-only
syntax

Parameters

The form of the IFSTRT call (START THREAD) that starts an IFAM2 or IFAM4
thread connection to Model 204 performs the following actions:

e Allocates a thread, making it currently active in the job

* Returns the thread identifier for use by IFDTHRD or IFSTHRD

» Specifies the calling protocol to be used for the host language

« Performs a user login

« Establishes either a single cursor or a multiple cursor type thread

* For a single cursor thread, determines whether retrieval or updating
privileges are allowed

IFSTRT(RETCODE, LANG_IND,LOGIN,THRD_TYP,THRD_I1D)

A compile-only form of IFSTRT is not available.

An execute-only form of IFSTRT is not available.

Specify the parameters in the syntax order shown above.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is the required first
parameter. The code is a binary integer value.

LANG_IND [1,i,r] The language indicator is a required input parameter
which establishes the calling sequence convention to be
used corresponding to the host language. The indicator
specifies the format of parameters that are passed in
subsequent calls.

Specify one of the following integer values:
1 = PL/1 F-level, and BAL languages
2 = COBOL, FORTRAN, and BAL languages

3 = PL/1 with +Optimizer/Checkout compilers,
VS/FORTRAN, and BAL languages
Note: Any convention may be specified for use with the BAL

language, and the BAL programmer must adhere to the
convention that is specified when coding parameters.

298 Rocket Model 204 Host Language Interface Reference Manual

Parameter

Description

LOGIN

[l,c,r] The login information is a required parameter which
supplies a valid Model 204 user ID and password that
permit entry to the system. Specify the login as a character
string using the following format:

userid [account];
password[:new password];

where:

userid is a character string that identifies the user who is
logging into Model 204.

account is an optional character string that supplies an
account under which the user is logging into Model 204.

password is a character string that allows the specified
user to access Model 204.

new password is an optional character string that changes
the login password for the specified user, for future logins.

See page 300 for the restrictions that apply to login entries
when using a security subsystem, such as Security Server
(formerly RACF), to perform login validation. See the
Rocket Model 204 documentation wiki for a description of
the login command:

http://m204wiki.rocketsoftware.com/index.php/LOGIN_or_
LOGON_command

THRD_TYP

[1,i,r] The thread type indicator is a required parameter that
specifies the type of IFSTRT thread to be allocated. Specify
one of the following integer values:

0 = Single cursor thread with read-only privileges

1 = Single cursor thread with update privileges

2 = Multiple cursor thread

Note: The O(read) and 1 (update) settings are valid for a single

cursor IFSTRT thread which can be used in an
multithreaded application.

A thread type indicator of O allows a single cursor IFSTRT
thread to be used only for retrieval, regardless of the file or
group password that is used in a particular call. File
updating by passing data from a retrieval-only Host
Language Interface thread to an update thread can lead to
logical inconsistencies. To prevent inconsistencies, start
the thread as an update thread (1) and use a retrieval-only
password to open a file. This provides share-mode (SHR)
enqueuing and prevents updating from the thread. Files
that are opened this way are also prevented from being
marked physically inconsistent with a user restart or
system crash.

299

Notes and tips

Completion
return code
(RETCODE)

Parameter Description

THRD_ID [O,i,r] The thread identifier is a required output parameter.
Specify an integer variable. Model 204 returns a value that
may be referenced using the IFDTHRD and IFSTHRD calls
for thread switching in multithreaded applications.

Use the IFSTRT call to establish a connection to the Host Language Interface
Model 204 service program. For an IFAM2 connection, IFSTRT assumes a
default channel name of IFAMPROD.

Note that an IFAM2 or IFAM4 job can be multithreaded. You can call IFSTRT
more than once in a job to establish multiple threads, but only one IFSTRT
thread is currently active and, for single cursor IFSTRT threads, each thread
has its own current file or group, current record set, and current record. You can
start single cursor and multiple cursor IFSTRT threads in the same job.

The IFSTRT protocol allows applications written in a host language to process
against the Model 204 database using a particular class of HLI calls. See
Chapter 5 for an overview of IFSTRT calls.

On a single cursor IFSTRT thread, IFSTRT together with IFFNSH initiates
CPSORT checkpointing. See the Rocket Model 204 Host Language Interface
Programming Guide for more information about CPSORT.

Login restrictions

Certain restrictions apply for specifying login information (the LOGIN
parameter). Rocket recommends the following actions when using a security
subsystem, such as Security Server, that performs login validation:

« Do not specify a user ID in the login for User 0. Note that if you do supply a
user ID in the login, it must match the user ID of the owner of the address
space, otherwise, the login fails.

e When the IFSTRT call processes the login parameter, do not code the
password in the host language program. Model 204 interprets a password
that is passed in the IFSTRT call as an invalid command.

If the IFSTRT call is unsuccessful, Model 204 returns an error code for any of
the following error conditions:

Code Error condition

4 No IFSTRT thread was started; do not attempt to issue any other HLI
calls. The HLI program code should check the return code from IFSTRT
and continue processing only if the call was successful; for a return code
of 4, either reissue IFSTRT until it is successful or stop job processing and
give an error message.

300 Rocket Model 204 Host Language Interface Reference Manual

Code Error condition

90 A Model 204 is not yet available for user processing. Recovery may still
be in progress. (Action: Call IFSTRT again.)
100 LOGIN failed.
400 Invalid language code (LANG_IND).
Coding This COBOL coding example specifies the following IFSTRT parameters:
example)) o)
(COBOL) e COBOL calling convention (language indicator is 2)

e Login account name USERABC
e Login password ECP
» Single cursor thread with read-only access (thread type is 0)

WORKING-STORAGE SECTION.
01 LOGIN-INFO.

05 LOGIN PIC X(12) VALUE ”USERABC;ECP;”.
01 CALL-PARMS COMP SYNC.

05 RETCODE PIC 9(5).

05 LANG-IND PIC 9(5) VALUE 2.

05 MODE PIC 9(5) VALUE O.

05 THRD-NO PIC 9(5).

PROCEDURE DIVISION.
INITIALIZATION.
OPEN OUTPUT. ..
CALL "IFSTRT™ USING RETCODE, LANG-IND, LOGIN, MODE, THRD-NO.
IF RETCODE 1S NOT EQUAL TO ZERO
GO TO ERROR-ROUTINE.

301

IFSTRTN call (IFAM2) -me:se

Function

Full syntax (4)
Compile-only
syntax

Execute-only
syntax

Parameters

The IFSTRTN call (START THREAD) starts an IFAM2 thread connection to
Model 204 with a specified Host Language Interface Model 204 service
program through the named channel.

IFSTRTN |

IFSTRN

(RETCODE, LANG_IND,LOGIN,THRD_TYP,THRD_ID, [SBSN:]JCHAN)

A compile-only form of IFSTRTN is not available.

An execute-only form of IFSTRTN is not available.

Specify the parameters in the syntax order shown above.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is the required first parameter.
The code is a binary integer value.

LANG_IND [1,i,r] The language indicator is a required input parameter which

establishes the calling sequence convention to be used
corresponding to the host language. The indicator specifies the
format of parameters that are passed in subsequent calls.

Specify one of the following integer values:
1 = PL/1 F-level, and BAL languages
2 = COBOL, FORTRAN, and BAL languages

3 = PL/1 with +Optimizer/Checkout compilers, VS/FORTRAN,
and BAL languages
Note: Any convention may be specified for use with the BAL language,

and the BAL programmer must adhere to the convention that is
specified when coding parameters.

302 Rocket Model 204 Host Language Interface Reference Manual

Parameter

Description

LOGIN

[l,c,r] The login information is a required parameter which
supplies a valid Model 204 user ID and password that permit
entry to the system. Specify the login as a character string using
the following format:

userid [account];
password[:new password];
where:

userid is a character string that identifies the user who is logging
into Model 204.

account is an optional character string that supplies an account
under which the user is logging into Model 204.

password is a character string that allows the specified user to
access Model 204.

new password is an optional character string that changes the
login password for the specified user, for future logins.

See page 304 for the restrictions that apply to login entries when
using a security subsystem, such as Security Server, to perform
login validation. See the Rocket Model 204 documentation wiki
for a description of the login command:

http://m204wiki.rocketsoftware.com/index.php/LOGIN_or_LOG
ON_command

THRD_TYP

[1,i,r] The thread type indicator is a required parameter that
specifies the type of IFSTRT thread to be allocated. Specify one
of the following integer values:

0 = Single cursor thread with read-only privileges
1 = Single cursor thread with update privileges
2 = Multiple cursor thread

Note: The O (read) and 1 (update) settings are valid for single cursor

IFSTRT threads and can be used for a multithreaded application.
A thread type indicator of 0 allows a single cursor IFSTRT thread
to be used only for retrieval, regardless of the file or group
password that is used in a particular call.

File updating by passing data from a retrieval-only Host
Language Interface thread to an update thread can lead to logical
inconsistencies to the updated file during a roll forward. To
prevent inconsistencies, start the thread as an update thread (1)
and use a retrieval-only password to open a file. This provides
share-mode enqueuing and prevents updating from the thread.
Files that are opened this way are also prevented from being
marked physically inconsistent with a user restart or system
crash.

THRD_ID

[O,i,r] The thread identifier is a required output parameter.
Specify an integer variable. Model 204 returns a value that may
be referenced using the IFDTHRD and IFSTHRD calls for thread
switching in multithreaded applications.

303

Notes and tips

Parameter Description

[SBSN:]CHAN [l,c,r] The channel (CHAN) name is a required input parameter
which specifies the CRAM, IUCV, or VMCF communications
channel name for a particular service program. Specify the name
as an eight-character string.

The subsystem name (SBSN:) is optional. You can use it when
you want to override the default. Specify the name as a four-
character string, plus colon (:).

Note: Do not append a semicolon.

If the host language is PL/1, pass the address of the string using
a based variable that overlays the original parameter.

Use the IFSTRTN call to establish an IFAM2 connection using a specific Host
Language Interface Model 204 service program. IFSTRTN performs the same
function as IFSTRT. The IFSTRTN call includes a sixth parameter, which is not
available with IFSTRT that is used to specify the communications channel
name for the service program.

For more information about CRAM (Cross Region Access Method) and Host
Language Interface Model 204 service programs, see Chapter 3 and the
Rocket Model 204 Host Language Interface Programming Guide.

Note that an IFAM2 job can be multithreaded. You can call IFSTRTN more than
once in a job to establish multiple threads, but only one thread is currently
active and, for single cursor IFSTRT threads, each thread has its own current
file or group, current record set, and current record.

IFSTRTN uses IFSTRT protocols, and allows applications written in a host
language to process against the Model 204 database using a the same class
of HLI calls that are available with IFSTRT. You can start a single cursor or
multiple cursor IFSTRT thread using the IFSTRTN call.

IFSTRT, together with IFFNSH, initiates CPSORT checkpointing. See the
Rocket Model 204 Host Language Interface Programming Guide for a detailed
description of CPSORT checkpointing.

Login restrictions

Certain restrictions apply for specifying login information (the LOGIN
parameter). Rocket recommends the following actions when using a security
subsystem, such as Security Server, that performs login validation:

» Do not specify a user ID in the login for User 0. Note that if you do supply a
user ID in the login, it must match the user ID of the owner of the address
space, otherwise, the login fails.

e When the IFSTRT call processes the login parameter, do not code the
password in the host language program. Model 204 interprets a password
that is passed in the IFSTRT call as an invalid command.

304 Rocket Model 204 Host Language Interface Reference Manual

Coding
example
(COBOL)

This COBOL coding example specifies the following IFSTRT parameters:

COBOL calling convention (language indicator is 2)

Login account name USERABC

Login password ECP

Single cursor thread with read-only access (thread type is 0)

Channel name M204CHNB

WORKING-STORAGE SECTION.

01

01

*
L J
L J

LOGIN-INFO.
05 LOGIN PIC X(12) VALUE ~USERABC;ECP;”.
CALL-ARGS. COMP SYNC.

05 RETCODE PIC 9(5).

05 LANG-IND PIC 9(5) VALUE 2.

05 MODE PIC 9(5) VALUE O.

05 THRD-NO PIC 9(5).

05 CHAN-NAME PIC X(13) VALUE ""SSN1:IFAMCHNL".
05 CHAN-NAME PIC X(8) VALUE "IFAMCHNL".

PROCEDURE DIVISION.
INITIALIZATION.

OPEN OUTPUT...

CALL "IFSTRTN"™ USING RETCODE, LANG-IND, LOGIN, MODE,
THRD-NO, CHAN-NAME.

IF RETCODE 1S NOT EQUAL TO ZERO

GO TO ERROR-ROUTINE.

305

IFUPDT call ™

Function

Full syntax
(115)

Compile-only
syntax (116)

Execute-only
syntax (117)

Parameters

The IFUPDT call (UPDATE) updates the current record with specified data.
IFUPDT specifies the cursor for the current record.

IFUPDT (RETCODE , DATA_AREA, CURSOR_NAME ,EDIT_SPEC,UPDT_NAME,

%VARBUF , %VARSPEC)

IFUPDTC| I1FUPDC(RETCODE ,CURSOR_NAME ,EDIT_SPEC,UPDT_NAME)

IFUPDTE| IFUPDE(RETCODE ,DATA_AREA, UPDT_NAME , %VARBUF , %VARSPEC)

Specify the parameters in the syntax order shown above.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is the required first
parameter. The code is a binary integer value.

DATA_AREA [l,c,r] The data area is a required input parameter which

specifies the address of the user’s data area. Specify a
character string variable.

The area contains the data that is used to update the fields
which is defined in the EDIT_SPEC parameter.

CURSOR_NAME

[1,s,r] The cursor name is a required input parameter which
specifies the name of the cursor whose current record is to
be updated. This is a short character string, the name
previously assigned to the cursor in a corresponding
IFOCUR call. See page 226 for a description of the cursor
name for the IFOCUR call.

EDIT_SPEC

[l,c,r] The edit specification is a required input parameter
which defines the fields that are to be updated in the current
record. The specification describes the format of the data
which is read at the data area (described above). Specify a
character string using one of the following LIST, DATA, or
EDIT format options:

LIST (fieldname list);

DATA;

EDIT (fieldname list) (edit formats);
where:

fieldname list is required for the LIST or EDIT specification

and specifies a field name or names. Specify elements in
the field name list using one of the following options:

« fieldname
« fieldname(n)
o fieldname(*)

306 Rocket Model 204 Host Language Interface Reference Manual

Parameter

Description

fieldname(%variable)
fieldname(+n)
fieldname(+%ovariable)

where:

fieldname updates the first occurrence of the named field.
This is equivalent to fieldname(1). If the field does not occur
in the current record, IFUPDT adds it.

fieldname(n) updates the nth occurrence of the named field
for a multiply occurring field. If the nth occurrence does not
exist in the current record, IFUPDT adds it.

fieldname(*) adds the named field to the current record. If the
field already exists in the current record, IFUPDT adds
another occurrence of the field.

fieldname(%variable) retrieves the occurrence of the field
specified by the %VARBUF and %VARSPEC parameters. If
the nth occurrence does not exist in the current record,
IFUPDT adds it.

fieldname(+n) inserts a new occurrence of the named field to
the current record. This is analogous to the INSERT
statement in SOUL and is useful for adding new occurrences
of a field where the order of the values is important. Insert the
new occurrence as the nth occurrence.

fieldname (+%variable) inserts a new occurrence of the field
into the current record. The occurrence number is retrieved
from the %VARBUF and %VARSPEC parameters.

Note: Ifthere is a current nth (or %variable) occurrence, make it

the one after the nth occurrence. If n is greater than the
current number of occurrences, add the new occurrence
at the end. If the field does not occur in the current record,
add it. If nis O or is not specified, treat it as though n=1 and
insert the field as the first occurrence.

edit format is required in the EDIT specification and
specifies a code or codes, which indicate(s) the format of
the data to be returned for the named field in the field name
list-edit format pair. See “Using EDIT format codes for an
updating call” on page 328 for a detailed description of the
EDIT format codes that are used with IFUPDT.

Note: See Chapter 7 for a description of LIST, DATA, and EDIT

formatting.

307

Parameter Description

UPDT_NAME [l,s,0] The name of the IFUPDT compilation is an optional
input parameter. If specified, Model 204 saves the
compilation using this name.

Specify the name as unique, and as a short character string
(maximum 32 characters). The first character in the name
must be alphanumeric, and the name must begin with a
letter (A—Z or a—z) which may be followed by a letter, a digit
(0-9), a period (.), or underscore (). A null value is
equivalent to omitting the name parameter, and is not valid.
Note: You may optionally specify the name of a saved IFFTCH
compilation for the IFUPDT call. In other words, IFFTCH
and IFUPDT may share compilations.

%VARBUF [l,c,0] The variable buffer is an optional input parameter
that addresses a data area which accommodates up to 255
bytes of data per value. The buffer contains values or
expressions which are defined by the %VARSPEC
parameter, below, to be assigned to %variables. Specify a
character string. See the Rocket Model 204 documentation
wiki for information about %variables:

http://m204wiki.rocketsoftware.com/index.php/Using_varia
bles_and_values_in_computation

%VARSPEC [l,c,0] The variable specification describes the format of the
data that is contained in the %variable parameter, and lists
the %variables to be assigned. %VARSPEC specifies the
contents of the variable buffer, described above. Specify a
character string which follows a LIST, DATA, or EDIT
syntax. %VARSPEC is a required input parameter if
%VARBUF is specified.

Notes and tips Use the IFUPDT call to change or delete fields in an existing record, or to add
new fields to a record.

When FOPT=X'10" and the date/time stamp feature is installed, the IFUPDT
function is not supported for DTS files.

Issue the IFUPDT call after an IFFTCH or IFSTOR call. See the IFFTCH and
the IFSTOR calls.

The IFUPDT call operates in the multiple cursor environment similarly to the
single cursor IFPUT call. See the IFPUT call.

308 Rocket Model 204 Host Language Interface Reference Manual

Completion
return code
(RETCODE)

Coding
example
(COBOL)

If the IFUPDT call is unsuccessful, Model 204 returns an error code for either
of the following conditions:

Code Error condition

10 Model 204 encountered invalid data values for BINARY and FLOAT
numeric field for a file having FILEMODL set to NUMERIC VALIDATION.

200 A unigueness violation occurred (field level constraint).

202 An AT-MOST-ONE violation occurred (field level constraint).

See the Rocket Model 204 documentation wiki for information about BINARY
and FLOAT field values:

http://m204wiki.rocketsoftware.com/index.php/Data_maintenance#Storing_da
ta_in_fields

WORKING-STORAGE SECTION.

01 WORK-REC.
05 WORK-SSN PIC 9(Q9).
05 WORK-NAME PIC X(30).

01 CALL-ARGS.

05 RETCODE PIC 9(5) COMP SYNC.
05 CURSOR-NAME PIC X(5) VALUE "CUR1;".
05 EDIT-SPEC PIC X(28) VALUE "EDIT (SSN,NAME)

(A(9).A30));"-

PROCEDURE DIVISION.

CALL "IFUPDT"™ USING RETCODE, WORK-REC, CURSOR-NAME,

EDIT-SPEC.

309

IFUTBL call -mesec

Function

Full syntax (64)

Compile-only
syntax

Execute-only
syntax

Parameters

Notes and tips

The IFUTBL call (USER TABLE) resets the specified Model 204 UTABLE (user

table) parameters.

IFUTBL(RETCODE, PARM_LIST)

A compile-only form of IFUTBL is not available.

An execute-only form of IFUTBL is not available.

Specify the parameters in the syntax order shown above.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is a required output
parameter. The code is a binary integer value.

PARM_LIST [I,c,r] The parameter list is a required input parameter

which specifies the name and value pair for each user table
parameter whose value is reset. Specify a character string
using the following format:

parml=valuel [,parm2=value2ee<];
where:

parml is the name of the user table parameter to be reset,
and parm2 is the name of a second parameter to be reset.
Additional parameters may be specified in a name-value
pair. Specify the keyword name of any of the following
UTABLE parameters: HTLEN, LNTBL, LVTBL, LFSCB,
LPDLST, LXTBL, LFTBL, LQTBL, LGTBL, LSTBL, LITBL,
LTTBL, MAXHDR, MAXTRL

valuel is the new value for the specified parameter in the
first pair, and value2 is the new value for the specified
parameter in the second pair. A value is required for each
name that is specified in the list. Values may be specified
in decimal form, such as 193, or in hexadecimal form, such
as X'C1'. For example, the specification MAXHDR=128 is
equivalent to MAXHDR=X'80".

You may specify more than one name=value pair,
separating each by a comma or a blank.

Use the IFUTBL call to reset certain user table parameters, which enables you
to change the size of Model 204 server tables. The IFUTBL call is not available
in IFAM1, but is valid on all types of IFSTRT threads in IFAM2 and IFAMA4.

310 Rocket Model 204 Host Language Interface Reference Manual

Coding
example
(CoBOL)

Note: If the size of FTBL or XTBL is changed, any open file or group is closed.
Changing the size of any table causes any compiled calls and %variables to be
flushed.

See the Rocket Model 204 documentation wiki for information about server
tables and calculation of server table sizes:

http://m204wiki.rocketsoftware.com/index.php/Defining_the_runtime_environ
ment_(CCAIN)#Server_tables

WORK ING-STORAGE SECTION.
01 CALL-ARGS.

05 RETCODE PIC 9(5) COMP SYNC.

05 UTABLE PIC X(12) VALUE *MAXHDR=128;”.

PROCEDURE DIVISION.

CALL "IFUTBL™ USING RETCODE, UTABLE.

311

IFWRITE call ¢

Function
Full syntax (10)

Compile-only
syntax

Execute-only
syntax

Parameters

Notes and tips

Completion
return code
(RETCODE)

The IFWRITE call (WRITE) sends a line of input to Model 204.
IFWRITE] IFWRIT(RETCODE, LINE_AREA,LINE_LEN)

A compile-only form of IFWRITE is not available.

An execute-only form of IFWRITE is not available.

Specify the parameters in the syntax order shown above.

Parameter Description

RETCODE [O,i,r] The Model 204 return code is the required output parameter.
The code is a binary integer value.

LINE_AREA [l,c,r] The line area is a required input parameter which is the input
line to be sent to Model 204.

LINE_LEN [1,i,0] The line length is an optional input parameter, which specifies
the transfer length for IFWRITE.

This parameter determines the maximum line length for the
IFWRITE call. If this parameter is present, it overrides any value
specified in IFDIAL or IFDIALN. For PL/1, the length is the minimum
of this value plus the string length.

See page 313 for more information about the input line length.

Use the IFWRITE call only with an IFDIAL thread to transmit data to Model 204.

When using IFWRITE, note that %VAR must be a string equal to TERMINAL
and either a PREPARE or IDENTIFY imagename is required prior to writing a
new image. See the Rocket Model 204 Host Language Interface Programming
Guide for more information about coding IFDIAL applications.

You may specify a different buffer length with each call by specifying the line
length in IFWRITE. See the next page for detailed information about the
IFWRITE data transfer length.

Code your IFDIAL application to check the return code for the following values:

Code Required action

1 Call IFWRITE next to provide Model 204 with input.

2 Call IFREAD next to get more output from Model 204.

312 Rocket Model 204 Host Language Interface Reference Manual

See the Rocket Model 204 Host Language Interface Programming Guide for
more information about coding IFDIAL applications.

If the IFWRITE call is unsuccessful, Model 204 returns an error code for either
of the following error conditions:

Code Error condition

12 IFWRITE call not accepted (IFREAD call expected).

100 No current Model 204 connection exists or the connection is lost.

Transfer length for input to Model 204

The parameters in effect during the execution of the IFWRITE call determine
the length of data transferred to Model 204. Several factors determine the
length.

The first factor is the PL/1 string length; for PL/1 compilers (F-level, Optimizer
and Checkout) use a dope vector when passing character string arguments.
This dope vector contains the maximum length of the string and its address. For
strings declared as VARYING, it also contains the current length.

Next, the transfer length for input to Model 204; this value is based on the
following order of precedence, from highest to lowest:

1. The optional length parameter in the IFWRITE call.

For PL/1, if this length is greater than the current string length, the current
string length is used.

Note: This value is in effect only for this specific IFWRITE call.

2. The optional default length parameter in the IFDIAL call. This new default
remains in effect until IFHNGUP is called.

For PL/1, if this length is greater than the current string length, the current
string length is used.

3. The standard default length is one of the following:
— 252 for COBOL, FORTRAN, and Assembler
— PL/1 current string length (dope vector)

Note that the maximum length of a data area that can be transferred over an
IFDIAL thread is 32763 bytes. For all languages, if the transfer length is greater
than the CRAM buffer size, the data is truncated and the length adjusted.

See the Rocket Model 204 documentation wiki for more information about
buffer size parameters:

http://m204wiki.rocketsoftware.com/index.php/Defining_the_Runtime_Environ
ment_(CCAIN)

313

Overview of IFWRITE data transfer

Table summarizes the relationship between the parameters that determine the
IFWRITE data transfer length.

Table uses the following codes:

Lang=n is the language indicator specified in the IFDIAL or IFDIALN call.

LENGTHL1 is the default length parameter in the IFDIAL call.

LENGTH2 is the length parameter in the IFREAD call.

FIXED is a PL/1 string argument that is declared as fixed.

VARYING is a PL/1 string argument that is declared as varying.

CURRLEN is the current length of the PL/1 string.

LENGTHDNn signifies that the parameter was specified.

—LENGTHDN signifies that the parameter was not specified.

min(l,m) is the transfer length, which is the minimum value of | and m.

Table 6-6.

IFWRITE data transfer length

Parameters in effect

Transfer length

IFDIAL IFREAD

Lang=1 LENGTH1 LENGTH2
LENGTH1 —LENGTH2
LENGTH1 LENGTH2
LENGTH1 —LENGTH2

Lang=2 LENGTH1 LENGTH2 LENGTH2
LENGTH1 —LENGTH2 LENGTH1
—LENGTH1 LENGTH2 LENGTH2
—LENGTH1 —LENGTH2 252

Lang=3 LENGTH1 LENGTHZ2, FIXED mMin(LENGTH2,MAXLEN)
LENGTH1 —LENGTHZ2, FIXED Min(LENGTH1,MAXLEN)
—LENGTH1 LENGTHZ2, FIXED mMin(LENGTH2,MAXLEN)
—LENGTH1 —LENGTH2, FIXED CURRLEN

Lang=4 LENGTH1 LENGTHZ2, VARYING mMin(LENGTH2,MAXLEN)
LENGTH1 —LENGTH2, VARYING min(LENGTH1,MAXLEN)
—LENGTH1 LENGTHZ2, VARYING mMin(LENGTH2,MAXLEN)
—LENGTH1 —LENGTH2, VARYING = CURRLEN

314 Rocket Model 204 Host Language Interface Reference Manual

Coding
example
(Assembler)

CALL IFDIAL...

CALL IFREAD...

MVC WLEN(4),=F’9’

CALL IFWRITE, (RETCODE,LOGONMSG,WLEN),VL

CLC RETCODE(4),=F>2"

BNE END

END ABEND 999,DUMP

RETCODE DC

LOGONMSG DC

WLEN DC
END

F°0”
C”LOGON USR”
F*0”

315

316 Rocket Model 204 Host Language Interface Reference Manual

Overview

Field Formatting Options for
HLI Calls

This chapter describes in detail the field formatting options for
specifying data that is passed between Model 204 and an HLI
application that uses an IFSTRT thread.

Use the information in this chapter to code the edit specification
parameter in an IFFTCH, IFGET, IFGETX, IFGETV, IFMORE,
IFMOREX, IFUPDT, IFSTOR, or IFPUT call.

The following calls retrieve data:

IFFTCH
IFGET
IFGETX
IFGETV
IFMORE
IFMOREX

The following calls perform updating functions against the database:

IFUPDT
iIFSTOR

Field Formatting Options for HLI Calls 317

. IFPUT

Note: IFFTCH, IFUPDT, and IFSTOR are used on a multiple cursor IFSTRT
thread; IFGET, IFGETX, IFGETV, IFMORE, IFMOREX, and IFPUT are used
on a single cursor IFSTRT thread.

For more information

Refer to Chapter 6 for descriptions of the IFFTCH, IFGET, IFGETX, IFGETYV,
IFMORE, IFMOREX, IFUPDT, IFSTOR, and IFPUT calls.

Using a LIST specification for a retrieval call

An edit specification parameter specifies a LIST format option for an IFFTCH,
IFGET, IFGETX, IFMORE, or IFMOREX (retrieval) call using the following
syntax:

LIST (fieldname list);

An edit specification parameter specifies a LIST format option for an IFFTCH
call against a value set cursor or an IFGETV call using the following syntax:

LIST;

The retrieval call returns the value of the fields named in the field name list in
the following format:

"field valuel®™ "field value2® eee "field value N*;

where:

* Single quotation marks enclose each value and blanks separate the values.
* Single quotation marks in the data itself are converted to two quotes.

» Fields that are not contained in the record are returned as two single quotes
(' "), which is the null value.

* You may use a %variable in the fieldname listin the LIST specification. The
value for the %variable is specified in the %VARBUF and %VARSPEC
parameters.

Using a DATA specification for aretrieval call

An edit specification parameter specifies a DATA format option for an IFFTCH,
IFGET, IFGETX, IFMORE, or IFMOREX call using either of the following
syntax forms:

DATA (Fieldname list);
DATA;

The retrieval call returns the value of the fields named in the field name list in
the following format:

318 Rocket Model 204 Host Language Interface Reference Manual

fnl="valuel®™ fn2="value2®eee fnN="valueN~;
where fields that are not contained in the record appear as fn=".

Note that the DATA format option without a field name list retrieves all fields in
the record and formats data in the same manner.

Using an EDIT specification for a retrieval call

An edit specification parameter specifies an EDIT format option for an IFFTCH,
IFGET, IFGETX, IFMORE, or IFMOREX call using either of the following
syntax forms:

EDIT (Fieldname list) (edit formats);

EDIT (Fieldname listl) (edit formatl)
(fieldname list2)(edit format2);

An edit specification parameter specifies an EDIT format option for an IFFTCH
call against a value set cursor or an IFGETV call using the following syntax:

EDIT (edit format);

The retrieval call returns the value of the field(s) named in the field name list in
the format that is specified. See page 321 for a listing of edit codes that may be
used in an EDIT specification for IFFTCH, IFGET, IFGETV, IFGETX, IFMORE,
or IFMOREX.

Guidelines for specifying an EDIT format

When specifying an EDIT format, the following guidelines apply:

* You may insert blanks before and/or after the field name list and edit format
entries in the EDIT specification.

» Separate individual entries inside the edit format list with a comma.

* Repetition factors and parentheses are allowed. Blanks following a
repetition factor or surrounding commas and parentheses are optional.

The following examples illustrate repetition factors:
2A(10),3(2)

is equivalent to:

A(10),A(10),3(2)

and

2(A(10),3(2))

is equivalent to:

A(10),3(2),A(10),3(2)

Field Formatting Options for HLI Calls 319

« For each name in the field name list, one edit format is selected. Repetition
factors are expanded before the selection occurs. COL, POS, and X are not
selected by field names, but are executed as they are encountered in the
list of edit formats.

e Youcan use a %variable in the field name list in the EDIT specification. The
value for the %variable is specified in the %VARBUF and %VARSPEC
parameters.

If the edit formats are exhausted before the field name list, selection wraps
around to the beginning of the list of formats. Model 204 ignores extra
items.

Using the V format

When the V format is specified, the edit format specified immediately after the
V determines the format of the data values.

For example, if the EDIT specification contains VA(4), the following
hexadecimal data would be stored in the data buffer to represent the three
values, ABCD, 1234, and XYZ:

00000003C1C2C3C4F1F2F3F4E7E8SEQ940
Note that the following edit formats may not be specified after the V:
« M and V, which describe a collection of values.

« COL, POS, and X, which alter the data buffer pointers without manipulating
a value.

» Aleft parenthesis ((), which indicates a group of formats to be repeated.

V processes field occurrences in the same manner as the M function. The field
name corresponding to the V format in the field name list is specified as field
name(n), the first n-1 occurrences of the field are omitted.

Note that the VL format is equivalent to the M format, except that the data
values are preceded by a 4-byte count rather than by a 1-byte count.

Handling fields that do not occur in the record

Model 204 handles fields that do not occur in the record in the following ways:

» Ifthefirst or nth occurrence of a field is specified and the field is not present
in the record or fewer than n occurrences exists, then the appropriate pad
characters are supplied for A(n), J(n), L(n), and U(n) formats, or zero length
is indicated for L and M formats.

No characters are returned for A and J formats. A numeric zero is returned
in the appropriate format for the B, P, E, Z, and F formats.

320 Rocket Model 204 Host Language Interface Reference Manual

Examples of numeric edit format conversion

« If all occurrences are specified and there are no occurrences of the field in
the record, no edit formats are used for that field. Place requests for
fieldname(*) at the end of a list or in a separate IFFTCH, IFMORE, or

IFMOREX call.

+ Fields with the INVISIBLE attribute are treated as if the field does not occur

in the record.

Table 7-1 shows examples of how Model 204 converts data for a numeric edit

format specification.

Table 7-1. Examples of numeric edit format conversion

Edit format specifica- Model 204 data (charac- User data (hexadeci-
tion ter) mal)

Z(5,2) 18.21 FOF1F8 F2C1

Z(5,2) -18.21 FOF1F8 F2D1

P(5,2) 18.21 01821C

P(3) -372 372D

B(31,0) 4095 OOOOOFFF

B(15,2) 10.25 0029 (binary 001010.01)
F(4) 2 41200000

Using EDIT format codes for a retrieval call

Table 7-2 describes the edit format codes that may be specified in the (edit
format) with the EDIT option in an IFFTCH, IFGET, IFGETV, IFGETX, IFMORE,

or IFMOREX (retrieval) call.

Table 7-2. EDIT format codes used with aretrieval call

Code Description
A Place an n-character field value into n characters.
A(n) Left-justify a field value in an n-character area. This format pads with blanks if the

field value is less than n or truncates if the field value is greater than n (the maximum

of nis 255).

Field Formatting Options for HLI Calls 321

Table 7-2. EDIT format codes used with a retrieval call (Continued)

Code Description

B(precision,scale) The value is returned in two’s complement binary form. Precision specifies the
number of bits in the numeric value, exclusive of the sign bit. Only two precision
types are supported: 15 (halfword) and 31 (fullword). If both precision and scale are
omitted, the precision defaults to 15.

Scale specifies the number of digits to the right of an implied binary point. The scale
must not exceed the precision. If scale is omitted, it defaults to 0, indicating an
integer value. A maximum of 12 significant bits of a fraction are returned. If the scale
is more than 12, the low-order bits are 0

COL(n) or Adds blanks to character position n in the data area. Specifying a column which has
COLUMN(N) already been passed over is an error.

E(total length,significant digits,fractional digits)

Convert numeric format (FLOAT, BINARY, CODED, NON-CODED) numbers to
exponential format. The total length includes the number of significant digits as well
as space for E and the exponent, and space for both any decimal point and for any
positive and/or negative signs.

An insufficient total length results in a truncated representation of the given number.
The number of significant digits is the total of whole number digits plus fractional
digits. The maximum number of significant digits used in conversions and
mathematical operations by Model 204 is 15 (extra digits are rounded to 15).

F(n) The value is returned as a floating-point number. If n is 16, the value is truncated or
expanded to an extended precision, floating-point number (occupies 16 bytes and
holds up to 31 significant digits). If n is 8, the character string is truncated or
expanded to a long precision, floating-point number (occupies 8 bytes and holds up
to 15 significant digits). If n is 4, the character string is first truncated or expanded
to a long precision, floating-point number and is then rounded and truncated to a
short precision number (occupies 4 bytes and holds up to 6 significant digits).

Decimal floating-point fractions are represented internally as imperfect, base 16,
floating-point numbers. To provide exact equality when two floating-point values are
compared, the numbers are rounded. Also, when a floating-point value is too large
or too small for its field or %variable, the value is truncated or expanded so that it
correctly fits.

Rounding, truncation, or expansion occurs in the following cases:
* Rounding occurs after each arithmetic operation involving floating-point numbers.
* Ifthe field is KEY, the value to be indexed is rounded.

. If the field is used in a direct Table B search in an IFFIND call, the value to be searched
for is rounded to long precision (8 bytes), and each field accessed in Table B is likewise
rounded before comparison.

¢ If the field will be used in a sort key, the value is rounded before being concatenated to
the key.

« If the source number is a floating-point number longer than the field or %variable into
which it is stored, the source number is rounded and truncated so that it correctly fits.

« Ifthe source number is a floating-point number shorter than the field, the source number
is rounded to its maximum significant digits and expanded with zeros to the longer
precision.

J Same as A.

322 Rocket Model 204 Host Language Interface Reference Manual

Table 7-2. EDIT format codes used with a retrieval call (Continued)

Code Description

J(n) Right-justify a field value in an n-character area. Pads with blanks if the field value
is less than n, or truncates if the field value is greater than n (the maximum value of
nis 255).

L The first byte is set to the number of data bytes that follow it. For example, 'ABC'
would appear as the four-byte string X'03C1C2C3'.

L(n) Same as J(n) except pads with binary zeros instead of blanks.

M Collect all the occurrences of a field into a single data area. This area begins with a
byte containing the number of occurrences. Each occurrence follows in L format.
Specifying fieldname(n) in the field name list causes the first n-1 occurrences of the
field to be omitted.

M(n) Like M but each occurrence is in L(n) format.

P(precision,scale)

The value is returned in packed-decimal form. Precision specifies the number of
digits (not bytes) in the numeric value, exclusive of the sign. The maximum precision
for a packed-decimal field is 15. If an even precision is specified, one extra high-
order O digit is returned. If both precision and scale are omitted, the precision
defaults to 5. Scale specifies the number of digits to the right of an implied decimal
point. The scale must not exceed the precision. If scale is omitted, it defaults to 0,
indicating an integer value. No error is indicated if the fractional portion of a value is
truncated.

POS(n) Skip to character position n in the data area, bypassing the original contents from
the application program. Specifying a column which has already been passed over
is an error.

U Same as A. The U function can be used with unformatted data such as bit strings or
floating-point numbers.

u(n) Left-justify a field value in an n-character area; pads with binary zeros or truncate
on the right as appropriate (n<255).

V Collect all occurrences of a field into a single data area. The area begins with a four-
byte count of the number of data values in the area. The format of the values is
determined by the second edit format, which must be specified immediately after the
V. An example and a summary of restrictions appears on page 320.

X(n) Add n blanks in the data area.

Z(precision, The value is returned in zoned-decimal form. The meaning of precision and scale is

scale) identical to that of the P format above except no padding is required for an even

precision.

Using a LIST specification for an updating call

An edit specification parameter specifies a LIST format option for an IFUPDT,
IFSTOR, or IFPUT call using the following syntax:

LIST (Ffieldname list);

Field Formatting Options for HLI Calls 323

The fields and values in the field name list must be specified in the following
format:

"field valuel®” "field value2® e+ “fTield value N*;
where:
« Field values in the data area correspond to the names in the field name list.

» Enclose the values in single quotation marks and separate them with
blanks.

« Two consecutive quotation marks in a field value causes a single quotation
mark to be retained in the stored data.

* Leading and trailing blanks within the enclosing quotation marks are
retained.

« Afield value specified as " (the null value) causes an existing field to be
deleted or, if the field does not exist in the record, no action is taken.

e You may use a %variable in the fieldname list in the LIST specification. The
value for the %variable is specified in the %VARBUF and %VARSPEC
parameters.

Using a DATA specification for an updating call

An edit specification parameter specifies a DATA format option for an IFUPDT,
IFPUT, or IFSTOR call using the following syntax:

DATA;

The value of the fields named in the field name list must be specified in the
following format:

fieldnamel="fieldvaluel®™ fTieldname2="fieldvalue2® eee
fieldnameN="fieldvalueN";

where:

* Follow each field name with an equal sign (=) and enclose each new field
value in single quotation marks.

* Separate field name=value pairs with blanks.

» Two consecutive single quotation marks in a field value are stored as a
single quotation mark in the record.

» The null value, fieldname=", causes the specified field to be deleted from
the record. Or, if the field did not previously exist in the record, no action is
taken.

» The DATA specification refers to the first occurrence of each field specified.

324 Rocket Model 204 Host Language Interface Reference Manual

Using an EDIT specification for an updating call

An edit specification parameter specifies an EDIT format option for an IFUPDT,
IFSTOR, or IFPUT call using the following syntax:

EDIT (Fieldname list) (edit formats);

The format of the fields named in the field name list must be specified in the edit
format. See page 328 for a list of the edit codes that are used in an EDIT
specification for IFUPDT, IFSTOR, or IFPUT. See Chapter 6 for more
information about specifying the field name elements.

Guidelines for specifying an EDIT format

When specifying an EDIT format for an IFUPDT, IFPUT, or IFSTOR updating
call, the following guidelines apply:

* Thevalue inthe data area used with the EDIT specification does not require
a final semicolon.

* Each name in the field name list corresponds in sequence to an edit format.
Extra edit formats are ignored.

« If the list of edit formats is too short, Model 204 wraps around to the
beginning of the list.

* You may use a %variable in the field name list in the EDIT specification.
The value for the %variable is specified in the %VARBUF and %VARSPEC
parameters.

Specifying significant digits using A, E, J, L, M, and U formats

For numbers passed as parameters in A, E, J, L, M, or U specifications,
Model 204 ignores significant digits past 15 and treats them as zeros,
regardless of precision.

Specifying a length for the E format

When you specify the E format for an updating function call, Model 204 ignores
the significant digits and fractional digits parameters, but the total length
specified must be accurate.

If the updating function call receives a total length that does not convert to a
floating-point number, Model 204 displays an error message indicating that
data is inconsistent. The number is not stored and the HLI call that produced
the message receives a return code of 4.

Field Formatting Options for HLI Calls 325

Using the G format

The G (Generic) format allows you to perform complex updates to specific field
values when an HLI program is executed. Through the use of a descriptor byte,
you can use the G format to:

Change the value of a field=value pair in a record
Delete a specific value of the field in a record
Bypass a specific occurrence of a field

Store a zero-length string value in a field

Select the data type at execution time rather than compile time

If you use the G format, Model 204 expects two items in the buffer for each field,
the descriptor byte, and the new or updated field value (there are certain
exceptions to this, as described below). The descriptor byte contains the
following information:

Bits 0 and 1 describe the format of the value to be stored or searched:

Bit Meaning

00 DELETE the field specified. If delete is used, Model 204 does not expect
a value to follow in the data buffer. If there is another value in the buffer,
Model 204 assumes that it belongs to the next edit format.

01 Update or insert this field as an 8-byte FLOAT value.

10 Update or insert this field as a counted STRING value. For a counted
string value, the first byte contains the length of the string, followed by
the string itself. You can insert a zero-length string into a field using this
format.

11 Unused

Bits 2 to 5 are unused.

Bit 6 indicates that you want to search for a specific value of a field to
update or delete.

When set, bit 6 indicates that the data buffer contains two values, a value
to search for, and a value to store in its place. Each value must be preceded
by a descriptor.

If the descriptor bit for the second value in the buffer is set to ‘00" with no
data following, the field occurrence is deleted.

Bit 7 is the bypass field occurrence indicator. If this bit is set, Model 204
bypasses the specified field entirely.

326 Rocket Model 204 Host Language Interface Reference Manual

Exceptions to G format usage

Although you can use the G format for all updating calls, there are some
circumstances for which searching for specific values (using bit 6) or deleting
field values (setting all bits to 0) are incompatible. You cannot use the G format
to search by value or delete values for the following types of fields:

* Sort key field
* Hash key field
e Y%variable (%VARBUF and %VARSPEC parameters)

* When adding fields using the field value(*) format

Changing a specific value

For example, if Joan Darcy is transferred from Portland, OR to Pittsburgh, PA,
you can use the G format to change the address in her employment record as
follows:

EDIT(G)(G)

"10000010" "8PORTLAND" *10000000" "APITTSBURGH"
"10000010" "20R™ "10000000" " 2PA*

If you change the value of the field to a zero-length string, that value is stored
in the field.
Deleting a specific value

If, for example, Hadrian Wall is finally old enough to have his own automobile
insurance and can be deleted from his parents’ insurance policy, you can
delete his field as follows:

EDIT (G)

"10000010" " 7HADRIAN®" B®00000000*

Note that in this case, the first two bits are 0, which indicates a DELETE, the
remaining bits are also 0, and there is no second data value in the buffer.
Bypassing afield occurrence

For example, to bypass the third field in the found set of records, use the G
format as follows:

EDIT (AP G

"00000001"

Field Formatting Options for HLI Calls 327

Selecting the data type

To select the data type at execution time, use just the first two bits in the G
format. For example, to select only string data:

EDIT(G)

"10000000*

Specifying the U format with floating-point values

If you specify the U format with floating-point values, Model 204 interprets the
values as nonnumeric strings and stores them as such in Table B.

You cannot access these values as numbers in SOUL; however, retrieval
through U EDIT specifications works normally.

Specifying V and M formats

The V format processes field occurrences in the same manner as the M format.

If the field name corresponding to the format in the field name list is specified
as fieldname(n), n indicates the position of the first occurrence to be changed.
If nis represented by an asterisk (*), all of the values are added as new field
occurrences.

Note that the VL format is equivalent to the M format, except that the data
values are preceded by a four-byte count rather than by a one-byte count.

Updating a FLOAT field using A, J, L, M, or U formats

When the updated field is defined as FLOAT, Model 204 converts exponential
format numbers to floating point using A, J, L, M, or U formats.

When the field is not FLOAT, Model 204 leaves exponential format numbers in
their original character form.

Using EDIT format codes for an updating call

Table 7-3 describes the edit format codes that can be specified in the edit
format with the EDIT option in an IFUPDT, IFSTOR, or IFPUT (updating) call.

Table 7-3. EDIT format codes used with an updating call

Code

Description

A(n) and J(n)

The field value in the data area is n characters long. It is stored with leading and
trailing blanks removed. If the final length is O after removal of the blanks, the
existing field is deleted or is not stored for a new field.

328 Rocket Model 204 Host Language Interface Reference Manual

Table 7-3. EDIT format codes used with an updating call (Continued)

Code

Description

B(precision,scale)

The value is in e mantipldoran béma ySfaon\seried twiive dpgropaiateanactesTgiring
fefos befogesbeiad. fvesisidhespapiffesatitaligitnbeddf dstomaidigitsnseecifiatmns
arelgsiveedfipéFRgTbitheniravietpresisibasaaraspipgaditeds FPUalBnorth@Ed 8dlit
{tutveasd)ait bethhanexision and scale are omitted, the precision defaults to 15.

F(n)

%ﬁg'saatasq@'ﬁ%ﬁ% Sretelisindeg g éi‘{‘o'H“Rl ARy IESATe
ﬂ”éﬁ'&& ?ggjéﬁg %| %%52; ﬂ‘S\ &é der 1@ qgng an

he stdle |s more ractlonal bits are
converted Lead|n integer zeros and tra|l|ng fractlonal zeros are removed from the

convfe?t?d@trfﬂ%l iSHe -7 LB 55 SR aLPiesifg Y gnd holds up to 31

significant

COL(n) or
COLUMN(N) or
POS(n)

skipito islBatactenyzasitiog preditien dedeupiess bytes and holds up to 15 significant digits).
« Ifnis4,the value is short precision (occupies 4 bytes and holds up to 6 significant digits).
Values to be stored in FLOAT fields whose lengths differ from the length defined for

E(total length,signifi¢BAt d,ﬁ}gl}rg%woﬁ%g Highested or rounded to the defined length without a
ellat

canc ion of the call.

G

Allows you to:

« Select the data type at execution time

e Bypass an occurrence of a specific field at execution time
« Change or delete specific field=value pairs

The G format requires that the data is preceded by a descriptor byte. The G format
is described in detail beginning on page 326.

The first byte of the data is a hexadecimal number that represents the length of the
data bytes that follow. The value is stored without the length byte. Leading binary

zeros are eliminated; leading and trailing blanks are not eliminated. If the final length
is 0, the field is deleted:; if the field is new, it is not stored. For example, X'03C1C2C3’
is equivalent to 'ABC'; X'04C1C2C340' includes the trailing blank in the stored value.

L(n)

The value is n characters long. Leading binary zeros (X'00") are eliminated; leading
and trailing blanks are not eliminated. If the final length is 0, the existing field is
deleted. If the field is new, it is not stored.

M(n)

The first data byte contains the number of value occurrences. The values that follow
are each n characters long. Leading binary zeros are eliminated.

Field Formatting Options for HLI Calls 329

Table 7-3. EDIT format codes used with an updating call (Continued)

Code Description

The value is in exponential format and is converted to the appropriate humeric
format before being stored. The significant digits and fractional digits specifications
are ignored by IFPUT. They are listed so that an application’s IFPUT and IFGET edit
formats can be shared.

F(n) The value is in floating-point form. The F specification must be used with FLOAT
fields to make floating-point values accessible as meaningful numbers to
Model 204.

« Ifnis 16, the value is extended precision (occupies 16 bytes and holds up to 31
significant digits).

« Ifnis 8, the value is long precision (occupies 8 bytes and holds up to 15 significant digits).
« Ifnis4,the value is short precision (occupies 4 bytes and holds up to 6 significant digits).
Values to be stored in FLOAT fields whose lengths differ from the length defined for

the FLOAT field are truncated or rounded to the defined length without a
cancellation of the call.

G Allows you to:
« Select the data type at execution time
e Bypass an occurrence of a specific field at execution time
« Change or delete specific field=value pairs

The G format requires that the data is preceded by a descriptor byte. The G format
is described in detail beginning on page 326.

L The first byte of the data is a hexadecimal number that represents the length of the
data bytes that follow. The value is stored without the length byte. Leading binary
zeros are eliminated; leading and trailing blanks are not eliminated. If the final length
is 0, the field is deleted; if the field is new, it is not stored. For example, X'03C1C2C3'
is equivalent to 'ABC'; X'04C1C2C340' includes the trailing blank in the stored value.

L(n) The value is n characters long. Leading binary zeros (X'00") are eliminated; leading
and trailing blanks are not eliminated. If the final length is 0, the existing field is
deleted. If the field is new, it is not stored.

M(n) The first data byte contains the number of value occurrences. The values that follow
are each n characters long. Leading binary zeros are eliminated.

330 Rocket Model 204 Host Language Interface Reference Manual

Table 7-3. EDIT format codes used with an updating call (Continued)

Code Description

V Collect all occurrences of a field into a single data area. The area begins with a four-
byte count of the number of data values in the area. The format of the values is
determined by the second edit format, which must be specified immediately after the
V. An example and a summary of restrictions is included below.

X Same as X(1). See X(n).

X(n) Skip n characters in the data area.

Z(precision,scale) The value is in zoned-decimal form. Precision, scale, and conversion rules are
identical to the P format.

Field Formatting Options for HLI Calls 331

332 Rocket Model 204 Host Language Interface Reference Manual

Completion and ABEND Codes

Overview

This chapter describes the completion codes that may be encountered
when using the Model 204 HLI facility. There are two broad categories
of completion codes:

* Return codes for HLI calls
e Job run ABEND codes
This chapter presents the codes in the following tables:

* Table 8-1 on page 334 lists completion codes that are returned by
Model 204 to the host language application program for operations
which completed normally, or with a warning. RETCODE is 0, 1, 2,
and 3.

» Table 8-2 on page 335 lists completion codes which usually indicate
that a call was unsuccessful. RETCODE is greater than or equal to
4.

» Table 8-3 on page 340 lists completion codes that are generated for
severe errors that cause the HLI job run to abend.

For more information
For more information about individual completion return codes for

conditions that are unique to a specific function call, refer to the usage
notes for the particular call in Chapter 6.

Completion and ABEND Codes 333

Completion return codes 0-3

Table 8-1 describes the completion codes that are returned by Model 204 to the
host language application program for operations which completed normally, or

with a warning. RETCODE

is0, 1, 2, and 3.

Table 8-1. Completion return codes 0-3

Code Call(s) Description
0 IFATTN IFDIAL connection completed.

IFCHKPT Checkpointing status depends on which function code
is specified in the call:

* Function code is 0: Checkpoint not currently in progress,
parameter 3 unaltered.

* Function code is 1: Checkpoint successfully initiated.

* Function code is 3: Checkpoint successfully completed.

IFDIAL IFDIAL connection established.

IFDIALN

IFHNGUP IFDIAL connection dropped.

All except Function completed successfully.

IFCHKPT

1 IFCHKPT Checkpointing status depends on which function code
is specified in the call:
* Function code is 0: Checkpoint in progress, parameter 3
set to its ID.
* Function code is 2: Checkpoint completed successfully,
parameter 3 set to its ID.

IFGET Nonnumeric value could not be converted, or integer

IFFTCH portion of the value is too large for output area. Errors
may occur for B, P, F, and Z edit formats.

IFMORE Nonnumeric value could not be converted, or integer
portion of the value is too large for output area. Errors
may occur for B, P, F, and Z edit formats.

IFREAD Call IFWRITE next to provide Model 204 with input.

IFSTRT Illegal call. Thread already exists.

(IFAM1)

IFWRITE Call IFWRITE next to provide Model 204 with input.

334 Rocket Model 204 Host Language Interface Reference Manual

Table 8-1. Completion return codes 0-3 (Continued)

Code Call(s) Description
2 IFCHKPT Checkpoint request timed out. Checkpoint not taken.
IFFLS The file indicator was used to identify the file of the
current record and no current record was found.
IFFTCH Indicates no more records to fetch in the current set.
IFREAD Call IFREAD next to get more output from Model 204.

IFRPRM and TBO has been enabled or disabled for a file such that

IFSPRM the group of files in the job violates the restriction that
TBO files may not open for update while any non-TBO
file is open on a read-only thread. The parameter reset
was successful, but the M204.0498 error was issued
and the file is closed.

IFWRITE Call IFREAD next to get more output from Model 204.

Any other call Indicates no records in the current set.

3 IFCHKPT Caller is not allowed to wait for checkpoints. Call
ignored.
All except Return code number reserved for future use, or control
IFCHKPT of necessary resource could not be obtained and call

may be reexecuted.

Completion return codes 4 and greater

Table 8-2 describes the completion codes which usually, but not always,
indicate that a call was unsuccessful. RETCODE is greater than or equal to 4.
Note that the error message is written to the Model 204 journal and is available
to the application program using the IFGERR call.

Table 8-2. Completion return codes 4 and greater

Code Call(s) Description

4 All calls Error message has been produced. For
more information about conditions that are
unique to a specific function call, refer to the
Notes for the particular call in Chapter 6.

5 IFCHKPT Checkpoint not active during recovery. Call
ignored.

Compiled IFAM calls The name used by an E (execute) call has
not been defined.

Completion and ABEND Codes 335

Table 8-2.

Completion return codes 4 and greater (Continued)

Code

Call(s)

Description

6

Compiled IFAM calls

The name used by an E (execute) call or
standard compile and execute call has been
defined by an incompatible function.

IFGET, IFMORE, and IFPUT specs can be
shared, but cannot be referred to by IFFIND
calls. Similarly, IFFIND compilations cannot
be referred to by IFGET-type calls. IFFIND
and IFFNDX cannot share specs.

Compiled IFAM calls

Not enough space exists to compile the
current call. Error message indicates which
server table is full. Use IFFLUSH to recover
from this condition.

Many Host Language Interface calls not
directly affected by the Compiled IFAM
feature use space in QTBL and VTBL. These
functions return a code of 4 if either table fills.

10

IFBREC
IFSTOR
IFPUT

IFUPDT

For an updating call where the FILEMODL
file option is set to NUMERIC VALIDATION,
Model 204 encountered invalid values for
BINARY and FLOAT numeric field types.
See the Rocket Model 204 documentation
wiki for more information about FILEMODL.:

http://m204wiki.rocketsoftware.com/index.p
hp/Field_attributes#File_model_feature

See the Rocket Model 204 documentation
wiki for information about binary and float
values:

http://m204wiki.rocketsoftware.com/index.p
hp/Data_maintenance#Storing_data_in_fiel
ds

All calls

The function has been cancelled. The
transaction is automatically backed out and
control is returned to the application
program.

12

IFREAD and
IFWRITE

IFREAD called when IFWRITE was
expected, or IFWRITE called when IFREAD
was expected.

IFREAD

No output ready from Model 204; call
IFWRITE to provide more input. The answer
area is not altered.

15

IFEFCC and IFERLC

An updating function received an error when
there was no conflict to search for.

336 Rocket Model 204 Host Language Interface Reference Manual

Table 8-2. Completion return codes 4 and greater (Continued)

Code Call(s) Description

40 IFBOUT An IFBOUT was issued from a read-only
thread. IFBOUT is only valid on update
threads.

All calls Function requires update privileges, but
none were granted. Issue IFSTRT with
thread update privileges and give file or
group password with update privileges.

50 All calls (IFAM2 and An updating function was issued on a thread

IFAM4) which has been quiesced for checkpointing
by a previous call to IFCHKPT.

60 All calls No current file or group. Function cannot
complete.

61 All calls Function attempted against file or group with
broken FISTAT setting. Function cannot
complete.

80 All calls in IFAM1 No current thread.

e For IFSTRT support, call IFSTRT.
e For IFDIAL support, call IFSETUP.

90 IFDIAL An IFDIAL connection already exists for this

IFDIALN application program. The attempt to
establish more than one simultaneous
connection for this application is ignored.

IFSTRT in IFAM1 lllegal call to IFSTRT. A thread already
exists.

IFSTRTinIFAM2and Model 204 is not yet available for user

IFAM4 processing. Recovery may still be in
progress. Call IFSTRT again.

95 IFDTHRD and Nonexistent new thread specified. Call

IFSTHRD ignored.

96 IFDTHRD New thread is already current thread and

thus is not detached.

Completion and ABEND Codes 337

Table 8-2. Completion return codes 4 and greater (Continued)

Code Call(s) Description

100 in IFAM1 LOGIN failed.

in IFAM2 and IFAM4 No current thread exists. Call IFSTRT.

IFATTN The connection was lost.

IFHNGUP The connection was lost prior to call.

IFREAD No current Model 204 connection exists or
the connection is lost.

IFSTRT inIFAM2and LOGIN failed.

IFAM4

IFWRITE No current Model 204 connection exists or
the connection is lost.

101 IFDIAL in IFAM1 Invalid BATCH204 module loaded. Check
STEPLIB for correct release.

IFSTRT in IFAM1 Failure to dynamically load the IFAM1 load
module, because the entry point was
specified incorrectly when relinking.

200 IFBREC A uniqueness violation has occurred (field

IFPUT level constraint). A UNIQUE violation

IFSTOR corresponds to errors handled by ON FCC

IFUPDT ON units in SOUL. Refer to the Rocket
Model 204 documentation wiki for
information about ON units:
http://m204wiki.rocketsoftware.com/index.p
hp/Subroutines#On_units_2

202 IFPUT An AT-MOST-ONE violation occurred (field

IFSTOR level constraint). An AT-MOST-ONE

IFUPDT violation corresponds to errors handled by
ON FCC ON units in SOUL. Refer to the
Rocket Model 204 documentation wiki for
information about ON units:
http://m204wiki.rocketsoftware.com/index.p
hp/Subroutines#On_units_2

260 IFOPEN A file or group could not be opened.

300 All calls Thread restarted in Host Language Interface
Model 204 service program. Call lost.

325 in IFAM2 IQB not large enough. Adjust the Model 204
parameters LIBUFF, LOBUFF, and IFAMBS
as necessary.

350 in IFAM2 Invalid string length. Adjust the Model 204

parameters LIBUFF and LOBUFF as
necessary.

338 Rocket Model 204 Host Language Interface Reference Manual

Table 8-2. Completion return codes 4 and greater (Continued)

Code Call(s) Description
400 IFSTRT and Invalid language code.

IFSETUP in IFAM2

and IFAM4

Other calls in IFAM2 Invalid parameter list.

and IFAM4

500 IFCALL Invalid function number passed to IFCALL.
in IFAM1 using Invalid function called.

IFDIAL

800 in IFAM2 and IFAM4 No Host Language Interface Model 204
threads currently available. Try again later or
increase number of defined threads.

IFDIAL All Model 204 IFDIAL connections are busy.
Check to see that the proper number of
IODEV=29 initialization statements were
included for the Host Language Interface
Model 204 service program.

1000 IFFNSH Normal return code from IFFNSH. (See
1nnn.)

in IFAM2 and IFAM4 The application program disconnected from
Model 204 normally.

All other calls Model 204 is no longer available.

1001 in IFAM2 and IFAM4 Host Languages Interface Model 204
service program is not up, the Host
Language interface is halted or drained, or
no host language threads were defined in
Model 204 This may indicate that the IFAM4
load module was link-edited without the
REUS option.

IFDIAL Host Language Interface Model 204 is not
up, or no IODEV=39 statements were
included in initialization, or CRAM channel
name does not exist. Connection is
impossible.

1002 in IFAM2 Insufficient SQA or CSA space to use CRAM
connection.

1003 in IFAM2 and IFAM4 Insufficient memory in the IFAM application
to allocate the necessary control blocks.

IFDIAL Not enough memory for CRAM open.

IFDIALN

1004 in IFAM2 An initial IFCSA call was not made.

Completion and ABEND Codes 339

Table 8-2. Completion return codes 4 and greater (Continued)

Code Call(s) Description

1nnn IFFNSH in IFAM1 IFFNSH returns 1000 and the highest
Model 204 journal error message return
code encountered during the run.

Job run ABEND codes

Table 8-3 describes the user ABEND completion codes that are generated
when Model 204 detects severe errors and abends the HLI application program
job run.

Table 8-3. Job run ABEND codes

Code Job type Description
100 IFAM1 CCASNAP DD statement is missing.
250 IFAM2 and IFAM4 Invalid parameter list. Completion code

could not be set.

1000 IFAM2 Serious CRAM error. Save all output from
application and Host Language Interface
Model 204 service program for Technical
Support personnel.

For more information about how IFAM4 sets the job step return code, see
“IFAMA4 jobs: Job errors and ABENDs” on page 48.

340 Rocket Model 204 Host Language Interface Reference Manual

Overview

IFAM1 Job Program Samples

This appendix provides examples of IFAM1 jobs, complete with
program code. The sample programs illustrate the use of Host
Language Interface functions in an IFAM1 processing environment.

For more information

COBOL example

See Appendix B for additional examples of HLI applications written in
COBOL, and job setups that may be run in IFAM2 and IFAM4. Appendix
B includes an example of an application that uses a multiple cursor
IFSTRT thread.

See Chapter 4 for guidelines on using different programming languages
when coding HLI programs. See the Rocket Model 204 Host Language
Interface Programming Guide for coding examples related to particular
aspects of HLI processing.

This section provides a sample program written in COBOL to run in the
IFAM1 environment under VSE or CMS using the Model 204 Host
Language Interface.

The sample COBOL program that is shown in Figure 1-1 can be run as
shown with the application code embedded in the VSE job stream.

Or, the program can be extracted from the VSE JCL and compiled and
linked as program IFAM1PG and then run in CMS using the EXECs
shown in Figure 1-2 and Figure 1-3.

IFAM1 Job Program Samples 341

Using a vehicles file

The IFAM1 COBOL application program accesses a file that contains vehicle
data, that is, a Model 204 data file named VEHICLES, and uses the information
to produce a report of high risk vehicles.

IFAM1 COBOL example (VSE)

Figure 1-1, starting below and continuing on the following pages, shows an HLI
application program that is written for IFAM1 in COBOL which, with the JCL that
is shown in the job stream, runs under a VSE operating system.

This application uses a single cursor IFSTRT thread.

Figure 1-1. Sample COBOL program (VSE)

* XXXk *xx*k *XKxkx *xkx*k KX xhk KX xhk *xkxxk *XKxkx

This example COBOL job compiles and catalogs an IFAM1
program into a user’s private library and
is based on the following assumptions:

(1) All Model 204 distribution macros, object modules, etc.
are in the M204 library as distributed by Rocket;

(2) All 1BM distributed libraries (such as standard macros,
COBOL compiler, link-time modules, etc.) are defined in
your permanent library search sequence;

(3) You have a private library for in-house developed
application programs (systems).

ok X % b ok % X % ok % X X % %

xxxxx *x *x*k * X Kx*k *x*k EAE * X *x*k

ok X % b ok % X % o 3k X X % ok % X X%

// JOB CATALOG IFAM1 PROGRAM (WRITTEN IN COBOL)
// DLBL M204LI1B, >M204.PROD.LIBRARY”
// EXTENT SYSnnn,...... balance of the EXTENT statement
// DLBL USERLIB, user.applic.system.library”
// EXTENT SYSnnn,....balance of the EXTENT statement
// LIBDEF *,SEARCH=(M204LIB.V220,USERLIB.sublib)
// LIBDEF PHASE,CATALOG=(USERLIB.sublib)
// OPTION CATAL
PHASE IFiPGM,* REPLACE=YES
// EXEC FCOBOL,SI1ZE=(160K)

* *XKxhk *xhhkk *XKxkx *xKxkx *hxkkk * X xhk *xhkk *XKxkx

THIS 1S A SAMPLE IFAM1 COBOL PROGRAM.

* ok X X ¥
* ok X X

THIS COBOL PROGRAM USES IFAM1 CALLS.

342 Rocket Model 204 Host Language Interface Reference Manual

*
*
*
*
*

IT PRODUCES A REPORT OF HIGH RISK VEHICLES.

CHANGES THE SURCHARGE% ON CERTAIN HIGH RISK

VEHICLES TO 15%.

IT ALSO

ok % X %

B R o R R e R AR R R R R R R AR AR R R R R R R R R AR R R R R R AR R R R o R AR R AR R R R AR R R AR R R

IDENTIFICATION DIVISION.
PROGRAM-ID.

IFAM1EX1.

AUTHOR.

JANE DOE.

DATE-WRITTEN.

MAY 15, 1990.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT REPORT-FILE ASSIGN TO UT-S-REPORT.

DATA DIVISION.
FILE SECTION.

FD

01

REPORT-FILE

LABEL RECORDS ARE OMITTED
BLOCK CONTAINS O RECORDS

DATA RECORD 1S REPORT-RECORD.

REPORT-RECORD

WORKING-STORAGE SECTION.

01

01

01
01
01

01
01

01

01

CRITICAL-ERROR-SW

88 NO-CRITICAL-ERROR
88 CRITICAL-ERROR
DONE-PROCESS-SW

88 DONE-PROCESS
ERROR-FUNCTION
DISPLAY-STATUS-IND
WS-OUTPUT-REPORT-LINE.
05 WS-CCTL-CHAR

05 WS-132-CHAR-LINE
WS-LINE-COUNT
NEW-SURCHARGE

M204-INTEGER-CALL-ARGS
05 STATUS-IND

05 LANGUAGE-IND

05 UPDATE-IND

05 FIND-COUNT

M204-STRING-CALL-ARGS.
05 EXEC-PARMS.
10 FILLER
10 INPUT-SYSOPT
10 FILLER
05 USERO-PARMS.

PIC X(133).

PIC X(3)

PIC X(3)

PIC X(8).
PIC 9(5)

PIC X.
PIC X(132)
PIC 99

PIC X(2)

COMP SYNC.
PIC 9(5).
PIC 9(5)
PIC 9(5)
PIC 9(5).

PIC X(7)
PIC X(3).
PIC X

VALUE
VALUE
VALUE
VALUE
VALUE

VALUE

VALUE

VALUE
VALUE

VALUE
VALUE

VALUE

VALUE

“"NO .
"NO .
"YES™.
"NO .
"YES™.

ZERO.
SPACES.

ZERO.
15",

2.
0.

"SYSOPT=""_

IFAM1 Job Program Samples 343

10 FILLER PIC X(7) VALUE "*MAXBUF="".

10 INPUT-MAXBUF PIC X(3).
10 FILLER PIC X(8) VALUE **,MINBUF=".
10 INPUT-MINBUF PIC X(3).
10 FILLER PIC X(8) VALUE '*,SPCORE="".
10 INPUT-SPCORE PIC X(5).
10 FILLER PIC X(8) VALUE *',LAUDIT="".
10 INPUT-LAUDIT PIC X(1).
10 FILLER PIC X VALUE ;™.
05 LOGIN PIC X(20) VALUE
""'SUPERKLUGE ; PIGFLOUR; ™.
05 VEHICLE-FILE PIC X(8) VALUE "VEHICLES;".
05 FIND-CRITERIA PIC X(41) VALUE

"WEHICLE USE CLASS 1S GREATER THAN 79;END;™.

05 GET-EDIT-SPEC.

10 FILLER PIC X(45) VALUE
"EDIT(VEHICLE USE CLASS,VIN,OWNER POLICY,MAKE,".
10 FILLER PIC X(43) VALUE
"'MODEL , BODY, YEAR, SURCHARGE®%) (X(7) ,J(2) ,X(8)," .
10 FILLER PIC X(43) VALUE
"A(12),X(6),A(6),X(6),A(15),X(3),A(15),X(3),".
10 FILLER PIC X(26) VALUE
"A(4) ,X(4),A(2),X(8),I(2));"-
05 M204-ERR-MESSAGE PIC X(80).
05 PUT-EDIT-SPEC PIC X(23) VALUE
"EDIT(SURCHARGE%) (Z(2));"-
05 PUTNAME PIC X(8) VALUE ""PUTNAME;".
05 GETNAME PIC X(8) VALUE "GETNAME;".

01 REPORT-OUTPUT-DETAIL.

05 FILLER PIC X(7)-

05 USE-CLASS PIC X(2)-

05 FILLER PIC X(8).

05 VIN PIC X(12).

05 FILLER PIC X(6).

05 OWNER-POLICY PIC X(6).

05 FILLER PIC X(6).

05 MAKE PIC X(15).

05 FILLER PIC X(3).

05 MODEL PIC X(15).

05 FILLER PIC X(3).

05 BODY PIC X(4).

05 FILLER PIC X(4).

05 YEAR PIC X(2).

05 FILLER PIC X(8).

05 SURCHARGE PIC X(2).

05 FILLER PIC X(28) VALUE SPACES.

01 REPORT-HEADING-AREA.

05 FILLER PIC X(40) VALUE SPACES.
05 FILLER PIC X(46) VALUE

"HIGH RISK VEHICLES - INCLUDING NEW SURCHARGE %™.

344 Rocket Model 204 Host Language Interface Reference Manual

05 FILLER PIC X(46) VALUE SPACES.
01 REPORT-DETAIL-HEADING.

05 FILLER PIC X(2) VALUE SPACES.
05 FILLER PIC X(12) VALUE
"USE CLASS .
05 FILLER PIC X(16) VALUE
" v 1 N .
05 FILLER PIC X(15) VALUE
"OWNER POLICY ™.
05 FILLER PIC X(18) VALUE
" MAKE "
05 FILLER PIC X(20) VALUE
Y MODEL .
05 FILLER PIC X(07) VALUE '"'BODY "
05 FILLER PIC X(07) VALUE "YEAR "
05 FILLER PIC X(10) VALUE
""SURCHARGE%"" .
05 FILLER PIC X(25) VALUE SPACES.
01 WS-PARAMETER-INPUT.
05 PARAM-SYSOPT PIC X(3).
05 FILLER PIC X.
05 PARAM-MAXBUF PIC X(3).
05 FILLER PIC X.
05 PARAM-MINBUF PIC X(3).
05 FILLER PIC X.
05 PARAM-SPCORE PIC X(5).
05 FILLER PIC X.
05 PARAM-LAUDIT PIC X(1).

PROCEDURE DIVISION.
INITIALIZATION.
OPEN OUTPUT REPORT-FILE.
ACCEPT WS-PARAMETER-INPUT FROM SYSIPT.

R e e o AR R R S R R S e R S R R R R R R AR R SR R R R AR R AR R R R R R AR =

* NOTE: PARAMETER INPUT MUST BE ENTERED IN THE FOLLOWING *
* FORMAT IN THE INPUT-FILE: 999,999,999,99999,9 *
* WHICH CORRESPONDS TO THE VALUES OF: *
* SYSOPT ,MAXBUF, MINBUF,SPCORE,LAUDIT *
K AEAEAEAIAAAAAXAAEAAAAAAXAXAAAAXAAXAAXAAAXAAXAAAXAXAAAAXAXAAAXAAAXAXAXAAAXAXAAA XXX hk*

IF PARAM-SYSOPT NOT NUMERIC OR
PARAM-SYSOPT > 186
DISPLAY "INVALID SYSOPT PARAMETER, DEFAULT OF 128 USED"
MOVE "128" TO INPUT-SYSOPT
ELSE
MOVE PARAM-SYSOPT TO INPUT-SYSOPT.
IF PARAM-MINBUF NOT NUMERIC OR
PARAM-MINBUF < 003
DISPLAY ™"INVALID MINBUF PARAMETER, DEFAULT OF 3 USED™"
MOVE '003" TO INPUT-MINBUF
ELSE
MOVE PARAM-MINBUF TO INPUT-MINBUF.

IFAM1 Job Program Samples 345

IF PARAM-MAXBUF NOT NUMERIC OR
PARAM-MAXBUF < 003
DISPLAY "INVALID MAXBUF PARAMETER, DEFAULT OF 100 USED™"
MOVE '"100" TO INPUT-MAXBUF
ELSE
MOVE PARAM-MAXBUF TO INPUT-MAXBUF.
IF INPUT-MINBUF > INPUT-MAXBUF
DISPLAY "MINBUF REQUESTED> MAXBUF, DEFAULT TO MAX=MIN".
MOVE INPUT-MINBUF TO INPUT-MAXBUF.
IF PARAM-SPCORE NOT NUMERIC
DISPLAY "INVALID SPCORE PARAMETER, DEFAULT TO 8192"
MOVE '08192" TO INPUT-SPCORE
ELSE
MOVE PARAM-SPCORE TO INPUT-SPCORE.
IF PARAM-LAUDIT > 7
DISPLAY "INVALID LAUDIT PARAMETER, DEFAULT TO 7"
MOVE "'7' TO INPUT-LAUDIT
ELSE
MOVE PARAM-LAUDIT TO INPUT-LAUDIT.
PERFORM NEW-PAGE.
CALL "IFSTRT"™ USING STATUS-IND, LANGUAGE-IND,
EXEC-PARMS, USERO-PARMS.
IF STATUS-IND IS NOT EQUAL ZERO
MOVE "IFSTRT ' TO ERROR-FUNCTION
PERFORM ERROR-ROUTINE
ELSE
CALL "IFLOG'"™ USING STATUS-IND, LOGIN
IF STATUS-IND IS NOT EQUAL ZERO
MOVE "IFLOG " TO ERROR-FUNCTION
PERFORM ERROR-ROUTINE

ELSE
CALL "IFOPEN™ USING STATUS-IND, VEHICLE-FILE
IF STATUS-IND IS NOT EQUAL ZERO AND
STATUS-IND 1S NOT EQUAL 16 AND
STATUS-IND 1S NOT EQUAL 32
MOVE " 1FOPEN ' TO ERROR-FUNCTION
PERFORM ERROR-ROUTINE.
FIND-RECORDS.
IF CRITICAL-ERROR GO TO FIND-RECORDS-EXIT.

B R R R AR R R R R R R R AR R R R R S S S R R R AR R R R R AR AR R R R AR R R R R R AR AR

DO NOT ATTEMPT TO FIND THE RECORDS IN THE MODEL 204 FILE

*
*
* IF YOU PREVIOUSLY ENCOUNTERED AN ERROR WITH
* IFSTRT, IFLOG, OR IFOPEN.

*

*

*

*

FTEAEEIAXAXITEAXAXAAXTAAXAAXTAAXAAXATXAAXAAXATXAXAALTXAXAXTXAXAITXIAIAITdhdAdxAdThAdhihik

CALL "IFFIND™ USING STATUS-IND, FIND-CRITERIA.
IF STATUS-IND NOT EQUAL ZERO

MOVE "IFFIND " TO ERROR-FUNCTION
PERFORM ERROR-ROUTINE
ELSE

CALL "IFCOUNT"™ USING STATUS-IND, FIND-COUNT

346 Rocket Model 204 Host Language Interface Reference Manual

IF STATUS-IND NOT EQUAL ZERO

MOVE " IFCOUNT " TO ERROR-FUNCTION
PERFORM ERROR-ROUTINE
ELSE

IF FIND-COUNT = ZERO
MOVE "NO RECORDS FOUND"™ TO WS-132-CHAR-LINE
WRITE REPORT-RECORD FROM WS-OUTPUT-REPORT-LINE
MOVE "YES'™ TO DONE-PROCESS-SW.

AR R o R R S R R AR SRR R S R R R S R R R R R AR R R R R R e SR R R S S R R AR AR

*

* DO NOT ATTEMPT TO GET MODEL 204 RECORDS IF YOU
ENCOUNTERED AN ERROR WITH IFFIND/IFCOUNT OR IF THERE
WERE NO RECORDS FOUND (THAT IS, FIND-COUNT 1S ZERO)

THE DONE-PROCESS SWITCH WILL INDICATE WHEN ALL THE
RECORDS IN THE "FOUND SET" HAVE BEEN PROCESSED.

IF NO RECORDS WERE FOUND THEN THE DONE PROCESS
SWITCH IS TO "™YES"™ IMMEDIATELY AFTER IFCOUNT.

O b o % o+ %+ * %

ok % X X ok % X

AEEAEXEAXEIAAXIEAITEAAXTAXITEA XA AKX A AXAAXTAAXAAAXAXAAXAXAAXA AL XAAXAAXAAAXAXAkITXAXdhAXxix*x

PERFORM GET-AND-PROCESS-RECORDS
UNTIL DONE-PROCESS OR CRITICAL-ERROR.
FIND-RECORDS-EXIT. EXIT.
TERMINATION.
CLOSE REPORT-FILE.
CALL "IFFNSH"™ USING STATUS-IND.
IF STATUS-IND NOT EQUAL 1000
MOVE "IFFNSH " TO ERROR-FUNCTION
PERFORM ERROR-ROUTINE.
STOP RUN.

GET-AND-PROCESS-RECORDS.
CALL "IFGET' USING STATUS-IND, REPORT-OUTPUT-DETAIL,
GET-EDIT-SPEC, GETNAME.
IF STATUS-IND = 2
MOVE "YES'™ TO DONE-PROCESS-SW
ELSE
IF STATUS-IND NOT EQUAL ZERO
MOVE "IFGET " TO ERROR-FUNCTION
PERFORM ERROR-ROUTINE
ELSE
PERFORM REPORT-AND-UPDATE.
REPORT-AND-UPDATE.
IF USE-CLASS > 85 OR USE-CLASS = 85
MOVE NEW-SURCHARGE TO SURCHARGE
CALL "IFPUT™ USING STATUS-IND, SURCHARGE,
PUT-EDIT-SPEC, PUTNAME
IF STATUS-IND NOT EQUAL ZERO
MOVE "IFPUT " TO ERROR-FUNCTION
PERFORM ERROR-ROUTINE.
IF WS-LINE-COUNT > 50
PERFORM NEW-PAGE.
MOVE REPORT-OUTPUT-DETAIL TO WS-132-CHAR-LINE.

IFAM1 Job Program Samples 347

WRITE REPORT-RECORD FROM WS-OUTPUT-REPORT-LINE.
ADD 1 TO WS-LINE-COUNT.
ERROR-ROUTINE.

MOVE "YES" TO CRITICAL-ERROR-SW.
FEEAIXAITAXAAXAAXAAAXAXAAAAXAXAAXAAXAAXAAXAAAXAAXAAAXAXAAAXAXAXAAAXAXAAXAA XXX AAAAXXxh*k
* THIS CRITICAL ERROR SWITCH IS SET IF THERE IS A BAD *
* IFAM CALL TO MODEL 204. *

B R T S R R R AR R R R R R R S S R S R R e R R R AR R R R R R R AR R R R ok R R R R AR R X

MOVE STATUS-IND TO DISPLAY-STATUS-IND.

DISPLAY "CRITICAL ERROR ENCOUNTERED WITH FUNCTION: *
ERROR-FUNCTION ", WITH A RETURN CODE OF: "
DISPLAY-STATUS-IND.

CALL "IFGERR™ USING STATUS-IND M204-ERR-MESSAGE.

DISPLAY "M204 ERROR MESSAGE = " M204-ERR-MESSAGE.

NEW-PAGE.
* MOVE "1" TO WS-CCTL-CHAR.
MOVE REPORT-HEADING-AREA TO WS-132-CHAR-LINE.
WRITE REPORT-RECORD FROM WS-OUTPUT-REPORT-LINE.
* MOVE "0'" TO WS-CCTL-CHAR.
MOVE REPORT-DETAIL-HEADING TO WS-132-CHAR-LINE.
WRITE REPORT-RECORD FROM WS-OUTPUT-REPORT-LINE.
* MOVE " " TO WS-CCTL-CHAR.

MOVE SPACES TO WS-132-CHAR-LINE.

WRITE REPORT-RECORD FROM WS-OUTPUT-REPORT-LINE.

MOVE ZEROS TO WS-LINE-COUNT.

AEAEAAAAAAAAAAAAAAAAAAAAAAAAAAXAAAXAAAAAXAXAAAXAAAAAAAAAXAAAAXAAAAXAAXAXKX

* JOB STEP #2: LINK-EDIT THE PROGRAM *
R S S e S R R S R S R R R R S R R R R R R R S R R R S R R R R R e e R R S S R R S R
/*

INCLUDE I1FIF1DOS
ENTRY IFAMTEST
// EXEC LNKEDT

/&

* XXXk kkk *xKhx *xkk EA A R e S R S S *xKhx EAE
* JOB STEP #3: *
* EXECUTE IFAM1 IF1PGM PROGRAM UNDER VSE *
* RESULTS PRINTED IN REPORT ON SYSLST *
E e * XX EAE *xKhx EAE A e * kX EAE

// JOB IF1RUN
// DLBL M204LIB, ”M204_PROD.LIBRARY”

// EXTENT SYSnnn,...... balance of the EXTENT statement
// DLBL USERLIB, "user.applic.system.library’
// EXTENT SYSnnn,balance of the EXTENT statement

// DLBL CCAJRNL, ”SQADOS.M204SYS.CCAJRNL”,0
// EXTENT SYS021,SYSWK1,,,72470,2000

// DLBL CCASTAT, >SQADOS._M204SYS.CCASTAT",0
// EXTENT SYS024,SYSWK4,,,1059,100

348 Rocket Model 204 Host Language Interface Reference Manual

/77
/77
/77
/77
/77
/7
//
14
/*
/&

*

DLBL CCATEMP, >SQADOS.M204SYS.CCATEMP”, ,DA
EXTENT SYS021,SYSWK1, ,,51330,2000

DLBL VEHICLE, *PSGRAY.M204DB.VEHICLE”, ,DA
EXTENT SYS023,SYSWK3, ,,68101,2600

ASSGN SYS007,SYSLST

ASSGN SYS008,05E

EXEC IF1PGM,SIZE=(AUTO, 60K)
4,010,010,10000,0

$$ EOJ

IFAM1 COBOL example (CMS)

&T

*
*

*

Figures 1-2 and 1-3 show sample EXECs that may be used to execute an HLI
application program in the IFAM1 environment under CMS.

Note: These EXECs could be used with the COBOL program on page 342
assuming that the program is compiled and linked as IFAM1PG.

Figure 1-2 shows an EXEC that generates an IFAML1 application module,
IFAM1PG, running under CMS.

Figure 1-2. Sample EXEC to run an IFAM1 program (CMS)

&CONTROL ALL

*

* SAMPLE EXEC FOR GENERATING AN IFAM1 APPLICATION

*

* PROGRAM NAME = IFAM1PG

*

COBOL I1FAM1PG

*

GLOBAL TXTLIB M2041FM1 COBOLVS COBLIBVS
LOAD IFAM1PG IFCM1 (RESET IFAM1PG)
GENMOD 1FAM1PG

*

&TYPE

&TYPE 1FAM1PG MODULE A HAS BEEN GENERATED FOR YOUR USE
&TYPE

&EX1T &RETCODE

Figure 1-3 below shows an EXEC that defines the files for the IFAM1PG
program running under CMS which is shown in Figure 1-2 on the preceding

page.
Figure 1-3. Example of FILES EXEC for IFAM1 program (CMS)

RACE ALL
EXEC TO DEFINE FILES FOR IFAM1 JOB

&ERROR &EXIT &RETCODE

IFAM1 Job Program Samples 349

FILEDEF * CLEAR

ACCESS XXX 121 DISK

GETFMADR 250

&READ VARS & &XXX121M &XXX121D

EXECIO O CP (STRING LINK XXX 121 &XXX121D MW
ACCESS &XXX121D &XXX121M

GET TEMP DISK SPACE FOR CCATEMP FILE

GETFMADR 250

&READ VARS & &TEMPM &TEMPD

EXECIO O CP (STRING DEFINE T3380 &TEMPD CYL 3

&IF &RETCODE NE 92 &IF &RETCODE NE O &EXIT &RETCODE
&STACK LIFO YES

M204UTIL INIT &TEMPD TEM204

ACCESS &TEMPD &TEMPM

M204UTIL CREATE M204 CMS CCATEMP &TEMPM (PRIMARY 40 TRK

DEFINE FILES USED BY IFAM1 APPLICATION PROGRAM & MODEL 204
FILEDEF CCAAUDIT DISK IFM1 CCAAUDIT A
FILEDEF CCAPRINT DISK 1FM1 CCAPRINT A

FILEDEF CCASTAT &XXX121M DSN PSSOSMNT PROD CCASTAT M204
FILEDEF CCASNAP DISK 1FM1 CCASNAP A

FILEDEF CCATEMP &TEMPM DSN M204 CMS CCATEMP

FILEDEF VEHICLES &XXX121M DSN PSSOSMNT TEST VEHICLES M204
FILEDEF REPORT DISK 1FM1 REPORT A

FILEDEF SYSIN DISK IFM1 SYSIN *

FILEDEF SYSOUT DISK IFM1 SYSOUT A

* STACK IFAM1 APPLICATION PROGRAM NAME

&STACK

&EXIT &RETCODE

IFAM1PG

PL/l example

This section provides a sample program written in PL/I to run in the IFAM1
environment under z/OS using the Model 204 Host Language Interface. The
sample PL/I program that is shown in Figure 1-4 can be run as shown with the
application code embedded in the z/OS job stream.

Using a claims file

The IFAM1 PL/I application program accesses a file that contains insurance
data, thatis, a Model 204 data file named CLAIMS90, and uses the information
to determine the average settlement amount for all liability claims settled in the
first half of 1990. Liability claims are indicated by the field name = value pair of
CLAIM TYPE = L. The format of SETTLEMENT DATE is YYMMDD.

350 Rocket Model 204 Host Language Interface Reference Manual

IFAM1 PL/I example (z/OS)

Figure 1-4 shows an HLI application program that is written for IFAM1 in PL/I
which, with the JCL that is shown in the job stream, runs under an z/OS
operating system.

This application uses a single cursor IFSTRT thread.
Figure 1-4. Sample PL/l program (z/OS)

//JOBNAME JOB ,”1FAM1 TEST” ,MSGCLASS=A,CLASS=A
//PL1 EXEC PGM=1ELOAA,PARM=~"0BJECT, NODECK”,REGION=100K
//SYSPRINT DD SYSOUT=*

//SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSDA,
// SPACE=(80, (250,100))
//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA,

// SPACE=(1024,(200,50),,CONTIG,ROUND),
// DCB=BLKSIZE=1024

//SYSIN DD *
/7%
/* ___ */
/* COMPUTE AVERAGE SETTLEMENT AMOUNT FOR LIABILITY */
/* CLAIMS SETTLED IN FIRST HALF OF 1990 */
/* ___ */
AVGSET: PROCEDURE OPTIONS (MAIN):
/* ___ */
/* M204 HOST LANGUAGE INTERFACE (IFAM) CALLS */
/* ___ */
DECLARE

IFSTRT EXT ENTRY (FIXED BIN(31), FIXED BIN(31),
CHAR(*) ,CHAR(*®)),

IFLOG EXT ENTRY (FIXED BIN(31), CHAR(*)),

IFOPEN EXT ENTRY (FIXED BIN(31), CHAR(*)),

IFFIND EXT ENTRY (FIXED BIN(31), CHAR(*)),

IFCOUNT EXT ENTRY (FIXED BIN(31), FIXED BIN(31)),

IFGET EXT ENTRY (FIXED BIN(31), CHAR(*) VAR, CHAR(*)),
IFGERR EXT ENTRY (FIXED BIN(31), CHAR(*) VAR),

IFFNSH EXT ENTRY (FIXED BIN(31)):

/* __ */
/* M204 CALL ARGUMENTS */
/* __ */
DECLARE

IF_RET_CODE FIXED BIN(31),
01 IFSTRT_ARGS,
05 LANGUAGE CHAR(1) INIT (°37),
05 EXEC_PARMS CHAR(255) VAR INIT
(’SYSOPT=144),
05 USERO_PARMS CHAR(255) VAR INIT
(" SPCORE=10000, MINBUF=03 , MAXBUF=10,LAUDIT=7"),

IFAM1 Job Program Samples 351

01 IFLOG_ARGS,
05 ACCOUNT_PSWD CHAR(255) VAR INIT
(" JANE; JANEPSWD?),

01 IFOPEN_ARGS,
05 FILE_PSWD CHAR(255) VAR INIT
(’CLAIMS90;),

01 IFFIND_ARGS,

05 CRITERIA CHAR(255) VAR INIT
(CSETTLEMENT DATE 1S BEFORE 800631;CLAIM TYPE =
L;END;7),
01 IFCOUNT_ARGS,
05 COUNT FIXED BIN(31),
01 IFGET_ARGS,
05 EDIT_BUFFER CHAR (255) VAR,
05 EDIT_SPEC CHAR (255) VAR INIT

(CEDIT (SETTLEMENT AMOUNT) (J3(6));7),

01 EDIT_BUFFER_ITEMS,
05 SETTLEMENT_AMOUNT PICTURE 7999999~ ,

01 IFGERR_ARGS,
05 MESSAGE CHAR(80) VAR;

/* ___ */
/* OTHER DECLARATIONS */
/* ___ */
DECLARE
M204_ERROR_AND_TERMINATION INTERNAL CONDITION,
TOTAL_SETTLEMENT _AMOUNT FIXED BIN(31) INIT (0),
AVERAGE_SETTLEMENT_AMOUNT ~ FIXED BIN(31) INIT (0),
[FIXED BIN(31),
PLIRETC BUILTIN,
YSPRINT FILE PRINT;
/* ___ */

/* M204 ERROR HANDLING*/

/* CONTROL
/* A CALL.
/* CONTROL

IS TRANSFERRED HERE AFTER AN M204 ERROR FROM*/
*/
IS TRANSFERRED BY THIS ROUTINE TO THE*/

/* PROGRAM”S END. */

Y —

ON CONDITION (M204_ERROR_AND_TERMINATION)

BEGIN;

PUT SKIP(2) EDIT (C*** M204 ERROR. RETURN CODE = ~,

IF_RET_CODE) (A, F(6));

352 Rocket Model 204 Host Language Interface Reference Manual

CALL IFGERR (IF_RET_CODE, MESSAGE);

PUT SKIP EDIT (”IFGERR MESSAGE = ~,
IFGERR_ARGS.MESSAGE) (A, A);

CALL PLIRETC (999);

GO TO TERMINATION; /* AT END OF PROGRAM */

END;
/* ___ */
/* START M204 INTERFACE AND OPEN CLAIMS90 FILE */
/* ___ */

CALL IFSTRT (IF_RET_CODE,LANGUAGE, EXEC_PARMS,
USERO_PARMS) ;
IF (IF_RET_CODE —= 0)
THEN DO;
PUT DATA (IFSTRT_ARGS);
SIGNAL CONDITION (M204_ERROR_AND_TERMINATION);
END;

CALL IFLOG (IF_RET_CODE, ACCOUNT_ PSWD);
IF (IF_RET_CODE —= 0)
THEN DO;
PUT DATA (IFLOG_ARGS);
SIGNAL CONDITION (M204_ERROR_AND_TERMINATION);
END;

CALL IFOPEN (IF_RET_CODE, FILE_PSWD);
IF (-~ (IF RET.CODE = O | IF_RET_CODE = 16))
THEN DO;
PUT DATA (IFOPEN_ARGS);
SIGNAL CONDITION (M204_ERROR_AND_TERMINATION);
END;

/* ___ */
/* RETRIEVE DATA AND COMPUTE AVERAGE SETTLEMENT CLAIM */
/* ___ */

CALL IFFIND (IF_RET_CODE, CRITERIA);

IF (IF_RET_CODE —= 0)
THEN DO;
PUT DATA (IFFIND_ARGS);
SIGNAL CONDITION (M204_ERROR_AND_TERMINATION);
END;

CALL IFCOUNT (IF_RET_CODE, COUNT);
IF (IF_RET_CODE —= 0)
THEN DO;
PUT DATA (IFCOUNT_ARGS);
SIGNAL CONDITION (M204_ERROR_AND_TERMINATION);
END;

IFAM1 Job Program Samples

353

IF COUNT = O THEN
DO;
PUT LIST (°’NO RECORDS IN FOUND SET-CANNOT COMPUTE
AVG?);
GO TO TERMINATION;
END;

DO I = 1 TO COUNT;
CALL IFGET (IF_RET_CODE, EDIT_BUFFER, EDIT_SPEC);
IF (IF_RET_CODE —= 0)

THEN DO;

PUT DATA (IFGET_ARGS);

SIGNAL CONDITION (M204_ERROR_AND_TERMINATION);
END;

EDIT_BUFFER_ITEMS = EDIT_BUFFER;

TOTAL_SETTLEMENT_AMOUNT = TOTAL_SETTLEMENT_AMOUNT +
EDIT_BUFFER_ITEMS .SETTLEMENT_AMOUNT ;

END;

AVERAGE_SETTLEMENT_AMOUNT = TOTAL_SETTLEMENT_AMOUNT /
IFCOUNT_ARGS.COUNT;

PUT EDIT (’AVG SETTLEMENT AMOUNT FOR CLAIMS SETTLED
BETWEEN ” || 01/01/90 AND 06/31/90 = ~,
AVERAGE_SETTLEMENT_AMOUNT) (A, F(6)):

/* ___ */
/* END OF PROGRAM - TERMINATION PROCESSING */
/* ___ */
/* FALL THROUGH TO THIS CODE IF NO M204 ERROR. BRANCH */
/* TO THIS CODE FROM M204_ERROR_AND_TERMINATION */
/* CONDITION IF THERE WAS AN M204 ERROR. */
/* ___ */

TERMINATION:
CALL IFFNSH (IF_RET_CODE);

IF (IF_RET_CODE —= 1000)
THEN DO;
PUT SKIP(2) EDIT (**** M204 IFFNSH ERROR.
RETURN CODE = ~,
IF_RET_CODE)

(A, F(6));

CALL IFGERR (IF_RET_CODE, MESSAGE);
PUT SKIP EDIT (”IFGERR RETURN CODE=~,
IF_RET_CODE,

354 Rocket Model 204 Host Language Interface Reference Manual

*MESSAGE = ~, MESSAGE)
(A, F(6), A, A);

END;
END;

//LKED EXEC PGM=IEWL,PARM="RENT,LIST,LET,MAP,
7/ COND=(9,LT,PLI)

//SYSLIB DD DSN=SYS1,PLIBASE,DISP=SHR
//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA, -
7/ SPACE=(1024, (200,20)), -

7/ DCB=BLKS1ZE=1024

//SYSLMOD DD DSN=LOCAL.M204.1FAM1._APPLIC,DISP=SHR
//SYSPRINT DD SYSOUT=C

//0B DD DSN=LOCAL.M204.0BJECT,DISP=SHR
//SYSOUT DD SYSOUT=C

//SYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE), -
// UNIT=SYSDA

// DD DDNAME=SYSIN

//SYSIN DD *

INCLUDE OB(IFIF10S)
NAME ITFAMTEST(R)

Run the IFAM1 PL/I application using the following JCL:

//RUNIFAM1 JOB , ’RUNIFAM1,MSGLEVEL=(1,1), -

// MSGCLASS=C,CLASS=T

//*

//1FAML EXEC PGM=IFAMTEST

//*

//STEPLIB DD DSN=LOCAL .M204.I1FAM1.APPLIC,DISP=SHR
/7/ DD DSN=LOCAL .M204 .LOAD,DISP=SHR

//CCAAUDIT DD SYSOUT=C

//CCAPRINT DD SYSOUT=C

//CCASNAP DD SYSOUT=C

//SYSUDUMP DD SYSOUT=C

//CCATEMP DD DISP=NEW,UNIT=SYSDA, SPACE=(TRK, 20)
//CCASTAT DD DSN=M204.CCASTAT,DISP=SHR
//SYSRINT DD SYSOUT=C

//CLAIMS90 DD DSN=M204.CLAIMS90,DISP=SHR

IFAM1 jobs: Compiling under Enterprise PL/l for z/OS

When compiling a PL/I application under the Enterprise PL/I for z/OS compiler,
the following compiler parameter is required:

DEFAULT (L INKAGE(SYSTEM))

This causes the parameter list to be built in the same way that it was built by
the old compilers (including turning on the high-order bit of the address of the
last parameter).

For example:

//PLICMPL EXEC PGM=1BMZPLI ,PARM="0BJECT,OPTIONS,

IFAM1 Job Program Samples 355

7/ DEFAULT (L INKAGE (SYSTEM)) " ,REGION=512K,, . . .

If this compiler option is not specified, subsequent executions of the application
will fail with 0C4 abends.

FORTRAN example

This section provides a sample program written in FORTRAN to run in the
IFAM1 environment under z/OS using the Model 204 Host Language Interface.
The sample FORTRAN program that is shown in Figure 1-5 can be run as
shown with the application code embedded in the z/OS job stream.

Using a claims file

The IFAM1 FORTRAN application program accesses a file that contains
insurance data, that is, a Model 204 data file named CLAIMS90, and uses the
information to determine the average settlement amount for all liability claims
settled in the first half of 1990. Liability claims are indicated by the field name =
value pair of CLAIM TYPE = L. The format of SETTLEMENT DATE is
YYMMDD.

IFAM1 FORTRAN example (z/OS)

Figure 1-5 shows an HLI application written for IFAM1 in FORTRAN, which,
with the JCL that is shown in the job stream, runs under an z/OS operating
system.

This application uses a single cursor IFSTRT thread.
Figure 1-5. Sample FORTRAN program (z/OS)

//J0OBNAME JOB ~ 1FAM1” ,MSGLEVEL=1,MSGCLASS=A

V4 faiaiaiaiaiale jalaloke ialalalal jalaloialoialaiolaloialoialalalaloialole jalalale ialalalal
/7*

//* JCL TO COMPILE AND LINK AN IFAM1 FORTRAN PROGRAM

/7*

//J0BLIB DD DSN=USER.LINKLIB,DISP=SHR

//FORT EXEC PGM=1EYFORT
//SYSPRINT DD SYSOUT=*

//SYSLIN DD DSN=&&LOADSET,

7/ DISP=(MOD, PASS) ,UNIT=SYSDA, SPACE=(80, (500, 100))
//SYSIN DD *

c

c

C GLOSSARY:

C ALIBC: AVERAGE LIABILITY CLAIM

C CNT: ASSIGNED VALUE OF 5, USED IN ERROS (ERROR ROUTINE)
C EDITS: M204 VARIABLE NAMES AND THEIR EDIT MASKS (IFGET)

356 Rocket Model 204 Host Language Interface Reference Manual

FILEID:M204 FILE NAME (IFOPEN)

FIN: ASSIGNED VALUE OF 7, USED IN ERROS (ERROR ROUTINE)

FIND: ASSIGNED VALUE OF 4, USED IN ERROS (ERROR ROUTINE)

FINDS: FIND CRITERIA PROVIDED BY USERS (IFFIND)

GET: ASSIGNED VALUE OF 6, USED IN ERROS (ERROR ROUTINE)

IRC: RETURN CODE FROM HOST LANGUAGE INTERFACE CALLS

OPEN: ASSIGNED VALUE OF 3, USED IN ERROS (ERROR ROUTINE)

LIBC: LIABILITY CLAIM AMOUNT RETURNED FROM M204 FILE

LOG: ASSIGNED VALUE OF 2, USED IN ERROS (ERROR ROUTINE)

LOGIN: M204 USER-ID AND PASSWORD (IFLOG)

LTYPE: LANGUAGE TYPE (FORTRAN, COBOL, PL/I, OR BAL) IN
THIS CASE, FORTRAN

NFINDS: NUMBER OF FINDS, USED AS TEST VALUE IN DO LOOP

NLIBC: THE NUMBER OF LIABILITY CLAIMS, USED TO COMPUTE
THE AVERAGE

PARMS: HOST LANGUAGE INTERFACE PARAMETERS

STRT: ASSIGNED VALUE OF 1, USED IN ERROS (ERROR ROUTINE)

TLIBC: TOTAL LIABILITY CLAIM

USERO: USER ZERO INPUT FOR HOST LANGUAGE INT EXECUTION

SUBROUTINES:
IFSTRT: STARTUP MODEL 204 HOST LANGUAGE INTERFACE THREAD

IFLOG: LOGIN TO M204
IFOPEN: OPEN MODEL 204 FILE

IFFIND: “FIND ALL RECORDS . . .’
IFCNT: 7COUNT RECORDS IN . . .7
IFGET: ’FOR EACH RECORD IN . . .7

IFFNSH: *LOGOUT”
ERROS: ERROR ROUTINE (M204 ERRORS)

ocNoNoNoNoNoNoNoNoNoNoNoNoNONONONONONONONONONONONONONONONONONON Q]

REAL ALIBC,LIBC,TLIBC

INTEGER PARMS(20) ,USERO(20), FINDS(20),EDITS(20)
INTEGER LOGIN(10),FILEID(10)

INTEGER IRC,LTYPE,NFINDS,NLIBC

INTEGER*2 STRT,LOG,OPEN,FIND,CNT,GET,FIN

DATA STRT /1/,

* LOG 72/,
* OPEN /3/,
* FIND 74/,
* CNT /5/,
* GET /6/,
* FIN 77/
DATA LTYPE/2/

C

C READ IN USER INPUT

C

READ(05,500) (PARMS(I),1=1,20)
READ(05,500) (USERO(1),1=1,20)
READ(05,500) (LOGIN(I),1=1,10)
READ(05,500) (FILEID(I),1=1,10)
READ(05,500) (FINDS(l),1=1,20)
READ(05,500) (EDITS(I),1=1,20)

IFAM1 Job Program Samples 357

OO0

ECHO INPUT PARAMETERS

WRITE(06,610)

WRITE(06,611) (PARMS(1),1=1,20)
WRITE(06,611) (USERO(I),1=1,20)
WRITE(06,611) (LOGIN(I),1=1,10)
WRITE(06,611) (FILEID(1),1=1,10)
WRITE(06,611) (FINDS(1),1=1,20)
WRITE(06,611) (EDITS(1),1=1,20)

START M204 THREAD
CALL IFSTRT(IRC,LTYPE,PARMS,USERO)
IF (IRC.EQ.0) GOTO 10
CALL ERROS(STRT, IRC)
LOGIN TO M204
10 CALL IFLOG(IRC,LOGIN)

IF (IRC.EQ.0) GOTO 20
CALL ERROS(LOG, IRC)

OPEN FILE
20 CALL IFOPEN(IRC,FILEID)
IF ((IRC.EQ. 0) _OR.
* (IRC.EQ.16) _OR.
* (IRC.EQ.32)) GOTO 30

CALL ERROS(OPEN, IRC)
FIND STATEMENT
30 CALL IFFIND(IRC,FINDS)
IF (IRC.EQ.0) GOTO 40
CALL ERROS(FIND, IRC)
COUNT THE NUMBER OF RECORDS FOUND
40 CALL IFCNT(IRC,NFINDS)
IF (IRC.EQ.0) GOTO 50
CALL ERROS(CNT, IRC)
CHECK TO SEE IF ANY RECORDS WERE FOUND
50 IF (NFINDS.GT.0) GOTO 60
WRITE(06,600)
STOP 999
60 WRITE(06,640) NFINDS
SIMULATION OF THE ”FOR EACH RECORD” LOOP

DO 110 1=1,NFINDS

358 Rocket Model 204 Host Language Interface Reference Manual

C ’GET” THE RECORDS FROM M204

c
CALL IFGET(IRC,LIBC,EDITS)
IF (IRC.EQ.0) GOTO 70
CALL ERROS(GET, IRC)
GOTO 110
c
C ADD THE LIBC TO TLIBC
c
70 TLIBC=TLIBC+LIBC
NLIBC=NLIBC+1
110 CONTINUE
c
C COMPUTE THE AVERAGE
c
ALIBC=TLIBC/NLIBC
WRITE(06,650) TLIBC,ALIBC
CALL IFFNSH(IRC)
IF (IRC.EQ.1000) GOTO 1000
c
C TERMINATE M204 THREAD
c
CALL ERROS(FIN, IRC)
STOP 1999
1000 STOP
500 FORMAT(20A4)
600 FORMAT(?1”,7//,” REQUEST ENDED 999: NO RECORDS FOUND®)
610 FORMAT(?1,” INPUT PARAMETERS”)
611 FORMAT(’ *,20A4)
640 FORMAT(?1”,/////,” NUMBER OF RECORDS ,17)
650 FORMAT(////,>TOTAL CLAIMS: *,F7.1,” AVERAGE CLAIM: *,F7.1)
END
c
c
C GLOSSARY:
Cc IERR: VECTOR OF SUBROUTINE NAMES; USED IN PRINTING ERROR
c MESSAGES
C MESSGE: TEXT RETURNED FORM M204 (1FGERR)
c IPRC: PREVIOUS RETURN CODE
Cc IRC: RETURN CODE FROM HLI CALLS
c ITYPE: VALUE OF STRT, LOG, OPEN, FIND, CNT, GET, OR FIN
c
C SUBROUTINES:
c
C IFGERR: GET TEXT OF RETURN CODE FROM M204
c
c

SUBROUTINE ERROS(ITYPE, IRC)
REAL*8 IERR(7),MESSGE(10)
INTEGER*2 ITYPE
DATA IERR/ZIFSTRT *,”IFLOG ”,”IFOPEN ~*,
* IFFIND ”,”IFCNT ”,”IFGET ”,”IFFNSH */
IPRC=IRC

IFAM1 Job Program Samples 359

C
C GET RETURN CODE MESSAGE TEXT AND ABEND 999

C
CALL IFGERR(IRC,MESSGE)
WRITE(06,600) IERR(ITYPE), IPRC,MESSGE

600 FORMAT(?1”,////,”BAD CALL:” ,A8,”RETURN CODE: ’,15,”: *,10A8)
STOP 999

END

/*

//LKED EXEC PGM=IEWL,PARM="LIST,XREF,LET,RENT”,

// COND=(5,LT,FORT)

//SYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE)

// DD DDNAME=SYSIN

//SYSLMOD DD DSN=LOCAL.M204. IFAM1_APPLIC,DISP=SHR

//SYSLIB DD DSN=SYS1.FORTLIB,DISP=SHR

//SYSUT1 DD UNIT=(SYSDA,SEP=(SYSLIN,SYSLMOD)),

// SPACE=(1024, (50,20))

//SYSOUT DD SYSOUT=C

//SYSPRINT DD SUSOUT=C

//0B DD DSN=LOCAL .M204_OBJECT,DISP=SHR

//SYSIN DD *
INCLUDE OB(IFIF10S)
NAME IFAMTEST(R)

Run the IFAM1 FORTRAN application using the following JCL:

//RUNIFAM1 JOB ,”RUNIFAM1~” ,MSGLEVEL=(1,1),MSGCLASS=C,CLASS=T
//*

//1FAML EXEC PGM=IFAMTEST

//*

//STEPLIB DD DSN=LOCAL .M204.I1FAM1.APPLIC,DISP=SHR
/7/ DD DSN=LOCAL .M204.LOAD,DISP=SHR
//FTO5F001 DD *

SYSOPT=144;

MAXBUF=2 ,MINBUF=2,SPCORE=10000, LAUDIT=7;
userid;password;

CLAIMS90;

CLAIM TYPE=L;SETTLEMENT DATE 1S BETWEEN 900100 AND 900631;END;
EDIT(SETTLEMENT AMOUNT) (F(4));

//CCAAUDIT DD SYSOUT=C

//CCAPRINT DD SYSOUT=C

//CCASNAP DD SYSOUT=C

//SYSUDUMP DD SYSOUT=C

//CCATEMP DD DISP=NEW,UNIT=SYSDA,SPACE=(TRK, (20)
//CCASTAT DD DSN=M204.CCASTAT,DISP=SHR
//SYSPRINT DD SYSOYT=C

//CLAIMS90 DD DSN=M204.CLAIMS90,DISP=SHR

//

Assembler example

This section provides a sample program written in Assembler to run in the
IFAM1 environment under z/OS using the Model 204 Host Language Interface.

360 Rocket Model 204 Host Language Interface Reference Manual

The sample Assembler program that is shown in Figure 1-6 can be run as
shown with the application code embedded in the z/OS job stream.

Using a claims file

The IFAM1 Assembler application program accesses a file that contains
insurance data, that is, a Model 204 data file named CLAIMS90, and uses the
information to determine the average settlement amount for all liability claims
settled in the first half of 1990. Liability claims are indicated by the field

name = value pair of CLAIM TYPE = L. The format of SETTLEMENT DATE is
YYMMDD.

IFAM1 Assembler example (z/OS)

Figure 1-6 shows an HLI application written for IFAM1 in Assembler which, with
the JCL that is shown in the job stream, runs under an z/OS operating system.

This application uses a single cursor IFSTRT thread.

Figure 1-6. Sample Assembler program (z/OS)

//JOBNAME JOB CLASS=A,MSGCLASS=A

//ASM EXEC PGM=1EV90,PARM="NODECK,OBJECT,XREF(SHORT)”,
// REGI0N=512K

//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR

//SYSUT1 DD SPACE=(CYL, (4,2)),UNIT=SYSDA

//SYSPRINT DD SYSOUT=A

//SYSPUNCH DD SYSOUT=A

//SYSLIN DD DSN=LOCAL .M204.0BJLIB(I1FAMT1),DISP=SHR
//SYSIN DD *
IFAMTL TITLE ”IFAM1 JOB”
RO EQU O

R1 EQU 1

R2 EQU 2

R3 EQU 3

R4 EQU 4

R5 EQU 5

R6 EQU 6

R7 EQU 7

RS EQU 8

RO EQU 9

RA EQU 10

RB EQU 11

RC EQU 12

RD EQU 13

RE EQU 14

RF EQU 15

IFAMT1 CSECT
ST™ RE,RC,12(RD) SAVE THEIR REGISTERS
LR RB,RF SET BASE REGISTER
USING AMT1,RB ESTABLISH ADDRESSABILITY

IFAM1 Job Program Samples 361

ST RD,SAVEAREA+4 STORE THEIR SAVEAREA POINTER

LA R2,SAVEAREA GET POINTER TO OUR SAVEAREA
ST R2,8(,RD) STORE OUR SAVEAREA POINTER
LR RD,R2 POINT TO OUR SAVEAREA

B R R R AR AR S R R R SRR R R R e R e R R R R SRR R R R R R e R S R R R S e R AR R AR

* MAIN PROCESSING LOOP

FTEAEAAXTEAIEAAXAAXXAAXAAXAXAAXAXAITXAAXAAITXAAFTAIAXAIAXAITXAAXAAITXxAddhITdxddhidxihdhiiik

MAIN DS OH INITIALIZATION AND CONNECT
MvC THRDNO(4) ,RESET INITIALIZE THREAD NUMBER
CALL IFSTRTN, (RETCODE,LANGIND,LOGON,MODEUP, THRDNO,OSCHNL),VL

L R7 ,RETCODE GET RETURN CODE

LTR R7,R7 DID WE GET A RETURN CODE ZERO

BNZ ENDIT NO, GO END IT

CALL 1FOPEN, (RETCODE,FILEDATA),VL OPEN FILE

L R7 ,RETCODE GET RETURN CODE

LTR R7,R7 NO, DID WE GET A RETURN CODE ZERO

BNZ TERM GO FINISH UP

CALL IFFIND, (RETCODE,SELECT),VL FIND M204 RECORDS

L R7 ,RETCODE GET RETURN CODE

LTR R7,R7 DID WE GET A RETURN CODE ZERO

BNZ TERM NO, GO CLOSE FILE AND FINISH
GETLOOP DS OH GET ALL RECORDS

CALL IFGET, (RETCODE,GETAREA,GETLIST),VL
CLC RETCODE ,ENDSET END OF FOUND SET = 2
BE TERM YES, EXIT
CALL IFPUT, (RETCODE,GETAREA,GETLIST),VL
TERM CALL IFFNSH, (RETCODE),VL CLOSE M204 CONNECTION

ENDIT L RD,SAVEAREA+4 RESTORE R13 TO THEIR SAVEAREA
ST R7,16(,RD) SET R15 TO RETURN CODE
LM RE,RC,12(RD) RESTORE THEIR REGISTERS
BR RE RETURN
EJECT

R e R o R e R R AR R R S R e R R SR S R R AR R R R e R R e R R AR R R e o e
* VARIABLES AND CONSTANTS
*

R o R e R R R R R R R R R R R R AR R R R R SR S R R S R R R R R AR R R R R AR R R S e e o e

SAVEAREA DS 18F IFAM REGISTER SAVE AREA
RETCODE DC F*0” MODEL 204 RETURN CODE AREA
LANGIND DC F2” MODEL 204 LANGUAGE IND AREA
MODEUP DC F>1” INDICATES UPDATE MODE
THRDNO DC F*0” THREAD NUMBER
RESET DC F*0” RESET THREAD NUMBER
IFERROR DC F>4” ERROR RETURN CODE FOR IFSTRTN
ENDSET DC F2” END OF FOUND SET (IFGET)
FILEDATA DC CL14°FILE CLAIMS90;” DATA FOR 1FOPEN
SELECT DC CL10”A=999;END;” DATA FOR I1FFIND
GETLIST DC CL5”DATA;” DATA FOR IFGET
GETAREA DS CL40 DATA AREA FOR IFGET
CHAN DC cLs” ~ CHANNEL NAME AREA
OSCHNL DC CL8” IFAMTEST” DEFAULT TEST CHANNEL NAME
LOGON DC CL11°USER1;PSW1;” M204 LOGON

END IFAMT1

362 Rocket Model 204 Host Language Interface Reference Manual

//*
//LKED
//
//SYSPRINT DD SYSOUT=A

//SYSLMOD DD DSN=LOCAL.M204.LOADLIB,DISP=SHR

XREF” ,REGION=512K

//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK, (15,10))
//CCA DD DSN=LOCAL .M204.0BJLI1B,DISP=SHR
//SYSLIN DD *

INCLUDE CCA(IFAMT1)
INCLUDE CCA(IFIF10S)
NAME 1FAMT1(R)

/*

SOUL (User Language) example

EXEC PGM=IEWL,PARM="LET,LIST,MAP,SIZE=

(256K, 64K),

The three programs (PL/l, FORTRAN, and Assembler) in the preceding
sections all use the same insurance file (that is, CLAIMS90) and the same HLI
functions to determine the average settlement amount for all liability claims

settled in the first half of 1990.

The SOUL solution is based on the same example as the sample PL/I,
FORTRAN, and Assembler programs in the preceding sections.

For each action, or Model 204 command, or SOUL statement on the left, the
column on the right shows the corresponding action of the HLI application,
which includes any HLI call. Note that the HLI application below uses a single

cursor IFSTRT thread.

SOUL solution

HLI application

Connect (dial the number and give the IFSTRT
Model 204 application ID)
Log in IFLOG
OPEN CLAIMS90 (and enter IFOPEN
password)
BEGIN IFFIND (with similar
LOCATE: criteria)
FD CLAIM TYPE = L
SETTLEMENT DATE IS BETWEEN -
900100 AND 900631
TALLY: IFCOUNT
COUNT RECORDS IN LOCATE (assigns the count to a

variable)

FR LOCATE

Loop

SUM: %TOTAL = %TOTAL + -

SETTLEMENT AMOUNT

IFGET assigns the SETTLEMENT
AMOUNT to a variable (and
code

computes the total)

IFAM1 Job Program Samples 363

SOUL solution HLI application

AVRG: Code performs computation
%AVG = %TOTAL/COUNT IN SUM

PRT: Code performs a print
PRINT %AVG function

END

CLOSE CLAIMS90 IFCLOSE

LOGOUT I FFNSH

DISCONNECT

Note: In addition to the functions listed, the HLI application must use IFGERR
for error processing, because the error messages cannot go to the terminal
user.

364 Rocket Model 204 Host Language Interface Reference Manual

Overview

IFAM2/IFAM4 Job Program
Samples

This appendix provides examples of IFAM2 and IFAM4 jobs, complete
with program code, which includes a multiple cursor IFSTRT thread

application. The sample programs illustrate the use of Host Language
Interface functions in the IFAM2 and IFAM4 processing environments.

For more information

Refer to Appendix for examples of HLI applications written in different
host languages and job setups that may be run in IFAM1. Refer to the
Rocket Model 204 Host Language Interface Programming Guide for
coding examples related to particular aspects of HLI processing.

Multiple cursor IFSTRT thread example

This section provides a sample program written in COBOL to run in the
IFAM2 environment under CMS using the Model 204 Host Language
Interface.

The COBOL program illustrates how to establish a multiple cursor
IFSTRT thread. The application opens two files, VEHICLES and
CLIENTS, and updates records in the CLIENTS file using data from the
VEHICLES file. See page B-7 for the sample output generated by the
execution of this program.

Note: The sample COBOL program in Figure can be compiled, linked,
and loaded with the CMS EXEC on page B-15. This same program

IFAM2/IFAM4 Job Program Samples 365

(with no changes) could be run in an z/OS or VSE operating system
environment by using the necessary JCL (which is not provided).

Refer to Chapter 2 and to the Rocket Model 204 Host Language Interface
Programming Guide for more information about multiple cursor IFSTRT
threads.

Figure B-1. Sample program: Multiple cursor IFSTRT thread

IDENTIFICATION DIVISION.
PROGRAM-ID. EX2
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. 1BM-4381.
OBJECT-COMPUTER. 1BM-4381.
DATA DIVISION.
WORKING-STORAGE SECTION.

FEAEAAXITAITXAAXTAXIXAAXAAIAXAAIAAITXAAXTXAIAXAAFThIdxAdxdhirdxihdhiixiidhikx

* SAMPLE PROGRAM WHICH UPDATES THE CLIENTS FILE USING
* DATA CALCULATED FROM THE VEHICLES FILE.
* THIS PROGRAM USES A MULTIPLE CURSOR IFSTRT THREAD
*
* FOR PURPOSES OF TESTING, YOU CAN LIMIT THIS TO THE FIRST 10
* POLICYHOLDERS IN THE CLIENTS FILE (USE VARIABLE LOOPCTR TO
* CONTROL THIS AND UNCOMMENT LOOPCTR CHECK) .
*
AEAAXAAXAXAAAAAXAAAXAAAAAXAAAAAXAAXAXAXAAAAXAXAAXAXAAAXAXAAAAXAXAAAKX
01 INTEGER-ARGS COMP SYNC.
05 STAT-IND PIC 9(5).
05 LANG-IND PIC 9(5) VALUE 2.

05 THRD-TYPE PIC 9(5) VALUE 2.
05 THRD-NAME PIC 9(5).
05 FETCH-DIRECTION PIC 9(5) VALUE 1.

01 CHAR-ARGS.
05 LOGIN PIC X(13) VALUE "USERO1;PASSW;™.
05 VEH-PARM PIC X(10) VALUE "VEHICLES;;".
05 CLIENT-PARM PIC X(9) VALUE "CLIENTS;;".
05 CHAN-NAME PIC X(9) VALUE "MSPIFM22;'.
05 IFGERR-MESSAGE PIC X(80) VALUE SPACES.
05 POL-FIND PIC X(6) VALUE "POLFD;".
05 POL-SET PIC X(9) VALUE "IN POLFD;".
05 POL-CURSOR PIC X(7) VALUE "POLCUR;™.
05 POL-FETCH-NAME PIC X(8) VALUE "POLFTCH;".
05 [IFUPDT-POL PIC X(7) VALUE "UPDPOL;™.

05 FIND-POLICY PIC X(39) VALUE
"IN CLIENTS FD RECTYPE=POLICYHOLDER;END;".

05 FIND-VEH PIC X(41) VALUE

"IN VEHICLES FD OWNER POLICY=%POLICY;END;".
05 POL-BUF.

10 OWN-POL PIC X(6) VALUE SPACES.

366 Rocket Model 204 Host Language Interface Reference Manual

01

01
01
01
01

01

05 FIND-VEH-EDIT PIC X(22) VALUE
"EDIT (%POLICY) (A(6));".

05 VEH-FIND PIC X(6) VALUE "VEHFD;".

05 VEH-SET PIC X(9) VALUE "IN VEHFD;".

05 VEH-CURSOR PIC X(7) VALUE "VEHCUR;".

05 VEH-FETCH-NAME PIC X(8) VALUE "VEHFTCH;".

05 EDIT-1 PIC X(24) VALUE

"EDIT (POLICY NO) (A(6)):".
05 EDIT-2 PIC X(30) VALUE
“EDIT (VEHICLE PREMIUM) (Z(8));".
05 EDIT-3 PIC X(29) VALUE
"EDIT (TOTAL PREMIUM) (Z(10));".
WORK-AREA.

05 PREM-AMT PIC 9(8) VALUE ZEROES.

05 TOTAL-PREM PIC 9(10) VALUE ZEROES.
CALLNAME PIC X(20).
DISPLAY-STAT-IND PIC 9(4).

LOOPCTR PIC 9(3) COMP-3 VALUE 0.
MORE-POL-FLAG PIC XXX VALUE "YES".

88 NO-MORE-POL VALUE ""NO".
MORE-VEH-FLAG PIC XXX VALUE "YES".

88 NO-MORE-VEH VALUE "NO™.

PROCEDURE DIVISION.
MAINLINE.
CALL "IFSTRTN"™ USING STAT-IND,

LANG-1IND,
LOGIN,

THRD-TYPE,
THRD-NAME,
CHAN-NAME .

MOVE "IFSTRTN™ TO CALLNAME.
PERFORM RC-CHECK.

CALL "IFOPEN" USING STAT-IND, VEH-PARM.
MOVE "IFOPEN" TO CALLNAME.
PERFORM RC-CHECK.

CALL "IFOPEN" USING STAT-IND, CLIENT-PARM.

MOVE "IFOPEN" TO CALLNAME.

PERFORM RC-CHECK.

CALL "IFFIND"™ USING STAT-IND, FIND-POLICY, POL-FIND.
MOVE "IFFIND-P'" TO CALLNAME.

PERFORM RC-CHECK.

CALL "IFOCUR"™ USING STAT-IND, POL-SET, POL-CURSOR.

IFAM2/IFAM4 Job Program Samples

367

MOVE " IFOCUR-P' TO CALLNAME.
PERFORM RC-CHECK.

GET-FIRST-POLICY.

CALL "IFFTCH™ USING STAT-IND, OWN-POL,
FETCH-DIRECTION, POL-CURSOR, EDIT-1,
POL-FETCH-NAME.

DISPLAY "POLNO RETRIEVED IS: " OWN-POL

IF STAT-IND EQUAL 2 THEN

MOVE "NO"™ TO MORE-POL-FLAG

ELSE

MOVE "IFFTCH-P1"™ TO CALLNAME
PERFORM RC-CHECK.

PERFORM UPDATE-POLICIES UNTIL NO-MORE-POL.

PERFORM M204-DI1SCONN.
STOP RUN.

FrRFIXAXX END OF MATNLINE C O D E xdxsx

RC-CHECK.

MOVE STAT-IND TO DISPLAY-STAT-IND.

IF STAT-IND NOT EQUAL O THEN
DISPLAY ™****** SERIOUS IFAM ERROR * x>
DISPLAY "I1FAM CALL: " CALLNAME ', RC: ™

DISPLAY-STAT-IND

CALL "IFGERR"™ USING STAT-IND, IFGERR-MESSAGE
DISPLAY "MESSAGE:" I1FGERR-MESSAGE
PERFORM M204-D1SCONN
STOP RUN.

M204-DISCONN.
DISPLAY "DISCONNECTING FROM M204 NOW™.
CALL "IFFNSH"™ USING STAT-IND.
IF STAT-IND NOT EQUAL 1000 THEN
MOVE STAT-IND TO DISPLAY-STAT-IND

DISPLAY "IFAM CALL: IFFNSH, RC: " DISPLAY-STAT-IND.

UPDATE-POLICIES.

ADD 1 TO LOOPCTR.

CALL "IFFIND™ USING STAT-IND, FIND-VEH, VEH-FIND,
OWN-POL, FIND-VEH-EDIT.

MOVE "IFFIND-V' TO CALLNAME.

PERFORM RC-CHECK.

CALL "IFOCUR™ USING STAT-IND, VEH-SET, VEH-CURSOR.

MOVE "IFOCUR-V' TO CALLNAME.

PERFORM RC-CHECK.

368 Rocket Model 204 Host Language Interface Reference Manual

*

* GET FIRST CORRESPONDING VEHICLE RECORD.
*
MOVE "YES"™ TO MORE-VEH-FLAG
CALL "IFFTCH™ USING STAT-IND, PREM-AMT, FETCH-DIRECTION,
VEH-CURSOR, EDIT-2, VEH-FETCH-NAME.
IF STAT-IND EQUAL 2 THEN
MOVE "NO™ TO MORE-VEH-FLAG
ELSE
MOVE "IFFTCH-V1"™ TO CALLNAME
PERFORM RC-CHECK.
MOVE ZEROES TO TOTAL-PREM.
PERFORM SUM-VEHICLES UNTIL NO-MORE-VEH.

CALL "IFCCUR™ USING STAT-IND, VEH-CURSOR.
MOVE "IFCCUR-V' TO CALLNAME.
PERFORM RC-CHECK.

*

UPDATE POLICYHOLDER RECORD WITH CALCULATED TOTAL

CALL "IFUPDT™ USING STAT-IND, TOTAL-PREM, POL-CURSOR,
EDIT-3, IFUPDT-POL.

MOVE "IFUPDT"™ TO CALLNAME.

PERFORM RC-CHECK.

DISPLAY "CALCULATED PREMIUM 1S:'" TOTAL-PREM

* GET NEXT POLICYHOLDER RECORD TO BE PROCESSED.

CALL "IFFTCH™ USING STAT-IND, OWN-POL, FETCH-DIRECTION,
POL-CURSOR, EDIT-1, POL-FETCH-NAME.
DISPLAY "POLNO RETRIEVED IS: " OWN-POL
IF STAT-IND EQUAL 2 THEN
MOVE "NO™ TO MORE-POL-FLAG
ELSE
MOVE "IFFTCH-P2"™ TO CALLNAME
PERFORM RC-CHECK.
IF LOOPCTR > 10 THEN MOVE "NO™ TO MORE-POL-FLAG.

SUM-VEHICLES.
COMPUTE TOTAL-PREM = TOTAL-PREM + PREM-AMT.

*

* GET NEXT VEHICLE RECORD FOR THIS POLICY
*
CALL "IFFTCH™ USING STAT-IND, PREM-AMT, FETCH-DIRECTION,
VEH-CURSOR, EDIT-2, VEH-FETCH-NAME.
IF STAT-IND EQUAL 2 THEN
MOVE ""NO"™ TO MORE-VEH-FLAG
ELSE

IFAM2/IFAM4 Job Program Samples 369

MOVE "IFFTCH-V2"™ TO CALLNAME
PERFORM RC-CHECK.

Sample output from program

The sample output in Figure B-2 is generated by executing the sample COBOL
program that starts in Figure B-1 on page 366 after it has been compiled,
linked, and link-edited using “CMS EXEC examples” on page 375.

The first line shows the system prompt at the CMS terminal (that is, Ready;).
The second line shows the typed user entry, which is the command to execute
the program (stored as EX2MCIN).

The output lines generated by the execution of the program display a policy
number and calculated premium value for each record that is updated in the
CLIENTS file.

Figure B-2. Sample program output: Multiple cursor IFSTRT thread

Ready;
ex2mcin
POLNO RETRIEVED 1S: 111111
CALCULATED PREMIUM 1S:0000000000
POLNO RETRIEVED 1S: 100340
CALCULATED PREMIUM 1S:0000000291
POLNO RETRIEVED 1S: 100642
CALCULATED PREMIUM 1S:0000000189
POLNO RETRIEVED 1S: 100037
CALCULATED PREMIUM 1S:0000000689
POLNO RETRIEVED 1S: 100944
CALCULATED PREMIUM 1S:0000001022
POLNO RETRIEVED 1S: 100060
CALCULATED PREMIUM 1S:0000000077
POLNO RETRIEVED 1S: 100774
CALCULATED PREMIUM 1S:0000000464
POLNO RETRIEVED IS: 100035
CALCULATED PREMIUM 1S:0000000801
POLNO RETRIEVED 1S: 100942
CALCULATED PREMIUM 1S:0000000214
POLNO RETRIEVED 1S: 100640
CALCULATED PREMIUM 1S:0000000343
POLNO RETRIEVED IS: 100338
CALCULATED PREMIUM 1S:0000000562
POLNO RETRIEVED IS: 100080
DISCONNECTING FROM M204 NOW

Multithreaded (single cursor) IFSTRT example

This section provides a sample program written in COBOL to run in the IFAM2
environment under CMS using the Model 204 Host Language Interface.

370 Rocket Model 204 Host Language Interface Reference Manual

The COBOL program establishes two single cursor IFSTRT threads and opens
a file on each thread (VEHICLES and CLIENTS). The application switches
between the threads to update records in the CLIENTS file using data from the
VEHICLES file.

This program modifies the database in a similar way as the example that uses
a multiple cursor IFSTRT thread in Figure B-1 on page 366; however, there are
differences in coding. See Figure B-4 on page 375 for the sample output
generated by the execution of this program.

Note: The sample COBOL program in Figure B-3 can be compiled, linked, and
loaded with the “CMS EXEC examples” on page 375. This same program (with
no changes) could be run in an z/OS or VSE operating system environment by
using the necessary JCL (which is not provided).

Figure B-3. Sample program: Multithreaded IFSTRT

IDENTIFICATION DIVISION.
PROGRAM-ID. EX2
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. 1BM-4381.
OBJECT-COMPUTER. 1BM-4381.
DATA DIVISION.
WORKING-STORAGE SECTION.

FEAIEAAXTAITXAAXAXTXAAXAAIAXAAITAITXAAXT XXX IXAFThIAdxArAdhirdxirdhiixhiihikx

* SAMPLE PROGRAM WHICH UPDATES THE CLIENTS FILE USING
* DATA CALCULATED FROM THE VEHICLES FILE.
* THIS PROGRAM USES TWO SINGLE CURSOR IFSTRT THREADS.
*
* FOR PURPOSES OF TESTING, YOU CAN LIMIT THIS TO THE FIRST 10
* POLICYHOLDERS IN THE CLIENTS FILE (USE VARIABLE LOOPCTR TO
* CONTROL THIS AND UNCOMMENT LOOPCTR CHECK).
*
AEAAXAAXXAAAAAXAAAXAXAAAAXAAAXAAXAAXAXAXAAAAXAXAAXAXAAAXAXAAAAXAXAAAKX
01 INTEGER-ARGS COMP SYNC.
05 STAT-IND PIC 9(5).
05 LANG-IND PIC 9(5) VALUE 2.
05 UPD-YES PIC 9(5) VALUE 1.
05 UPD-NO PIC 9(5) VALUE O.
05 CLIENT-THRD PIC 9(5).
05 VEH-THRD PIC 9(5).
05 OLD-THRD PIC 9(5).
01 CHAR-ARGS.
05 LOGIN PIC X(13) VALUE "USERO1;PASSW;™.
05 VEH-PARM PIC X(10) VALUE "VEHICLES;;".

05 CLIENT-PARM PIC X(9) VALUE "CLIENTS;;".
05 CHAN-NAME PIC X(9) VALUE "MSPIFM22;".
05 [IFGERR-MESSAGE PIC X(80) VALUE SPACES.

05 FIND-POLICY PIC X(25) VALUE
"RECTYPE=POLICYHOLDER;END;" .

IFAM2/IFAM4 Job Program Samples 371

05 FIND-VEH.
10 FILLER PIC X(13) VALUE "OWNER POLICY="".
10 OWN-POL PIC X(6) VALUE SPACES.
10 FILLER PIC X(5) VALUE ";END;™.

05 EDIT-1 PIC X(24) VALUE
"EDIT (POLICY NO) (A(6)):".

05 EDIT-2 PIC X(30) VALUE
“EDIT (VEHICLE PREMIUM) (Z(8));".

05 EDIT-3 PIC X(29) VALUE
"EDIT (TOTAL PREMIUM) (Z(10));".

01 WORK-AREA.
05 PREM-AMT PIC 9(8) VALUE ZEROES.
05 TOTAL-PREM PIC 9(10) VALUE ZEROES.

01 CALLNAME PIC X(8).
01 DISPLAY-STAT-IND PIC 9(4).
01 LOOPCTR PIC 9(3) COMP-3 VALUE O.
01 MORE-POL-FLAG PIC XXX VALUE "YES™".
88 NO-MORE-POL VALUE "NO™.
01 MORE-VEH-FLAG PIC XXX VALUE "YES™".
88 NO-MORE-VEH VALUE "NO™.
PROCEDURE DIVISION.
MAINLINE.
CALL "IFSTRTN'" USING STAT-IND,
LANG-1IND,
LOGIN,
UPD-NO,
VEH-THRD,
CHAN-NAME..

MOVE "IFSTRTN™ TO CALLNAME.
PERFORM RC-CHECK.

CALL "IFOPEN"™ USING STAT-IND, VEH-PARM.
MOVE "IFOPEN" TO CALLNAME.
PERFORM RC-CHECK.

CALL "IFSTRTN™ USING STAT-IND,
LANG-1IND,
LOGIN,
UPD-YES,
CLIENT-THRD,
CHAN-NAME..
MOVE "IFSTRTN"™ TO CALLNAME.
PERFORM RC-CHECK.

CALL "IFOPEN"™ USING STAT-IND, CLIENT-PARM.

MOVE "IFOPEN" TO CALLNAME.
PERFORM RC-CHECK.

372 Rocket Model 204 Host Language Interface Reference Manual

CALL "IFFIND™ USING STAT-IND, FIND-POLICY.
MOVE "IFFIND" TO CALLNAME.
PERFORM RC-CHECK.

GET-FIRST-POLICY.
CALL "IFGET'" USING STAT-IND, OWN-POL, EDIT-1.
DISPLAY "POLNO RETRIEVED IS: " OWN-POL
IF STAT-IND EQUAL 2 THEN
MOVE ''NO"™ TO MORE-POL-FLAG
ELSE
MOVE "IFGET-P1"™ TO CALLNAME
PERFORM RC-CHECK.

PERFORM UPDATE-POLICIES UNTIL NO-MORE-POL.

PERFORM M204-DISCONN.
STOP RUN.
FrRFIXAXX END OF MATNLINE C O D E xxsx

RC-CHECK.

MOVE STAT-IND TO DISPLAY-STAT-IND.

IF STAT-IND NOT EQUAL O THEN
DISPLAY "***#***x SERIOUS IFAM ERRQOR *#*xskn
DISPLAY "IFAM CALL: ' CALLNAME ", RC: ' DISPLAY-STAT-IND
CALL "IFGERR"™ USING STAT-IND, IFGERR-MESSAGE
DISPLAY "I1FGERR-MESSAGE"
PERFORM M204-D1SCONN
STOP RUN.

M204-DISCONN.
DISPLAY "DISCONNECTING FROM M204 NOW'.
CALL "IFFNSH"™ USING STAT-IND.
IF STAT-IND NOT EQUAL 1000 THEN
MOVE STAT-IND TO DISPLAY-STAT-IND
DISPLAY "IFAM CALL: IFFNSH, RC: " DISPLAY-STAT-IND.

UPDATE-POLICIES.
ADD 1 TO LOOPCTR.
CALL "IFSTHRD™ USING STAT-IND, VEH-THRD, OLD-THRD.
MOVE "IFSTHRD"™ TO CALLNAME.
PERFORM RC-CHECK.

CALL "IFFIND"™ USING STAT-IND, FIND-VEH.
MOVE "IFFIND" TO CALLNAME.
PERFORM RC-CHECK.

* GET FIRST CORRESPONDING VEHICLE RECORD.

MOVE "YES'™ TO MORE-VEH-FLAG

IFAM2/IFAM4 Job Program Samples 373

CALL "IFGET'"™ USING STAT-IND, PREM-AMT, EDIT-2.
IF STAT-IND EQUAL 2 THEN
MOVE ''NO"™ TO MORE-VEH-FLAG
ELSE
MOVE "IFGET-V1"™ TO CALLNAME
PERFORM RC-CHECK.
MOVE ZEROES TO TOTAL-PREM.
PERFORM SUM-VEHICLES UNTIL NO-MORE-VEH.

* SWITCH BACK TO CLIENTS THREAD AND POLICYHOLDER RECORD

CALL "IFSTHRD™ USING STAT-IND, CLIENT-THRD, OLD-THRD.
MOVE "IFSTHRD"™ TO CALLNAME.
PERFORM RC-CHECK.

* UPDATE POLICYHOLDER RECORD WITH CALCULATED TOTAL

CALL "IFPUT' USING STAT-IND, TOTAL-PREM, EDIT-3.
MOVE "IFPUT" TO CALLNAME.

PERFORM RC-CHECK.

DISPLAY "CALCULATED PREMIUM 1S:' TOTAL-PREM

* GET NEXT POLICYHOLDER RECORD TO BE PROCESSED.

CALL "IFGET'" USING STAT-IND, OWN-POL, EDIT-1.
DISPLAY "POLNO RETRIEVED IS: "™ OWN-POL
IF STAT-IND EQUAL 2 THEN
MOVE ''NO™ TO MORE-POL-FLAG
ELSE
MOVE "IFGET-P2" TO CALLNAME
PERFORM RC-CHECK.
IF LOOPCTR > 10 THEN MOVE "NO™ TO MORE-POL-FLAG.

SUM-VEHICLES.
COMPUTE TOTAL-PREM = TOTAL-PREM + PREM-AMT.

*

* GET NEXT VEHICLE RECORD FOR THIS POLICY
*
CALL "IFGET'" USING STAT-IND, PREM-AMT, EDIT-2.
IF STAT-IND EQUAL 2 THEN
MOVE ''NO"™ TO MORE-VEH-FLAG
ELSE
MOVE "IFGET-V2" TO CALLNAME
PERFORM RC-CHECK.

Sample output from program

The sample outputin Figure B-4 is generated by executing the sample COBOL
program that starts in Figure B-3 on page 371 after it has been compiled,

374 Rocket Model 204 Host Language Interface Reference Manual

linked, and link-edited using the CMS EXEC that is shown in Figure B-5 on
page 376.

The first line shows the system prompt at the CMS terminal (that is, Ready;).
The second line shows the typed user entry, which is the command to execute
the program (stored as EX2MCIN).

The output lines generated by the execution of the program display a policy
number and calculated premium value for each record that is updated in the
CLIENTS file.

Figure B-4. Sample program output: Multithreaded IFSTRT

Ready;
ex2ifm2
POLNO RETRIEVED 1S: 100340
CALCULATED PREMIUM 1S:0000000291
POLNO RETRIEVED 1S: 100642
CALCULATED PREMIUM 1S:0000000189
POLNO RETRIEVED 1S: 100037
CALCULATED PREMIUM 1S:0000000689
POLNO RETRIEVED 1S: 100944
CALCULATED PREMIUM 1S:0000001022
POLNO RETRIEVED 1S: 100060
CALCULATED PREMIUM 1S:0000000077
POLNO RETRIEVED 1S: 100774
CALCULATED PREMIUM 1S:0000000464
POLNO RETRIEVED 1S: 100035
CALCULATED PREMIUM 1S:0000000801
POLNO RETRIEVED 1S: 100942
CALCULATED PREMIUM 1S:0000000214
POLNO RETRIEVED 1S: 100640
CALCULATED PREMIUM 1S:0000000343
POLNO RETRIEVED 1S: 100338
CALCULATED PREMIUM 1S:0000000562
POLNO RETRIEVED 1S: 100080
CALCULATED PREMIUM 1S:0000000111
POLNO RETRIEVED 1S: 100584
DISCONNECTING FROM M204 NOW

CMS EXEC examples

Figure B-5 and Figure B-6 show sample EXECs that can be used to compile,
link, and run an HLI application program in the IFAM2 environment under CMS.

Note that these EXECs can be used with either of the sample IFAM2 COBOL
applications in Figure B-1 on page 366 or Figure B-3 on page 371.

Example of an EXEC that compiles and links the program

Figure B-5 shows an EXEC that compiles, links, and link-edits an IFAM2
application running under CMS. The EXEC prompts the user for the name of

IFAM2/IFAM4 Job Program Samples 375

the COBOL IFAM2 program that is to be compiled and linked. It then loads the
program.

Note that M204IFAM TXTLIB must be available on an accessed disk to run this
EXEC. See Figure B-6 on page 376 for an example of the M204IFAM EXEC,
which must be accessible on the machine. Note that the name of COBOL
TXTLIBs might vary.

Figure B-5. EXEC to compile, link, and link-edit IFAM2 program (CMS)

/* Exec to compile and link an IFAM2 program */
trace off

address command

parse upper arg pgmname

say “Compiling program now, pgm =’
>COBOL” pgmname

say ’rc =’ rc

pgmname

if rc = 0 then do
say ’Loading program now”
GLOBAL TXTLIB COBOLVS COBOLIBVS M204I1FAM”
>LOAD” pgmname ”IFCM”
end
else
exit rc
say rc =7 rc
if rc = 0 then do
say "'Gen’ing module now"
GENMOD” pgmname
end
say ~

rc =7 rc

exit

Example of M204IFAM EXEC that must be accessible

Figure B-6 shows an EXEC that starts an IFAM2 COBOL program running in
the user machine. The M204IFAM EXEC is required to assign the channel
name to the user ID.

The EXEC assumes that an IFAM2 COBOL program has previously been
compiled, linked, and loaded, as is done, for example, with the EXEC Figure B-
5 on page 376.

Figure B-6. Sample EXEC: M204IFAM (CMS)

/* REXX program to establish connection*/
/* to M204 Online */
trace off
parse upper arg channel
if channel = MQFIFAMC” then
push ”DEVCHAN~

376 Rocket Model 204 Host Language Interface Reference Manual

else
push ”USERID1”
exit O

Compiled IFAM on a single cursor IFSTRT thread

This section provides a sample program written in COBOL to run in the IFAM2
environment using the Model 204 Host Language Interface.

The COBOL program illustrates how to use Compiled IFAM calls on a single
cursor IFSTRT thread.

Note: The sample COBOL program in Figure could be run in an z/OS, VSE,
or CMS operating system environment by using the necessary JCL or EXECs
(which are not provided).

Refer to Chapter 5 and to the Rocket Model 204 Host Language Interface
Programming Guide for more information about compiled IFAM.

Figure B-7. Sample program: Compiled IFAM

IDENTIFICATION DIVISION.
PROGRAM-ID.

IFAMTEST .
AUTHOR.

JOE ZEE.
DATE-WRITTEN.

MAY 15, 1990.
*
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT REPORT-FILE ASSIGN TO UT-S-REPORT.

*

DATA DIVISION.

FILE SECTION.

FD REPORT-FILE
LABEL RECORDS ARE OMITTED
BLOCK CONTAINS O RECORDS
DATA RECORD 1S OUT-BUFFER.

01 OUT-BUFFER PIC X(133).

*

WORK ING-STORAGE SECTION.

01 INTEGER-CALL-ARGS COMP SYNC.
05 STATUS-IND PIC 9(5).
05 IFCOUNT-COUNT PIC 9(5).
05 LANGUAGE-IND PIC 9(5) VALUE 2.
05 READ-IND PIC 9(5) VALUE O.
05 UPDT-IND PIC 9(5) VALUE 1.
05 THRD1 PIC 9(5).

01 STRING-CALL-ARGS.

IFAM2/IFAM4 Job Program Samples 377

05
05
05
05
05
05
05

05

05

05

05

05

05

05
05

05
05
05

*

M204-ERR-MESSAGE PIC X(80) VALUE SPACES.

ERROR-FUNCTION PIC X(8).

IFSTRT-LOGIN PIC X(20) VALUE
""'SUPERKLUGE ; PIGFLOUR; ™.

I FOPEN-F ILE-PARM PIC X(10) VALUE
"CLAIMS80;;".

I FFIND-NAME PIC X(6) VALUE
"FIND1;".

IFFIND-SPEC PIC X(13) VALUE
"KEY1=ZEE;END;".

IFFIND-SPEC-1 PIC X(14) VALUE
"KEY1=%KEY ;END;".

IFFIND-SPEC-2 PIC X(18) VALUE
"EDIT(%KEY) (A(3));".

I FGET-NAME-1 PIC X(5) VALUE
“GET1;".

I FGET-NAME-2 PIC X(5) VALUE
"GET2;".

IFGET-EDIT-SPEC-1 PIC X(28) VALUE
"EDIT(KEY1,FORD) (A(3),A(5));".
IFGET-EDIT-SPEC-2 PIC X(19) VALUE
"EDIT(FORD) (A(21));:".

I FGET-SEQUENCE PIC X(17) VALUE

"IN ORDER BY NORD;".

IFFIND-DATA PIC X(3) VALUE "UNO".
IFGET-FIELDS-1.

10 IFGET-KEY PIC X(3) VALUE SPACES.
10 IFGET-FORD PIC X(5) VALUE SPACES.
IFGET-FIELDS-2 PIC X(21) VALUE SPACES.
IFGET-DUM-1 PIC X VALUE ";".
IFGET-DUM-2 PIC X VALUE ";".

PROCEDURE DIVISION.

Bk o e o o e R R R R R R R R AR R R R e S R R R S e R R R R AR AR R R R R R R AR R R R

*

* THIS MODEL IS A SAMPLE IFAM2 (OR IFAM4) COBOL PROGRAM *

*

B o o e e R o R R R R AR R SRR R R R R R R AR R R R SR R R AR AR R R R R e R e

MAIN-ROUTINE.

*

INITIALIZATION.
* OPEN OUTPUT REPORT-FILE.
CALL "IFSTRT"™ USING STATUS-IND, LANGUAGE-IND,

IFSTRT-LOGIN, UPDT-IND, THRD1.

DISPLAY "IFSTRT RETCODE: " STATUS-IND.
IF STATUS-IND IS NOT EQUAL ZERO

*

MOVE "IFSTRT " TO ERROR-FUNCTION
GO TO ERROR-ROUTINE.

PROCESS-1.
CALL "IFOPEN"™ USING STATUS-IND, IFOPEN-FILE-PARM.

378 Rocket Model 204 Host Language Interface Reference Manual

DISPLAY "IFOPEN RETCODE: " STATUS-IND.

IF STATUS-IND IS NOT EQUAL ZERO AND
STATUS-IND 1S NOT EQUAL TO 16 AND
STATUS-IND 1S NOT EQUAL TO 32
MOVE "IFOPEN " TO ERROR-FUNCTION
GO TO ERROR-ROUTINE.

CALL "IFFIND"™ USING STATUS-IND, IFFIND-SPEC.
DISPLAY "IFFIND RETCODE: " STATUS-IND.
IF STATUS-IND NOT EQUAL ZERO

MOVE "IFFIND " TO ERROR-FUNCTION

GO TO ERROR-ROUTINE.

CALL "IFCOUNT"™ USING STATUS-IND, IFCOUNT-COUNT.
DISPLAY "IFCOUNT RETCODE: " STATUS-IND IFCOUNT-COUNT.
IF STATUS-IND NOT EQUAL ZERO

MOVE "IFCOUNT " TO ERROR-FUNCTION

GO TO ERROR-ROUTINE.
IF IFCOUNT-COUNT EQUAL ZERO

GO TO PROCESS-2.

CALL "IFGETC"™ USING STATUS-IND, IFGET-EDIT-SPEC-2,
IFGET-NAME-2.

DISPLAY "IFGETC RETCODE: " STATUS-IND.

IF STATUS-IND NOT EQUAL ZERO
MOVE "IFGETC " TO ERROR-FUNCTION
GO TO ERROR-ROUTINE.

PERFORM IFGET-1 THRU IFGET-END-1 IFCOUNT-COUNT TIMES.

*

IFGET-1.
*

CALL "IFGETE™ USING STATUS-IND, IFGET-FIELDS-2,
IFGET-NAME-2.

DISPLAY "I1FGETE RETCODE: " STATUS-IND.

IF STATUS-IND NOT EQUAL ZERO
MOVE "IFGETE " TO ERROR-FUNCTION
GO TO ERROR-ROUTINE.

*

* PROCESS FIELDS RETRIEVED BY IFGET
*
IFGET-END-1.
EXIT.
*
PROCESS-2.
CALL "IFFIND™ USING STATUS-IND, IFFIND-SPEC-1,
IFFIND-NAME, IFFIND-DATA, IFFIND-SPEC-2.
DISPLAY "I1FFIND RETCODE: " STATUS-IND.
IF STATUS-IND NOT EQUAL ZERO
MOVE "IFFIND " TO ERROR-FUNCTION
GO TO ERROR-ROUTINE.

CALL "IFCOUNT™ USING STATUS-IND, IFCOUNT-COUNT.

IFAM2/IFAM4 Job Program Samples 379

DISPLAY "I1FCOUNT RETCODE: ' STATUS-IND IFCOUNT-COUNT.
IF STATUS-IND NOT EQUAL ZERO

MOVE "IFCOUNT " TO ERROR-FUNCTION

GO TO ERROR-ROUTINE.
IF IFCOUNT-COUNT EQUAL ZERO

GO TO TERMINATION.

PERFORM IFGET-2 THRU IFGET-END-2 IFCOUNT-COUNT TIMES.
GO TO TERMINATION.
*
IFGET-2.

CALL "IFGET' USING STATUS-IND, IFGET-FIELDS-1,
IFGET-EDIT-SPEC-1, IFGET-NAME-1, IFGET-DUM-1,
IFGET-DUM-2, 1FGET-SEQUENCE.

DISPLAY "I1FGET RETCODE: " STATUS-IND.

IF STATUS-IND NOT EQUAL ZERO
MOVE "IFGET ' TO ERROR-FUNCTION
GO TO ERROR-ROUTINE.

*

* PROCESS FIELDS RETRIEVED BY IFGET

*

IFGET-END-2.

EXIT.
*

ERROR-ROUTINE.

DISPLAY "ERROR ENCOUNTERED WITH FUNCTION: " ERROR-FUNCTION
", WITH A RETURN CODE OF: "™ STATUS-IND.

CALL "IFGERR™ USING STATUS-IND M204-ERR-MESSAGE.
DISPLAY '"'M204 ERROR MESSAGE = " M204-ERR-MESSAGE.

*

TERMINATION.
CALL ™"IFFNSH™ USING STATUS-IND.
DISPLAY "I1FFNSH RETCODE: " STATUS-IND.
STOP RUN.
/*

IFDIAL thread example (z/OS)

This section provides a sample program written in COBOL to run in the IFAM2
environment under z/OS or CMS using the Model 204 Host Language
Interface.

The COBOL program illustrates how to establish an IFDIAL connection and
how to send SOUL commands and statements to the Model 204 region.

The sample COBOL program in Figure B-8 can be run as shown with the
application code embedded in the z/OS job stream.

Note: A similarly structured COBOL program that uses an IFDIAL connection
in IFAM2 is compiled and linked as program IFAM2UL to run in CMS using
Figure B-5 on page 376 and Figure B-6 on page 376.

380 Rocket Model 204 Host Language Interface Reference Manual

Refer to Chapter 2 and to the Rocket Model 204 Host Language Interface
Programming Guide for more information about IFDIAL threads.
Example of a COBOL program using IFDIAL (z/OS)

Figure B-8 shows an HLI program written in COBOL, which, with the JCL that
is shown in the job stream, runs in IFAM2 under an z/OS operating system.
Note that this is an example of an IFDIAL application.

Figure B-8. Sample Program: IFDIAL Thread (z/OS)

//CPLLKGO EXEC COBUCLG,

// PARM.COB="LOAD,NOSEQ,APOST ",
// REGION.LKED=200K,
// PARM.LKED="LIST,LET,S1ZE=(192K,100K) ,MAP” ,REGION, GO=64K

//COB_SYSIN DD *
IDENTIFICATION DIVISION.

PROGRAM-ID. CRAMDIAL.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL .
SELECT INPUT-FILE ASSIGN TO UT-S-INFILE.
SELECT OUTPUT-FILE ASSIGN TO UT-S-OUTFILE.

DATA DIVISION.

FILE SECTION.
FD INPUT-FILE LABEL RECORDS ARE OMITTED
DATA RECORD IS INPUT-REC.
FD OUTPUT-FILE LABEL RECORDS ARE OMITTED
DATA RECORD IS OUTPUT-BUFFER.
01 INPUT-REC PIC X(80).

WORKING-STORAGE SECTION.
01 FULL-WORDS COMP SYNC.

02 ERR PIC 9(5).
02 CBL-IND PIC 9(5) VALUE 2.
02 READ-ERR PIC 9(5).
02 WRITE-ERR PIC 9(5).
01 IFAM-ARGUMENT-STRINGS.
02 FROM-M204 PIC X(256) VALUE SPACES.
02 TO-M204 PIC X(256) VALUE SPACES.

02 M204-ERR-MSG PIC X(80) VALUE SPACES.
01 OUT-BUFFER PIC X(256) VALUE SPACES.
PROCEDURE DIVISION.
OPEN-FILES-ROUTINE.
OPEN INPUT INPUT-FILE.
DISPLAY ~%%% TEST OF CRAM/USER LANGUAGE INTERFACE”.
CALL ~IFDIAL” USING ERR CBL-IND.
IF ERR NOT = O
DISPLAY ~%%% IFDIAL FAILED ” ERR
GO TO END-ROUTINE.
MVE SPACES TO FROM-M204, TO-M204.
READ-FILE.
READ INPUT-FILE INTO TO-M204 AT END GO TO END-ROUTINE.

IFAM2/IFAM4 Job Program Samples 381

SEND-LINE.

CALL IFWRITE”> USING WRITE-ERR, TO-M204.

IF WRITE-ERR = 2 OR 12
GO TO PRINT-FILE.

IF WRITE-ERR = 1
GO TO READ-FILE.

DISPLAY ~%%% IFWRITE FAILED > WRITE-ERR.
GO TO END-ROUTINE.

PRINT-FILE.
MOVE SPACES TO FROM-M204.
CALL “IFREAD” USING READ-ERR, FROM-M204.
IF READ-ERR =1
WRITE OUT-BUFFER FROM FROM-M204
GO TO TEST-WRITE-STATUS.
IF READ-ERR = 12
GO TO TEST-WRITE-STATUS.

IF READ-STAT = 2
WRITE OUT-BUFFER FROM FROM-M204
GO TO PRINT-FILE.
DISPLAY ~%%% IFREAD FAILED *~ READ-ERR.
GO TO END-ROUTINE.

TEST-WRITE-STATUS.
IF WRITE-ERR = 12
GO TO SEND-LINE
ELSE
GO TO READ-FILE.
END-ROUTINE.
CLOSE INPUT-FILE.
CALL ”IFHNGUP” USING ERR.
IF ERR NOT = O
DISPLAY ~%%% IFHNGUP FAILED * ERR
PERFORM ERROR-ROUTINE.
STOP RUN.

//LKED.OBDD DSN=M204_.0BJECT,DISP=SHR
//LKED.SYSINDD *

INCLUDE OB(IFIF)
//G0.SYSUDUMPDD SYSOUT=A
//G0.SYSOUTDD SYSOUT=A
//GO.OUTFILEDD SYSOUT=A
//GO . INFILEDD *

LOGIN TESTER2

PASWRD2

OPEN FOOTBALL

ACCESS

BEGIN

%A=$USER

%B=$TIME

PRINT %A AT 30 AND %B AT 60
END

BEGIN

382 Rocket Model 204 Host Language Interface Reference Manual

SEARCH: FIND ALL RECORDS FOR WHICH AGE IS GREATER THAN 30
REPORT: FOR EACH RECORD IN SEARCH
PRINT “PLAYER” AND NAME AND *1S” AND AGE -
AND ”YEARS OLD.’
PRINT “HIS TEAMMATES ARE;” AT 5
REFER: NOTE TEAM
MATCH: FIND ALL RECORDS FOR WHICH TEAM=VALUE IN REFER
EVERY: FOR EACH RECORD IN MATCH
PRINT FIRST.NAME AT 10 AND NAME
SKIP 1 LINE
END FOR
END FOR
FINISH: PRINT “END OF REPORT?
END
/*

IFDIAL thread example (CMS)

Figure B-9 and Figure B-10 on page 384 show sample EXECs that can be used
to compile and execute an HLI application program in the IFAM2 environment
under CMS.

Note: These EXECs might be used with a COBOL program named IFAM2UL
(not shown) that uses an IFDIAL connection in a manner similar to the program
in Figure B-7 on page 377. See “Sample input to IFAM2UL program” on

page 386 and “Sample output from IFAM2UL program” on page 386 that might
be used for IFAM2UL.

Example of an EXEC that compiles, links, and loads the program

Figure B-9 shows an EXEC, IFAM2LNK, that compiles, links, and loads an
IFAM2 application running under CMS. IFAM2LNK prompts the user for the
name of the COBOL IFAM2 program that is to be compiled and linked. It then
loads the program.

Note that M204IFAM TXTLIB must be available on an accessed disk to run this
EXEC. See Figure B-6 on page 376 for an example of the M204IFAM EXEC
that must be accessible on the machine.

Figure B-9. Example of EXEC to compile and link IFAM2 program (CMS)

&CONTROL OFF NOMSG

* USE THIS EXEC TO COMPILE, LINK, LOAD A COBOL IFAM2 PROGRAM
*

&ERROR &CONTINUE

&IF &INDEX EQ O &GOTO -ASKPGM

&BEGTYPE ALL

ERROR: ENTER PARMS ONLY AS PROMPTED.

&END

&EXIT 999

&EXIT O

IFAM2/IFAM4 Job Program Samples 383

*

-ASKPGM &TYPE ENTER NAME OF THE 1FAM2 PROGRAM TO BE COMPILED
LINKED

&READ VARS &PGM

&IF X&PGM EQ X &GOTO -ASKPGM

&IF X&PGM EQ XHX &GOTO -HALT

*

COBOL &PGM

GLOBAL TXTLIB M2041FAM COBOLVS COBLIBVS
LOAD &PGM I1FCM

GENMOD &PGM

&TYPE EXEC COMPLETE ... GOODBYE

&EXIT O

*

-HALT &TYPE EXEC HALTED BY USER REQUEST.
&EXIT 998

Example of an EXEC that runs the program

Figure B-10 shows an EXEC that starts an IFAM2 COBOL program running in
the user machine.

The EXEC assumes that an IFAM2 COBOL program named IFAM2UL has
previously been compiled, linked, and stored as IFAM2UL MODULE. IFAM2UL
designates input file INPUT and output file REPORT.

Note that the Model 204 service machine must be up and running and have
IODEV=39 available for the IFDIAL communication.

Figure B-10. Example of EXEC to run IFAM2 program (CMS)

&CONTROL OFF
SAMPLE IFAM2 EXEC

THIS EXEC 1S USED TO INITIATE THE START OF
AN 1FAM2 IFDIAL PROGRAM

CLEAR EXISTING NON-PERMANENT FILEDEFS

ILEDEF * CLEAR

¥ OF T OX & ok % X X % %

DEFINE THE FILES NEEDED BY THE COBOL PROGRAM
*

FILEDEF REPORT DISK IFAM2UL REPORT A

FILEDEF INPUT DISK IFAM2UL INPUT A

*

IFAM2UL

*

&TYPE 1FAM2 PROGRAM ENDED
&TYPE LOOK FOR OUTPUT IN FILE CALLED *1FAM2UL” “REPORT’

384 Rocket Model 204 Host Language Interface Reference Manual

Example of the M204IFAM EXEC that must be accessible

Figure B-11 on page 385 shows an example of M204IFAM EXEC that must be
accessible to the IFAM2 COBOL program running in the user machine.
Model 204 calls this EXEC when the IFDIAL call is encountered in the program.

The EXEC provides Model 204 with the ID of the service machine and the
desired communication method, IUCV. Input into this EXEC is the channel
name that could be used by the EXEC author to determine the proper service
machine ID in a multiservice machine environment.

Note that this sample does not use the channel information, but assumes that
the service machine ID is M204PROD.

Figure B-11. Example of M204IFAM EXEC for IFAM2 program (CMS)

&CONTROL OFF
M204 SAMPLE 1FAM INTERFACE

THIS EXEC PROCEDURE 1S PROVIDED AS A SAMPLE TO AID IN THE
CREATION OF A TAILORED IFAM INTERFACE TO MODEL 204 FOR A
SPECIFIC INSTALLATION.

THE SINGLE PARAMETER TO THE M2041FAM EXEC 1S THE CHANNEL
NAME TO WHICH A CONNECTION IS BEING REQUESTED BY THE
APPLICATION PROGRAM

ook % X X % ok % X

&CHANNEL = &1

* ESTABLISH DEFAULT VALUES

&TARGET = IDSERV

* TO ALLOW THE CONNECTION TO BE ATTEMPTED, THE EXEC MUST STACK
* A SINGLE LINE AND EXIT WITH A RETURN CODE OF ZERO.

* THE FIRST WORD OF THE LINE (&TARGET) IS THE USERID OF THE

* VIRTUAL MACHINE WITH WHICH COMMUNICATION IS NEEDED.

* OPTIONALLY, THE SECOND WORD (TYPE) CAN BE lUCV (USE 1UCV

* ONLY), OR IUCVVMCF (WHICH USES 1UCV)

* JTUCVVMCF IS THE DEFAULT.

-ALLOW

&STACK LIFO &TARGET TYPE
&EXIT O

* TO REFUSE THE CONNECTION ATTEMPT REQUEST, THE EXEC MUST EXIT
* WITH A NON-ZERO RETURN CODE

-REFUSE
&EXIT 1

IFAM2/IFAM4 Job Program Samples 385

Sample input to IFAM2UL program

The following sample input file, INPUT, is a SOUL request that is invoked by the
IFAM2UL program (not shown, which is referenced in the CMS EXEC Figure
B-11 on page 385.

LOGON FRED

FREDPSWD

OPEN CLIENTS

BEGIN

PRINT *REPORT STARTED?
SKIP 1 LINE

PRINT “FIRST LINE”

END

CLOSE CLIENTS

LOGOUT

Sample output from IFAM2UL program

The following sample output, REPORT, is generated by the IFAM2UL program
(not shown), which is referenced in Figure B-11 on page 385. Note that the
report output is based on the INPUT file, shown in the previous section “Sample
input to IFAM2UL program”.

*** M204.0347: PASSWORD
*** M204.0353: FRED FRED LOGIN 90 MAY 17 14.14

*** WELCOME TO PRODUCTION M204 SYSTEM ***

*** M204.0620: FILE CLIENTS OPENED -- NO UPDATES ALLOWED
REPORT STARTED

FIRST LINE

*** M204.0608: FILE CLOSED: CLIENTS

*** M204.0604: CLOSING DEFAULT, USER MUST ESTABLISH NEW
DEFAULT

386 Rocket Model 204 Host Language Interface Reference Manual

Index

Symbols BINARY numeric field type 91, 249, 294, 309
binary zeroes, input string 123, 148, 329, 330
$CURFILE function, SOUL 173, 241 buffer size, CRAM 128, 131
$CURREC function, SOUL 263
$UPDATE function, SOUL 90, 173, 241 C
%variables, flushing 174
C programs
Numerics SQL processing enhancements 162
call function level
31-bit addressing 3 file or group 66
record set 67 to 69
A single record 69 to 71
system 65

transaction 66
call syntax 82
call VERB, host language 53
CCA job control statements
in IFAM1 31
in IFAM4 45
CCAIN job control statements
in IFAM1 272 t0 273

ABEND

forcing an 49

program termination 37

return codes 48, 340
abend handling, under CICS 41, 85
account, Model 204 user 299, 303
activating an IFSTRT thread 288
AD line, Model 204 journal 156

adding in IFAM4 47
to a file, a record 290 CCATEMP pages
freeing 174

to a list, records 243, 245

to a record, fields 165, 249, 308
alias call name 54, 73, 82
ALTIODEV, Model 204 User 0 parameter 296
ALTIODEV, Model 204 User 0 parameter 272
APATTACH program, in IFAM4 48
application program files

in IFAM1 32

in IFAM4 48
application program parameters, in IFAM4 48
AT-MOST-ONE violation 294, 309
attention interrupt signal 86
attribute, field 126, 250
audit trail, Model 204

in IFAM4 46

return count 112

using 275, 280
changing field values 327
channel names, in IFAM2 34,59, 128, 131, 300, 304
character string parameters 55, 57, 59, 60, 89
checkpoint facility, Model 204 99
Checkpoints

taken between update units 101
CICFG configuration, under CICS 40
CICs

abend handling 85

application programs 40

calls 20, 85,114

pseudo conversational processing 39

teleprocessing 2, 39

using 180
CLEAR LIST statement, SOUL 108, 259
clearing a file 209

B closing a cursor 5
_ . closing a file or group 311
backing out a transaction 87 CMIF interface module, in IFAM2 37

batch mode operation 2

Index 387

CMS

running under 2, 30 to 31, 36 to 39, 349,

37510376, 383 to 386

sample EXEC files 349
COBOL names 73
coding conventions

Assembler language 60

COBOL language 56

FORTRAN language 58

other languages 61

Pascal/VS language 60

PL/I language 58 to 59
coding guidelines, general 53 to 56
command-level program, under CICS 40
commit

transaction 111

update unit 109
COMMIT RELEASE statement, SOUL 111
Common System Area, see CSA
compilations

discarding 105

flushing 174

naming 72
Compiled IFAM facility 72, 335
compile-only call 73
completion return code (RETCODE) 56, 334 to 340
Conversational Monitor System, see CMS
COUNT OCCURRENCES statement, SOUL 1186,

224

counting

occurrences of a field 115, 223

records 112, 158
CPSORT checkpointing 179, 300, 304
CPTO, Model 204 User 0 parameter 102
CPTQ, Model 204 User 0 parameter 102
CRAM

buffer size 128, 131

errors 129, 132

resources 41, 85

using 33, 35, 128, 131, 304
creating

a found set 158, 167, 176, 189

a new record 290
Cross Region Access Method, see CRAM
CSA

addressable area, under CICS 41
CURPRIV parameter, Model 204 238
CURREC parameter, Model 204 152, 197
current file or group, processing 67
current file, specifying 241
current record

counting fields in 116, 223

creating 91

deleting 137

establishing the 70

getting data from 184, 194, 201, 214, 217

number 152, 241, 263

placing on a list 243

pointing to 182, 241

updating 247, 249, 306
current set

establishing the 67

getting values from 199

list processing 268

record processing 196, 201, 210, 274
cursor

creating 293

creating a 182

direction 184

name 97,117,137,143,184, 223,229, 243, 263,

268, 306

opening a 226

rules for processing 232

specifying a 184, 223

D

DATA format 318, 324
DBCS character support 119
DD name, in IFAM1 31
deactivating an IFSTRT thread 288
deferred update file, opening a 235
DEFINE command, SOUL 126, 208
defining a field 125
deleting
a field 117, 166, 249, 308, 324
fields 121, 143
records 137, 139, 249
deleting field values 327
dequeuing 65, 123, 124, 179
detaching the current thread 141
direction, cursor 184
DISPLAY command, SOUL 134
displaying output 134
DLBL name, in IFAM1 31
dope vector, PL/I language 59

E

EBCDIC character support 119
EBCDIC collating sequence 163, 229, 285
EDIT format

A code 321, 328

B code 322, 329

COL code 322

E code 322, 329

F code 322

388 Rocket Model 204 Host Language Interface Reference Manual

G code 326
usage 327
J code 323
L code 323, 329, 330
M code 323
numeric conversion 321, 329, 330
P code 323
POS code 323, 329
specifying 319, 325
U code 323
V code 320, 323, 331
X code 323, 331
Z code 323, 331
empty found set 112,170
ending
current transaction 179
IFDIAL thread 205
enqueuing 32, 65, 69, 116, 148, 150, 176, 203, 219,
239, 275, 281
ER line, in the Model 204 audit trail 192
error conditions, in IFAM4 49
error message
text 192
writing an 156
exclusive mode enqueuing 177, 201, 219
EXEC job statement
in IFAM1 27, 32,272, 296
in IFAM4 45 to 49
execute-only call 73
exponential format 322, 328, 329, 330

F

field

attributes 126, 208, 261

counting occurrences of 223

data formats 318

defining 125

deleting 121, 249, 308

deleting a 117, 166, 324

displaying 135

keys 278, 279

naming 126

non-occurring 320

redefining 261

renaming a 221

security 172, 222, 262

specifying a 194

values, finding 161
field constraint conflicts, finding 145
field level security (FLS) 122,172, 262
field occurrence, bypassing 327
field values, changing with G edit format 327

file
clearing a 209
closing 105, 311
default 121, 262, 266, 284
displaying 135
FISTAT parameter 237
initializing a 209
opening a 234, 239
specifying 241
updating 89
file maintenance functions 236
file manager privileges 121, 221
file tables, reformating 207
files, deallocating 179
FIND AND PRINT COUNT statement, SOUL 159
FISTAT parameter, file 237
FLOAT numeric field type 91, 249, 294, 309, 328
floating-point
data 89, 325
format 329, 330
flushing compilations 174
FOR EACH VALUE attribute
SQL processing 163
found set
creating 158
creating a 161, 167, 176, 189
empty, an 112,170
getting records from 184
getting values from 184
list processing 245
opening a cursor to 226
processing values 163, 199
record locking behavior 88, 109
record processing 112, 124, 139, 159
freeing a thread 141
FRYV field attribute 161
function number 54, 73, 93

G

G (generic) edit format 326
GENMOD command, under CMS 38
getting a field value 199
getting data 184, 194, 199, 201, 214, 217
GLOBAL TXTLIB command, under CMS 38
group

closing 311

displaying 135

opening a 234, 239

update file 90

Index 389

H

hash key field 118, 121, 127, 208, 249, 291
HLI applications

IFAM1 processing environment 14
HT command, under VM 37
HTLEN, Model 204 user table parameter 310
HX command, under VM 37

IFABXIT
syntax 85
using 41
IFAM
and sub-transaction checkpoints 103
single cursor and multicursor threads 12
IFAM1
about 12
dynamic loading 25
job 24 to0 33, 272
job completion 180
login 212, 297
processing environment in HLI application 14
return codes 337, 338, 339, 340
sample applications
Assembler program 360
COBOL program 341
FORTRAN program 356
PL/I program 350
under CMS 14, 29
under VSE 14, 28
under z/OS 14, 26
under z/OS and VSE 14
IFAM2
about 12
error messages 192
job 33 to 77,180
job completion 180
login 303, 304
password 235
return codes 338, 339, 340
sample applications
multithreaded, using single cursor IFSTRT
threads 370 to 375
using a multiple cursor IFSTRT thread
365to ??
using an IFDIAL thread 380 to 385
using Compiled IFAM on a single cursor
IFSTRT thread 377 to 380
sample EXEC files 375 to 376, 383 to 385
under CICS 20,39t041
under CMS 36 to 39

under z/OS and VSE 15, 36
IFAM4
about 13
error messages 192
job 42 to 49
job completion 180
password 235
return codes 48, 338, 339, 340
under z/OS 19, 43 to 45
IFAM4IN file, in IFAM4 45, 47, 48
IFAMPROD channel name, in IFAM2 34, 300
IFATTN
completion return code 86, 334, 338
syntax 86
using 64, 205
IFBOUT
completion return code 87, 337
syntax 87
using 66
IFBREC
completion return code 91, 338
syntax 89
using 71, 116, 117, 249, 293
IFCALL
completion return code 339
syntax 93
using 21, 73
IFCCUR
syntax 97
using 97, 232
IFCHKPT
completion return code 102, 334, 335
syntax 99
using 21, 66
IFCLOS, see IFCLOSE
IFCLOSE
syntax 105
using 67, 236
IFCLST
syntax 107
using 69, 259
IFCM interface module, in IFAM2 37, 38
IFCMMT
record locking behavior 109
syntax 109
using 66, 101
IFCMMT call
and update units 109
IFCMTR
syntax 111
using 66
IFCNT, see IFCOUNT
IFCOUNT
syntax 112

390 Rocket Model 204 Host Language Interface Reference Manual

using 68, 197
IFCSA

syntax 114

using 41, 85
IFCTO

compilation 115

syntax 115

using 71, 276, 281
IFCTOC

syntax 115

using 71
IFCTOE

syntax 115

using 71
IFDALL

syntax 117

using 70
IFDECL 119

syntax 119

using 119
IFDELF

syntax 121

using 67
IFDEQ

syntax 123
IFDEQL

syntax 124

using 69
IFDFLD

syntax 125

using 67, 250
IFDIAL

completion return code 129, 334, 337, 339

syntax 128
using 64, 253, 273, 312
IFDIALN

completion return code 132, 334, 337, 339

syntax 131
using 64
IFDILN, see IFDIALN
IFDISP
completion return code 135
syntax 134
using 67
IFDREC
completion return code 138
syntax 137
using 70, 144
IFDSET
restrictions on using 276, 282
syntax 139
using 68
IFDTHRD
completion return code 142, 337

syntax 141
using 21, 129, 300, 303
IFDTRD, see IFDTHRD
IFDVAL
syntax 143
using 70, 137, 249
IFEFCC
completion return code 147, 336
syntax 145
IFENQ
completion return code 148
syntax 148
IFENQL
syntax 150
using 69
IFENTPS link module, in IFAM2 40
IFEPRM
completion return code 153
syntax 152
using 197
IFERLC
completion return code 155, 336
syntax 154
IFERR
syntax 156
IFFAC

compilation 112, 139, 158, 166, 227, 259, 270

syntax 158

using 68, 232
IFFACC

syntax 158

using 68
IFFACE

syntax 158

using 68
IFFCHC, see IFFTCH
IFFCHE, see IFFTCHE
IFFD, see IFFIND
IFFDC, see IFFINDC
IFFDE, see IFFINDE
IFFDV

compilation 162, 227, 259, 270, 285

syntax 161
using 68, 200, 232
IFFDV call

processing DISTINCT qualifier 162

SQL aggregate functions 162
IFFDVC

syntax 161

using 68
IFFDVE

syntax 161

using 68
IFFDX, see IFFNDX

Index 391

IFFDXC, see IFFNDXC
IFFDXE, see IFFNDXE
IFFILE
restrictions on using 276, 282
syntax 165
using 68
IFFIND
Assembler language call format 60
compilation 112, 139, 166, 169, 227, 259, 270
completion return code 170
syntax 167
using 68, 232
IFFIND statement 119
IFFINDC
syntax 167
using 68
IFFINDE
syntax 167
using 68
IFFLS
completion return code 173, 335
syntax 172
using 67
IFFLSH, see IFFLUSH
IFFLUSH
syntax 174
IFFNDX
compilation 112, 139, 166, 176, 227, 259, 270
syntax 176
using 68, 170, 232
IFFNDXC
syntax 176
using 68
IFFNDXE
syntax 176
using 68
IFFNSH
completion return code 180, 339, 340
syntax 179
using 41, 101, 129, 300, 304
IFFNSH call
completing current update unit 179
IFFRN
compilation 182
syntax 182
using 117
IFFRNC
syntax 182
using 70
IFFRNE
syntax 182
using 70
IFFTCH
assembling a record 186

compilation 185, 308
completion return code 334
syntax 184
using 70, 97,117,159, 164, 171, 183, 276, 281,
308
IFFTCHC
syntax 184
using 70
IFFTCHE
syntax 184
using 70
IFFWO, see IFFWOL
IFFWOC, see IFFWOLC
IFFWOE, see IFFWOLE
IFFWOL
compilation 112, 139, 166, 189, 227, 259, 270
completion return code 190
syntax 189
using 170, 232
IFFWOLC
syntax 189
IFFWOLE
syntax 189
IFGERR
syntax 192
using 21, 335
IFGET
compilation 195
completion return code 197, 334
syntax 194
using 71,116, 117,152,159,170, 216, 249, 276,
281
IFGETC
syntax 194
using 71
IFGETE
syntax 194
using 71
IFGETV
compilation 199
completion return code 200
syntax 199
using 71, 164, 286
IFGETX
compilation 202
syntax 201
using 71
IFGETXE
syntax 201
using 71
IFGTVC
syntax 199
using 71
IFGTVE

392 Rocket Model 204 Host Language Interface Reference Manual

syntax 199
using 72
IFGTXE, see IFGETXE
IFHNGUP
completion return code 205, 334, 338
syntax 205
using 41, 64, 129
IFIF interface module, in IFAM2 35, 37
IFIF1 link modules, in IFAM1 24
IFIF4 link module, in IFAM4 43
IFINIT
syntax 207
using 67, 127
IFLIST
restrictions on using 276, 282
syntax 210
using 69, 150, 197
IFLOG
completion return code 213
syntax 212
using 21
IFMORE
compilation 215
completion return code 334
syntax 214
using 72, 241, 276, 281
IFMOREC
syntax 214
using 72
IFMOREE
syntax 214
using 72
IFMOREX
compilation 219
syntax 217
using 72
IFMORXE
syntax 217
using 72
IFMREC, see IFMOREC
IFMREE, see IFMOREE
IFMREX, see IFMOREX
IFMRXE, see IFMORXE
IFNFLD
completion return code 222
syntax 221
using 67
IFOCC
compilation 223
syntax 223
using 71, 281
IFOCCC
syntax 223
using 71

IFOCCE

syntax 223

using 71
IFOCRC, see IFOCURC
IFOCRE, see IFOCURE
IFOCUR

cursor name 117

syntax 226

using 69, 159, 164, 171, 243, 264
IFOCURC

syntax 226

using 69, 230
IFOCURE

syntax 226

using 69, 230
IFOPEN

completion return code 237, 338

syntax 234

using 67
IFOPENX

syntax 239

using 67
IFOPNX, see IFOPENX
IFPNT, see IFPOINT
IFPOINT

syntax 241

using 72,116, 117, 249
IFPRLS, see IFPROLS
IFPROL

syntax 243

using 70, 150, 276, 281
IFPROLS

syntax 245

using 69
IFPUT

compilation 248

completion return code 249, 338

restrictions on using 276, 282

syntax 247

using 72, 91, 241, 293
IFPUTC

syntax 247

using 72
IFPUTE

syntax 247

using 72
IFREAD

completion return code 254, 334, 336, 338

syntax 252

using 64, 86, 128, 132
IFRELA

syntax 258
IFRELR

syntax 259

Index 393

using 69, 258 restrictions on using 288

IFRFLD syntax 288
syntax 261 using 21, 300, 303
using 67 IFSTOR
IFRFLS, see IFRRFLS compilation 293
IFRNUM completion return code 294, 338
syntax 263 syntax 290
using 71, 153 using 71,117, 308
IFRPRM IFSTRC
completion return code 335 syntax 290
syntax 265 using 71
using 237 IFSTRE
IFRRFL syntax 290
syntax 268 using 71
using 70, 150, 276, 281 IFSTRE, see IFSTHRD
IFRRFLS IFSTRN, see IFSTRTN
syntax 270 IFSTRT, in IFAM1
using 69 completion return code 297, 334, 337
IFSETP, see IFSETUP syntax 295
IFSETUP using 11, 179
completion return code 273, 339 IFSTRT, in IFAM2 and IFAM4
syntax 272 completion return code 300, 337, 339
using 21, 64,129, 132 syntax 298
IFSKEY using 11, 101, 141, 179
compilation 274 IFSTRTN
completion return code 275 syntax 302
syntax 274 using 11, 101, 141
using 68, 281 IFSTVC
IFSKYC syntax 285
syntax 274 using 69
using 68 IFSTVE
IFSKYE syntax 285
syntax 274 using 69
using 68 IFUPDC, see IFUPDTC
IFSORT IFUPDE, see IFUPDTE
compilation 227, 259, 270, 280 IFUPDT
completion return code 281 compilation 308
syntax 277 completion return code 309, 338
using 68, 232, 275 restrictions on using 276, 282
IFSPRM syntax 306
completion return code 335 using 71, 183, 293
syntax 283 IFUPDTC
IFSRTC syntax 306
syntax 277 using 71
using 68 IFUPDTE
IFSRTE syntax 306
syntax 277 using 71
using 69 IFUTBL
IFSRTV syntax 310
compilation 227, 259, 270, 285, 286 IFWRIT, see IFWRITE
syntax 285 IFWRITE
using 69, 200, 232 completion return code 313, 334, 336, 338
IFSTHRD syntax 312
completion return code 288, 337 using 64, 86, 128, 132

394 Rocket Model 204 Host Language Interface Reference Manual

image feature, SOUL 129
IN FILE clause, using an 182, 230, 290

IN ORDER clause, using an 196, 203, 227, 285

index update, for deferred update file 236
INITIALIZE command, Model 204 209
initializing a file 207

initiating contact with Model 204, for IFDIAL 272

input, to Model 204 312
INSERT statement, SOUL 248, 292, 307
Inter-User Communication Vehicle, see IUCV
Inverted File Access Method

see IFAM1, IFAM2, IFAM4

INVISIBLE field attribute 118, 137, 144, 165, 249,

321
IODEYV settings
errors 129, 132
in IFAM2 33
in IFAM4 44, 47
IUCV, in IFAM2
interface 3, 33, 36
using 131, 304

J

Japanese character support 119
job control statements
in IFAM1 31, 273
in IFAM4 45
job step return code
in IFAM4 49
jobs
IFAM1 24 to 33
IFAM2 33 to ?7?
IFAMA4 42 to 49
journal, Model 204 (CCAJRNL)
using the 46, 112
writing an error message 156

K

KANJI character support 119
KEY field attribute 161, 165, 208
key fields

specifying 291

used to order records 278, 279

L

language indicator 58, 61

LENGTH attribute, for a key field 91

LFSCB, Model 204 user table parameter 310
LFTBL, Model 204 user table parameter 310
LGTBL, Model 204 user table parameter 310

LIBDEF statement

in IFAM1 31
LIBUFF, Model 204 system parameter 55, 57, 272,

296

line length, transmission 253, 312
link-editing

in IFAM1 25, 28

in IFAM2 35, 40

in IFAM4 43
list

clearing 107

creating a 210

dequeuing 124

sorting records in 274, 281

updating 243, 245

updating a 268, 270
LIST format 318, 319, 323
LITBL, Model 204 user table parameter 310
LNTBL, Model 204 user table parameter 310
LOAD command, under CMS 38
LOBUFF, Model 204 system parameter 55,57, 272,

296

lock pending updates (LPU) 88, 109
login

in IFAM1 212, 297

in IFAM2 299, 300, 303, 304

in IFAM4 299, 300
LOGOUT command, Model 204 205
lost connection 205, 254, 313
LPDLST, Model 204 user table parameter 310
LQTBL, Model 204 user table parameter 310
LSTBL, Model 204 user table parameter 310
LTTBL, Model 204 user table parameter 310
LVTBL, Model 204 user table parameter 310
LXTBL, Model 204 user table parameter 310

M

M204IFAM, in IFAM2

EXEC procedure 37

TXTLIB libraries 38

TXTLIB object modules 37
M204PROD channel name, in IFAM2 34, 128
M204VMIF channel name, in IFAM2 34
M204VMIO channel name, in IFAM2 34
macro-level program, under CICS 40
MAXHDR, Model 204 user table parameter 310
MAXTRL, Model 204 user table parameter 310
MEMBER clause, using a 182
Mixed DBCS character support 119
Model 204 files, using

in IFAM1 31 t0 32

in IFAM4 46, 48

Index 395

Model 204 runtime parameters, in IFAM1 33
MODULE file type, in CMS 38

Multi-Cursor IFAM threads 119

Multiple cursor IFSTRT thread

comparison to standard cursor IFSTRT thread 4

multiple cursor IFSTRT thread
checkpointing 100
starting 296, 299, 303
using a 11,69, 70,73
multiple cursor IFSTRT thread, sample coding se-
quence 4
multithreaded
job 101, 304
program, in IFAM4 42
transaction 87, 109, 141, 288, 299, 303

N

name=value pair criteria, specifying 143, 265, 283,
310
naming a field 126
new record, creating 89
new thread, specifying 141
NON-CODED field attribute 208
NON-KEY field attribute 208
NSERVS, Model 204 User 0 parameter 272
NSERVS, Model 204 user zero parameter 296
null
name string, using 72
set 112,170
number, record 137, 139, 144, 152, 182, 197, 241,
263, 275, 280
numeric edit format 321, 329, 330
NUSERS, Model 204 user zero parameter
in IFAM1 296
in IFAM4 47
NUSERS, Model 204 user zero parameter
in IFAM1 272

O

ONLINE command, in IFAM2 39
opening

a cursor 182, 226

a file 234, 239
opening a cursor 5
ORDERED attribute

SQL processing 163
ORDERED field attribute 161
ORDERED index field, using an 196, 203
ordering criteria 227, 274, 278, 279, 285
output, from Model 204 252

P

packed-decimal format 323
parameter

data types 55

descriptions 83

format 128, 131

name variable length 94

values 152, 265, 283
PARM job parameter

in IFAM1 27,272, 296

in IFAM4 46
password

and file access 235

at login 212, 297, 299, 300, 303, 304
pattern matching selection criteria 228
PGM job parameter

in IFAM1 27

in IFAM4 46
PLACE RECORDS ON LIST statement, SOUL 245
placing records on a list 210
precision format 329
processing the next logical record 194
programming languages

indicator 128, 131, 194, 214, 217, 252,

272 t0 273, 295, 298, 302

pseudo conversational CICS processing 39

Q

QTBL, Model 204 server table 174
quiescing a thread 100

R

READ IMAGE command, SOUL 129
read-only privileges 299, 303
record
adding a field to 165, 308
count 112, 158
displaying 135
key value 89
locking behavior 65, 88, 170, 189
locking conflicts, finding 154
numbers 137,139, 144,182,197, 241, 263, 275,
280
processing 164, 184, 194, 201
retrieval 158, 167, 176, 189
security 121, 127, 208, 241
record set
and list processing 270
dequeuing 124
enqueuing 150, 275, 281

396 Rocket Model 204 Host Language Interface Reference Manual

releasing 258, 259

sorted 118, 243, 259, 274 t0 276, 277 to 282
recovery, and checkpoints 100
REDEFINE FIELD command, Model 204 262
redefining fields 261
REGION job parameter

in IFAM1 27

in IFAM4 46
RELEASE ALL RECORDS statement, SOUL 258
RELEASE RECORDS statement, SOUL 259
releasing

an IFDIAL thread 129

record sets 111, 258, 259
removing records from lists 268, 270
renaming a field 221
RESET PARAMETER command, Model 204 266,

284

resetting Model 204 parameters 265, 310
RETCODE parameter

IFDIAL threads 205

IFSTRT threads 179
RETCODE, see completion return code
retrieval conditions

field values 163

record 169, 177
retrieving

error message text 192

records 158, 167,176, 189

values 161
retrieving data, using IFFTCH 5
REUS option, in IFAM4 49
reusing record numbers 137, 139, 144
RK line, Model 204 journal 46, 112
RT command, under VM 37

S

S80 ABEND codes, in IFAM4 48
saved compilations, discarding 105
security interface, in IFAM1 212
security subsystem, using 297, 304
security, field level 172, 222, 241
SELECT statements

IFFDV call considerations 163
selecting records 167, 176, 189
selection criteria 143, 158, 170, 176, 189, 228
server tables, Model 204 174, 310
setting parameter values 283

short character string, using 105, 115, 121, 123, 262

short character string, using a 90
significant digits 325, 329
Single cursor IFSTRT thread
comparison to multiple cursor IFSTRT thread 4

single cursor IFSTRT thread

checkpointing 101 to 102

starting 296, 299, 303

using a 11, 69, 70, 71
single record enqueue (SRE) 88, 109
single-threaded transaction 87, 296
SLEEP command, in IFAM4 47
sort key field 118, 121, 127, 208, 249, 291
SORT RECORD KEYS statement, SOUL 274
SORT statement, SOUL 278, 279
sorted

file processing 197, 208, 249

record set 118, 243, 259

value set 163
sorting

records 274 to 276, 277 to 282

values 285 to 286
SOUL

and User Language xiii
SPCORE parameter, in IFAM4 49
SQL driver

performance enhancements 162
START command, under CMS 38
starting a thread 128, 131

in IFAM1 295

in IFAM2 298, 302

in IFAM4 298
STBL, Model 204 server table 174
STEPLIB statement

errors 129, 132

in IFAM1 27, 31

in IFAM4 45,47, 48
storage queue, under CICS 41
STORE RECORD statement, SOUL 293
stored

field values, retrieving 163

procedure, displaying 135
storing a record 91, 290
STRING %variables 119
STRING field attribute 208
subscripted field name 250
switching threads 288
syntax, call 82
SYSOPT parameter, in IFAM4 46, 49
system recovery, opening a file during 238

T

Table B, Model 204 275

Table B, Model 204 280

TBO, see transaction backout

TCA addressable area, under CICS 41
teleprocessing facilities

Index 397

Cics 2,39
terminal input and output 129, 252, 312
terminating

a session 205

processing 179
thread identifier 303
thread type indicator 296, 299, 303
thread, using

IFDIAL 5, 10, 32, 39, 63, 86, 272, 380 to 383

IFSTRT 4, 11, 20, 32, 64, 288, 296, 300
TIME job parameter

in IFAM1 27

in IFAM4 46
transaction

backout 87

commita 111
transaction checkpoints

and messages 103
transmission, Model 204 252, 312
TSO teleprocessing 2
TWA

addressable area, under CICS 41
TXTLIB, under CMS

in IFAM1 31

in IFAM2 37 to 38

U

unigueness violation 91, 249, 294, 309
UPDATE AT END field attribute 250
UPDATE IN PLACE field attribute 250
update privileges 299, 303
Update units

ending on the current thread 141

ending the current transaction 179

IFCMMT call 109

IFFNSH call 179

taking checkpoint between 101
updating

lists 243, 245, 268, 270

records 165, 236, 247, 249, 306
URC_TYPE parameter

IFDIAL threads 205

IFSTRT threads 179
User 0 parameters

CPTO 102

CPTQ 102

in IFAM1 297

in IFAM2 300, 304

in IFAM4 49, 300

user data area 115, 134, 184, 192, 194, 201, 214,

217,223, 290, 306
user ID, at login 212, 297, 299, 300, 303, 304

User Language. See SOUL
user table parameters, Model 204 310
USER_RETCODE parameter
IFDIAL threads 205
IFSTRT threads 179
UTABLE (user table), Model 204 parameter 310

Vv

value set

creating 161

processing 164, 184, 199, 285 to 286
variable buffer 90, 108, 116, 159,162, 169,177, 183,

186, 190, 195, 202, 215, 219, 224, 229

VISIBLE field attribute 143, 208, 221
VM immediate commands, in IFAM2 37
VMCEF, in IFAM2

using 131, 304
VSAM resources, in IFAM2 39
VSE operating system

with IFAM1 14

wW

wait time

checkpointing 102

enqueuing 148, 150, 202, 218, 239
wait, CICS pseudo conversational 39
work areas 296
WRITE IMAGE command, SOUL 129

V4

z/OS operating system
with IFAM1 14
zoned-decimal format 331

398 Rocket Model 204 Host Language Interface Reference Manual

	Cover
	Notices
	Corporate Information
	Contacting Technical Support

	Contents
	About this Manual
	Introduction to the HLI Facility
	Overview
	Advantages of the HLI facility
	Utilizes the unique advantages of Model 204
	Minimizes the introduction of data dependencies
	Provides flexibility in design of databases and applications
	Ensures database integrity

	HLI capabilities
	Concurrent processing
	Batch mode operation
	31-bit addressing
	Subroutine calls to Model 204

	Model 204 configurations
	Model 204 host language processing
	Model 204’s Inverted File Access Method (IFAM)

	Thread connections to Model 204
	Model 204 thread
	IFSTRT and IFDIAL threads
	Using an IFSTRT thread
	Using an IFDIAL thread
	For more information

	HLI Job Design Factors
	Overview
	For more information

	Processing in different Model 204 environments
	Call protocols
	IFSTRT and IFDIAL protocols
	IFDIAL thread
	IFSTRT thread
	Multiple cursor and single cursor IFSTRT threads
	Multiple cursor IFSTRT thread
	Recovery considerations for single and multicursor IFAM2 threads

	System configurations
	IFAM1
	IFAM2
	IFAM4
	Setting up an HLI job
	Call protocols and Model 204 configurations
	For more information

	IFAM1 configurations
	IFAM1 under z/OS and VSE
	IFAM1 under CMS

	IFAM2 configurations
	Logical view of IFAM2 under z/OS and VSE
	IFAM2 under CMS

	IFAM4 configuration
	Logical view of IFAM4 under z/OS

	Converting HLI applications for different environments
	Running in different Model 204 environments
	Applications using different call protocols
	Applications using IFSTRT threads, from IFAM2 to IFAM4
	Applications from IFAM4 to IFAM2
	Applications that require coding changes

	HLI Job Requirements
	Overview
	Contents of this chapter
	For more information

	IFAM1 jobs
	IFAM1 dynamic loading
	Advantages of dynamic loading

	IFAM1 jobs: Compiling under Enterprise PL/I for z/OS
	IFAM1 jobs: Link-editing under z/OS
	Link with IFIF1OS

	IFAM1 jobs: Running under z/OS
	Execute with dynamic loading
	Using the STEPLIB statement
	Using the EXEC statement

	IFAM1 jobs: Link-editing under VSE
	Link with IFIF1DOS

	IFAM1 jobs: Running under VSE
	Execute with dynamic loading
	Using the LIBDEF statement
	For more information

	IFAM1 jobs: Link-editing under CMS
	Execute with dynamic loading
	Using the IFAM1 command
	Example of the FILES EXEC
	For more information

	IFAM1 jobs: Job control statements
	EXEC statement
	Model 204 files
	Application program files

	IFAM1 jobs: Using an IFSTRT or IFDIAL thread
	Using a single thread
	Specifying Model 204 runtime parameters

	IFAM2 jobs
	Communications facilities (CRAM or IUCV)
	Subsystem names, channel names, and IODEV settings
	Compiling under Enterprise PL/I for z/OS

	IFAM2 jobs: Running under z/OS and VSE
	Using the CRAM facility
	Linking with the IFIF module
	Link-editing and executing the application program

	IFAM2 jobs: Running under CMS
	Using the M204IFAM object modules
	Using the M204IFAM EXEC
	Using VM immediate commands
	Loading and executing an IFAM2 program
	For more information

	IFAM2 jobs: Using an IFDIAL thread under CMS
	Specifying the IFDIAL operand in the ONLINE command

	IFAM2 jobs: Running under CICS
	Transaction management
	Using the CICS-resident program (DFHPSF)
	Linking to the IFENTPS module
	Using macro or command level program code
	Addressing and storage requirements
	First and last calls in the program
	Abend handling is required
	For more information

	IFAM4 jobs
	Running the IFAM4 application and Model 204
	Using IFSTRT threads
	Running concurrent IFAM4 applications
	IFAM1 jobs: Compiling under Enterprise PL/I for z/OS

	IFAM4 jobs: Link-editing under z/OS
	Link with IFIF4

	IFAM4 jobs: Running under z/OS
	Execute IFAM4

	IFAM4 jobs: Control statements
	Overview of IFAM4 job control statements
	EXEC statement
	STEPLIB statement
	CCAIN file
	IFAM4IN file
	Model 204 files
	Application program files

	IFAM4 jobs: Job errors and ABENDs
	Job step return codes

	HLI Coding Conventions
	Overview
	For more information

	General coding guidelines
	Using the host language call protocol (the CALL verb)
	Using function names and aliases
	Using function numbers
	Specifying HLI call parameters
	Defining HLI call parameter data types
	Length restrictions on character string parameters in HLI calls
	Using the completion return code (RETCODE)

	COBOL coding guidelines
	FORTRAN coding guidelines
	PL/I coding guidelines
	Coding conventions
	Passing a channel name as a string in IFSTRTN or IFDIALN

	Assembler language coding guidelines
	Pascal/VS coding guidelines
	Coding guidelines for other languages

	HLI Function Summary
	Overview
	For more information

	IFDIAL thread calls
	IFDIAL thread
	Summary of IFDIAL calls

	IFSTRT thread calls
	IFSTRT thread
	Different operational levels
	Enqueuing action and record locking behavior

	System level IFSTRT calls
	Transaction level IFSTRT calls
	File or group level IFSTRT calls
	Record set level IFSTRT calls
	Record set level calls on any IFSTRT thread
	Record set level calls on a multiple cursor IFSTRT thread
	Record set level calls on a single cursor IFSTRT thread
	Individual record level IFSTRT calls
	Individual record level calls on a multiple cursor IFSTRT thread
	Individual record level calls on a single cursor IFSTRT thread
	IFSTRT thread calls and compiled IFAM
	Compiled IFAM facility
	Three forms of Compiled IFAM calls

	Complete listing of HLI function calls

	HLI Function Calls
	Overview
	For more information

	Function call notation conventions
	Identifying which type of thread for the call
	Call name and syntax
	Different forms of call syntax
	Parameters

	IFABXIT call -mc,sc
	IFATTN call -di
	IFBOUT call -mc,sc
	IFBREC call -sc
	IFCALL call -mc,sc
	IFCCUR call -mc
	IFCHKPT call -mc,sc
	IFCLOSE call -mc,sc
	IFCLST call -mc
	IFCMMT call -mc,sc
	IFCMTR call -mc
	IFCOUNT call -mc,sc
	IFCSA call -mc,sc
	IFCTO call -sc
	IFDALL call -mc,sc
	IFDECL call
	IFDELF call -mc,sc
	IFDEQ call -mc,sc
	IFDEQL call -sc
	IFDFLD call -mc,sc
	IFDIAL call -di
	IFDIALN call -di
	IFDISP call -mc,sc
	IFDREC call -mc,sc
	IFDSET call -mc,sc
	IFDTHRD call -mc,sc
	IFDVAL call -mc,sc
	IFEFCC call -mc,sc
	IFENQ call -mc,sc
	IFENQL call -sc
	IFEPRM call -mc,sc
	IFERLC call -mc,sc
	IFERR call -mc,sc
	IFFAC call -mc,sc
	IFFDV call -mc,sc
	SQL performance

	IFFILE call -mc,sc
	IFFIND call -mc,sc
	IFFLS call -mc,sc
	IFFLUSH call -mc,sc
	IFFNDX call -mc,sc
	IFFNSH call -mc,sc,di
	IFFRN call -mc
	IFFTCH call -mc
	IFFWOL call -mc,sc
	IFGERR call -mc,sc
	IFGET call -sc
	IFGETV call -sc
	IFGETX call -sc
	IFHNGUP call -di
	IFINIT call -mc,sc
	IFLIST call -sc
	IFLOG call -mc,sc
	IFMORE call -sc
	IFMOREX call -sc
	IFNFLD call -mc,sc
	IFOCC call -mc
	IFOCUR call -mc
	IFOPEN call -mc,sc
	IFOPENX call -mc,sc
	IFPOINT call -sc
	IFPROL call -mc,sc
	IFPROLS call -mc
	IFPUT call -sc
	IFREAD call -di
	IFRELA call -mc
	IFRELR call -mc
	IFRFLD call -mc,sc
	IFRNUM call -mc
	IFRPRM call -mc,sc
	IFRRFL call -mc,sc
	IFRRFLS call -mc
	IFSETUP call -di
	IFSKEY call -mc,sc
	IFSORT call -mc,sc
	IFSPRM call -mc,sc
	IFSRTV call -mc,sc
	IFSTHRD call -mc,sc
	IFSTOR call -mc
	IFSTRT call (IFAM1) -mc,sc
	IFSTRT call (IFAM2/IFAM4) -mc,sc
	IFSTRTN call (IFAM2) -mc,sc
	IFUPDT call -mc
	IFUTBL call -mc,sc
	IFWRITE call -di

	Field Formatting Options for HLI Calls
	Overview
	For more information

	Using a LIST specification for a retrieval call
	Using a DATA specification for a retrieval call
	Using an EDIT specification for a retrieval call
	Guidelines for specifying an EDIT format
	Using the V format
	Handling fields that do not occur in the record
	Examples of numeric edit format conversion

	Using EDIT format codes for a retrieval call
	Using a LIST specification for an updating call
	Using a DATA specification for an updating call
	Using an EDIT specification for an updating call
	Guidelines for specifying an EDIT format
	Specifying significant digits using A, E, J, L, M, and U formats
	Specifying a length for the E format
	Using the G format
	Specifying the U format with floating-point values
	Specifying V and M formats
	Updating a FLOAT field using A, J, L, M, or U formats

	Using EDIT format codes for an updating call

	Completion and ABEND Codes
	Overview
	For more information

	Completion return codes 0-3
	Completion return codes 4 and greater
	Job run ABEND codes

	IFAM1 Job Program Samples
	Overview
	For more information

	COBOL example
	Using a vehicles file
	IFAM1 COBOL example (VSE)
	IFAM1 COBOL example (CMS)

	PL/I example
	Using a claims file
	IFAM1 PL/I example (z/OS)
	IFAM1 jobs: Compiling under Enterprise PL/I for z/OS

	FORTRAN example
	Using a claims file
	IFAM1 FORTRAN example (z/OS)

	Assembler example
	Using a claims file
	IFAM1 Assembler example (z/OS)

	SOUL (User Language) example

	IFAM2/IFAM4 Job Program Samples
	Overview
	For more information

	Multiple cursor IFSTRT thread example
	Sample output from program

	Multithreaded (single cursor) IFSTRT example
	Sample output from program

	CMS EXEC examples
	Example of an EXEC that compiles and links the program
	Example of M204IFAM EXEC that must be accessible

	Compiled IFAM on a single cursor IFSTRT thread
	IFDIAL thread example (z/OS)
	Example of a COBOL program using IFDIAL (z/OS)

	IFDIAL thread example (CMS)
	Example of an EXEC that compiles, links, and loads the program
	Example of an EXEC that runs the program
	Example of the M204IFAM EXEC that must be accessible
	Sample input to IFAM2UL program
	Sample output from IFAM2UL program

	Index

