MRocket

Rocket Model 204
Janus/TN3270 Debugger

User’s Guide

Version 7.7

July 2017
JDB-0707-UG-67

www.rocketsoftware.com

Notices

Edition

Publication date: July 2017

Book number: JDB-0707-UG-67

Product version: Version 7.7

Copyright

© Rocket Software, Inc. or its affiliates 2006-2017. All Rights Reserved.

Trademarks

Rocket is a registered trademark of Rocket Software, Inc. For a list of Rocket registered trademarks go
to: www.rocketsoftware.com/about/legal. All other products or services mentioned in this document
may be covered by the trademarks, service marks, or product names of their respective owners.

Examples

This information might contain examples of data and reports. The examples include the names of
individuals, companies, brands, and products. All of these names are fictitious and any similarity to
the names and addresses used by an actual business enterprise is entirely coincidental.

License agreement

This software and the associated documentation are proprietary and confidential to Rocket Software,
Inc. or its affiliates, are furnished under license, and may be used and copied only in accordance with
the terms of such license.

Note: This product may contain encryption technology. Many countries prohibit or restrict the
use, import, or export of encryption technologies, and current use, import, and export regulations
should be followed when exporting this product.

http://www.rocketsoftware.com/about/legal

Corporate information

Rocket Software, Inc. develops enterprise infrastructure products in four key areas: storage, networks,
and compliance; database servers and tools; business information and analytics; and application
development, integration, and modernization.

Website: www.rocketsoftware.com

Rocket Global Headquarters
774 Avenue, Suite 100
Waltham, MA 02451-1468
USA

To contact Rocket Software by telephone for any reason, including obtaining pre-sales information
and technical support, use one of the following telephone numbers.

Country Toll-free telephone number
United States 1-855-577-4323
Australia 1-800-823-405
Belgium 0800-266-65
Canada 1-855-577-4323
China 400-120-9242
France 08-05-08-05-62
Germany 0800-180-0882
Italy 800-878-295
Japan 0800-170-5464
Netherlands 0-800-022-2961
New Zealand 0800-003210
South Africa 0-800-980-818
United Kingdom 0800-520-0439

Contacting Technical Support

The Rocket Community is the primary method of obtaining support. If you have current support and
maintenance agreements with Rocket Software, you can access the Rocket Community and report
a problem, download an update, or read answers to FAQs. To log in to the Rocket Community or to
request a Rocket Community account, go to www.rocketsoftware.com/support.

In addition to using the Rocket Community to obtain support, you can use one of the telephone
numbers that are listed above or send an email to support@rocketsoftware.com.

http://www.rocketsoftware.com
http://www.rocketsoftware.com/support
mailto:support@rocketsoftware.com

v

Janus/TN3270 Debugger User's Guide

Contents

Contents
Chapter 1: Introduction ... 1
ADOUL the DEDUGJETSoooiiiieiie e e e e e e e saee e 2
(€1 o =3 =T o =T T 7
Chapter 2: Getting Acquainted with the Client GUI........................ccocceiiine, 9
The tabbed PAgESooo e 10
The IOWEr WINAOWSocoueiiiieceie ettt eaeeeaeenaeeeneeenneas 14
L= 10 1= oLV N o= R 17
The File MeNU OPLIONS ..o e 18
The WIindowW Menu OPLIONSoooiiiieiiie e 24
The Search MenU OPLIONSccooiiiiiieeee e 26
The Breakpoints Menu OptioNnsc.cccueviiiieiciie e 27
The Execution Menu OPLIONSoooiiie e 29
The Data Display menu optionsccoooiiiiiiiii e 33
The Error Menu OPLIONSoooooeeeee e e e 35
The Macros MenuU OPLIONSceoeeieeee e e 36
The Help MeNnU OPLIONSooeeeieeeee et 38
The bUtton Dar e 39
The SEarCh faCilityc..couiiiiiiee e 44
The tracing OPLIONSooeieeie et et ee et et e e eneas 47
The value displaying CONtrolScooeiiiiiiicie e 48
The STatus Dar ...ttt ere e 49
The Entity-name iNPUEDOXcovieieiieee et 50
Chapter 3: Performing Basic GUI Tasks.............cccccciiiiiiiiiiii e, 51
Controlling the execution of program COAEccueeeeeeeee e eeeeeeeeeeaaa s 52
Step, Step Over, anNd RUNcoooiiiiceee e 53
UsiNg breakpointscc.oooieieieee e 55
Suppressing the break at the end of request evaluationc.....c...... 59
Breaking after READ SCREEN or READ MENU statements 60
ST (=To] o] T Ko | A 62
CancelliNg XECULIONc.ooouieeeeeecee ettt 63
Excluding sections of source code from debuggingcccccoovveeeveeveeeeene. 64
Selectively excluding source code bIOCKScccoecveveiiiiiieeeeciie e, 65
Running to a specific procedureccccevieeeiiie i 73
Running only to listed procedurescccveiiiiiiiiiiee e 77
Altering the flow of @XECULIONcceeiiiiiciceece e 81
Previewing program COEcccoeveeieiieecee e 83
Viewing and modifying program elementsccveeoeeeooeeeeeeeeeee e 85
Watching program data itemscccoeeeeeieie e 85
Adding and removing Watch Window itemscccoociiiiicee e 86

Janus/TN3270 Debugger User's Guide v

Contents

Saving and restoring Watch Window contentscccccccoceeeiiiiineeneee. 89

Getting a detailed view of the value of a watched item 91
Watching Model 204 fieldscooouiieiiiiiie e 93
Watching global variables ... 94
Watching object variablesccooiiiiiiiii 95
Watching $lists, Stringlists, and Arraylistsccccccceevieiieeceecieee, 96
Watching class member Variablescccccceeiiiiiiiieie e, 98
Displaying temporarily the value of a program dataitemcc..ccooe...... 99
Displaying $lists, Stringlists, and Arraylistsc.cccceeveeeeiererere e, 102
Displaying Janus SOAP XML document objectscccocvveieennennen. 104
Displaying all Variables of an object's classc.ccccoveeeviiiiieeiccnnen.n. 109
Displaying the current occurrence value in an FEO loopccc......... 114
Displaying all fields in @ record ... 115
Displaying Model 204 parametersooccveeiiiiiieeiinieeee e 120
Displaying the Universal Buffer contentcccccocoeiiiiiiiiiec e, 121

Setting the value of a variablecooooiiiiiceeeeee e 122
Getting source file, audit trail, and web buffer informationcccccovvevene. 124
Locating and editing procedure source filesccocovoveeievceeecveeeiee 124
Viewing dummy string variablescoooiiiiiiicee e 125
Viewing the audit trailccooooiiiiiie e 126
Viewing the web output BUFEr ..o 127
Tracing program €XECULIONccceeiiuieeieieieeie e eeee e e vee e e e eans 127
Tracing all iNes eXeCUtedcccoiiiieie i 128
Tracing all updates to a variable’s valuecccoeeeeeooeeeeeeee e 130
Tracing until a value change or untilavalue matchccccoovvviein, 131
Displaying a statement NiStOrycccoovviiiiii e 132
Viewing programs that contain coding errorsccccceevveeeeeiecceee e 136
Debugging requests that spawn daemonscccooooeiooe e 139
Debugging Web Server persistent SESSIONSccceeveieieeieieeie e 142
Debugging multiple Web SErverscooooioiiiiiceeeee e 145
Chapter 4: Additional Debugger Functionality......................ccccoviiiiiniiniieee 147
Copying, printing, or SAVING TEXLc.ooiiiiii e 147
Using the TN3270 DEBUG COMMANccoooiieieeeeeeeeeee e 149
Using the TN3270 DEBUG command for web threadscccoovovvivveeeeinn. 155
Debugging SSL appliCationscceeeeeeirieieecee et 157
Debugging Web Service applicationsccoeeeeeeeeiceceeeeeeeee e 158
Using the DebuggerTools class Methodscc.oeeeeeveeeee e 159
(6] g ol (o Tez= 1 =To 1 (o] SRR 164
Using Xtend with the DebUuggercccoooeiiiiie i 166
Using UltraEdit with the Debuggercccoeoeeieeeece e 170
Chapter 5: The Client Command Reference................cccccoooiiiieiicinc e, 177
addWatch commandooouieiiieeeee e 178
addWatchOnCurrentLine commandc.ccccoooiiieiicieceeeee e, 178
ASSErt COMMANGccuiiiiiiiii et ettt reeeaneeas 178
POttOM COMMEANGooiiii e 181
breakOnNNextProc COMMANGccoooiiiieeececeee e 182
breaks COMMANdc..ccoiiuiiiiecee et 182

Vi

Janus/TN3270 Debugger User's Guide

Contents

PreakSALt COMMEANGoooiieiie et e e e e e e e e e e e s s eaaeeeeaans 183
buttonBar COMMEANGccueiiieie e eneeeens 184
Loz g ToT=] WoTo o1 o2 =1 oL [N 185
clearAudit COMMEANGc.ooiiiiieeee e e s 185
clearBreakpointOnCurrentLine commandooovioeee oo 186
ClearBreaks COmMmMaANdccoviieiiiceie e s 187
clearButton COMMANGooouiiiiie e 187
clearExecutionTrace COMMaNAcccoouiiiieii i 188
ClearHistory commandc.oooiiiiie e 188
ClearKey COMMANGccuiiiiieeceee e et 189
clearMacroConsole COMMANGoooeeeeeeeeeee e e e e 189
clearStatus COMMEANGooouiiiiie e e s 190
clearWatCh COMMANGcooeeiii e e e 190
clearWebBuffer COMmaNdcc.oociiiiiiciece e 191
closeCommandLing COMMANdcooiiiiieeee e 191
closeExternalAuditTrailWindow commandcccoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeen 191
closeExternalButtonWindow commandccooooeeeieieeeeeeeeeeeeeeeeeeeee e 192
closeExternalExecutionTraceWindow commandccooveeeeiieeeeee e 192
closeExternalWatchWindow commandccccooovioeeeeeeee e 192
closeExternalWebBufferWindow commandcccoeveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaen 193
closeExternalWindows COmMmMaNdcccoeeiiiieiieieieee e 193
CloseHisStory COmMmMaNdc.oooiuiiiiie e 193
closeMacroConsole COMMEANGcooeeeeoeeeeee e e 194
closeValueDisplay COMMaNGccooveiiuieiiiecee e etee e 194
continUElf COMMANGoc.oiiiieeeee et 195
continueMacrolf COMMANGccoocuiiiie e 196
(oTo])V oTo] 1 4] 0 4 F= T T TR 198
createMacro COMMEANGoccuiiiieie et e e s e s s ae e sae e 198
debugPreview COMMANGccoouviiiieie e e 199
decrement COMMANGcooouieiiiieeceie e e et et ereeeeanes 199
disableButton commandooceiiiiiiiee e s 200
€CNO COMMANA ...t e e e e e s e e s s e e saeeesanes 201
editMacroFromUISelection commandcccooooiiiioie i 202
enableButton COMMANGoooouiiiiie e 202
eVvaluate CoOMMIANGcoocueeeieie et e et e e e e s ere e e saneeesanes 203
expandLiSt COMMANGoocuiiiiie e e s 203
expandObject COMMANAc..coouiiiiece e 204
extraButtonBar commandcoooiiiiiiii i 205
feoDisplay COMMANGcocoiieieiie et 206
firstHISTOry COMMANGc.ooiiiieeeeeecee e ree e 206
focusToSearchBoX COMMANAcooeiieieieeee e e 207
generatePac COMMANdc.oooiiuiiiiiie e 207
getHISTOry COMMANGooiieiiceeee ettt e e 209
getVariablesForClass commandc.ccccooieiiiiiiicieceeeee e, 209
RElp COMMANG ..o e e e e e e e e s s eaeeeeeaans 211
hideLower COMMANGccuoiiiie et e e enee e 212
httPGet COMMEANG ... 213
httpPUtFile COMMANG ...t 214
httpPutString COMMANGoooiieeeceece e 215
INCIUAE COMME@NGooiiiiiiiiie et e e ee et e e e e eaeeeeneeeans 216

Janus/TN3270 Debugger User's Guide Vil

Contents

INCIUdEf COMMANG ... 216
INCremMENt COMMANGccueiiiiie et tee e e et e e e e e e eneeeeeneeesneeeans 217
JUMPTOLING COMMANGoeeiieeieee ettt 217
jumpToMatch COMMANc.ooiieieece et 219
KIlECOMMAaNd e e eree e 220
[abelButton COMMANAc.ooiiiieeceee e 221
[astHIStOry COMMANc.ooeiiiie et 222
[oZ=To {TAVE= 1 (e T eTo] 0 41 4 aF=T o Lo [T 222
gaP=Tod foRoTe] 1 41 4 o F=T Lo OO RRRTR 223
MacroConsole COMMANGcccoeuiieeieieie e see et e e eneas 223
MACroTrace COMMEANGcc.coovuieiieiieieieeeeee e et e e e eeee e et e e et e e s et e s sereeeseneeesneeeans 224
macroWait COMMANGccooiiieiee et e e te et e e neas 225
mainButtonBar COMMANGcoouiiiiiee e 225
Manual COMMANGc.oooiiiie ettt aeeneas 226
MapBUtoN COMMANAcc.oiiiie e 226
MaPKEY COMMANGc.ooioeiiieie ettt et et e et eeteeeaeeeneeenneas 228
moveBrowserToTop COMMANAccoeeiiiiiiieie e 229
MoveTn3270ToTOP COMMANGc.ceeviieiiiie et e e e eneeens 229
NexXtComMPpPIlEError COMMANGc.ooiouiiiee e 230
NEXtHISTOry COMMANAcoooiiieee et 230
NOSPAN COMMEANGooiuiiieieieie et ctee et e e e et e e etee et e e et e et e e saeesateeeteeaneeennens 231
NSLOOKUP COMM@NGc.ooiiiiiieceee ettt e et eeneeeens 232
openCommandLing COMMANGc.ccooueiiuieiie e ee e eee e ee e 233
openExternaAuditTrailWindow commandcoooooeeeiee oo 233
openExternalButtonWindow commandccccoeiviiiii e 234
openExternalExecutionTraceWindow commandccccccceeeieieeeciee e, 234
openExternalWatchWindow commandcccoeeiviieiciee e 235
openExternalWebBufferWindow commandccooueeeeiiiiiiieieeeeeeeeee e 235
openMacroConsole COMMANAc..cooueeiuieiee e ree e 236
[oZ=1 (eI ool 0 10 1 F=T oo O 236
[oX= Tl el)0 0] 4 F=1 0 e KNSR 237
PIN COMMANG Lottt e et e e e e e e e e e e s eaeeeseaeeesneeesneeeans 238
preferenCces COMMEANGcooocuiiiiecie et eeeete et e e eneas 239
previousCompileError COMmMAaNdccoeeicuiiiieieecee e 240
PreviousHIStory COMmMANdooviiiieie e 240
reloadBIlackList COMMANAccoouiiiiiii e 241
reloadWhiteList COMmMaNdocoviiiiiii e 241
reloadLists COMMEANc.cooooiuiiiiie e 242
removeCurrentWatch commandcoooiiii i 243
resetAssertCounts COMMANoooouiiiiiii et 244
resetGlobalAssertCounts COMMaNdc.ooooiiiiiiee e 244
restart COMMEANGc.oooiiiiie ettt 245
restartDefault commandc.oooeiiiii e 245
restoreLOWEer COMMANGcceiiieeeeecee et et e eeeneas 246
restoreTitle COMMANGc.oooiiiiicie e 246
retryHttpPac Commandooouiiiiiie e 247
0 g oTe] o1 oo =T oo 1RO 248
runMacroFromUISelection commandccoooeieiiiieecce e 248
rUNUNLIE COMM@NG ...t e e e e e ens 249
runUntilVariableChanges commandcccooovioiiieiiceeccee e 249

Vil

Janus/TN3270 Debugger User's Guide

Contents

runWithoutDaemons commandcooooiiii i 250
saveWatCh ComMmMaANdoociiiiieeeee e 250
S€archDOWN COMMANccoiiiii e 251
searchFromBottom commandccooouiiiiii i 252
searchFromTop COMMANGccoeiiiuieeciee e e 254
S€archUP COMMANGcceiiiiieecie e e et e e e e e eans 255
selectAuditTab COMMANdooouiiiiiieece e e 257
selectExecutionTraceTab commandcccooooiiiiii e 257
selectNextTab CommMaNdoooeiiiiiiice e 257
selectProcSelectionTab commandc.ooooiiiioie e, 258
selectSourceTab COMMANGc.ooouiiiie i 258
selectWatchWindow commandcocoeiiiiiiiie e 258
selectWebBufferTab commandcccoooiiiiiiiic i 259
ST 0 oT] .4 ¢ =T o 260
SetBlackList COMMANGccooiiiiieee e 261
setBreakpointOnCurrentLine commandccooeieeooeeeeeeee e 262
SetlEMOode COMMANGoooiviieeeeeeee e 263
setM204Data COMMANGccoeeiieieeeeee e e 265
setPreference COMMANGoooviieiiie e 265
setStatusMessage COMMANGcooiieiieiecie e eree e 267
SetTitle COMMANG ... e e e e e nees 268
SetWhiteLiSt COmMMANGccoiiiieeeeee e 269
ShOWADOUL COMMEANGceviiieiieceee e e 270
showCommands COMMANGcceeiieiiiiecie et eee e ee e eee e 270
ShOWFUNCHIONS COMMANGoooiiiiiie e 271
ShOWIE COMMANG ... e 272
ShOWShOrtCULS COMMANGooiiiiieie et 273
SKIPPreview COMMEANGooouiieeie et e 273
S oz= a I eTe] 0 o100 T= 10 o H RO 274
5] (=T ol eTo]0 10 1= 1o T 274
StEPOUL COMMANG ...t e e ee e e see e 275
STEPOVEr COMMANGooieeiieceee et e s s 275
t0ggIe COMMANA ... e e 276
toggleBreakpointOnCurrentLine commandcccocovieeeeeeice e 277
togglelnitExclude commandcooeiiiieie e 278
toggleLower COMMANGccviiiiiecie ettt e e ae e e eee e 278
L(e] oI oTe] 141 44 =T o Lo 1O 279
trace COMMANGA ooiieiiiie et e et e e e e ree e eanes 279
traceUntilVariableEqualsValue commandcoooooeeieeeoeeeeeeeeeeeeeeeeeeen 280
traceValues COMMANGooveiouieeeee et reeeee e 280
turnOffBlackList comMmMandcc.ooviiiiiiie e 281
turnOffDebugging COMMANGc..coeiiiiiecee e 281
turnOffWhiteList COMMANdc.oooiiieeee et 281
turnONBIackList COMMaNAdcoooiiiiiiiee e e 282
turnONWhiteList COMM@ANdccoooiiiiiiie e 282
(81011 g I oo T 0 0] 0 £ F=1 0 o KN 283
UNSEE COMMANG ..ot e e e st et seee e eae e 284
valueDisplay COMMANGc..coouiieuieiie ettt ee e eree e 284
varDump ComMmandcoooiiiiie e s 285
VIEWTEXE COMMANG ..ot et e et enee e eans 286

Janus/TN3270 Debugger User's Guide IX

Contents

WINdOWTOTOP COMMANAccoeiiiiieiciie e 286
Chapter 6: Customizing Client Operations.................cccccoeiiiiniiie i 287
Reconfiguring GUI buttons and hot KEYSoooovoeeeeeeeeeeeeeeeeeee e 288
Introducing the configurable componentscccccoeve oo 289
Settingup the Ui.XmMIIleo 291
Default settings of buttons and hot Keyscoooveveoeiiceee e 295
Changing the colors in Client diSPIAYSoooeee e 297
Specifying a startup command forthe Clientc..ooooeioeee e 301
Changing the location of Client WOrk filesooooioeeeeeeeee e 303
Changing the font size in Client diSPIAYSc..ooooeeeeeeeeeeeeeeeeee e 305
Opening an external WiNAOWccccoveiiieiieiee e e 306
Hiding the Client's lower WINAOWScccoooiiiiiieeeecee e 312
Seeing through ClIent WINAOWSccooeiiiiiieie et 314
Enforcing a minimum Client build nUMDbercoooieioeeeeeeeeeeeeeeeeeee e 315
Chapter 7: Using Debugger Macros...............cocoiiiiiiiiiniiiee e 317
Creating and runniNg @ MACKOceecieieeeeee e eeeeeree s 317
Mapping a macro to a button Or hOt KeYoovivieeeeieeeee e 322
Passing a command argumentto @ Macrocccccceeeeeeeeeececceece e 322
Using the console and command liNEc.cccooieeiiii e 324
Using the Macro Autorun featurecooooviiiie e 326
Working with macro variablesccooouiiiiiii e 327
Working with Client fUNCONSc..coouiiieee et 329
&&amDaemon fUNCHIONc.c.oocueiiieeceece e 330
e (o I U] o3 (1o o R 331
&&assertFailureCount FUNCLIONcooiiiii i 332
&&assertStatus fUNCHONc.oooiiii e 332
&&assertSuccessCount FUNCHIONc...ccceiiiiiiiiee e 333
&&blackOrWhiteList funCtionccoeoeeiieiceeee e 334
&&DbuUildNUMDbEr FUNCIONceeieeee e 334
&&concatenate fFUNCHONc.cooiiiiiiceece e 335
&¤tPacFile funCtionc.coveecieee e 335
&¤tRunningMacro funCtioncccceeeveeecce e 336

LT e U =T o 1 1= PR 336
&&EXISTS FUNCHON ... 337
&&getMainSearchinputArea functionccccceeieiiiii e, 338
&&getVariableOrFieldinputArea functionccccoooveooeeeeeeeeeeeeeeeeeee 338
&&globalAssertFailureCount fuNCLiONcooviieee e, 338
&&globalAssertStatus functionccoeve i 339
&&globalAssertSuccessCount fUNCLONccooeeiieoieeeeeeeeeeeeeeeeee 339
=1V oTo (= (W g Tox i] o R 339

Lo aTe =y U] o Ted 1o o H R 340
&&isWatched fUNCHONc.oooeiiieece e 340
&&IENGN FUNCHIONceieeeceeecee e 341
&&numberOfBreakpoints fUNCLIONccoeiiiiiiee e 341
&&numberOflLevels FUNCLIONccoeeiieiie e 342
&&numberWatched functionccoooiiii i 342
&&OrIGINAITIIEoeeeieeeeceeeee e e 343

X Janus/TN3270 Debugger User's Guide

Contents

&&preference FUNCHIONcceiiiieeeeee e 343
&&ProcName fUNCHIONcooiiiiceccee e 344

&&Prompt FUNCHIONcoouiiieie e 344
&&searchResult fUNCHIONocviiiieeece e 345
&&searchSuccess fUNCHONc..covviiieie e 345
&&selectedTab fUNCHIONc.oooiiiiiecececee e 346
BESTAtUSIMESSAGE ...t e e 346
&&SUDSTIING FUNCHON ... 347

&&SUM TUNCHIONcviiiiiiicieceeee et 347
&&verifyMatch fUNCHIONccooiiiiiiceceeeeee e 348
&&verifyNoMatch FUNCLONcooiiiiiccee e 349
&&windowStatus fFUNCHIONccveiiieceece e 349

Chapter 8: Problem Diagnosis...............cccoiiiiiiiiii i 351
Debugging the Janus Debuggercoovioiiiiciiieceeecee e 351
Debugging the TN3270 DebUQGQgETc.oooiieeeeeeeeeeee e 354

How the Janus Debugger handles communication breaksccccccoueeeeenn. 360

How the TN3270 Debugger handles communication breakscccoeeeeei... 363
Tracking Client performancCeocoiieioiece e 365
Resolving issues when automatically maintaining IE proxy settings 367
Chapter 9: Installation and Configuration.................cc.ccooiiii, 369
@Y 1= 370
Online ConfIQUIrALIONcoiieiieee et 371
ChecCk PrereqUISILEScoceiiieeeeeceee et 371

Authorize the DEeDUJQETc.ooi i 371

Set Model 204 system parameterscccoeeeeeeeeeeee e 372

Define and start the Debugger Server portccccoovoeeeeeeeeeeeeeeeeeee 373

Define and start a client socket port (Sirius Debugger only)cc..ccc....... 374
Workstation CONfIQUIratioNooo oo 375
Perform preliminary taskscocooeiiiieiee e 375

Run, check, and verify the Client installationccccooveveoiieeee 377
Customize the Debugger configuration filecccoooveooeeeeieceeeeee 380

Configure the web browser (Janus Debuggeronly)ccccceveveveveveeeennn.. 389

Test the end-to-end configurationcocoeeeiee i 399

Providing updated versions of the Debugger Clientcccooovoeiioiceiieeeeeee, 402
Chapter 10: Release NOteS...............oooiiiiiiii i 407
[T (=G PSSO PRPPTN 443

Janus/TN3270 Debugger User's Guide Xl

Xl Janus/TN3270 Debugger User's Guide

Introduction

cHaPTER1 I Ntroduction

This chapter describes how this document is organized, then provides brief product
overview[21 and guick—start|_7'1 subsections.

Note: Most cross-references in this document are underlined (hyperlinked and shown in
a blue font if viewed online) and accompanied by a page icon like the following,
which frames the number of the page that contains the target of the reference:

-

Using this document

This document assumes that you have completed the mainframe and workstation tasks
described in Installation and Configuration|zesl.

These are the information subdivisions:

e This "Introduction," which includes an overview of the Debugger products and a
"getting started" section that outlines how to begin to use the products.

e The Getting Acquainted with the Client GUIl 971 and Performing Basic GUI Tasks/s1]
chapters are designed to orient you quickly to the Debugger Client and get you
working.

e The Additional Debugger Functionalitym chapter describes features or tasks that
are not primarily concerned with the Client GUI.

e The Client Command Referencefi77] chapter provides detailed descriptions of the
Debugger Client commands you can use to program the Client interface controls
and displays.

e The Customizing Client Operations 267 chapter describes how to modify the default
arrangement of Client buttons and hot keys, as well as the colors of the text or
background of Client displays.

e The Using Debugger Macros k17 chapter describes how to define scripts containing
one or more of the commands that activate the various Debugger controls.

e The Problem Diagnosisls_sﬂ chapter provides a closer inspection of how the
Debuggers handle errors and get and manipulate the data you see in the Client.

e The Installation and Configurationfss| chapter includes product installation and set up
information, as well as information about setting up at your site a centralized
distribution of updated Debugger Client replacement files.

e The Release Notesko?l provide an archive of information about features that are new
or enhanced in each build of the Debugger Client.

Janus/TN3270 Debugger User's Guide 1

Introduction

1.1 About the Debuggers

The Janus Debugger is a tool designed for software developers who create and
maintain Janus Web Server applications. With software installed on the Web Server
host Model 204 Online, as well as on a workstation with a browser that can access the
Web Server, the Debugger lets you examine in statement-by-statement detail the User
Language code that the Web Server executes.

The TN3270 Debugger (formerly named the Sirius Debugger) is designed for developers
who create and maintain Model 204 3270-screen and Batch2 applications. With software
installed on the host Model 204 Online, it uses essentially the same Debugger Client as
the Janus Debugger, letting you examine 3270-screen and Batch2 code.

An instance of the Debugger Client can be debugging a web application (acting as the
Janus Debugger), or it can be debugging a 3270/Batch2 application (acting as the
TN3270 Debugger). At any given time, however, it may only be debugging one type of
application. It "knows" the type of thread being debugged (the title bar of the Client
toggles to reflect the thread type) and it communicates that information to the Online
(which ultimately controls the granting of permission to debug).

These subsections continue the overview of the Debuggers:
The basic operation[2
The feature set/ 37
The architecture[41
Versions and builds[¢
System requirements| ¢

Known limitations/ ']

The basic operation
When you are running under the Janus Debugger, and Janus Web Server is about to run

a request on your behalf, or you are running under the TN3270 Debugger and you submit
a 3270-screen or Batch2 request:

1. Request source code is sent to the Debugger Client deployed on a workstation.

2. The Debugger Client displays the code, navigable to top and bottom, with search
features available.

3. Program execution is paused, the Debugger awaiting the instructions you provide
through the Client GUI.

Although the Janus Debugger is limited to Janus Web Server applications, the programs
you debug with the Janus Debugger may be, or contain, the following:

Janus/TN3270 Debugger User's Guide

Introduction

SOUL O-0 and Janus SOAP XML applications

Sdaemons or transactional sdaemons, including those spawned by other
sdaemons or by SCOMMBG requests

Synchronous $COMMBG requests, including those spawned by other SCOMMBG
requests or by sdaemons

SWEB_FORM_ DONE persistent mode requests

The TN3270 Debugger is primarily for debugging SOUL programs other than web
applications. These include:

3270 full screen applications
Batch2 applications
HTTP client applications that use the Janus Sockets HTTP Helper

Any other programs run from the Model 204 command prompt, including those that
do line mode input via SREAD.

The feature set

Both Debuggers provide these typical debugging capabilities:

Viewing code while running it

Stepping through the code one statement at a time

Examining variable values

Using a separate "watch window" for the display of specified data items
Setting breakpoints at which code execution pauses

Skipping over selected subroutines

In addition, the Debuggers provide these special features:

Acom Qactm Graphical User Interface with user-configurable buttons and hot keys
Views of the Model 204 audit trail and code executed by sdaemons

Tracing of statements that modify variables in executed code lines, or tracing until a
variable becomes a certain value

Saving of sets of variables to be watched, which are restorable at any time

Display of Web Server output-buffer data (Janus Debugger) and screen variables
(TN3270 Debugger)

A code line's Model 204 procedure details (subsystem, file, name, line number, text
preceding dummy string substitution)

Janus/TN3270 Debugger User's Guide 3

Introduction

e Filtering of program code to skip over all but the Model 204 procedure you identify or
the procedures you pre-selected (added to "White List")

e Stepping out of of a called subroutine, method, or daemon and continuing
processing at the statement after the call to the subroutine, method, or daemon

e Examination of former-Sirius extensions to User Language (including LongStrings,

$lists, objects)

e System class methods that let you insert code in User Language that runs only

under the Debuggers

e Facilitated access for code editors (for example, Xtend®, UltraEdit®)

The architecture

The following figure displays the principal components in a Janus Debugger

configuration:

Worker Thread

Model 204 Online

JanusWeb Thread

Workstation

Web Browser

Debugger Client
\

/

\/

Application Developer

The main components in a TN3270 Debugger configuration parallel those in the Janus
Debugger configuration, the principal exception being the absence of the web browser:

Model 204 Online

Worker Thread 3270/Batch2 Thread
/4
Workstation
Debugger Client
\\

Application Developer

Janus/TN3270 Debugger User's Guide

Introduction

Per Debugger session for a Janus Web Server or 3270/Batch2 program, these
components are active in the Online and on the workstation:

Model 204 nucleus hooks
(Assembiler; not shown above)

Janus Web thread
3270/Batch2 thread

Worker threads

(Assembler and User Language,
one each to the thread being
debugged and to the Debugger
Client, respectively)

Debugger Client
(WIN32 GUI, written in VB.NET)

Web browser

Compiler:

e Capture source lines, before and after
dummy string substitution.

¢ Note source of line (procedure and file).
Evaluator:

e Can step one statement at a time, and can
step over routines and methods.

e Can stop on breakpoints.

e Between statements, can get variable, field,
and global values, to support display, trace,
watch, etc.

Janus Debugger only.
TN3270 Debugger only.

For each debugging session, a “worker thread”
arbitrates between the thread being debugged and
the workstation-based client.

A worker thread does the following:

e Passes data between the thread being
debugged and the Client.

e Controls the execution of the thread being
debugged, at the behest of the Client.

The Debugger Client resides on the developer's
workstation. It is a proxy server in a Janus
Debugger session: the browser no longer directly
connects to the Web Server, but instead it
"sends" to and "receives" from the Client.

The Client GUI lets you control the application and
view variable values, source code, traces, and for
Janus Debugger sessions, the web output buffer.

Janus Debugger only. Any web browser that
allows proxy servers.

Janus/TN3270 Debugger User's Guide

Introduction

Versions and builds

First available in Version 7.0 of the Sirius Mods, the Debuggers also include features that
are available only with later versions of the Sirius Mods. Those features are labeled as
such in this documentation.

Independent of the version of the Sirius Mods being run on the Model 204 host machine,
the Debugger Client has its own integer-numbered sequence of "builds" that contain new

and updated features. From build to build of the Debugger Client, the About box
(accessed by the Help menu) provides a searchable list of the principal changes in each
of the previous builds of the Debugger Client.

System requirements

The Online Configurationf71 section of this document specifies the requirements for
Model 204 product release levels, licenses, and maintenance, as well as Debugger
product authorization. In addition are instructions for configuring a Model 204 Online that
hosts the Debugger, which include User O parameter and TCP port definitions and
increases in storage table and work area sizes for both of these:

e The worker thread that services a debugging session

e The thread on which the program to be debugged is running

Known limitations

The following are known limitations and issues concerning the Janus and TN3270
Debuggers:

e You may not use either Debugger for DBCS data.

e You may use the Janus Debugger against a Janus Web Legacy Support thread if
you also have a license for the TN3270 Debugger.

e The Janus Debugger Web Buffer tab only displays printable output, binary data is
not shown.

¢ No asynchronous daemon or $COMMBG requests may be debugged. They are
simply ignored by the Debugger (and they execute normally).

e Windows 95, Windows 98, and Windows ME are not supported by the client. You
must be running Windows 2000, 2003 Server, Vista, 7 or 8.

e On the workstation, you currently must hand-edit the debuggerConfig.xml file to
configure it after installation or to alter the configuration.

e Both the Execution Trace tab (output from one trace) and the Web Buffer tab have
5000-line capacities. If the capacity is exceeded, the last 5000 lines are shown.

6 Janus/TN3270 Debugger User's Guide

Introduction

1.2 Getting started

In place of a tutorial, it is recommended that you teach yourself to use the Debugger. To
get started:

1. Make sure the following are true:

e The product has successfully been installed and confiqured@, on the
mainframe and on the workstation that is to host the Debugger Client, recently
enough that you are confident that the various port numbers and names
assigned and, say, your web browser's definition of the Debugger Client as a
proxy server (Janus Debugger), are still valid.

If you are unsure, you may want to review the installation documentation and/or
rerun the final installation test.[zed)

e The Debugger Server server socket port is started.ls73)

e Only for the TN3270 Debugger, the Debugger Server client socket port is
started.[s74

e The Debugger Client is started.[s7

2. Start the Debugger Server worker thread:
e Janus Debugger: This is done automatically by the next step. Go to Step 3.

e TN3270 Debugger: From the Model 204 command line, issue the TN3270
DEBUG ONl4sl command. Your session lasts until you log off Model 204 or
issue TN3270 DEBUG OFF or its Debugger Client-commandpssl equivalent,
turnOffDebugging.

3. Run arequest you want to debug:

e Janus Debugger: From your web browser, invoke a URL that accesses a
program that is run by your Janus Web Server.

e TN3270 Debugger: From the Model 204 command line, start a SOUL/User
Language program (Include a procedure or invoke an APSY subsystem).

4. Using the Debugger Client GUI, control the execution of the SOUL/User Language
code.

You might take a few minutes with Getting Acquainted with the Client GUIl 91, then
try some of the operations described in Performing Basic GUI Tasks|st1.

Accessing and printing Help information

For quick access to Debugger Client Help information (accessed from the Help menu or
the F1 key), try finding in the Index the name of the GUI control (button, tab, box label)
involved in the operation you want to know more about.

Janus/TN3270 Debugger User's Guide 7

Introduction

The online Help information is reproduced in PDF format (as this Janus/TN3270
Debugger User's Guide) in your Debugger Client installation folder. This PDF is

immediately accessible by selecting the View PDF Manual option from the Debugger

Client Help menu. It is highly recommended that you use the PDF document as the
source for any lengthy Debugger Help printing.

The Print option that is available from the toolbar on your Microsoft HTML Help viewer

gives reasonable results. To print multiple topics, select Print from the toolbar, then
select the option to Print the selected heading and all subtopics.

8 Janus/TN3270 Debugger User's Guide

Getting Acquainted with the Client GUI

ciarter2 GGetting Acquainted with the Client GUI

The following image of the Debugger Client (debugging a Janus Web program) has
numbered labels that point to the principal areas of the Debugger, which are described in
the corresponding numbered sections in the linked list below. The image is also "live":
you can simply click any area of the image you want to find out about. In a TN3270

Debugger session, the Web Buffer tab is not present.

—

The tabbed pages/|i0]

The lower windows/[14]

The menu bar[171
The control button bar/39)

The search facility[44)

The tracing buttons/47]

The value displaying controls[4g)

The Status bar 49

© © N o o »~ w N

The Entity-name input box|s0]

K
3

45 The Janus Debugger L2) BTN
File Window Search Breakpoipte Execution | Data Display Erds, Macros Help

Top | Botom | Clear Audit| Run | Step | Step Over TgceAll ncel | Clear Breaks-|Clear Watch

@/ Audit Trail Sotirce Codeé | web Buﬁel‘ Exe nﬁunTlace‘ Proc Selecﬁnn}

TS 10 1 I QaxmL2 =
UL> 2 1 1 begin
UL> 3 1 2 class document
UL> 41 3
UL> 5 1 4 public
UL> 6 1 5 variable x is object XMLRec
UL> 71 3 constructor new
UL> 8 1 7 subroutine addStooge (¥iFirht is longstring, -
UL> 9 1 8 #ilast'is longstring)
UL 10 1 9 end public
o> 11 1 10
o> 12 1 11 private
v 13 1 12 variable top is object XMLNode

blo> 18 1 13 end private
uL> 15 1 14
uL> 16 1 15
o> 17 1 16
vl 18 1 17 is:x:addElement ('stooges') .
uL> 18 1 1% 9)
uL> 20 1 19 -

» -
|y Search |y Search Next Search Prev | Valie | Trace Ryn to Change Watch |
s =] =]

MSIR.1020: Debugger: JDBW Address—X'7C42A390°
I QaxmML2

M204.1168: IN FILE JALWORK INCLUDE QAXML2 ‘
Ready for execution.

Janus/TN3270 Debugger User's Guide 9

Getting Acquainted with the Client GUI

21 The tabbed pages

An important part of the user interface to the Janus Debugger or the TN3270 Debugger
is the set of tabbed pages that use the main display window below them (the Web Buffer
tab is not present for TN3270 Debugger sessions; Daemon tabs 139 display dynamically
if the program invokes daemons):

ﬂ‘% The Debugger Client

File Window Search Breakpoints Execution Data Display Error Macros Help

Top | Bottom | Clear Audit | Run | Step | Step Over | Trace All | Cancel | Clear Breaks | Clear Watch | ¢

Audit Trail [Suurce Cudel Web Buffer l Execution Tracel Proc Selectiunl
“|2010 11 17 16:46:18 Sirin=s Software Debngger Client: For Mods Version(s): 7.(

2010 11 17 16:46:18 __ Build: 53 (30 Noyember 2810} Tag: 11 B e

—_— I

o

These pages are resizable by mouse if you grab and drag the black border bar at the
bottom of the main window.

The pages are copyable:

e [fyou press the Ctrl+C keyboard key combination or select the Copy option from the
Window menu, the contents of the active (topmost) page are copied to the Windows
clipboard. The number of lines copied is displayed in the Status bar[451. Only the
Proc Selection page is not copyable.

e If you map the viewText commandPpsdl to a Client button or hot key, or select its

equivalent from the Window menu, you can invoke a text viewerfs7 that lets you
copy, edit, print, and save text data from Client pages.

Some of the pages are displayable in windows outside of the Client. These external
ko8l windows are easily invoked by double-clicking their tabbed page name, by selection
from the Client's Window menu, or by mappable com mandlzssl

Audit Trail tab
The Audit Trail page displays, from the beginning of the debugging session:

e The Model 204 audit trail lines produced by the online thread that is servicing web
requests from your browser(s) or by the thread that is servicing your 3270/Batch2
requests

e The Model 204 audit trail lines produced by any threads that run daemons on behalf
of your web or 3270/Batch2 requests

e Information about the state of the Debugger Client, such as the port on which it is
listening and the port whose web server requests it is debugging

e All outgoing HTTP messages sent by your browser (passed-through by the Janus
Debugger)

10

Janus/TN3270 Debugger User's Guide

Getting Acquainted with the Client GUI

Audit Trail Source Code | Web Buffer Execution Trace Proc Selection

2006 07 12 21:34:00 Connection From: 127.0.0.1

2006 07 12 21:34:00 Web request: GET http://global .msads.net/ads/1/replay.swf?fd=dellnet.msn.
2006 07 12 21:34:00 Web request will NOT be debugged. ..

2006 07 12 21:34:00 Response: received 1480

2006 07 12 21:34:00 Response content-length: 1062

2006 07 12 21:34:00 Receive of HTTP Response complete, 1480 bytes.

2006 07 12 21:34:00 Response code: 200 OK

2006 07 12 21:34:02 Connection From: 127.0.0.1

2006 07 12 21:34:02 Web request: GET http://sirius-software.com:9219/jalwork/daemon5 HTTE/1.0
2006 07 12 21:34:02 Web request will be debugged...

2006 07 12 21:34:03 Ry T T Y
2006 07 12 21:34:03 Connected to the Debugging Server: sirius-software.com:3355

2006 07 12 21:34:03 Mcdel 204 Versicn: 6.1.0G

2006 07 12 21:34:03 Sirius Meods Version: 6.9

2006 07 12 21:34:03 Session name: 034D230656

2006 07 12 21:34:03 Ry sy
2006 07 12 21:34:03.15 1 3 LI I DAEMONGE

2006 07 12 21:34:03.15 1 3 Ms M204.1168: IN FILE JALWORK INCLUDE DAEMONS

The Most Recent Audit Trail window[141also and only displays audit trail lines.

The Audit Trail page is displayable separate from the Client in an externallsosl window.

Source Code tab

The Source Code page displays the source code lines of the User Language request that
is currently being debugged. Here is where most of your interactions with program code
take place: setting breakpoints, viewing the current execution position, getting detailed
information about a source code line, watching variables from a selected source code

line.
Audit Trail | Source Code Web Buffer Execution Trace | Proc Selection
CM> 1 0 1 I DAEMONS
CM> 2 1 1 *nesting new daemon instances and checking their master numbers
UL> 3 1 2 b
UL> 4 1 3 Audit 'I am starting'
UL> 5 1 4 %speed is object daemon
UL> 6 1 5 %list is object stringlist
UL> 7 1 6 %X is object stringList
UL> 8 1 7T %speed = new
UL> 9 1 8 %n is float
UL> 10 1 9 %n = %speed:usernumber
UL> 11 1 10 Audit 'n is: ' %n Toggle BreakPoint
UL> 12 1 11 %n = %speed:masternumber Procedure Information
UL> 13 1 12 Audit 'n is: ' %n
UL> 14 1 13 %n = %spe?d:parentnwnber Display %n
UL> 15 1 14 Audit 'n is: ' %n
UL> le 1 15 %list = new

Janus/TN3270 Debugger User's Guide 11

Getting Acquainted with the Client GUI

The page display format is:

Column 1 Line type:

CM> — command

UL> — User Language statement
ER> — error message

BR> — breakpoint

Column 2 Simple line number
Column 3 Include level
Column 4 Line number within include

Web Buffer tab

Not ordinarily present for TN3270 Debugger sessions, the Web Buffer page displays the
lines the Janus Web Server application is preparing to send to the browser at the
completion of the request. The page is updated in real time, each time you break
execution, as you step through a code program and PRINT and HTML statements are
executed. The most recent lines added to the page are highlighted, and you can watch

your output HTML being built.

Audit Trail | Source Code | Web Buffer Execution Trace | Proc Selection

<html>

<head>

<title>*Default Janus Web Home Page</title>
</head>

<body bgcolor="#ffffda">

<table cellpadding=2 cellspacing=5 border=0>
<tr>

<td wvalign=top halign=left>

Top, Bottom, and search buttons are available. The page is cleared when a new request
is initiated or if you clear it manually (via the Window > Clear Web Buffer button or the

clearWebBufferhell command).

The Web Buffer page is displayable separate from the Client in an externallodl window.

12 Janus/TN3270 Debugger User's Guide

Getting Acquainted with the Client GUI

Execution Trace tab

The Execution Trace page displays the output of the various tracing operations. It is
discussed further in Tracing program execution[127.

f -
‘E‘ The Janus Debugger (WIDGET) 7

File Window Search Breakpoints Execution DataDisplay Error Macros Help s
Top | Bottom | Clear Audit | Run | Step | Step Over | Trace All | Cancel | Clear Breaks | Clear Watch | View Text L
Audit Trail | Source Code | Web Buffer | E: VT Proc Selection PE

—

$web_type (' text/html’) e

html o

%tcount = $unblank($web_ form parm('count'))

if (mot %count) then .
print 'You did not order anything'

-
html R

end L

Proc Selection tab

The Proc Selection page lets you designate some sections of your program or entire
programs, for debugging while omitting others. This may be for reasons of time or space
economy. You can execute but not display in the Debugger Client specified sections of
your code, ranging from a few lines to whole routines or inner or outer procedures.

A2 The Janus Debugger (UDPSQCK) [E= e
File Window Search Breakpoints Execution DataDisplay Error Macros Help
Top | Bottom | Clear Audit | Run | Step | Step Over | Trace All | Cancel | Clear Breaks | Clear Waich
Audit Trail | Source Code | Web Buffer | Execulion Trace Proc Selection
Exclude Parts of Program From Debugging Skip Whole Programs
Run Until Procedure: ‘
Edit ExcludeProcList | Edit Exclude Routine List | | E
Edit Include Proc List | Edit Include Routine List ‘ White/Black List
= = o Edit White List
Reload Proc/Routine/Method Lists |
i Edit Black List
Use Proc Lists for Use Routine Lisis for -
v v O Reload Lists
v excludefinciude v excludefinclude e B
Search Search Next Search Prev ... Value Trace Run to Change Watch
s e Bt T et T e o [e : THa ,—*——-_,_.4,——_)/-

——

The Exclude Parts of Program from Debugging section lets you specify multiple User
Language methods, subroutines, or inner procedures whose source code will be
executed but not shown in the Debugger Client. From this excluded source code, you
can also specify methods, subroutines, or inner procedures whose code you want to be
able to view.

Janus/TN3270 Debugger User's Guide 13

Getting Acquainted with the Client GUI

The Skip Whole Programs section of the page lets you specify by name or name pattern
only the outer procedures you want to debug. Those procedures not identified are
executed but their code is not sent to or displayed in the Client. You can identify the
procedures directly (by explicitly specifying them by name or pattern in a "white list") or
indirectly (by explicitly excluding the procedures you do not want to debug by specifying
them by name or pattern in a "black list").

The Proc Selection page options are discussed further in Excluding sections of source
code from debugging./e4)

See Also

Performing Basic GUI Tasks/[s1]

Opening an external window/z08)

2.2 The lower windows

The windows described here are positioned below the Client's principal display area, the
main window.

The Most Recent Audit Trail window

This window displays only the last few lines of the audit trail for this web user or 3270/
Batch2 thread. It displays no non-audit trail information.

i
_r
Search Search Next Search Prev | Value .Jl - I
j %statusMsg ,
-
MSIER.1020: Debugger: JDBW Address=X'T7C4213B0' :
I RIGHT ¥
M204.1165: IN FILE JALWORE INCLUDE RIGHT
MSIR.0913: Debugger Debungging i= already turned on "
MEIR.1026: Debugger: sending CLIENTCOMMAND='COMMAND CLEARWATCH'
Executed one statement. L

The Most Recent Audit Trail display is not deleted if you click the Clear Audit button in the
button barss).

14 Janus/TN3270 Debugger User's Guide

Getting Acquainted with the Client GUI

The Watch Window

The Watch Window box can display the current value of one or more SOUL data items (%
variables, $list items, object variables, etc.). It is updated as the program runs, each time
execution is paused by the Debugger:

L
|

Value Trace Run to Change Watch I
%rc j

#ztatusMsg=""
*ro=0

D CLEARWATCH® L

To add an item to the Watch Window, you can use the Entity-name input box below the
main window:

Value Trace Run to Change m
e

¥statusMsg=""
*re=0

D CLEARWATCH' N

Or you can right-click a Source Code line and select Add Watch from the context menu:

Janus/TN3270 Debugger User's Guide 15

Getting Acquainted with the Client GUI

r = =
A‘Q The Janus Debugger (QAXML2) r - - - L4 o .

File Window Search Breakpoints Execution Data Display Error Macros Help
Top | Bottom | Clear Audit | Run | Step | Step Over | Trace All | Cancel | Clear Breaks | Clear Watch | Console j
Audit Trail Source Code | Web Buffer] Execution Trace | Proc Selection] ([
TL> 25 1 24 *oneStooge:addelement ("firstName' , *¥iFirst) '_,/
TL> 26 1 23 *oneStooge:addelement ('lastName',6 ¥ilast) I
TL> 27 1 26 return j
TL> 28 1 27
TL> 29 1 28 end subroutine
TL> 30 1 29 J
TL> 31 1 30 end class L
UL> 32 1 31 {
TL> 33 1 32 K.
TL> 34 1 33
TL> 35 1 34 *d is object document
UL> 36 1 35 #d = new
UL> 37 1 36 %1 is longstring Add Watch i
UL> 38 1 37 Toggle BreakPoint f
TL> 39 1 38 *d:addSteoge ("Moe' , "Howard') P d Inf "
UL> 0 1 39 2d:addStooge (' Larry’, 'Fine') racedure Infarmatian |
UL> 41 1 40 #d:addStooge ('Curly’, 'Howard') FEQ OCCIN value
TL> 4z 1 41 #*d:addS5tooge (' Shemp' , "Howard') Jump K= k
TL> 43 1 42
UL> 42 1 43 #d:x:print Display %d
TL> 45 1 44 %]l = %d:x:serial
UL> 6 1 45 Fa

Search ‘ Seﬂ;ﬂl Next | Search Prev | Value | Trace | I{J

% -
- : N | 7
ot ~ -
. b l”/ A 4

- _,r"J - ,,f

For watched variables that have large values, there are multiple display options@ that

include manually widening the the Watch Window, viewing the value in a tooltip box,
displaying the value in a separate window, or displaying the Watch Window itself in a

separate window/08)

See Also

Viewing the audit trail[126)

Watching program data items/es]

Opening an external window|z06)

Hiding the Client's lower windows[312]

16 Janus/TN3270 Debugger User's Guide

Getting Acquainted with the Client GUI

2.3 The menu bar

The Debugger Client has multiple menus, each of which is described in the following
subsections. Many of the menu options duplicate the actions of default Client buttons
and keyboard shortcuts, and most menu options are associated with Client commands.

AL The Janus Debugger (QAXMI2)

File Window 5Search Breakpoints Execution Data Display Error Macros Help

Top | Bottom ear

If a hot key is mapped to a command that is associated with a menu option, the hot key
is displayed in parentheses next to the menu option.

The File menu options| 1€

The Window menu options /241
The Search menu options|26]
The Breakpoints menu options[27]

The Execution menu options /291

The Data Display menu options|?3'1
The Error menu options 5]
The Macros menu options|ze]

The Help menu options/sel

Janus/TN3270 Debugger User's Guide 17

Getting Acquainted with the Client GUI

231 The File menu options

The File menu options are identified below:

42 The Janus Debugger (UDPSOCK)

F

File | Window 5earch Breakpoints Execution Data Display Error M_:'

Preferences (ctrl+p)

Colar Preferences

Edit White List
Edit Black List
Edit uixml

Edit uimorexml

Edit debuggerConfigaml

Restart

Restart with Default Window Size

Exit

L> 13 1
L> 14 1

Preferences

12
13 end

ep | Step Over Tracél
|Buffer] Execution |
T

¥
| r

ongstring ’.

bject ndpSocke

2
10031?01"1;:}2'*;
oot = 0 [

I

r df’ o
EndpSo

nd { sme s,
s n

Also accessible (by defaultkssl) by using the Ctrl+P
keyboard shortcut, this option opens a dialog box[239 that
lets you control certain Debugger Client operating options:

= Execution Options:

e Pause atend of evaluation

Whether to pause at the end of the evaluation of a
reguest@ (to review program data as it is at the
end of request processing) before sending any
contents of the web output bufferfi27 or any 3270/
Batch2 terminal output.

e Run Until spans debug sessions

Whether Client "Run Until" processing@ should
continue searching until it finds a specified
procedure, even if the program contains HTML
frames, the debugging session is interrupted by a
loss of the connection to the Model 204 Online, or
the TN3270 Debugger is toggled off and on again.

18

Janus/TN3270 Debugger User's Guide

Getting Acquainted with the Client GUI

e Break after READ SCREEN

Whether the TN3270 Debugger automatically
breaks execution after READ SCREEN or READ
MENU statements (see Breaking at the end of
READ SCREEN or READ MENU statements|eo).

e Source Preview

Whether the Client should initially display only a
greview@ of the entire source code program (for
programs with at least 1000 lines, by default).

e Macro Autorun

Whether an include of a procedure from command
level will automatically invoke a macrobzsl whose
name matches the name of the included

procedure.
= |E Options:
e |EMode

Whether the Client should automatically configure
and maintain proxy server settingsfeol for the
Internet Explorer and Chrome browsers, and
whether the proxy is for all host URLs or only for a

specified few. ko2)

New in Build 62. Same as the setIEmode 263
command.

e Clear proxy override

Whether the Client's browser maintenance should
clear and preserve any exception URLs designated
in Internet Explorerkeil to bypass the Client as proxy
server.

e Use existing proxy on not debugged URLs

Whether the Client should re-route exception URLs
B (designated in Internet Explorer to bypass the
proxy server) to a preexisting proxy server rather
than directly to the Internet.

Janus/TN3270 Debugger User's Guide 19

Getting Acquainted with the Client GUI

= Display Options:

e Showat most <x> list items

What the display maximum is for the number of
$list, Stringlist, or Arraylist object items whose
values you can view in a separate Value window/102

e Restore watches on startup

Whether to restore this session's remaining Watch
Window contents when the Client starts its next
session.

e Trimblanks from selection in View Text

Whether leading and trailing blanks should be
trimmed from selections you copy to the Text
Viewer[147.

e History to Execution Trace

Whether execution historyhs2! data should display in
the Execution Trace page instead of a separate
window.

e Showlong watch values in a Tooltip

Whether to display in a tooltip box Watch Window
items/ e8] that are too wide to fit within the Watch
Window.

e Use !debugger directives

Whether to enable Debugger directives [65), which
let you exclude designated source code from the
debugging session.

= Web Server Selection:

e Which of the Onlines specified in the Client
configuration file (debuggerconfig.xml) are to
have their web requests debugged. For more
information, see Debugging multiple Web Servers
[145

20 Janus/TN3270 Debugger User's Guide

Getting Acquainted with the Client GUI

= Program Titles:

3270 Emulator

Whether to bring to the top of the PC screen (when
the Debugger Client pauses for user to provide
external input) the 3270 emulator(ed] or web
browser window42l whose title is matched by the
text specified in the appropriate one of these
boxes.

= Open at Startup:

Whether the Client should automatically start/restart

with:

The main button bar in an external window/421.

An extra button bar|42).

The Watch Window, or the Audit Trail, Web Buffer or

Execution Trace page, or a combination of these,
opened in external windows fa11l.

= Main Button Bar:

Top, Center, or Bottom

Whether to change the position[4d1 of the main
(non-external) button bar from its default (Top),
above the main window) to either just below the
main window (Center), or to the very bottom of the
Client window (Bottom).

Extra Buttons

Whether extra buttons|+2) defined in the ui . xm1 file
should be added to the display of the main button
bar (wherever it is located). If the checkbox is
cleared, they display in a separate external window
when invoked by menu or command.

New in Build 57. Same as the extraButtonBar |03
command with the argument main.

Janus/TN3270 Debugger User's Guide

21

Getting Acquainted with the Client GUI

= Main Window Options:

o Hide Lower Section

Whether to hide the lower section of the main
window (everything below the ml?ﬂ). This is
useful in a multiple monitor environment where the
Audit Trail and Watch Window are in separate
windows on another monitor.

New in Build 57. Same as the hideLower[212)
command.

Color Preferences Lets you change the colorfs7l of text and highlighting in the
various Client windows and pages.

Edit White List Lets you create or edit an existing whitelist.txt file.
This file contains a list of the Model 204 procedures that
you want to debug.

When white Iisting|77'1 is activated and the Debugger runs
your source code, it filters procedures automatically,
stopping to interactively debug only the requests that are
on the white list. Other procedures execute normally, but
they are not interactively debugged.

Edit Black List Lets you create or edit an existing blacklist.txt file.
This file contains a list of the Model 204 procedures that
you want not to debug.

When black Iisting|77'1 is activated and the Debugger runs
your source code, it filters procedures automatically,
stopping to interactively debug only the requests that are
not on the black list. Other procedures execute normally,
but they are not interactively debugged.

Edit ui.xml Lets you create or edit an existing ui.xml filekoil. This file
specifies maodifications to the Client's default operational
buttons and keyboard shortcuts. You can set the buttons to
perform actions (commands), or you can set hot keys to
commands.

Edit uimore.xml Lets you create or edit an existing uimore.xml filelss.. This
file provides the same kind of functionality as, but entirely
overrides the ui.xml file. New in Build 57.

22 Janus/TN3270 Debugger User's Guide

Getting Acquainted with the Client GUI

Edit debuggerConfig.

xml

Restart

Restart with Default
Window Size

Exit

Opens the debuggerConfig.xmlksdl file for viewing and
editing its elements (which define Online connection
parameters, file-type filtering, and local editors, among
other things).

Restarts the Debugger Client. Same as the resta rtl243
command.

Restarts the Debugger Client with the default size (as
when initially installed) for the main window instead of the
size at last exit.

Same as the restartDefault4s command.

Does no further processing and immediately closes the
Client.

Janus/TN3270 Debugger User's Guide 23

Getting Acquainted with the Client GUI

23.2 The Window menu options

The Window menu options are identified below:

S The Janus Debugger (QAXML2) r',
File [Window | Search Breakpoints Execution Data Display Error Macros Help ;
Top Top Trace | Cancel | Clear Breaks | Clear Wat!
Au L il xecution Trace | Proc Selection ||
CM> Clear Audit Trail f,.—"
UL Clear Execution Trace F
TL> iy [,
UL Clear Web Buffer >
TL> _—

—i= (1 ”~
UL> Copy (ctrl+c) ohiect XMLDoc 4
UL Paste W J
TL= View Text Stooge (¥iFirst is=s longstl_
UL> tiLast is longstri
OL> Open External Watch Window _+__.—"f
UL B . S i E
L Open External Audit Trail Window)
TL> Open External Web Buffer Window = object }D-ILN?V" =
UL> Open External Execution Trace Window |
UL> [
OL> Show Main Button Bar in External Window { S
UL> . P
L Show Extra Button Bar Window P
P b
s Close External Windows 4
TL>|
O
— J_ Jr
T Regeety-, Search Next J
—,—‘, = W g
Top Scrolls to the top of the currently displayed tab. Same as

the Top button|se]. Comparable mappable command, top
Rﬂ, can be applied to the Client window (main, external,
work) that you specify.

Bottom Scrolls to the bottom of the currently displayed tab. Same
as the Bottom button[3s]. Comparable mappable
command, bottomlsil, can be applied to the Client window
(main, external, work) that you specify.

Clear Audit Trail Clears the contents of the Audit Trail tab. Same as the
Clear Audit[126) button and the clearAudit[is5 command.

24 Janus/TN3270 Debugger User's Guide

Getting Acquainted with the Client GUI

Clear Execution
Trace

Clear Web Buffer

Copy

Paste

View Text

Open External Watch
Window

Open External Audit
Trail Window

Open External Web
Buffer Window

Open External
Execution Trace
Window

Clears the contents of the Execution Trace tab. Same as
the clearExecutionTracelis8l command.

Clears the contents of the Web Buffer tab. Equivalent
mappable command is clearWebBufferfoil

Copies to the clipboard the lines currently visible in the
active tabbed page. Described further in The tabbed

pages. m

Pastes the current clipboard contents to the Client's Search
text box or to the text box above the Watch Window.

Invokes a separate viewer[147 for copying, printing, and
saving Client text data.

Displays in an external window/[s08), that is, separate from

the main window, the current contents of the Client Watch
Window. Or, it brings the existing external Watch Window to
the top of your current stack of open windows.

Same as the openExternalWatchWindowlssl command.

Displays in an external windowfsoél the current contents of
the Client Audit Trail tab. Or, it brings the existing external
Audit Trail window to the top of your current stack of open
windows.

Same as the openExternalAuditTraills3 command.

Displays in an external window/[s0él the current contents of
the Client Web Buffer tab. Or, it brings the existing external
Web Buffer window to the top of your current stack of open
windows.

Same as the openExternalWebBufferEa command.

Displays in an external window/[sodl the current contents of
the Client Execution Trace tab. Or, it brings the existing
external Execution Trace window to the top of your current
stack of open windows.

Same as the openExternalExecutionTracelsi
command.

Janus/TN3270 Debugger User's Guide 25

Getting Acquainted with the Client GUI

Show Main Button
Bar In External
Window

Show Extra Button
Bar Window

Close External
Windows

Displays in an external window/[s08l the current contents of
the Client main button bar[as). Or, it brings the existing
external Button Bar window to the top of your current stack
of open windows.

Same as the buttonBar showlisd command.

Displays in an external window/[s0él the current contents of
the Client Extra button bar| 42\. Or, it brings the existing
external Extra Buttons window to the top of your current
stack of open windows.

Closes all Client external windows.Boél Same as the
closeExternalWindows|ied command.

2.3.3 The Search menu options

The Search menu options are identified below:

AZ: The Janus Debugger (QAXML2) P

Top | Botton
Audit Trail

CM> 1
TL>

File Window [Search Breakpeints

Search From Top
Search From Bottom (ctrl+u)
Search Down (f9)
Search Up (alt+f9)

Execution Data Display Error Mal

Trace | Cance}

Execulim.’,’

UL>
UL>
TL>
TL>
TUL>
UL>
TL> 9
TL> 10
TL> 11

T T i S o

2

mo=d e W N

W oo =] oo

R

11

Search From Top

P »

class document

poblic .
variable x (/
construoctor
subrontif™ ™

end_}il:gf-_ =

o
3

Searches (without regard for case) from the top of the
current tab for the string you specify in the Search box.
Same as the Search button[+4). Comparable mappable
command, searchFromTopksA, can be applied to the Client
window (main, external, work) that you specify.

26

Janus/TN3270 Debugger User's Guide

Getting Acquainted with the Client GUI

Search From Bottom Searches (without regard for case) from the bottom of the
current tab for the string you specify in the Search box.
Same as the Alt + Search button combination. Comparable
mappable command, searchFromBottombs2, can be
applied to the Client window (main, external, work) that you
specify.

Search Down Searches (without regard for case) down (relative to the
current line) in the current tab for the string you specify in
the Search box. Same as the Search Next button/ 4]
Comparable mappable command, searchDownpsil, can
be applied to the Client window (main, external, work) that
you specify.

Search Up Searches up (relative to the current line) in the current tab
for the string you specify in the Search box. Same as the
Search Prev buttonl4s]or pressing Alt + Search Next
button. Comparable mappable command, sea r‘chUpEa,
can be applied to the Client window (main, external, work)
that you specify.

2.3.4 The Breakpoints menu options

The Breakpoints menu options are identified below:

,‘_"5‘% The Janus Debugger (QAXMLZ) r'f"
File Window Search |Breakpoints | Execution Data Display Error Maq/' o’
'| §—] =

Top | Bottom | Cleal Breaks At (alt+b) Igcf-
Audit Trail | Breaks (ctrl+b) P'[

..... . . L3
ErEEETCTE Toggle Breakpoint on Current Line r
UL 2 1 Clear All Breakpoints r/
UL> 301 1
UL> 4 1 Break on Mext Proc
UL> 5 1 4 public 3
TUL> & 1 L1 variable x is object XHL.D}
TL> T 1 6 constroctor new o
UL> it 7 ™, subroutine addStooge [%}I
OL> 3 8. P e

Breaks At Sets a breakpoint on each executable line in the request

(from the beginning of the request) that contains a case-
insensitive match of the string or regex specified in the
Search box. Described further in Setting multiple
breakpoints at oncelss.

Janus/TN3270 Debugger User's Guide 27

Getting Acquainted with the Client GUI

Breaks

Toggle Breakpoint on
Current Line

Clear All Breakpoints

Sets breakpoints on lines that follow comments that have
the form *break. Described further in Setting multiple
breakpoints at oncelss).

Sets or removes a breakpoint for the current Source Code
line if the line is or starts an executable statement.

Described further in Setting a single breakpoint|_%'1 Same
as the toggleBreakpointOnCurrentLinel271 command.

Removes all breakpoints in the request. Same as the

clearBreaks|isn command.

28

Janus/TN3270 Debugger User's Guide

Getting Acquainted with the Client GUI

2.3.5 The Execution menu options

The Execution menu options are identified below:

ﬂ‘% The Janus Debugger (UDPSOCK) - ——a 7
File Window 5earch Breakpoints | Execution | Data Display Error Macres Help f
Top | Bottom | Clear Audit | R Step (f4] (f11) icel | Clear Breaks
Audit Trail Source Code Step Out (alt+f10) Proc Seleclinn]
1> 1 0 1 I UDPSO SleplovEgiD) .
1> 2 1 1%
UL> 3 1 2 b b o
TL> 4 1 3 Zmessag Run Without Daemons (alt+f5) i ',-\’
UL 5 1 4 FundpSoc| Run Until Variable changes r(—"rj
L> s 1 3 Run Until Proc E
UL> 7 1 € sudpSoc un
TL> B 1 7 #udpSoc . .
L A o 8 repeat Get/Display History ;
TL> 10 1 g Smess Select Previous History Line
UL> 1 1 10 %udpS Select Next History Line -
OL> 12 1 11 end rep| . . . 1
TL> 13 1 12 Select First History Line g
UL 14 1 13 end Select Last History Line !
Trace Until Variable Equals Value I":
Trace Values |
Trace To End (ctri+t) d
Turn On White List !
Turn Off White List I|
Reload White List I
Turn On Black List !
Turn Off Black List rJ
Reload Black List
f
Skip Previewed Source ;
Debug Previewed Source P
Search Search Next Toggle Init Exclude FI
Cancel (ctrl+x) fl
Turn Off Debuggin r
gging J,r"
Step Executes the next executable User Language statement.
Step Out Discontinues debugging and leaves the current simple or
complex subroutine, user method, or daemon, and
resumes debugging on the statement following the
statement that called that subroutine, user method, or
daemon. Described further in Stepping out/e2).
Step Over Executes the next executable SOUL statement, if it is not

a simple or complex Model 204 subroutine or an O-O
method. Skips to the statement after, if the next executable
statement is such a subroutine or method invocation.
Same as using the Step Over button[s41.

Janus/TN3270 Debugger User's Guide 29

Getting Acquainted with the Client GUI

Run

Run Without
Daemons

Run Until Variable
Changes

Run Until Proc

Get/Display History

Select Previous
History Line

Select Next History
Line

Select First History
Line

Executes User Language statements in the program being
debugged until the end of the request or until interrupted by
a breakpoint, program error, or sdaemon call.

Performs the same functionality as Run, but unlike Run, is
not interrupted by sdaemon codefsol.

Steps through the program being debugged, stopping if a
statement modifies the value of the variable specified in
the text box above the Watch Window. Displays the
statement that modified the variable and the new variable
value in the Execution Trace tab. Same as the Run to
Change button|[i31)

Runs program code without interruption until it reaches
the procedure specified on the Proc Selection page in
the Run Until Procedure text box, then displays that
procedure for debugging. Same as the Run to
Procedure button| 731,

Displays a histog@ of the statements executed thus far
during program evaluation. The history includes calls and
returns for methods and subroutines (as many as 1000
statements).

Scans chronologically backward in the statement
execution historylz2), then highlights in the Source Code or
Daemon tab the statement that was executed immediately

prior to the statement that is currently highlighted with the
Execution Position colorfzea.

Same as the previousHistorylsd command.

Scans chronologically forward in the statement execution
historyfis2, then highlights in the Source Code or Daemon tab
the statement that was executed immediately following the
statement that is currently highlighted with the Execution
Position colorfz28

Same as the nextHistor‘yEc'ﬂ command.

Scans chronologically backward in the current statement
execution historyl32), then highlights in the Source Code or
Daemon tab the first (earliest) statement in the history.

Same as the firstHistoryWﬂ command.

30

Janus/TN3270 Debugger User's Guide

Getting Acquainted with the Client GUI

Select Last History Scans chronologically forward in the current statement
Line execution historyl32), then highlights in the Source Code or

Daemon tab the last (latest) statement in the history.

Same as the lastHistory@ command.

Trace Until Variable Steps through the program being debugged, stopping if a

Equals Value statement modifies the value of the variable specified in
the text box above the Watch Window so that it equals a
value you specify. Displays the statement that modified the
variable and the new variable value in the Execution Trace
tab. Same as Alt key + Run to Change/132 button.

Trace Values Performs the same functionality as Run, but also reports in
the Execution Trace tab all statements that modify a
selected variable and what value was assigned to the
variable. Described further in Tracing all updates to a
variable's valuefisol.

Trace To End Performs the same functionality as Run, but also reports in

the Execution Trace tab a list of all the statements

|e_jxgcuted. Described further in Tracing all lines executed
128|,

Turn On White List Activates White List filteringﬁﬁ, which by default is not
active. Same as clicking the Turn On White List button on

the Proc Selection page or executing the turnOnWhitelList
262 command.

Turn Off White List Deactivates White List filtering[79). Same as clicking the
Turn off Lists button on the Proc Selection page or executing
the turnOffihitelist[2s1l command.

Reload White list Updates the existing White List with the current contents of
the whitelist.ixt filel77], so you can dynamically update your
White List. Same as clicking the Reload White List button
on the Proc Selection page or executing the
reloadwhitelist[»41 command.

Turn On Black List Activates Black List fiIterianﬁ, which by default is not
active. Same as clicking the Turn On Black List button on
the Proc Selection page or executing the turnOnBlackList
263 command.

Janus/TN3270 Debugger User's Guide 31

Getting Acquainted with the Client GUI

Turn Off Black List

Reload Black list

Skip Previewed
Source

Debug Previewed
Source

Toggle Init Exclude

Cancel

Turn Off Debugging

Deactivates Black List filtering[791. Same as clicking the
Turn off Lists button on the Proc Selection page or executing
the turnOffBlackList[2s1 command.

Updates the existing Black List with the current contents of
the blacklist.txt filel771, so you can dynamically update your
Black List. Same as clicking the Reload Black List button on
the Proc Selection page or executing the reloadBlackList
241 command.

When the Source Preview featurelssis enabled, executes
the program that is being previewed but does not download
the rest of the source code for viewing or controlled
execution.

When the Source Preview feature(ssis enabled, triggers a
full download of the program source code for normal
debugging. If the program has compilation errors, the full
compilation error listing is downloaded.

Inverts the way Exclude modeles] operates so that it initially
excludes code instead of initially including code (until an

explicit directive). Same as togglelnitExcludek7sl command.

Requires at least version 7.6 of the Sirius Mods.

Cancels the request being debugged; same as the Cancel
button[e3). Described further in Cancelling executionles1.

Stops a debugging session if it is a TN3270 Debugger
session or if the TN3270 DEBUG command is being used
for a web thread. Same as TN3270 DEBUG OFF[152]
command.

32

Janus/TN3270 Debugger User's Guide

Getting Acquainted with the Client GUI

23.6 The Data Display menu options

The Data Display menu options are identified below:

[,‘_"5‘% The Janus Debugger (QAXML2) /f
File Window Search Breakpoints Execution [gata Display | Error Macres Help J—"
Top | Bottom | Clear Audit | Run | Step | 5 Load Watch l Clear Wi
Audit Trail ; l Web B SaveWatch selectic
CM>= 1] 1 I QAXMLE Add Watch 1
iz Z L L EEI Add Watch on Current Line J
TL> 3 1 2 class docume Clear Watch Jr
UL= 4 1 3
UL> 5 1 4 public) ;r/
UL> 6 1 5 variak alielPiplaty 7
UL> 7 1 [const1] T L
UL> 8 1 7 subrou string, °
Ul> % 1 a8 PAFGI Ering)

TUL= 10 1 9 end publi
UL> 11 1 10 Open External Watch Window
UL> 12 1 11 private -
UL> 13 1 _}2 variable top is object XMLNode fl
UL> 14{/’f - end prigrse -
||oL= LY i g e T

M . P

- ¥

Load Watch Restores from a local file a list of items to display in the
Watch Windowl 151 Same as the loadWatchkz2 command.
For more information, see Saving and restoring Watch
Window contents|es).

Save Watch Saves to a local file (for later loading) the list of items
currently displayed in the Watch Window. Same as the
saveWatchl2s0l command. For more information, see
Saving and restoring Watch Window contents|s9).

Add Watch Adds to the Watch Window the item currently specified in
the text area above the Watch Window. Same as the Watch
button[es] or addWatchhz7l command.

Add Watch on Adds to the Watch Window any variables found in the

Current Line current Source Code line. Same as right-clicking the current
line and selecting Add Watch from the context menu@,
and same as the addWatchOnCurrentLineh7sl command.

Clear Watch Removes all items from the Watch Window and instructs

the mainframe portion of the Debugger to stop collecting
any watch data. Same as the Clear Watch button or
clearWatchlied command.

Janus/TN3270 Debugger User's Guide 33

Getting Acquainted with the Client GUI

Value Display

PAl

PAFGI

Open External Watch
Window

Displays in a separate window the details of the value of
the item currently specified in the text area above the Watch
Window. This is one of multiple ways to display a value.[s9]
Same as the valueDisplaylsi command.

Displays in a separate window the values of all the visible
fields in the current Model 204 record. This is the output of
the User Language PAI (Print All Infformation) statement.
Same as the pail2s7lcommand.

Requires at least version 7.6 of the Sirius Mods and at
least version 7.2 of Model 204.

Displays in a separate window the values of all the fields in
the current or specified Model 204 field group. This is the
output of the User Language PAFGI (Print All Fieldgroup
Information) statement. Same as the pafgi kssl command.

Requires at least version 7.6 of the Sirius Mods and at
least version 7.2 of Model 204.

Displays in an external window [s08] separate from the main
Client window the current contents of the Client Watch
Window. Or, it brings the existing external Watch Window to
the top of your current stack of open windows.

Same as the openExternalWatchWindowEa command.

34

Janus/TN3270 Debugger User's Guide

Getting Acquainted with the Client GUI

23.7 The Error menu options

The Error menu options are identified below. This menu is not enabled if the program you
are debugging has no compilation errors.

rﬂ‘% The Janus Debugger (QAXML2) .
File Window Search Breakpeints Execution Data Display [Error Macros Help P -
Top | Bottom | Clear Audit | Run | Step | Step Over | Tr Mext Compile Error (f11 (cmpl err]) - 5
Audit Trail SUU[GBCDdB Web Buffer l Ext Previous Cornpile Error (FLO (cmpl err)) -4
CM= 1 0 1 I BADCOMFPILE.UL Quit (£5) u:
UL= 2 1 1 begin
UL> 3 1 2 variables are undefined -
TUL> 4 1 3 this is wrong E
M204,022%: INVALID STATEMENT =
£hi i wrono e
Next Compile Error Advances to the next line that has a compilation error, if the

request being debugged has more compilation errors after
the current one. Described further in Viewing programs
that contain coding errors 136\,

Previous Compile Returns to the previous line that has a compilation error, if
Error the request being debugged has more compilation errors
before the current one.

Quit Stops processing the current request; sends the
compilation error messages to the browser (if Janus
Debugger) or to the terminal (if TN3270 Debugger).

Janus/TN3270 Debugger User's Guide 35

Getting Acquainted with the Client GUI

23.8 The Macros menu options

The Macros menu options are identified below. Macros are discussed in Using Debugger
macros.[s17

i lgTheJam.ls Debugger{QAKh&LZ}- Y WP W T e /
File Window Search Breakpoints Execution Data Display Error | Macros | Help - _’,r—"’
Top | Bottom | Clear Audit | Run | Step | Step Over | Trace | C Run Macro s
Audit Trail Source Code | Web Buffer | Executic Edit Macro =
TL= 26 1 25 *oneStooge:addelement REc +
UL> 27 1 26 retarn Kill Running Macro ;

UL> 28 1 27 s

vL> 28 1 28 end subroutine Console "
UL> 30 1 29 i ¥
UL> 31 1 30 end class Command Line }
gt; g: i g; Run C:\Users\JAL\My Documents\Debugger\oldstuffitogglesh.macro "
UL> 34 1 33 Edit C:\Users\JAL\My Documents\Debugger\oldstuff\togglesh.macroJ—js'

| TL=> 35 1 34 %d is object document u
UL 36 1 35 #d = new o

| |oL> 37 1 36 _. %) is longstring ~
o> 38 1 o e -~ P

-‘JL‘ri_:j;,_," .nae_L'_uqr”) —— B P e

Run Macro Invokes a Windows file-selection dialog box for you to
locate the Debugger macro you want to run.
runMacroFromUISelectionlsdl is the equivalent
mappable command.

Edit Macro Invokes a Windows file-selection dialog box for you to
locate the macro you want to modify. Opens the file in the
Windows Notepad text editor or an alternate editor
specified in the Debugger configuration filefs?.

New Macro Invokes a Windows file-selection dialog box for you to
identify the name and location of the new, blank macro file
you are creating. Once you name the file, it is created, then
opened for you in the Windows Notepad text editor.
Equivalent Client command is createMacrohosl.

This option is labeled New Blank Macro in Client builds prior
to 53.

Kill Running Macro Stops the execution of the macro that is running. This can
be useful if a macro's execution spans more than one
request.

killlo20lis the equivalent mappable command.

36 Janus/TN3270 Debugger User's Guide

Getting Acquainted with the Client GUI

Console Invokes a console window that displays information about
the macros and commands you run. The console reports
the starting and completing of the macro execution, as well
as any error messages. Equivalent Client commands are
macroConsolel223 and openMacroConsolepss.

This option is labeled Macro Console in Client builds prior to
53.

Command Line Invokes a dialog box for you to enter the name and any
parameters of the macro (or command) you want to run.
The macro you identify must be located in the same folder
as the Debugger Client executable file or a work folder
knownko3l to the Client.

Equivalent Client command is openCommandLinefps3l.

This option is labeled Macro Command Line in Client builds
prior to 53.

Run Displays the path to the macro file you last executed.
Selecting this item executes the macro again.

Edit Displays the path to the macro file you last executed.
Selecting this item opens the macro for editing in the
Notepad text editor.

Janus/TN3270 Debugger User's Guide 37

Getting Acquainted with the Client GUI

239 The Help menu options

The Help menu options are identified below:

2 The Janus Debugger (QAXMLZ) S
File Window Search Breakpoints Execution Data Display Error Macros f/—_,_/_'
Top | Bottom | Clear Audit | Run | Step | Step Over | Trace | Cancel | (™ Help Topics le -
il | Web Buffer | Execution Trac Keyboard Shortcuts -
CM> 1 0 1 I QAXML2 LammEns]
TL> 2 1 1 begin Functions "
TL> 3 1 2 class docoment View PDF Manual J[_/
UL> 4 1 3
UL> 5 1 4 public About r
TL> 6 1 5 variable x is object XMLDoc Model 204 Wiki
TL> 7 1 [constroctor new
N . Updates
TL> 8 1 7 subrontine addStooge (*iFirs
TL> s 1 8 *¥ilast i= longstring) b
UL> 10 1 9 end public f
UL> 11 1 [W ' B
oL> 12 1_/_'1 vate S N PR 4
e N arippld” o~ — —
-
Help Topics Displays the Windows online Help contents for the

Keyboard Shortcuts

Commands

Functions

View PDF Manual

Debugger. Alternative to pressing the F1 key.

Displays the Client's current (defaultkes) as well as
mapped) keyboard shortcuts in the Keyboard Shortcuts
window. Equivalent mappable command is
showShortcuts[273.

Displays a "quick reference" of the set of Client commands
[177in the Commands window. The commands are listed in
alphabetical order and with simple definitions.

Its equivalent mappable command is showCommands k7ol

Displays a "quick reference" of the set of Client functions
328 in the &&Functions window. The &&functions are listed
in alphabetical order and include simple definitions.
&&functions that may only be used in a macro include a
(macro only) designation.

New in Client Build 58. Its equivalent mappable command
is showFunctions/27dl

Accesses the Janus/TN3270 Debugger User's Guide (in
your Debugger Client installation folder). lts equivalent
mappable command is manualkpzsl

38

Janus/TN3270 Debugger User's Guide

Getting Acquainted with the Client GUI

About Displays the contents of the Client's "About box." Its
equivalent mappable command is showAbout 7ol

Model 204 Wiki Opens your browser to the Main Page of the wiki for Model
204 documentation (by defaulthsg)). This wiki contains
documentation topics and tutorials for users of Model 204
and its add-on products.

Updates Invokes a program (updateGet.exe) from which you can
download a new executable file (JanusDebugger.exe)
from a central location to replace your existing Client — if
this featurelso? has been set up at your site.

2.4 The button bar

Many of the Client's basic operations are controlled by the buttons arrayed in the button
bar, which by default is displayed above the main window:

‘g‘ The Janus Debugger (QAXML2)

File Windo T
Top | Bottom | Clear Audit | Run | Step | Step Over | Trace All | Cancel | Clear Breaks | Clear Watc

...............] — — N T oinction L - e

These same operations can also be invoked by Client menu(171 options and by keyboard
shortcut. The operations are implemented by Client commands hosl, of which there are
many more than there are buttons. You can change the default mapping of buttons and
hot keys@ to commands to suit your preference.

The subsections below describe how:

e The buttons may be divided into function categories.

e The position of the main button bar 40} may be changed.

e You can extract the button bar(42]to a window that is external to the Client.

e You can create an extra button barf421if you want more than the 15 buttons that the
main button bar can accommodate.

Types of buttons
The Client default buttons may be divided by function as follows:

e Page navigation

Janus/TN3270 Debugger User's Guide 39

Getting Acquainted with the Client GUI

The Top and Bottom buttons operate on the currently active Audit Traill 0], Source
Codel11] (or Daemonkssl), or Web Buffer[121tab. Top brings to the top of the page
the first line of the current page. Bottom highlights the last line of the current page.

The mappable Client commands 289 that perform the same actions are topl73 and
bottom. 181l

e Program execution

The Step, Step Over, and Run buttons advance the Source Code page (or Daemon
page) processing position by executing one or more "executable" User Language
statements. For more details, see Step, Step Over, Run.[s3]

By defaultl205, the F5 key is equivalent to the Run button; F4 is equivalent to Step (as
is F11); and F10 is equivalent to Step Over.

The Cancel button stops the executionles] of the current program in the Source Code
page. You can cancel the request at any time.

The mappable Client commands that perform these execution actions are step@,
stevaer‘ES'I r‘unm, and cancel. 55'1

e Page clearing

The Clear Audit, Clear Breaks, and Clear Watch buttons remove entirely the contents

of the Client's Audit Trail tabbed page, the breakpoints[ss] defined in the program
being debugged, and the Client's Watch Window| 151.

The mappable Client commands that perform these actions are clearAuditfes]
clear‘Br‘eaks@, and clear‘Watchm;ESﬁ

Positioning the button bar within the Client window

You can change the location of the main button bar from its default (above the main tabs)
to either of these other positions in the Client window:

e Immediately below the main tabs (but above the search, tracing, and value
displaying controls):

o v £LanT AT aa 3ada . AnaRnt

50 print %*recs3:tostring

51 print &recs3

52 print %cursi:tostring

53

54 end <

o
@
HOE R R

Top | Bottom | Clear Audit | Run | Step | Step Over | Trace All | Cancel | Clear Breaks CIearWalchI

Search Search Next Search Prev | Value | Trace EI Run to Change ‘Watch
Sirius | |%i -~

MSIR.1020: Debugger: JDBW Address=X"T7C4133B0" & &i=5
I RECSET4
14204.1168: IN FILE JALWORK INCLUDE RECSET4

Breakpoint cleared. Recsiving/forwarding web page

40 Janus/TN3270 Debugger User's Guide

Getting Acquainted with the Client GUI

To move the button bar to this position:

1. From the Client's File menu, select Preferences, or use the Ctl-P keyboard
shortcut or the preferenceslzsd command.

2. In the Main Button Bar area of the Preferences dialog box, select the Center

option:
K
External Web
watches on starlup Buffer Window
geculoniliacs External Execution

Trace Window
Jger directives (7.6+)

= Main Button Bar
ulafor

« Top

& Center

s
Jwser ¢ Bottom

Firefox

I~ Extra Buttons

The button bar immediately relocates.

e At the very bottom of the Client window:

50 print %recs3:tostring

L> 51 1 =
L> 52 1 51 print %recs3 4
53 1 52 print %cursl:tostring
L> 54 1 53
L> 55 1 54 end | 1
Search ‘ Search Next Search Prev ‘ Value Trace || Run to Change Watch
Sirius - %i =
|
MSIR.1020: Debugger: JDBW Address=X'TC4133B0" - %i=5
T RECSET4
M204.1168: IN FILE JALWORK INCLUDE RECSET4 =
] m »] m 3 W
W
!Top Bottom | Clear Audit | Run | Step | Step Over | Trace All | Cancel | Clear Breaks CIearWatchI
—

To move the button bar to this position, select the Bottom option in the Main Button
Bar area of the Preferences dialog box.

The mappable Client commandbss) that positions the button bar is mainButtonBar. p25)

Janus/TN3270 Debugger User's Guide 41

Getting Acquainted with the Client GUI

Launching an external button bar

For your convenience, the location of the button bar is not fixed. In addition to changing
its position on the main Client window as described above, you can move the main
button bar to a separate window outside the Client application window. You do so in
either of the following ways:

e Selecting the Show Main Button Bar in External Window option of the Window menu
(prior to Client Build 56, this is the Open External Button Window option)

¢ Invoking a button, key, or macro magged@'ﬂ to the openExternalButtonWindowfsa
or the buttonBarhss command

The resulting external Button Bar window shares the characteristics of the other Client
external windows. |06l You can close the external window at any time by Client command
(closeExter‘nalButtonWindow@), by the Exit option of the button bar File menu, or
simply by clicking the X button in the upper-right corner. In addition, the opened Button
Bar window has Dock menu options, as described below.

ﬂ‘% Button Bar: The Janus Debugger (QAXMLZ) | i S
File Dock

Top | Bottom | Clear Audit | Run | Step | Step Over | Trace All | Cancel | Clear Breaks

The buttonBar command has parameter options that let you select where on your
desktop to locate the window. You can dock it, stationary, in the top or bottom left corner
of the desktop, or you can simply open it, undocked, as with the launching options (menu

and command) described above. Also, once opened, the Button Bar window Dock menu

has Top, Bottom, and Float options that perform the same functions as the
corresponding buttonBar command arguments.

Launching a second button bar

As of Client Build 56, you may open an additional button bar (in the Extra Buttons external
window) which can contain as many as 15 buttons. Like the buttons in the main button
bar, these extra buttons are maggablem in the ui.xml file or via the maQButtonEa
command. You launch such an extra button bar by either of the following:

e Selecting the Show Extra Button Bar Window option of the Window menu
¢ Invoking a button, key, or macro magged@'ﬂ to the extraButtonBar]o5 command

42 Janus/TN3270 Debugger User's Guide

Getting Acquainted with the Client GUI

The resulting external Extra Buttons window is just like the external main Button Bar
window (described above), and it shares the characteristics of the other Client external
windows . fs0é)

File Dock
About | Step | Commands | Help | Show Manual | Save Watch

As stated above, you add buttons to the extra button bar by mapping them in the ui.xml
file to the commands you want them to execute. The mapping commands are the same
as those for the buttons in the main button bar, except the buttons are named|zs9)
extraButtone through extraButtonl4. For example, the buttons in the extra button
bar shown above result from the following commands:

<mapping command="showAbout" button="extrabuttone" />
<mapping command="step" button="extrabuttonli" />
<mapping command="showCommands" button="extrabutton2" />
<mapping command="help" button="extrabutton3" />
<mapping command="manual" button="extrabutton4" />
<mapping command="saveWatch" button="extrabutton5" />

As of Build 57, you may add your extra buttons to the existing main button bar instead of
opening an additional window. For example, the following image shows the extra buttons
(defined above) added to the main button bar, which is positioned at the bottom of the
Client main window:

The Debugger Client ‘

Top | Bottom | Clear Audit | Run | Step | Step Over | Trace All | Cancel | Clear Breaks | Clear Watch | About | Step | Commands | Help
Show Manual | Save Waich

To merge extra buttons with those in the main button bar (instead of opening a second
button bar), define the mapping commands in ui.xml as above, then do either of the
following:

e Select the Extra Buttons checkbox of the Preferences| 15! dialog box

e Invoke a button, key, or macro mapped to an extraButtonBarlos command that
specifies the position parameter main.

If the main and second button bars are open in separate external windows, selecting the
Extra Buttons checkbox or invoking an extraButtonBar main command merges all the
buttons in the primary external button bar.

Janus/TN3270 Debugger User's Guide 43

Getting Acquainted with the Client GUI

Once a merged button bar exists, the extra buttons remain part of the primary button bar
if it is subsequently moved to an external window from the Client, or if moved back to the
Client from an external window.

To decouple a merged button bar, you can clear the Extra Buttons checkbox. Less
directly, you can select Window > Show Extra Button Bar Window; this action
simultaneously clears the Extra Buttons checkbox.

2.5 The search facility

The Client search facility is available for its main pages as well as for its many Value and
work windows. The most handy search controls are the Search, Search Next, and Search
Prev buttons that operate on the currently active page.

UL> 19 1 18 end constructor >
TL> 20 1 19 i o
o
=
Search Search Next Search Prev |]
| B -
F
H
i
MSIR.1020: Debugger: JDBW Address=X'TC42A350" o
I QAXMLZe="" = S - F
hanng 3 .F"_,.r’ A ~ Bt

Comparable controls are available, alternatively, from the Search menul261and its
analogous Client commandslze3, and from the multiple hot key and key combinations
(described below) that also perform these search functions.

These search functions are also provided from an on-window search bar when you
choose to view the main pages as external windows |08 or when you invoke a Client

Value or other work window (Consolels24, historyfis2], etc.):

- 3
A Value of Sxserial || e

File

<a>
Hello
moe
<c>larry</c>

Length: 53 " Honor LineEnds * Wrap " Binary
I

Search Down | Search Up | Top | Bottom
L

44

Janus/TN3270 Debugger User's Guide

Getting Acquainted with the Client GUI

The search functions on these windows are subject to Client command control via an In
window prefix for the individual search command (sear‘chDownEﬂ, searchFromBottom
Eﬂ, sear‘chFr‘omTopEﬂ, sear‘chUpEa, topEE‘ﬂ, bottom@).

The Search button

Clicking the Search button on the main window searches the current tab from its top
(first) line for the string you specify in the text box above (without regard for case).

To repeat a search from the current line, you use the Search Next button. As an
alternative, you can also click (give focus to) the Search text box below or use the Ctrl+F
key combination (which performs the same function, by defaultle), then press the Enter
key.

To search from the last line of the tab toward its first, you press the Alt key while clicking
the Search button (or use the Ctrl+U key combination, which by default performs the

same function). You can then use the Search Prev[461 button to search backwards for the
next occurrence of the search string.

To repeat a search for a previous search string, click the arrow button to the right of the
search box for a history of as many as twenty previous search terms.

To use regular expressions in the search string, begin the string with a tilde (~). For
example, the following string matches variable declarations of format %Zname IS
whatever:

~%\W+\S+IS

Note: The rules for VB .net regular expressions are observed; these differ from the rules
for User Language regular expressions. For background information about regular
expressions, a good resource is Mastering Regular Expressions, by Jeffrey E. F.
Friedl, published by O'Reilly Media, Inc. (2nd edition, July 15, 2002).

To use the value of a macro variable or Client function, both of which begin with an
ampersand (&), in the search string, simply specify the name as is. To search for a
string that starts with an ampersand and is not a macro variable or function name, prefix
the initial ampersand with a backslash character (\) to treat the the string as a literal.
Similarly, specify \\ to search for a single backslash character. This backslash escape
character is valid as of Client Build 58.

The Search button has the same effect as the Search From Top/[261 option in the Search
menu and as the sear‘chFr‘omTopEz‘ﬂ command. The Alt + Search button has the same

effect as the Search From Bottom/26) option in the Search menu and as the
searchFromBottombs2l command.

Janus/TN3270 Debugger User's Guide 45

Getting Acquainted with the Client GUI

The Search Next button

Clicking the Search Next button starts from the current position and searches the current
tab for the string you specify, or it repeats the previous forward search. The F9 key
performs the same function (by defaultle3). And pressing the Enter key after clicking
Search Next (or whenever the Search Next button is highlighted) repeats the Search Next
action.

If you press the Alt key while clicking the Search Next button (or press Alt+F9), you search
again for the current search string, but the search is backwards, towards the top from
the current position. This is the same as using the Search Prev button, as described
below.

The Search Next button has the same effect as the Search Down|[261 option in the Search

menu, as the Search Down button in Client external windows, and as the sea rchDownles1)
command.

The Search Prev button

Clicking the Search Prev button starts from the current position and searches backwards
(towards the top) in the current tab for an occurrence of the currently specified search
string. Pressing the Enter key after clicking Search Prev (or whenever the Search Prev
button is highlighted) repeats the Search Prev action.

Alternatives that have the same affect as the Search Prev button are:

e Pressing the Alt key while clicking the Search Next button

e Pressing the Alt+F9 key combination, which (by default@) performs the same
function

The Search Prev button has the same effect as the Search Ug|_%'1 option in the Search

menu, as the Search Up button in Client external windows, and as the searc hUQEa
command.

46 Janus/TN3270 Debugger User's Guide

Getting Acquainted with the Client GUI

2.6 The tracing options

The Trace All control button lets you trace from the current program point to the end of
the program, displaying a list of all executed statements. The Ctrl+T keyboard shortcut is
equivalent (by defaultkes) to clicking the Trace button:

=
9 The Janus Debugger (QAXML2) ,”
File Window Search Breakpoints Execution Data Display _Ergr Macros Help ,__,;'
Top | Bottom | Clear Audit | Run | Step | Step Over Cancel | Clear Breaks | Clear Watch |
Audit Trail f"'S'ﬁ'ﬁ'fﬁé"'C'ﬁ'ﬂé""l Web Buffer] Execution Trace] Proc Selection =
M 1 0 1 I QAXML2 —
TL> 2 1 1 begin ——
UL> 3 1 2 class document ——
TL> 4 1 3 S —————

e —_,__,—-....\._'I.-;_.._‘,__rf

The Trace button below the main window lets you trace all statements that modify a
variable you specify, also displaying what value was assigned to the variable:

ad (" Command addwatch #N)

L

4
v
»
)
L]
Value | Trace |\| Run to Change | Wﬂtcuj
L% 3 4
|%|2 |Trace all changes to the named Variab|e| ¥
e
| I 7
sesdsf_f ,fj; s PO ._J/

" gt

The Run to Change button stops program execution if the variable you specify is modified:

1d (' Command addwatch %N)

-

4
-

E

4

L
Value | Trace Run to Change | Wﬂtcl}j
= J

|%'2 |Traceti|l the named variable changes; uze alt for Until \rar:\ralue|

sessf—r‘L P N, r.

P) o N I e S W

Janus/TN3270 Debugger User's Guide 47

Getting Acquainted with the Client GUI

See Also

Tracing executionli2?

2.7 The value displaying controls

The Watch button adds to the Watch Window the item you specify in the Entity-name input

box]s01 below the button:
L
L]
Value Trace | Run to Change | r\WathJ,;
|y
|%'2 |Add the named variable to the watch windowl
P
_— 7
- N o
kel e b P

The Value button displays in a separate window the value of the item you specify in the
Entity-name input box:

Value [\J Trace Run to Change | Watch 4
Lot
' |%t2 |Di5p|a}fthr:‘.falur: 0fth&nam&d*.fariab|r:| j"'
7
ses.s’j.-aw‘""— o f
ine v-"u. - o - /

See Also

Watching program data items/es]

Displaying temporarily the value of a program data item| o)

48 Janus/TN3270 Debugger User's Guide

Getting Acquainted with the Client GUI

2.8 The Status bar

The Status bar in the Client's bottom left corner displays the state of the Debugger after

each operation you invoke:

Search Search Next Search Prev

I RIGET
M204.1168: IN FILE JALWORE INCLUDE RIGHT

4 1

xecuted one statement.

"Waiting" messages (say, for lengthy online processing or network transmissions) are
also displayed along with the operational messages:

Search Search Next Search Prev |

-

Value Trace Run to Change

%12

I RIGHT i
M204.1168: IN FILE JALWORK INCLUDE RIGHT :%

. [0

Executed one statement. Waiting for Online

Janus/TN3270 Debugger User's Guide

49

Getting Acquainted with the Client GUI

2.9 The Entity-name input box

This text box, located below the Client's main window, is used for supplying the name of
any of a variety of program code entities (%variable or field, for example) to be variously
traced, watched, displayed, expanded, and so on:

[ESTEEE=SC)

anus Debugger (RECSET4)

low Search Breakpoints Execution Data Display Eror Macros Help

“om | Clear Audit | Run | Step | Step Over | Trace All | Cancel | Clear Breaks | Clear Watch | About | Step | Commands | Help
.ual | Save Watch

irail Source Code | Web Buffer | Execution Trace | Proc Selection

=6 1 5 *UPDATE

1 6 begin
T class z

1 8 pubklic shared -
w1 9 subroutine (Record in file jalproc) :printName currentRecord in file jalproc 3
= . 10 end public shared
-1 .

subrontine (Record in file jalproc):printName currentRecord in file Jjalproc
for record currentRecord
print HAME
end for
» End Subroutine
tenlagE Z

wction (record in file jalproc) :getDoc is object XmlDoc currentRecord in file jalproc

.rch Prev ‘ Value Watch
-

T T

L0
P

d&g—_f‘_-'_

S ———

P e . J'f.—

50 Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

chapters Performing Basic GUI Tasks

These sections describe how you perform basic operations using the Debugger:

Controlling the execution of program codels2)

Viewing and modifying program elements]ss|

Getting source file, audit trail, and web buffer information[124]
Tracing program executionf27]

Viewing programs that contain coding errors|isdl

Debugging requests that spawn daemons|i33)
Debugging Web Server persistent sessions/[i42

Debugging multiple Web Serversfisd)

Janus/TN3270 Debugger User's Guide 51

Performing Basic GUl Tasks

3.1 Controlling the execution of program code

This section describes how to navigate through and control the execution of the program
code you are debugging.

GUI buttons, menus, and commands let you execute a User Language request all at
once, or let you advance execution in increments (by pausing after executing individual
statements, optionally bypassing the code display from calls to subroutines and
methods).

You can explicitly set "breakpoints" in a request before which program execution is to
pause, and you can toggle defaults a) to pause or not at the end of the evaluation of a
request, and b) to pause or not after processing READ SCREEN statements.

You can discontinue the debugging of all or part of a request called by your program,
skipping the execution of the entire request or of the remaining part of the request.

You can continue code execution without interruption until a procedure you identify by
name or pattern is reached. And you can jump out of the normal flow of code execution,
executing the statement to which you jump, but not executing the intervening
statements.

These subsections follow:
Step, Step Over, and Runls3]
Using breakpoints|ss]
Suppressing the break at the end of request evaluation|ss)
Breaking after READ SCREEN or READ MENU statements 601
Stepping out/62]

Cancelling execution[e3]
Excluding sections of source code from debugging@
Altering the flow of execution[s1]

Previewing program codefss!

52 Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

3.1.1 Step, Step Over, and Run

These three action options (activated by same-named control buttons, commands, or
menu item) advance the Source Code page (or Daemon gageEs'ﬂ) processing position by
executing one or more "executable" User Language statements:

Step

‘ Run ‘ Step ‘ Over

A statement is executable if it produces a run-time action. Neither a variable declaration
statement nor a SOUL class definition statement, for example, is executable in this
sense.

When no executable code operations remain, these buttons are dimmed.

When a button is highlighted (color is white, border is bold), the action it invokes can be
executed by pressing the Enter key.

Step
Step executes a single User Language statement. When the statement has executed:

e Executed one statement is displayed in the Status box] 4.

e The next line to be executed is highlighted.

If you click Step and the current statement (a subroutine call, for example) invokes other
statements in the program, the Debugger first "executes" the call statement itself by
moving to and highlighting the first of the executable subroutine statements. With each
subsequent click of Step, the Client steps through the subroutine, executing one
statement at a time.

If you are at the end of a request (the End statement is highlighted) and click Step,
Evaluation successfully completed is displayed in the status box, and execution
pauses (by default[s9)), giving you a final review. If you click Run, the Debugger Client
sends any contents of the web output bufferhi271 to the browser, or it sends any 3270/
Batch2 terminal output to the terminal; then it advances execution to the next request, if
any more requests are queued.

Note: Pressing the F4 key or the F11 key is the same as clicking Step button (unless you
have reconfiguredbks#l your hot keys).

Pressing the Enter key after clicking Step (or whenever the Step button is
highlighted with a white background) repeats the Step action.

The other Step button equivalents are the stepl7al command and the Step option of
the Execution menu.

Janus/TN3270 Debugger User's Guide 53

Performing Basic GUI Tasks

Step Over

Step Over functions like Step with one important difference: it skips subroutines and
methods. If the execution position is immediately before an invocation of a SOUL method
or a simple or complex Model 204 subroutine, clicking Step Over advances the execution
position to immediately before the statement after the subroutine or method invocation.
No debugging is done in the stepped-over subroutine or method, nor in any code or
daemons that it might call.

Step Over is useful if you know a particular subroutine or method works and you do not
want to interactively execute it.

Note: Pressing the F10 key is the same as clicking the Step Over button (unless you
have reconfiguredbss! your hot keys).

Pressing the Enter key after clicking Step Over (or whenever the Step Over button is
highlighted with a white background) repeats the Step Over action.

Pressing the Alt key while clicking Step Over invokes a Step Outle2). Pressing the
Alt+F10 key combination has the same effect.

The other Step Over button equivalents are the stepOverf278l command and the
Step Over option of the Execution menu.

Run

The Run button “resumes execution” of the program. The User Language statements
execute normally, until one of the following events occurs:

e End of request (the final end statement is highlighted, and Evaluation
successfully completed is displayed in the status box)

e Acancelling error such as subscript out of range, or a null object reference (the line
that raised the error is highlighted)

e Abreakpoint/ss) (the line containing the breakpoint is highlighted)

e Code that an sdaemon executes is called

Once the end of a request is reached, execution pauses (by default[ss)), giving you a final
review. You must click Run again for the Debugger to send any contents of the web
output bufferf:27 to the browser or any 3270/Batch2 terminal output to the terminal, and
advance execution to the next request, if any more requests are queued.

If no further requests are queued, the Run button is disabled.

Note: Pressing the F5 key is the same as clicking the Run button (unless you have
reconfiguredfedl your hot keys).

54

Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

Pressing the Enter key after clicking Run (or whenever the Run button is
highlighted with a white background) repeats the Run action.

The other Run button equivalents are the M@ command and the Run option of
the Execution menu.

3.1.2 Using breakpoints

If you set a breakpoint on a line on the Source Code tab (or Daemon tablts3)), then run
the program, program execution is paused just before that line is to be executed (if that
line is to be executed). When you set a breakpoint:

e Execution will be paused immediately before the execution of the line for which the
breakpoint is set.

¢ The line with the breakpoint is highlighted.

e Breakpoint setis displayed in the status bar.

These subtopics follow:
Setting a single breakpoint/se]
Setting multiple breakpoints at oncelss)
Clearing a breakpoint/se]
Clearing all breakpoints/se]

Janus/TN3270 Debugger User's Guide 55

Performing Basic GUl Tasks

Setting a single breakpoint

To set a breakpoint on a line, you can simply double-click the desired line. Alternatively,
you can right-click the line and select Toggle BreakPoint from the context menu:

Erlleh _'}-“'—“" Fo-T21 WORK INCLUDE USERSTAT2
S ——

5

N The Janus Debugger (USERSTAT2) = &
File Window Search Ereskpoints Execution DataDisplay Error Macros Help f’
Top | Bottom | Clear Audit | Run | Step | Step Over | Trace All | Cancel | Clear Breaks | Clear Watch | View Text !H
Audit Trail Source Code | Web Buffer | Execution Trace | Proc Selection i
UL> 25 1 24 Print #statEnd:ToString(Zeros=true, NamesToLower=false) L
UL> 26 1 25 %doc = new]
TL> 27 1 26 *x#ikkk+% the following statement produces bug and user restartrriddddddss T
TL> 28 1 27 *%doc = %statEnd:ToXmlDoc (Zeros=trne, NamesTolLower=true) f
UL> 29 1 28 %doc = new -
UL> 30 1 29 *doc = %¥statEnd:ToXmlDoc (attribuotenames=trune, NamesTolower=false) 5
UL> 3L 1 30 3doc:Print 1
UL> 32 1 31 Add Watch ,_FI'
TL> 33 1 32 printText PDL: {&stat Toggle BreakPoint -
uL> 41 33 ¥print $statind Procedure Information e fr
UL> 33 1 34 L
TL> 36 1 35 %statNew is objeg FEO OCCIN value 2
TL> 37 1 36 %statNew = new Jump Here [

TL> 38 1 37 %cpuUsed is float)’
UL> 39 1 38 Display Jcloc:Print ¥y
UL> 40 1 39 %cpuUsed = %statNew:o v - ’_,_r"J
TUL> 41 1 40 printText {~} = {%cpuUsed) "
TL> 4z 1 41 %*1s = istatNew:differenceTostring(#statStart, zeros=true) I
TL> 43 1 42 Printtext {~} = {%1s} ,r
TL> 44 1 43 end ’r,”
Search Search Next Search Prev ‘ Value b
=] 1 calar
list -
-
e rod

MSTIR.0690: Janus Web content compressed by 62.4 percent from 2410 to S - | |3g
MSIR.0359: WEB status 200 OK — | ~
MSIR.1020: Debugger: JDBW Address=X'7C41F3B0’ p

|I USERSTAT2 j

56

Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

Other ways to set this breakpoint are:
e Select Toggle Breakpoint on Current Line from the Breakpoints menu.

e Use the setBreakpointOnCurrentLine@ or the toggleBr‘eakpointOnEﬂ
mappable[2s3 Client command.

Once a breakpoint is set, the UL> at the beginning of the source code line changes to
BR>, the highlight color changes, Breakpoint set is displayed in the status bar[4s), and
the Debugger Client is made the topmost window on the browser screen:

e
L4
N o e . [— [RVETE & S - OWE'[':fﬂ.l_L . : j
i TL> 267 1 25 #doc = new L -
TUL= 27 1 26 *dkdkdddd the following statement produces bung and nser restartddds
TL= 28 1 27 *%doc = %¥statEnd:ToXmlDoc (Zeros=true, NamesTolower=true) ;
UL> 2% 1 28 %*doc = new
TUL> 30 1 29 Fdoo = FstatEnd:ToXmlDoc (attribontenames=true, NamesTolower=false) ,_r
1 %doc:Print
1 31
TUL> 33 1 32 printText PDL: {%=statEnd:requnestValuoe('pdl’)} -
TL> 34 1 33 #print %statEnd '
TUL> 3\ 1 34
TUL> 36 1 35 #=tatNew iz object nserStatistics
UL> 37T 1 36 *=ztatNew = new rJ
UL> 38 1 37 #cpuUsed is float [
| |oL= 39 1 38 k
UL> 40 1 39 #cpuUsed = ¥=tatNew:difference(*statStart, "cpm') .,i"
UL> 41 1 40 printText {~} = {%*cpulU=sed} L
UL> 4z 1 41 #%l1ls = ¥statNew:differenceTostring(¥statStart, =zeros=truoe) I—..
UL> 43 1 42 Primttext {~} = {%1s} r)’
UL> 44 1 43 end [
|
Search Search Next Search Prev | 7

- 1

MSTIR.06%0: Janms Web content compressed by 62.4 percent from 2410 to S » | |#g has no r
MSIR.035%: WEB statms 200 OF r,r
MSIR.1020: Debungger: JDBW Address=X'TC41F2B0' |
I USERSTATZ

M204.1168: IN FILE JALWORE INCLUDE USERSTATZ2

4 (1] S

| Breakpoint set. _;

Only executable statements may be breakpoints: if you try to make a non-executable
statement a breakpoint, the Debugger sets the breakpoint on the next executable
statement below the line you selected.

You can set as many as 1000 breakpoints in a single User Language request.
Attempting to set more than the maximum is not allowed (results in an error message
display).

Janus/TN3270 Debugger User's Guide 57

Performing Basic GUI Tasks

Setting multiple breakpoints at once
You can set multiple breakpoints at once, using either of two approaches:

e With a search string, set breakpoints on all matching lines

e With a Ctrl+B keystroke (if using the default assignments|zs5)), set breakpoints on
executable statements that follow "*Break" comment lines in the source code

Using a search string:

1. In the Search text box]as), specify a search string or a regular expression|4s]
(regex).

2. Press the Alt+B key combination (if using the default assignments), or use the
Breakpoints menu Breaks At option.

A breakpoint is set on each executable line in the request (from the beginning of the
request) that contains a case-insensitive match of the string or regex.

No Breakpoints are set in code that is not currently displayed in the Source Code
page (for example, in daemons called by the current request).

Your current execution point in the request is not affected.

The mappable Client command that sets multiple breakpoints based on a search string
is breaksAt . his3)

Using Ctrl+B:

When you click the Ctrl+B key combination (if using the default assignments), or when
you use the Breakpoints menu Breaks option, the Debugger Client scans the current User
Language request from the beginning to the end of the request for lines beginning with
the string *Break. Whenever such a line is found, a breakpoint is set on the next line if it
is an executable statement.

No breakpoint is set after an occurrence of *Break unless the following is true:

e *Break (case not important, but no intervening blanks allowed) must be the first
non-blank characters on the line. Any other characters may follow.

e The line immediately following the *Break comment must be an executable
statement.

The mappable Client command that sets multiple breakpoints based on *Break is

breaks. iz

Clearing a breakpoint

To remove a single breakpoint, do any of the following:

e Double-click the line.

58

Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

¢ Right-click the line and select Toggle Breakpoint.
e Select Toggle Breakpoint on Current Line from the Breakpoints menu.

e Use the clearBreakpointOnCurrentLine@'ﬂ or the
toggleBreakpointOnCurrentLinel27l mappable Client command.

As a result, the BR> indicator changes back to UL> to indicate successful removal, the
highlight color changes, and Breakpoint cleared is displayed in the status box.

Clearing all breakpoints

To clear all the breakpoints that are set, click the Clear Breaks button or use the
Breakpoints menu Clear All Breakpoints option. All breakpoints get cleared, and all
breakpoint indicators in the source display are changed back.

The mappable Client command that clears all breakpoints is clearBreaks. is?

See Also

Break method|i60)
Running to a specific procedure@

Stepping out/e2)

3.1.3 Suppressing the break at the end of request evaluation

By default, the Debugger Client pauses at the end of the evaluation of a request before it
sends any contents of the web output bufferli27] or any 3270/Batch2 terminal output. This
lets you review program data as it is at the end of request processing.

If you prefer to have processing continue without stopping at this point, you can suppress
the pause, as follows:

1. Inthe Client, select Preferences from the File menu (or use the Ctrl+P keyboard
shortcut).

2. Inthe Preferences dialog box, clear the Pause at end of evaluation checkbox, then
click Done:

e

Execution Options
I.. Pause at end of evaluation I Macro Au'lplyrr‘

I Run Until spans debug sessions
™ Break afterREAD SCREEN e

I Source Preview (7 2+ mods) fI_ﬂigir_

—_—
A Dnbimne fr"

Janus/TN3270 Debugger User's Guide 59

Performing Basic GUl Tasks

Pausing can be restored at any time by selecting the checkbox again.

Note: The Client setPreferencelzsd command has an option that lets you toggle
the Pause at end of evaluation checkbox.

The Pause at end of evaluation setting that exists at the end of the Debugger Client
session persists to the next run of the Client.

3.14 Breaking after READ SCREEN or READ MENU statements

Normally, the Debugger Client for the TN3270 Debugger pauses at a READ SCREEN or
READ MENU statement (displaying a Full Screen Read Pending message in the

Status bar[s9)), waiting for input from the Online user. Once you complete the input, the

Client evaluates your response, displays a READ SCREEN Completed message in the
Status bar, and continues (without pause, by default) processing statements until it
reaches a breakpoint or the end of the request.

These events are reported in a sequence of lines in the Client Audit Trail page like the
following:

... 10:01:48.27 2 20 LI I SCREENO

.. 10:01:48.27 2 20 MS M204.1168: IN FILE GWDEB INCLUDE SCREENO
... 10:02:10 Full Screen Read Pending

. 10:02:22 READ SCREEN completed

If you want to examine how the program handles the user response to the READ
SCREEN or READ MENU, for example, you can do either of the following:

e Explicitly set a breakpoint/se) after the READ SCREEN or READ MENU statement.

e Have processing automatically paused by default after the user interaction following
READ SCREEN or READ MENU.

To invoke the second of the preceding options:

1. In the Client, select Preferences from the File menu (or use the Ctrl+P keyboard
shortcut).

2. Inthe Preferences dialog box, select the Break after READ SCREEN checkbox (it is
clear by default), then click Done:

Execution Options —
v Pause atend of evaluation [Macro, A=
I Run Uniil spans debug sessions e

J
I’%Break after READ SCREEN ’__,_r

I Source Preview (F_i:-);uquLJ/’ e

60

Janus/TN3270 Debugger User's Guide

Performing Basic GUI Tasks

After the Online user replies to the next READ SCREEN or READ MENU statement,
the Debugger will pause at the statement following the READ SCREEN or READ
MENU, and READ SCREEN completed will display in the Status bar.

Running without a break after replying to READ SCREEN or READ MENU can be
restored at any time by clearing the Break after READ SCREEN checkbox.

Note: The Client setPreferencel268 command has an option that lets you toggle
the Break after READ SCREEN checkbox.

The Break after READ SCREEN setting that exists at the end of the Debugger Client
session persists to the next run of the Client.

Note: As a convenience, the Debugger can bring your 3270 emulator application to the

top on your PC screen when the Client pauses for the READ SCREEN or READ
MENU.

To invoke this feature:

1. Select Preferences from the File menu (or use the Ctrl+P keyboard
shortcut).

2. In the Preferences dialog box, locate the 3270 Emulator text box (in the

Program Titles section) and provide a text string that matches some or all of
the title that displays at the top of the emulator window.

The characters in your matching string can be any case and match
anywhere in the title. Any trailing blanks you enter are preserved.

2 Tooltip " Use !debuggerdirectives (7.6+)

Program Titles
T 3270 Emulator

[TN3270
by

Web Browser

Done I

Note: If you are working with READ SCREENs or READ MENUSs in a Janus
Web Legacy Support application, your browser is the tool with which you
respond. Therefore, to have the Debugger pop up your browser window when
the Client pauses for the READ SCREEN or READ MENU, provide a
browser-name-matching string in the Web Browser text box instead of in the
3270 Emulator text box.

Janus/TN3270 Debugger User's Guide 61

Performing Basic GUI Tasks

3. Click Done.

The feature takes effect at the next execution of a READ SCREEN or
READ MENU. The 3270 Emulator (or Web Browser) setting that exists at the
end of the Client session persists to the next run of the Client.

Note: By default, this feature does not take effect if the Client is not
debugging the part of a program that contains the READ SCREEN or
READ MENU. For example, these statements might be in code selected to
be excluded from debugging.fe4

However, if in addition to a Program Titles value you also select the Windows
When Suspended option in the Preferences dialog box (Execution Options
section), the feature will apply whenever these statements occur, even in
code the Debugger is not actively executing. This will apply whether or not
you have selected the Break after READ SCREEN checkbox.

[E=8(ECR =5

™ Macro Autorun
ns

T%Winduws When Suspended (7.9+)

Minimum:| 1000 Hj Size: 100 Hj

axy setlings I Clear IE proxy override

“snot to be debugged

3.1.5 Stepping out

If for any reason you no longer want to continue debugging or examining the subroutine,
user-written SOUL method, or daemonl:39) that you are currently stepping through, you
can discontinue debugging and leave ("step out" of) the subroutine, method, or daemon
code and resume debugging on the statement following the statement that originally
called the subroutine, method, or daemon.

This would be equivalent to having set a breakpoint|?6'1 on the statement after the
subroutine, method, or daemon call, then clicked the Run button. You might also view it
as a "pop" out of the level of code you are debugging and to the level of the calling code.

To execute a Step Out from within a simple or complex subroutine, a SOUL user-written
method, or a daemon, select Step Out from the Execution menu, or use stepOut 273, the
command equivalent.

If you step out from mainline code (that is, not a subroutine, method, or daemon),
execution simply completes normally, as if you had clicked the Run button.

62

Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

If you press the Enter key immediately after executing a step out, another step out is
executed (as of Client Build 57) if program execution has not completed.

3.1.6 Cancelling execution

When you run a request that includes User Language, the Debugger Client displays the
program in the Source Code tab, prior to the execution of any program statements. At this
point or at any point after you begin to execute the code, you can terminate the execution
of the program by clicking the Cancel control button.

A% The Janus Debugger (QAXML2) b
/
File Window Search Breakpoints Execution Data Display Error Macros Help __;
Top | Bottom | Clear Audit | Run | Step | Step Over | Trace All m Clear Breaks | Clear Watch C(l;".sr*’r
Audit Trail Source Code | web Buffer | Execution Tra e8| Proc Se clion} .
Cancel the request L
TL> 26 1 25 *oneStooge:addelement ('lastName' 6 #¥ilast) o
UL> 27 1 26 return =
UL> 28 1 27 1
TUL> 2% 1 28 end subroutine
TL> 30 1 29 4
TUL> 31 1 30 end class 4
TL> 32 1 31 "
TL> 33 1 32 | 4
UL> 38 1 33 b
TUL> 35 1 34 %d is object document ¥
TL> 36 1 35 *d = new
UL 37T 1 36 %1 is longstring
TL> 38 1 37
TL> 3% 1 38 #*d:addS5tooge ("'Moe', "Howard') ;
TUL> 40 1 39 #d:addStooge (" Larry’', "Fine") [
UL> 41 1 40 %d:addStooge ('Curly’, "Howard') ’f
TUL> 42 1 41 %d:addStooge (" Shemp' , "Howard')
UL> 43 1 42, f
UL> 44 r_}f' ® &d:x:print ; S Fa
UL> a5 | = Edigp w P T W
- =" =./

When you click Cancel, you receive a "do you really want to" message because the
operation is not reversible. You can view the remainder of the current program but
cannot subsequently execute any of that code, unless you invoke it for debugging again.

If you click the Cancel button, you receive a Do you really want to cancel? prompt
because the operation is not reversible. If you click Yes for the prompt:

e (Cancelled on request is displayed in the status box.
¢ You can view the remainder of the current program but cannot execute any of it.

e The Client takes no further action until you click the Run button, which finishes the
request (omitting the execution of the statements from the point at which you click
Cancel until the request End statement). A cancellation message is then issued:

For a web request, the Debugger sends the browser a message like the following:

Janus/TN3270 Debugger User's Guide 63

Performing Basic GUl Tasks

| = ; ; . e 1

AlInternal server error - request cancelled - Microsoft|Intern... /7—/
File Edit View Favorites Tools Help ._f/
bk - © - [B @ - Search <7 Favorites) vig = @ ;ﬁ;ff B

Address | €] http://sirius-software.com:9219/jalproc/qaxml2.ul > Go}_'LIr.

Internal server error - request cancelled

Unable to process browser request No Model 204 error! -
- . e -~ =

e —
NN, .) - .

For a 3270 request, a message like the following is sent to the terminal:

*** MSIR.0943: Request cancel performed from debugger

Note: The Ctrl+X key combination (by defaultkes)) is equivalent to clicking the Cancel
button.

3.1.7 Excluding sections of source code from debugging

Debugging a large application may involve the scanning of a large volume of code to get
to the parts of the program that you need to debug. It can be cumbersome and time
consuming to ship so much code to the Debugger Client and/or to inspect so many
pages of code. To gain some time and space economy, the Debugger lets you debug
some sections of your program while omitting others.

Two Debugger features let you exclude code from debugging:

e Exclude/include directives let you mark blocks of code of any length to be
excluded from display and debugging — but not from execution. You explicitly mark
the beginning and ending of such blocks, or if they are procedures, SOUL methods
or subroutines, you specify them by name or by name pattern, and you can provide
them by list. You can also similarly identify blocks of code within these excluded
blocks that will not be excluded from display.

e "Run Until" processing operates on procedures only. You can have the Debugger
run your program code without interruption until it reaches a procedure you want to
display for debugging. You can identify this procedure by name or name pattern, and
you can provide a list of such procedures in a "white list" or a "black list."

Run Until procedure processing differs from Exclude directive processing of procedures
in that Run Until excludes complete programs, while Exclude directives (explicitly or
implicitly) exclude parts of programs (those called by "inner procedures"). An inner
procedure is within a Begin/End block, invoked by a SOUL INCLUDE statement. A
procedure invoked by a command-level INCLUDE is an "outer" procedure. Once a
procedure is running in the Debugger and a request Begin is seen, Run Until procedure
detection does not stop until after the End of the request. It ignores inner procedures and
looks only for outer procedures.

The Proc Selection page in the Client contains most of the controls for both types of code
exclusion techniques.

64

Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

Exclude and Include directives are described in:

Selectively excluding source code blocks/es

Run Until processing may be invoked once for a single specified procedure, or it may be
applied to any of multiple procedures specified in a list. Run Until processing is
described in:

Running to a specific procedure(73)

Running only to listed procedures|77'1

3.1.7.1 Selectively excluding source code blocks

The User Language Macro Facility statements called Debugger directives let you
exclude one or more blocks of source code or entire procedures, methods, or User
Language "complex" subroutines from interactive debugging.

“Excluding” code from interactive debugging means:

e The excluded code is not displayed in the Debugger Source Code tab, nor are the
excluded source code lines sent from the mainframe to the client.

e You may not step through or set breakpoints in the excluded code.

e Excluded statements are not shown in the results of Debugger execution tracing or
statement history displays.

e However, the excluded code is executed normally (there is no difference in the
runtime evaluation of the request), and the Janus Debugger Audit Trail and Web
Buffer tabs will show output from excluded statements.

This feature is useful both for tidying your source code display (removing non-pertinent
sections of code) and for decreasing the download time of source code sent from the
mainframe to the Client.

The Debugger directives have the following format:
ldebugger directive

Where directive may be one of the following:

exclude on

exclude off

exclude proc pname_or_pattern
exclude routine rname_or_pattern

include on

include off

include proc pname_or_pattern
include routine rname_or_pattern

Janus/TN3270 Debugger User's Guide 65

Performing Basic GUl Tasks

Within excluded code you can specify blocks of lines that will not be excluded and will be
presented for debugging; for example, an important subroutine or method. You indicate
such non-excluded blocks by Include directives.

As described in Using the code-exclude feature in its normal modeles), Debugger
Exclude and Include directives are also implied and invoked if you use the buttons in the
Exclude Parts of Programs from Debugging section on the Proc Selection page to specify
lists of procedures or lists of subroutines or methods to exclude/include.

As described in Using Init Exclude mode(72}, another approach to debugging a small
block of code within a larger excluded block is to invert the way the code-exclude feature
operates: Instead of including all code from the beginning of the request until an Exclude
directive, the "Init Exclude" variation of the feature initially excludes all code from the
beginning until an Include directive. You invoke Init Exclude mode from a Client menu
item or command (or mapped button or hot key).

User Language Macro Facility statements, which start with an exclamation character (!),
are described in the Model 204 wiki at http://m204wiki.rocketsoftware.com/
index.php/User Language Macro Facility.

Using the code-exclude feature in its normal mode

In any single compilation unit (BEGIN statement to END), you may exclude as many as
300 blocks of code from debugging, and within excluded blocks, you may designate as
many as 300 blocks of code that will not be excluded. (The block limits are 40 if Sirius

Mods version is 7.8; 20 if prior to 7.8.) A block may be a designated group of code lines
or a named routine or procedure.

To exclude code:

1. Enable Debugger directives. By default, the feature is not enabled (no code is
excluded from debugging).

a. From the Client File menu, select the Preferences option.

66 Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

b. Inthe Display Options section of the Preferences dialog, select the Use !debugger
directives option:

e =
Execution Options Open at Startup
¥ Pause atend of evaluation I Macro Autorun

" External Main Button Bar
" Run Until spans debug sessions

" Exira Button Bar

" Break afterREAD SCREEN " Windows When Suspended (7.9+)

I Source Preview (7 2+ mods) Minimum:[1000 =] Size:[100 = | I' Extemnal Watch Window

HOpions I External Audil Trail Window
IE Mode

none " External Web Buffer Window

splay Options " External Execution Trace Window
Show atmost |10p = listitems. ¥ Restore watches on startup
Main Button Bar

¥ Tnm blanks from selectionin View Text [History to Execution Trace & Top

long watch values in a Toolfip W[%Use Idebugger directives Center

¢ Bottom
Web Server Selection
I Exira Butions

W sinus-sofiware_.com:9219 SZiHE iy

| Main Window Options

- Hi .
Web Browser Hide Lower Section

[Mozilla Firefox

Done

2. Inyour source code, specify an Exclude directive to indicate the code to be
excluded from debugging:

e To exclude any block of consecutive lines, indicate the beginning of the block to
be excluded:

ldebugger exclude on

This statement must appear between a BEGIN and END statement — it may
not be used at command level.

e To exclude a particular procedure, or the code that defines a method or
subroutine:

= Use the appropriate keyword and case-insensitive name in the directive.
You can also use wildcards (described below/ss]) to form a name pattern.
Also, for a method or User Language subroutine, use routine:

ldebugger exclude proc MyProc*
ldebugger exclude routine MyMethod

Janus/TN3270 Debugger User's Guide 67

Performing Basic GUl Tasks

Use the Edit Include Proc List or Edit Include Routine List buttons on the Proc

Selection page to provide a list of the procedures or a list of the routines you
want to exclude:

[42 The Janus Deb !
e Janus Ui
73 o
]

File Window Search Breakpoints Execution Data Display Error Macros Help J
Top | Bottomn | Clear Audit | Run | Step | Step Over | Trace All | Cancel | Clear Breaks Clear Wali
Audit Trail | Source Code | Web Buffer | Execufion Trace | Proc Selection

T
4

Exclude Parts of Program From Debugging Skip Whole me‘;
Edil Exclude ProcList | Edit Exclude Routine List | o
Editinclude ProcList | Edit Include Routine List | White Lig

Reload Proc/Routine/Method Lists |

" Use ProcLists for " Use Routine Lisis for i
excludefinclude excludefinclude y
J‘f : 3
i R

These buttons open a blank excludeProc.txt or excludeRoutine.txt
file in Microsoft's Notepad or in your local editorlisal. In the files, you specify
the items you want to exclude, observing the following syntax rules:

e One entry per line
e Leading and trailing blanks are ignored
e (Case matching is insensitive

e Wildcard matching using asterisk (*), question mark (?), and double
quote (") is allowed (see Shortcuts for procedure names|74))

e Blank lines are ignored
e Any line starting with a number sign (#) is treated as a comment

After you save and Exit the file(s), click the Reload Proc/Routine/Method Lists
button to make the file content known to the Client. Equivalent to using this
button is the reloadListsbs2 Client command.

The Use Proc Lists for excludefinclude and Use Routine Lists for exclude/
include checkboxes enable and suspend the feature. They are selected by
default. For earlier builds, only the Use !debugger directives option on the
Preferences dialog box controls the feature. If you are running under a Sirius
Mods version lower than 7.9, you must select one or both of the Proc
Selection page checkboxes as well as the Use !debugger directives option;

under 7.9 or higher, the Proc Selection page checkboxes alone are sufficient
to control the feature.

68

Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

Note: Whether or not you select these checkboxes does not affect
Debugger recognition of any !debugger directives you specify in source
code outside of these lists. Such directives are controlled only by the Use !
debugger directives option.

Your checkbox selections are remembered in subsequent Client sessions.

3. [fexcluding a block of lines (that is, not a named procedure or routine), indicate the
last line to exclude.

From the exclude on directive, source code lines are excluded until the first of the
following is encountered:

e Aldebugger exclude off statement
e The end of the compilation (END statement is reached)
e The end of the procedure that contains the starting exclude on directive

e AnInclude directive (described next)

4. Indicate (with Include blocks) any lines within the excluded code that you do not
want to be excluded:

If a (non-named) block of lines:

a. Specify an include on directive to indicate the beginning of a section of code
you want to be included in debugging:

ldebugger include on

b. Indicate the last line to include.

From the include on directive, source code lines are included for debugging
until the first of the following is encountered:

e A ldebugger include off statement

e The end of the Exclude block that contains the starting include on
directive

e The end of the compilation (END statement is reached)

e The end of the procedure that contains the starting include on directive

If a named procedure or routine:

e Specify after the Exclude directive and before the procedure or routine an
include proc name_or_pattern or include routine name_or_pattern
directive to indicate the code you want to be included in debugging.

Or:

Janus/TN3270 Debugger User's Guide 69

Performing Basic GUl Tasks

e Specify the procedures or routines in a list file you access via the Edit Include
Proc List or Edit Include Routine List buttons on the Proc Selection page (see

image and description above).

In the file, specify the items you want to include (that are located within code

you are excluding).

After you save and Exit the files, click the Reload Proc/Routine/Method Lists
button (or use the reloadLists command) to make the file content known to

the Client.

5. Invoke and debug the code.

In place of the excluded lines, the Debugger inserts a comment to the exclude off
directive in the Client Source Code display that specifies the number of lines
excluded. Any lines within the excluded block that contain Include directives are also
denoted. All directive statements are shown in purple text by default: o)

The Janus Debugger (EXCLUDE4)

File Window Search Breakpoints Execution Data Display Macros Help .
Audit Trail |Source Code | Web Buffer | Execution Trace | Proc Selection 2
-
cM> 10 1 I EXCLUDE4 -"!
UL> 2 1 1 Begin —
UL> 3 1 2 a: subroutine —
UL> 4 1 3 trace 'debug me: subroutine’
UL> 5 1 4 ldebugger exclude on
UL> 10 1 5 ldebugger exclude off: 3 lines excluded __’_,/‘
UL> 11 1 6 call a *
UL> 12 1 7 ldebugger exclude on r,- -
UL> 15 1 8 !debugger exclude off: 1 lines excluded |
UL> le 1 9 trace 'debug me: main' !
UL> 17 1 10 end 4
’,__-'_..._-J
of
e r—————
e e it 7
s g
Usage notes:

e [f you define more than 300 Exclude blocks, or more than 300 Include blocks, an
error is issued. (These block limits are 40 if Sirius Mods version is 7.8; 20 if prior to
7.8.) Ablock may be a designated section of consecutive code lines or a named

routine or procedure.

e Until an exclude on directive ends, subsequent exclude on statements are
ignored. This is also true for the implied exclude on created by Init Exclude mode

(described in the subsection below).

70

Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

e A ldebugger include on directive has an effect only within an Exclude block. For

example:

ldebugger exclude on

. lots of code that is not debugged
Idebugger include on
. an important subroutine that needs debugging
ldebugger include off
. lots more code that is not debugged
ldebugger exclude off

e Dummy string substitution is done on !debugger directives before they are parsed
and processed. This lets you build a directive conditionally, perhaps to keep code
compatible with Sirius Mods versions earlier than 7.6.

For example:

begin

trace $sirver
if ($sirver >= 706) then
$setg('COMMENT',"")

else

$setg('COMMENT',"'*")

end if
end
begin

* Code to debug
trace 'Debug me'
?&COMMENT !debugger exclude on
* Code not to debug

trace 'Do not debug me'
?&COMMENT !debugger exclude off

end

e When you compile a program that contains Exclude blocks or Exclude and Include
blocks, Model 204 writes a summary of the exclusions to the Audit Trail at the end of

compilation:

MS MSIR.1003:
MS MSIR.1004:
MS MSIR.1005:
MS MSIR.1004:
MS MSIR.1005:

2 Debugger Exclude block(s) defined

Lines
Quads
Lines
Quads

5-9 excluded from the debugger
24-135 excluded from the debugger
15-18 excluded from the debugger
160-271 excluded from the debugger

e The Client setPreferencebssl command has options that let you toggle the Use!

debugger directives, Use Proc Lists for exclude/include, and Use Routine Lists for
excludef/include checkboxes.

Janus/TN3270 Debugger User's Guide

71

Performing Basic GUl Tasks

Using Init Exclude mode

By default, starting from your program's Begin statement, the code-exclude feature
preserves for your debugging all the code lines that you do not explicitly exclude via
directives. However, you may have cases where it would be advantageous to invert the
default behavior, that is, starting from the Begin statement, to exclude all the code from
debugging except the blocks you explicitly preserve via directives. "Init Exclude" mode
provides such an inversion of the default.

Init Exclude mode is the equivalent of explicitly specifying !debugger exclude on
immediately following your program's BEGIN statement. It changes nothing else about
the operation of the code-exclude feature. All program code lines are excluded from
debugging until one of the following directives is encountered explicitly or is encountered
implicitly via specification of an Include Proc or Include Routine list (Proc Selection tab):

ldebugger include on
!debugger include proc
ldebugger include routine
ldebugger exclude off

Subsequent code is then included until the first of one of the following:

e Aldebugger include off or a !debugger exclude on statement

e Aldebugger exclude proc or a !debugger exclude routine statement
(explicit, or implicit via Proc Selection page button)

e The end of the compilation (END statement is reached)

e The end of the procedure that contains the starting include on directive

To invoke Init Exclude mode:

1. Enable Debugger directives by selecting the Use !debugger directives option from the
Client File menu, Preferences option.

2. Do either of the following:
= Select Toggle Init Exclude from the Client's Execution menu.

= Select the Client button, hot key, or macro you configured@ to execute the
toggleInitExcludelsl command.

An Init Exclude mode is on message in the Client's Status bar[s1as well as a

checkmark next to the Toggle Init Exclude option in the Execution menu confirm that
Init Exclude mode is on.

3. Run the program you want to debug.

72

Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

A "ldebugger exclude on set by client" comment in the code indicates that lines
were excluded from the beginning of the program:

The Janus Debugger (EXCLUDE4)

File Window Search Breakpoints Execution Data Display Macros Help f
Audit Trail |Source Code Web Buffer Execution Trace | Proc Selection .~
CM> 1 0 1 I EXCLUDEA4 i
UL> 2 1 1 Begin 1
UL> 4 1 3 ldebugger exclude on set by client !
UL> 13 1 4 ldebugger include on: exclude on suspended !
UL> 14 1 5 Print 'An important subroutine that needs debugging' /:
UL> 15 1 6 ldebugger include off
UL> 21 1 7 'debugger exclude off: 11 lines excluded
UL> 22 1 8
UL> 23 1 9 call a L
UL> 24 1 10 trace 'do not debug me: main’
UL> 25 1 11 trace 'debug me: main’ 3
UL> 26 1 12 end L
7
S
s Y NS = _//‘J
b _ - | S
—) . - —

To leave Init Exclude mode, you repeat step 2, above.

See Also

Running to a specific procedure|73)

Running only to listed procedures|77'1

3.1.7.2 Running to a specific procedure

You can direct the Debugger to run an application's code without interruption until it
reaches a specific outer, command-level, procedure, and then to display that procedure
for debugging.

Note: As of version 7.6 of Model 204 and Client Build 63, the Debugger also stops at
procedures that are included from an sdaemonlisd) thread.

For example, you are having a problem with the procedure P.MOE, but the normal flow
of the application moves through procedures LARRY, SHEMP, and CURLY prior to P.
MOE. The three preceding procedures are known to work fine, and you don't want to
interactively debug them.

To run the application normally, executing the preceding procedures, but stopping at P.
MOE to begin debugging:

1. Beginning with your application program displayed in the Source Code page, select
the Proc Selection tab.

Janus/TN3270 Debugger User's Guide 73

Performing Basic GUI Tasks

2. Inthe text area below the Run Until Procedure button in the Skip Whole Programs area,
specify the name of the procedure at which to begin debugging (this input is not
case sensitive).

mor Macros Help
Trace All | Cancel | Clear Breaks | Clear Waich
‘tion Trace Proc Selection 4

Skip Whole Programs ,

T Run Until Procedure: |
toutine List |
e g -,
Routine ist_ | White/Black List 1
. o Edit White List o
e Edit Black List 1
ndusdE iy & Reload Lists ! \
r'
y
P
~r
p - 4
F ¥ o _ F

3. Click Run Until Procedure.

The application executes until it reaches the specified procedure, then the Source
Code page highlights the first executable User Language statement in that
procedure. You are ready to debug.

You can also execute Run Until processing by using:

e The Execution menu Run Until Proc option, which will run immediately, using the
procedure name currently specified on the Proc Selection tab

e The maggable@ Client command runUntil[49

e Awhite list, as described in Running only to listed procedures.|77'1 Run Until for a
specific procedure is the same as a white list that contains a single procedure.

Shortcuts for specifying procedure names
Instead of specifying the whole procedure name in the Run Until Procedure text box:

¢ You may be able to find the name you want by clicking the arrow to the right of the
Run Until Procedure text box.

This reveals a drop-down list of the names of as many as the last twenty
procedures you entered (for this and from previous sessions). These names are
also saved in the until.txt file.

74

Janus/TN3270 Debugger User's Guide

Performing Basic GUI Tasks

e You can also use leading, trailing, or intermediate wildcards to form a name pattern
to stop the Debugger on the first procedure that matches the pattern:

» An asterisk (*) represents any string of characters.

* . M* would stop the code execution at procedure ACC.MOE, or HOME . MARY, or
P.M0O., and so on.

= Aquestion mark (?) represents any single character.

?.* matches P. MO0, but not ACC.MOE.

= Adouble quote (") escapes wildcard translation of the asterisk or question mark
that follows it.

?."* matches P.*, but not P.MOO.

Prior to Sirius Mods version 7.9, only an asterisk wildcard is allowed.

Note: The Model 204 LAUDPROC (Length of Audit Procedure Names) User 0
parameter (default: 21) must be set to the size of the largest procedure name
that will be filtered. Otherwise, name matching is done against truncated
procedure names.

Precedence and scope for Run Until

As described for the Break method]isd, the "run until" processing takes precedence over
any Break method calls that may be present in your procedures. Run Until ignores such
calls.

Run Until also continues without interruption past any persistent-session suspend/
resume sequences.

The default boundaries beyond which Run Until does not continue processing are these:

e The end of the debugging session

Once a session ends, either normally or through a lost connection, and Run Until
searching is interrupted before it finds a specified procedure, a restarted Client does
not automatically resume its search.

e The end of an HTTP request (Janus Debugger)

If the current HTTP transaction completes and the Debugger does not encounter
the target procedure, it does not continue its search for the target into subsequent
HTTP requests. This is ordinarily not an issue.

It may be the case, however, that you want the Debugger not to respect these
boundaries. You do not want to have to repeatedly invoke Run Until for the same
procedure. For example, you are working with HTML frames, where each frame and
frameset is a separate HTTP transmission to the browser, and you want Run Until to
span all these HTTP requests rather than stopping for each frame that involves User
Language.

Janus/TN3270 Debugger User's Guide 75

Performing Basic GUl Tasks

To change the span of Run Until:

1. Inthe Client, select Preferences from the File menu (or use the Ctrl+P keyboard
shortcut).

2. Inthe Preferences dialog box, select the Run Until spans debug sessions checkbox
(which is clear by default), then click Done.

e TR W

Execution Options

r;
=
v Pause at end of evaluation I~ Macro Au'lpl_urv-‘
% Run Until spans debug sessions)

e

™ Break afterREAD SCREEN e

I Source Preview (7_2+ mods) /I!Iirlir_

—_—

A Dnbimne f!"

Now, with a single invocation of Run Until, you can be sure to display the procedure
you want. If, for example, the TN3270 Debugger was turned off and then on again,
the Client will resume an incompleted Run Until search. Or in the case where you
are debugging a request that satisfies an individual frame or frameset, the Client will
continue (with no other execution breaks) through the code for subsequent frames
until it finds the specified procedure.

This setting takes effect immediately, and it persists over multiple runs of the Client.
Interrupting Run Until processing
Run Until processing is manually interruptable: the mappable Client command

breakOnNextProc lets you override a Run Until to interactively debug the next included
procedure.

To use a manual interrupt for Run Until processing:

1. Map the breakOnNextProc command to a Client button or hot key (as described in

|S_jefttinq up the ui.xml file)loll or in @ macro (as described in Using Debugger macros
317)_

2. While debugging an application where Run Until processing is active, invoke the
button or hot key or macro.

Break on next proc set displays in the Client's Status barf+s)to indicate the
command has been successfully issued, and the next procedure included at
command level (or from APSY) will be debugged, even if the Run Until would
normally ignore it.

You cannot invoke an interrupt while debugging sdaemon code.

In the same way you interrupt Run Until processing, you can also interrupt White List
procedure processing.|so

76 Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

See Also

Selectively excluding source code blocks/es]

Locating and editing procedure source files[124]

3.1.7.3 Running only to listed procedures

From a large domain, you may only want to interactively debug a particular set of
procedures, say the procedures for which you are responsible. “Run Until Procedure”
Qrocessing|73'1 lets the Debugger run through code until it reaches a procedure whose
name matches a name or pattern you specified. But it may be simpler to forego the
repeated specifying of individual names and instead to debug just the procedures pre-
specified in a list. In the Debugger, this is "White List" processing. Alternatively, it might
be easier to pre-specify in a "Black List" the procedures you do not want to debug.

To enable White or Black List processing, you:

1. Provide a file that contains either the names of the procedures to be debugged or a
file that contains the names of the procedures not to be debugged.

2. Invoke the feature in the Client GUI.

Black List processing is new in Client Build 62.

Enabling and updating white or black list processing is discussed further in the following
subsections:

Setting up a White or Black List filel+7]
Invoking White or Black List processing[7s]
Updating a White or Black List filelso)

Setting up a White or Black List file

You must create a simple ASClII text file named whitelist.txt or blacklist.txt. In
whitelist.txt, you list the Model 204 procedures that you want to debug; in
blacklist.txt, you list those you do not want to debug. The Debugger Client will
create these files for you (using MicroSoft's Notepad, as described below). Or, you can
create "manually" the file you want, in the same folder as the Debugger Client executable
file (JanusDebugger.exe), using any text editor.

If you provide no whitelist.txt or blacklist.txt file, the user interface for White List
or Black List invocation is disabled.

Janus/TN3270 Debugger User's Guide 77

Performing Basic GUl Tasks

In the Debugger Client:

1. From the File menu, select Edit White List or Edit Black List (or, as mentioned below,
use the Edit White List or the Edit Black List button in the White/Black List box in the

Proc Selection page).

A% The Janus Debugger (UDPSOCK)

Preferences (ctrl+p)

Color Preferences

Edit White List k
Edit Black List

Edit uixml

Edit uimorexml

Edit debuggerConfig.xml

Restart
Restart with Default Window Size

Exit

[[File] Window Search EBreakpoints Executig

A blank Notepad whitelist.txt or blacklist.txt file is opened for you. (If such a
file already exists, that file is opened.)

B whitelist.txt - Notepad
File Edit Format View Help

2. Ifawhitelist.txt file, specify the procedures you want to debug; if a blacklist.
txt, specify those you don't want to be debugged. As of version 7.6 of Model 204
and Client Build 63, you can also list procedures that are included from an sdaemon
[139) thread.

Note the following syntax rules:

One entry per line

Leading and trailing blanks are ignored

Case matching is insensitive

Wildcards(74) are allowed

Blank lines are ignored

Any line starting with a number sign (#) is treated as a comment

Here is an example of a valid file specification:

white list the three stooges

p .moe
p.larry
p.shemp

78

Janus/TN3270 Debugger User's Guide

Performing Basic GUI Tasks

3. Save and Exit the file.

Invoking White List or Black List processing

If the Debugger Client detects a valid White List or Black List file, it enables the option to
turn the appropriate feature on or off.

To invoke white or black list filtering at any time (it is off by default):

1. Select the Client's Proc Selection tab.

2. Ifthe Client was already started before you created or updated the whitelist.txt

or the blacklist.txt filefile, click the Reload White List or Reload Black List button
so the Client can detect the file. This enables the button that invokes White List or
Black List processing, and it also reports the file's contents to the Client log file
(log.txt).

3. Inthe White/Black List box in the Skip Whole Programs area, click the Turn on White
List or Turn on Black List button.

Error Macros Help
-| Trace All | Cancel | Clear Breaks | Clear Walch
ation Trace Proc Selection

Skip Whole Programs

Run Until Procedure: |

_Routine st _ | |] :

v 4

T P
= White/Black List p

(1, Turn on White List __ EditWhiteList |

* [Only debug pri Edit Black List
Jne Lists for

ocedures on white list.
efindlude © Tum off Lists Reload Lists

Once you click the Turn on White List button, for example, White list is active
displays in the Status bar[49), and white list filtering is enabled for the session until
you turn it off by clicking the Turn off Lists button. As of Client Build 62, your filtering
selection persists over runs of the Client until you undo it.

The Client's Execution menu also has Turn On White List and Turn Off White List and
Turn On Black List and Turn Off Black List options that have the same effect as the
Proc Selection tab buttons.

When white or black listing is on, the Debugger filters outer procedures automatically,
stopping to interactively debug only the requests that are on the white list or not on the
black list. A procedure not on the white list or on the black list still executes normally, but
it is not interactively debugged, and the Client's Audit Trail displays are immediately
refreshed to specify that such a procedure has been "skipped."

Janus/TN3270 Debugger User's Guide 79

Performing Basic GUl Tasks

As of version 7.6 of Model 204 and Client Build 63, you can also list procedures that are
included from an sdaemonli39 thread.

You can also enable and disable White List or Black List processing by using the
mappable Client commands kedl that are equivalent to the above steps. The commands
are turnOnWhitelList, turnOnBlackList, turnOffWhitelList, and
turnOffBlackList.

Interrupting White List processing

Once White List or Black List processing is invoked, it continues in effect unless you
explicitly turn it off or until you exit the Client. It is manually interruptable, however: the
mappable Client command breakOnNextProc lets you override the White List or Black
List to interactively debug the next procedure.

To use a manual interrupt for White List or Black List processing:

1. Map the breakOnNextProc command to a Client button or hot key (as described in
Setting up the ui.xml file)Eﬂ or in a macro (as described in Using Debugger macros

l317)).

2. While debugging an application where White List or Black List processing is active,
invoke the button or hot key or macro.

Break on next proc set displays in the Client's Status barf4s]to indicate the
command has been successfully issued, and the next procedure included at
command level (or from APSY) will be debugged, even if the active White List or

Black List would normally ignore it. When this next procedure is debugged, the Audit
Trail will display, for example, "White list accepted: procedurename."

The interrupt applies only to a single procedure, and you must manually invoke it
again for each subsequent procedure you want to exclude from White List or Black
List processing.

You cannot invoke an interrupt while debugging sdaemon code.

In the same way you interrupt White List or Black List processing, you can also interrupt
Run Until procedure processing.[76]

Updating a White List or Black List file

To update a White List, for example, at any time, from the Debugger Client:

1. Select either of the following two options (which let you update and save in Notepad
the current whitelist.txt file)

e The Edit White List button in the White List box in the Proc Selection page
e The Edit White List option of the File menu

80 Janus/TN3270 Debugger User's Guide

Performing Basic GUI Tasks

2. Onthe Proc Selection page, click the Reload White List button (or execute the
reloadwhiteListl24 command).

After a successful reload, White list reloaded displays in the Status barf4s).

Alternatively, you can use your text editor to modify a White List or Black List file at any
time, after which you click the Reload White List or the Reload Black List button on the
Debugger Client Proc Selection page.

See Also

Selectively excluding source code blocks|es1

Locating and editing procedure source files[124

3.1.8 Altering the flow of execution

When debugging, you might want to test a code fix by resetting a variable's value and
then re-executing one or more statements. Or you might want to alter the flow of control
in the program to ensure that hard-to-reach code is tested, such as error paths. You can
accomplish these tasks using the Debugger's Jump feature.

The Jump feature lets you transfer control to a statement and then execute that
statement. The target statement may be earlier or later in the request than the current
statement.

You invoke a jump by right-clicking a line in the Source Code window or by using
commands|e2]. The commands offer additional functionality: jumps to a line number,
jumps that are a number of lines relative to the current line, and jumps to lines that
contain specified strings.

Manually executing a jump
To perform a jump from a Source Code line to a statement you manually select:

1. Right-click the target line to which you want to transfer program execution.
If the target is the first line of an executable statement, the context menu will contain
a Jump Here option.

2. Select Jump Here.

The Debugger validates this target line, using the rules described below in Jump
validation rules.s2]

If the target is valid:

a. Control is immediately transferred to the target statement (intervening
statements are not executed).

Janus/TN3270 Debugger User's Guide 81

Performing Basic GUI Tasks

b. The target statement executes.

c. The next executable statement after the target is highlighted, and program
execution pauses.

If the target is not valid: control is not transferred, and an Invalid Jump message is
displayed in the status barl4s).

Note: Be aware that the execution of a statement you validly jump to may result in an
unexpected request error because the jump bypassed the execution of
statements that were logically-necessary predecessors to the target statement.

Invoking a jump from a macro or mapped command
The jumpToLineli7 and jumpToMatchlidl commands let you add a jump to a macro or

Client button or hot key. With these commands, since you cannot manually select the
line to which to jump, you select the target lines by number or by matching a string.

Jumping to a target line by absolute or relative line number

Like a manually-executed jump, the jumpToLine command transfers control to a
specified request statement within the Source Code page, then executes that statement.
You identify the target statement by supplying a keyword or a number:

jumpToLine [current | number]

For further information about specifying the command, see jumpToLine. pa?)

Jumping to a target line by matching a string

The jumpToMatch command transfers control to a request statement within the Source
Code tab that contains a specified matching string, then it executes that statement. The

target statement is the first statement from the top (first) line in the Source Code page that
contains a match for the string you provide.

For further information about specifying the command, see jumpToMatch. pad)

Jump validation rules
A jump operation is allowed if it follows these rules:

¢ You must have executed at least one statement in the request.

e Jumps are confined to the current nesting level. You may jump within but not into or
out of nested code, which includes the following SOUL constructs:

Loops (For, Repeat)

Subroutines (both simple and complex)
0O-0O methods

On units (all types)

82

Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

For example, once the Client's current-line indicator moves from the statement that
calls a user-defined method into the code that defines the method, any attempted
jump to a statement outside the method definition is invalid. And any attempted jump
into the definition code from the method-calling statement (or from any statement
outside the method definition) is invalid.

Note: Although you may not jump out of nested code, you can step outls2] of the
current level and resume debugging on the statement following the original
call of the nested code.

e The jumpToLine and jumpToMatch commands transfer control only to target
statements that are executable.

e The jumpToLine command indicates the target statement absolutely by statement
line number11] or relatively by a number of lines forward or backward from the
current line. It is an invalid jump if you absolutely specify the statement line number
of an empty line, but it is valid to jump relatively to an empty line (in which case, the
jump attempts to go to the line following the empty line).

3.1.9 Previewing program code

If you work with User Language programs that require an appreciably long time to
download for debugging, due to their size alone or to a slow network connection or high
network traffic, you may prefer to use a Debugger feature that lets you inspect a small
"chunk" of the beginning of the program to decide whether to download the entire
program for debugging or just to run it.

The Source Preview feature lets you download a program's initial 100 lines (at
minimum). After inspection of this code chunk, you can download the entire program as
usual or you can simply run the program without downloading it.

Enabling Source Preview

To enable the Source Preview feature (which is disabled by default):

1. Inthe Client, select Preferences from the File menu (or use the Ctrl+P keyboard
shortcut).

2. Inthe Preferences dialog box, in the Execution Options section, select the Source
Preview checkbox (it is clear by default).

Execution Options
-
¥ Pause at end of evaluation ™ Macro Autorup-
-

P

I Run Until spans debug sessions

I Break after READ SCREEN [plamer

3

T%Suurce Preview (7.2+ mods) Minit™™
3 _—

CIEOpfions "

Janus/TN3270 Debugger User's Guide 83

Performing Basic GUI Tasks

3. The Minimum value (to the right of the Source Preview checkbox) is the default for the
minimum length a source program must be in order to be previewed. No programs
less than 1000 lines may be previewed. Modify this setting (increments of 1000;
maximum of 100,000) if you want previewing available only for longer programs.

4. The Size value (to the right of Minimum) is the default for the size of the preview code
chunks. Modify this setting (increments of 100; maximum of 10,000) if you want
larger chunks.

5. Click the Done button to save your settings and enable the feature.

Operating in preview mode

When Source Preview is enabled and you encounter a program with a number of lines
greater than or equal to the Source Preview Minimum setting, the following happens:

1. As many as Source Preview Size lines of the program are sent to the Client Source
Code page.

2. The Status bars] confirms that you are in preview mode and informs whether the
source program compiles. It displays either Preview: good compile or Preview:
bad compile. Even if the program does not compile, you will still have the option to
download and view the entire program and its embedded compilation error
messages.

3. You inspect the preview and decide whether to download the entire program for
debugging or to skip the debugging of the program. Or, if the program did not
compile, you decide whether to download and view the entire program or to skip it.

e To download the entire program for debugging:

Select the Debug Previewed Source option from the Execution menu, or use a
button or hot key you mapped to the skipPr‘eview@ command, or click the
Client's Step button or perform a Source Code text search.

e To download the entire program to view compilation error messages:

Select the Debug Previewed Source option from the Execution menu, or use a
button or hot key you mapped to the debugPreviewledl command.

e To skip the program:

Click the Client's Run button, or select the Skip Previewed Source option from

the Execution menu, or use a button or hot key you mapped to the skipPreview
command.

84 Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

3.2 Viewing and modifying program elements

The Debugger Client provides two principal ways of examining the values of individual
items in your source code:

e The Watch Window shows you the current values of as many items as you add to the
window. If these values are changed by your code, their updated values are shown
in the Watch Window the next time the Debugger execution pauses.

e The quick-display Value window shows you the current value of the single item you
are selecting by a right-click on the line of code that contains it. Alternatively, the
Client Value button displays in a Value window the value of the item you explicitly
enter in the text box above the Watch Window.

You can use either of these approaches for most of the code elements whose values
are viewable.

These sections are included:
Watching program data items/es]
Displaying temporarily the value of a program data item[es)

Setting the value of a variablefi22)

3.21 Watching program data items

The Watch Window box can display the current value of one or more program code data
items. It is located in the lower right corner of the main window, unless it is opened in a
separate window/[s08l external to the Client.

The Watch Window is updated as the program runs, each time execution is paused by the
Debugger. If the value of a watched item is changed by the last statement execution, it is
highlighted:

The following types of items can be “watched”:

* %variable scalar values (for example: %x, %y)

Janus/TN3270 Debugger User's Guide 85

Performing Basic GUl Tasks

e Elements of %variable arrays (for example: %names (%I1), %names(34))

¢ Image items (including image array elements) (for example: %input:name)
e Global variables

¢ Database fields

e Model 204 parameters

e Elements of $lists and Stringlist and Arraylist objects

e Counts of items in a $list or Stringlist or Arraylist

e Certain $function calls: $STATUS and $STATUSD, $CURREC, $FIELDGROUPID,
and $FIELDGROUPOCCURRENCE

e SOUL O-O structure elements (for example: %address:city)
e SOUL O-O object variables (for example: %xmlInput:serial)

e SOUL O-0O user-defined class member variables

Note: If any of the above items has subscripts or parameters within parentheses (for
example, a %variable or $list array item or a parameter in a SOUL O-O class
method) that are not simple variables or constants, the item cannot be watched in
the Debugger.

These subsections follow:

Adding and removing Watch Window items|ss)

Saving and restoring Watch Window contents|ss)
Getting a detailed view of the value of a watched item/[o1]
Watching Model 204 fields[s3)

Watching global variables[s4)

Watching object variables/es]

Watching $lists and Stringlists[6]

Watching class member variables/[os)

3.2.1.1 Adding and removing Watch Window items

You explicitly add to and remove from the Watch Window the items whose values you
want to view.

86 Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

Displaying items
These are the simplest ways to add an item to the Watch Window:

¢ Inthe Source Code display, right-click a program line that contains variables, and
select Add Watch from the context menu. All variables on that line are added to the
Watch Window.

UL> 16 1 15 SURL = $WEB HDR PARM('URL')
= 1 - T
1 $AGENT = $WEB_HDR PARM('USER-AGENT') ——pm—r
UL> 18 1 17 Toggle BreakPoint
UL> 19 1 18 IF $INDEX (3AGENT, 'GOLD ') THEN Progcidure Information
UL> 20 1 19 $NAVIGATOR = 1
UL> 21 1 20 END IF Display %AGENT

The maggable@ Client command that performs the same action is
addWatchOnCurrentLine.[178]

e For the program line in the Source Code display that is highlighted to indicate it is in
the current execution position, an alternative to right-clicking the current line is to
select Add Watch on Current Line from the Client's Data Display menu. All variables on
the line are added to the Watch Window.

e Type the name (case is not important) of the item in the Entity-name input box[so},
then click the Watch button (or select the Data Display > Add Watch menu item):

ad (' Command addwatch %N)
-
¢
o

o

|

%

Value Trace | Run to Change | Wﬂlcp ’
!

|%|2 ‘Add the named variable to the watch winduwl

sefff_fdlw ‘ /_7./ —— . #

The mappable Client command that performs the same action is addWatch. 73]

e For these types of items, you must specify more than just the item name in the text
box:

Model 204 fields|s3)

User Language global variables|o41
SOUL 0-O shared object variables|ss)
Slists|oe!

Janus/TN3270 Debugger User's Guide 87

Performing Basic GUI Tasks

Viewing long items
To display lengthy values, you can do one of the following:

e Expand the Watch Window by dragging its left edge to the left:

h

[Drag to size watch window]

e Hover your mouse over the item to display it entirely in a tooltip box:

~""*doc has no value: %DOC not found
%statEnd:ToXmlDoc (attributenames=true, NamesToLower:

9%statEnd: ToXmlDoc(attributenames=true, NamesTol ower=false) has no value: %STATEND not found

This feature is enabled by selecting the Show long watch values in a Tooltip option in
the Client's Preferences box[181 (it is off by default).

e Double-click the value to display it in a Value window/e1.

¢ Display the entire Watch Window in a window that is external to the Client. [s08]

Removing items

To remove a single item from the Watch Window, right-click the item and select Remove
from the context menu:

AT ol VAT® om
vdlLll Wallpke
%K='1---665' has no walue: Not currently evaluat:

FE— i .

%I=92 has no value: g s zvaluating a re
%J=665 has no value"evaluating a:

Change Value

The mappable Client command that performs the same action is
removeCurrentWatch. ps3)

To remove all items from the Watch Window, click the Clear Watch button, below the main

window. This button empties the Watch Window and instructs the mainframe portion of
the Debugger to stop collecting any watch data.

88 Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

The mappable Client command that removes all Watch Window items is clearWatch. [177

Redisplaying items

Each item you add to the Watch Window is also added to a drop-down list you can view in
the Entity-name input box/so] by clicking the arrow at the right. To redisplay an item you
previously removed from the Watch Window, simply select from the drop-down list the
item you want to watch again:

%n3 [
%n3

. %your
j %doc §

%your has no value: %YOUR not found

&nl='Null’
An3='Null’

< >

The items in the drop-down list persist across Debugger Client sessions. The contents
of the Watch Window itself are redisplayed in subsequent Client sessions by default. If you
do not want the Watch Window contents to persist across Client sessions, clear the
Restore watches on startup checkbox accessed from the Preferences option in the File
menu.

3.2.1.2 Saving and restoring Watch Window contents

If you anticipate watching the same or many of the same items in subsequent debugging
sessions, you can save to a local file the entire list of items displayed in the Watch
Window, then restore those items to the Watch Window whenever you want. This may
significantly minimize the effort of repopulating the Watch Window.

For example, say you are watching the function specifications $LISTCNT(%G), $LISTINF
(%G, 1), $LISTINF(%G, 2), and $LISTINF(%G, 3). To save them for later use:

1. Select Save Watch from the Debugger Client File menu.

2. Specify a workstation folder location and a name for the storage file.

Janus/TN3270 Debugger User's Guide 89

Performing Basic GUl Tasks

The list of watched items (only) is stored in a text file with a .watch file name
extension:

riwatch3test.watch - Notepad ¢

File Edit Format View Help -
SLISTCNT (%G) ——
SLISTINF(%G, 1) o

SLISTINF (%G, 2)
SLISTINF (%G, 3)

- F

S "

Alternatively, you can run the saveWatchlsd command from a magged@ Client button,
key, or macro that has the same effect as the above two steps.

Restoring

To restore (at any time) to the Watch Window these or other items from any .watch file
(including any you create independently):

1. Select Load Watch from the File menu.

2. Locate and select the .watch file in the Windows Select Watch File dialog box.

By defaultfz03, the search for the .watch file begins with the folder specified in the
stateFileFolder element in the debuggerConfig.xml file.

The file's contents are added to the Watch Window display with whatever current
value they may have in the current source code.

Again, as an alternative, you can run the loadwatchl223 command from a magged@
Client button, key, or macro that has the same effect as the above two steps.

You can save as many watched lists as you like.

90 Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

3.2.1.3 Getting a detailed view of the value of a watched item

You can double-click an item in the Watch Window to display a detailed value window. For
example, if you double-clicked %X :SERIAL (whose value is a single string that may

include line-ends) in the Watch Window box shown below:

Value Trace Run to Change

Sex:senal

i%x:seria1='<a> Hello moe< /b> <orlarry<fo></ax"

The value is displayed in a separate window:

‘% Value of %wserial i |
File
<a>
Hello
moe
<c>larry</c>

Length: 53 " HonorLineEnds + Wrap " Binary Close

Search Down | Search Up | Top | Bottom

Janus/TN3270 Debugger User's Guide 91

Performing Basic GUl Tasks

By default, any line-end characters in the value are honored in this Value window, and the
value is broken into lines accordingly. To see the value unbroken at line ends, you click

the Wrap radio button:
rﬂ‘% Value of %oxserial [E=NEEN)
File
<a> Hello moe <cerlarry</c>
Length: 53 " HonorLineEnds & Wrap " Binary Close
Search Down | Search Up | Top | Bottom
LS .

From wrap-view mode, you can always revert to line-end mode by clicking the Honor
Line Ends button.

To see the hexadecimal values of the data, click the Binary button.

To print or save the value, use the Print or Save options of the File menu. The Save option
saves the file in the window's current display format (ordinary text or hexadecimal digits).
To search the value display, use the search bar on the bottom of the window.

Note: As an alternative way to get the same detailed view of a variable that double-
clicking it in a Watch Window provides, you can specify the variable name in the
text box above the Watch Window, then click the Value button below it. As described
in Displaying temporarily the value of a program data item [99), a variation of this
alternative approach is also the way to get detailed views of the values of $list,
Stringlist object, and XmIDoc object variables — which you cannot get by double-
clicking them in the Watch Window.

See Also

Adding and removing Watch Window items| s6)

Displaying temporarily the value of a program data item| o9

92 Janus/TN3270 Debugger User's Guide

Performing Basic GUI Tasks

3.214 Watching Model 204 fields

When the program you are debugging is in a Model 204 record context, you can view the
value of any visible database field in that record by explicitly adding the field name to the
Watch Window. The field name requires a special prefix, as described below.

If a field name is referenced within an expression in an HTML or TEXT block in your
code, you can also add it to the Watch Window (or display it in a Value window) by right-
clicking the code line that contains it, as described below.

In addition, if a multiply occurring field is ina FOR EACH OCCURRENCE loop, you can
display its occurrence numberli14l. You can also display the values of all the fields in the
current recordli15 or in the current field groupli18.

Adding fields to the Watch Window

To watch the value of a Model 204 field:

1. Type its name preceded by F. or f. (for example, f.name) in the Entity-name input
box(sol

2. Click Watch:

Value Trace Run to Change r Watch I

Lo

f.name j

+ |f.name has no value: No current record

D CLEARWATCH' L

By default, the value of the first occurrence of the field is shown in the Watch Window;
however, you may select later occurrences by subscripting the field name. For example:
f.name(2) watches and displays the second occurrence of the field name, while f.
name is equivalent to specifying f.name(1).

Watching fields that belong to field groups

If you are using the Model 204 field group feature under version 7.6 or higher of the Sirius
Mods, you can watch or display the value of fields in the current field group by preceding
their name by F. or f.

The execution context must be a current field group (that is, within an FEO FieldGroup
loop).

Janus/TN3270 Debugger User's Guide 93

Performing Basic GUl Tasks

Watching fields specified within HTML or TEXT blocks

You can view the value of a Model 204 field that is specified as an expression within a
User Language HTML or TEXT statement block. In such blocks, the Client detects a field
name enclosed by opening and closing braces (for example, { FIELDNAME}), and it

shows you the field value if you select the Add Watch or Display right-click option for a line
that contains the expression.

See Also

Displaying the current occurrence value in an FEO Ioopm

Displaying all fields in a record[i13

3.2.15 Watching global variables

Like Model 204 fields, watched global variables must be specified using a prefix. To
watch a global variable:

1. In the Entity-name input box/so}, specify G. or g. followed by the variable's name
within single quotation marks. For example: g. "‘Next'

2. Click the Watch button.

The current value of the variable is displayed in the Watch Window:

Value Trace Run to Change

g 'Next'

ig.'Next'-'E.Login'

Note: For global variables whose names are all uppercase, you can omit the single
quotation marks enclosing the name. In this case, the Debugger searches for
(only) the variable with the all-uppercase form of the name. Whether you
specify g.next or g.Next or g.NEXT, the value of only the global variable
NEXT is displayed.

94

Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

For a global variables that is referenced by a $GETG call in a source code statement,
you can also right-click its program line and select Add Watch from the context menu.

A‘E‘ The Janus Debugger (GETG) /r
File Window Search Breakpoints Execution Data Display Error Macros Help f"'
—
Top | Bottom | Clear Audit | Run | Step | Step Over | Trace All | Cancel | Clear Breaks | Clear Watch pre
= = = = e
Audit Trail Source Code | Web Buffer | Execution Trace | Proc Selection =
CM> 1 0 1 I GETG i
TUL> 2 1 1 Begin
TL> 2 1 2
TL> 4 1 3 PRINT $SETG('CamelCase','Yes') ',
TUL> 5 1 4 print 'cc ' with §getg('CamelCase'} Add Watch b e
UL> 6 1 5 print 'lc ' with $getg('camelcase’) atc [F
UL> T 1 6 print 'me ' with $getg('CAMELCASE®) Toggle BreakPoint _’
L G U Procedure Information !
TL> 9 1 8 PRINT SSETG('CASE','YES')
UL> 10 1 S PRINT $SETG('case','ves') FEOQ OCCIN value
TL> 11 1 10 PRINT S$SETG('Case’,'Yes') Jump Here
TL> 1z 1 11 print 'cc ' with §Sgetg('Case’) 4
UL> 13 1 12 print 'le ' with Sgetg('case') Display g.'CamelCase’ o
UL> 14 1 13 print 'me ' with $getg('CASE') I
UL> 15 1 _Llf-snd
. N B #
l - - e - - A

F r ”

The global variable is added to the Watch Window and its current value is displayed.

To view the variable value without adding it to the Watch Window, you can right-click the

program line and select the Display option. The value is shown in a separate Value
window.

Note: Just as it recognizes $GETG calls, the Client also recognizes and evaluates
$STATUS, $STATUSD, and $CURREC calls as of Sirius Mods 7.6.

See Also

Watching Model 204 fieldses]
Viewing dummy string variablesi2s)

3.2.1.6 Watching object variables

You add a SOUL object variable to the Watch Window using either of the ways described
earlier(ss}: right-click the line of code in which it's contained and select the Add Watch

option, or type its name in the text box above the Watch Window and click the Watch
button.

But for shared objects, class variables within a class definition, and Stringlist and
XmIDoc objects, you need to use variations of these techniques. Otherwise, for
Stringlist and XmIDoc objects, the Debugger only informs you whether or not the object
has content. And for shared objects, the Debugger may fail to "find" the object.

Janus/TN3270 Debugger User's Guide 95

Performing Basic GUl Tasks

Handling shared objects and class variables are described below. Stringlist objects are
discussed in Watching $lists and Stringlistsr%'l and XmIDoc objects are discussed in
Displaying Janus SOAP XML document objectsioal.

Watching shared objects

The simplest way to add a shared object variable to the Watch Window is to right-click its
source code line and add it. When you do so, the class-name qualifier is automatically
added as a prefix for the variable. For example, if the line you select on the Source Code
page is:

Print %(tester):sharedPubNum

The variable that appears in the Watch Window is %(tester) :sharedPubNum, and you
can successfully watch the shared variable's value as you step through the program.

However, if you choose to add the shared variable by first typing its name in the Entity-
name input box/so), you must be sure to prefix the variable with its class name, explicitly
specifying:

%(tester):sharedPubNum

If you specify only the variable name (%sharedPubNum), the variable is added to the Watch

Window as is, with no % (tester) class name prefix. The Debugger does not recognize
this as the shared variable in your program, and a "not found" message eventually
displays in the Watch Window.

See Also

Displaying temporarily the value of a program data item| o)

3.2.1.7 Watching $lists, Stringlists, and Arraylists

To inspect $lists, Stringlists, and Arraylists, you apply additional $functions or object
methods to the $list, Stringlist, or Arraylist variable in the text box above the Watch
Window. Otherwise, the Debugger will merely report whether or not these variables have
content.

This section describes how to watch individual list items or list counts. Using a related
technigue@, you can display all the list items and their values at once.

96 Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

To watch $lists, Stringlists, or Arraylists:

e For $lists, specify either of these $functions in the Entity-name input boxIso:

$listcnt(1listID) Gets the number of items in the list
$listinf(1istID, subscript) Gets the value of a particular list item.
Where:

» listIDis a $list identifier, most often a Float variable. It must be a simple
variable or a constant; it may not be an image item or a %variable array item,
for example.

. subscriptis a 1-based list-item subscript that identifies the item to watch.

e For Stringlists or Arraylists, specify either of the following in the Entity-name input
box for the %list Stringlist or Arraylist object variable:

%1ist:count Gets the number of items in the list
%list:item(num) Gets the value of a particular list item.
Where:

» %listis a Stringlist or Arraylist object variable.

= numis a 1-based positive integer that identifies the item to watch. It must be a
simple variable or a constant; it may not be an image item or a %variable array
item, for example.

For example, here are the results of watching the function specifications $LISTCNT (%G),
$LISTINF (%G, 1), $LISTINF(%G, 2), and $LISTINF(%G, 3):

SLISTCNT (%G)=2

SLISTINF(%G,1)='All work and no play’
SLISTINF(%G,2)=' makes Jack a dull boy."'
SLISTINF(%G,3) has no value: Invalid item number

Janus/TN3270 Debugger User's Guide 97

Performing Basic GUl Tasks

The contents of the Watch Window, above, result from evaluating the following test
program:

INCLUDE LISTTEXT
b
%i is float
%g is float
%g = $listnew
%i = 777
$listadd(%g, 'All work and no play')
$listadd(%g, ' makes Jack a dull boy."')
$list_print(%g)
end

3.2.1.8 Watching class member Variables

In much the same way as for ordinary %variables, you can use the Client's watch or
display[es] facilities for viewing class member Variables (that is, a variable that is a
member of a class, not an instance of a class). If you right-click a code line that is
outside the definition of the class, and you use the Add Watch or Display options, the
Client shows the class Variable and the object to which it is applied in the Watch Window

or the Value window's title.

If you choose to add the Variable to the Watch Window by first specifying it in the text box

above the Watch Window, you must precede the Variable name by the object variable to
which it is applied.

The Client also has a related featurelod that lets you display at once the names and
current values of all the Variables in a given class.

Watching Variables within a class definition

To watch the value of a class Variable within a method within the class definition, it may
be necessary to add it via the Entity-name input box[s0), rather then by right-clicking its
source code line.

The following example of a Source Code program helps to demonstrate how to work with
%this in Sirius Mods 6.x versions of the Debuggers. In more recent Debugger versions,
class Variables are detected as such, and their value is displayed in the Watch Window
whether or not you have explicitly preceded the variable name with %this.

In the example, the celsius variable is referenced in the fahrenheit property definition.
The class definition is valid and works as intended: both %celsius and %this:celsius
are valid formats for referencing celsius in this class definition context.

98

Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

Begin
class thermometer
public
variable celsius is float
property fahrenheit is float
end public

property fahrenheit is float
get
return (1.8 * %celsius) + 32
end get
set
%this:celsius = (%fahrenheit - 32) / 1.8
end set
end property fahrenheit
end class

%temp is object thermometer
%temp = new

%input is float

%input="'33"

%temp:fahrenheit = %input
print 'Temperature fahrenheit: '
print 'Temperature celsius: '
End

%temp:fahrenheit
%temp:celsius

In the Client, you can right-click and select the Add Watch menu option to add both %

celsius and %this:celsius to the Watch Window. However, as you step through the
program, the pre-Mods-7.0 Debuggers will only find and display the value for %this:
celsius.

In cases like this where class definition code does not explicitly specify %this, you must
provide the %this explicitly yourself by typing it in the Entity-name input box followed by a
colon, followed by the class variable name. Then you click the Watch button to add the
variable to the Watch Window.

See Also

Displaying all Variables of an object's classiod)

3.2.2 Displaying temporarily the value of a program data item

While the Debugger Client is evaluating program code in the Source Code tab, you can

view the value of a code variable or field (one time), without adding it to the Watch Window
for continuous watching. You use either of the following ways:

Janus/TN3270 Debugger User's Guide 99

Performing Basic GUl Tasks

Or:

Right-click the Source Code line in which the variable (say, %var), is referenced or
declared, then select the resulting "Display %var" menu option.

Type its name in the Entity-name input box below the main window; then click the
Value button.

Note: For some types of variables, you also need to type the name of special Client
functions that produce the appropriate display. Such variables include mlﬁa
, Stringlist or Arraylist objectl102], and XmIDoc objectfioal. And for class
member Variables 03], you select a right-click option from the Watch Window.

Either of the preceding approaches displays the %var variable value in a separate Value
of %var window:

.
A‘% Value of %celsius |5|E|éj

File

0.555555555556EE6

Length: 17 " Honor LineEnds ~ Wrap " Binary

Search Down | Search Up | Top | Bottom

Note: If you have the consolefs2a open, the value is displayed there instead of in a Value

window. To override this default, use the valueDisplayOnConsole option of the
Client setPreferencelessl command.

By default, any line-end characters in the value are honored in the Value display window,
and the value is broken into lines accordingly.

To see a value unbroken at line ends, you click the Wrap View button. From wrap-
view mode, you can always revert to line-end mode by clicking Honor Line Ends.

To see the raw binary representation of the value (16 bytes per line), click the Binary
button.

This option is useful if the data is not printable (for example, whitespace
characters), or if you simply want to see the pre-translation EBCDIC values of the
data (since the Debugger Client normally converts strings to ASCII for display).

The binary display shows any printable characters to the right of the hex data,
enclosed by asterisks. Non-printable characters are represented by periods:

100

Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

-
Q\"alue of %celsius =NRSA X
File

FO4BF5FEFbFEFAFAFEFAFAFEFEFAFEFE *0. 5655565566555
F6 *6

*
*

il »
Length: 17 " HonorLineEnds " Wrap « Binary

Search Down | Search Up | Top | Bottom

Clicking either Honor Line Ends or Wrap restores the original ASCII representation.

e To print or save the value, use the Print or Save options of the File menu. The Save
option saves the file in the Value window's current display format (ordinary text or
hexadecimal digits) in the location you select. To search the value display, use the
search bar controls on the bottom of the window.

Note: The valueDisplaykbsa) mappable Client command has the same effect as the
Value button for the value in the Watch Window text box.

See Also

Getting a detailed view of the value of a watched item[e1)
Displaying $lists, Stringlists, and Arravlists@
Displaying Janus SOAP XML document objects 102

Displaying all Variables of an object's class/09)

Displaying the current occurrence value in an FEO looph14

Janus/TN3270 Debugger User's Guide 101

Performing Basic GUl Tasks

3.2.2.1 Displaying $lists, Stringlists, and Arraylists

You can use the Client's displayl+s1 or watchleél facilities for $lists, Stringlist objects, or
Arraylist objects to view or watch an individual item or the count of items. However, when
a quick view of the entire $list, Stringlist, or Arraylist is important, you can access a
special type of Value window display to see all the list items and their values at once. For
example:

rﬂe List expansion of %g =ARC X

File

Total list items=6
1==>211 work and no play
2==> makes Jack a dull boy.
3==>al1ll1 work and no play
4==> makes Jack a dull boy.
5==>al11 work and no play
6==> makes Jack a dull boy.

[}

Length: 129

Search Down | Search Up | Top | Bottom

You can also print the window's contents by accessing the File menu's print options, and

a search bar on the bottom of the window provides controls for searching the window
content.

To access the Value window from the Watch Window:

1. @@ the variable to the Watch Window.

2. In the Watch Window, right-click the variable.

102 Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

If this is a list variable and its value is currently non-Null, the List Display context

menu option is enabled:

Value Trace Run to Change Watch
7

%g

Remove
Change Value
List Display

= Expand Object

Senialize
ot

- =

3. Select List Display.

Note: For this feature, subscripted references are allowed for $list variables. For
example, to display $list item i in array %L, add %L (%1) to the Watch Window.

Note: The expandList mappable Client commandPss has the same effect for its

argument as clicking List Display for a watched item.

By default, a limit of 100 items is enforced. If there are more items than the limit, this
is noted in the “Total list items” line, and only the first 100 are displayed, as shown

below:

ﬂ‘% List expansion of %g

(S | |

File

Total list items=400 (limit exceeded, only 100 shown)
1==>A11 work and no play
2==> makes Jack a dull boy.
3=>A11 work and no play
4==> makes Jack a dull boy.
5==>A11 work and ne play
6==> makes Jack a dull boy.
T7==>A11 work and no play
8==> makes Jack a dull boy.
9==>A11 work and no play

10==> makes Jack a dull boy.
11=—>A11 work and no play
12==> makes Jack a dull boy.
13=—>A11 work and nc play
14==> makes Jack a dull boy.
15==>A11 work and no play
16==> makes Jack a dull boy.
17==>Al11 work and no play
18==> makes Jack a dull boy.
19==>A11 work and no play

Length: 2150

Search Down | Search Up | Top | Bottom

Close

Janus/TN3270 Debugger User's Guide

103

Performing Basic GUl Tasks

If the limit of 100 is too low, you can reset it in the Display Options area in the
Preferences dialog box (accessed via the Preferences option of the File menu):

‘;—2‘ Preferences

Execulion Options
¥ Pause atend of evaluation

™ Run Until spans debug sessions

I Break afterREAD SCREEN

I Trim blanks from selection in View Text
" Show long watch values in a Tooltip

Web Server Selection

¥ sirius-software com:9219

I” Macro Autorun

I Windows When Suspended (7.9+)

I Source Preview (7.2+mods) Minimum:[1000 | Size:[100 =
IE Options
IE Mode ¥~
none -l | P

Display Option
Show atmost |1gp = listitems. Restore walches on startup

I" History to Execution Trace
¥ Use !debugger directives (7.6+)

Program Titles
3270 Emulator

Web Browser

\Windows

Done

Open at Startup
" External Main Button Bar
" Extra Button Bar

" External Waich Window

™ External Audit Trail Window

" External Web Buffer Window

" External Execution Trace Window

Main Button Bar
= Top
~ Center

" Bottom

" Exfra Buttons

Main Window Options

" Hide Lower Section

The limit may be set in the range from 100 to 10,000, in increments of 1000.

See Also

Watching $lists, Stringlists and Arraylistsr%ﬁ

3.2.2.2 Displaying Janus SOAP XML document objects

Applications using Janus SOAP XML document objects are an increasingly common
type of Janus Web application. Ordinarily, however, to inspect the contents of an
XmIDoc or XmINode object, it must be serialized by one of the XML document serializing
methods like Serial, WebSend, Xml, or Print. And in either the Janus Debugger or the
TN3270 Debugger, if you are debugging a request in which a line like the following is

executed:

%x:loadxml('<a>Hellomoe<c>larry</c>")

104

Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

Reguesting@ the value of %x merely reports whether the object has content:

Aﬁ‘ The Janus Debugger (QAXMLI)
File Window Search Breakpoints Execution Data Display Eror Macros Help r
Top | Bottom | Clear Audit | Run | Step | Step Over | Trace All | Cancel | Clear Breaks | Clear Watch | View Text r
Audit Trail Source Code l Web Buffer | Execution Trace | Proc Selection |
M 1 0 1 I QAMMLL [,
TL> 2 1 1 begin _,I
TL> 3 1 2 #x is object xmldoc
UL> 4 1 3 %1 i= longstring _ -P'J
oL> 5 1 PRI rH_f’J
UL> 6 1 5 X = new T
UL._> 7_1 6 #x:loadxml (‘<a>Hello<brmoe<crlarry</cr' i y
[o I) -
Ve N Twas u
Fil fj
L Not null XmlDoc a [
o
=
L
Lo
I
[4
e
———
| Vﬂluel; Tmt';r
! Tax |
|
- L
| | 2
Length: 15 ¢ HonorLineEnds & Wrap ' Binary f
i 7
Search Down | Search Up | Top | Bottom 'r_n'

Exemﬂ.:mmmu. : » Nes

If the program in the preceding example contained a subsequent assignment statement
to a string variable like the following, you could display the XmIDoc content by watching
for or requesting the value of %1ongstring:

%longstring = %x:serial(, 'EBCDIC')

For parts of the code where no such serializing statement is present, however, the
Debugger Serialize feature lets you implicitly call the Janus SOAP XML document Serial
method to view the contents of an XmIDoc or or XmINode object variable.

You can invoke the feature multiple ways for XmIDoc variable %doc:
e Display the expanded value of %doc:serial in a Value window.
a. Enter %doc:serial in the Entity-name input box below the main window.

b. Click the Value button.
Or:

a. Add %doc to the Watch Window (by right-clicking the Source Code line containing
%doc and selecting the Add Watch option, or by entering %doc in the text box
above the Watch Window and clicking the Add Watch button).

Janus/TN3270 Debugger User's Guide 105

Performing Basic GUl Tasks

b. Right-click %doc in the Watch Window and select the Serialize option.

¢ Display the non-expanded value of %doc:serial in the Watch Window:
a. Enter %doc:serial in the Entity-name input box.
b. Click the Watch button.

For the example code above, if you specify %x: serial in the Entity-name input box and
click the Value button (at any point after the execution of the %x: loadxml statement cited
at the beginning of this section), the following Value window displays:

‘% Value of %xserial | e S|
File
<a>
Hello
moe
<crlarry</c>

Length: 53 " HonorLineEnds Wrap Binary Close
L
Search Down | Search Up | Top | Bottom
k. =

The Debugger Serialize feature formats the return value of the Serial call as if you
specified the following form of the method (which calls for a single string with EBCDIC
characters, added carriage-return/line-feed character sequences, and added three-blank
character sequences for the indent of nested elements):

Serial(, 'EBCDIC CRLF Indent 3')

The Serial method defaults are UTFS8 instead of EBCDIC, and no added line-end or
indentation characters. So for user convenience, the Debugger is internally providing its
own Serial method defaults (which you can adjust, as described in the "Serial method
formatting defaults"[104 subsection).

106 Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

Debugger Serial method compared to source code Serial methods

The Debugger's internal Serial method handling is independent of Serial method calls
actually specified in the source code you are debugging. For example, in the following
excerpt, the User Language object pointed to by %d (of type document) contains a
variable member named x that is an XmIDoc:

class document
public
variable x is object XmlDoc
constructor new
subroutine addStooge(%iFirst is longstring, -
%iLast is longstring)
end public

%d is object document
%d = new
%1 is longstring
%d:addstooge('Moe", 'Howard')
%1 = %d:x:serial
If you are watching %1, which is not an object variable, you find that its value is shown as

an Unicode binary string when the %1 = %d:x:serial statement in the request is
executed:

Value Trace Run to Change

%I = j

i ¥1=X'3CT3T46F6F6T65T33E3CT3T46F6F6T653E3C6669T2T46F6F67653E3C666972

However, you can use the Debugger's Serial method feature and request a detailed view
of the XmIDoc object variable x:

1. Specify %d:x:serial in the Entity-name input box below the main window.

Janus/TN3270 Debugger User's Guide 107

Performing Basic GUl Tasks

2. Click the Value button.

You see the serialized form of the XmIDoc in the Value window:

A& Value of %docserial =ARCE X ﬂ
File
<stooges> »
<stooge>

<firstName>Moe</firstName>
<lastName>Howard</lastName>

</stooge>

<stooge>
<firstName>Larry</firstName>
<lastName>Fine</lastName>

</stooge>

<stooge>
<firstName>»Curly</firstName>
<lastName>Howard</lastName>

</stooge>

<stooge>
<firstName>Shemp</firstName>
<lastName>Howard</lastName>

</stooge>

il </stooges>

m

Length: 411 # HonorLineEnds © Wrap " Binary Close

Search Down | Search Up | Top | Bottom

Serial method formatting defaults

The preceding Value window display also shows again the effect of the implicit Debugger
Serial parameters CRLF and Indent 3. These formatting defaults (for XmIDoc and
XmINode objects) are specified in the Debugger Client configuration filefsdl
(debuggerConfig.xml):

<serialParms>CRLF INDENT 3</serialParms>
You can change this formatting, for example, to increase the indentation:
<serialParms>CRLF INDENT 10</serialParms>

To suppress this feature (never have the Debugger add parameters to serial), specify no
value:

<serialParms></serialParms>

See Also

Watching object variables|95)

108 Janus/TN3270 Debugger User's Guide

Performing Basic GUI Tasks

3.2.2.3 Displaying all Variables of an object's class

Although you can view the contents of SOUL Stringlists and XmIDocs, the Debugger
cannot display the entire contents of most SOUL system objects. However, you can
display for a given object variable the names and values of the Variables (public and

private) or Variable-like members defined for its class.

For user classes, members defined as Variables are displayed. For system classes,
members that are similar to Variables, that is, that take no arguments (certain Functions
and Properties) and return simple values (names, counts, positions, etc.), are displayed.

This feature is supported for SOUL system classes (including system exception
classes) and for user-defined classes, excluding these classes:

System and Subsystem
DebuggerTools

For any class, the display does not include class methods (Functions, Subroutines,
Properties, or Constructors).

The Variable-like members you can display for the SOUL system classes are
summarizedfi11 later in this section.

The expandObject mappable Client commandkssl also invokes this feature, and the
getVariablesForClass command invokes a variant of the feature that retrieves variable
names but not values.

To display the member variables in the class represented by a particular object variable:

1. M@ the object variable to the Watch Window.

2. In the Watch Window, right-click the object variable.

If this is indeed an object variable and its value is currently non-null, the Expand
Object context menu option is enabled:

T R U S B PR, e

— s
Value Trace Run to Change Watch |

%scout j

%¥=cont="Not nmll Cat'
| Remove

Change Value
List Display
Expand Chject [b

Serialize
P

If the object variable's value is Not-null, its class name is automatically displayed
as well. If the current object variable value is other than Not-null, no class nhame
appears and the Expand Object option is not enabled.

Janus/TN3270 Debugger User's Guide 109

Performing Basic GUl Tasks

3. Select Expand Object if the object variable's value is Not-null.

A Value window opens, displaying the names and current values of the member
variables in the class. For example, a window like the following displays:

r - . s 0 N
A% Expansion of %D, an instance of: document = | |
File
FSCOUT:
name==>Scout
type=—>tabby
color==>>gold
I
4 *
Length: 14 Close
Search Down | Search Up | Top | Bottom

This is the class definition for the variable display above:

class cat

public
variable name is longstring
variable type is longstring
variable color is longstring
constructor new (%iName is longstring)
subroutine talk

end public

constructor new (%iName is longstring)
%this:name = %iName
end constructor new

subroutine talk
print %this:name ' says Meow'
end subroutine talk
end class cat

At the same time the Variables are displayed, a status bar(9] message reports the
number of Variables in the class. For this example: Found 3 variables in CAT.

110 Janus/TN3270 Debugger User's Guide

Performing Basic GUI Tasks

Note: If the Variables of a class are themselves objects, the only displayable information
about their values may be that they are "Not null."

For example, for %d, an instance of a user-defined Document class that contains
a Janus SOAP XmINode variable and an XmINodelist variable, the class Variable

display is similar to this:

A‘% Expansion of %0, an instance of: document
File

&D:
x==>Not null XmlDoc
top==>Not null XmlNode

Length: 31

Search Down | Search Up | Top | Bottom

Close

Summary of variable members in SOUL system classes

If the object variable you expand (as described above) is an instance of a SOUL system
class, the members that display are summarized in the table below.

Class

Arraylist

CharacterMap

CharacterTranslationException

Dataset

Daemon

DaemonLost

Viewable members

Count
Lastltem

none suitable

BytePosition
CharacterPosition
Description
HexValue

Reason

State
AmDaemon
HaveDaemon
MasterNumber

ParentNumber

none suitable

Janus/TN3270 Debugger User's Guide

111

Performing Basic GUl Tasks

Class

Email

FastUnloadTask

FloatNamedArraylist

HttpRequest

HttpResponse

InvalidBase64Data
InvalidHexData

InvalidRegex

JSON (Model 204 V7.6+)

Ldap

MaxDaemExceeded

NamedArraylist

Viewable members

GetReplyCode
GetReply Text
Host

Port

State (Sirius Mods 7.6+)

Count
Default
UseDefault

Fieldcount
Headercount
Host
Httpversion
Maxredirects
Page

Port
Protocol
Proxy
Timeout

Url

Code
Content
HeaderCount
Message
StatusLine
Success

Url

Position
Position
Code

Description
Position

Type
ToString
Count

ErrorNumber
ErrorText

none suitable
Count

Default
UseDefault

112

Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

Class
NoFreeDaemons
RandomNumberGenerator

Record

Recordset

RecordsetCursor

Screen

ScreenField

Socket

SortedRecordset

StringTokenizer

Stringlist

Viewable members
none suitable
none suitable

FileName (Sirius Mods 7.6+)
LockStrength
RecordNumber (Sirius Mods 7.6+)

ISEmpty
LockStrength

FileName (Sirius Mods 7.6+)
LockStrength

LoopLockStrength (Sirius Mods 7.6+)
RecordNumber (Sirius Mods 7.6+)
State (Sirius Mods 7.6+)

ActionKey
Columns
Rows

Column
Invisible
ltemld
Modified
Numeric
Protected
Row
Value
Width

Errinfo(CODE')
Errinfo('SOCKNUM")
Errinfo(FUN")
Info(REMOTE")
Info('STAT)

ISEmpty

AtEnd (Sirius Mods 7.6+)
CurrentQuoted (Sirius Mods 8.0+)
CurrentToken (Sirius Mods 8.0+)
NotAtEnd (Sirius Mods 7.6+)
String (Sirius Mods 8.0+)
StringLength (Sirius Mods 8.0+)

Count
Lastltem
MaxItemLength

Janus/TN3270 Debugger User's Guide

113

Performing Basic GUl Tasks

Class Viewable members
UnicodeNamedArraylist Count
Default
UseDefault
UnknownStatistic Name
UserStatistics LoginToString (Sirius Mods 7.6+)

RequestToString (Sirius Mods 7.6+)
ToString (Sirius Mods 7.6+)

XmIDoc DefaultURI
Length
LocalName
Prefix
Qname
Type
URI
Value

XmINode DefaultURI
Encoding
InvalidChar
Length
LocalName
Prefix
Qname
Type
URI
Value
XpathOrder

XmINodelist Count

3.2.2.4 Displaying the current occurrence value in an FEO loop

In User Language, the OCC IN phrase lets you refer back to the label of a FOR EACH
OCCURRENCE OF (FEO) statement to get the number of the current field occurrence
in the loop. For example:

ff: FEO MISCINFO
%array(OCC IN ff) = VALUE IN ff

If you are debugging a request that contains FEO loops, you can easily display the
current occurrence number value in the Debugger Client:

1. Inthe Source Code page, right-click on a line that contains an FEO statement.

114 Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

2. Select FEO OCC IN value from the context menu:

File Window Search Breakpoints Execution Data Display Error Macros Help -
Top | Bottom | Clear Audit | Run | Step | Step Over | Trace All | Cancel | Clear Breaks | Clear Waich Vie\ﬁ
Audil Trail Source Code l Web Buffer I ExecutiunTIace] Proc Selecljnn] —
[OL> 20 1 19 AttributeValues=true, - ,;]
UL> 21 1 20 namesTolLower=true, - '
[OL> 22 1 21 allovunreversible=true)
[OL> 23 1 22 & %#doc = %rec:ToXmlDoc (AttributeValues=true) ;
UL> 24 1 23 t
UL> 25 1 24 'y
UL> 26 1 25 bt
uL> 27 1 26 r
OL> 28 1 27 print "a%%" b
UL> 29 1 28 pai ’
OL> 30 1 29 ff: FEQO HAME ik
UL 31 1 30 tarray(0CC IN £f) = | Add Watch .
[OL> 32 1 31 %v = walne in ff Toggle BreakPoint i
gti :i 1 gi I;Ecliu;civ Procedure Information 'r
TL> 35 1 34 print '#*% End of record FEO OCCIN value b f
UL> 36 1 35 #doc:print Jump Here ?
UL> 37 1 36 end for F
OL> 38 1 37 7
OL> 39 1 38 end =
—

The occurrence value displays in the Value of OCC IN for FEO loop window:

G Value of OCC N for FEC loop =la ==

File
1 -

Length: 1 * HonorLineEnds & Wrap " Binary

Search Down | Search Up | Top | Bottom

The Client feoDisglayE&'ﬂ command performs the same operation.

3.2.25 Displaying all fields in a record

The User Language PAI (Print All Information) statement displays the values of all the
visible fields in a given Model 204 record. You can get this same display from within the
Debugger by using the pai command.

The pailes? command is a Debugger Client commandlzs3 you specify in a macroki7 or
you map to a Client button or hot key. If you then issue the command while debugging at
an execution point where there is a current record (for example, inside of a record
oriented FOR loop), the Client generates a display of the record's fields that is the same
as that of the User Language PAIl statement.

Janus/TN3270 Debugger User's Guide 115

Performing Basic GUl Tasks

A typical scenario for using the pai command might include these steps:

1. You map the command to a Client hot key.

In a ui.xml filels1), you specify the following to set up ctrl-a as a hot key to issue a
pai command:

<mapping command="pai" key="a" keyModifier="ctrl"/>

2. While debugging a request, you press ctrl-a when you are in a record context.

In a Value window, you see a PAl-style display of the current record:

5 |

A‘% PAI of current record

File

ZIP = 00211

CITY = Portsmouth
STATE = NH

LATITUDE = 43.005885
LONGITUDE = -71.013202
TIMEZONE = -5

DST = 1

<)
Length of value:100 * HonorLine Ends i

A Value window display is the default. As shown below, the output may also be
displayed in the macro console window.

Alternatively, you can use the pails7l command in a Debugger macro or from the
command linel24. For example, say your macro is a pai.macro text file that has the

single statement:

pai

116 Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

You run the macrok:7 at a debugging execution point where there is a current record,
and although it is not required, you have the macro consolef24] open. The record's PAI

output displays on the console:

=
ﬂ‘% Conzole

File

Console Started

ZIP = 00211

CITY = Portsmouth
STATE = NH

LATITUDE = 43.0058858
LONGITUDE = -71.013202
TIMEZCNE = -5

DST = 1

Clear

Invoking Macro: c:\Users\JAL\My Documentsh\Debugger\oldstuff‘\pai.macro

Print Save | Close I

Janus/TN3270 Debugger User's Guide

117

Performing Basic GUl Tasks

Displaying a record's field groups

If you are using Model 204 VV7R2 or better, and you are debugging a request against a file
in which field groups are defined, the pai command display of a record also includes the
field group occurrences, each beginning with a backward slash (\) and ending with a
forward slash (/):

AQ PA] of current record =fo_ x|
File

BIN = 0 -
NOREP = NoRep

\GRP = 1

FLDA = FldAa
FLDB = FldB
JGRP = 1
\GRP = 2
FLDA = FldAaZ2
FLDB =
JGRP = 2
\STOOGES = 3
STOOGE = Moe
COUSIN = Schmoe
/8TOOGES = 3
\STOOCES = 4
STOOGE = Larry
COUSIN = Harry
/STODCES = 4
\OUTER = 5
OUTF = OUT
\INNER = &
j| INF = INO i
J/INNER = &
\INMNER = 7
INF = IN1
/INNER = 7
JOUTER = 5

Length of value- 301 HonorLine Ends = Close

To display only the fields in the current or specified field group, you use the pafgilsd
command, which produces the same output as the User Language PAFGI (Print All
Fieldgroup Information) statement. The discussion above about ways to map and use
the pai command applies entirely to the pafgi command as well.

118 Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

Invoking the pafgi command while within field group context produces a display of the
fields in the current or specified field group. For example, for the STOOGES field group
in the same request and record as in the preceding example, this is the pafgi display:

r 5
% PAFGI of current field group |££Iéj

File

\STOOCES — 4
STOOGE = Larry
COUSIN = Harry

/STOOGES = 4

Length of value: 54 HonorLineEnds 8

Field group $functions

The Debugger recognizes and evaluates User Language $FieldGroupID and
$FieldGroupOccurrence function calls. These functions are useful for operating
selectively on field group instances.

$FieldGrouplID returns the unique numeric identifier that Model 204 assigns to each field
group in a record. $FieldGroupOccurrence returns the current occurrence number of an
occurrence of a repeating field group.

Janus/TN3270 Debugger User's Guide 119

Performing Basic GUl Tasks

To view the value of either $function, you can right-click its program line in the Source
Code page and select Add Watch from the context menu.

}% The Janus Debugger (RFGRP1) e /,
File Window Search Breakpoints Execution DataDisplay Error Macros Help r'!
Top | Bottom | Clear Audit | Run | Step | Step Over | Trace All | Cancel | Clear Breaks | Clear Watch | View Text
Audit Trail Source Code | Web Buffer | Execution Trace | Proc Selection E
TL> 65 1 &4 Print 'pafgi for 2 next:' ™
TL> 66 1 &5 FOR FIELDGROUP STOOGES (2) f',r r'J
UL> 67 1 66 PAFGI = -
TL> 68 1 67 End For
TL> 6% 1 68
TL> 70 1 69 For 1 record in FDB r’

TL> 71 1 70 FEO FIELDGROUF STOOGES

UL> 72 1 71 *INNOCC = SFIELDGROUPOCCURRENCE

UL> 73 1 72 Print '0CC is ' INNOCC e

TL> T4 1 73 If STOOGE EQ 'Moe' Then .'_'

UL 75 1 T4 #STGID = SFIELDGROUPID o

oL 76 L5 End 1E ddearch ¥

UL> 77T 1 76 Print "ID is ' %STGID Toggle BreakPeint

L= Ll UL Lt Procedure Information s

TL> 79 1 78 FOR FIELDGROUF STOOGES = %S5TGID o =

UL> 80 1 79 PAFGT FEQ OCCINvalue i

UL> 81 1 80 End For Jurnp Here [

TL> 82 1 81 End For

UL> 83 1 82 Display %5TGID |

TL> 84 1 83 For 1 record in FDB Display SFIELDGROUPID _[
Search Search Next Search Prev | Value Trﬂclp

- - =

The $function is added to the Watch Window and its current value is displayed whenever
the current program context is a field group. The function value subsequently displays
when the program execution point is in any field group.

To view the $function value without adding it to the Watch Window, you can right-click a
program line that explicitly contains it and select the Display option. The value is shown in
a separate Value window.

3.2.2.6 Displaying Model 204 parameters

You can use the Client's display or watch facilities to view the value of any legal Model
204 parameter:

1. In the Entity-name input box below the main window, specify p. followed by the
parameter's name. For example:

p.userid

Case does not matter, nor do leading or trailing blanks.

2. Click the Value button above the Watch Window.

120 Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

The parameter value displays in a separate Value of p.parm window:

r
A‘% Value of p.userid S| B ||
File

WEBUSER

P)
Length of value- 7 % HonorLine Ends " Wrap View " Binary

Note: If the parameter is a file parameter, the value of that parameter is returned for
the current file. If there is no current file, an error is returned.

If the parameter is a User parameter, the value returned is that for the current
web thread (if Janus Debugger) or for the current Online user (if TN3270
Debugger).

An alternative path to the same Value window is via the Watch Window:
1. In the Entity-name input box, specify p. followed by the parameter's name.
2. Click the Watch button above the text box to add the parameter to the Watch Window.

3. Inthe Watch Window, double-click the parameter name.

3.2.2.7 Displaying the Universal Buffer content

You can use the Client's display or watch facilities to view the current content of the
user's Universal Buffer. The Model 204 Universal Buffer is used used to transport Large
Object data and with the MQ/204 interface.

1. In the Entity-name input box[so] below the main window, specify the following:
u.buffer

Case does not matter, nor do leading or trailing blanks.

2. Click the Value button above the text box.

Janus/TN3270 Debugger User's Guide 121

Performing Basic GUl Tasks

The buffer content displays in a separate Value of u.buffer window:

A‘% Value of u.buffer k | o

File \

Number:1l Number:2 Number:3 Number:4 Number:5 Number:6 Number:7 Number:8
Number:9 Number:10 Number:1l Number:12 Number:13 Number:14 Number:15
Number:16 Number:1l7 Number:18 Number:1l9 Number:20 Number:2l Number:22
Number:23 Number:24 Number:25 Number:26 Number:27 Number:28 Number:23
Number:30 Number:31l Number:32 Number:33 Number:34 Number:35 Number:3é
Number:37 Number:38 Number:39 Number:40 Number:41 Number:42 Number:43
Number:44 Number:45 Number:46 Number:47 Number:48 Number:49 Number:50
Number:51 Number:52 Number:53 Number:54 Number:55 Number:56 Number:57
Number:58 Number:59 Number:60 Number:6l Number:62 Number:63 Number:64
Number: 65 Number:66 Number:€67 Number:68 Number:69 Number:70 Number:71
Number:72 Number:73 Number:74 Number:75 Number:76 Number:77 Number:78

Length: 1012 " HonorLineEnds & Wrap " Binary Close

Search Down | Search Up | Top | Bottom

Features of the window include:

e AWrap button to see a value unbroken at line ends (from which, you can revert
to line-end mode by clicking Honor Line Ends)

e ABinary button to see the raw EBCDIC/binary representation of the value (16
bytes per line)

e Familiar Windows Print, Page Setup, and Print Preview dialog boxes accessible
from the viewer's File menu

e Buttons to search within the displayed value, as well as buttons to move to the
top or bottom of the value.

e Standard mouse-based copying of text data (but altering or deleting text is not
allowed)

An alternative path to the same Value window is:
1. In the Entity-name input box, specify: u.buffer
2. Click the Watch button above the text box to add the buffer to the Watch Window.

3. Inthe Watch Window, double-click the u.buffer string.

3.2.3 Setting the value of a variable

You may set or update the value of certain types of variables with the Janus and TN3270
Debuggers. The following types of variable values may be modified:

e String %variables (255 character limit)
¢ Unicode %variables (UTF-16 bytestreams)

. Float %variables

122

Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

¢ Fixed %variables

e Longstrings (255 character limit)
e Global variables

e Screen and Image items

e SOUL O-0O Boolean enumeration variables (as of Version 7.7 of the Sirius Mods;
only True and False [case not important] are valid values)

Currently, only scalar variables may be set; array elements may not be set. In addition,
most object variables may not be set.

To set the value of a variable with the Debugger:

1. Addlssthe variable to the Watch Window.

2. In the Watch Window, right-click the variable.

If this type of variable can be set, and it is settable at this point in the execution of the
program, the Change Value context menu option is enabled.

3. Select Change Value.

A Set %var dialog box like the following displays, where %var is replaced by the
variable you are modifying, and the variable's current value is displayed:

Q Set "Y%price’ li:hl

‘ Please enter a new value for "%price’

‘ | - Set

Cancel

—

4. Specify the new variable value, and click Set or press the Enter key.

The Watch Window is refreshed with the new value, Variable Set displays in the
Status bar[4s), and the new value becomes the current value of the variable in the
program at the current point of program execution.

The setM204Datal65 command is equivalent to right-clicking a Watch Window item and
selecting Change Value.

Note: Setting a new value in the Debugger follows the rules of User Language
assignment. For example, specifying a text value for a float variable results in
setting the variable to zero.

Janus/TN3270 Debugger User's Guide 123

Performing Basic GUl Tasks

See Also

Watching program data items/es |

Displaying temporarily the value of a program data item |99

3.3 Getting source file, audit trail, and web buffer
information

These sections are included:
Locating and editing procedure source files 122
Viewing dummy string variables 23]
Viewing the audit trail128
Viewing the web output bufferfi27

3.3.1 Locating and editing procedure source files

If your application has a complex structure of nested procedure includes, the Model 204
procedure that contains a particular source code line may not be apparent. The
Debugger Client provides a simple way to determine this information:

1. Right-click a code line in the Source Code, Execution Trace, or a Daemon tab to display
the context menu's Procedure Information option:

ﬁ% The Janus Debugger /
File Window Search Breakpoints Execution Data Display Error Macros Help /-"
Top | Bottom | Clear Audit | Run | Step | Step Over | Trac Can Clear Breaks | Clear Watch | View Text /

Audit Trail | Source Code | Web Buffer | Exec Trace | Proc Selection | Daemon (1) |
Andit 'I am starting’
#speed = new 3
*n = %speed:unsernumber 4
Amdit 'm is: ' %n he
*n = %speed:masternomber fj
Andit 'm is: ' n 3
*n = *speed:parentnomber ¥
Andit 'm is: ' ®n Procedure Information [
%list = new m 4
text to #¥list end "END TEXT OUTER' F
2X = new E
St rJ

r_/" F o I . ‘//

g Y - o~ e Pt
-

124 Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

2. Select Procedure Information to display a Procedure Line Details dialog box like the

following:
A& Procedure Line Details = | B [kl
IIN JALWORK INCLUDE DAEMONS I
flLine number: 13 Quad offset: 184 | |

No dummy strings.

The top line of the dialog box, which identifies the procedure file and procedure name,
also identifies the APSY subsystem within which the procedure was invoked, if any.

The middle line in the dialog box identifies the statement's line number within the
procedure, and the bottom line in the dialog box displays the original dummy string
variables if the statement is the result of a dummy string substitution.

If you click the Edit button on the Procedure Line Details dialog box, you invoke a local text
editor (if you have configuredfisd a Rocket-supported editor). You then can edit the
procedure, and save it back to the Online.

3.3.2 Viewing dummy string variables

If you invokel24] a source code line's procedure details, and the line had ?& (global
variable) dummy string substitutions, the text of the original line, prior to the substitution
of the global variable value for the dummy string, is displayed.

For example, a statement you suspect to have contained a dummy string variable is
displayed in the Source Code page as:

print 'Hello'

When you select Procedure Information after right-clicking the code line, you see a

Procedure Line Details display like the following, which identifies the source procedure
and shows the dummy string variable name:

| " Procedure Line Details x|

IN JALWORK INCLUDE QADUMMY
Line number: 5 Quad offset: 0

efore dummy strings: print '?&GREETING

4

If subsequently you want to watchlss the values of this dum my string variable, you must
specify it explicitly with a "g." prefix[941 (omitting the ?& characters) and add it to the Watch
Window.

Janus/TN3270 Debugger User's Guide 125

Performing Basic GUI Tasks

Note: To view dummy string substitutions in Model 204 commands, you must be
running at least version 7.6 of the Sirius Mods.

See Also

Locating and editing procedure source files|124

Watching global variables/[s4)
Source Code tab|11)

3.3.3 Viewing the audit trail

Model 204 audit trail information is available in two places in the Debugger Client:

e The Audit Trail tabbed page

e The Most Recent Audit Trail window

The Audit Trail tab

This tab displays the Model 204 audit trail lines produced by the thread that is servicing
your web request or executing your 3270/Batch2 request, and by any threads that run
daemons on behalf of either of these types of thread. In addition, this page displays
information about the state of the Debugger Client, such as the port on which it is
listening, and for the Janus Debugger, about incoming connections to the web server
from other web browsers.

To see audit trail lines that are no longer displayed on the page:

¢ Click the Top button (below the page) to display the beginning of the audit trail, or
click the Bottom button to display the end of the audit trail.

e Use the scroll bar (to the right of the page), drag a highlighted line toward the top or
bottom of the page, or use the Search, Search Next, and Search Prev buttons.

By defaultl2e5), the F9 key is equivalent to the Search Next button. Search Prev (or

pressing the Alt key while clicking either the Search or Search Next button) makes the
search operate backwards, that is, from bottom to top (the Ctrl+U key combination
has the same result).

Pressing the Enter key after clicking Search Next (or whenever the Search Next button
is highlighted) repeats the Search Next action. To get this same result you can also

press the Ctrl+F key combination (to give focus to the Search text area), then press
the Enter key.

126

Janus/TN3270 Debugger User's Guide

Performing Basic GUI Tasks

To clear the Audit Trail display, click the Clear Audit button, below the page. The lines
from the entire session are removed. Subsequent actions update the display —
recording from the moment of the action and not from the beginning of the session,
however.

The Most Recent Audit Trail window

This window displays only the last few lines of the audit trail for this web user or 3270/
Batch2 thread. It displays no non-audit trail information.

The Most Recent Audit Trail display is not deleted if you click the Clear Audit button, above
the page.

See Also

Audit Trail tabl 10]

3.34 Viewing the web output buffer

Always available for Janus Debugger sessions, the Web Buffer tab displays a program's
web output buffer lines: the lines the Web Server application is preparing (in CCATEMP)
to send to the browser at the completion of the request. Since the page is updated in real
time as you step through a code program and PRINT and HTML statements are

executed, you can view the Web Buffer page to watch your output HTML being built.

The page is cleared after the current request output is sent and the next web request is
ready for execution.

The Web Buffer tab displays printable characters only. Binary and non-text content is not
represented. Line-end characters are printable characters, though they may be
represented by blanks.

The Web Buffer tab is also available when the TN3270 Debugger is used to debug web
threads|iss\.

See Also

Controlling the execution of program codelsz]

3.4 Tracing program execution

When debugging code, you may not want to step one statement at a time, nor to set a

Janus/TN3270 Debugger User's Guide 127

Performing Basic GUl Tasks

breakpoint on a line and run until you hit it. You may want to run the program without
breaking, collecting data (such as the lines that were executed and the value of a

variable) as it changes. To do so, the Debugger provides several options for tracing
execution. In all cases, the results of tracing are displayed in the Execution Trace tab.

To get information on any line in the execution trace, you double-click it, or right-click it
and select Procedure Information from the context menu (described further in Locating
and editing procedures i24).

If you invoke one of these tracing options after you have begun to debug a program, the
tracing starts from the current execution point in the program. Statements executed prior
to this point are not recorded. If you want to determine how you got to the current point
(especially if complicated logic or several layers of calls were involved), the Debugger
also provides an option for examining a history of the statements that already executed.

These subsections follow:
Tracing all lines executed[128
Trace all updates to a variable's valuelisd
Trace until a value change or until a value matchlisl)

Displaying a statement historys2]

3.41 Tracing all lines executed

The simplest form of tracing starts from the current execution point and notes which
lines were executed. You invoke this feature by clicking the Trace All button on the button
barlss] (or by pressing the Ctrl+T keyboard combination (by defaultks3)), or by selecting
the Trace To End option in the Client's Execution menu).

The tracing continues until one of the following events:

e The request ends
e Abreakpoint is hit
e Acancelling error occurs

e Adaemon is entered

128

Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

The output, a list of the statements executed, is displayed in the Execution Trace tab:

ﬁ‘% The Janus Debugger (WIDGET) f;
File Window Search Breakpoints Execution DataDisplay Error Macros Help f
Top | Bottom | Clear Audit | Run | Step | Step Over | Trace All | Cancel | Clear Breaks | Clear Watch | View Text A
Audit Trail | Source Code | Web Buffer | Execution Trace| Proc Selection o
Sweb type('text/html’) #

A -
html JIR
tcount = $unblank ($web_form parm('count')) 1
if (not %count) then =

print 'Yom did not order anything' =
html ™
d &
- e
- 5
— e
o
el ot SIS

If tracing was interrupted by a breakpoint or by daemon code, you can continue tracing
by clicking the Trace All button again or by pressing the Enter key.

The Execution Trace tab display can help you with testing. You can see from the code in
the example trace, above, that the execution path hit only the case where no orders are
made. Contrast this with a trace of the same program where something was ordered:

.
‘% The Janus Debugger (WIDGET.UL)

- >
File Window Search Breakpoints Execution Data Display Error Macros Help ’;{
Top | Bottom | Clear Audit | Run | Step | Step Over | Trace All | Cancel | Clear Breaks | Clear Watch | View Text "f"
Audit Trail | Source Code | Web Buffer | E: T Proc Selection ,;/
Sweb_type (' text/html') ""
html
%tcount = $unblank ($web form parm('count')) —(

if (not %coumnt) then
*total = *count * *price |
call computeTax
¥tax = .05 * %total 1
if (#tax > 10) then

return
¥total = %total + %tax

call computeShipping ;
%shipping = 1 [
end subroutine '
*total = %total + %shipping
print 'Your price is: ' and %total
html
end 3

P

— —
Search F/r’_ - i e Vﬂlue/
—— — - T
— - e

Janus/TN3270 Debugger User's Guide 129

Performing Basic GUl Tasks

3.4.2 Tracing all updates to a variable’s value

Another type of tracing is to note all statements that modify a selected variable or data
item and what value was assigned to the variable or item. To do this:

1.

4.

Enter a variable or data item name in the Entity-name input box below the main
window.

Note: ltems like global variables or Model 204 fields or parameters require the
additional prefixes before their names that are described in Viewing and
modifying program elements.[ss]

Click the Trace button:

ad (" Command addwatch %h)

o

v
N
rF
Value | Trace[\| Run to Change | Watcbj
L5 J
|%t0t3| |Tracea|l change:tothenamecl‘.fariable| 4
e
14
A | 7
sessi™ ™ F 4
re=r - - ot
”~ ' /,

The traceValues maggable@ command and the Trace Values option in the Client's
Execution menu have the same effect as the Trace button.

The trace continues until one of the events listed in Tracing all lines executed|i28)
oCcCurs.

View the result in the Execution Trace page.

Only lines that modified the variable are shown, along with the new value:

A The Janus Debugger (WIDGET2.UL) -~

pt?

File Window Search Breakpoints Execution Data Display Error Macros Help (/‘,-—/_
Top | Bottom | Clear Audit | Run | Step | Step Over | Trace All | Cancel | Clear Breaks | Clear Watch View Tekl

Audit Trail | Source Code | Web Buffer Execution Trace | Proc Selection -

%¥total = %count * %price *total=8 ',
%¥total = %total + %tax *total=8.4 rF
*total = %*total + %#shipping *total=5.4

If tracing was interrupted by a breakpoint or by daemon code, you can continue
tracing by clicking the Trace button again or by pressing the Enter key.

130

Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

3.4.3 Tracing until a value change or until a value match

Another tracing option lets you step through a program, stopping on each statement that
changes a specified data item. In this case, both the statement that modified the item
and the resulting value are shown in the Execution Trace tab.

To trace until a variable value changes:

1. Enter a variable or data item name in the Entity-name input boxlso] below the main
window.

Note: ltems like global variables or Model 204 fields or parameters require the
additional prefixes before their names that are described in Viewing and
modifying program elements.[ss]

2. Click the Run to Change button:

ad (' Command addwatch ¥k)

f

Value | Trace Run to Change | Wﬂlcg,/
L3

|%[2 ‘Tracetill the named variable changes; use alt for Until ‘.far:‘.falue|

The request runs until the specified item is modified.

If the value of the item does not change, execution runs until the end of the request
or one of the events listed in "Tracing all lines executed."f128

3. View the result in the Execution Trace page.

If the request contains further changes to the value, you can click the Run to Change
button again, or you can press the Enter key (which repeats the Run to Change
action whenever the Run to Change button is highlighted.

The runUntilVariableChangesPk+ mappable command and the Run Until Variable
Changes option in the Client's Execution menu have the same effect as the Run To
Change button.

Janus/TN3270 Debugger User's Guide 131

Performing Basic GUI Tasks

A variation of the "tracing until" technique lets you continue a request's execution until a
selected item's value is equal to a value you specify. For example, you may want to use
this feature to verify that a variable does not ever become a certain value.

To trace until a particular data item value:

1.

2.

Enter the item name (prefixed if necessary) in the Entity-name input box.

Press the Alt key while clicking the Run to Change button.

The traceUntilVariableEqualsValuebsd mappable command and the Trace Until
Variable Equals Value option in the Client's Execution menu have the same effect as
Alt + the Run To Change button.

In the Tracing dialog box, specify the value of the variable at which tracing will stop:

-~ Tiracing: ‘%I’ |

Trace until:"%I' =

Trace
Cancel

Click the Trace button, at the right.

The request will run until the statement that makes the value of the selected item
equal to the value you just specified, or the request will run until the end of the
request or one of the events listed in "Tracing all lines executed"[123,

3.4.4 Displaying a statement history

If you are in the middle of debugging a lengthy or complicated program, and you have not
invoked tracing, you can produce a display of all the statements that have already
executed. Perhaps you got an unexpected runtime error or hit a breakpoint you set, and
you want to review how you got to this point in the program.

To display a history of statement execution:

1.

In the Client's Execution menu, select the Get/Display History option.

132

Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

The Execution History window displays a history of statements executed up to the
program's current execution point:

e)
File

How we got here -
Sweb_type ("text/html')
html
%count = Sunblank(Sweb_form parm('count'))
if (not %count) then
%*total = %count * %price
(Routine/Method Call) %tax = %({extraCosts) :computeTax(%total)
%tax = .05 * %iTotal
if (%tax > 10) then
(Return) return %tax
(Routine/Method Call) %shipping = % (extraCosts) :computeShipping(%total)
ishipping = 1 + .02 % %iTezal
(Return) return %shipping
%total = %total + %tax
%total = %total + %shipping
print 'Your price is: ' and %total
%root = %shoppingCart:AddElement('order"')
%root:AddElement ("quantity', %count)
%root:AddElement ("total’, %total)

%orderRequest:url = %webServiceUR

Clear Print Save | Close I

Search Down | Search Up | Top | Bottom

The execution history is as many as the last 1000 statements executed. Calls and
returns for methods and subroutines are labeled:

e Foracall a (Routine/Method Call) indicator precedes the User Language
statement.

e Forareturn, a (Return) indicator precedes the User Language statement.

While the Execution History window is open, you can interact with the main Client
window, and any hot keys defined for the Client will work when the history viewer
has focus.

2. Use the Clear, Print, Save, and Close buttons as necessary. And the search bar on
the bottom of the window provides controls for searching the history.

You can also invoke this feature with the getHistor‘y@ mappable command, clear the
window with the clearHistorylss com mand, and close the window with the
closeHistorylsdl command.

Using the Execution Trace tab

You can arrange to view the statement history in the Execution Trace page instead of in
the Execution History window:

1. Select Preferences from the File menu.

Janus/TN3270 Debugger User's Guide 133

Performing Basic GUI Tasks

2. Inthe Display Options section of the Preferences dialog box, enable the feature by
selecting the History to Execution Trace checkbox (it is clear by default), then click

Done.
‘;—;‘ Preferences | =HRE X
Execution Options Open at Startup
¥ Pause atend of evaluation I Macro Autorun

I~ External Main Button Bar
™ Run Until spans debug sessions

I Break after READ SCREEN I~ Windows When Suspended (7.9+) LEdEEutionBay
I Source Preview (7.2+ mods) Minimum:[1000 = Size:[100 = || External Waich Window
IE Options

" External Audit Trail Window

IE Mode ~
; " External Web Buffer Window

" External Execution Trace Window

isplay Options

Show atmost |1gp = listitems. ¥ Restore watches on startup
Main Button Bar

I Tnm blanks from selection in View Text IT%Hislnrylu Execulion Trace & Top
rs long watch values in a Tooltip Use !debugger directives © Center
" Bottom

Web Server Selection ogram Titles

3270 Emulator I Extra Buttons

¥ sirnus-software com9219

‘ Main Window Options

- Hi .
Web Browser Hide Lower Section

\Windows

Done

Note: The Client setPreferencelzsi command has an option that lets you toggle
the History to Execution Trace checkbox.

3. Invoke a statement history as usual from the Execution menu.

Using the Source Code tab

You can review the statements in the execution history in their actual context, that is,
highlighted in the program in the Source Code tab (or Daemon tab). Four Execution menu
options (or corresponding Client commands) let you select which executed statement(s)
to view: the first or the last (that is, the statement at the beginning or the end of the
history), or the previous or the next executed statement, relative to the currently
highlighted line.

To inspect in the program code a previously executed statement:

1. Atany point during the debugging of a request after some statements have been
executed, either:

a. Open the Execution menu, and click one of the history-selection options: Select
Previous History Line[so), Select Next History Line[30), Select First History Line[s0),
Select Last History Line.[31)

134

Janus/TN3270 Debugger User's Guide

Performing Basic GUI Tasks

Or:

b. Run (mapped to a button or key, or via macro or command line) one of the
Client commands that corresponds to the above-mentioned menu options:
pr‘eviousHistor‘ym, nextHistor‘ym, fir‘stHistor‘yEa, lastHistory. k22

You do not have to use the Get/Display History option to open the normal Execution
History window, as described earlier in this section.

The Client responds by moving the current line to the executed statement you
selected — in the Source Code or Daemon page that contains the statement.

2. Continue reviewing the executed statements by using the Execution menu history
options or their command counterparts.

The Client locates and highlights the statement you select, and it removes the
highlighting from the statement you viewed in the previous step.

Note: Although each history statement you view gets highlighted as if it were the
current execution position, the actual execution position, the statement to be
executed next if you invoke a debugging Step or Run operation, remains
(non-highlighted) where it was when you began reviewing the statement
history.

3. Resume normal debugging operations.

Janus/TN3270 Debugger User's Guide 135

Performing Basic GUl Tasks

3.5

Viewing programs that contain coding errors

Debugger Client handling of programming errors differs according to the type of error:
compilation errors or request-cancelling errors.

= Compilation errors

If a program contains a compilation error, you can still use the Debugger to view the
source code, along with the Model 204 error messages embedded (highlighted and
prefixed with ER>) after the program statements that caused them:

[4 The Janus Debugger (BADCOMPILELL) s

File Wndow Sesrch Breskponts Execwbion Deta Deplay EBrer Macros Help .r

" Tep | Bottom | Clear Audit ltunlitl-p Step Over | Trace | Cancel | Clear Broaks | Clear Watch | View Taxt

Audit Trail Source Code | Web Buffer | Execulion Trace | Proc Selection

1 I BADCOMPILE,UL ¥

1 o

2 1 1 begin

Tl 3 1 4 wariables are nndefined -'I

L= 4 1 3 this iz wrong r’

ME04 . 0229 : INVALID STATEMENT r,-
this i® wrong 1 -

(PILE = JALPROC , PROCEDURE = BADCOMPILE.UL, LINE = 3) b

L 5 1 4

TL> 6 1 5 &b is float

oL 71 ['f

oL 8 1 7 Ra = 1

M204 0595 : UKDECLARED VARIABLES ARE HOT PERMITTED WITH THE UNDEFINED OPTION -
da = 1 o

(PILE = JALFROC , PROCEDURE = BADCOMPILE.UL, LINE = 7) -3

oL % 1 i

oL 10 1 9 Ra = 1 3 3 1

M204 , 0052 : ILLEGAL TERM 'pl
fa = 1 2 3

W |Mz204 . 0033 : INVALID EXFEESSION

(FILE = JALFEQC , FROCEDORE = BADCOMPILE.UL, LINE = 5) #

Search | Senrch Mext r
E| | |
Ll
r
da =1 2 3 - !
(FIL® = JALPROC , PROCEDURE = BADCOMPILE.UL, LINE = 3) f
MI04. 0033 : INVALID EXFRESSICH !-
ba = 1 2 3 T
(FILE = JALFROC , PROCEDURE = BADCOMPILE.UL, LINE = 9} .
HM204 0228 :; PART OF STATEMENT ICHORED f
] m] f

 Compile errors! -

As shown above, the Client status strip displays a Compile errors! message, and
the Run button is the only program execution operation available.

You can move to the next program statement that did not compile, if any, by

pressing the F11 key (by defaultl203), by selecting the Error > Next Compile Error
menu item, or by us|igg% a button to which you have mapped@ﬂ the
nextCompileErrorfso command.

136

Janus/TN3270 Debugger User's Guide

Performing Basic GUI Tasks

* You can move to the previous statement that did not compile, if any, by
pressing the F10 key, by selecting the Error > Previous Compile Error menu

item, or by using a button to which you have mapped the
previousCompileErrork4 command.

Clicking Run (or selecting Error > Quit) invokes no further operation on the code, and
(if Janus Debugger) the Web Server sends the compilation error messages to the
browser, then advances to the next program, if any. If under the TN3270 Debugger,
the compilation error messages are sent to the terminal.

= Request cancellation errors

If the program you are debugging contains a request-cancelling error, the Debugger
lets you step through the program until you execute the statement that causes the
error, or if you clicked Run, executes until the point of the error. At this point, the
Client:

e Displays the source code (highlighting the line that has the error)

e Reports the values of any watched variables at the point of the error

e Reports the cancelling error message in the Client's audit trail displays

e Lets you inspect in the Web Buffer the results of statements that executed
successfully prior to the error, if debugging a web request.

Janus/TN3270 Debugger User's Guide 137

Performing Basic GUl Tasks

B The Jasuis Desbugaer (QAXML)
_F.I|E.TI-I'.II$D\‘;I. Search Breskpoints Eloecl.-mn:ln Data Display Error f-'la-:n.i.s- Help

| Top | Bottom | Clear Audit | Run Sup :S‘rnp Ovar | Trace | Cancel | Clear Breaks | Clear Watch | View Taxt

Audit Trail Source Code | web Bul‘!‘ar| Execulion Trace | Proc Selecttun|

!

M 1 0 1 1 QAXML i
Ui 2 1 i begin
oL 3 1] &% is object ¥mldoo
OL> 4 1 3 Bl is longstring
oL 3 1 4 . J—__..r
Tl & 1 L] BX = paw -
OL> T 1 & bx:loadxml | "<arHellochsmond fbadorlarrys /o< fas") k
oL 8 1 7 px:print)
oL 10 1 9 % &1 = dx:serial(, "ERCDIC' 'orlf' "indent 3]
oL 11 1 10 print "®l im: ' Bl
OL> 12 1 11 end :
T
.
A
[T~
L
4
o
Senrch | SearchMext r
-] :
Al
k
MSIR.0690: Janus Web content cospressed by 55.7 parcent from 589 to 2€ - .
MSIR.0359: WEB status 200 OF r
MSIR.1020: Debogger: JDEW Address=X"7C421380° 3
I QML i
M204.1168: IN FILE JALFROC INCLUDE QAXML]
CANCELLING BEQOEST: MEIR.07EQ: Claza KmlDes, fanstlien Serial (argnament f
: - !
I
Runtime error, request cancelled. Receiving/forwarding web page Jg

ON UNIT

Furthermore, except in the case described below, the Client does not let you
continue stepping through the request (Step buttons become unavailable). If you
now click the Run button:

If the Janus Debugger, the Debugger sends the cancelling error message to

the Web Buffer, and it also sends an "internal server error" message to the
browser.

If the TN3270 Debugger, the Client sends to the terminal the the cancelling

error message as well as the results of any statements you executed
successfully before the error.

An exceptional case is a cancelling error of the following type, which occurs within a
User Language ON UNIT:

M204.1982: ILLEGAL JUMP ATTEMPTED OUT OF COMPLEX SUBROUTINE

If this error occurs, debugging is allowed to continue: you are not prevented from

continuing to step through the request. This exception is designed for the debugging
of ON UNIT code.

138

Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

3.6

Debugging requests that spawn daemons

If the application you are debugging spawns an sdeamon in either of the following cases,
the sdaemon code is displayed in a dynamically created Daemon tab:

e A SOUL Daemon object Run method for an sdaemon or transactional sdaemon
(shares record sets with the spawning thread, maintaining one logical unit of work)

e Asynchronous $COMMBG request (an output $list parameter is specified for the
function)

A‘% The Janus Debugger

File Window Search Breakpoints Execution Data Display Error Macros Help r[/
Top | Bottom | Clear Audit | Run | Step | Step Over | Trace | Cancel | Clear Breaks | Clear Watch | View Text rg
Audit Trail | Source Code | Web Buffer | Execution Trace | Proc Selection Daemon (1)] I
UL> 87 0 1 BEGIN L
TL> 88 0 2 N1 IS FLOAT ",
UL>» 83 0 3 ¥N2 IS FLOAT f
UL> %0 0 4 ¥N3 IS FLOAT /-'r
UL> 31 0 5 ¥SPEED2 IS OBJECT DAEMON o
UL> 92 0 & ¥SPEEDZ = NEW L
TL> %3 0 7 %Nl = %SPEED2:USERNUMBER i
TL> 54 0 8 %¥H2 = % (DAEMON) :MASTERNUMBER _’_y'
TL> %5 0 9 %N3 = % (DAEMON) : PARENTNUMBER —_—
TL> %6 0 10 PRINT &N1 o N -
UL>» 37 0 11 PRINT &N2 I
UL> 98 0 12 PRINT &N3]
UL> 9% 0 13 =
UL> 100 O 14 %LIST2 IS OBJECT STRINGLIST I
TL> 101 0 15 %LIST2 = NEW ,'-
TL> 102 0 16 TEXT TO %LIST2 END 'EWD TEXT MIDDLE' .
TL> 103 0 17 -r -
TL> i04 0 18 BEGIN I
UL» 105 O 19 N4 IS FLOAT T
UL> 106 O 20 #N5 IS FLOAT ;r'—"-r
1
Search Search Next Search Prev ‘ |
- e
-
——— J

%Y = NEW

==l PRINT
.

%Y IS OBJECT STRINGLIST

*Y = %SPEED2:RUN (%LIST2)
»
PRINT 'HERE FOLLOWS SPEED3 USER, MAST, AND PAREI\Bf

— J

R o

P A

While the code in the Daemon (1) tab has focus, the current program in the Source Code
tab waits for the sdaemon code to execute. The code line that spawned the sdaemon is
highlighted, while the remaining Source Code lines are dimmed as a reminder that this
code is not executable (the Run, Step, and Step Over buttons apply to the active code in
the Daemon (1) tab). The Source Code lines are scrollable, however.

Janus/TN3270 Debugger User's Guide

139

Performing Basic GUl Tasks

A‘;—;‘ The Janus Debugger »”
- = - - r 4
File Window Search Breakpoints Execution DataDisplay Eror Macros Help _—
Top | Bottom | Clear Audit | Run | Step | Step Over | Trace | Cancel | Clear Breaks | Clear Watch | View Text /— _’f
Audit Trail Source Code | Web Buffer | Execution Trace | Proc Selection | Daemon (1) } r,.
UL> 7 Z [
UL> 4
UL> m; paren m: 3
UL> 1
UL> L
UL> E
UL> g
7
UL>
UL> pare ams ,J
UL>
ULs [
UL>
UL>
UL> 82 1 81 *X = new b
UL> 83 1 82 %) = %*speed:run(*list) L
UL> 84 1 83 Pri here follows speed?2 user and master noms; parent nom to andit trail rj"
OL> 84 nt
p
" r
L _— e
= _Search = — - r”ﬂ r W -

Commands you invoke, like Step or Run, execute for the code on the Daemon (1) tab.
When the sdaemon execution is complete, the spawning program regains focus and
the Daemon (1) tab is removed.

Multiple sdaemons

If your program has sdaemons that call additional sdaemons, the Debugger will display
their code on a separate tab, dynamically spawning more Daemon tabs (Daemon (2),
Daemon (3), and so on up to 5). Each new Daemon page will get focus and respond to
the code execution buttons, while the Source Code page and preceding Daemon pages
will wait for the current sdaemon execution to complete. After the current sdaemon code
runs to completion, its tab will be removed, Daemon thread completed will be displayed
in the Status bar, and the preceding Daemon page will regain focus.

Discontinue Daemon debugging

You can optionally have the Debugger run in a mode that does not display sdaemon
code in the Debugger Client. In this mode, the Debugger runs all other code as usualls4]
but suspends the display (but not the execution) of sdeamon code.

To enter this mode, from the Source Code page at any point during program execution,
you simply press the Alt key and click the Run button (the Alt+F5 key combination is also
equivalent, by defaultks®)). Equivalent alternatives are the runWithoutDaemons 250
command and the Run Without Daemons option of the Execution menu.

Once this mode is entered, all debugging of Daemons is suspended:

e Subsequent sdaemon code executes normally but is not displayed

140 Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

e No Daemon (1) tab is shown in the GUI

e No sdaemon source code is sent from the mainframe to the PC
As in normal running mode, this "discontinue-Daemon-debugging" mode stops on

breakpoints. For example, if you have a program that spawns five daemons, only the last
of which you want to debug, you could:

1. Put a breakpoint(ss 1 on the line that invokes the fifth daemon (or just before it).

2. Simultaneously press the Alt key and click the Run button.

3. Click the Run button.

The Debugger Client will skip over the first four daemons but stop on your
breakpoint.

Debugging an interactive daemon

An sdaemon you have spawned with a SOUL Daemon class Run method (or
RunAsynchronously or RunIndependently) might temporarily return control to its
master thread by issuing a ReturnToMaster method. The master thread may do further
processing and then return control to the sdaemon by issuing a Continue method (or
ContinueAsync or ContinueIndependently). There may be multiple such exchanges
of control.

This interactive processing is captured in the Debugger by:

1. Keeping a tab (Source Code) open for the code of the master thread and a tab (
Daemon) open for the sdaemon, as usual.

2. Giving focus to the tab whose code is executing, and dimming the code in the other
tab.

If a master thread issues a ContinueAsync or ContinueIndependently call,

however, the focus does not shift to the Daemon tab (though its code remains
available for inspection).

See Also

Controlling the execution of program codels21
Source Code tab[11]

Janus/TN3270 Debugger User's Guide 141

Performing Basic GUl Tasks

3.7

Debugging Web Server persistent sessions

You can use the Janus Debugger to debug Janus Web Server "persistent session”
applications. These are applications in which Online program execution is suspended
while a browser user returns data to the program, whereupon the program continues.
The Debugger supports two such types of Web Server programs:

HTML form processing using the $Web_Form_Done function

Janus Web Legacy Support, which processes User Language 3270-screens in a
web browser

$Web_Form_Done sessions

Using the $Web_Form_Done function, a User Language procedure can serve an HTML
form, suspend execution until the form is submitted, then resume executing the program
at the point where it was suspended.

To debug a $Web_Form_Done application:

1.

Invoke the program from your browser; then, in the Debugger Client, step through
the program as usual.

When a $Web_Form_Done executes, the execution of the User Language program
pauses, and Session awaits browser displays in the Status barl49l.

Move from the Debugger Client to your web browser, respond to the directives in the
HTML form, and submit the form.

Return to the Debugger Client, where Persistent Session Resumed displays in
the Status bar, and continue debugging.

Note: As a convenience, the Debugger can make your web browser window the

topmost on your PC screen when the Client pauses as it processes the $
Web_Form_Done call.

To invoke this feature:

1. In the Client, select Preferences from the File menu (or use the Ctrl+P
keyboard shortcut).

142

Janus/TN3270 Debugger User's Guide

Performing Basic GUI Tasks

2. In the Preferences dialog box, locate the Web Browser text box (in the Program
Titles section) and provide a text string that matches some or all of the
browser-identifying title that displays at the top of the browser window.

The characters in your matching string can be any case and match
anywhere in the browser title. Any trailing blanks you enter are preserved.

2 Tooltip " Use !'debugger directives (7.6+)

Program Titles
-] 3270 Emulator

Web Browser

|Wind0ws

Done I

3. Click Done.

The feature takes effect at the next execution of a $Web_Form_Done
statement. The Web Browser setting that exists at the end of the Debugger
Client session persists to the next run of the Client.

Note: By default, this feature does not take effect if the Client is not
executing the part of a program that contains the $Web_Form_Done. For
example, the statement might be in code selected to be excluded from
debugging.[e4]

However, if you also select the Windows When Suspended option in the
Preferences dialog box (Execution Options section), you can make the
feature apply whenever this statement occurs, even in code the Debugger
is not actively executing.

=5 ECR =5

™ Macro Autorun
ns

T[%Winduws When Suspended (7.9+)

Minimum:| 1000 E|j Size: | 100 E|j

axy setlings I Clear IE proxy override
_snotto be debugged

Janus/TN3270 Debugger User's Guide 143

Performing Basic GUl Tasks

Legacy Support sessions

By automatically converting 3270 screens to HTML, the Janus Web Legacy Support
feature lets you run under the Janus Web Server applications that do 3270 full screen
reads. You can debug such an application with the Janus Debugger only if you also
license the TN3270 Debugger and you are running under Version 6.9 of the Sirius Mods
or higher.

To debug a Legacy Support application:

1. Invoke the User Language program from your browser, and in the Debugger Client,
step through the program as usual.

2. When a READ SCREEN executes, the execution of the program pauses, and
Session awaits browser displays in the Status bar 9.

If you have not also purchased the TN3270 Debugger, the web thread is softly
restarted and the debugging session is terminated.

3. Move from the Debugger Client to your web browser, respond to the screen (now
HTML form) prompts, and submit the form by clicking the Enter button or a PF key
button.

4. Return to the Debugger Client, where Persistent Session Resumed displays in
the Status bar, and continue debugging.

These events are reported in a sequence of lines in the Client Audit Trail page like the
following:

2010 11 08 10:01:48.27 2 20 LI I SCREENO

2010 11 08 10:01:48.27 2 20 MS M204.1168: IN FILE GWDEB INCLUDE SCREENO
2010 11 08 10:02:10 Full Screen Read Pending

2010 11 08 10:02:22 READ SCREEN completed

Note: As described above for $Web_Form_Done applications, the Debugger can bring
your browser to the top on your PC screen when the Client pauses for the READ
SCREEN.

To invoke this feature:

1. Select Preferences from the File menu.

2. In the Preferences dialog box, locate the Web Browser text box (in the Program
Titles section) and provide a text string that matches some or all of the title
that displays at the top of the browser window.

The characters in your matching string can be any case and match
anywhere in the title. Any trailing blanks you enter are preserved.

3. Click Done.

144 Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

3.8 Debugging multiple Web Servers

You can configure the Janus Debugger to debug applications that run on any of multiple
Janus Web Servers. By default, a browser request sent to any of these web servers is
intercepted by the Debugger Client proxy for the purpose of debugging. If you want to
temporarily turn off debugging of one or more of these web servers, you can do so
dynamically in the Debugger Client.

You configure the Janus Debugger to debug any of multiple Janus Web Servers by
manually editing the debuggerConfig.xml file, as described[sed in the product
installation information.

To disable the debugging of web requests for a particular Web Server:

1. Inthe Client, select Preferences from the File menu (or use the Ctrl+P keyboard
shortcut).

2. Inthe Preferences dialog box, in the Web Server Selection list, clear the checkbox next
to the entry for the web server you want to disable, then click Done.

=X

A‘;—;‘ Preferences.

Execution Options Open at Startup

¥ Pause atend of evaluation I Macro Autorun

I~ External Main Button Bar
™ Run Until spans debug sessions

I Break afterREAD SCREEN I Extra Button Bar

" Windows When Suspended (7.9+)

= size:100 -

I Source Preview (7.2+ mods) Minimum:| 1000 I External Watch Window

EQpiE I External Audit Trail Window
IE Mode ~
none - " External Web Buffer Window

Display Options " External Execution Trace Window

Show at most

100 = hstitems.
[Tnm blanks from selection in View Text

™ Show long watch values in a Tooltip

¥ Reslore walches on stariup
I Hislory to Execution Trace

¥ Use !debugger directives (7.6+)

Main Button Bar
& Top
 Center

¢ Bottom

Program Titles
3270 Emulator

Web Server Selection

I~ Extra Buttons

I sirius-software.com:3000
sirius-software com:3666 ‘
¥ sirus-software com:3667

Main Window Options

- Hi .
Web Browser Hide Lower Section

\Windows

Done

Browser requests for this Web Server will no longer be debugged. This setting
takes effect immediately, and it persists over multiple runs of the Debugger Client.

Janus/TN3270 Debugger User's Guide 145

Performing Basic GUl Tasks

Disabling the debugging of a server does not remove it from the debuggerConfig.xml

file. You can re-enable the debugging of a server by marking its Web Server Selection
checkbox.

146 Janus/TN3270 Debugger User's Guide

Additional Debugger Functionality

ciarter4 Additional Debugger Functionality

These sections are included:

Copying, printing, or saving textha?)

Using the TN3270 DEBUG commandhsa)

Using the TN3270 DEBUG command for web threads iss)
Debugging SSL applicationsEﬂ

Debugging Web Service applications sl

Using the DebuggerTools class methods s3]

Using a local editorfiea

4.1 Copying, printing, or saving text

You can invoke a separate text viewer window in which you can display, copy, print, and
save the text data contained in a Client tabbed page.

Janus/TN3270 Debugger User's Guide 147

Additional Debugger Functionality

The viewer copies the contents of the current Client tab when you click the button or
press the hot key to which you have assigned the viewText command (as described

A% The Janus Debugger (WIDGET) = | B ks,
File Window Search Breakpoints Execution DataDisplay Error Macros Help f’
Top | Bottom | Clear Audit | Run | Step | Step Over | Trace | Cancel | Clear Breaks | Clear Watch o
Audit Trail Source Code] Web Buffer I Execution Trace | Proc Selecliunl L3 f,’j’_’
UL> 5 1] %oount is float i
uL> 6 1 5 stotal is £ 3

o i Of X
uL> 701 6 sprice is £] Hk Text Viewer = ,.-’J
uL> 8 1 7 stax is £1[g F
TUL> 2 1 8 %shipping i
uL> 10 1 9 HEh 0 j
UL 11 1 10 * specify a <html>
R <headr<title>0rder Reporu</titler</head> "
uL> 12 1 11 Sweb_type (<body bgcolor="white™s
L LR L2 Order Report</strongs<hr> |
uL> 14 1 13 * start the end nrml)
uL> 15 1 14 html J
UL> 16 1 15 <html> * get the count
UL> 17 1 <head. tcount = $unblank (§web_form parm('count’)) f
UL> 18 1 <body ra
TL> 19 1 18 <stroj if (not %count) then L -~
oL> 20 1 19 end html print 'You did not order anything® 3
uL> 21 1 20 elae o
UL> 2z 1 21 * get ths c . J
UL> 23 1 22 oount = §m jtotal = Scount $price 4
uL> 24 1 23
call computeTax
itotal = $total + %tax —
Si h Si h Next Ch
sarc earch vex call computeShipping | onge g
ttotal = total + Eshipping
print 'Your price is: ' and Stotal -
end if '

MSIR.1020: Debugger: JDBW Address=] * finish the page =
I WIDGET heml i {J
M204.1168: IN FILE JALPROC INCLUDE .

e Print Save Close /J
r—"fr . - T —— T
[} -] i |
| L rf’ = J/r' N _P/
- f,_; - e
Y
r

The scrollable, expandable Text Viewer window displays just the text content of the
currently active tab (excluding, for example, the additional line numbers and identifying
information that the Client automatically adds to the Source Code page display). The
viewer scrolls to and highlights the current line from the page that is copied. As many as
one thousand lines of the tabbed-page text, starting from the top, are copied.

Other features include:

e The viewer works with lines from any Client tab except the Proc Selection tab.

e The viewer has Print and Save buttons, which act on the entire copied content,
whether currently visible or not.

e Familiar Windows Print, Page Setup, and Print Preview dialog boxes are accessible
from the viewer's File menu.

e Standard mouse-based copying of text data is enabled, but altering or deleting text
is not allowed.

¢ You can automatically remove any leading and trailing blanks from selections you
copy.

148 Janus/TN3270 Debugger User's Guide

Additional Debugger Functionality

To enable the Text Viewer window:

1. Create a text file named ui.xml in the folder where the JanusDebugger . exe file is
installed, or edit the existing ui.xml file.

2. Inthe ui.xml file, map the viewText[2s8 command to a Client button or keyboard
shortcut, as described in "Setting up the ui.xml file"[2o1).

For example, this mapping associates a viewText command with button5:

<mappings useDefaults="true">
<mapping command="viewText" button="button5"/>
</mappings>

3. Save the ui.xml file, and restart/18] the Debugger Client.

4. If you want to enable automatic trimming of leading and trailing blanks from data you
copy to the Text Viewer:

a. Select Preferences from the Client File menu.

b. Inthe Display Options area, mark the Trim blanks from selection in View Text
checkbox.

c. Restart the Debugger Client.

5. Select the Client tab whose text you want to copy, and click the View Text button,
press the key you assigned to the viewText command, or select the View Text
option of the Window menu.

4.2 Using the TN3270 DEBUG command

Unlike the Janus Debugger, the TN3270 Debugger is started and stopped by a
command switch, the TN3270 DEBUG command. The name of this command, as well
as the name of this Debugger, are new as of Model 204 version 7.6 and Build 63 of the
Debugger. The command name is a synonym for the SIRIUS DEBUG command, which
is an exact equivalent and continues to be available.

The command, which can be issued from the Model 204 command prompt or in a
procedure, has these mutually exclusive subcommands:

{TN3270|SIRIUS} DEBUG {[ON|OFF] [SUSPEND|RESUME] [CLIENTCOMMAND] [STATUS]}

As described below:

e The ONI[isdl subcommand starts a TN3270 Debugger session (it requires additional
parameters). It can also be used for debugging Janus Web threads hiss).

e The OFFis2 subcommand stops a debugging session.

Janus/TN3270 Debugger User's Guide 149

Additional Debugger Functionality

e The SUSPEND/153 and RESUME 154 subcommands discontinue and continue a
debugging session.

e The CLIENTCOMMAND 153 subcommand sends a command to the Debugger
Client.

e The STATUSs subcommand gets a status report about the worker threads for
the Janus Debugger, the TN3270 Debugger, or both.

The TN3270 DEBUG commands that change the Debugger's state from on to off or
from suspended to resumed may interchangeably be issued from the command line or
within a procedure. You can control the Debugger's state entirely from the command
line, entirely through one or more procedures, or from a combination of both places.

TN3270 DEBUG commands issued from a procedure must not be placed between
explicit procedure BEGIN and END statements.

TN3270 DEBUG ON

To initiate a TN3270 Debugger session, you issue the TN3270 DEBUG ON command
from the Model 204 command prompt or within a BATCH2 input stream or procedure.
The command requires the parameters described below that identify the network ports
and the workstation used in your debugging session. The values of these parameters
are established during product installation:

TN3270 DEBUG ON [janClientPort] [pcHost] [pcPort] [workerPort]

where:

janClientPort The name of the Janus client socket port that is defined
374 for the TN3270 Debugger to use to contact the
Debugger Client workstation.

As of Sirius Mods version 7.9, the default value is an
asterisk (*), which means to use a Janus port whose
definition includes the MASTER parameter. Such a port
can be accessed on a Debugger connection request
without specifying its port name on the TN3270 DEBUG
ON command.

This port must be started.

pcHost The workstation running the Debugger Client. This may
be an IP number or a DNS name, as described[s77 during
product installation.

As of Sirius Mods version 7.9, the default value is a period
(.), which means to use the IP address of the machine
from which the TN3270 session was initiated.

pcPort The workstation port number on which the Debugger
Client is listening. As describedf7d) during product
installation, this is typically 8081.

150

Janus/TN3270 Debugger User's Guide

Additional Debugger Functionality

The Model 204 User 0 parameter SDEBGUIP sets the
default value of this port. Valid values for this parameter,
which is also resettable by the system manager, range
from 0 to 65535. If 0, no default is set, and the
parameter's value must be explicitly specified in the
TN3270 DEBUG ON command. A VIEW SDEBGUIP
command returns the current setting of SDEBGUIP.

Note: As shown in an example below, to omit an explicit
specification of pcPort (letting it default to the
setting of SDEBGUIP) but still provide an explicit
value for workerPort, use an asterisk (*) for the
missing pcPort specification to indicate the
respective position of the parameter values.

workerPort The port number in your Online that is definedls73 for
worker threads. This can be the same port number that
provides worker threads for the Janus Debugger, as well.

The Model 204 User 0 parameter SDEBWRKP sets the
default value of this port. Valid values for this parameter,
which is also resettable by the system manager, range
from 0 to 65535. If 0, no default is set, and the
parameter's value must be explicitly specified in the
TN3270 DEBUG ON command. A VIEW SDEBWRKP
command returns the current setting of SDEBWRKP.

For example:

TN3270 DEBUG ON DEBCLIENT 198.242.244.235 8081 3226

After issuing the command, you receive a message similar to this:

*** MSIR.0915: Debugging is on; client is 198.242.244.235 port 8081,
sessionID: 00000069D812279

If you had set the workstation and worker port numbers with the SDEBGUIP and
SDEBWRKP User 0 parameters, as revealed by a VIEW command:

VIEW SDEBGUIP,SDEBWRKP

SDEBGUIP 8081 TN3270 DEBUG DEFAULT GUI PORT NUMBER
SDEBWRKP 3226 TN3270 DEBUG DEFAULT WORKER PORT NUMBER

The previous DEBUG ON command could be simplified:
TN3270 DEBUG ON DEBCLIENT 198.242.244.235

In this case, you receive different confirmation messages:

*%% MSIR.0942: TN3270 Debugger GUI port defaulted to 8081

*%% MSIR.0942: TN3270 Debugger Worker port defaulted to 3226

*** MSIR.0915: Debugging is on: client is 198.242.244.235 port 8081,
sessionID: sessionID: 00000069D812279

Janus/TN3270 Debugger User's Guide 151

Additional Debugger Functionality

You can also use asterisks to indicate that the port defaults are to be taken. These
two commands are equivalent:

TN3270 DEBUG ON DEBCLIENT 198.242.244.235 * *
TN3270 DEBUG ON DEBCLIENT 198.242.244.235

You receive an error message if you use either of the above commands without
having set the default port values. To take the GUI port default but specify a value for
the worker port, you must use an asterisk in the GUI port position:

TN3270 DEBUG ON DEBCLIENT 198.242.244.235 * 3226

You can further simplify the connection command by taking advantage of the
JanClientPort and pcHost parameter defaults (added in Sirius Mods 7.9). If the
DEBCLIENT port is defined with the MASTER parameter, and SDEBGUIP and
SDEBWRKP are as above, these commands are equivalent:

TN3270 DEBUG ON * .
TN3270 DEBUG ON

On the Debugger Client, Connection from Online displays in the Status bar(4s1 after
the DEBUG ON command is issued. This indicates that the Debugger is "on" and
awaiting the next program to debug.

After the command runs successfully, any User Language program you initiate from the
Model 204 command line will appear in the Source Code tab of the Debugger Client GUI
for debugging.

TN3270 DEBUG OFF

TN3270 DEBUG OFF stops a debugging session. The command is issued as is from
the Model 204 command prompt (or from your BATCH2 stream or a procedure); it has
no additional parameters.

After issuing the command, you should receive this response in Model 204:
% MSIR.0913: TN3270 Debugger is now off

On the Debugger Client, Online has disconnected displays in the Status bar.

You can also turn off the TN3270 Debugger by logging off of Model 204 (any logoff is an
implied TN3270 DEBUG OFF).

Note: Explicitly turning off the Debugger is necessary if you are using the Janus
Debugger as well as the TN3270 Debugger for the same Online and worker port.
To switch from a TN3270 Debugger session to a Janus Debugger session, you
must explicitly drop the TN3270 Debugger session. The Janus Debugger
automatically closes its connections and does not require an explicit notification to
switch or end a session.

152

Janus/TN3270 Debugger User's Guide

Additional Debugger Functionality

The turnoffDebugging mappable commandpssl for a Client button, hot key, or macro is
equivalent to TN3270 DEBUG OFF. This alternative lets you turn off the Debugger at
any time during the debugging of a program, and it provides even more flexibility than
using a procedure to issue TN3270 DEBUG OFF.

TN3270 DEBUG SUSPEND

TN3270 DEBUG SUSPEND immediately discontinues the debugging of the current
request, but preserves the connection from the Online thread to the Debugger Client
(that is, debugging is inactive but in a state where it can be readily reactivated).
Debugging can continue if a TN3270 DEBUG RESUME command is issued from the
command line or in an included procedure.

Issuing TN3270 DEBUG SUSPEND has no effect and receives a harmless error
message in either of these cases:

e Debugging is not currently active for this thread (via TN3270 DEBUG ON or TN3270
DEBUG RESUME).

e Debugging is already suspended (via TN3270 DEBUG SUSPEND).

Once you suspend debugging, the current program (if any) executes immediately, and
the Debugger continues in the suspended state until you issue a TN3270 DEBUG
RESUME or a TN3270 DEBUG OFF command. While debugging is suspended, you can
execute Model 204 commands from the command line as usual; the difference between
debugging being suspended and being off is that the Client remains in a "waiting" state.

Note: TN3270 DEBUG OFF turns off debugging for a thread for which debugging is
suspended, but TN3270 DEBUG ON does not resume debugging a thread for
which debugging is suspended.

TN3270 DEBUG CLIENTCOMMAND

Available as of version 7.8 of the Sirius Mods, TN3270 DEBUG CLIENTCOMMAND lets
you send a com mand[177 or macroki7 to be invoked by the Debugger Client. The single
parameter of TN3270 DEBUG CLIENTCOMMAND is the command or macro you want
to send, specified without regard for case:

{TN3270|SIRIUS} DEBUG CLIENTCOMMAND [COMMAND | MACRO] command

If command is preceded by a keyword or followed by its parameter(s), such a "clause"
must be quoted. See the examples below.

If command is not qualified by the keyword Command or Macro, the Debugger Client
searches first for a macro named command, then for a Client command named
command. You can use the Command or Macro keyword to search exclusively for a
specified command or exclusively for a specific macro. The macro search is restricted
to the Client installation folder or the designated@ macro folder.

Janus/TN3270 Debugger User's Guide 153

Additional Debugger Functionality

Three examples follow:
TN3270 DEBUG CLIENTCOMMAND clearWatch
TN3270 DEBUG CLIENTCOMMAND 'Addwatch %watchthis’
TN3270 DEBUG CLIENTCOMMAND 'Macro mymacro %s’

If the TN3270 Debugger is not currently in a session, issuing TN3270 DEBUG
CLIENTCOMMAND has no effect and receives a harmless error message.

You can also execute Client commands and macros from the ClientCommandlie2 and
Commandfis2l methods of the DebuggerTools class.

TN3270 DEBUG RESUME

TN3270 DEBUG RESUME lets you resume debugging that was previously suspended
with TN3270 DEBUG SUSPEND. When you issue TN3270 DEBUG RESUME (from the
command line or in a procedure) while debugging is suspended, the Debugger
immediately returns to normal debugging mode.

Issuing TN3270 DEBUG RESUME has no effect and receives a harmless error
message in either of these cases:

e Debugging is already active for this thread (via TN3270 DEBUG ON or TN3270
DEBUG RESUME).

e Debugging is currently off (via TN3270 DEBUG OFF or because it has yet to be
initiated for this thread via TN3270 DEBUG ON).

You can use TN3270 DEBUG OFF (or the turnOffDebuggingpsl) mappable Client
command) to turn off debugging for a thread for which debugging is resumed.

Note: After a successful TN3270 DEBUG RESUME, the Client restores any White List
[771 or Run Until[72 processing that was active prior to the TN3270 DEBUG
SUSPEND.

TN3270 DEBUG STATUS

TN3270 DEBUG STATUS provides a simple status report about the worker threads for
TN3270 Debugger sessions, Janus Debugger sessions, or both for a given Model 204
Online.

154 Janus/TN3270 Debugger User's Guide

Additional Debugger Functionality

The command is issued as is from the Model 204 command prompt (or at the end of
your BATCH2 stream); it has no arguments. After issuing the command, you receive a
display like the following:

*** Janus/TN3270 Debugger status: Total workers=12

*** Janus/TN3270 Debugger status: Janus Debugger Sessions=3

*** Janus/TN3270 Debugger status: TN3270 Debugger Sessions=1
*¥** Janus/TN3270 Debugger status: Total Active Sessions=4

*** Janus/TN3270 Debugger status: Draining=0

*** Janus/TN3270 Debugger status: Available=8

*** Janus/TN3270 Debugger status: Janus Debugger Session HWM=5
*** Janus/TN3270 Debugger status: TN3270 Debugger Session HWM=1

where:

Total workers The number of workers created with the
DEBUGMAX]s72 User 0 parameter

Janus Debugger Sessions ~ Worker threads currently being used for Janus
Debugger sessions, if any

TN3270 Debugger Sessions Worker threads currently being used for
TN3270 Debugger sessions

Total Active Sessions Janus Debugger Sessions + TN3270
Debugger Sessions

Draining Workers that are transitioning from Active to
Available

Available Total workers - (Total Active Sessions +
Draining)

Session HWM The greatest value that the number of

concurrent users has reached, per Debugger
product (Janus Debugger and TN3270
Debugger) since the Online was started.

4.3 Using the TN3270 DEBUG command for web threads

If you license the Janus Debugger, you can use the TN3270 DEBUG command to invoke
the debugging of programs served by Janus Web Server threads. This may be useful if
you need to avoid changing the proxy server settings on your web browser, for example.

You invoke a Janus Web procedure from your browser, a TN3270 DEBUG ON command
you embedded in the procedure starts the Debugger, and you work with your source
code in the Debugger Client as usual. The thread you are debugging counts as one of
your Janus Debugger authorized "seats."k71)

Janus/TN3270 Debugger User's Guide 155

Additional Debugger Functionality

Using the TN3270 DEBUG command to invoke debugging requires no additional
configuration@ of the Debugger. You must make sure, however, that no proxy server is
defined for the browser with which you send a request to the Janus Web Server.

To debug a Janus Web thread:

1.

In the Janus Web program you want to debug, insert a TN3270 DEBUG ON

command}isal to invoke the Janus Debugger.

The command must not be placed between explicit BEGIN and END User
Language statements.

Start the Debugger Client.

Make sure the Client is not automatically maintaining a proxy server for you:
a. From the File menu, select Preferences.
b. Make sure the Automatically Maintain IE proxy settings checkbox is clear.

In the browser you use to invoke debugging, confirm that the Debugger Client is not
defined as a proxy serverfssal.

From your browser, invoke the URL for the web program that contains the TN3270
DEBUG ON command.

The browser pauses in a loading state, and the web program is sent to the
Debugger Client Source Code page.

Work with the procedure code in the Client as usual.

156

Janus/TN3270 Debugger User's Guide

Additional Debugger Functionality

As the code is evaluated, output destined for a web pagefi27) goes to a Web Buffer
page in the Client:

#% The Janus Debugger (QAXML2)

File Window Search Breakpoints Execution DataDisplay Error Macros Help ;
Top | Bottom | Clear Audit | Run | Step | Step Over | Trace | Cancel | Clear Breaks | Clear Watch | Console E

- - - - L
Audit Trail | Source Code Web Buffer | Execution Trace | Proc Selection |
<html> Fa
<head> .
<title>Defanlt Janus Web Home Page</title> ¥
</head> —t
<body bgcolor="#ffffds"> -

<table cellpadding=2 cellspacing=5 border=0>
<tr>

<td valign=top halign=left>

 F
 e
</td> rl
<td wvalign=top halign=left> rf)’-_
<h2>Defanlt Janus Web Home Page</h2>

<ftd></tr> [
</table> PP
</body> ;

</html> =

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitionalfi?’_;i'_' -

<HTML>

] W ——

et e

When code execution completes, output (including error messages and Web Buffer
contents) is sent to the browser instead of to the Model 204 "terminal." At this point,
the connection to the web thread is closed and the debugging session ends. It is not
necessary to provide an explicit TN3270 DEBUG OFF command.

You can also embed TN3270 DEBUG SUSPEND and RESUME[s3 commands in the
procedures that are included in your program to take advantage of those features. And
you can similarly embed a TN3270 DEBUG OFF command or invoke its equivalent
programmable command tur‘nOffDebuggingm from a Client button or hot key.

Once debugging is on and the Client has the web thread source code, TN3270 DEBUG
command input from the command line at the Model 204 host has no effect on
debugging — the command line thread is separate from the web thread.

4.4 Debugging SSL applications

If you are using Janus Network Security, you may want to debug User Language
programs that run on a secure Web Server (normally accessed with URLs beginning
with "https").

The Janus Debugger manages SSL applications by maintaining an unencrypted
connection between the web browser and Debugger Client, and a secure connection
between the Debugger Client and the secure Web Server. This lets the Client examine
the HTTP request and response in unencrypted form, while all data to and from the Web
Server travels the network in encrypted form.

Janus/TN3270 Debugger User's Guide 157

Additional Debugger Functionality

To use the Debugger with a secure Web Server, you must "inform" the Debugger Client
that it must connect to the Web Server using the Secure Sockets Layer (SSL) protocol.
You do this simply by adding a line (an empty ss1 element) to the Client configuration
XML file for each secure server you debug, as describedksdl in the installation
documentation.

Then, in the URL to access the secure site, you use http:// instead of https://.

A Short SSL Example

If you use https://secureapp.myhost.com:123 to access your secure Janus Web
application, do the following to debug this application with the Janus Debugger:

1. Inthe serverList element in the debuggerConfig.xml file (located in the same
directory as JanusDebugger.exe), add a server element (as described[ssdl in the
installation instructions) that includes an empty ss1 sub-element (which you can
specify either as <ss1/> or as <ssl></ssl>:

<serverList>
<server>
<host>secureapp.myhost.com</host>
<webPort>123</webPort>
<workerPort>321</workerPort>
<ssl></ssl>
</server>
</serverList>

2. Pointksdl your web browser at the Debugger Client.
3. Start, or restart, the Debugger Client.

4. From your browser, access your application with this URL:

http://secureapp.myhost.com:123

Note: HTTPS is not specified in the URL.

4.5 Debugging Web Service applications

While the Janus Debugger is designed for debugging HTTP server applications whose
client is a web browser (that is, Janus Web Server applications), the TN3270 Debugger
also lets you debug an HTTP server application whose client is a User Language HTTP
socket program written with the Janus Sockets HTTP Helper. This Debugger versatility
is possible because the Debugger Client functions as a proxy server, and the HTTP
Helper can use a proxy server.

To debug a User Language Web Service client:

1. Install and configure the TN3270 Debugger normally.

158

Janus/TN3270 Debugger User's Guide

https://secureapp.myhost.com:123

Additional Debugger Functionality

2. Point the HTTP Helper application code to the Debugger Client.
Add code like the following to your HTTPRequest object code:

%HTTPReq is object HttpRequest auto new

%HTTPReq:URL = 'http://mywebservice

if (%(DebuggerTools):AmDebugging) then
%HTTPReq:Proxy = http://workstation: port

end if

where:

e AmDebugging is a DebuggerTools class[is8 shared method that queries
whether or not the program is being run under the Debugger.

* workstation is the IP address of your Debugger Client workstation, and port is
the workstation listening port number you specified in the Debugger
configuration filefs73).

One way to get the workstation IP number is to use the IPConfig command at
the MS DOS prompt on your workstation. For example:

C:\Documents and Settings\username> ipconfig
The response will show your port number:
Windows IP Configuration

Ethernet adapter Wireless Network Connection:
Media State : Media disconnected

Ethernet adapter Local Area Connection:

Connection-specific DNS Suffix : hsdl.ma.comcast.net.

IP Address. : 192.168.1.104 <== you want this
Subnet Mask : 255.255.255.0

Default Gateway : 192.168.1.1

4.6 Using the DebuggerTools class methods

You can use methods from the DebuggerTools system object in your User Language
code to aid in the debugging process in either the Janus Debugger or the TN3270
Debugger.

You can use these methods without error in SOUL code running in Model 204 Onlines
not licensed for the Debugger, as long as those Onlines are version 7.5 or greater or
licensed for the Janus SOAP product.

The following methods are available:

AmDebugginglied

Janus/TN3270 Debugger User's Guide 159

Additional Debugger Functionality

e Breaklieo
e ClientCommandhfis2]

e Commande?
e DebugOfflie3]
e StatusMessagelsa)

AmDebugging method

The AmDebugging shared method queries whether or not a User Language program is
being run under the Janus Debugger or the TN3270 Debugger.

The method takes no arguments, and it returns a numeric result:

%num = %(DebuggerTools):AmDebugging

where:
%num is a numeric variable that can be either of these:

0 The program is not running under either Debugger. This includes the
case where the program runs after debugging is suspended by a
TN3270 DEBUG SUSPEND[53 command.

1 The program is running under the Janus Debugger or under the
TN3270 Debugger.

AmDebugging lets you insert code that runs only when debugging, as in the following
example:

b
if (%(DebuggerTools):AmDebugging) then
print 'extra debugging information'’
end if
* normal processing

Break method

The Break shared method pauses execution on the statement that follows the Break
method specification. If your User Language request is not being run under the
Debugger, the Break method does not act— which lets you leave it in code. It essentially
has the same effect as using the Debugger Client to put a breakpoint on the statement
that would follow the Break method call.

160 Janus/TN3270 Debugger User's Guide

Additional Debugger Functionality

The Break method has one, optional, argument:

[%statusMsg] = %(DebuggerTools):Break[(command)]

where:

%statusMsg is a string that contains the message in the Client status bar[s] that results
from the execution of command. If the request containing the method is not running in
the Debugger, %statusMsg contains a "break is ignored" message.

command is a string expression (case not important) that contains the Client command
.77 or macrob17] to be executed im mediately following the break in execution. The
command or macro in the string may be preceded by the keyword Command or Macro.
This option requires at least version 7.8 of the Sirius Mods.

If command is not qualified by the keyword Command or Macro, the Debugger Client
searches first for a macro named command, then for a Client command named
command. You can use the Command or Macro keyword to search exclusively for a
specified command or exclusively for a specific macro. The macro search is restricted
to the Client installation folder or the designatedIs03l macro folder.

The Break method will not break execution in the following cases:

e [fitis invoked in a routine or method that you have elected to step over|sa]

e If you have issued a Run Until Procedurel73), and the Break call is encountered in a
procedure that precedes the "Run Until" procedure

e Ifawhite listl77is enabled, and the Break method is contained in a procedure that is
not on the white list

This code fragment includes a Break method invocation:

%status is longstring

%status = %(DebuggerTools):break('clearWatch')

* Break, execute the clearWatch command, and pause

* (awaiting instruction to execute the next statement)
%X = 666

When a Break method pauses execution, DebuggerTools:break hit is displayed in
the Status bar[49] of the Debugger Client (except, if Break executes a command, the
effect of the command is displayed). Also, unlike Client-set breakpoints, the UL> at the
beginning of the source code line does not change to BR>, and no red color highlighting is
applied to the line.

You can also use the DebuggerTools ClientCommand method to execute a Client
command; it does so without an execution break.

For more information about breakpoints, see Using breakpoints [55).

Janus/TN3270 Debugger User's Guide 161

Additional Debugger Functionality

ClientCommand method

The ClientCommand shared method lets you execute a Client com mand/i77 or macrof1?)
from within a User Language request. If your request is not being run under the
Debugger, the ClientCommand method harmlessly takes no action. The method
requires version 7.8 or higher of the Sirius Mods.

The ClientCommand method takes one argument and returns a string value:

%status = %(DebuggerTools):ClientCommand([Command | Macro] command)

where:

%status is a string that contains the message in the Client status barf4s1that results
from the execution of the command parameter.

command is a string expression (case not important) that identifies the Client command
or macro to execute, and it includes any parameters of the command or macro. If
command is not qualified by the keyword Command or Macro, the Debugger Client
searches first for a macro named command, then for a Client command named
command. You can use the Command or Macro keyword to search exclusively for a
specified command or exclusively for a specific macro. The macro search is restricted
to the Client installation folder or the designated@ macro folder.

For example:

%statusMsg is longstring
%statusMsg = %(DebuggerTools):clientCommand('Addwatch %x")
%statusMsg = %(DebuggerTools):clientCommand('Macro mymacro %i')

After execution of the above statements, %statusMsg contains the string "1 watch item
added".

Note: ClientCommand does not pause request debugging execution before (or after) it
executes a Client command. If you want to produce a debugging execution pause
before command exection, use the Breakli60l command with a command
parameter.

Command method

The Command shared method lets you effectively execute a TN3270 DEBUGH43)
command within a User Language request, that is, as a statement.

The Command method takes one argument and returns a numeric value:

%rc = %(DebuggerTools):Command(string)

162

Janus/TN3270 Debugger User's Guide

Additional Debugger Functionality

where:
%rc is a numeric variable that can be either of these:

0 The command/method succeeded.

<>0 The command/method failed.

string is a quoted string that specifies which TN3270 DEBUG subcommand to execute.
It may be in one of the following forms:

e Theterm OFF, SUSPEND, RESUME, or STATUS.

e The term ON, followed by the additional parameters required by the TN3270 DEBUG
ON command.

e The term CLIENTCOMMAND, followed by a blank, followed by its argument "clause,"
which consists of a Client command[177 or macrols17 and any parameters it
requires, optionally preceded by a Command or Macro keyword:

"CLIENTCOMMAND [Command | Macro] command [cmdparms]’

If command is accompanied by a preceding Command or Macro keyword or by a
following value for cmdparms, then such a clause must itself be enclosed in quotes
(as shown in the second example below).

Without a qualifying Command or Macro keyword, the Debugger Client searches first
for a macro named command, then for a Client command named command. The
Command or Macro keyword lets you search exclusively for a specified command or
exclusively for a specific macro.

Macro searches are restricted to the Client installation folder or the designated@
macro folder.

The CLIENTCOMMAND option requires version 7.8 or higher of the Sirius Mods. It is
likely to be simpler to use the DebuggerTools ClientCommand method than to use
the CLIENTCOMMAND option of the Command method.

In the following example, the Command method turns debugging on for the next
procedure that runs; the Janus client port and Debuggger client workstation are
specified:

%rc = %(DebuggerTools):command('ON DEBSOCK 198.242.444.234")

In this example, Command sends a user interface command to the Client:

%rc = %(DebuggerTools):command('CLIENTCOMMAND ' ‘'AddWatch %i''")

DebugOff method

The DebugOff shared method turns off debugging for a thread for which debugging was
turned on with a TN3270 DEBUG_ONf49l command. It is thus a way to issue a TN3270
DEBUG OFF command via a method call.

Janus/TN3270 Debugger User's Guide 163

Additional Debugger Functionality

The DebugOff method takes no arguments and returns a numeric result:

%num = %(debuggerTools) :DebugOff

where:
%num is a numeric variable that can be either of these:

0 TN3270 Debugger debugging was not on when the DebugOff method
was invoked.

1 TN3270 Debugger debugging was on and is now turned off.

When debugging is on and a DebugOff method executes, debugging stops immediately,
the Client/Online connection is broken, Online has disconnected is displayed in the
Status barls9] of the Debugger Client, and the request completes at the Online thread.

StatusMessage method
The StatusMessage shared method contains the message in the Client Status bar[4s]

that results from the last interaction with the Client. The method requires Version 7.8 or
higher of the Sirius Mods.

The StatusMessage method returns a string value:

%status = %(DebuggerTools):Statusmessage

4.7 Using a local editor

As described in this section, you can use a local editor to view and modify most of the
small text files that the Debugger Client provides for its various purposes. You can also
use a local editor to interactively modify your source code procedure files.

Editing small text files

The Debugger configuration file (debuggerConfig.xml) contains an element with which
you can specify a non-default text editor to work with the various small text files
employed by the Debugger Client. As described in this steg@ in the configuration of
debuggerConfig.xml, you use the notepadReplacement element to select your own
local editor to replace the Client default MicroSoft Notepad editor.

164

Janus/TN3270 Debugger User's Guide

Additional Debugger Functionality

Editing procedure files

The Procedure Line Detailsfi22 dialog box in the Debugger Client provides detailed
information about a source code line, such as the name of the procedure and procedure
file from which it comes. You can configure the Edit button on the Procedure Line Details
dialog box to copy the procedure code to an editor on your workstation.

From the editor, you can change and save the the code, and the saved file is
immediately returned to the Online to replace the original procedure. To see if the
change had the desired results, you re-issue from the browser the call that produced the
original procedure code.

Currently, two editors are supported:

e Xtend® from Yoda Software (http://yoda-software.com.au)

Xtend is a GUI-based editor designed specifically to edit procedures written in Model
204 User Language. It is aware of User Language syntax.

Xtend transfers files to and from the Model 204 Online using the HTTP protocol, and
you must either define a Janus Web Server port or set up an RCL Connect*
connection to use it. This document describes only the Web Server connection
(which requires Janus Web Server authorization). For information about using RCL
Connect*, you must see the Xtend documentation.

e UltraEdit® from IDM Computer Solutions, Inc. (http://ultraedit.com)

UltraEdit is a GUI-based text editor that is designed to edit program source code
from a wide variety of languages.

UltraEdit transfers files to and from the Model 204 Online using the FTP protocol,
and you must define a Janus FTP Server port to use it. This means you must be
authorized for Janus Sockets.

These sections follow:

Using Xtend with the Debuggerlisd
Using UltraEdit with the Debuggerfi7al

Janus/TN3270 Debugger User's Guide 165

http://yoda-software.com.au
http://ultraedit.com

Additional Debugger Functionality

471 Using Xtend with the Debugger

To use Xtend as an adjunct to your debugging, you set up a Janus Web Server port and
an APSY subsystem in the Model 204 Online, as well as configure the Xtend GUI and the
Debugger Client on your workstation. Once this configuration is complete, you can use
Xtend with the Debugger, as described above in Using a local editorlisal.

Note: You must use version 2.11 or higher of Xtend. The set up details provided below
are for version 2.11.

Also, as stated in in Using a local editorkes, RCL Connect* is an alternative to
Janus Web Server, but this document describes only the Web Server
connection.

The configuration steps below are described in this section. They assume the Debugger
installation has been completed and tested, as described in Product Installation[zsd. Much
of the Xtend product installation and set up is also documented in greater detail in Help
files provided with the product.

1. Install and set up Xtend in your Model 204 Online/i6é)

2. Install and set up the Xtend GUIke?)

3. Update the Debugger Client configuration file[1e3

4. Testthe configurationm

Install and set up Xtend in your Model 204 Online

Skip to the next subsection (Install and set up the Xtend GUIEﬂ) if Xtend is already
installed at your site.

1. From http://www.yoda-software.com.au, download to your workstation two
Windows installation files (one for the Xtend GUI and one for the Model 204
subsystem and web port).

2. Set up a Model 204 subsystem (XTEND) to control Xtend processing.

Notes for doing this are provided in the XtendInstall.HLP file in the XtendInstall
folder. See the "Xtend Apsy" section.

3. From the PC, run the Xtend installer executable (XtendInstall.exe), which will
populate the XTEND subsystem files.

4. Inthe Online, run the XTEND.JANUS.DEFINE procedure in the XTENDPRC
procedure file to start the Xtend Janus Web port.

The default port number for the non_SSL port is 7878; for the secure port it is 7879.
Change these numbers if necessary for your site.

166

Janus/TN3270 Debugger User's Guide

http://www.yoda-software.com.au

Additional Debugger Functionality

Install and set up the Xtend GUI

1. Ifyou will use Janus Debugger and have set up a proxy server for the Internet
Explorer browser, update the proxy settings to provide a bypass for connections to
the Xtend web port.

a.

d.

From the Tools menu, select Internet Options; then select the Connections tab,
and click the LAN Settings button.

Locate the Proxy Server area, and click the Advanced button.

In the Exceptions area, in the list box labeled "Do not use proxy server for
addresses beginning with," specify the URL of the Xtend web server port you
defined/iss.

Click OK as needed to close the multiple dialog boxes.

2. Set up a remote connection to Model 204 from the Xtend GUI.

a.

e.

Open the Xtend GUI executable file (Xtend. exe), and select Options from the
View menu.

In the Options dialog box, select the Remote tab.

In the grid in the main work area, specify a name for this connection and supply
a Model 204 user ID, host name, and the web server port you definedlies, and

click the Apply button.

If you will use TN3270 Debugger, select the name (Caption) of the remote
connection you just defined from the Default edit online when using

TN3270 Debugger drop-down list, then click the OK button.

Optionally, review and update the settings in the other Options tabs.

3. Add the names of the procedure files (and their privileges) whose procedures you
will be editing with Xtend.

a.

b.

Select Administrator Functions from the Admin menu; then select the Files tab.

In the File columns, name the procedure files that contain the procedures you
want to make accessible from Xtend; in the Privileges column, select a privilege
level.

This information can alternatively be specified in the XTEND subsystem
itself.

Click the Save Details button, followed by the Close button.

Janus/TN3270 Debugger User's Guide 167

Additional Debugger Functionality

Note: For procedure files that have explicit passwords, you must either add the file
name to the XTEND subsystem files listed in the Subsystem File Use screen
in the Model 204 Subsystem Management facility, or you must modify a
subroutine in the XTENDPRC procedure file (as described in the
XtendInstall.HLP file).

4. Test your connection.

a. Inthe Procedure List dialog box, select the tab that is labeled with the name of
your remote connection.

A list of your procedures is retrieved and displayed.

b. Display a test procedure's code (double-click the procedure name), make
some update, then save the updated procedure by clicking the Save File icon
on the toolbar.

c. Inyour Online, check that the updated procedure has replaced the original.

d. [f your connection test is successful, close Xtend.

Update the Debugger Client configuration file

Once Xtend is installed and configured for debugging, you enable the Debugger(s) to
invoke it by adding an entry to the Debugger Client configuration file (debuggerConfig.
xml). This file is installed in the same directory as the Debugger Client executable file,
and it is initially configuredhsdl as part of the Debugger Client installation.

To update the file:

1. Open the debuggerConfig.xml file in a text editor.

2. Addan <editor> element (bounded by an <editor> start tag and an <\editor>
end tag) at the same level (as a sibling of) the existing <serverList> element.

168 Janus/TN3270 Debugger User's Guide

Additional Debugger Functionality

Include these <editor> sub-elements, and specify values for them as described in

the Comment section below:

Sub-element

<program></program>

Comment
The identifier of the Xtend program executable file (case
does not matter). For example: <program>xtend</

program>.

Note: If the Windows system variable Path does not

include the folder path that points to the Xtend
executable (for example, C:\Program
Files\Xtend), either add it to the Windows
variable now, or specify the folder path before the
executable file name in the <program> value.

To locate the Path variable specification on a
Windows 7 workstation, find the Control Panel
(say, Start menu > Settings > Control Panel),
then select System > System advanced settings
> Advanced tab > Environment Variables button >
System variables > Path, then click Edit to see
the full specification of the Path variable.

When complete, your configuration file should have a structure like the following:

<debuggerConfig version="1.0">

<serverList>

</serverList>
<proxy>

</proxy>
<editor>

<program>xtend</program>

</editor>

</debuggerConfig>

3. Save and close the file.

Janus/TN3270 Debugger User's Guide

169

Additional Debugger Functionality

Test the configuration

In the Debugger Client, edit a procedure.
1. Restart the Debugger Client.

2. Load a procedure in the Source Code tab of the Debugger Client:

e Janus Debugger: From your web browser, invoke a URL that includes a
procedure.

e TNB3270 Debugger: Issue the TN3270 DEBUG ONls3l command; then include a
procedure from the Model 204 command line.

3. Right-click a line of code, select Procedure Information from the context menu, then
click the Edit button on the Procedure Line Details dialog box.

Xtend should open, displaying in its working area the procedure that contains the
code line that you right-clicked. If it fails to do so, and you verified earlier that, by
itself, Xtend successfully transfers files from the Model 204 Online, begin your
troubleshooting in the Debugger Client debuggerConfig.xml file settings for the
<editor> element.

4.7.2 Using UltraEdit with the Debugger

To use UltraEdit as an adjunct to your debugging, you must set up a Janus FTP server in
the Model 204 Online as well as configure UltraEdit and the Debugger Client on your
workstation. Once this configuration is complete, you can use UltraEdit with the
Debugger, as described above in Using a local editor[ical.

Note: You can use any version of UltraEdit that supports FTP Open. The set up details
provided below are for version 12.10b and later.

The configuration steps below are described in this section. They assume the Debugger
installation has been completed and tested, as described in Product Installationlsed.

1. Set up a Janus FTP server in the Model 204 Onlinefi7ol

2. Set up UltraEdith71)

3. Update the Debugger Client configuration file[173)

4. Test the configuration[i73)

Set up a Janus FTP server in the Model 204 Online

You must have the Janus Sockets product enabled, and you should refer to the "Janus
FTP Server" chapter in the Janus Sockets Reference Manual.

170

Janus/TN3270 Debugger User's Guide

Additional Debugger Functionality

The following steps provide a simple example of JANUS commands you can use to set
up a Janus FTP Server configured to access the procedures in the MYPROCFILE file:
1. Create an FTP Server port with the JANUS DEFINE command:

JANUS DEFINE FTPULTRA portnum FTPSERVER 8 -
AUDTERM -
BINDADDR XXX .XXX XXX .XX

where portnum will be the TCP port number for accessing your FTP Server, and
XXX.xxX.xxx.xx is the IP address on your Model 204 host to which the port is
bound.

2. Create a mapping that provides FTP Write access to the procedure file.

The following example gives Write access to the file to all users, for the port defined
in the previous step. The JANUS FTP command is described in the Janus Sockets
Reference Manual.

In this example, MYPROCFILE is made the home folder, although it need not be (for
example, if you already have a home folder set to something else).

JANUS FTP FTPULTRA ASSIGN /MYPROCFILE TO FILE MYPROCFILE
JANUS FTP FTPULTRA HOME /MYPROCFILE TO ALL
JANUS FTP FTPULTRA ALLOW /MYPROCFILE WRITE TO ALL

3. Start the FTP Server port:
JANUS START FTPULTRA

4. Issue the following command, and verify that your port is defined and started:
JANUS STATUS

Set up UltraEdit

1. Download and install a copy of UltraEdit on the workstation that hosts the Debugger
Client.

2. Start UltraEdit, and in the File menu, select FTP, then Open from FTP.

3. From the FTP Open dialog box, set up an account that contains the information
UltraEdit needs to access your procedure file via the Janus FTP Server you set up:

Janus/TN3270 Debugger User's Guide 171

Additional Debugger Functionality

a. Click the Accounts button, and in the FTP/SFTP Account Manager dialog box, click
the Add Account button:

Account:

/

v Browse Site [show Log

FTP/SFTP Account Manager

Name

Dat| Gt oo | con
General |Advanced|| Proxy | SSH | fa

Transfer Type:

File name:

Add Account...

l

Remove Accg

~"4] Close Dial g.after Transfel
o _.r-"'p [y

b. Provide values for the fields that are displayed in the General tab:

Account Identifies this set of FTP connection values to UltraEdit, and
you must also specify this value in the Debugger Client
configuration file.

Protocol Leave the default value, FTP.

Server The DNS name of the Model 204 Online's host machine, or
the IP address on your Model 204 host to which the Janus
FTP port is bound (BINDADDR in the Janus FTP Server
port definition[173)).

Port Replace the default value (21) with the port number you
specified in the Janus FTP Server port definition178.

Username UltraEdit accesses Model 204 with this user ID and the
Password value, below. Case does not matter.

Password The password for Username, above. Case does not matter.

User Account

Any value specified here, or no value, is ignored by the
Janus FTP Sener.

172

Janus/TN3270 Debugger User's Guide

Additional Debugger Functionality

Initial Directory Your initial location upon connecting to the FTP Senver. This
must correspond to a folder you specified — including the
forward slash (/) separator that precedes it — in a JANUS
FTP pname ASSIGN command in the set upli7d of your
Janus FTP Sener. Case does not matter.

c. Click the Apply button, then click the OK button.

On the FTP Open page, your Account name displays in the Account drop-down
list, and your Initial Directory value displays below that list.

¢ FTP Open X
JALTEST v [Jshow Log
Change Dir

Filter:

d. Test your FTP connection: select the Show Log checkbox, then click the Browse
Site button.

The files in your procedure file should display in the central list box.

The FTP functions represented by the various buttons on the right side of the
FTP Open dialog box are all operational (except for Create Dir and Permissions,
which Janus FTP does not support), so be cautious if you experiment further in
this dialog box. For more information about what these buttons do, see the
UltraEdit online Help.

e. Select a default Transfer Type option — it will be associated with this account —
then click the Cancel button to exit.

4. Close UltraEdit.

Update the Debugger Client configuration file

Once UltraEdit is installed and configured for debugging, you enable the Debugger(s) to
invoke it by adding an entry to the Debugger Client configuration file (debuggerConfig.
xml). This file is installed in the same directory as the Debugger Client executable file,
and it is initially configuredksdl as part of the Debugger Client installation.

To update the file:

1. Open the debuggerConfig.xml file in a text editor.

2. Add an <editor> element (bounded by an <editor> start tag and an <\editor>
end tag) at the same level (as a sibling of) the existing <serverList> element.

Janus/TN3270 Debugger User's Guide 173

Additional Debugger Functionality

Include these <editor> sub-elements, and specify values for them as described in
the Comment section below:

Sub-element Comment

<program></program> The identifier of the UltraEdit program executable file
(case does not matter). For example:
<program>uedit32</program>.

Note: If the Windows system variable Path does not
include the folder path that points to the UltraEdit
executable (for example, C:\Program
Files\Ultra-Edit-32), either add it to the
Windows variable now, or specify the folder path
before the executable file name in the <program>
value.

To locate the Path variable specification on a
Windows 7 workstation, find the Control Panel
(say, Start menu > Settings > Control Panel),
then select System > Advanced system settings
> Advanced tab > Environment Variables button >
System variables > Path, then click Edit to see
the full specification of the Path variable.

<account></account> The name of the UltraEdit account you set upm to
connect to the Janus FTP Server folder that contains
the procedures you will be debugging. For example:
<account>JALTEST</account>

Note: This value is case-sensitive; it must exactly
match the value specified in UltraEdit.

174 Janus/TN3270 Debugger User's Guide

Additional Debugger Functionality

When complete, your configuration file should have a structure like the following:

<debuggerConfig version="1.0">
<serverList>

</serverList>
<proxy>

</proxy>

<editor>
<program>uedit32</program>
<account>JALTEST</account>

</editor>

</debuggerConfig>

3. Save and close the file.

Test the configuration
1. Restart the Debugger Client.

2. Load a procedure in the Source Code tab of the Debugger Client:

e Janus Debugger: From your web browser, invoke a URL that includes a
procedure.

e TNB3270 Debugger: Issue the TN3270 DEBUG ON[48l command; then include a
procedure from the Model 204 command line.

3. Right-click a line of code, select Procedure Information from the context menu, then
click the Edit button on the Procedure Line Details dialog box.

UltraEdit should open, displaying in its working area the procedure that contains the
code line that you right-clicked. If it fails to do so, and you verified earlier that, by
itself, UltraEdit successfully transfers files from the FTP Server, begin your
troubleshooting in the Debugger Client debuggerConfig.xml file settings for the
<editor> element.

Note: UltraEdit 12.10a versions open the procedure to line 1 in your procedure
code. 12.10b and later versions, as well as 12.0x versions, open the
procedure to the same line number as that from which you invoke the edit in
the Debugger Client.

Janus/TN3270 Debugger User's Guide 175

176 Janus/TN3270 Debugger User's Guide

The Client Command Reference

charteErs 1 he Client Command Reference

Client commands are the operations that you invoke from Client menus and can assign
to a Debugger Client button, keyboard shortcut, or macro. It is intended that there be a
command available for any Client operation you want to automate.

The following subsections describe individually the available commands, which are
specified without regard for case.

Later sections in this document describe ways to use the commands:

e Reconfiguring GUI buttons and hot keys [2s8 describes how you can map any
command to a Client button or hot key.

e Default settings of buttons and hot keys@ lists the default hot keys and buttons
with which some of these commands are associated.

e Using Debugger Macrosk17 describes how you can use script multiple commands
to run consecutively.

A very few of the commands are macro-only: commands that may be used only in a

Debugger macro. The descriptions of these commands include a Scope section that
reminds of this restriction.

As a quick means of testing what a command does, you can open the Command Linekzs)
tool and run your command from there (specifying a qualifying Command keyword if a
same-named macro command exists). For informational, error, and trace messages
from the command, you can use the Consolel24 tool.

You can also execute a command from within a User Language request by using the
ClientCommand method of the DebuggerTools[sdl class.

Janus/TN3270 Debugger User's Guide 177

The Client Command Reference

5.1 addWatch command

Action: Adds to the Watch Window(se) the item currently specified in the Entity-
name input box]sol.

Syntax:

addWatch [item]

where jitem is the name of the item to be added (one of these@). Ina
macro, this argument is required.

Client menu: Data Display > Add Watch

Introduced: Build 26

5.2 addWatchOnCurrentLine command

Action: Adds to the Watch Window[s any variables found in the current Source
Code line.
Syntax:

addWatchOnCurrentLine

Client menu: Data Display > Add Watch on Current Line

Introduced: Build 28

5.3 assert command

Action: Performs an equality or inequality comparison between a) the value of
program data or a macro variablez27 or Client functionkz3], and b) a
constant or the value of a macro variable or macro function. For
example:

assert %i=666

178 Janus/TN3270 Debugger User's Guide

The Client Command Reference

This command lets you create simple testing macros that ensure that
key elements in your code have the values you expect. If the
comparison expression you construct with assert is not logically true,
you receive a failure message. If true, you receive no confirmation.

assert failure messages are displayed in the consolelz24, if it is open.
Otherwise, they are displayed in a Windows message box. They have
the following format:

Assert failed: failing_assert_statement
For example:
Assert failed: assert & = "no way"
The assert command syntax follows:
ASSERT &var | %xxx | g.xxx | f.xxx | $listcnt(X)
| $listinf(x,y) | &&function
=] <
string | [-1nnn | &var | &&function

where:

e &varis a previously defined macro variable.
e /xxxis a mainframe variable.

e g.xxx is a Debugger global variable referencefod).

e f.xxxis a Debugger field referencelos), possibly with a subscript.

e Slistcnt/$listinf are the Debugger functions for viewing $list counts
and elements.[s6]

e &&function is a macro function.
e <>is an inequality operator (as of Client Build 59).

e string is a quoted string constant (double-quotes or single quotes
are valid).

e [-]nnnis an integer constant with an optional leading minus sign.
Here are examples of valid assert statements:
assert g.JACK = "No play makes Jack a dull boy."
ASSert %s='Hey Moe'
ASSERT $listcnt(%g)=2

ASSERT $listinf(%g,2) = " makes Jack a dull boy."

Janus/TN3270 Debugger User's Guide 179

The Client Command Reference

Client menu:

Introduced:

assert &this = 'that'

assert &this <> &that
Notes:

e The &assertFailureCounths?, 8&assertSuccessCounths3, and
&&assertStatushsa Client functions, as well as
&&globalAssertFailur‘eCountEéI
&&globalAsser‘tSuccessCount@, and &&globalAssertStatus
339, report assert command results.

e If you are specifying a Client mapping commandps2 and your
assertion includes an ampersand character (&) or the not-equal
operator (<>), you must XML entity-encode the character. For
example, to map the command assert &i<>6, you specify it like
this:

<mapping command="assert &i<>6" button="button9"/>

For Client builds before 54, assert is allowed only in Debugger
macroshi7 and is not available as a mappable Client command.

Build 28

180

Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.4 bottom command

Action: Scrolls to the bottom of the current tab; has no effect if the Proc
Selection[13] page is being displayed.

Optionally, scrolls to the bottom of the Client window you specify as the
value of the command's In window prefix.

Syntax:
[In window] bottom

where:

window is one of the following keywords, not case sensitive, which
identify a Client window. Links are provided to help identify the less
common windows:

about/39)

auditTrail
commands|38)

console
executionHistorylia2)
executionTrace
keyboardShortcuts/ss)
source
textvieweria?
value[oo]
watchWindow
webBuffer

Client menu: Window > Bottom

Introduced: —

Janus/TN3270 Debugger User's Guide 181

The Client Command Reference

5.5 breakOnNextProc command

Action:

Client menu:

Introduced:

Interrupts White List[so) or Run Until[76} processing. The next
procedure will be debugged.

Syntax:

breakOnNextProc

Build 29

5.6 breaks command

Action:

Client menu:

Introduced:

Sets breakpoints on lines after comments that have the form *Break
(see Setting multiple breakpoints at oncelss)).

Syntax:

breaks
Note: The search for the *Break lines begins from the current line, so

you probably should precede the breaks command by a topk7a)
command if used in a macro.

Breakpoints > Breaks

182

Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.7 breaksAt command

Action: Sets breakpoints on lines that match a search string (see Setting
multiple breakpoints at once@).

Syntax:
breaksAt [string]

where string is the search string or regular expression.[ss] The default
is to use the value in the Search text box.|391

Note: The search for the lines on which to set breakpoints begins from
the current line, so you probably should precede breaksAt by a
t_og@ command if used in a macro.

In a macro (only), you must explicitly specify the string at which
breaksAt is to break.

Client menu: Breakpoints > Breaks At

Introduced: —

Janus/TN3270 Debugger User's Guide 183

The Client Command Reference

5.8 buttonBar command

Action: Opens and determines the position of the Client's main button bar|so1in
a Client external window. 306l To locate the button bar within the Client
main window, use the mainButtonBar]285 command.

Syntax:
buttonbar [position]

where position is one of these options that control the disposition of the
external button bar (the Button Bar window):

e top docks the window (places it, immobile) at the top left corner of
the desktop.

e bottom docks the window at the bottom left corner of the desktop.

e float places the window centrally and non-docked (mobile) on the
desktop.

° hide closes the window.

e show opens the window and restores the previous dock mode, if
any.

= [f the main button bar is not currently an external window, show
makes it external and restores its previous dock mode, if any,
or uses float as the default mode.

= [f the main button bar is already in an external window, show
has no effect.

The show parameter, new in Build 56, is the default.

Client menu: Window > Show Button Bar in External Window

Introduced: Build 55

184 Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.9 cancel command

Action: Cancels|631the User Language request that is being, or about to be,
debugged. Gives a "do you really want to" prompt.

Syntax:

cancel

Client menu: Execution > Cancel

Introduced: —

5.10 clearAudit command

Action: Clears the Audit Trail display.

Syntax:

clearAudit

Client menu: Window > Clear Audit Trail

Introduced: —

Janus/TN3270 Debugger User's Guide 185

The Client Command Reference

5.11 clearBreakpointOnCurrentLine command

Action:

Client menu:

Introduced:

Clears a breakpoint[sé1on the currently selected line in the Source Code

(or Daemonlissl) page; if the currently selected line is not an executable
statement, clears a breakpoint on the next executable line after the
currently selected line.

Syntax:

clearBreakpointOnCurrentLine
Notes:

e If you have not explicitly selected a code line, the current line is the
highlighted code line in the current execution position.

e If you execute this command for a line that already has no
breakpoint set, no additional action is taken.

For code lines for which a breakpoint is set, the
toggleBreakpointOnCurrentLinel2z7 command has the same effect
as the clearBreakpointOnCurrentLine command.

To set a breakpoint on the current line, you can use the
setBreakpointOnCurrentLine@ command or the
toggleBreakpointOnCurrentLine command

To clear all breakpoints, you can use the clearBreakshs2l command.

Build 57

186

Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.12 clearBreaks command

Action: Removes all previously set breakpoints [s).

To remove an individual breakpointi_ygu can use the
clearBreakpointOnCurrentlineli86l command.

Syntax:

clearBreaks

Client menu: Breakpoints > Clear All Breakpoints

Introduced: —

5.13 clearButton command

Action: Removes all previously set maggings@ for a particular Client button.

Syntax:
clearbutton buttonName
where buttonName is one of:

e button®, buttoni, ... button14, the names of the main button
@F@ﬁ buttons

° extraButton®, extraButtoni, ... extraButton14, the names of
the extra button barl+2] buttons

After you execute the command, the button is removed immediately
from the button bar to which it applies but not from the button-mapping
file (ui.xml or uimore.xml) if it was specified there. A restart of the
Client restores any mappings you remove with clearButton, if they
were in the ui.xml or uimore.xml file.

See also the mapButtonkzsl command.
Client menu: —

Introduced: Build 57

Janus/TN3270 Debugger User's Guide 187

The Client Command Reference

5.14 clearExecutionTrace command

Action: Clears the Execution Trace[13 display.

Syntax:

clearExecutionTrace

Client menu: Window > Clear Execution Trace

Introduced: Build 37

5.15 clearHistory command

Action: Clears the Execution History window.[132)
Syntax:
clearHistory
Client menu: —

Introduced: Build 50

188 Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.16 clearKey command

Action: Removes all previously set maggings@ for a particular Client
keyboard-key combination.
Syntax:

clearKey key

where key is a keyboard key: a single letter or digit, or one of F2
through F12 (the function keys)

Immediately after you execute the command, the keyboard shortcut
loses effect but its mapping is not removed from the button-mapping
file (ui.xml or uimore.xml) if it was specified there. A restart of the
Client restores any mappings you remove with clearKey.

See also the mapKeyb28 and clearbuttonfis?l commands.
Client menu: —

Introduced: Build 57

5.17 clearMacroConsole command

Action: Clears the Console window. k23]
Syntax:
clearMacroConsole
Client menu: —

Introduced: Build 50

Janus/TN3270 Debugger User's Guide 189

The Client Command Reference

5.18 clearStatus command

Action: Clears current message (error or informational), if any, from the Client
Status barlss1.

Syntax:
clearStatus

This command be useful to reduce confusion when developing
macros: at the start of the macro, you can clear any earlier messages,
so you will know that any subsequent messages are from the macro
under development.

Client menu: —

Introduced: Build 58

5.19 clearWatch command

Action: Removes|ss) all watched items from the Watch Window.

Syntax:

clearWatch

Client menu: Data Display > Clear Watch

Introduced: —

190 Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.20 clearWebBuffer command

Action: Clears the Web Buffer page[121.
Syntax:
clearWebBuffer

Client menu: Window > Clear Web Buffer

Introduced: Build 43

5.21 closeCommandLine command

Action: Closes the Command Line dialog boxfs23] (entitled Macro Command Line
prior to Client build 53), which lets you run a macro by entering its
name and any parameters.

Syntax:
clearCommandLine

See also openCom mandLineps3.

Client menu: —

Introduced: Build 53

5.22 closeExternalAuditTrailWindow command

Action: Closes an external Audit Trail window.[zoé)

Syntax:
closeExternalAuditTrailWindow

Client menu: —

Introduced: Build 50

Janus/TN3270 Debugger User's Guide 191

The Client Command Reference

5.23 closeExternalButtonWindow command

Action: Closes an external Button Bar window.42)

Syntax:
closeExternalButtonWindow

Client menu: —

Introduced: Build 54

5.24 closeExternalExecutionTraceWindow command

Action: Closes an external Execution Trace window.[208)

Syntax:
closeExternalExecutionTraceWindow

Client menu: —

Introduced: Build 50

5.25 closeExternalWatchWindow command

Action Closes an external Watch Window. kos]

Syntax:
closeExternalWatchiWindow

Client menu: —

Introduced: Build 50

192

Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.26 closeExternalWebBufferWindow command

Action Closes an external Web Buffer window.[z0d

Syntax:
closeExternalWebBufferWindow

Client menu: —

Introduced: Build 50

5.27 closeExternalWindows command

Action: Closes any open Client external Windows.[06)
Syntax:
closeExternalWindows

Client menu: Window > Close External Windows

Introduced: Build 50

5.28 closeHistory command

Action: Closes the Execution History window.[132]
Syntax:
closeHistory
Client menu: —

Introduced: Build 50

Janus/TN3270 Debugger User's Guide 193

The Client Command Reference

5.29 closeMacroConsole command

Action:

Client menu:

Introduced:

Closes the macro consolels2a.

Syntax:
closeMacroConsole

See also openMacroConsole. Eeﬁ

Build 53

5.30 closeValueDisplay command

Action:

Client menu:

Introduced:

Closes the current Value window@, if any; takes no action if no Value
window is open.

Syntax:
closeValueDisplay

A Value window is used by multiple Client operations and commands
to display or expand values (for example, the expandList@,
expandObiectEﬁ,pafgiEﬁ,paiEﬁ,andvalueDisplayEﬁ
commands).

Build 50

194

Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.31 continuelf command

Action Determines whether the processing of a Debugger macrolsi7] may
continue. If the state ("True" or "False") of a specified command argument (
macro variable|3_27'1, client function@, or constant) is True, the macro
continues. As of Build 62, continueIf can evaluate the truth of an
expression (equality or inequality) involving macro variables, client
functions, or constants.

If the state of the continueIf argument or comparison expression is
False, the macro containing this command and any macro(s) within
which this macro is contained terminate (without error). This behavior
contrasts with that of the continueMacroIflies com mand, which exits only
the macro containing the continueMacroIf command.

Syntax:
continueIf test
and prior to Build 62 fest is:
&var | &&function | const
and as of Build 62 test is:
&var | &&function | const [= | <> &var | & function | const]
Where:
e &varis a macro variable that may or may not already exist.
e &&function is a Client function. Requires Build 58 or higher.
e constis a constant. Requires Build 58 or higher.

e = and <> are equality and inequality operators, respectively.

Notes:

If continueIf is used with a single argument and that argument is © or a
zero length (null) string, or if it is undefined, its state is considered to be
False. For all other values, its state is considered to be True.

In an equality comparison, a null string compared to a null string is True,
and any undefined item makes an equality comparison False. Each of
these truth outcomes is reversed in an inequality comparison.

Example:

Janus/TN3270 Debugger User's Guide 195

The Client Command Reference

Scope:

Client
menu:

Execute Step and optionally update history
nospan

step

continueIf &historyWanted

getHistory

continueIf &testMe <> &testMe2

Allowed only in Debugger macros; not available as a mappable Client
command

Introduced: Build 37

5.32 continueMacrolf command

Action:

Determines whether the processing of the Debugger macrof17l that
contains this command may continue. If the state ("True" or "False") of a
specified command argument (macro variable|3_251, client functionpzsl, or

constant) is True, the macro continues. As of Build 62, continueMacroIf

can evaluate the truth of an expression (equality or inequality) involving
macro variables, client functions, or constants.

If the state of the command argument is False, the macro terminates
(without error). This behavior contrasts with that of the continueIf[e3)
command, which exits not only the macro containing the continueIf
command but also any macro(s) within which that macro is contained.

Syntax:

continueMacroIf test
and prior to Build 62 fest is:

&var | &function | const

and as of Build 62 test is:

&var | &&function | const [= | <> &var | & function | const]

Where:

e &varis a macro variable that may or may not already exist.

e &&function is a Client function. Requires Build 58 or higher.

196

Janus/TN3270 Debugger User's Guide

The Client Command Reference

e constis a constant. Requires Build 58 or higher.

e = and <> are equality and inequality operators, respectively.

Notes:

If continueMacroIf is used with a single argument and that argument is
or a zero length (null) string, or if it is undefined, its state is considered to
be False. For all other values, its state is considered to be True.

In an equality comparison, a null string compared to a null string is True,
and any undefined item makes an equality comparison False. Each of
these truth outcomes is reversed in an inequality comparison.

Example:

See if it is watched, done if not

in watchWindow searchFromTop &argstring
continueMacrolf &&searchSuccess

#

It was watched, remove and tell what we did
removeCurrenthatch

echo &&concatenate("removed watch ", &argstring)

continueMacrolf &testMe = 1

continueMacroIf &8&blackOrWhitelList <> 'black'

Scope: Allowed only in Debugger macros; not available as a mappable Client
command

Client —

menu:

Introduced: Build 57

Janus/TN3270 Debugger User's Guide 197

The Client Command Reference

5.33 copy command

Action: Copies to the clipboard the lines currently visible in the active tabbed
gagem.

Syntax:

copy

Client menu: Window > Copy

Introduced: —

5.34 createMacro command

Action: Lets you name (via a Windows dialog box) and edit (via Windows
Notepad) a new blank Debugger macrobi7lfile.

Syntax:

createMacro

Client menu: Macros > New Macro

Introduced: Build 26

198 Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.35 debugPreview command

Action: When the Source Preview feature[sslis enabled, triggers a full
download of the program source code for normal debugging. If the
program has compilation errors, the full compilation error listing is
downloaded.

Syntax:

debugPreview

Client menu: Execution > Debug Previewed Source

Introduced: Build 30

5.36 decrement command

Action: Decreases the value by 1 of a specified numeric macro variablels2?. If
the macro variable is non-numeric or is undefined, an error is issued.

Syntax:
decrement &var

where &var is a macro variable that may or may not already exist.

The inverse of this command is increment.bi7] A related Client function
is &&sumpa7l.

Client menu: —

Introduced: Build 57

Janus/TN3270 Debugger User's Guide 199

The Client Command Reference

5.37 disableButton command

Action: Disables the (currently enabled) button bar button[ss1that you specify. A
disabled button performs no action and has gray text. You might want to
disable a button to simplify the button bar display for a particular
context.

Syntax:
disableButton buttonName

where buttonName is button@, buttonl, etc; thatis, the name of a
currently mappedbssl button.

If the command executes successfully, you receive a Disabled
button: buttonName message, and the button's label changes from
black text to gray.

See also the enableButton[02 command.

Client menu: —

Introduced: Build 62

200 Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.38 echo command

Action: Displays a message to the user.
Syntax:
echo message
where message is one of these:

e Anon-quoted string that contains the message.

e AClient functionls29. The result of the function execution is
displayed as the message.

The message string starts with the first non-blank character after the
echo keyword, and it continues as far as the end of the line. For
example:

echo Have a nice day!

The message is normally displayed in a standard Windows
informational box (entitied Macro message). If the macro consolek2al is
open, however, the message is sent to the console instead.

Note: If you are specifying a Client mapping commandps2l and your
message includes an ampersand character (&), you must XML
entity-encode the character. For example, to map the
command echo &foo, you specify it like this:

<mapping command="echo &foo" button="buttonl3"/>

Client menu: —

Introduced: Build 27

Janus/TN3270 Debugger User's Guide 201

The Client Command Reference

5.39 editMacroFromUISelection command

Action:

Client menu:

Introduced:

Lets you select and open for editing (via Windows file-selection dialog)
an existing Debugger macrob17 file.

Syntax:
editMacroFromUISelection

Macros > Edit Macro

Build 53

5.40 enableButton command

Action:

Client menu:

Introduced:

Enables the (currently disabled) button bar button[ss) that you specify. A
disabled button performs no action and has gray text.

The enableButton command affects only buttons that are disabled
because they were specified in a previous disbleButtonpodl
command. If a button is disabled because its action is not appropriate in
the current debugging context, enableButton does not enable the
button. For example, after you cancel a request, the Cancel and Clear
Breaks buttons are disabled, and an enableButton command for one of
these buttons has no effect: the button remains disabled and no return
message is displayed.

Syntax:
enableButton buttonName

where buttonName is button@, buttonl, etc; that is, the name of a
currently mappedfs3l button.

If the command executes successfully, you receive an Enabled

button: buttonName message, and the button's label changes from
gray text to black.

Build 62

202

Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.41 evaluate command

Action: Constructs and runs a Client command. The evaluate argument
values are concatenated into a single string and run as a Client
command.

Syntax:
evaluate {&var|['stringl'|"string2"} ...
where:

e &varis a previously defined macro variables27.

e string1 and string2 are single- or double-quoted string literals.

No blanks are placed between the argument values when they are
concatenated, so you may have to provide for them within quoted string
values. If a macro variable is not defined, or if the string that is built is
not a valid command, an error is issued.

Here is a macro definition that makes heavy use of the evaluate
command:

histButtons.macro: Assign extrabutton<extrBtn>-<extrBtn+3>
for history traversal

Usage: macro historyButtons <extrBtn>

extraButtonbar main

set &bnum = &argstring

evaluate 'mapButton extrabutton' &bnum ' previousHistory'
increment &bnum

evaluate 'mapButton extrabutton' &bnum ' nextHistory'

increment &bnum

evaluate 'mapButton extrabutton' &bnum ' firstHistory'

increment &bnum

evaluate 'mapButton extrabutton' &bnum ' lastHistory'

evaluate 'echo buttons ' &argstring '-' &bnum ' set for history’

Client menu: —

Introduced: Build 57

5.42 expandList command

Action: Disglays@ in a Value window the list items in the $list, Stringlist, or
Arraylist referenced by the variable specified as the command
argument.

Janus/TN3270 Debugger User's Guide 203

The Client Command Reference

Same as the List Display context menu option for Watch Window items,
including how to control the number of items displayed.

For example:
expandList %ls

If the command argument does not reference a $list, Stringlist, or
Arraylist, you receive an error message.

If issued by a macro, and the Macro Consolep2alis open, then the value
is displayed in the Macro Console window.

Client menu: —

Introduced: Build 43

5.43 expandObject command

Action: Disglaysmﬂ in a Value window a list of the class Variable names and
values of its required object instance argument. Same as the Expand
Object context menu option for Watch Window items.

For example:
expandObject %scout

If the command argument does not reference an object, or if the object
does not have class variables, you receive an error message.

If issued by a macro, and the Macro Consolepz4l is open, the value is
displayed in the Macro Console window.

Client menu: —

Introduced: Build 43

204 Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.44 extraButtonBar command

Action: Opens and determines the position of a Client's extra button bar(421,
Command options locate the bar in an external window /308l or on the
Client main window, merged with the main button bar.

Syntax:
extraButtonbar [position]

where position is one of these options that control the disposition of the
extra button bar (the Extra Buttons window):

e top docks the window (places it, immobile) at the top left corner of
the desktop.

e bottom docks the window at the bottom left corner of the desktop.

e float places the window centrally and non-docked (mobile) on
the desktop.

e main adds the extra buttons to the main button bar, immediately
following the last main button. Available in Client build 57. This is
equivalent to selecting the Extra Buttons option in the Preferences
[181 dialog box.

e hide closes the the Extra Buttons window.

e show opens the window and restores the previous dock mode, if
any, or uses float as the default mode.

If the Extra Buttons window is already open, show has no effect.

The show parameter is the default.

Client menu: Window > Show Extra Button Bar Window

Introduced: Build 56

Janus/TN3270 Debugger User's Guide 205

The Client Command Reference

5.45 feoDisplay command

Displays FOR EACH OCCURRENCE OF (FEO) statement

Action: information[114 (current OCC subscript value) for the current source
line (if it is an FEO statement). If the current source line is not an FEO
statement, an error is issued.

This command is equivalent to right-clicking a source line and
selecting FEO OCC IN Value from the context menu.
Syntax:
feoDisplay
Client menu: —

Introduced: Build 58

5.46 firstHistory command

Action: Scans chronologically backward in the current statement execution
historyfis2], then highlights in the Source Code or Daemon tab the first
(earliest) statement in the history.

Syntax:

firstHistory

Client menu: Execution > Select First History Line

Introduced: Build 54

206 Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.47 focusToSearchBox command

Action: Gives the input focus to the Search text areal+4). Once that area has
focus, pressing the Enter key invokes the searchDownls1) command,
SO you can repeat a search using only the keyboard.

Syntax:
focusToSearchBox

By default, the Ctrl+F key combination also gives focus to the Search
text area.

Client menu: —

Introduced: Build 29

5.48 generatePac command

Action: Generates a PAC (Proxy Auto Config) JavaScript file from the Debugger
configuration settings in debuggerConfig.xml. If this file is defined to
the Internet Explorer browser, IE will use the Debugger Client as a
proxy only for requests for the hosts (Onlines) specified|ssol in
debuggerConfig.xml.

The IE browser does this host filtering if the PAC file location is
specified for it in the Address value in Tools > Internet options >
Connections > LAN settings > Use automatic configuration script.

By default, generatePac merges the code it generates with that of an
existing PAC file (if such a file is already specified in the Internet
Explorer configuration options).

Syntax:

generatePac [file [overwrite|nomerge]]
Where file is the name of a file which, if not specified, defaults to
debuggerInternalPac.js. The generated file is placed by default in

the Client work-file folderlo3l. If no such work folder is configured, the
Client installation folder is used.

If you specify a file value:

Janus/TN3270 Debugger User's Guide 207

The Client Command Reference

¢ You can use quotation marks to indicate an absolute or relative
Windows file-system path:

= [f quoted (for example, generatePac "c:\pac\debuggerPac.
js"), the file value is treated as an absolute file path.

= If not quoted (for example, generatePac foo.js), the value is
treated as a path relative to the work-file folder.

* You can also use a file URL (for example, file://c:\xxx\yyy.]js
) to specify the file.

If a file with the same name as file already exists, it will not be
overwritten, unless you specify overwrite. If you use overwrite, the
file value must be explicitly specified.

Note: If your file specification contains an error (typo, incorrect file or
path name, etc.), the Internet Explorer browser ignores the command
and does not inform you of the error.

When generatePac runs, it reports its activity in the Debugger Client
consolef24. For example:

Command: generatePac foo.js overwite
Cenerated New Pac file: foo.js
Added: 5 web servers fromthe configuration.
Cenerated Pac Fil e:
/1 foo.js generated by debugger client on: 2013 05 23 15:59: 20
function Fi ndProxyFor URL(url, host) {

urlLc = url.tolLowerCase();

i sDebuggabl e = (

(shExpMmat ch(url Lc, "http://sirius-software.com 3666/*")

W
(shExpMat ch(url Lc, "http://sirius-software.com 9219/*"))

I
(shExpmat ch(url Lc, "http://sirius-software.com3667/*")

I
(shExpMat ch(url Lc, "http://sirius-software.com 3000/*")

I
(shExpMmat ch(url Lc, "http://sirius-software.com80/*")

W
(shExpMat ch(url Lc, "http://sirius-software.coni*")

);
if (isDebuggable) return "PROXY 127.0.0. 1: 8081; DI RECT";
return "D RECT";

}

The quoted host URLs above are copied from the debuggerConfig.
xml file. The last of them (with no explicit port number appended) is
generated when a port 80 specification is present in debuggerConfig.
xml.

208

Janus/TN3270 Debugger User's Guide

http://sirius-software.com:3666/*")
http://sirius-software.com:9219/*")
http://sirius-software.com:3667/*")
http://sirius-software.com:3000/*")
http://sirius-software.com:80/*")
http://sirius-software.com/*")

The Client Command Reference

See also the setIEmodelsd command, which combines the
generatePac functionality with automatic specification and removal of
the PAC file in the IE configuration settings when the Client starts and
closes.

Client menu: —

Introduced: Build 62

5.49 getHistory command

Action: Displays a historyfa2 (in an Execution History window or in the Execution
Trace page) of the statements executed thus far during program

evaluation. The history includes calls and returns for methods and
subroutines (as many as 1000 statements).

Syntax:
getHistory

See also the pr‘eviousHistor‘ym, nextHistor‘ym, firstHistory
208, and lastHistory@ commands, which let you view highlighted

history statements within the program in the Source Code tab (or
Daemon tab).

Client menu: Execution > Get/Display History

Introduced: Build 34

5.50 getVariablesForClass command

Action: Disglaysmﬂ a list of the names (not values) of the variable members in
the system or user class that is specified as the command argument.

Similar to expandOb‘iectm, but does not scan the code for the values
of a particular object instance.

For example:

getVariablesForClass cats

Janus/TN3270 Debugger User's Guide 209

The Client Command Reference

If the class in the command argument is not found, or if the class does
not have member variables, you receive an error message.

If issued by a macro, and the Macro Consolek24lis open, then the value
is displayed in the Macro Console window.

Client menu: —

Introduced: Build 43

210 Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.51 help command

Action: Displays the Debugger's Windows Help file, or as of Builds 59 and 60,
displays a brief description of a specified Client com mandhz7 or
function[z23, or displays a list of the available user preference options or
of the file types that the Debugger ignores (that is, does not display for
debugging).

Syntax:
help [command | function | preference | ignoredFiles]
Where these are the parameter options:

e Specify a Client command or function (without regard for case).

e Specify preference to display the user preferences available to
you as options of the setPreferencebssl command. This option is
available as of Build 60.

e Specify ignoredFiles to display a list of the filtered file types 2\
This option is available as of Build 60.

If you issue help preference, output like the following is displayed:
Targets for setPreference:

breakAfterReadScreen
caseSensitiveAssert
debuggerDirectives
historyToTrace
ignoredFileTypelist
ignoreMacroErrors
initExclude
macroAutorun
pauseAtEndEval
stopOnAssertFailure
useProclLists
useRoutinelLists
valueDisplayOnConsole

If you issue help ignoredFiles, output like the following is displayed:

Ignored file types (if ignoredFileTypeList is on):
css,gif,htc,ico,jpeg,jpg,js,png,xml,xsl

Client menu: Help > Help Topics

Introduced: —

Janus/TN3270 Debugger User's Guide 211

The Client Command Reference

5.52 hideLower command

Action: Hides the lower sectionl:2 of the Client main window. This is useful
where the Audit Trail and Watch Window are in separate windows on the
same or another monitor.

This command is equivalent to selecting the Hide Lower Section option
of the Main Window Options section of the Preferences|1¢1 dialog box.

Syntax:
hideLower

hideLower has no effect if the lower windows are hidden when the
command is issued.

See also:

e The toggleLowerEa command also hides the lower windows if
they are not hidden when the command is issued, but which
restores the windows if they were hidden.

e The restorelower|8 command restores the lower windows if
they were hidden.

e The openExternalWatchWindowlssl command lets you access

the Watch Window if the lower section of the main window is
hidden.

Client menu: File > Preferences > (Main Window Options) Hide Lower Section

Introduced: Build 57

212 Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.53 httpGet command

Action: Attempts to execute an HTTP GET file download for the file whose
URL you specify as the command parameter. Useful for testing the
Proxy Auto Configure (PAC) filelse2 feature and as needed. Bypasses
current settings in the Client's Preferences|1s] window.

Syntax:
httpGet file url

If the GET succeeds, the Client Status barl4¢ displays a message like:
HTTP GET completed.

You can use the Client consoleb2al to view the content of the file you
download.

See also httgPutFilem and retryHttpPac pa.

Client menu: —

Introduced: Build 63

Janus/TN3270 Debugger User's Guide 213

The Client Command Reference

5.54 httpPutFile command

Action:

Attempts an HTTP PUT file upload of the file you specify to the URL you
specify.

Useful for testing the Proxy Auto Configure (PAC) fileko?) feature.
Bypasses current settings in the Client's Preferences|1s] window.

Syntax:
httpPutFile file url

where the Client searches first for £ilein the Client's work files [3s4.

For example:

httpPutFile debuggerInternalPac.js
http://sirius.sirius-software.com:9292/pacman/PAC.172.16.60.38.3S

The Client Status bar reports on the result of the command; for example,
a message like:

HTTP PUT file upload completed.

See also httpPutStringhis), httpGethid, retryHttpPacks7), and
&¤tPacFilehss),

Client menu: —

Introduced:

Build 63

214

Janus/TN3270 Debugger User's Guide

http://sirius.sirius-software.com:9292/pacman/PAC.172.16.60.38.JS

The Client Command Reference

5.55 httpPutString command

Action: Attempts an HTTP PUT upload using the string and the URL you
specify.

Useful for testing the Proxy Auto Configure (PAC) filefso2 feature and as
needed, the command bypasses the current settings in the Client's
Preferences| 18] window.

Syntax:

httpPutString string url
For example, the following command stores a quoted literal string in a
file in a Janus Web Server configured to use the file name MYSTRING.
JS:

httpPutString 'debuggerInternalPac.js'
http://sirius.sirius-software.com:9292/pacman/MYSTRING.JS

The Client Status bar[49] reports on the result of the command, with for
example, a message like:

HTTP PUT string upload completed.

See also httpPutFilebid) httpGethid, retryHttpPacks?), and
&¤tPacFilelss.

Client menu: —

Introduced: Build 63

Janus/TN3270 Debugger User's Guide 215

http://sirius.sirius-software.com:9292/pacman/MYSTRING.JS

The Client Command Reference

5.56 include command

Action:

Scope:

Client menu:

Introduced:

Calls another Debugger macroli7,

Syntax:
include macroname

where macroname is the non-quoted name of the macro.

Allowed only in Debugger macrosbi7l; not available as a mappable
Client command.

5.57 includelf command

Action:

Scope:

Client menu:

Introduced:

Conditionally calls another Debugger macrols17. The specified macro is
included if and only if the state ("True" or "False") of a specified macro
variablekz27is True. If the state of the macro variable is False, no
action is taken and the macro continues.

If the variable is o or a zero length (null) string, or if it is undefined, its
state is considered to be False. For all other values, its state is
considered to be True.

Syntax:
includeif &var macroName
where:

e &varis a macro variable that may or may not already exist.

e macroName is the non-quoted name of a macro.

Allowed only in Debugger macros; not available as a mappable Client
command.

Build 57

216

Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.58 increment command

Action: Increases the value by 1 of a specified numeric macro variablels21. If
the macro variable is non-numeric or is undefined, an error is issued.

Syntax:
increment &var

where &var is a macro variable that may or may not already exist.

For an example that uses the increment command, see the evaluate
203 command.

The inverse of this command is decrement/iod. A related Client
function is &&sumba7l

Client menu: —

Introduced: Build 57

5.59 jumpToLine command

Action: Transfers control to a specified request statement in the Source Code
or Daemon page, then executes that statement.

The command's required argument is a number or keyword that
indicates the target statement:

jumpToLine [current | number]
where:

e The keyword current specifies a jump to and then execution of
the current statement.

e numbermay be in one of three forms:
nnn | -nnn | +nnn

= nnnspecifies an "absolute jump" to the nnn statement line

number[111in the Source Code or Daemon page display, then
an execution of that statement.

Janus/TN3270 Debugger User's Guide 217

The Client Command Reference

Client menu:

Introduced:

. -nnnor +nnnspecifies a "relative jump," jumping the
indicated number of statements backward or forward relative
to the current (yellow highlighted) line, followed by the
execution of that statement.

For example, specifying -1 re-executes the statement prior to the
current line. +1 skips the current executable statement and
executes the one following it.

If you use the command in a macroka7t

1.

2.

When you specify the jumpToLine command in the macro,
explicitly supply its argument (the current keyword or a number
to indicate the target line) or specify an argument variable.[z22

Observe the jump validation rules.[s2)

If you use the command in a mapped button or hot key@'ﬂ:

1.

2.

Do not specify an argument for the jumpToLine command in the
mapping; you specify the argument (the current keyword or a
number to indicate the target line) in the Entity-name input box]so].

Observe the jump validation rules.

For information about invoking a jump by right-clicking a line in the
Source Code or Daemon tab, see Altering the flow of execution. [s1]

Build 27

218

Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.60 jumpToMatch command

Action: Transfers control to a request statement that contains a specified
matching string, then attempts to execute that statement.

Syntax:
jumpToMatch string

where string is the string for which a match is searched from the top
(first) line in the Source Code or Daemon page. The search string may
be a regular expression, as described for the Search button[391.

The nesting level of a statement has no effect on whether it is located.
If a match is not found, JumpToMatch string not found is displayed
in the Status area.[9] If a match is found but the statement is not

executable, Invalid line for jump is displayed in the Status area.

If you use the command in a macrob7\

1. When you specify the JumpToMatch command in the macro,
explicitly supply its argument (the current keyword or a number
to indicate the target line) or specify an argument variable. [:22]

2. Observe the jump validation rules.[sz]

If you use the command in a mapped button or hot keyleed:

1. Do not specify an argument for the JumpToMatch command in the
mapping; you specify the argument (the current keyword or a
number to indicate the target line) in the Search text box.

2. Observe the jump validation rules.

For information about invoking a jump by right-clicking a line in the
Source Code or Daemon tab, see Altering the flow of execution. [s1]

Client menu: —

Introduced: Build 27

Janus/TN3270 Debugger User's Guide 219

The Client Command Reference

5.61 Kkill command

Action: Stops a running macrolsi7and issues a message indicating that fact.
If kill is issued and the specified macro is not running, you receive a
message indicating that no such macro is running. This is most
suitable if a macro's execution spans multiple requests.

Syntax:
kill macroName

where macroName is the name of the macro you want to stop.

Client menu: Macros

Introduced: Build 58

220 Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.62 labelButton command

Action: Lets you replace the label of a Client button bar button[as1.

Syntax:
labelButton buttonName newlabel
where:

e puttonName is button@, buttonl, etc; that is, the name of a
currently magged@ button.

e newabel can be as many as 50 characters (the button is
expandable).

If the command executes successfully, the label changes immediately,
and you receive a Label set for: buttonName message.

Example:

The following macro uses labelButton:

continueMacrolIf &&blackOrWhiteList = 'black'
labelButton button® BlackList On

turnOffBlackList
restoreTitle

set &changed = 1
clearStatus

Client menu: —

Introduced: Build 62

Janus/TN3270 Debugger User's Guide 221

The Client Command Reference

5.63 lastHistory command

Action:

Client menu:

Introduced:

Scans chronologically forward in the current statement execution
history@, then highlights in the Source Code or Daemon fab the last
(latest) statement in the history.

Syntax:

lastHistory

Execution > Select Last History Line

Build 54

5.64 loadWatch command

Action:

Restores from a local .watch file a list of items to display in the Watch
Window, as described in Saving and restoring Watch Window
contents.[ss)

Syntax:
loadWatch [watchfile]
where the command's optional argument is the name of the .watch file

to be loaded. If you omit watchfile, a Windows file selection dialog box
lets you select a saved .watch file when the command executes.

Otherwise, if you specify a watchfile argument (the .watch extension
may be omitted), the named file opens when the command executes.

To locate the watch file you identify, the Client looks in the folder that
contains the JanusDebugger . exe file, by defaultfo3. If the watch file
cannot be found, an error is issued.

You may also specify the watch file name in these ways:

e As amacro variablefz?. For example:

set & = "foo"
loadWatch &a

e As part of an absolute file system path, which must be enclosed in
quotation marks. Requires Build 58 or higher. For example:

loadWatch "c:\temp\foo.watch"

222

Janus/TN3270 Debugger User's Guide

The Client Command Reference

The saveWatchbsol command saves the Watch Window contents to a
watch file.

Client menu: Data Display > Load Watch

Introduced: Build 49

5.65 macro command

Action: Identifies a user-defined macro[s17.

Syntax:
macro macroName

where macroName is the name of the macro you are identifying.

Client menu: —

Introduced: Build 26

5.66 macroConsole command

Action: Invokes the macro consolek24, which reports the starting and
completing of macro execution, as well as any error messages.

Syntax:
macroConsole

A synonym for macroConsole is openMacroConsole. [238)

See also closeMacroConsole. 94

Client menu: Macros > Console

Introduced: Build 43

Janus/TN3270 Debugger User's Guide 223

The Client Command Reference

5.67 macroTrace command

Action: Starts or stops a display in the macro consolek24) of a trace of all
macro statements in your debugging session.

Syntax:
macroTrace [on | off]
where:

e on indicates that macro lines will be traced until turned off with
macroTrace off.

e off turns off macroTrace, if it is on.

Note: When macroTrace is turned on, the trace output is produced
only if the macro console is open.

This is an example of macro trace output:

>>>macroTrace: step

>>>macroTrace: assert %i =1
>>>passed...

>>>macroTrace: run
>>>macroTrace: step
>>>macroTrace: assert %i = 2

>>>passed...
Note that the trace includes the pass or fail status of assert/i78
commands, and it includes syntax help if commands have syntax
errors (as of Client Build 59).

Client menu: —

Introduced: Build 50

224 Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.68 macroWait command

Slows down Debugger macro execution by adding a wait after each

Action: command in the macrofs17.

Syntax:
macroWait nnn
where:

e nnnis the number of milliseconds to wait after the execution of
each command in the macro.

Scope: Allowed only in Debugger macros; not available as a mappable Client
command

Client menu: —

Introduced: Build 57

5.69 mainButtonBar command

Action: Determines the position within the Client window (non-external) of the
Client's main button barfssl. To place the button bar in an external
window, use the buttonBarfis? command.

Syntax:
mainButtonBar position
where position is one of these options:

e top places the bar in its default location, above the Client main
window.

e center places the bar below the main window (but above the
search, tracing, and value displaying controls).

e bottom places the bar at the very bottom of the Client window.

The show parameter, new in Build 56, is the default.
Client menu: File > Preferences > Main Button Bar

Introduced: Build 57

Janus/TN3270 Debugger User's Guide 225

The Client Command Reference

5.70 manual command

Action Displays the PDF reference manual for the Debugger.

Syntax:

manual

Client menu: Help > View PDF Manual

Introduced: —

5.71 mapButton command

Action: Lets you assign a command to a Client buttonbss! without having to edit
a mapping file (ui.xml or uimore.xml) and to restart the Client.

Syntax:
mapButton [buttonModifier-]buttonName command
Where (case not important):

e bputtonModifier is one of:
L] Alt

Maps the Alt-key version of the button (command runs when
you click the button while holding down Alt)

= Cntrl, Control, Cntl, Ctl, or Ctrl

Maps the control-key version of the button (command runs
when you click the button while holding down Citrl)

buttonModifier is optional, and its default is no modifier (command
runs when you click the button).

e buttonName is one of:

= button®, buttoni, ... buttoni4, the names of the main
button barlss] buttons

. extraButton®, extraButtonl, ... extraButtonl4, the
names of the extra button bar(42] buttons

226

Janus/TN3270 Debugger User's Guide

The Client Command Reference

e command is either:

= AClient command[i77

= The separator keyword (case not important), which

%werts the buttonName button to a visual separator button
289

Examples:

mapbutton buttone viewtext

mapButton ctl-button® showAbout

mapButton ALT-button® showCommands

mapButton eXTRAbutton® openmacroConsole
After you execute the command, the new mapping is reflected
immediately in the button bar to which it applies. The new mapping

does not appear in the button-mapping file. The new mapping does
not survive a Client restart.

The command to remove a button mapping is clearButton. 187 The
command to map a keyboard shortcut is mapKey. 23]

Client menu: —

Introduced: Build 56

Janus/TN3270 Debugger User's Guide 227

The Client Command Reference

5.72 mapKey command

Action: Lets you assign a keyboard shortcutpssl without having to edit a
mapping file (ui.xml or uimore.xml) and to restart the Client.

Syntax:
mapKey [modifier-]key command
Where (case not important):

e modifier is one of:
" Alt

Maps the Alt-key version of a key combination (command
runs when you hold down the Alt key and press the specified

key)
= Cntrl, Control, Cntl, Ctl, or Ctrl

Maps the control-key version of a key combination

modifier is optional, and its default is no modifier.

* Kkeyis a keyboard key: a single letter or digit, or one of F2 through
F12 (the function keys)

e commandis a Client command[i77)

Examples:

mapkey f2 Step
mapKey alt-f2 stepover
mapkey Ctl-f2 stepout

Mapkey ALT-2 run

After you execute the command, the new mapping is reflected
immediately in the keyboard. The new mapping does not appear in the
mapping file, and it does not remain if the Client is restarted.

The command to remove a keyboard shortcut mapping is clearKey.
188 The command to map a Client button is mapButton. [228)

Client menu: —

Introduced: Build 57

228 Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.73 moveBrowserToTop command

Action: Brings the web browser window to the top of your current stack of
open windows.

Syntax:
moveBrowserToTop

Formerly available for cases where the Client was paused while
awaiting user input (for example, READ SCREEN or

$WEB_FORM DONE processing), this window stack manipulation is
invoked at any time by executing moveBrowserToTop. Like the window
feature for READ SCREEN or SWEB_FORM DONE code, you set up
moveBrowserToTop processing by specifying your browser's program

@m in the Preferences dialog box in the Debugger Client.

Client menu: —

Introduced: Build 54

5.74 moveTn3270ToTop command

Action: Brings the window of your 3270 terminal-emulator program to the top
of your current stack of open windows.

Syntax:
moveTn3270ToTop

Formerly available for cases where the Client was paused while
awaiting user input (for example, READ SCREEN processing), this
window stack manipulation is invoked at any time by executing
moveTn3270ToTop. Like the window feature for READ SCREEN code,
you set up moveTn3270ToTop processing by specifying your emulator's

program title[s11in the Preferences dialog box in the Debugger Client.

Client menu: —

Introduced: Build 54

Janus/TN3270 Debugger User's Guide 229

The Client Command Reference

5.75 nextCompileError command

Action: Finds the next line in error relative to the current line, if the request
being displayed fails to com pilefss

Syntax:
nextCompileError
You can map this command to a button that also has another

command or macro mapped to it. See Button toggle for compilation
errors|eed)

Client menu: Error > Next Compile Error

Introduced: —

5.76 nextHistory command

Action: Scans chronologically forward in the statement execution history[132,
then highlights in the Source Code or Daemon tab the statement that
was executed immediately following the statement that is currently
highlighted with the Execution Position color. |0l

Syntax:

nextHistory
Client menu: Execution > Select Next History Line

Introduced: Build 54

230 Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.77 noSpan command

Action: Reverses the default spanning behavior of a Debugger macrohi7 By
default, macro execution spans the evaluation of requests (if a request
completes before a macro is finished, the remaining macro
commands apply to the next request).

With noSpan in effect, any running macro is terminated at the end of
request evaluation.

Syntax:
noSpan

The spank74 command reverses a previously issued noSpan
command.

Scope: Allowed only in Debugger macroshi7]; not available as a mappable
Client command

Client menu: —

Introduced: Build 37

Janus/TN3270 Debugger User's Guide 231

The Client Command Reference

5.78 nsLookup command

Action: Requests a host name or IP address from the Domain Name System (DNS).
This is useful for debugging setup issues such as getting the IP number of the
Client workstation host or for testing the Client's ability to resolve a host name. It
is similar to the operating system nsLookup command.

Syntax:
nslookup [host]

Where host is the name of a TCP/IP host machine known to your local DNS
server. Specifying a host value displays that host's IP number. If host is not
specified, the IP number of the workstation on which the Client is running is
displayed.

Examples:

e Specifying:
nslookup google.com
produces the following output:

Looking up IP number for: google.com
IP Number is: 74.125.226.233

e Specifying:
nsLookup

produces the following output:

Looking up this workstation's IP number
IP Number is: 198.242.244.3

e Specifying an unknown host reults in an error message:

Looking up IP number for: googlasdasd
DNS lookup failure for: googlasdasd: No such host is known

Client —
menu:

Introdu Build 61
ced:

232 Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.79 openCommandLine command

Action: Invokes the Command Line dialog box, which lets you run a macro or
command. Any macro you identify must be located in the same folder
as the Debugger Client executable file or in a folder sgecified@ in the
debuggerConfig.xml file.

Syntax:
openCommandLine

See also closeCommandLinefol)

Client menu: Macros > Command Line

Introduced: Build 53

5.80 openExternaAuditTrailWindow command

Action: Displays in a separate, external windowls0d the current contents of the
Client Audit Trail tab. Or, it brings to the top of your current stack of
open windows the external Audit Trail window.

Syntax:

openExternalAuditTrailWindow

Client menu: Window > Open External Audit Trail Window

Introduced: Build 50

Janus/TN3270 Debugger User's Guide 233

The Client Command Reference

5.81 openExternalButtonWindow command

Action:

Client menu:

Introduced:

Displays in a separate, external window/z08 the current contents of the
Client's main button bar[ss] (restoring any previous docking position).
Or, if the main button bar is already open, it brings to the top of your
current stack of open windows the external Button Bar window.

Syntax:
openExternalButtonWindow

AbuttonBar showlsdl command has very similar effects.

Window > Show Main Button Bar in External Window

Build 54

5.82 openExternalExecutionTraceWindow command

Action:

Client menu:

Introduced:

Displays in a separate, external window 308 the current contents of the
Client Execution Trace tabl13) Or, it brings to the top of your current
stack of open windows the external Execution Trace window.

Syntax:

openExternalExecutionTraceWindow

Window > Open External Execution Trace Window

Build 50

234

Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.83 openExternalWatchWindow command

Action: Displays in a separate, external window/z08 the current contents of the
Client Watch Window. Or, it brings to the top of your current stack of
open windows the external Watch Window.

Syntax:

openExternalWatchWindow

Client menu: Window > Open External Watch Window
Data Display > Open External Watch Window

Introduced: Build 49

5.84 openExternalWebBufferWindow command

Action: Displays in a separate, external window/z08 the current contents of the
Client Web Buffer tabl121 Or, it brings to the top of your current stack of

open windows the external Web Buffer window.

Syntax:

openExternalWebBufferWindow

Client menu: Window > Open External Web Buffer Window

Introduced: Build 50

Janus/TN3270 Debugger User's Guide 235

The Client Command Reference

5.85 openMacroConsole command

Action:

Client menu:

Introduced:

Invokes the consolefs24, which reports the starting and completing of
macro or command execution, as well as any error messages.

Syntax:
openMacroConsole

The openMacroConsole command is a synonym for the
macroConsolel223 command.

See also closeMacroConsole. fied)

Macros > Console

Build 53

5.86 pafgi command

Action:

Client menu:

Introduced:

Displays all the visible fields for the current Model 204 field group, just
like the User Language PAFGI statement.

Syntax:
pafgi
Note: The debugging context must be a field group (for example, within
an FEO Of Fieldgroup loop), the version of the Sirius Mods

must be at least 7.6, and the version of Model 204 must be at
least 7.2.

For more information, see Displaying a record's field groups. 18]

Data Display > PAFGI

Build 46

236

Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.87 pai command

Action: Displays all the visible fields for the current Model 204 record just like
the User Language PAI statement.
Syntax:

pai

Note: The debugging context must be a record, and the version of the
Sirius Mods must be at least 7.6.

For more information, see Displaying all fields in a record.[115)

Client menu: Data Display > PAI

Introduced: Build 45

Janus/TN3270 Debugger User's Guide 237

The Client Command Reference

5.88 pin command

Action:

Client menu:

Introduced:

Pins the specified Client external window(s)@ﬂ, that is, keeps the
window(s) at the top of the Client PC's open window stack. Such a
window can be moved by mouse around the screen, and it can be
joined by other pinned windows. It remains at the top as long as it is
open, even if other external windows or applications are subsequently
opened. It can only be removed from the top by by closing it, by
unpinning it (the unpinps3l command), or by clicking its upper-right-
corner "Minimize" button.

Syntax:
pin {windowname | pattern | *}
where you must specify one of these:

e windowname, the (case not important) name, or title, at the top of a
Client work window or external window

e pattern, a character sequence that ends with an asterisk (*),
which performs a "wildcard" search (for example, ab* finds the

About window)

e Alone asterisk (*), which pins all open external windows
If you pin a window that is already pinned, the command is ignored. If

the command indicates a window that is missing or invalid, or if it does
not match an open external window, an error message is issued.

Context menu option (Pin) of external window title bar

Build 56

238

Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.89 preferences command

Action: Displays the Preferences dialog box (shown below), which is also
accessible from the File menul 181 and by default by the Ctrl+P
keyboard shortcut|2ssl.

Syntax:

preferences

Client menu: File > Preferences

Introduced: —

‘% Preferences o
Execution Options Open at Startup
72 i O
v Pause atend of evaluation Macro Autorun ~ External Main Button Bar
™ Run Until spans debug sessions
I BreakafterREAD SCREEN I Windows When Suspended (7.9+) ||| EXiraButionBar
I Source Preview (7.2+ mods) Minimum:[1000 | Size:[100 = ||I” External Watch Window
IHOpion= I Exlernal Audil Trail Window
IE Mode [
none j " " External Web Buffer Window

Display Options ™ External Execution Trace Window

Show atmost (100 = listitems. ¥ Restore watches on startup
Main Button Bar
™ Trim blanks from selectionin View Text [History to Execution Trace & Top
" Show long watch values in a Tooltip ¥ Use !debugger directives (7.6+) Center
 Boltom
Web Server Selection Program Titles

I" Exira Buttons

3270 Emulator

¥ sirus-software com9219
| Main Window Optlions

- Wi _
Web Browser Hide Lower Section

|Windows

Done

Janus/TN3270 Debugger User's Guide 239

The Client Command Reference

5.90 previousCompileError command

Action:

Client menu:

Introduced:

Finds the previous line in error relative to the current line, if the request
being displayed fails to com pilefss). If the program you are debugging
has no compilation errors, the commands does nothing.

Syntax:
previousCompileError
This command is unusual in that you can map it to a button that also

has another command or macro mapped to it. See Button toggle for
compilation errors boal

Error > Previous Compile Error

5.91 previousHistory command

Action:

Client menu:

Introduced:

Scans chronologically backward in the statement execution historyia2),
then highlights in the Source Code or Daem on tab the statement that
was executed immediately prior to the statement that is currently
highlighted with the Execution Position color.l08]

Syntax:

previousHistory

Execution > Select Previous History Line

Build 54

240

Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.92 reloadBlackList command

Action: Updates the existing Black List[771 with the current contents of the
blacklist.txt file, so you can dynamically update your Black List.

Same as clicking the Reload Black List button on the Proc Selection
page.

Syntax:

reloadBlackList

Client menu: Execution > Reload Black List

Introduced: Build 62

5.93 reloadWhiteList command

Action: Updates the existing White List[771 with the current contents of the
whitelist.txt file, so you can dynamically update your White List.

Same as clicking the Reload White List button on the Proc Selection
page.

Syntax:

reloadWhiteList

Client menu: Execution > Reload White List

Introduced: Build 28

Janus/TN3270 Debugger User's Guide 241

The Client Command Reference

5.94 reloadLists command

Action: Loads or reloads to the Client the Exclude/Include lists @, that is, lists
of procedures or routines (methods, or User Language "complex"
subroutines) whose code you want to be excluded from interactive
debuggingles|. These lists must be specified in particular text files:
excludeProc.txt, excludeRoutine.txt, includeProc.txt, and
includeRoutine.txt.

Syntax:

reloadLists

Same as clicking the Reload Proc/Routine/Method Lists button on the
Proc Selection page.

Client menu: —

Introduced: Build 58

242 Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.95 removeCurrentWatch command

Action: Removes the currently selected Watch Window(es1item. If there is no
currently selected item, it does nothing.

The current selected item may simply be the last added or clicked line
(and not highlighted), or it may be a highlighted line as the result of a
search or location (top or bottom) command.

Using removeCurrentWatch to remove a watched item is essentially
the same operation as right-clicking an item and selecting Remove from
the context menu.

Syntax:
removelatch
This "removeWatch" macro is an example of using the command:

RemoveWatch.macro

#
#
Usage: removeWatch varName

where varName is name of watched variable to remove
as it appears in the Watch Window.

For example, removelWatch %j

#

See if it is watched. If not, done:

in watchWindow searchFromTop &argstring
continueMacroIf &&searchSuccess

#

It was watched, so remove and report:
removeCurrentiatch

echo &&concatenate("removed watch ", &argstring)

Client menu: —

Introduced: Build 58

Janus/TN3270 Debugger User's Guide 243

The Client Command Reference

5.96 resetAssertCounts command

Action:

Client menu:

Introduced:

Normally, the assert counts accessible from the
&&assertFailureCount, &assertStatus, and
&&assertSuccessCount Client functionsfz29 are reset when the Client
is started/restarted and when a new macro is invoked. If you want to
clear them at any arbitrary time, executing resetAssertCounts resets

them to O.

Syntax:

resetAssertCounts

Build 56

5.97 resetGlobalAssertCounts command

Action:

Client menu:

Introduced:

Normally, the assert counts accessible from the
&&globalAssertFailureCount, &&globalAssertStatus, and
g&&globalAssertSuccessCount Client functions /28 are reset only
when the Client is started/restarted. If you want to clear them at any
arbitrary time, executing resetGlobalAssertCounts resets them to

0.

Syntax:

resetGlobalAssertCounts

Build 57

244

Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.98 restart command

Action: Restarts the Debugger Client.

1. Terminates all socket connections between the Client and the
Online, and/or between the Client and a web browser.

2. Shuts down the Client normally, as if the Exit option were selected,
and closes the Client window.

3. Starts the Client, reopening its window and invoking the same
processing as if started by a click of the Client desktop icon
(which includes reading the debuggerConfig.xml file).

Syntax:

restart

Client menu: File > Restart

Introduced: Build 56

5.99 restartDefault command

Action: Restarts the Debugger Client, restoring the window dimensions with
which the Client displayed when it was initially installed. Otherwise, the
Client restarts with the size and position (including internal window
dimensions) it occupied upon last exit.

Syntax:

restartDefault

Client menu: File > Restart with Default Window Size

Introduced: Build 56

Janus/TN3270 Debugger User's Guide 245

The Client Command Reference

5.100 restoreLower command

Action:

Client menu:

Introduced:

Restores the display of the lower section[141 of the Client main window,
after it was hidden by a previous hideLowerl212 or toggleLower‘@

command or by selecting the Hide Lower Section option of the Main
Window Options section of the Preferences|1s] dialog box.

Syntax:

restorelLower

This command is equivalent to clearing the Hide Lower Section option of
the Preferences dialog box.

restorelLower has no effect if the lower section is not hidden when the
command is issued.

See also the toggleLowerE&'ﬂ command, which also restores the
lower section if it is hidden when the command is issued, but which
hides the section if it was not hidden.

File > Preferences > (Main Window Options) Hide Lower Section

Build 57

5.101 restoreTitle command

Action:

Client menu:

Introduced:

Restores to the default the title of a Client main window that was
changed by the setTitlelssl command. The default main window title
is "The Janus Debugger" or "The TN3270 Debugger."

Syntax:
restoreTitle

See also &¤tTitlehksd and &&originalTitlehsd

Build 62

246

Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.102 retryHttpPac command

Action: Attempts to execute an HTTP PUT and GET of a Proxy Auto Configure
(PAC}@ verification file to and from the HT TP server that is set ug@ﬂ
to service PAC files.

retryHttpPac simulates simultaneous selection of both of the
following in the Preferences[18] window:

e Either of the IE Mode options newPac or mergedPac

e The PAC Options option http://URL

Setting both of these items together triggers the automatic creation and
maintenance of PAC files using HTTP URLs -- given an appropriately-

setup HTTP server and Client configuration file httpPacURLsss
element.

Note: Command execution does not modify current settings in the
Client's Preferences|1s] window. However, if the IE Mode option
proxy is selected, the command fails.

Syntax:
retryHttpPac

If the file verification test succeeds, the Client Status barl4s displays a
message like:

HTTP PAC files can be used.

See also httpPutFilem, htthetEE'l and &¤tPacFilekss.

Client menu: —

Introduced: Build 63

Janus/TN3270 Debugger User's Guide 247

http://URL

The Client Command Reference

5.103 run command
Action: Executes the code displayed in the Client's Source Code page until end-
of-request or until an error, breakpoint, or daemon is encountered.

Syntax:

run

Client menu: Execution > Run

Introduced: —

5.104 runMacroFromUISelection command

Action: Lets you select and open for editing (via Windows Explorer) an existing
Debugger macrobi7 file.

Syntax:

runMacroFromUISelection

Client menu: Macros > Run Macro

Introduced: Build 53

248

Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.105 runUntil command

Action: Runs program code without interruption until it reaches a specific
procedure, then displays th|€£|[.|)rocedure for debugging. Same as the
Run Until Procedure button|731.

Note: As of version 7.6 of Model 204 and Client Build 63, the Debugger

also stops at procedures that are included from an sdaemonlis3)
thread.

Syntax:
rununtil targetProc

where targetproc is the name of, or a character pattern for, the target
procedure.

Client menu: Execution > Run Until Proc

Introduced: Build 26 (macros only); Build 28 (menu)

5.106 runUntilVariableChanges command

Action: Steps through the program being debugged, stopping if a statement
modifies the value of the variable specified in the text box above the
Watch Window. Displays in the Execution Trace tab the statement that
modified the variable and the new variable value. Same as the Run to
Change buttonfia1.

In a macro, the command syntax is:
rununtilVariablechanges variable

where variable is the name of the User Language variable being
observed.

Client menu: Execution > Run Until Variable Changes

Introduced: Build 26

Janus/TN3270 Debugger User's Guide 249

The Client Command Reference

5.107 runWithoutDaemons command

Action:

Client menu:

Introduced:

Runs until end-of-request, or until an error or breakpoint is
encountered; does not pause at daemon codeli4l.

Syntax:

runWithoutDaemons

Execution > Run Without Daemons

5.108 saveWatch command

Action:

Saves to a local file the list of items currently displayed in the Watch
Window, as described in Saving and restoring Watch Window contents

[a9).

The command's first optional argument is the name of the .watch file
in which to store the Watch Window contents:

savelWatch [watchfile [overwrite]]

If you omit watchfile, a Windows file-selection dialog box lets you create
a .watch file when the command executes.

Otherwise, if you specify a watchfile argument (the .watch extension
may be omitted), the Watch Window contents are stored in the named
file when the command executes.

The Client saves the watch file in the folder that contains the
JanusDebugger . exe file, by default.[303

If a watch file with the same name already exists when savelWatch
executes, the result depends on whether you also specified the
overwrite parameter:

e [fitis not specified, the saveWatch command fails, and an error
message is issued.

e [fitis specified, the existing file gets overwritten.

You may also specify the watch file name in these ways:

250

Janus/TN3270 Debugger User's Guide

The Client Command Reference

e As a macro variablel27. For example:

set & = "foo"
saveWatch &a overwrite

e With an absolute file-system path, which must be enclosed in
quotation marks. Requires Build 58 or higher. For example:

savelWatch "c:\temp\foo.watch"
savelWatch "c:\temp\foo.watch" overwrite

The loadWatchk22l command restores the Watch Window contents from
a watch file.

Client menu: Data Display > Save Watch

Introduced: Build 49

5.109 searchDown command

Action: Searches down| a1 (relative to the current line) in the current main
window page for the search string you specify in the command.
Repeating the command locates the next occurrence of the search
string. The search is not case-sensitive.

Optionally, searches down for the search string in the Client window
you specify as the value of the command's In window prefix.

Syntax:
[In window] searchDown search string
where:
e windowis one of the following keywords, not case sensitive, which

identify a Client window. Links are provided to help identify the less
common windows:

Janus/TN3270 Debugger User's Guide 251

The Client Command Reference

about/39)

auditTrail
commands|3s)

console
executionHistoryE;ﬁ
executionTrace
keyboardShortcutsEﬁﬁ
source
textviewerfis]
value|oo
watchWindow
webBuffer

e search_string is the required search string, with no additional
quotation marks.

To locate a target string that begins with an ampersand (&) and is
not the name of a macro variable or Client function, prefix the
target with a backslash (\) to treat the ampersand as a literal.

To locate a single backslash character, escape the target
backslash with a second backslash (searchDown \\).

The backslash escape is valid as of Client Build 58.
Command examples:

in WatchWindow searchDown %y

searchDown &a
(searches for value of macro variable &a)

in auditTrail searchdown \&&myProc
(searches for string '&&myProc")

Related commands include: searchUpbssl, searchFromTopksal,
searchFromBottom[2s2

Client menu: Search > Search Down

Introduced: —

5.110 searchFromBottom command

Action: Searches upl4s], from the bottom of the current main window page, for
the search string you specify in the command. Repeating the
command locates the same occurrence of the search string. The
search is not case-sensitive.

252 Janus/TN3270 Debugger User's Guide

The Client Command Reference

Optionally, searches from the bottom of the Client window you specify
as the value of the command's In window prefix.

Syntax:
[In window] searchFromBottom search_string
where:

e windowis one of the following keywords, not case sensitive, which
identify a Client window. Links are provided to help identify the less
common windows:

about/39)

auditTrail
commands|38)

console
executionHistoryﬁaﬁ
executionTrace
keyboardShortcutsEﬁﬁ
source
textviewerfis]
value|oo
watchWindow
webBuffer

e search_string is the required search string, with no additional
quotation marks.

¢ To locate a target string that begins with an ampersand (&) and is
not the name of a macro variable or Client function, prefix the target
with a backslash (\) to treat the ampersand as a literal.

To locate a single backslash character, escape the target
backslash with a second backslash (searchFromBottom \\).

The backslash escape is valid as of Client Build 58.
Command examples:

in WatchWindow searchFromBottom printText

searchFrombottom &a
(searches for macro variable &a)

in auditTrail searchFromBottom \&&myProc
(searches for string '&&myProc')

Related commands include: searchUpEa, searchDownEﬁ,
searchFromTopEEﬂ

Client menu: Search > Search From Bottom

Janus/TN3270 Debugger User's Guide 253

The Client Command Reference

Introduced: Build 11

5.111 searchFromTop command

Action: Searches|4s] down, from the top of the current main window page, for
the search string you specify in the command. Repeating the
command only locates the same occurrence of the search string. The
search is not case-sensitive.

Optionally, searches from the top of the Client window you specify as
the value of the command's In window prefix.

Syntax:
[In window] searchFromTop search _string
where:

e windowis one of the following keywords, not case sensitive, which
identify a Client window. Links are provided to help identify the less
common windows:

about/s9)

auditTrail
commands|35]

console
executionHistoryhs2l
executionTrace
keyboardShortcutsFQﬁ
source
textviewerha?
valuel99]
watchWindow
webBuffer

e search_string is the required search string, with no additional
quotation marks.
e To locate a target string that begins with an ampersand (&) and is

not the name of a macro variable or Client function, prefix the target
with a backslash (\) to treat the ampersand as a literal.

To locate a single backslash character, escape the target
backslash with a second backslash (searchFromTop \\).

The backslash escape is valid as of Client Build 58.

254 Janus/TN3270 Debugger User's Guide

The Client Command Reference

Command examples:

in WatchWindow searchFromTop printText

searchFromTop &a
(searches for value of macro variable &a)

in auditTrail searchFromtop \&&myProc
(searches for string &&myProc)

Related commands include: searchUpEa, searchDownEﬁ,
searchFromBottoml2s2)

Client menu: Search > Search From Top

Introduced: —

5.112 searchUp command

Action: Searches uplss) (relative to the current line) in the current main window
page for the search string you specify in the command. Repeating the
command locates the next occurrence of the search string. The
search is not case-sensitive.

Optionally, searches up for the search string in the Client window you
specify as the value of the command's In window prefix.

Syntax:
[In window] searchUp search string
where:
e windowis one of the following keywords, not case sensitive, which

identify a Client window. Links are provided to help identify the less
common windows:

Janus/TN3270 Debugger User's Guide 255

The Client Command Reference

about/39)

auditTrail
commands|3s)

console
executionHistoryE;ﬁ
executionTrace
keyboardShortcutsEﬁﬁ
source
textviewerfis]
value|oo
watchWindow
webBuffer

e search_string is the required search string, with no additional
quotation marks.

e Tolocate a target string that begins with an ampersand (&) and is
not the name of a macro variable or Client function, prefix the
target with a backslash (\) to treat the ampersand as a literal.

To locate a single backslash character, escape the target
backslash with a second backslash (searchuUp \\).

The backslash escape is valid as of Client Build 58.
Command examples:

in WatchWindow searchUp printText

searchUp &a
(searches for value of macro variable &a)

in auditTrail searchup \&&myProc
(searches for string '&myProc")

Related commands include: searchDownpsil, searchFromTopks,
searchFromBottoml2s2

Client menu: Search > Search Up

Introduced: Build 11

256 Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.113 selectAuditTab command

Action: Displays the Audit Trail tabl101in the Client main window.

For example:

<mapping command="selectAuditTab" key="1"
keyModifier="ctrl" />

Client menu: —

Introduced: Build 46

5.114 selectExecutionTraceTab command

Action: Displays the Execution Trace tabl131in the Client main window.

Syntax:
selectExecutionTraceTab

Client menu: —

Introduced: Build 46

5.115 selectNextTab command

Action: Displays in the Client main window the page whose tabldlis to the
right of the currently displayed page; wraps from the rightmost page to
the leftmost.

Syntax:
selectNextTab

Client menu: —

Introduced: Build 46

Janus/TN3270 Debugger User's Guide 257

The Client Command Reference

5.116 selectProcSelectionTab command

Action: Displays the Proc Selection tabl131in the Client main window.

Syntax:
selectProcSelectionTab

Client menu: —

Introduced: Build 46

5.117 selectSourceTab command
Action: Displays in the Client main window the page (Source Code| 11]10r
Daemonli3d)) that contains the source code that is currently executing.

Syntax:
selectSourceTab

Client menu: —

Introduced: Build 46

5.118 selectWatchWindow command

Action: Displays and gives focus either to an externalkos Watch Window or to
the Client main window (if no external Watch Window is deployed).

Syntax:

selectWatchWindow

Client menu: —

Introduced: Build 51

258

Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.119 selectWebBufferTab command

Action: Displays the Web Buffer pagel:2] (if Janus Debugger) in the Client
main window.
Syntax:
selectWebBufferTab

Client menu: —

Introduced: Build 46

Janus/TN3270 Debugger User's Guide 259

The Client Command Reference

5.120 set command

Action: Lets you create and initialize macro variables 271, Variable names begin
with a single ampersand (&), and eligible variable values include
constants, User Language variables, fields, and $list elements, and
other macro variables and functions|s23.

Syntax:

set &target = string | [-1nnn | &var | %xxx | g.xxx | f.xxx
| $listent(x) | $listinf(x,y)
| & function([args])
where:

e &target is the macro variable being set.

e string is a quoted string constant (double-quotes or single quotes
are valid).

e [-]nnnis an integer constant with an optional leading minus sign.
e &varis a previously defined macro variable.
* %xxx is a mainframe variable.

e g.xxxis a Debugger global variable referencelo41.

e fxxxis a Debugger field referenceles), possibly with a subscript.

e Slistcnt/$listinf are the Debugger functions for viewing $list counts
and elements.[o6]

e &&function is a macro function.

Note: To set a macro variable or macro function in a Client mapping
commandps2), you need to XML entity-encode each ampersand
(&). For example, to map the command set &foo = %i, you
specify it like this:

<mapping command="set &foo = %i" button="button14"/>

Client menu: —

Introduced: Build 28

260 Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.121 setBlackList command

Action: Lets you dynamically specify or clear a procedure Black List[77), which
identifies the outer procedures you do not want the Debugger to debug.
These procedures get executed but their code is not sent to or
displayed in the Client. This command temporarily overrides any
existing Black List, but it does not physically affect the contents of the
black list file stored on disk (blacklist.txt). The command's effect
is not persistent over runs of the Client.

Syntax:

setBlackList [proc] ...

where proc is one of possibly multiple, blank-separated, procedure file
names. Name matching is case insensitive, and wildcards|74]are
allowed.

If no names are specified, the current black list, if any, is treated as
empty. If one or more procedure names are specified, the contents of
the black list are overridden by this new set of procedure names.

You might use this command for testing:
1. Putitin a User Language procedure.

2. Send it to the Client via the TN3270 DEBUG CLIENTCOMMAND
1491 Model 204 command.

Doing this lets you have a mainframe-based testing harness that sets
up a list on the Client. For example:

TN3270 DEBUG CLIENTCOMMAND ‘setBlackList P.SHEMP'
TN3270 DEBUG CLIENTCOMMAND 'turnOnBlackList'

See also the setWhitel istkssl command.

Client menu: —

Introduced: Build 62

Janus/TN3270 Debugger User's Guide 261

The Client Command Reference

5.122 setBreakpointOnCurrentLine command

Action: Sets a breakpoint[se1 on the currently selected line in the Source Code
(or Daemonlissl) page; if the currently selected line is not an executable
statement, sets a breakpoint on the next executable line after the
currently selected line.

Syntax:

setBreakpointOnCurrentLine
Notes:

e If you have not explicitly selected a code line, the current line is the
highlighted code line in the current execution position.

e If you execute this command for a line that already has a
breakpoint set, no additional action is taken.

For code lines for which no breakpoint is already set, the
toggleBreakpointOn[77l command has the same effect as the
setBreakpointOnCurrentLine command, and both commands have
the same effect as double-clicking a code line or right-clicking a line
and selecting Toggle Breakpoint from the context menu.

Example:

This macro looks for a line that matches its argument; if it finds such a
ling, it sets a breakpoint on it:

selectsourcetab

searchFromTop &argstring

continueMacroIf &&searchSuccess

setBreakPointOnCurrentLine

set &message = &&concatenate("breakpoint on line matching '",
setStatusMessage &message

To clear a breakpoint that is set on the current line, you can use the
clearBreakpointOnCurrent Linelis8 command or the
toggleBreakpointOn command.

See also the breaksAths3 and breaksis2 commands.

Client menu: —

Introduced: Build 57

262 Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.123 setlEmode command

Action: Controls whether, and the host URLs for which, the Debugger will
serve as the proxy serverfsd for users of the Internet Explorer or
Chrome browser. The command has options to set or remove the
setting of the Debugger Client as the proxy server for IE or Chrome
browser requests. The command also has an option to create a PAC
(Proxy Auto Config) filefso3, which restricts the host URLSs for which the
Client will act as proxy server, and an option to merge such a PAC file
with a preexisting PAC file, if any.

Syntax:
setIEmode {none|proxy|newPac|mergedPac} [file|http]

Where:

b none

Makes no changes to the Internet Properties toolkesl, which
contains configuration settings for Internet Explorer and Chrome
browsers, and undoes any such setting changes made since the
Debugger Client was started.

This option also undoes the effects of any other setIEmode
commands issued since the Client was started.

® proxy

Makes the Debugger Client the proxy server for Internet Explorer
and Chrome. This is the same as setting the Preferences dialog
box equivalent, the proxy option for IE Mode.

o newPac

Generates a PAC file using the hosts and ports specified@ in the
Debugger configuration file (debuggerConfig.xml) settings, and
sets IE and Chrome to use it. Any existing PAC file (that is,
specified in the Internet Properties toolBssl) is not used.

e mergedPac

Merges any existing PAC file with a PAC file generated from the
Debugger configuration file settings, and sets IE and Chrome to
use it.

e fileorhttp

If you are using newPac or mergedPac to produce a PAC,
specifying file or http sets the type of the URL that is sent to the
browser. file is the default.

To take advantage of an http setting, you must also set up an
HTTP serverbsa to service the PAC file.

Janus/TN3270 Debugger User's Guide 263

The Client Command Reference

Client menu:

Introduced:

These options are available as of Build 63.

For parameter options that modify the Internet Properties configuration,
no restart of the browser is necessary, and the Debugger provides
automatic maintenance (makes the Internet Properties modifications at
Client startup, then removes them when the Client closes).

Example:

If you issue the following command, the Debugger Client immediately
generates a merged PAC file and configures the browser to run it; then

at Client shutdown, the command restores the Internet Properties initial
(pre-command) settings:

setIEmode mergedPac

Once the above command is issued, the browser runs the script each
time a URL is requested, and the Debugger Client serves as proxy only
for the hosts specified in the script. The merged PAC file specification
will persist through Client closes and starts until you use setIEmode or

the Preferences dialog box to change or remove it.

See also:

e The generatePacloll command, which creates and/or merges a
PAC file, but makes no modifications to the Internet Properties
configuration settings.

e The showIE[R72 command, which displays the current Internet
connection settings plus additional details.

e The retryHttpPaclan command, which verifies whether your
HTTP PAC server is properly set up and pointed to from the
Client configuration file.

Build 62

264

Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.124 setM204Data command

Action: Lets you set a Model 204 %variable or global variable as if you right-
clicked a Watch Window item and selected Change Valueli22. The
behavior and restrictions for this command are the same as the
Change Value option.

Syntax:

setM204Data %xxx | g.xxx
= "string" | [-]nnn | &var | &&function([args])

where:

e ’xxxis a User Language variable.

e g.xxx is a Debugger global variable referencefod).

e string is a quoted string constant (double-quotes or single quotes
are valid).

e [-]nnnis an integer constant with an optional leading minus sign.
e &varis a previously defined macro variable.

e &&function is a macro function.

Note: This command may only be issued while a request is being
evaluated.

Client menu: —

Introduced: Build 50

5.125 setPreference command

Action: Lets you use a macrobi7l or mappedfzs3l button or key to control Client
preference settings that are available via the Preferences|1¢1 dialog box
or the Proc Selectionl13] page.

Syntax:

setPreference option {on|off}

Janus/TN3270 Debugger User's Guide 265

The Client Command Reference

where option is one of the following:

breakAfterReadScreen

Selects or clears the Break after READ SCREEN(ss1 checkbox in the
Client's Preferences dialog box

debuggerdirectives

Selects or clears the Use !debugger directives| 6] checkbox in the
Preferences dialog box

historyToTrace

Selects or clears the History To Execution Trace[132 checkbox in
the Preferences dialog box

ignoredFileTypelist
Toggles Debugger file-type filteringlel on or off:

setPreference ignoredFileTypelList {on|off}
Where:

= on honors the "ignore-list" default behaviour

= off does no file-type filtering

macroAutorun

Selects or clears the Macro Autorun[z26) checkbox in the
Preferences dialog box

pauseAtEndEval

Selects or clears the Pause at end of evaluation|ss] checkbox in the
Preferences dialog box

useProclLists

Selects or clears the Use Proc Lists for excludelinclude[es]
checkbox in the Client's Proc Selection tab

useRoutinelLists

Selects or clears the Use Routine Lists for excludefinclude[es)
checkbox in the Client's Proc Selection tab

valueDisplayOnConsole

Controls whether value disglays@ appear in a separate Value
window when the Consolep24lis open (the default, on, shows them
in the Console if it is open)

266

Janus/TN3270 Debugger User's Guide

The Client Command Reference

Note: Instead of on or off, the command also takes 1 or 0.

You may want to use the command to toggle a setting in a Client
macrolz17], for example:

toggle use exclude/include directives
toggle &debuggerDirectives !Directives
setPreference debuggerDirectives &debuggerDirectives

Client menu: —

Introduced: Build 55

5.126 setStatusMessage command

Action: Lets you specify a message for display in the Client Status bar|49)

Syntax:
setStatusMessage {&var[&&function|const}
where:
e &varis a macro variable that may or may not already exist.

e &&function is a macro function.

e constis a character string, which does not have to be enclosed in
quotes.

Examples:

setStatusMessage Nothing happening!

set &msg = "Here's Johnny"
setStatusMessage &msg

Client menu: —

Introduced: Build 59

Janus/TN3270 Debugger User's Guide 267

The Client Command Reference

5.127 setTitle command

Action: Lets you change the title of the Client main window (which by default is
"The Janus Debugger" or "The TN3270 Debugger."

Syntax:

setTitle newtitle

where newfitle is a non-quoted, case-insensitive string of as many as
50 characters.

Examples:

e The image below shows the result of issuing a setTitle
Welcome to my world command. Notice that the name of the
procedure being debugged is retained.

A% Welcome to my world {REGEXNOT)

1% Welcome to my world (REGEXNOT)

Search _Breskpoints _Execution Data Display ErrorMacros_Help
Top | Bottom | Clear Audit | Run | Step | Step Over | Trace All | Cancel | Clear Breaks | Clear Watch

—_——

] 1 I REGEXNOT
> 2 1 1 * testing for regex for Sweb f{| [command|macro] name [args]
2 + my solution does not find

settitle Welcome to my world

Title set to: Welcome to my world

1 (" (% :7\SWeb) 1)
71) (\$Web_(Ya-2z"+)) (Ya-z"+)")

e The following macro uses setTitle:

continueMacroIf &&blackOrWhitelList <> 'black’
labelButton button@® BlackList Off
turnOnBlackList

setTitle Black List on

set &changed = 1

clearStatus

See also:

e The restoreTitlel4s command replaces any changed main
window title with the default title.

e 8¤tTitlepsdl and &&originalTitlelsd display the current
and default titles of the Client main window.

Client menu: —

Introduced: Build 62

268 Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.128 setWhiteList command

Action: Lets you dynamically specify or clear a procedure White List[77), which
explicitly identifies the outer procedures you want the Debugger to debug.
Non-listed procedures get executed, but their code is not sent to or
displayed in the Client. This command temporarily overrides any existing
White List, but it does not physically affect the contents of the white list file
stored on disk (whitelist.txt). The command's effect is not persistent
over runs of the Client.

Syntax:

setWhitelList [proc]...

where proc is one of possibly multiple, blank-separated, procedure file
names. Name matching is case insensitive, and wildcards[741 are allowed.

If no names are specified, the current white list is treated as empty. If one
or more procedure names are specified, the contents of the white list are
overridden by this new set of procedure names.

You might use this command for testing by putting it in a User Language
procedure and sending that to the client via the existing TN3270 DEBUG
CLIENTCOMMAND 1531 Model 204 command. Doing this lets you have a
mainframe-based testing harness that sets up a white list on the Client.

For example:

TN3270 DEBUG CLIENTCOMMAND 'setWhiteList P.MOE P.LARRY'
TN3270 DEBUG CLIENTCOMMAND 'turnOnWhiteList'

See also the setBlackListksll command.

Client —
menu:

Introduced: Build 62

Janus/TN3270 Debugger User's Guide 269

The Client Command Reference

5.129 showAbout command

Action: Displays the contents of the Client's "About box," which is accessed
from the About option of the Client Help menulss).

Syntax:
showAbout
Displays the following in the About window:

e The Sirius Mods version with which this "build" of the Debugger
Client is associated

e The number of this Client build

e Asearchable summary of the features provided by this and past
builds

Client menu: Help > About

Introduced: Build 43

5.130 showCommands command

Action: Displays in alphabetical order and with simple definitions the entire set
of Client commands/177

Syntax:

showCommands

Client menu: Help > Commands

Introduced: Build 50

270 Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.131 showFunctions command

Action:: Displays in alphabetical order and with simple definitions the entire set
of Client functions|s2a

Syntax:

showFunctions

Client menu:: Help > Functions

Introduced:: Build 58

Janus/TN3270 Debugger User's Guide 271

The Client Command Reference

5.132 showlE command

Action: Displays the current Internet Explorer browser operating mode (the File

menu >

Preferences > |E Mode option or equivalent setIEmodeps3]

command setting that is in effect), as well as the current values of IE

settings that pertain to the Debugger Client.
Syntax:

showIE
Sample output:

Current ie settings

. Proxy flags=(5)
.. Proxy server=()
. Proxy bypass=()
.. Proxy autoConfigU | =(http://sirius.sirius-software.com 929:
.. Raw fl ag byt e=(05)
...Read fromregistry key=
(HKEY_CURRENT_USER\ Sof t war e\ M cr osof t \ W ndows\ Cur r ent Ver si on\ |

CGen
Add
CGen
/1

deb
201
fun

}

pac
ht t
ht t

erated New Pac file: C\Users\jl apierre\Docunent s\ Debugger
ed: 4 web servers fromthe configuration.
erated Pac File:
C:\ Users\j | api erre\ Docunent s\ Debugger\t est | nst\ debugger | nt«
ugger client on:
5 06 11 15:20:40
ction FindProxyFor URL(url, host) ({
urlLc = url.tolLowerCase();
i sDebuggabl e = (
(shExpMat ch(url Lc, "http://sirius-software.com 3666/*")
[
(shExpMat ch(url Lc, "http://sirius-software.com9219/*")
I
(shExpMat ch(url Lc, "http://sirius-software.com3667/*")

)
(shExpMat ch(url Lc, "http://sirius-software.com 3000/*")

);
i f (isDebuggable) return "PROXY 127.0.0. 1: 8081; DI RECT";
return "D RECT";

URLMbde: http
pPacUr| =" http://sirius.sirius-software.com 9292/ pacran/"'
pPac upl oad fil ename: ' PAC. 182.16. 60.88.JS

Common values for Proxy flags (in the output above) are:

5 A proxy automatic-configuration (PAC) file is being used

3 Aproxy server is being used

1 Adirect connection to the Internet is being used (no proxy or
automatic-configuration file)

Client menu: —

Introduced: Build 62

272

Janus/TN3270 Debugger User's Guide

http://sirius-software.com:3666/*")
http://sirius-software.com:9219/*")
http://sirius-software.com:3667/*")
http://sirius-software.com:3000/*")

The Client Command Reference

5.133 showShortcuts command

Action: Displays the Client's current (defaultked) as well as mapped) keyboard
shortcuts.
Syntax:
showShortcuts

Client menu: Help > Keyboard Shortcuts

Introduced: Build 43

5.134 skipPreview command

Action: When the Source Preview featurelss!is enabled, runs the program
code normally but without downloading the source code for viewing or
controlled execution.

Syntax:

skipPreview

Client menu: Execution > Skip Previewed Source

Introduced: Build 30

Janus/TN3270 Debugger User's Guide 273

The Client Command Reference

5.135 span command

Action:

Scope:

Client menu:

Introduced:

Restores to the default the spanning behavior of a Debugger macroli,
reversing any previously issued noSganEﬂ command. By default,
macro execution spans the evaluation of requests (if a request
completes before a macro is finished, the remaining macro
commands apply to the next request).

Syntax:
span

Allowed only in Debugger macros; not available as a mappable Client
command

Build 37

5.136 step command

Action:

Client menu:

Introduced:

Executes a single statement/s3] in the code displayed in the Client's
Source Code or Daemon page.

Syntax:

step

Execution > Step

274

Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.137 stepOut command

Action: Steps outls2) of a subroutine or method.

Syntax:

stepOut

Client menu: Execution > Step Out

Introduced: —

5.138 stepOver command

Action: Executes a single statement/s3] in the code displayed in the Source
Code or Daemon page, but bypasses a subroutine or method.

Syntax:

stepOver
Client menu: Execution > Step Over

Introduced: —

Janus/TN3270 Debugger User's Guide 275

The Client Command Reference

5.139 toggle command

Action:

Client menu:

Introduced:

Reverses the state ("True" or "False") of a macro variablefs21. If the
variable value is @ or a zero length (null) string, or if it is undefined, its
state is considered to be False. For all other values, its state is
considered to be True.

The toggle command sets to 0 ("toggles to False") a variable whose
state is True. And it sets to 1 ("toggles to True") a variable whose state
is False.

Syntax:
toggle &var [msg_string]
where:

e &varis a macro variable that may or may not already exist.

e msg_string is an optional message string, useful for constructing
a message to report what was toggled.

If msg_stringis specified, either of the following is displayed in the
Status barls9] after the toggle:

"msg_string is on" (if toggled on)
"msg_string is off" (if toggled off)

Example:

toggle history
toggle &historyWanted Auto History

Build 37

276

Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.140 toggleBreakpointOnCurrentLine command

Action: Sets (or removes) a breakpoint(ss1 for the current Source Code or

Daemon line, if the line is or starts an executable statement. If the line is
not an executable statement or the start of one, sets (or removes) a
breakpoint for the first subsequent line that is or starts an executable
statement.

For code lines for which a breakpoint is set, toggleBreakpointOn
removes the breakpoint.

Syntax:
toggleBreakpointOnCurrentLine

This command has the same effect as double-clicking a code line or
right-clicking a line and selecting Toggle Breakpoint from the context
menu.

toggleBreakpointOnCurrentLine always sets or clears a
breakpoint; setBreakpointOnCurrentLinels2 performs only a set
action, and clearBreakpointOnCurrentLinelisd) performs only a
Clear.

See also the breaksAths3 and breaksie?l commands.
Client menu: Breakpoints > Toggle Breakpoint on Current Line

Introduced: Build 28

Janus/TN3270 Debugger User's Guide 277

The Client Command Reference

5.141 togglelnitExclude command

Action:

Client menu:

Introduced:

Inverts the way Exclude modeles] operates so that it initially excludes
code instead of initially including code (until an explicit directive).

Syntax:
toggleInitExclude
Requires at least version 7.6 of the Sirius Mods.

Execution > Toggle Init Exclude

Build 47

5.142 toggleLower command

Action:

Client menu:

Introduced:

Changes the display of the Client's main window either to hide the
lower section[14] (if currently it is not hidden) or to restore the display of
the lower section (if currently it is hidden).

This command is equivalent to either selecting or clearing the Hide
Lower Section option of the Main Window Options section of the
Preferences|1s) dialog box.

Syntax:
toggleLower

togglelLower always hides or restores the lower windows; hideLower
212 performs only a "hide" action, and restoreLowerps performs only
a "restore."

File > Preferences > (Main Window Options) Hide Lower Section

Build 57

278

Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.143 top command

Action: Scrolls to the top of the currently displayed page; has no effect if the
Proc Selection page is being displayed.

Optionally, scrolls to the top of the Client window you specify as the
value of the command's In window prefix.

Syntax:

[In window] top

where window is one of the following keywords, not case sensitive,
which identify a Client window. Links are provided to help identify the

less common windows:

about/39]

auditTrail
commands/38)

console

executionHistoryfis2

executionTrace
keyboardShortcuts/ss)

source

textviewerfian

value[oo)

watchiWindow
webBuffer

Client menu: Window > Top

Introduced: —

5.144 trace command

Action: Traces 128 execution, and records executed lines.

Syntax:

trace

Client menu: Execution > Trace To End

Introduced: Build 26

Janus/TN3270 Debugger User's Guide

279

The Client Command Reference

5.145 traceUntilVariableEqualsValue command

Action: Steps through the program being debugged, stopping if a statement
modifies the value of the variable specified in the input box so that it
equals a value you specify. Displays in the Execution Trace tab the
statement that modified the variable and the new variable value.

Same as Alt key + Run to Change@ button.

In a macro, the command syntax is:
traceUntilvariableEqualsValue variable target

where:

e variable is the required variable name

e targetis the required target variable value

Client menu: Execution > Trace Until Variable Equals Value

Introduced: Build 26

5.146 traceValues command

Action: Same as runl48 command, but also reports all statements that modify
the value of the variable specified in the text box, and reports what

value was assigned to the variable. Described further in Tracing all
updates to a variable's value.fi30]

In a macro, the command syntax is:
traceUntilValues varName
where varName is the required variable name.

Client menu: Execution > Trace Values

Introduced: Build 26

280 Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.147 turnOffBlackList command

Action: Deactivates Black List filtering[791 (like clicking the Turn off Lists button
on the Proc Selection page).

Syntax:

turnOffBlackList

Client menu: Execution > Turn Off Black List

Introduced: Build 62

5.148 turnOffDebugging command

Action: Turns off Debugger processing (like executing TN3270 DEBUG OFF

[143).

Syntax:

turnOffDebugging
Client menu: Execution > Turn Off Debugging

Introduced: —

5.149 turnOffWhiteList command

Action: Deactivates White List filtering[731 (like clicking the Turn off Lists button
on the Proc Selection page).

Syntax:

turnOffWhiteList

Client menu: Execution > Turn Off White List

Introduced: Build 28

Janus/TN3270 Debugger User's Guide 281

The Client Command Reference

5.150 turnOnBlackList command

Action: Activates Black List filtering[75 (like clicking the Turn On Black List
button on the Proc Selection page).

Syntax:

turnOnBlackList
Client menu: Execution > Turn On Black List

Introduced: Build 62

5.151 turnOnWhiteList command

Action: Activates White List filtering[791 (like clicking the Turn On White List
button on the Proc Selection page).

Syntax:

turnOnWhitelList
Client menu: Execution > Turn On White List

Introduced: Build 28

282

Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.152 unPin command

Action: Unpins the specified Client external window(s)@ﬂ, that is, no longer
forces the window(s) to remain at the top of the Client PC's open
window stack.

Syntax:
unpin {windowname | pattern | *}
where you must specify one of these:

e windowname, the (case not important) name, or title, at the top of a
Client work window or external window

e pattern, a character sequence that ends with an asterisk (*),
which performs a "wildcard" search (for example, w* finds the

Watch Window and Web Buffer window)

e Alone asterisk (*), which removes the pinning from all pinned
windows

If you unPin a window that is not already pinned, the command is
ignored. If the command indicates a window that is missing or invalid,

or if it does not match an open external window, an error message is
issued.

To pin a window that is not currently pinned, use the pi_nEf'ﬂ command.
Client menu: Context menu option (UnPin) of external window title bar

Introduced: Build 56

Janus/TN3270 Debugger User's Guide 283

The Client Command Reference

5.153 unSet command

Action:

Client menu:

Introduced:

Lets you remove a macro variablefs27|

Syntax:
unSet &target

where &target is the macro variable being removed.

Note: To unset a macro variable or macro function in a Client mapping
commandbs2] you need to XML entity-encode each ampersand
(&). For example, to map the command unset &foo, you
specify it like this:

<mapping command="unset &foo" button="buttoni4"/>

Build 59

5.154 valueDisplay command

Action:

Acts like the Value buttonles), displaying in a separate window the value
of the item specified or the value currently in the Entity-name input box

[s01

Syntax:
valueDisplay [value]

where value is the program item whose value you want to display.

If value is not specified, the command attempts to use the value
specified in the Entity-name input box. For example, you might want to
map a button you can readily click to display the value of what is in the
Entity-name input box:

mapbutton Button® valueDisplay

The Value window opened by valueDisplay can be closed by
closeValueDisplay.[1o4

In a macro, the variable name is specified as an argument, for
example: valueDisplay %i

284

Janus/TN3270 Debugger User's Guide

The Client Command Reference

If valueDisplay is executed, and the Consolef2alis open, the value is
displayed in the Console window. To insist that a Value window be
used for the display in this case, use the valueDisplayOnConsole
option of the setPreferencelss command.

Client menu: Data Display > Value Display

Introduced: Build 43

5.155 varDump command

Action: Displays the current values of all macro variablesk22 defined during
this Client session. The message is normally displayed in a standard
Windows informational box (entitled varDump for Macro). If the macro
consolels24 is open, however, the message is sent to the console
instead.

Syntax:
varDump

The command output is a display of the count of the number of macro
variables, followed by an alphabetically ordered list of the individual
variables (including &argstringls22)) in name="value" format. For
example:

8 macro variables

&a1="1"

&a2="-1"

&a3="666"

&a4="4"

&a5="5"

&a6="A1ll work and no play makes jack a dull boy..."
&argstring=""

&b="1"

Client menu: —

Introduced: Build 28

Janus/TN3270 Debugger User's Guide 285

The Client Command Reference

5.156 viewText command

Action:

Client menu:

Introduced:

Invokes a separate viewer[i47 for copying, printing, and saving Client
text data.

Syntax:

viewText

Window > View Text

5.157 windowToTop command

Action:

Client menu:

Introduced:

Brings the specified Client window to the top of your screen's stack of
application-windows. For example, specifying windowToTop Web

Buffer brings an externalbos) Web Buffer window to the foreground of
your monitor screen.

Syntax:
windowToTop windowname
where windowname is the (case not important) name, or title, at the top

of a Client work window or external window. windowname may end with
an asterisk (*) to perform a "wildcard" search (for example, ab* finds

the About window).

Build 50

286

Janus/TN3270 Debugger User's Guide

Customizing Client Operations

ciartere Customizing Client Operations

The Debugger Client standard operations are mainly controlled by a default set of
buttons and hot keys and their menu-option counterparts. Those controls activate a set
of underlying commands to which you have access. This chapter describes how you
can create alternative mappings of these commands to reassign the operations that the
buttons and keys perform.

The chapter also describes the options available for changing the default colors of the
text or background of the various Client displays, how to change the location of the files
the Client creates and uses during debugging sessions, and a variety of options for
detaching and arranging the Client's constituent windows.

Note: In addition to the customizations described in this chapter, the Client's Preferences

window (accessed via the File menu) contains multiple ogtions@ for controlling
the operation of the Client.

The Client configuration file, set up during installation of the Debugger, is the site
of some of the customizations discussed in this chapter, and it can be edited to
provide other customizations, as described in Customize the Debugger
configuration filekso.

The sections included in this chapter are:

Reconfiguring GUI buttons and hot keys|zs3
Changing the colors in Client displays@
Specifying s startup command for the Clientfzo)
Changing the location of Client work files ko3l
Changing the font size in Client displays ko3|
Opening an external window soé!

Hiding the Client's lower windows/z12

Seeing through Client windows /14

Enforcing a minimum Client build number/s15)

Janus/TN3270 Debugger User's Guide 287

Customizing Client Operations

6.1 Reconfiguring GUI buttons and hot keys

The fifteen buttons k3l in the main button barf3s1 (and those in any extra button barl42))
are fully configurable. You can set the buttons to perform commands or macros, and you
can rearrange their positions or add separator buttons sal.

You may also create your own keyboard shortcuts ol (also called "hot keys") for
commonly used commands.

If necessary, you can even provide an alternative customization that overrides the
primary reconfiguration. This lets you provide, say, group-level settings that may be
overridden by individual-level settings.

The default setting of a configurable button is provided where the individual button is
discussed in this document, and the settings are also summarized laterks3\ in this
section.

To reconfigure buttons or keyboard shortcuts, you can define a mapping file or use a
Client command.

Using a mapping file

1. Createl2el an XML file that contains the command177 or macrok17 (multiple
commands) to execute paired with the button and/or key that invokes it.

This file must be named ui.xml and is assumedfso3 to reside in the installation
target folder (along with the JanusDebugger.exe Client program).

2. Restart the Debugger Client.

Using a Client command

As of Client Build 56, there is an alternative way to reconfigure buttons or keyboard
shortcuts that does not involve a mapping file or a Client restart:

1. From the Client's Command Line[s25 tool, or within a macrols17, or from within a
User Language request by using the ClientCommand method of the DebuggerTools
[159) class, issue these commands as necessary:

e mapButtonl28, which specifies the button mappingle2 you want
° magKeyE&'ﬂ, which specifies the keyboard shortcut you want

e clearButtonfis?, which removes the button mapping you specify
o clear-KeyEe'ﬂ, which removes the keyboard shortcut you specify

2. View the button arrangement or test the key combination you specified
or removed.

288

Janus/TN3270 Debugger User's Guide

Customizing Client Operations

Unless you changed only a button modifier (a key you press along with
clicking the button), an updated button's new label is displayed and the
button is available for immediate use. A cleared button is removed
immediately from its button bar.

The button-mapping and hot-key updates you make with mapButton or
mapKey are not reflected in the ui.xml file, and they do not persist through
subsequent Client sessions.

Additional Client commands let you modify buttons:

e disableButtonlool and enableButtonko2l disable and enable button bar buttons.
e labelButtonpeillets you replace the label of a button.

In this section

The following subsections discuss the eligible commands, buttons, and keys, how you
create a ui.xml file for their reconfigurations, and what their default settings are:

Introducing the configurable components [2s9]
Setting up the ui.xml fileksl)
Default settings of buttons and hot keys|ze5)

6.1.1 Introducing the configurable components

The activities you invoke from the Debugger Client GUI are also available as commands
you can assign to different Client buttons or keyboard keys or combinations of both of
these, as well as to Debugger macros k171, This section describes the com mands,
buttons, and keys you can associate in a mapping filelol or using a mapping command
sdl to reconfigure the Client user interface.

Commands

Client commands are the operations that you invoke from Client menus and can assign
to a Debugger Client button, keyboard shortcut, or macro. The act of associating a
button or keyboard shortcut with a command or macro (multiple commands) is termed
"mapping."

The Client command referenceli77 describes the available commands. The default hot
keys and buttons with which some of these commands are associated are summarized
later. 95)

Named buttons and separators

When mapping a command or macro to a button in the ui.xml file, you refer to the
button by name:

Janus/TN3270 Debugger User's Guide 289

Customizing Client Operations

e From left to right, the fifteen mappable buttons in the main button bar[ss) are named
button@, buttonl, ... buttonl4. The buttons have initial default mappings.@

e The fifteen mappable buttons in the extra button barf42 are named extrabuttono,
extrabuttonl, ... extrabuttonl4. These buttons have no initial default
mappings.

Only button bar buttons are mappable. No other Client buttons are mappable.

An additional option (as of Client build 57) is to map a named button to a special
command keyword (separator) that converts the button to a separator, a button whose
sole function is to provide a visual separation between buttons, say for better visual
discrimination or to create button groupings. Such a button is always dimmed and not
responsive.

The separator keyword is available for the magButtonE@’ﬂ command and the mapping-
file mappingled element.

The following image shows a newly created separator button:

P
A% The Janus Debugger (QAXMLZL S L. =

File Window Search Breakpoints Execution Data Display Error Macros Help -
Top Bottom Run | Step | Step Over | Trace All | Cancel | Clear Breaks | Clear Watch | View Text b
Audit Trail Source Code l Web Buifer] Execution Trace] Proc Seleclinn] T
L> 5 1 4 public

L> 6 1 5 variable x is object XML ﬂ,‘% Command Line ¢

L> 7 1 & construnctor new _'_

L> 8 1 7 subroutine addStooge (*iFi| [command | macro] name [args] L

L> 9 1 8 %ilg e

= L) 2 Sndjpabie mapButton button2 separator 5

L> 11 1 10 =

L> 12 1 11 private e

L> 13 1 12 variable top i=s object XM L

L> 14 1 13 end private

L> 15 1 14 4

L> 16 1 15 constructor new f

L= 17 1 }§/—’_’f iy = new e . ;

L> 18 1 =~ 1% = &this:x:ge=d e e

——1 O /_' - . f?‘h N ——

Button modifiers

Normally, when you map a command or macro to a button, the command or macro is
executed when you click the button. However, you can also map a command or macro
to a "modified" button: the command or macro executes only when you click a button
while you are holding down the Alt or Ctrl key on your keyboard.

This mechanism lets you map multiple commands or macros to one button. The usual
click of the button executes one command or macro, while pressing Alt and clicking the
button executes a second command or macro, and pressing Ctrl and clicking the button
executes a third command or macro.

A button's label is not affected by specifying a modifier for the button. The label always
indicates the primary, unmodified, function of the button.

290

Janus/TN3270 Debugger User's Guide

Customizing Client Operations

Keyboard shortcuts

Often, a keyboard shortcut is the best way to do an important operation. You may map a
keyboard shortcut to any alphabetic key (lowercase and uppercase are differentiated),
numeric key, or to any of the function keys except F1 (thatis, F2, F3, . . . F12). As with
mapping buttons, you can specify an Alt or Ctrl modifier key for a keyboard shortcut.

To be reminded of the current (defaultks3 as well as mapped) keyboard shortcuts,
select Keyboard Shortcuts from the Help menu.

6.1.2 Setting up the ui.xml file

Each time the Debugger Client is started, it checks for the presence of a ui.xml file in
the same folder as the Client executable file itself (the default) or in the folder specified in
the Client configuration filefso3. If no such file is located, the Client opens with its default
presentation of GUI buttons and their associated commands, and it responds to its
default set of hot keys and their associated commands.

If you want to change the Client's default buttons and hot key associations o3, you must
provide in the appropriate folder a ui.xml text file that adheres to the structure described
in this section.

Note: You can also define an alternative to the ui.xm1 file: following the same rules for
setting up the ui.xml file, you provide settings in the uimore.xml filel2¢5 that
override those in the ui.xml file.

And/or:

You can use the mapButton or the mapKey commandbssl to reconfigure buttons or
hot keys without editing a mapping file.

To setup a ui.xml file:

1. From the Client's File menu, select Edit ui.xml.

An untitled Notepad file is opened for you, along with a prompt to create a ui.xml
file. (If a ui.xml file already exists, that file is opened.)

2. Inthe file, specify or update the mappings tag, the first line in the file.

The top level tag in the ui.xml file is the mappings tag, which has two optional
attributes (useDefaults and startUpMacro):

<mappings [useDefaults="true|false"] [startUpMacro="macroname"]>

Janus/TN3270 Debugger User's Guide 291

Customizing Client Operations

useDefaults indicates the mode in which the mappings are applied:

e useDefaults="true" tells the Client to apply the ui.xml file mappings after the
defaults are set for the buttons and hot keys. In this mode, your mappings are
additions or overrides to the existing defaults.

Use this mode if you generally like the defaults but want to make a small
number of additions or changes to them.

e useDefaults="false" tells the Client not to set the defaults, just to process
the ui.xml file mappings. You start with a "clean slate" and only the settable
buttons and hot keys you assign will be available.

Use this mode if you want to completely change the settings from the defaults.
This is the default.

e startUpMacro indicates a macrok:7 that is run when the Debugger Client

starts.

Specify or update mapping sub-elements for your buttons/keys.

Contained within the mappings element are one or more mapping sub-elements.
Each mapping element associates a command or macro with a button, a hot key
sequence, or both. If it associates a command or macro with a button, it may also
specify a modifier for the button.

The mapping element attributes are described below, after which is a
comprehensive example:

command

A double-quoted string that contains a Client command, each of
which is described in the command reference[177, and two of which
desenve special mention here:

e The macr‘o@ command calls a user-defined macro

e The separator keyword creates an inactive button whose only
function is to be a visual button separatorlﬁ'ﬂ on a Client button bar

The command attribute is required.

The quoted command string may include a command parameter or an
"In window" prefix (as of Client build 57) if appropriate. Check the
individual command description in the command reference. As an
example:

<mapping command="runUntilVariableChanges %i"
button="button12"/>

Note: If a command parameter contains an ampersand (&), you need
to XML entity-encode it. For example, to map the command set &foo
= %1i, you specify it like this:

<mapping command="set &foo = %i"
button="button14"/>

292

Janus/TN3270 Debugger User's Guide

Customizing Client Operations

button

buttonModifier

key

keyModifier

A named button[283) (buttone, . . ., button14 for the main button bar
[39), and extrabuttone, . . ., extrabutton14 for an extral42) button
bar).

If no button setting is specified, a key setting must be specified.
A button modifier[2081 (Alt or Ctrl). This attribute is optional.

One of these keyboard keys: a-z, A-Z, or F2-F12. If no key setting is
specified, a button setting must be specified.

A key modifierkoll (Alt or Ctrl). This attribute is optional.

Note: As with all XML, the element and attribute names are case sensitive. Attribute
values, which must be quoted and non-null, are not case sensitive.

For any given mapping element, you must specify a button or key setting (or both).
Here is an example:

<mappings useDefaults="true" startUpMacro="myDefault">

<mapping
<mapping
<mapping
<mapping
<mapping
<mapping
<mapping
<mapping
<mapping
<mapping
<mapping
<mapping
<mapping
<mapping
<mapping
<mapping
<mapping
<mapping
<mapping
<mapping
<mapping
</mappings>

command="step" button="buttone" />

command="run" button="buttonl" key="f5" />
command="cancel" button="button2" />
command="stepOut" button="button3" />
command="runWithoutDaemons" button="button4" />
command="in audittrail top" button="button5" />
command="in audittrail bottom" button="button5" buttonModifier='
command="traceValues" button="button6" />
command="breakOnNextProc" key="9" />
command="nextCompileError" key="F2"/>
command="previousCompileError" key="F2" keyModifier="alt"/>
command="macro stepstep" key="Z" keyModifier="ctrl"/>
command="openMacroConsole" button="buttonl0"/>
command="closeMacroConsole"” button="buttonl11"/>
command="showCommands" button="button12" />
command="help" button="buttonl3" />

command="step" button="buttonl4" />

command="manual" button="extrabuttone" />
command="showAbout" button="extrabuttonl" />
command="showShortcuts" button="extrabutton2" />
command="manual" button="extrabutton3" />

If you define more than one mapping for the same key or button, the last mapping
(closest to the </mappings> end tag) takes precedence.

If you specify a macro, it is assumed to reside in the same folder as the Debugger
Client executable file unless you configured a different location.kod)

4. Save, then Exit the file.

If you edited an existing ui.xml file, the updated settings take effect the next time
the Client is started.

Janus/TN3270 Debugger User's Guide 293

Customizing Client Operations

Button toggle for compilation errors

The following two commands are only meaningful in the context of examining the results
of a failed compilationfss\. If the program you are debugging has no compilation errors,
these commands do nothing:

previousCompileError
nextCompileError

Since a button you map to one of these commands is not likely to often be used, you are
allowed to map these commands (and only these) to a button that has another
command or macro mapped to it. Then, if a request you are debugging encounters a
compilation error, the button switches its association from the first command or macro
you specified to the compile error function.

The button toggle occurs only when viewing a failed compilation — in a non-error
context, repeated button clicks execute only the first command specified for that button.

Here is an example:

<mapping command="stepOver" button="button8"/>

<mapping command="nextCompileError" button="button8"/>
<mapping command="stepOut" button="button9" />

<mapping command="previousCompileError" button="button9" />

Validation of mappings

When you (re)start the Client, the ui.xml file is validated for XML structure and
conformance to the rules given above for specifying its elements and attributes. Parsing
violations produce an error message, the Debugger Client opens, and either of the
following result, depending on whether the offending attribute was optional or required:

e The offending attribute is absent, but the other items are as mapped.
e All the mappings are rejected, and the Client has a set of default mappings.
For semantic violations like misspelling a command name or specifying a command that

is not supported in the current Client build, the Client opens with an error message, and
the offending attribute is absent while the other items are as mapped.

Note: You may set a command to a button with a modifier only if you have set a
command for that button without a modifier.

In other words, to successfully map a command to an "Alt+button" or "Ctrl+button"
combination, you must first map the command to an unaccompanied button click.

294

Janus/TN3270 Debugger User's Guide

Customizing Client Operations

Overriding the ui.xml file

It may be suitable at your site to provide a second level of overrides to the default button
and key mappings of the Debugger Client. For example, you might define a ui.xml file
that contains a set of standard mappings for all the users in a group, and let individuals in
the group override the group settings by defining their own mappings in a uimore.xml
file.

To override the ui.xml file:

1. Define a ui.xm1 file following the guidelines specified above. sl

2. Inthe same file folder and using the same format, define a uimore. xml file.

You can use the editing tool of your choice, or you can use the Edit uimore.xml option
in the Client's File menu (as of Client build 57).

The settings in the uimore.xml file override those in the ui.xml file, and they will be
subject to the same structure and content validationfsa.

3. Restart[18]the Debugger Client.

The uimore.xml file is read after and only if a valid ui.xml file is read. If no ui.
xml file is present or if it contains a significant error, the uimore. xml file is not
processed.

6.1.3 Default settings of buttons and hot keys

Unless you have providedlzell a user interface reconfiguration file, the Debugger Client
starts with the default presentation of GUI buttons and hot keys summarized in this
section.

Buttons

The ten buttons above the Client's main window tabs are initially set to perform the
commands that are shown in the table below (and described further in The Client
command referencem). The buttons are named by their left-to-right position. The button
labels shown in the Client are close approximations if not the same as the name of the
command they execute, and the labels are configurable with the labelButtonkei)
command as of Build 62. Five additional buttons are available for mapping but have no
command associated with them by default, and they do not appear unless they are
explicitly mapped:

Janus/TN3270 Debugger User's Guide 295

Customizing Client Operations

Button Default command setting
button0 top
button1 bottom
button2 clearAudit
button3 run
Alt+button3 runWithoutDaemons
button4 step
button5 stepOver
Alt+button5 stepOut
button6 trace
button7 cancel
button8 clearBreaks
button9 clearWatch
button10 — (none)
button11 — (none)
button12 — (none)
button13 — (none)
button14 — (none)
Hot keys
The Client's default set of hot keys and the commands that they perform are shown
below.
Hot key Default command setting
Alt+B breaksAt

296 Janus/TN3270 Debugger User's Guide

Customizing Client Operations

Hot key Default command setting
Ctrl+B breaks

Ctrl+C copy

Ctrl+F focusToSearchBox

Ctrl+P preferences

Ctri+T trace

Ctrl+U searchFromBottom

Ctrl+X cancel

F4 step

F5 run

Alt+F5 runWithoutDaemons

F9 searchDown

Alt-F9 searchUp

F10 stepOvwer; also, previousCompileError
Alt+F10 stepOut

F11 step; also nextCompileError

Note: By default, the Enter key repeats the command performed by the currently active
button (which is highlighted with a white background).

6.2 Changing the colors in Client displays

Whether to boost visual discrimination or simply to add visual variety, you can change
the color of the text and backgrounds in the various Client windows and pages. You may
want to make your code comments stand out by displaying them in a different color, for
example. Or maybe you want to change the highlighting the Client uses for breakpoints
because your eyes are insensitive to the default maroon.

The Color Preferences option in the Client's File menu leads to a set of panels, each of
which represents an element on the Client whose color can be modified. The panels
display the (standard, Windows) colors you can apply to the Client element.

Janus/TN3270 Debugger User's Guide 297

Customizing Client Operations

When you select a color, it is immediately displayed on the specified Client window or
page. You can test as many colors and elements as you want, and you can return at any
time to the default Client color settings. Any color modifications you make remain
through subsequent sessions of the Client.

To make a color change

1. In the Client's File menu, select Color Preferences.

The Color Preferences window displays the color options for the current Client page
or window, highlighting with a gray background stripe the default or existing color

values:
5 - O/x:
Audit Trail |Source Code Web Buffer Execution Trace Watch Window
Background Execution Position Break Text Break Background Html/Text Lines
~ (M Black ~| [l Black ~| | Black Ml Black -~ ~
[Gray Gray [Gray Gray
[LiahtGray [CLightGray [LightGray CLiahtGray
1 White White White White
Brown Brown B Brown Brown
M Maroon Ml Maroon Ml Maroon Ml Maroon
Red Red M Red Red
[Orange [C10range [Orange [C10range
Gold Gold Gold Gold
O Goldenrod O Goldenrod O Goldenrod O Goldenrod
[1PaleGoldenrod 1 PaleGoldenrod [1PaleGoldenrod [PaleGoldenrod 1 PaleGoldenrod [1PaleGoldenrod
i [IBeige [C1Beige ClBeiae [C1Beice [CBeice
CYellow Clvellow CYellow Clyellow C1Yellow
[ILightYellow ¥| [CLightrellow ~| [CILightyellow ~| [LightYellow CILightYellow ~| [CLightYellow L
Compile Errors Cancel Errors Selection Inactive Comments Macro !Lines
CYellow ~ | M Black ~| M Black ~| [EGold [Gray ~| [CIBeiae A
[ILiahtYellow [Gravy [Gray £ Goldenrod CLiahtGray C1Yellow
I Green] LiahtGray [CLiahtGray [PaleGoldenrod [1white [ILightYellow
[Lime White White [1Beiae M Brown Green
[Turquoise M Brown M Brown Ol vellow Ml Maroon ELime
Aaua M Maroon Ml Maroon [LightYellow B Red I Turquoise
Azure Red Red Green O Oranae ClAaua
[LiahtBlue [Oranae [C10ranae M Lime C1Gold [1Azure
Ml DarkBlue Gold Gold [Turquoise [C Goldenrod LCLightBlue
Ml MediumBlue [Goldenrod [Goldenrod Aqua [1PaleGoldenrod Ml DarkBlue
HBiue (] PaleGoldenrod [1PaleGoldenrod [Azure [1Beige Bl MediumBlue
CViolet [1Beige [1Beige ClLiahtBlue CdYellow MBlue
M Pumle [Yellow CYellow Ml DarkBlue I LiahtYellow Clviolet
[CIMaaenta ¥ [CLiahtYellow »| [CLiahtYellow ~| | MediumBlue CGreen ~| lPumle L
Restore Defaulis

The window contains separate tabs (five) for the Client areas for which you can
make color changes. Each tab contains a labeled panel for each display element
whose color you can change.

The Audit Trail tab controls both the Client Audit Trail page and Most Recent Audit
Trail window. The Client Proc Selection page has no color-changeable elements, and
the Client Daemon page colors are the same as those for the Source Code page.

Select the tab for the Client area you want to modify.

The panels you see are those that are available for the tab you selected. The labels
above the panels indicate the type of element to which the color applies. These
elements are described further in the table below.

298

Janus/TN3270 Debugger User's Guide

Customizing Client Operations

3. Inthe panel that represents the display element you want to color, click anywhere in
the row of the color you want for this element.

The color is immediately reflected in the Client, and it persists through Client

sessions unless you change it again.

4. Experiment further with other color changes, or click the Done button to exit. Click
the Restore Defaults button to return to the original Client color values.

The color panels

The following table describes the Client elements that are represented by the Color

Preferences color panels.

Panel label

Text

Background

Selection

Execution Position
Break Text

Break Background

Html/Text Lines

Compile Errors

Cancel Errors

Inactive

Page or
window

all

all

all

Source Code
Source Code

Source Code

Source Code

Source Code

Source Code

Source Code

Refers to

All text in the page or window. The color is
subject to override if it is for "inactive" code
lines shown in the Source Code page.

The background color of the page or
window.

The last reported, or last user-selected,
display line.

The line of code that is next to execute.
The text in a breakgoint@ line.

The background color of the row that
contains a breakpoint line.

The text within User Language HTML and
TEXT statement blocks.

The text of compilation error messages.

The background color of the row that
contains a line of code whose execution
produced a request cancellation.

The text color of code that is currently not
executable or able to respond while the
executable code in a Client Daemon page is
active.

Janus/TN3270 Debugger User's Guide

299

Customizing Client Operations

Panel label Page or Refers to
window
Comments Source Code The text in User Language code comment

lines (any that begin with an asterisk).

Note: You must be running at least version
7.6 of the Sirius Mods to add color to
in-line or multi-line comments
(bounded by characters like /? and
?/ defined by Model 204 COMSTART
and COMEND commands).

Macro ILines Source Code The text in User Language Macro Facility
statements. These statements begin with an
exclamation character (!).

Most Recent Web Buffer The background color of the lines most
recently added to the page.

Changed Values Watch Window The background color of the row that
contains a watched item whose value is
changed by the last statement execution.

Out of Scope Watch Window The text color of a row that contains (the last
value of) a watched item that is no longer in
scope, that is, not within code in the
currently active tab (Source Code or Daemon

)-

300 Janus/TN3270 Debugger User's Guide

Customizing Client Operations

6.3 Specifying a startup command for the Client

Command line parameters are available to customize your invocation of the Debugger
Client (JanusDebugger.exe). You can use these parameters in the following contexts:

e Command prompt/MS DOS box
e A Windows shortcut that targets JanusDebugger.exe

e Ascript(.bat or .vbs file) that invokes JanusDebugger.exe

Syntax and general syntax rules
Here is the command syntax:
JanusDebugger[.exe] [configFile|*] [proxyPort|*] [workFolder]

Where:

e The program name (JanusDebugger) may be specified with or without the . exe
qualifier.

e One or more blanks must separate the parameters from each other and from the
program name.

e [f a parameter value contains embedded blanks, enclose the value in double-
quotation marks (the standard DOS way of handling embedded blanks). Single-
quotation marks may not be used. For example:

JanusDebugger "config file.xml"

e Parameter position is important. To omit a parameter that precedes another, use an
asterisk (*) for the parameter you are omitting. For example:

JanusDebugger * 999

JanusDebugger * * c:\workFile

e The configFile parameter is an absolute or relative path to an alternate Debugger
configuration file (that is, to be used in place of the default file, debuggerConfig.
xml[8d). A relative path is relative to the application folder (the installation target).

Examples:
myConfig.xml (relative path)
"my Config.xml" (relative, embedded blanks)
a\myConfig.xml (relative path)

c:\folder\myConfig.xml (absolute path)

e The proxyPort parameter is an override for the proxy port number specifiedfss? in the
default or the alternate Debugger configuration file. It must be an integer in the range
1 through 65535.

Janus/TN3270 Debugger User's Guide 301

Customizing Client Operations

e The workFolder parameter (as of Build 62, Tag 13) specifies an absolute file
system path of a writable folder. The command is rejected if the folder does not
exist, is not writable, or is relative.

workFolder is an alternate location for state and log files, preferences, macros, and
Ul customization files. These files, which belon?_t%) one of three folders, are
described in A summary of the Client work files|3o3l.

Example
Consider the following Client startup command:
c:\appdir> janusdebugger * * c:\work

This command makes the Debugger Client look for the following items in the C: \work
folder:

Client configuration file (. xm1)

A sub-folder for state files (see stateFileFolder tag below)

A sub-folder for Ul files (see uiFolder tag below)

A sub-folder for macro files (see macroLibraryFolder tag below)

Note: In the work folder, these items must not be specified by an absolute path.

For example, if workFolder C: \work has this directory content:

11/04/2013 11:28 AM 3,388 debuggerConfig.xml
11/04/2013 11:13 AM <DIR> macros

11/04/2013 11:28 AM <DIR> state

11/04/2013 11:12 AM <DIR> uiconfig

And the debuggerConfig.xml file has these folder tags:

<stateFileFolder>state</stateFileFolder>
<uiFolder>uiconfig</uiFolder>
<macroLibraryFolder>macros</macroLibraryFolder>

The Client will do the following:

e Look for the configuration file in: C:\work

e Use this macroLibraryFolder: C: \work\macros

Use this stateFileFolder: C: \work\state

Use this uiFolder: C:\work\uiconfig

Report to the Client's Help > About box the locations of the preceding items

302

Janus/TN3270 Debugger User's Guide

Customizing Client Operations

6.4 Changing the location of Client work files

The Debugger Client uses a variety of text files to store information about user activity to
maintain its tools and displays, as well as a comprehensive troubleshooting log. These
work files are catalogued belowkosl,

The Client configuration fileksol (debuggerConfig.xml) has optional XML elements with
which you can specify alternative folder locations for the Client work files. The files are
divided into three groups, each of which is controlled by a single element, as follows:

e <stateFileFolder> specifies where most Client work files are written (log,
preferences, searches, for example)

e <uiFolder> specifies where the Client interface-customization files (ui.xml, uimore.
xml) are stored

e <macroLibraryFolder> specifies where Client macro files are stored

Within debuggerConfig.xml, you specify folder path values for the elements as in the
following:

<debuggerConfig version="1.0">

<stateFileFolder>c:\myData</stateFileFolder>
<uiFolder>c:\myUI</uiFolder>
<macroLibraryFolder>c:\work\macroLibrary</macroLibraryFolder>

</debuggerConfig>

If you include an element, the specified folder location is validated when the Client is
started, and you receive an error if the folder is missing or not writable. The locations are
also reported in the audit trail.

If an element is not specified, the installation target folder is the assumed location. The
exception to this is the macroLibraryFolder element: if this element is not specified,
the Client will initially attempt to store or find macro files in the stateFileFolder
location, else in the Client installation folder. Similarly, if the macroLibraryFolder
element is specified, the Client tries that location first, else it tries the stateFileFolder
location, else the Client installation folder.

A summary of the Client work files

File (by type) File content Configuration file element
that specifies file default
location

.macro Client macro macroLibraryFolder

Janus/TN3270 Debugger User's Guide 303

Customizing Client Operations

File (by type) File content Configuration file element
that specifies file default

location

excludeProc.txt

excludeRoutine.txt

find.txt

includeProc.txt

includeRoutine.txt

log.txt

until.txt

vars.txt

watchmemory.txt

whitelist.txt

.watch

about.xml

console.xml

getVariableList.xml

The list of procedures to be excluded
from debuggingl 631

The list of methods and subroutines
to be excluded from debugging@

The most recent Search[39) terms

The list of procedures not to be
excluded from debugginglﬁﬁ

The list of methods and subroutines

not to be excluded from debugging
[68)

The Debugger Client Iogl@

The most recent run-untill 73) target
procedures

The most recent entries in the text box
above the Watch Window

The contents of the Watch Window
between Client runs (if feature|891is

enabled)

The white list[77) of procedures to
omit from debugging

Saved[s9) Watch Window lists

The remembered position and size of
the Client's About[38] box

The remembered position and size of
the Macro Consolef2h window

The remembered position and size of
the getVar‘iablesForClassm
command output window

stateFileFolder

stateFileFolder

stateFileFolder

stateFileFolder

stateFileFolder

stateFileFolder

stateFileFolder

stateFileFolder

stateFileFolder

stateFileFolder

stateFileFolder

stateFileFolder

stateFileFolder

stateFileFolder

304

Janus/TN3270 Debugger User's Guide

Customizing Client Operations

File (by type)

history.xml

preferences.xml

shortcuts.xml

textviewer.xml

ui.xml

uimore.xml

valueDisplay.xml

windowmemory.xml

See Also

File content

The remembered position and size of
the Execution Histo:y@ window

The settings from the Preferences| 18]
and Color Preferencesfoh dialog
boxes

The remembered position and size of
the Keyboard Shortcutsboh window

The remembered position and size of
the Text Viewer[47 window

Modifications 283 to the Client's
default buttons and hot key
associations

Settings that overridefol) the ui.xml
file settings

Remembered position and size of
Value window displays@'ﬁ

Remembered position and size of the
main Debugger Client window

Configuration file element
that specifies file default
location

stateFileFolder

stateFileFolder

stateFileFolder

stateFileFolder

uiFolder

uiFolder

stateFileFolder

stateFileFolder

Alternative locations for Debugger documentation filesss3)

6.5 Changing the font size in Client displays

The Client configuration fileksd (debuggerConfig.xml) has an optional XML element

(fontScale) with which you can specify a larger font size than the default for Client
displays. Your font scale changes are applied to the user data contained in these
(tabbed, external, Value, console, history, watch, Help information) Client windows:

Audit Trail, Web Buffer, Execution Trace (tabbed or external)
Source Code (including Daemon) tabs
Watch Window (including external)
Execution History (tab or separate window)

Janus/TN3270 Debugger User's Guide

305

Customizing Client Operations

Console (macro and command output)
Value (value displays, object and list expansions, records and field groups)
Help menu information options (About, Keyboard Shortcuts, Commands)

Note: Debugger scaling is applied after any scaling by Windows if you are running with a
non-standard DPI.

To scale the font size

1. Specify the fontScale element at the root level in the debuggerConfig.xml file. For
example:

<debuggerConfig version="1.0">
<fontScale»2.5</fontScale>
<serverList>

</debuggerConfig>

The scaling value you specify may be from 1.00 to 9.99 (with O, 1, or 2 decimal
digits). The value is the factor by which the default apparent font size is multiplied
and scaled accordingly. A value of 1 leaves the default font size unchanged; a value
of 2 doubles it.

2. Save your change, and restart the Client.

If your fontScale value is valid and not 1, the Client Audit Trail display will resemble
the following:

. 08:18:30 Executable: C:\debugger\ClientSource\bin\JanusDebugger.exe
. 08:18:30 Executable date: 9/27/2010 4:10:51 PM
. 08:18:30 Font Scale: 2.5 <<<<<<

6.6 Opening an external window

Although the Client's Watch Window is expandable (by dragging its left edge) and you can
also view long values by hovering the mouse pointer, you still may find cases where you
would like to have more room for the Watch Window than is available. Or you may have
cases where you could take better advantage of your monitor screen real estate if the
Audit Trail tab were separated from the Client. Or you may have dual monitor capability,
and ideally would like to use one monitor for the Client main window and one monitor for
the Web Buffer tab.

The "external window" feature of the Client lets you display any combination of the Client
main areas (the Watch Window, Audit Trail tab, Execution Trace tab, Web Buffer tab) or the
button barlss]in individual windows that are separate from each other and from the
Client.

306 Janus/TN3270 Debugger User's Guide

Customizing Client Operations

You invoke the feature by double-clicking the name of the Client area, or by menu option
or mapped button, key, or macro. Any of these actions instantly creates a separate
independent window for the specified Client area. The contents and label of the former
area are removed and transferred to the new window, which (except for an external
button bar) is equipped with Print and Save options accessible by menu or button.
Closing the external window returns its contents to the usual area on the Client.

The rest of this section describes the feature with a detailed example, considers ways to
control the positioning of external windows, and shows how to open an external window
automatically.

Watch Window example

To use an external Watch Window, for example:

1. Do either of the following:

a. Select Open External Watch Window from the Client's Window menu.

For opening the Watch Window (but not for the other areas) you can also use
the Data Display menu.

b. Invoke a button, key, or macro magged@ to the openExternalWatchWindow
L35 command.

Unique open commands exist for each of the other areas.

As described belowh:1), you may want to open the external window at Client
startup.

Janus/TN3270 Debugger User's Guide 307

Customizing Client Operations

2. The external Watch Window window opens, displaying the current Watch
Window items. The space formerly occupied by the Watch Window is vacated,
including its label:

& Watch Window o)]
File
as=""
a Bu="="
% The Janus Debugger (UNICODE4) apa=rg@*
File Window Search Breakpoints Execution DataDisplay Error Macros Hif |¥us="'
. an6="*"
Top | Bottom | Clear Audit | Run | Step | Step Over | Trace All | Cancel #n2=13132"
Audit Trail Source Code | Web Buffer | Execution Trace ||| *=3=""
%copy="9"
UL> 39 1 38 P
UL> 40 1 39 printText {'7c':x} a=""
UL> 41 1 40 printText {~} is {'04':x} ll3ebc has no valme: %EBC not found
UL> 42 1 41
OL> 43 1 42
UL> 42 1 43 3%u2 is unicode Initial('31€:32':T
UL> 45 1 44 *Print %u:UnicodeToEbedic(CharacterEnc|
UL> 46 1 45 Print 'using hex 80: ' #u2
OL> 47 1 46
UL> 48 1 47 %copy Unicode Initial('©':U)
uL> 49 1 48 Print %copy
UL> 50 1 43
UL> 51 1 50 %e is longstring
UL> 52 1 51 %a is longstring
UL> 53 1 52 #u3 is unicode
UL> 54 1 53 %e = '&oopy;'
UL> 55 1 54 %u3 = %e:EbcdicToUnicode
OL> 56 1 55 %03 = %e:EbodicToUnicode (CharacterDeco
UL> 57 1 56 Print 'e2u is: ' %u3 Clear Print ‘ e | Close |
OL> 58 1 57
Search Down | Search Up | Top | Bottom
Search Search Next Search Prev ‘ vale | irace | RN 10 Change | wvarcn |
j ‘%ebc j

I UNICCODE4

M204.1168: IN FILE JALWORK INCLUDE UNICODE4

4

Executed one statement.

In the external window:

Print and save options are on buttons and in the File menu.

The Clear button deletes all the items in the window.

The Close button closes the external window but repopulates the former Watch

Window area on the Client with the items that were present at the time of the
close.

The mappable command closeExternalWatchWindowhe?) performs the same
action as the Close button.

Unique close commands exist for each of the other areas except for the button
bar, and the closeExternalWindowslied command closes multiple windows at
once.

A search bar provides a text box and control buttons for searching the window
content. Top and Bottom buttons locate and highlight the first or last line of the

content, while Search Down and Search Up activate backwards or forwards
searching.

Pressing the Enter key after entering a search string in the search text box
searches down, by default, and each subsequent key press searches for
additional occurrences of the string, as long as the focus remains on the
search text box.

308

Janus/TN3270 Debugger User's Guide

Customizing Client Operations

3.

Continue debugging. The external window functions the same as the normal one,
except:

e The external window typically pops up when you click it or when new content is
written to it. Clicking a Client control brings the Client window to the top.

e External windows may be Qinned@ﬂ: you can specify one or more of them to
keep in view at all times

e Only the external window has print and remove-all-items-at-once (Clear)
capabilities.

If you close and restart the Client, the external window location will remain what it
was when you closed the Client.

You might want an external window simply to display more data, for
example, data that is displayed in long lines. In the image below, which also
shows the show-as-tooltip feature(ss], the very long data is more fully
displayed in the external Watch Window.

Placing the external window below the Client also means both the Client and
the external window remain in view as you step through the source code,
even as variable value changes cause the external Watch Window to pop up in
front of the Client window:

A% The Janus Debugger (USERSTATZ) =
File Window Search Breskpoints Execution DataDisplay Error Macros Help

Top | Bottom | Clear Audit | Run | Step | Step Over | Trace All | Cancel | Clear Breaks | Clear Watch

Audit Trail Source Code | Web Buffer | Execution Trace | Proc Selection

UL> 25 1 24 Print ¥statEnd:ToString(Zeros=true, NamesToLower=false) -
UL> 26 1 25 ¥doc = new

UL> 27 1 26 FhkkkRbhw the following statement produces bug and USer restartrrttrssrery
UL> 28 1 27 *%¥doc = %statEnd:ToXmlDoc(Zeros=true, NamesTolLower=true)

UL> 23 1 28 %¥doc = new

UL> 30 1 29 %¥doc = #statEnd:ToXmlDoc(attributenames=true, NamesToLower=false)

UL> 31 1 30 %¥doc:Print

UL> 32 1 31

UL> 33 1 32 printText FDL: {%statEnd:requestValme('pdl’)}

TL> 34 1 33 *print %#statEnd

UL> 35 1 34

UL> 36 1 35 %statNew is object userStatistics

UL> 37 1 36 ¥statNew = new

UL> 38 1 37 %cpuUsed is float

UL> 35 1 38

L> 40 1 39 #cpulsed — *statNew:difference (%¥statStart, 'cpu')

L> 41 1 40 printText {~} = {*cpuUsed}

UL> 42 1 41 %1s = ¥statNew:differenceTostring(¥statStart, zeros=true)

UL> 43 1 42 Printtext {~} = {%1s}

e Watch Window = B]

4s has no valme: 3§ not found
4u has no valme: 3U not found

4u4 has no value: 3U4 not found
4u5 has no value: 3U5 not found
4ué has no value: 3U6 not found
4u2 has no value: 3U2 not found
4u3 has no value: 3U3 not found
%copy has no value: %COPY not found
#e has no value: 3E not found

#a has no value: 3A not found

#ebc has no value: 3EBC not found

#doc:Serial='<UserStatistics id="36" time="20101129164233605" userNumber="5" loginTime="20101129164212660"> <login> <stat name="CNCT">20</stat>
#cpulsed=1
#1s="time='20101129164257195' userNumber=5 loginTime='20101129164212660' baseTime='20101129164233028' CNCT=24 DERD=0 DEWR=0 SQRD=0 SQWR=155 SCMTI=0 SCM|

#statNew: differenceTostring(#statStart, zeros=true) has no Wialue: Method DIFFERENCETOSTRING not allowed

RE

Fels="time='201011291564257195" userNumber=5 loginTime="'20101129164212660" base Time="20101129164233028' CNCT=24 DKRD=0 DKWR=0 SQRD=0 SQWR=155 SGMTI=0 SGMTO=0 SVRD=0 SVWR=0 CPU=1 REQ=0 MOVE=13 DUMP=0 RES
ECDEL=0 BADD=0 BDEL=0 BCHG=0 [XADD=0 IXDEL=0 FINDS=0 SORTS=0 RECDS=0 STRECDS=0 DKAR=36 DKPR=296 DKRR=0 COMMITS=0 BACKOUTS=0 UPDTTIMEMS=0 LONGUPDTS=0 LONGUPDTIMEMS=0 SMPL5=0 RUNG=0 REDYV=0 B
BXCHNG=0 BXDELE=0 BXNEXT=0 BXFIND=0 BXINSE=0 BXSPLI=0 BXRFND=0 BXFREE=0 STCPU=0 STDEQ=0 SCHDCPU=0 SCREENS=0 SVPAGES=0 PBRSFLT=0 MQGET5=0 MQPUT5=0 UBUFHWS5=0 MQHWTASK=0 MQBYTEIN=0 MQBYTEOU=
MQAPICNT=0 MQGWTTIM=0 MQGWTCNT=0 MQGWTTSP=0 MQGWTSUC=0 ECLOAD=0 ECDELETE=0 ECCALL=0 ECCWAITM=0 ECCWAITS=0 ECTWAITM=0 ECTWAITS=0 ECCTOUT=0 ECCNCT=0 GTBLRU=0 GTBLRS=0 FSCBSW=0 OBJSWA

Clear Print Save ‘ Close I

Search Down | Search Up | Top | Bottom

The following subsection describes an additional tool for controlling the
viewing of multiple windows.

Janus/TN3270 Debugger User's Guide 309

Customizing Client Operations

Keeping external window(s) constantly on top

With a proliferation of external windows on your PC desktop, it is sometimes
useful to mark a window to remain at the top of the window stack (often
called "pinning" a window). For example, you may want an external Web
Buffer window to always be the "topmost" window, especially if you have
large or multiple monitors.

As of Build 57 of the Debugger Client, you can "pin" an external window by
simply right-clicking its title bar, then selecting the Pin option from the
context menu:

A{,—:‘ Web Buffer ‘ SRICE X

<firstHi - tHame>

<lastName>Fine</lastName>

</stooge>

<stooge>
<firstName>Curly</firstHame>
<lastName>Howard</lastName>

</stooge>

<stooge>
<firstName>Shemp</firstName>
<lastName>Howard</lastName>

</stooge>

J/=stooges>

Clear Print Save

Search Down | Search Up | Top | Bottom

Alternatively, you can issue the Client pin[:8 command (Build 56). For
example, to pin an external Web Buffer window, you issue the following
command (from a UL mappinglel, the command linel24, a macrol:?, or the
clientCommandhea method):

pin web buffer

The window identifier (web buffer, above) may be the title of any open
external window, it may be a trailing-asterisk (*) wildcard pattern for any
open external window, or it may be a single asterisk to pin all open external
windows.

310 Janus/TN3270 Debugger User's Guide

Customizing Client Operations

A pinned window displays a pin icon in the title bar in place of the product
icon:

lame>Larry</firstName>
we>Fine</lastName>

<sLouger
<firstName>Curly</firstName>

<lastName>Howard</lastName>
</stooge>

<stooge>
<firstName>Shemp</firstName>
<lastName>Howard</lastName>
</stooge>
/stooges>

Clear Print Save

Search Down | Search Up | Top | Bottom

You can move pinned windows around on your screen, and close or
minimize them as necessary. You can also remove their pinning by:

e Selecting UnPin from the title bar context menu

e Issuing an unPinks3d command

Opening the Client and external window(s) simultaneously

If you want an external window to open when the Client starts, the
Preferencesl211dialog box has options in the Open at Startup area to specify
which Client areas (Watch Window, Audit Trail, Web Buffer, Execution Trace) you want
to open as an external window when the Client starts. These options are in
Client build 57 or later.

Prior to Build 57, the recommended technique for automatically opening the
Client and its external windows together it was necessary to use a macro:
You were to put the open command for the particular Client area (for
example, openExternalWatchWindow) in @ startup macro that you reference in
the ui.xml file. This file, which the Client always looks for when it starts,
contains any reconfigurations of the default mappings of buttons and
keyboard shortcuts in the Client GUL

You specified your startup macro as the value of the startUpMacro attribute in
the mappings tag in the ui.xml file.l201) As described in Creating and running a
macro,k17 your entire macro (the yourMacro.macro text file) could be as
simple as the following single line:

openExternalWatchWindow

Janus/TN3270 Debugger User's Guide 311

Customizing Client Operations

See Also

Launching an external button bar]42)

6.7 Hiding the Client's lower windows

For occasions when you want more "real estate" for the main window display of the
contents of one of the Client's tabbed pages I?ﬂ, you can hide the Client's lower windows
[141and stretch the main window to occupy nearly the entire window. This is especially
useful in a multiple-monitor environment, where the Audit Trail and Watch Window can
reside in separate windows 306l on another monitor.

Client Build 57 or higher is required.
Probably the simplest way to hide the lower section of the Client is:
1. Open the Preferences dialog box by using the Ctrl+P keyboard shortcut (or by

selecting Preferences from the Client's File menu, or by using the preferences
mappablefzs3l command).

2. Inthe Main Window Options section, select the Hide Lower Section checkbox (it is

clear by default), then click Done.

¥ Restore watches on startup
Main Bution Bar
~ Mistory to Execution Trace & Top

Ise !debugger directives (7.6+) ¢ Center

¢ Bottom
2rogram Titles
3270 Emulator I ExtraButtons

| Main Window Options

= Hi .
Web Browser %Hlde Lower Secthion

|Mozi||a Firefox

3 Done

312

Janus/TN3270 Debugger User's Guide

Customizing Client Operations

The lower section of the Client is hidden immediately by an expanded
main window:

43 The Janus Debugger (QAXML2) = | B it
File | Window | Search Breskpoints Execution Data Display Error Macros Help

Top | Bottom | Clear Audit | Run | Step | Step Over | Trace All | Cancel | Clear Breaks | Clear Watch

Audit Trail Source Code | Web Buffer | Execution Trace | Proc Selection

(UL> 6 1 5 variable x is object XMLDoc -
UL> 7 1 6 constructor new

UL> 8 1 7 subroutine addStooge(%iFirst is longstring, -

UL> 9 1 8 %ilast is longstring)

(UL> 10 1 9 end public

UL> 11 1 10

UL> 12 1 11 private

UL> 13 1 12 variable top is object XMLNode

(UL> 14 1 13 end private

UL> 15 1 14

[UL> 16 1 15 constructor new

(UL> 18 1 17 %this:top = %this:x:addElenent('stooges’) =
uL> 19 1 18 end constructor 1
[UL> 20 1 13

UL> 21 1 20 subroutine addStooge (%iFirst is longstring, -

(UL> 22 1 21 %ilast is longstring) I
UL> 23 1 22 %oneStooge is object ¥MLNode

UL> 24 1 23 %ZoneStooge = %top:addelement('stooge')

(UL> 25 1 24 ZoneStooge:addelenent (' firstName' ,%iFirst)

UL> 26 1 25 #oneStooge:addelement (' lastName' ,%iLast)

UL> 27 1 26 return

[UL> 28 1 27

[UL> 29 1 28 end subroutine

UL> 30 1 29

UL> 31 1 30 end class

UL> 32 1 31

[UL> 33 1 32

UL> 34 1 33

[UL> 35 1 34 %d is object document 2

- ?;::;:' SES:" Top Bottom Wtdt‘ih Breakpoint set.

The searching controls[+41and the button for adding Watch Window items are moved
to the beginning of the Status bar at the bottom of the Client. They share the single
input box to the extreme left. In addition to these, you can still right-click code lines
[661to add variables to the Watch Window, and you can use the searching controls
available on each external window. You can also use the Data Display and Search
menus, as well as the watch commands (addWatch, addWatchOnCurrentLine)
and the search commands (searchDown, searchFromBottom, searchFromTop,
searchUp, top, bottom) viathe Command Line toolfs25).

3. Torestore the lower windows at any time, simply clear the Hide Lower Section
checkbox.

You can also use Client commands to hide and restore the lower section of the main
window:

e hideLower:2 hides the lower section if it is currently not hidden (and does nothing
if it is already hidden)

e restoreLower|2d restores a hidden lower section (and does nothing if it is not
hidden)

. toggleLower‘Ea either hides the lower section if it is not hidden or restores it if it is
hidden

Janus/TN3270 Debugger User's Guide 313

Customizing Client Operations

6.8 Seeing through Client windows

The degree of transparency of certain (Preferences and external-buttonls21) Client
display windows is user-settable. You can adjust the transparency/opacity of the
Preferences and external button windows to allow the application windows underneath to
be visible.

The opacity element in the Client configuration file (debuggerConfig.xml) controls this
transparency, as describedfsdl in the guidelines for setting up that file.

The default opacity setting (.9) is shown below for an external button bar:

L
i > 11 1 10 #%#num = %speeu: Userwumber .
L> 12 1 11 #mum2 = %#speed:masterNumber 1
L> 13 1 12 %num3 = %speed:parentNumber
L> 14 1 13 Print 'wsernum is: " %num 2 I
Search Search Next Search Prev | Value Trace Run to Change Watch |
Sirius j |3J j

SIR.1020: Debugger: JDBW Address=X"TC499 H;;y:llu} has no value: Invalid parameter regmest

% Button Bar: The Janus Debugger (DAEMON4)

File Dock

Top | Bottom | Clear Audit | Run | Step | Step Over | Trace All | Cancel | Clear Breaks

And here is a setting of .5:

- i1 41 U Fnum = E¥spes..Jser.umber Y
L> 12 1 11 #num2 = %speed:masterNumber [
L> 13 1 12 %numm3 = %speed:parentNumber
L> 14 1 13 Print 'usernum is: ' %num = I
|
Search Search Next Search Prev | Value Trace Run to Change Watch ‘ '
Sirius Bl [=]
SIR.1020: Debugger: JDBW Address=X'TC499 ||%y:110} has no value: Invalid parameter reguest i
I PARMON4 Iarr+ connt—has no—ratnes Tnralid parameter reqmest

parameter reguest
Invalid parameter reguest

hioha 4 iawtotﬁalr%ﬁ)anmm'; ERELTHD BAEMON

- - Top Bottom CIearAudit Rlur! Step | Step Over | Trace All | Cancel | Clear Breaks -

Ready for execution.

The valid setting values range from .01 (least opaque) to 1 (fully opaque). Invalid values
are ignored. To turn off all transparency, specify:

<opacity>1</opacity>

Client Build 59 or higher is required.

314 Janus/TN3270 Debugger User's Guide

Customizing Client Operations

6.9 Enforcing a minimum Client build number

Normally, when you use the TN3270 or Janus Debugger, no restrictions are placed on
which build of the Client is used. The Client build number is displayed in the Audit Trail
tab when the Client starts:

2016 07 30 17:21:47 The Rocket Software Debugger Client

2016 07 30 17:21:47 Build: 65 (01 August 2016) Tag: 1 GA

You can also view the build number of the Client at any time by selecting Help > About.
On Debugger Client build 65 and higher, the build number is also available from the
Client &&buildNumberssd function.

Build 64 (and higher) of the Debugger Client transmits its build number to the mainframe
side when a debugging session is initiated. The mainframe side uses this information to
construct the MSIR.1077 message:

MSIR.1077: Begin debug session, user 3, client: Build: 65, Tag: 1
(Janus debugger session)

Since Client builds before 64 do not transmit their build number, the mainframe side
views all Client versions prior to build 64 as build 63.

Specifying a minimum build number

As of Client Build 65 or higher and Model 204 7.7 or higher, you can force Clients to have
at least a minimum build number in order to invoke a debugging session with your
Online. The Model 204 system parameter MINDEBCL sets such a minimum.

If you set MINDEBCL to a positive value, use a version of the Debugger Client whose
build number is less than MINDEBCL, and invoke a debugging session, the debugging
session is rejected. An error message is shown in your browser and at the Client, calling
for a Client upgrade. A browser example follows:

You also see the following error in the Model 204 audit trail (and on the terminal if you are
using the TN3270 DEBUG ONI[is8l command):

MSIR.1079: Debugger Client Build: xx < MINDEBCL: yy debugger client
connection refused

Janus/TN3270 Debugger User's Guide 315

316 Janus/TN3270 Debugger User's Guide

Using Debugger Macros

chapter7 USing Debugger Macros

A macro lets you execute one or more commands as a single unit of work to automate
an often-repeated series of operations.

Subsequent sections in this chapter describe:

Creating and running a macrob7
Mapping a macro to a button or hot key|3_251
Passing a command argument to a macrofs22

Using the macro console and command linek22

Using the Macro Autorun feature[s28)
Working with macro variables/s21

Working with Client functionsfs23)

71 Creating and running a macro

A Debugger macro is a Windows PC text file that contains a list of Debugger Client
commands|zsd to execute (as shown in the A macro exam plels20 subsection). This
section describes how to set up and run a macro, as well as the context and calling
requirements you must observe.

You run a macro from the Macros menulss}, from a Client button or hot key to which you
have assigned|3_251 a macro, or from a command line utiIity.la_zf'ﬂ You can also run a macro
automatically:

¢ [f the macro name matches that of an included procedure.

e At Client startup, if the macro name is an attribute value at the beginning of the
Client customization fileksll (ui.xm1) or the Client configuration filekssl
(debuggerConfig.xml).

Janus/TN3270 Debugger User's Guide 317

Using Debugger Macros

Macro definition

To define a new macro:

1. Start a text file by doing either of these:

e From the Client's File menu, select New Blank Macro.

The "Select name for a new macro" Windows dialog box opens, from which you
select where to locate and what to name the macro file.

Macro files must have a .macro file extension, and the file name must not
contain embedded blanks.

When you click the Save button, the macro file opens in Notepad.
t slick.macro - Notepad i

File Edit Format View Help
Add commands here U

e Alternatively, open a new file in a Windows text editor like Notepad.

When you later name and save this file after defining its contents, you must
specify a .macro file extension and make sure the file name contains no
embedded blanks.

Note: If you decide to store the file in a location other than the Client installation
folder, see Changing the location of Client work files. ko3

2. Inthe text file, specify the Debugger commands you want to be run consecutively.

These are the formatting guidelines:

e Specify one command (case does not matter) per line; leading spaces and
blank lines are ignored; line can be indefinitely long.

e Any line that begins with a number sign (#) is treated as a comment.

e Several commands require arguments; specify arguments or argument
variables[s23 after the command keyword separated by at least one blank. For
example:

addwatch %i
searchFromTop image foo
runUntil daemonnest
Separate multiple command arguments by one or more blanks. For example:

traceUntilVariableEqualsValue %i 3

318 Janus/TN3270 Debugger User's Guide

Using Debugger Macros

e For amacro to run another macro, specify either of the following:
include macroName
macro macroName

Specifying the extension .macro after the macro name is optional. The
following commands are equivalent:

include foo.macro

include foo

3. Save and exit the macro file.

You can easily access this file for editing by selecting the Edit Macro option from the
Macros menu.

4. Consider opening the macro consolefs24l (from the Macros menu) to display
information about the macros you run.

The console reports the starting and completing of the macro execution, as well as
any error messages.

5. Invoke the macro.

Use any of the following ways to run a macro:
e From the Macros menu, select the Run Macro option.
e From the Macros menu, select the Command Line option.

e Use a button or hot key combination to which you have mapped the macro.p22)

e Specify the macro name as the value of the startUpMacroloi attribute in the
Client's ui.xml file, or as the value of the startup attribute in the Client's
debuggerConfig.xml file.

The title bar of the main Client window indicates that the macro is executing:

. macro running

Potential errors include: an invalid macro command, trying to invoke a macro that
does not exist, and violating the context and recursion restrictions. 1)

If you want to stop a macro at any time it is running or in a not-completed state
awaiting further input, select the Kill Running Macro option from the Macros menu.

Note: A macro runs until it has exhausted all its commands or encounters a kill
l20icommand. If a request completes before the macro is finished, the
remaining commands in the macro apply to the next request in the session. If
you want to prevent these commands from being applied to the next request,
use the Kill Running Macro option or the noSQanEﬂ command.

Janus/TN3270 Debugger User's Guide 319

Using Debugger Macros

A macro example

The following sample macro prepares a particular program (shown below the macro) for
further debugging:

Remove any existing breakpoints or watches
clearhatch
clearBreaks

Set breakpoint on the first line we
want to examine

top

breaksAt For 1 record

watch some variables we are interested in
addWatch %i
addWatch %what

Run to the breakpoint we set
run

The sample macro above was designed for a program like this:

begin
%1 is float
%what is string len 30

*BREAK
%i =1

* this should not be recognized as a *break

for 1 record

*breaks

%1 = %1 + 1

%what = $sirTime

change testfield to %what
end for
*break
%i=%i + 1
assert %i = 3
trace 'hello
*break
audit 'Hey moe...'
print $sirtime
print %i

end

320

Janus/TN3270 Debugger User's Guide

Using Debugger Macros

Macro usage restrictions

These are the context and calling restrictions you must observe when using macros:

Context restrictions

Some of the commands that may appear in a macro are valid only when you are
interactively running a program under the Debugger. If a macro attempts to execute one
of these commands when no program code is ready or remains to execute, the macro is
terminated, and the following message is displayed in the Client's Status bar:

Invalid context for: Offending command
The following types of commands are allowed only when executing a program:

e Al run commands

¢ All cancel commands

e All step commands

e Allwatch commands

e All breakpoint commands

e Alltrace commands

Similarly, the following commands are allowed only after a program fails to compile. If
these commands are issued when there is no compilation error, the Client issues the
"Invalid context" message described above:

e nextCompileError

e previousCompileError

Recursion restriction

Macros may not be recursively called, either directly or indirectly. These sequences are
not allowed:

e "Macro Alpha calls macro Alpha" (direct recursion)

e "Macro Alpha calls macro Beta which calls macro Alpha" (indirect recursion)

In either case, when a recursive call is detected, the macro is terminated and a
message is displayed in the Status bar49).

Janus/TN3270 Debugger User's Guide 321

Using Debugger Macros

7.2 Mapping a macro to a button or hot key

Following the same rules as for mapping other Debugger commands [2e8), you can map a
macro to a button or hot key. All such button/key mappings are stored by defaultfso3l in
the ui.xml and uimore.xml files in the folder that contains the Debugger Client
executable file.

To set up a button or hot key to run a macro:

1. Create an XML text file named ui.xml (or uimore.xml) as described in Setting up
the ui.xml file[293, or open the existing ui.xml (or uimore.xml) file.

2. Provide a mapping element that associates the macro with a button or hot key.
The value of the command attribute must have the following form:
"macro macroname"

where one or more blanks separate the keyword macro from the name of the
macro.

These are examples:

<mapping command="macro hello" button="button2" key="m" keyModifier="ctrl"/>
<mapping command="macro world" button="button2" buttonModifier="alt"/>

<mapping command="macro stepstep"” key="Z" keyModifier="ctrl"/>

3. Save and close the file.

7.3 Passing a command argument to a macro

As described in Creating and running a macrof17, several of the Debugger commands
require explicit |a_rguments when used within a macro. You can use either a standard
macro variablek27 or a standard Client function[z23 to pass an argument to a macro

command at the time the macro runs.

Using the &argstring variable

To use the &argstring variable to pass an argument to a command in a macro:
1. Inthe macro, specify &argstring where you would normally specify the command
argument.

For example, note the use of &argstring in the breaksat command in the
following macro:

322

Janus/TN3270 Debugger User's Guide

Using Debugger Macros

Run till line that matches the user-passed string
top

clearBreaks

breaksat &argstring

run

clearBreaks

Note: For commands that have multiple arguments, use the numbered-argument
function, &&arg(n), to distinguish the arguments. For example:

traceUntilvariableEqualsValue &&arg(1) &&arg(2)
2. Provide the actual argument value before or as you run the macro.
This depends on how you invoke the macro:

e If you use the Run Macro option of the Macros menu, the contents of the Entity-
name text box[so replace instances of &argstring in the commands in the
macro.

e If you use the Command Line option of the Macros menu, you explicitly specify in
the command line toolkz23! the replacement for &argstring.

e [fyouusean associated]ssl button or key, the &argstring replacement
depends on whether the macro command in the magging@ in the ui.xml file is
specified with or without arguments:

= [fthe macro command has an argument (after the name of the macro), that
argument replaces &argstring in the macro. For example, if this is the

mapping:
<mapping command="macro stooge moe" key="f2" />

Pressing the F2 key invokes the stooge macro with moe as the
replacement argument for instances of &argstring.

= [fthe macro command is specified without an argument, the contents of the
Entity-name text box replace &argstring.

Using the &&prompt function

The &&promptf+4 function causes a macro to:

1. Pause, to accept a Client-user supplied argument value for a command that is
specified within the macro

2. Continue, to execute the command with the supplied value
The format of the &&prompt function is:
&&prompt(prompt)

where prompt is either:

Janus/TN3270 Debugger User's Guide 323

Using Debugger Macros

e Asingle- or double-quoted character string with 80 or fewer characters.

e AClient macro variablek27 (requires Build 58 or higher).

As an example, the following macro clears all breaks in the current source code,
prompts for the string it will use as the argument for the breaksAt183 command, then
executes the code from its current position until it reaches a line that contains the user-
supplied string, after which it clears the break:

Run till first line that has the string entered at the prompt
top

clearBreaks

breaksat &&prompt("Enter the string at which to break:")

run

clearBreaks

When the macro command that contains &&prompt executes, the Client displays a

Macro prompt dialog box like the following, which shows the prompt string from the
preceding example macro:

' Macro Pro LE

Enter the line to which to jump:

Enter

Cancel

You can use the &&prompt function wherever an argument to a command may appear,
as shown in the following example:

traceUntilvariableEqualsValue &&prompt('var') & &prompt("val™)

When this command executes, it produces two consecutive prompts, one for each of
the command arguments.

7.4 Using the console and command line

As macro development aids, the Debugger Client provides a console window and a
command line dialog box.

The Console

The Console is an independent window that logs informational, error, and trace
messages from the Debugger macros (and Client commands) that you run.

324 Janus/TN3270 Debugger User's Guide

Using Debugger Macros

To use the console:

1. From the Client's Macros menu, select Console.

The Console window opens. It remains open until you explicitly close it.

% Console - | NSl X
File
Console Started
Clear Print Save | Close I
Search Down | Search Up | Top | Bottom

2. Invoke a macrol17 or invoke commandi7?.

The console window moves to the top of the window stack and displays information
about the macro or command, including its starting and stopping, as well as any
error messages.

The console's Print and Save buttons and File menu options work the same as their

counterparts in the Client Text Vieweris7. The Close button closes the window. The
search bar on the bottom of the window provides controls for searching the window
content.

You can also clear the window with the clearMacroConsolelisd command, and you
can close it with the closeMacroConsolelied command.

Note: If you have the console open, value disglays@ appear in the console instead of in

a Value window. To override this default, use the valueDisplayOnConsole option
of the Client setPreferencelss command.

The Command Line

The Command Line dialog box provides a command line interface for running macros and
commands. This utility is an alternative to the Macros menu Run Macro option or to a
button or hot key combination; it stays available unless explicitly closed, so it is a step-
saver for macro testing. In addition, this interface will invoke a Client com mand77if no
same-named macro exists.

Janus/TN3270 Debugger User's Guide 325

Using Debugger Macros

To use the command line tool:

Consider opening the Console windowk24] (from the Client's Macros menu) to
display information about the macros or commands you run.

From the Macros menu, select Command Line.

The Command Line dialog box opens. It remains open until you explicitly close it.

A‘Q Command Line I&J

[ecommand | macro] name [args]

U - Run

Enter the name of a macro or command, and specify its required arguments, if any.

The extension .macro after a macro name is optional, as is a preceding Macro
keyword (case not important). The Command keyword directs the Client to look
exclusively for a command that has the name you are specifying.

For a macro, the Client looks for the macro file in the same folder as the
JanusDebugger. exe file, by defaultlso3.

Use one or more blanks to separate arguments from each other and from the
macro or command name. If you provide more arguments than are required, the
extra characters are ignored.

Click the Run button to execute the named macro or command.

Clicking Cancel closes the command line dialog box.
If during your session you run many macros and commands, you can easily review

them or repeat an earlier one by scrolling through their history using your keyboard
up/down arrow keys (Client Build 59 or higher required).

Using the Macro Autorun feature

The Debugger Client lets you automatically run a particular macro whenever you debug
a particular procedure. Such a macro might set up watches and breakpoints tailored to

aid the debugging of that procedure. This Macro Autorun feature requires simply that the
macro have the same name as the procedure, and it works only for procedures that are
included from command level (level 0), that is, not from within a procedure (level 1).

By default, the feature is initially not enabled.

To use the feature:

For a procedure that you debug somewhat frequently, defineb17l a macro that sets
up the debugging environment you want for that procedure.

326

Janus/TN3270 Debugger User's Guide

Using Debugger Macros

2. Give the macro the same name as the procedure. Character case is not important.
3. From the keyboard or from the Client File menu, select the Preferences option.

4. In the Execution Options section of the Preferences dialog box, select the Macro
Autorun checkbox, which is clear by default.

Note: The Client setPreferencelzsi command has an option that lets you toggle
the Macro Autorun checkbox.

5. Include the procedure, for example via the URL of your Janus Web application.

The Debugger searches (the Debugger installation folder or in any alternative work
folder[s03 you may have specified) for a .macro file that has the same name as the
procedure. If such a file is found, it is run.

If a same-named macro is not found, no action is taken.

7.6 Working with macro variables

Macro variables are placeholders for Debugger command arguments within Debugger
macros, as well as placeholders for Client function arguments (as of Client Build 58).
Distinguished by names that begin with a single ampersand (&) character, macro
variables can be set to a variety of types of values.

As an example, you could have a macro set some breakpoints, run to each of them, and
use a macro variable to note the value of the program's %variable at each break. This
would let you note the values at different points in program execution:

breaks

run

set &vall = %i
run

set &val2 = %i
echo &vall
echo &val2

setbsdl (in the example above) is a Client command that is particularly useful for working
with macro variables.

Macro variables are either system-supplied (predefined) or user-defined.

Predefined macro variables

The system &argstring variable is described in Passing a command argument to a
macro.[s22]

Janus/TN3270 Debugger User's Guide 327

Using Debugger Macros

User-defined macro variables

To define your own macro variable, you use the s_et@ command within a macro. As
shown in the syntax and examples below, the types of values to which you can set the
variable include constants, User Language variables, fields, and $list elements, and
other macro variables and functions.

The syntax of the set command is:

SET &target = "string" | [-1nnn | &var | %xxx | g.xxx | f.xxx
| $listent(x) | $listinf(x,y) | &&function

where:

&target is the case-sensitive name of a macro variable to create or set. If no
variable with that name exists, it is created and set. If a variable with that name
already exists, its value is reset.

The name must begin with a single ampersand (&), which must be followed by an
alphabetic character, which is optionally followed by one or more alphanumeric
characters and underscores. For example, &A b is a valid name, but & and &a.b are
not valid.

"string" is a string constant.

[-Jnnn is an integer constant with an optional leading minus sign.
&var is a previously defined macro variable.

%xxx is a User Language percent variable.

g.xxx is a Debugger global variable referencelos]

f.xxx is a Debugger field referencels3), possibly with a subscript.

$listcnt/$listinf are the Debugger functions for viewing $list counts and elements.[o6]

&&function is a macro function.

These command examples also show that multiple blanks may surround names and
values:

SET &a2 = %a(2)

set &i=¥%i
SEt &g = %G
set &s=¥s
set &1 = %L
set &lc = $listcnt(%g)
set &11 = $listinf(%g,1)

328

Janus/TN3270 Debugger User's Guide

Using Debugger Macros

set &12 = $listinf(%g,2)
set &global = g.JACK
set &l = %sl:item(1)
set &wum =1

set &string = "a"

set & = &&prompt(“g'day mate!")

set &F = f.name
set &3 = f.name(3)
set &2 = -1

set &xx = &asa

Note: If you later want to review the values of macro variables you have defined, you can
issue the va r‘Dung&"ﬂ Client command, for example from the Command Linek2s!
tool. Other commands useful for working with macro variables include
setM204DataEaﬁ,assertﬁﬁﬁ,continueIfﬁaﬁ,and'toggleE;i

7.7 Working with Client functions

The available Debugger Client functions are described in individual subsections that
follow. The function names are specified without regard for case.

Client function names begin with two ampersand (&&) characters; those characters
must be followed by one alphabetic character, which may be followed by one or more
alphanumeric characters and underscores.

Client function arguments all have the same form: that is, they may be single- or double-
quoted strings, numeric constants, or, as of Client Build 58, they may also be macro
variables.|327

To see in a message box or the console a value returned by a function, you can assign it
to a macro variable, then issue the varDumpkssl command; or use the function with the
echololl command.

Macro-only functions

It may be that a &&function is macro-only: it may be used only in a Debugger macro. k17

The description of such a &&function includes a Scope section that reminds of this
restriction.

Janus/TN3270 Debugger User's Guide 329

Using Debugger Macros

String functions

The &&functions include a group of string manipulation functions, all of which follow
these rules:

The first character in a string occupies position 1, the second occupies 2, and so
on.

If a function searches for and returns the position of a desired string within a target,
it returns 0 if the searched-for string is not found.

If a function takes a position or length as an argument, and the argument value that
is passed is non-numeric, an error is issued and the command that references the
function is aborted.

If a number is passed for a parameter that is a string, the number is converted to a
string. For example, 1234 is treated like '1234".

Character matching is case sensitive.

Like all &&functions, arguments may be single- or double-quoted strings, numeric
constants, or &variables.

7.71 &&amDaemon function

Action: Useful for testing purposes, this function returns a 1 if a Daemon tab

contains the currently active code. Otherwise, the returned number is 0

Syntax:

&&amDaemon

Introduced: Build 59

330

Janus/TN3270 Debugger User's Guide

Using Debugger Macros

7.7.2 &&arg function

Action: Serves as a placeholder for a command argument within a macro (if
used outside of a macro, an error is issued). The argument that takes
the place of &arg is dynamically providedis23| by the Client user.

Syntax:
&&arg(n)

where n is a single- or double-quoted string, a numeric constant, or as
of Build 58, a macro variablels27l.

Designed for commands that have multiple arguments, this function
parses the blank-delimited, user-provided string to determine the
replacement values for the &&arg occurrences within the command.
The first such value in the string replaces &&arg(1), the second
replaces &arg(2), and so on.

For example, for the following provided argument string, &arg(1)
returns %a:

%a 2

The &argstringhz2 variable is a placeholder designed for single-
argument commands within a macro.

If a command takes a single argument, or you want to treat whatever is
passed to the command as a single string (even if it contains blanks),
use the &argstringfs2? variable instead of the &&arg function.

Scope: Allowed only in Debugger macros

Introduced: Build 28

Janus/TN3270 Debugger User's Guide 331

Using Debugger Macros

7.7.3 &&assertFailureCount function

Action: Returns a count of the number of times that the result of an assertf78]
command is a Failure (since the beginning of the execution of the
macro that contains the assert).

Syntax:
&&assertFailureCount

The "assert" functions (also including &&assertSuccessCount and
&&assertStatus) are particularly useful if you are using the assert
command to automate your code testing, letting you keep track of the
successes and failures of the assertions.

To clear the count at any time (other than by default when the Client is
started/restarted or when a new macro is invoked), you can use the
resetAssertCountslz command, as of Build 56.

Introduced: Build 50

7.7.4 &&assertStatus function

Action: Returns a string that contains a summary of the counts of assertfi78]
command results (since the beginning of the execution of the macro that
contains the assert).

Syntax:
&&assertStatus

The "assert" functions (also including &assertSuccessCount and
&&assertFailureCount) are particularly useful if you are using the
assert command to automate your code testing, letting you keep track of
the successes and failures of the assertions.

To report the function result, you may want to use the echobotl command,
as shown in the following macro trace output@:

>>>macroTrace: macroTrace on
>>>macroTrace: echo &RassertStatus
Macro message: Assert Summary: Failed: @, Succeeded: 17

Introduced: Build 50

332 Janus/TN3270 Debugger User's Guide

Using Debugger Macros

7.7.5 &&assertSuccessCount function

Action: Returns a count of the number of times that the result of an assert[178]
macro command is a Success (since the beginning of the execution of
the macro that contains the assert).

Syntax:

&&assertSuccessCount

The "assert" functions (also including &assertFailureCount and
&&assertStatus) are particularly useful if you are using the assert
command to automate your code testing, letting you keep track of the
successes and failures of the assertions.

To clear the count at any time (other than by default when the Client is
started/restarted or when a new macro is invoked), you can use the
resetAssertCounts/2 command, as of Build 56.

Introduced: Build 50

Janus/TN3270 Debugger User's Guide 333

Using Debugger Macros

7.7.6 &&blackOrWhiteList function

Action: Tests whether the Debugger is filtering|79'1 the procedures you are
going to debug, and if so, whether a Black List or White List is being
used.

Syntax:
&&blackOriWhiteList

The all-lowercase return string is one of these values: black, white,
or none.

Example:

The following macro includes a comparison involving
&8&blackOrWhitelList:

continueMacroIf &&blackOrWhiteList <> 'black'
labelButton button® BlackList Off
turnOnBlackList

setTitle Black List on

set &changed = 1

clearStatus

Introduced: Build 62

7.7.7 &&buildNumber function

Action: Returns the number of the build of the Client from which the function is
called.

Syntax:
&&buildNumber

Introduced: Build 65

334 Janus/TN3270 Debugger User's Guide

Using Debugger Macros

7.7.8 &&concatenate function

Action: Concatenate and return the function's arguments.
If fewer than two arguments are specified, an error is issued.

Syntax:
&&concatenate(stri,str2[,str3] ...)

where the str arguments observe the rules for &&function string
arguments 330

For example, the following fragment would display: abc123hi

set &hello = 'hi'’
set &result = &&concatenate('a', 'b', "c", 1,2,3,&hello)
echo &result

Introduced: Build 58

7.7.9 &¤tPacFile function

Action: Returns the URL of the Proxy Auto Configure (PAC)ke2 file in use, or it
returns empty if no PAC file is in use. The URL returned is a file://
oranhttp:// URL.

Syntax:
&¤tPacFile

For example, after running an echo &¤tPacFile command,
you might receive a message like the following:

http://pacServerHost:pacServerPort/pacman/PAC.10.111.2.82.3S

Introduced: Build 63

Janus/TN3270 Debugger User's Guide 335

Using Debugger Macros

7.710 &¤tRunningMacro function

Action: Returns the full file-system path to the macro within which it is called. If
not called from within a macro, the function returns a null string.

Syntax:

&¤tlyRunningMacro
For example, after running the macro mymacro, which contains a call to
&¤tlyRunningMacro, the Console includes a line like the
following:

I nvoki ng Macro: C:\Users\JAL\ Docunent s\ Debugger\test\nynmacro. macro

Introduced: Build 60

7.711 &¤tTitle

Action: Returns the current title of the Client main window.
Syntax:
&¤tTitle

This function may be useful in conjunction with the setTitlepesl and
restoreTitlel48 commands.

See also &&originalTitle|3_43'1

Introduced: Build 62

336 Janus/TN3270 Debugger User's Guide

Using Debugger Macros

7.712 &&exists function

Action: Tests if a macro variablefs27 is defined.

Syntax:
&&exists(variableName)

where variableName is the macro variable whose existence is being
checked.

If the named variable exists, &&exists returns 1; otherwise, it returns 0

A variable is deemed to "not exist" in these cases:

e |t has not been defined since the Debugger Client was last started
or restarted.

e |t has been defined, but it was removed with the unset command.

Examples:

The following statement returns o:
echo &&exists("&neverSet")
The echo statement below returns 1:

set &i = 666
echo &&exists("&i")

The echo statement below returns o:

unset &i
echo &&exists("&i")

Introduced: Build 60

Janus/TN3270 Debugger User's Guide 337

Using Debugger Macros

7.713 &&getMainSearchlnputArea function

Action: Returns the value specified in the search(44) input area on the Client
main window. If the Client is in hide-lowerks:2l mode, the function
returns the value specified in the input box in the Status bar.[4¢]

Note: The function does not return a value for an external window.

Syntax:

&8&getMainSearchInputArea

Introduced: Build 58

7.714 &&getVariableOrFieldlnputArea function

Action: Returns the value specified in the Entity-name input box[s01. If the Client
is in hide-lowerk12) mode, the function returns the value specified in the
input box in the Status bar.[49]

Syntax:

&&getVariableOrFieldInputArea

Introduced: Build 58

7.715 &&globalAssertFailureCount function

Action: Same as &assertFailureCount/ss? except its scope is the entire
Client session. During such a session, the count is only cleared if done
explicitly with the resetGlobalAssertCountsfz4d command.

Syntax:

&8&globalAssertFailureCount

Introduced: Build 57

338 Janus/TN3270 Debugger User's Guide

Using Debugger Macros

7.716 &&globalAssertStatus function

Action: Same as &&assertStatusps?l except its scope is the entire Client
session. During such a session, the counts are only cleared if done
explicitly with the resetGlobalAssertCounts[242 command.

Syntax:
&8&globalAssertStatus

Introduced: Build 57

7.717 &&globalAssertSuccessCount function

Action: Same as &&assertSuccessCounths3l except its scope is the entire
Client session. During such a session, the count is only cleared if done
explicitly with the resetGlobalAssertCounts 244 command.

Syntax:

&&globalAssertSuccessCount

Introduced: Build 57

7.7.18 &&ieMode function

Action: Returns the current setting of the Client's IE Mode preference. |11
Syntax:
&&ieMode

The returned value is a lowercase string: none, proxy, newpac or
mergedpac. These values are exactly the options of the setIEmodelz63
command.

Introduced: Build 62

Janus/TN3270 Debugger User's Guide 339

Using Debugger Macros

7.7.19 &&index function

Action: Returns the 1-based position of the needle argument within the
haystack argument, or it returns 9 if the needle value is not found
within the haystack value.

If fewer than two arguments are specified, an error is issued.

Syntax:
&&index(haystack,needle)

where the haystack and needle arguments observe the rules for
&&function string arguments =

For example, the first &&index call in the following fragment would
return 3; the second would return 0:

set &g = 'george'
&&index (&g, 'or")
&&index('moe', 'x')

Introduced: Build 58

7.7.20 &&isWatched function

Action: Determines whether its argument is a variable that is currently
specified in the Watch Window. If it is, &&isWatched returns 1; if not, it
returns 0.

Syntax:
&&isWatched(value)

where value is a sinlzgj?- or double-quoted string, a numeric constant,
or a macro variablelz27l.

Introduced: Build 58

340 Janus/TN3270 Debugger User's Guide

Using Debugger Macros

7.7.21 &&length function

Action: Returns the length in characters of its string argument.

Syntax:
&8&length(value)

where value observes the rules for &&function string arguments ol

For example, the first &&1length call in the following fragment returns
0; the second returns 3; the last returns 6:

& length("")
&length(123)
set &g = 'george'
&8&length(&g)

Introduced: Build 58

7.7.22 &&numberOfBreakpoints function

Action: Returns the number of breakpoints that are set in the current request,
irrespective of the current executing position in the request.

Syntax:
&&numberOfBreakpoints

Introduced: Build 58

Janus/TN3270 Debugger User's Guide 341

Using Debugger Macros

7.7.23 &&numberOfLevels function

Action: Returns the number of code levels being debugged. The main program
is one level and each active daemon adds another level. For example,
if a request spawns a daemon which itself spawns a daemon, and that
second daemon still has code to execute, the return to
&&numberOfLevels is 3.

If no program is being debugged, 0 is returned.

Syntax:
&&numberofLevels

Introduced: Build 59

7.7.24 &&numberWatched function

Action: Returns the number of items that are currently being watched|ss 1in
the Watch Window.
Syntax:
&&numberhatched

Introduced: Build 58

342 Janus/TN3270 Debugger User's Guide

Using Debugger Macros

7.7.25 &&originalTitle

Action: Returns the default value of the title of the Client main window (the
window title is subject to change by a setTitlesd command). The
default main window title is "The Janus Debugger" or "The TN3270
Debugger."

Syntax:
&&originalTitle

The &&originalTitle function returns the same value as the
restoreTitlel248 command.

See also &¤tTitlehss)

Introduced: Build 62

7.7.26 &&preference function

Action: Returns the value of the specified Client preference setting. Client
preferences are selected from the Preferences|1s] dialog box or the
Proc Selection[13] page, or they are set with the setPreferenceps]
command. Their names for the purposes of this function match the
options listed for the setPreference command.

Syntax:

&8&preference(preferenceName)

where preferenceNameis one of the setPreference command
preference options (not case-sensitive).

For example, the following command returns a 1 or @ (indicating that
the preference is on or off):

echo &&preference('BreakAfterReadScreen')

Introduced: Build 60

Janus/TN3270 Debugger User's Guide 343

Using Debugger Macros

7.7.27 &&procName function

Action: Returns the name of the procedure that is being executed. If no
procedure or an ad hoc procedure is being executed, a zero-length
string is returned.

Syntax:

&&procName

Introduced: Build 48

7.7.28 &&prompt function

Action: Pauses a macro while you supply an argument value for a command
that is specified within the macro, then continues running the macro
using the supplied value for the command.

Syntax:
&&prompt(" string" | &var)
where:

e string is any single- or double-quoted character string.

e &varis a macro variablels27. This option is new in Build 58.

Described further in Passing a command argument to a macro. 23]

Introduced: Build 27

344

Janus/TN3270 Debugger User's Guide

Using Debugger Macros

7.7.29 &&searchResult function

Action: Returns the line number of the line that contained the found string, if
the last Client search operation (invoked by Search button or

command) successfully found something. If the last search found
nothing, or if there was no prior search, then &searchResult returns

-1.

Syntax:

&&searchResult

This function considers the numbering of the lines in a Client tab's
display to start with O.

Introduced: Build 48

7.7.30 &&searchSuccess function

Action: Returns 1 (True) if the last Client search operation (invoked by button
or command) successfully found something. If the last search found
nothing, or if there was no prior search, &&searchSuccess returns 0

(False).

Syntax:

&&searchSuccess

Introduced: Build 48

Janus/TN3270 Debugger User's Guide 345

Using Debugger Macros

7.7.31 &&selectedTab function

Action:

Introduced:

Useful for testing purposes, this function returns the label of the Client
main window tab that is currently active (for example, "Audit Trail"). Or,
it returns a null string (") if no tab is active (for example, no program is
being debugged).

Syntax:
&&selectedTab

Build 59

7.7.32 &&statusMessage

Action:

Introduced:

Returns the most recent Client status[+s] message.
Syntax:

&&statusMessage(windowName)

where windowName is a single- or double-quoted string, a numeric
constant, or a macro variablek2 that identifies a Client window.
windowName may be specified without regard for character case.

Build 59

346

Janus/TN3270 Debugger User's Guide

Using Debugger Macros

7.7.33 &&substring function

Action: Return a substring of the target string argument. The returned
substring characters begin with the start character position (1-based)
and continue for len characters. If no len value is specified, the
returned substring extends to the end of string.

Syntax:
&&substring(string,start[,len])

where the arguments observe the rules for &&function string
arguments j3sol.

For example, the first &&substring call in the following fragment
returns b; the second returns bc; the last returns c:

&&substring('abc',2,1)
&&substring('abc',2)
&&substring('abc',3)

Introduced: Build 58

7.7.34 &&sum function

Action: Returns the sum of the function arguments.
Syntax:
& &sum(value, value ...)

where value is a numeric constant, or a macro variable[s27.

If fewer than two arguments are passed, or if any argument has a non-
numeric value, an error is issued.

See also the incrementki7land decrementhiodl commands.

Introduced: Build 58

Janus/TN3270 Debugger User's Guide 347

Using Debugger Macros

7.7.35 &&verifyMatch function

Action: Returns the 1-based position (in string) of the first character in string
that is also in the characters in charSet. If no character in string is in
charSet, returns 0.

Syntax:
&8&verifyMatch(string,charSet)

where the arguments observe the rules for &&function string
arguments j3sol.

For example, the first &&verifyMatch call in the following sequence
returns 2; the second returns 1; the third returns 1; the fourth returns
3; the fifth returns o:

&&verifyMatch("Shazam","abcsh")
&8&verifyMatch("Shazam", "abcSh")
&&verifyMatch("Shazam","Shazam")
&&verifyMatch("Shazam","abc")
&&verifyMatch("Shazam","xxx")

Introduced: Build 58

348 Janus/TN3270 Debugger User's Guide

Using Debugger Macros

7.7.36 &&verifyNoMatch function

Action: Returns the 1-based position (in string) of the first character in string
that is not in the characters in charSet. If no character in string is not
in charSet, returns 0.

Syntax:
&8&verifyNoMatch(string, charSet)

where the arguments observe the rules for &&function string
arguments [s3ol.

For example, the first &&verifyNoMatch call in the following sequence
returns 1; the second returns 4; the third returns 0; the fourth returns 4

&&verifyNoMatch("Shazam","abcsh")
&8&verifyNoMatch("Shazam","abcSh")
&&verifyNoMatch("Shazam","Shazam")
&&verifyNoMatch("123.45","0123456789")

Introduced: Build 58

7.7.37 &&windowStatus function

Action: Returns 1 if the named window is ogen@ﬂ, 0 otherwise.

Syntax:

&&windowStatus(windowName)

where windowName is a single- or double-quoted string, a numeric
constant, or a macro variablek2 that identifies a Client window.
windowiName may be specified without regard for character case.

Introduced: Build 58

Janus/TN3270 Debugger User's Guide 349

350 Janus/TN3270 Debugger User's Guide

Problem Diagnosis

chaptErs Problem Diagnosis

These sections are included:

8.1

Debugging the Janus Debugger@

Debugging the TN3270 Debuggerksa|

How the TN3270 Debugger handles communication breaks|ss3)
Tracking Client performancelsss|

Resolving issues when automatically maintaining IE proxy settings@

Debugging the Janus Debugger

Whenever your browser sends a web request to a Janus Web Server that has been
configured for debugging, this sequence of events unfolds:

1.

Before sending your web request, the Debugger Client on the workstation, which is

defined[ss3 as your proxy server, connects to the Debugger Server port on the online

(set up during product installationk73)). The Debugger Server starts a Model 204
thread whose default user ID is SOCKUSER.

The Debugger Server communicates over a socket connection with the Client and
creates a worker thread for this debugging session. The connection handshake
contains a unique ID from the Client for this debugging session. The Server worker
thread uses AUDIT statements to report its activities to the Model 204 audit trail.

The following SirScan audit trail lines for user SOCKUSER report the Debugger
Server activity described thus far. The session ID is encircled. Subsequent worker
thread lines are shown laterfssa3t:

AD MSIR.©0114: Processing connection for port DEBUGSERVER3355 from 198.242.244.16

AD M264.0352: IODEVU=15, OK SOCKUSER SOCKUSER LOGIN ©5.363 DEC 29 10.44.30 -13

LI I DEBUGSERVER.UL

MS M264.1168: IN FILE JALPROC INCLUDE DEBUGSERUER.UL

MS M264.1168: IN FILE JALPROC INCLUDE DEBUGSERVER.UTARBLE

MS M264.1168: IN FILE JALPROC INCLUDE DEBUGSERVERTOOLS.UL

ST USERID="SOCKUSER® ACCOUNT='SOCKUSER® LAST="CHPL® SUBSYSTEM="' PROC-FILE='JALPROC’
NTBL=97 QTBL=584 STBL=569¢ UTBL=776 PDL=696 CPU=15 DKRD=4 PCPU=832 ROTM=18 DKPR=12

3 US Debug request From: 198.242.244.16<33039346>

W W W W W W W

Janus/TN3270 Debugger User's Guide 351

Problem Diagnosis

The worker thread is directed by the Debugger Client (based on user interface
actions), and the worker thread maintains an internal master/slave, post/wait
relationship with the Web Server thread being debugged. The initial action of the
worker thread is to announce itself to the Debugger Client in the Audit Trail page:

AS The Janus Debugger (QAXMLZ) = | B |
File Window Search Breakpoints Execution DataDisplay Error Macros Help

Top | Bottom | Clear Audit | Run | Step | Step Over | Trace | Cancel | Clear Breaks | Clear Watch | Console
Audit Trail | Source Code | Web Buffer | Execution Trace | Proc Selection

2010 11 22 18:29:44.26 1 6 LI T QAXML2 -
2010 11 22 18:29:44.26 1 6 MS M204.1168: IN FILE JALWORK INCLUDE QAXML2

2010 11 22 18:31:47.84 1 € MS MSIR.0650: Janus Web content compressed by 73.0 percent from 411 to 111 bytes

2010 11 22 18:31:47.84 1 6 AD MSIR.0359: WEB status 200 OK

2010 11 22 18:31:18 Response: received 264

2010 11 22 18:31:18 Response content-length: 111

2010 11 22 18:31:18 Receive of HTTP Response complete, 264 bytes.

2010 11 22 18:31:18 Response code: 200 OF

2010 11 22 18:31:27 Connection From: 127.0.0.1

2010 11 22 18:31:27 Web request: GET http://www.sirims-software.com:9219/3jalwork/qaxml2 HTTE/1.1
2010 11 22 18:31:27 Web re T e debugged. . .

2010 11 22 18:31:27

2010 11 22 18:31:27 Connected to the Debugging Server: sirius-software.com:6219
2010 11 22 18:31:27 Model 204 Version: 7.2.0D

2010 11 22 18:31:2 Sirins Mods Version: 7.8

2010 11 22 18:31:27 ession name: 002D162386

2010 11 22 18:31:27

2010 11 22 18:31:56.90 2 0: Debus - Ess=X'TC4243A0"

2010 11 22 18:31:57.43 2 4 LI I QAXML2

2010 11 22 18:31:57.43 2 4 MS M204.1168: IN FILE JALWORK INCLUDE QAXML2 _ -
3 - PR - — et L I
e e & — = S el = — =

The worker then continues in a loop/dialogue with the Client, reporting its state and
latest activity to the Client, and receiving XML requests from the Client (commands
that are based on what the Debugger GUI user is invoking). If the normal Web
Server response to your web request is to include a Model 204 procedure, for
example, the Client sends the worker a command to have the Web Server continue,
the worker posts that command to the Web Server, the worker sends AUDIT lines
about this exchange, and the worker waits.

While the worker thread waits, the Debugger Client sends your web request to the
Janus Web Server. The worker's wait limit is two minutes, so it will time out and end
if the request fails for any reason. Otherwise, the Web Server recognizes the
debugging session ID, so sends its response to the worker. In this example, the
response is procedure code, which is sent to the worker instead of being run. The
worker wakes up, sends the procedure code in an XML document to the Client, and

the Client displays the procedure code in the Debugger Source Code page:

352

Janus/TN3270 Debugger User's Guide

Problem Diagnosis

-
{i& The Janus Debugger (QAXML2) =
File Window Search Breakpoints Execution Data Display Error Macros Help r;J
Top | Bottom | Clear Audit | Run | Step | Step Over | Trace | Cancel | Clear Breaks | Clear Watch - '_,f'
S = .
Audit Trail | $ | Web Buffer | Execution Trace | Proc Selection r"’
CM> 1 0 QAXML2 H
UL> 2 1 1 begin "
TL=> 3 1 2 class document _"
UL> 4 1 3]
TUL> 5 1 4 public
TL=> 6 1 5 variable x is object XMLDoc :
TL> 7T 1 [constructor new {
TL> 8 1 7 snbrontine addStooge (*#iFirst i=s longstring, - ¥
TL> 9 1 8 %ilast is longstring) F o
UL> 10 1 9 end public 4
UL> 11 1 10 o
TUL> 12 1 11 private]
TL=> 13 1 12 variable top is cbject XMLNode r"
TL> 14 1 13 end private I
TUL> 15 1 14
TL> 16 1 15 constructor new
TL> 17 1 16 #this:x = new [
TL> 18 1 17 #this:top = %this:x:addElement('stooges') k
TL> 13 1 18 end constructor r'
UL> 20 1 19 4
I
L
I
- - —t
) N - r . > nal
e & L 2 v

The worker thread reports its actions thus far in the lines below that begin with three
asterisks (***). The worker refers to the Web Server thread as the "debuggee":

AD MSIR.0114: Processing connection for port DEBUGSERVER3355 from 198.242.244.16

AD M204.06352: IODEVU=15, OK SOCKUSER SOCKUSER LOGIN ©5.363 DEC 29 10.44.30 -13

LI I DEBUGSERVER.UL :

M204.1168: IN FILE JALPROC INCLUDE DEBUGSERUER.UL

MS M204.1168: IN FILE JALPROC INCLUDE DEBUGSERUER.UTABLE

MS M204.1168: IN FILE JALPROC INCLUDE DEBUGSERUERTOOLS.UL

ST USERID="SOCKUSER® ACCOUNT='SOCKUSER® LAST='CMPL’ SUBSYSTEM="' PROC-FILE='JALPROC’
NTBL=97 @TBL=584 STBL=569¢ UTBL=776 PDL=696 CPU=15 DKRD=4 PCPU=832 ROTM=18 DKPR=12

W W W w www
=
w

3 US Debug request from: 198.242.244.16 33D39348

3 US 4 Connection to worker: External user number: 5 Internal user number: 2
3 us orker got command from client: R

3 Us orker posts debuggee, and then waits. ..

3 US wxxbebugger Worker wakes up: $

6. The Client-worker-Web Server communication continues in this fashion according
to the commands invoked by the Client GUl user. The Client user initiates the next
round of activity by invoking an operation on the source code, say, stepping to the
next statement. The Client signals the worker, and the worker instructs the Web
Server thread. The worker reports a sequence of audit lines similar to the previous
ones (the ending N's below mean "run to Next statement" and "Next statement
executed"):

Janus/TN3270 Debugger User's Guide 353

Problem Diagnosis

8.2

RK SCAN: US=SOCKUSER TM=C6F2F410 IP=198.242.244.16 JA=DEBUGSERVER3355
US xxxWorker got command from client: N

US soexllorker posts debuggee, and then waits...

US xxxDebugger Worker wakes up: N

In case you need to debug the Debugger, you can access the XML traffic
exchanged between the worker and Debugger Client. To do so, use the JANUS
TRACE command (described in the Janus TCP/IP Base Reference Manual) to
increase the tracing on the Debugger Server port (in this example,
DEBUGSERVERS3355), and use SirScan to view the traffic. The JANUS
DISPLAYTRACE command reveals the current trace value.

Since a high tracing value, say 15, can capture huge amounts of data, remember to
return the tracing setting to its former value when you no longer need so much
detail.

Also of possible use in a debugging situation, the Debugger Client installation folder
is the default locationlso for a text log (1og. txt) that includes the Client and
workstation browser activity that is captured by the Client.

Debugging the TN3270 Debugger

Whenever you invoke a User Language program from an Online that has been
configured for debugging, this sequence of events unfolds:

1.

The initial user call to start the TN3270 Debugger (SIRDEBUG ON DEBCLI1
198.242.244.16 8081 3270 in the SirScan example lines below, which is
described[+00 as part of the product installation) triggers a socket connection request
from the issuing user's thread (using the CLSOCK port definedls74 during
installation) to the workstation that hosts the Debugger Client. The connection
request (trace lines for which are circled below) contains the number of the
Debugger Server port (set up during product installation@) and the user thread
number.

18 LI SIRDEBUG ON DEBCLI1 198.242.244.16 8681 3270
18 MS MSIR.0469: Establishing connection to host 198.242.244.16 port number 8681 using
Janus CLSOCK port DEBCLI1, user socket number 2
18 RK APO(2) 000000 : 47455420 2F204854 54502F31 2E310D0A
18 RK APO(2) 000010 : B696TBEGF 72654C65 T6656C5A 65726F3A
18 RK APO(2) 000020 : 20310D6A 4A616E75 T34FEEGC B9I6EE552
18 RK APO(2) 900030 : B5717565 73743A20 30303031 380DOAS7\| equest: 0001B8..U |
18 RK APO(2) 000046 : BFT26BE5 72506F72 T43A2030 33323730 NorkerPort: 932790
18 RK APO(2) 000050 : @6DOAGDEA [>

GET / HTTP/1.1..
ignorelevelZero: |
1. .JanusOnlineR |

354

Janus/TN3270 Debugger User's Guide

Problem Diagnosis

2. Once the connection succeeds, the Debugger Client, in turn, connects to that
Debugger Server port, which starts a Model 204 thread whose default user ID is
SOCKUSER (see top two SirScan lines, below). The Debugger Server
communicates over a socket connection with the Client and creates a worker
thread for this debugging session. The connection handshake contains a unique ID
from the Client for this debugging session (circled, below). The Server worker
thread uses AUDIT statements to report its activities to the Model 204 audit trail.

AD MSIR.0114: Processing cennection for port DEBUGSERUER3270 from 198.242.244.16

AD M204.0352: IODEVU=15, OK SOCKUSER SOCKUSER LOGIN ©6.170 JUN 19 14.29.14 1 C6F2F410

LI I DEBUGSERUVER.UL

M204.1168: IN FILE JALPROC INCLUDE DEBUGSERVER.UL

MS M204.1168: IN FILE JALPROC INCLUDE DEBUGSERUER.UTABLE

MS M204.1168: IN FILE JALPROC INCLUDE DEBUGSERVERTOOLS.UL

ST USERID="SOCKUSER’ ACCOUNT="SOCKUSER® LAST="CMPL® SUBSYSTEM="" PROC-FILE='JALPROC’ PROC="DEBUGSERVER.UL’
NTBL=100 QTBL=606 STBL=5712 UTBL=785 PDL=700 CPU=14 PCPU=932 ROTM=15 DKPR=14

RK AP0 000000 : 32303020 4RG16E7TS 73446562 75670D0OA | 200 JanusDepug. .

RK API 000000 : 30303031 38303032 44343336 3533320D |

US Debug request from: 198.242.244.16 00018002D436532

RK API 000010 : OR | . |

APD 000000 : 32303020 362E312E 30472020 20362E39 | 200 6.1.06 6.9 |

RK APO 000010 : 20363636 ©DOA | e66.. |

RK RAPI(2) 000000 : 48545450 2F312E30 20323030 20303030 | HTTP/1.0 200 090 |

RK API(2) 000010 : 31383030 32443433 36353332 0DOA | 18002D436532. .

US 3¢ Connection to worker: External user number: 21 Internal user number: 18

NN NN NN N
=
17}

=
NN NNNN N
D
~

The worker thread reports its actions in lines that begin with three asterisks (***).
The worker refers to the Online thread to be debugged as the "debuggee." A
successful connection between the Debugger Server and Debugger Client results
in a "Debugging is on" message, and the ID referred to in the connection handshake
becomes the "session ID" for this debugging session:

2 US xxxWorker got command from client: R
2 US xxxWorker posts debuggee, and then waits...
18 MS MSIR.9915: Debugging is on: client is 198.2472.244.16 port 8081, sessionID: ©0018002D436532

Janus/TN3270 Debugger User's Guide 3565

Problem Diagnosis

3. The worker thread is directed by the Debugger Client (based on user interface
actions), and the worker thread maintains an internal master/slave, post/wait
relationship with the Online thread that is being debugged. The initial action of the

worker thread is to announce itself to the Debugger Client in the Audit Trail page:

. s - - =ae -
2010 11 29 21:29:58 Connection
2010 11 29 21:29:58 R b e e E e T T Fhkk kAR kR kAR AR ARk kR
2010 11 29 21:29:5 Connected to the Debungging Server: 198.242.244.47:6219 :
2010 11 29 21:295: Model 204 Version: 7.2.0D b =
[2010 11 29 21:295: Sirins Mods Version: 7.8 F’}—’,J
2010 11 29 21:29: : 00021001D146386 > =
j[[2010 11 29 21:29:58 e e TR
I 2010 11 29 21:30:28.59 1 21 MS = £ gger: JDBW Address=X'TC41F3B0" rf
I 4 nr =
I '
Search Search Next Search Prev | e
| B '
| d
X
I -
MSIR.1020: Debugger: JDBW Address=X'TC41F3BO'
.'(})' 4
= ¥’
]
F
L
4
Connection from online Waiting for Online 7~
A >

4. The worker then waits for the Online thread to initiate debuggable activity. If you
include a Model 204 procedure from the Online thread, for example (DAEMONS.UL
in the SirScan excerpt below), the worker detects this and pauses procedure
processing while it sends the code lines to the Client (in an XML document) using
the DEBCLIM1 CLSOCK port, then waits for a response from the Client.

356 Janus/TN3270 Debugger User's Guide

Problem Diagnosis

Note: The format of the XML messages in the following and subsequent code
examples in this section is unpublished and subject to change.

18 LI I DAEMONS.UL
18 MS M204.1168: IN FILE JALPROC INCLUDE DAEMONS.UL

2 RK SCAN: US=SOCKUSER THM=CBF2F410 IP=198.242.244.16 JA=DEBUGSERVER3270
2 US xxxDebugger Worker wakes up: S

2 US xxxTraceCount: ©

2 RK API 900050 : 0A .

2 RK APO 000009 : 3C446562 75674175 6469743E 3C737461 | <DebugRAudit><{sta
2 RK APOD 900010 : 74653E53 3C2FT7374 6174653E 3CT73746F | te>S<{/state>{sto
2 RK APO 000020 : 70546960 653E3036 31393131 32333935 | pTime>»0619112395
2 RK APO 000030 : 3337303C 2F73746F 70546960 653E3CEE | 370</stopTime><n
2 RK APD 000046 : 6578743E 2D313C2F GEG57874 3E3C6CHE1 | ext>-1</next><la
2 RK APD 900050 : 73743E2D 313C2F6C 6173743E 3C726574 | st>-1</last><ret
2 RK. APD 000060 : 7H726E43 B6F64653E 303C2F72 AEZ47572 | urnCode>@<{/retur

e
gt
~hecki.

< Re APOD ww01DO : 200D61r3 74657220 BETObUBZ . r1wce master numbers
2 RK APD 00O1EQ : 203C2F6C BIBEB53E 3C6CH96E 653E4320 </line><1line>C
2 RK APD 0001F0 : 20202020 20202020 20302020 20202020 0

2 RK APD 000200 : 32303320 20202020 20312062 20203C2F | 203 1b <
2 RK APD 600210 : BCEI9BE65 3E3C6CHS9 BEBS3E4D 533C2F6C | line><line>MS</1
2 Rk APD 000220 : B696EB53E 3CHCH96E B53EH353 20202020 | ine><{1line>SS

2 RK APD 000230 : 20202020 20302020 20202020 32303420 0 204
2 RK APD 000240 : 20202020 20312041 75646974 20274920 1 Audit I
2 RK APO 000250 : B616D2073 74617274 B96E6727 20293C2F | am starting®™ </
2 RK APD 000269 : BCBY9BEGS 3E3CBCH9 BEBS3ES3 20202020 | line><line>S

2 RK APD 000279 : 20202020 20323820 20202020 20323035 28 205
2 RK APD 000289 : 20202020 20203120 25737065 65642069 1 %speed 1
2 RK APOD 0006290 : 73206F62 BABS6374 20646165 BD6FB6E20 | s object daemon
2 RK APD ©002A9 : 203C2FB6C BI9BEB53E 3CHCHI6E B53E5320 </1line><1ine>$S
2 RK APD ©002B9 : 20202020 20202020 32382020 20202020 28

2 RK APD ©002C0 : 32303620 20202020 20312025 BC6973T4 | 206 1 %list
2 RK APD ©002D9 : 20697320 BF626A65 63742073 7472696E is object strin
2 RK APD 0002EQ : BT4C6973 7420203C 2FBCHI96E BH3E3CBC | glList </line><1
2 RK APO 0002F0 : BY9BEBS3E 53202020 20202020 20203238 | ine>S 28

Janus/TN3270 Debugger User's Guide 357

Problem Diagnosis

5.

The Client displays the procedure code in the Debugger Source Code page:

A The Sirius/3270 Debugger (DAEMONS.UL)

File Window Search Breakpoints Execution Data Display Error Macros Help

Top | Bottom | Clear Audit | Run | Step | Step Over | Trace All | Cancel | Clear Breaks | Clear Watch | v+

1

Most Recent Audit Trail

IH204.1032: DEFAULT FILE OR GROUP NEEDED
OPEN JALPROC

M204.0347: PASSWORD
I DAEMONS .UL
M204.1168: IN

FILE JALFROC IHNCLUDE DAEMONS.UL

4|] r

Ready for execution.

Audit Trail | S C Execution Tra{:e| Proc Seleclion' :
CM= 6 1 1 *ne=zting new daemon insztancesz and checking their master numbers
TL> 7 1 2 b
[TL> g8 1 3 Andit 'T am =tarting’
TL> g 1 4 %=peed i=s object daemon
TL> i0 1 5 %1i=t i= object stringlist rj
TL> 11 1 6 %X i= object s=tringlList T
|| UL> 12 1 7 %speed = new “.
] TL> 12 1 8 %n is float 5
i TL> 14 1 9 %n = %speed:usernumber #
TL> 15 1 10 Andit 'm i=: ' %n
I TL> 1e 1 11 #%n = %speed:masternomber ;
Il oL> 17 1 12 Andit 'm i=: ' %n -
i TL> 18 1 13 %¥n = %speed:parentnomber F
i TL> 1% 1 14 Andit 'm is: ' %n '
TL> 20 1 15 %list = new N
TL> 21 1 16
TL> 22 1 17 %speed:run('*LOWER")
TL> 23 1 18]
TL> 24 1 19 text to #list end 'END TEXT OUTER' J
TL> 25 1 20 Begin t
4

358

Janus/TN3270 Debugger User's Guide

Problem Diagnosis

6. The Client user initiates the next round of activity by invoking an operation on the
source code, say, stepping to the next statement. The Client sends this command
in an XML message to the worker (upper circle, below), and the worker wakes up
and instructs the Online thread. The worker reports a sequence of "***" audit lines
(the ending N's below mean "run to Next statement" and "Next statement
executed"), then sends an XML response to the Client (lower circle, below) about
the result of executing the next statement in the program:

2 RK API 000000 : 3C446562 75675265 71756573 T43E3C6F | : o |
2 RK API 000016 : 70657261 T4696FBE 3E4E3C2F 6F70657Z2 [/peration>N</oper
2 RK API 000020 : 6174696F BE3E3C61 7267313E 3C2F617Z2 | ation><argl><{/ar
2 RK API 000030 : 67313E3C 61726732 3E3C2F61 7267323E } gl><arg2><{/arg2>
2 RK API 000040 : 3C2F4465 62756752 65717565 73743E0D | |
2 RK SCAN: US= SUCKUSER THM=C6F2F410 IP=198.242.244.16 JA=DEBYC
2 US soodlorker got command from client: N
2 US xxxlorker posts debuggee, and then waits..

18 RK SCAN: US=JAL TM=JAL2

18 ST USERID="JAL" ACCOUNT="JAL® LAST="CMPL® SUBSYSTEM="" PROC-FILE='JALPROC" PRO

STBL=1553 UTBL=59 PDL=892 CNCT=13371 CPU=1 RQTM=13370903 SURD=1 SUWR=1 DKPR

2 US xxxDebugger Worker wakes up: N
2 US ¥xxTraceCount: 0
2 RK API ©000650 : ©A
2 RK AP0 ©000600 : 3C446562 75674175 5469743E 3C737461 PebugAudit><s%a
2 RK AP0 600010 : T4653E4E 3C2F7374 6174653E 3C73T746F
2 RK AP0 ©00020 : T054696D 653E3036 31393131 36323234 | fpTime>0619116224
2 RK AP0 ©00030 : 3436303C 2F73746F 70546960 653E3C6E |] 466</stopTime><n
2 RK APO 000040 : 6578743E 303C2FGE 6578743E 3CBCH173 || ext>0<{/next><las
2 RK APO 000050 : T43E2D31 3C2F6C61 73743E3C 72657475 [|t>-1</last><retu
2 RK APO 000060 : T26E436F 64653E30 3C2F7265 7475726E nCode>@</retur
2 RK APO ©o0070 : 436F6465 3E3CT661 BCTHE573 2F3E3C74
2 RK APO ©o0o080 : 72616365 20636F75 BE743D22 30222F3E
2 RK APO 000090 : 3C2F4465 62756741 75646974 3E6DOA

7. The Client-worker-Online communication continues in this fashion according to the
commands invoked by the Client GUI user. The worker continues in a loop/dialogue
with the Client, reporting its state and latest activity to the Client, and receiving XML
requests from the Client (commands that are based on what the Debugger GUI
user is invoking). The worker also maintains a master-slave relationship with the
Online thread, guiding the execution of the program and reporting execution results.

8. In case you need to debug the Debugger, you can access the XML traffic
exchanged between the worker and Debugger Client. To do so, use the JANUS
TRACE command (described in the Janus TCP/IP Base Reference Manual) to
increase the tracing on the Debugger Server port (in this example,
DEBUGSERVER3270) and on the Online's client socket port (in this example,
DEBCLI1), and use SirScan to view the traffic. The JANUS DISPLAYTRACE
command reveals the current trace values.

Since a high tracing value, say 15, can capture huge amounts of data, remember to
return the tracing settings to their former values when you no longer need so much
detail.

Also of possible use in a debugging situation, the Debugger Client installation folder
is the default location[z03 for a text log (1og. txt) of Client activity and reference file
information.

Janus/TN3270 Debugger User's Guide 359

Problem Diagnosis

8.3 How the Janus Debugger handles communication
breaks

If the Janus Debugger is not properly configured or if communication between any of its
components is lost, the Debugger Client or the browser or both will display error
messages and will attempt to restore normal operation, typically without requiring a
recycling of any of the components.

In most cases, as long as the Debugger Client itself is not the problem, these
communication breaks are signaled by the Client with a Communication Error message
box and the display of Communication Error in the Status bar(49).

This section describes the most likely types of communication breaks (not related to
product configuration) and how the Debugger responds. The subsections below (except
for the last) are organized by the Client's Communication Error message:

Invalid response from debugger: infolssdl
An existing connection was forcibly closed by the remote hostks2)

The Debugger Client is not availablefs3]

Invalid response from debugger: info
info is one of the following:

e An existing connection was forcibly closed by the remote host

In this case, the network connection between the PC and the Online is lost, or the
Debugger Server port is not started.

If the Debugger Client was in the process of debugging code, the next Client
operation you attempt produces a Client message like the following, and
Communication Error is displayed in the Status bar(4s!:

Communication Error (|

ie} Invalid response from debugger: An existing connection was forcibly closed by the remote host

Clicking OK here removes the message, but processing cannot continue until the
connection to the Online is reestablished or the Debugger port on the Online is
restarted. There is no need to recycle the Debugger Client, although any program
that was being processed is discarded.

360

Janus/TN3270 Debugger User's Guide

Problem Diagnosis

If the browser was waiting while the Debugger Client was processing, it continues to
wait. If no debugging was in process, and the browser sends a new request to the
Web Server, the browser is sent a reply from the Client like the following:

3 Janus Debugger Error - Microsoft Internet Explorer - |
File Edit View Favorites Tools Help f"
QBack -) |ﬂ @ //h ,:\J Search *Favorites © - _; - @ :ﬁ 3% /r
Address [€] hitp://sirius-software.com:9219/jalwork/daemon5 v Go | Link¥.

Janus Debugger encountered an error:
Connection to debugger failed: Could not connect to: sirins-software.com:3355

Once the broken connection is reestablished, debugging continues when the
browser sends or resends a request. There is no need to recycle the browser.

e Worker thread lost

The Web Server or Debugger Server encounters a Model 204 or Janus error while
doing work for the Client, leaving the Client in an extended waiting state (Waiting
for Online is displayed in the Status bar).

Search Search Next Search Prev ‘ Value Trace Run to Change

[-] (%12

I RIGHT P -
M204.1168: IN FILE JALWORK INCLUDE RIGHT %

< I v

Executed one statement. Waiting for Online

In such a case, the Server eventually times out (two minutes), and the Client
displays Communication Error in the Status bar as well as an error message box
like the following:

Invalid response from debugger: Worker thread lost

Shortly thereafter, the Client resumes processing, and the browser waits and
follows its own timeout default.

Janus/TN3270 Debugger User's Guide 361

Problem Diagnosis

You can review the Audit Trail page for information to help locate the error in the
Online processing.

An existing connection was forcibly closed by the remote host
Two cases of these browser problems follow:

e An external connection to the browser is broken.

As a new browser session begins, the Debugger processing is halted and a
Communication Error message like the following is displayed:

}G The Janus Debugger (QAXMLZ) —

File Window Search Breskpoints Execution DataDisplay Error Macros Help
Top | Bottom | Clear Audit | Run | Step | Step Over | Trace All | Cancel | Clear Breaks | Clear Watch | View Text
[Audit Trail’| Source Code | Web Buffer | Execution Trace | Proc Selection

2010 11 24 11:59:56 Executable: C:\Program Files (x86)\Sirius Software\Sirius Software Debugger Client 51.0.8\JanusDebugger.exe -
2010 11 24 11:59:56 Executable date: 11/22/2010 1:11:21 PM

2010 11 24 12:00:10 Connection From: 127.0.0.1

2010 11 24 12:00:10 Web request: GET http://www.sirius-software.com:$219/3jalwork/gaxmlz ETTE/1.1

2010 11 24 12:00:10 Web request will be debugged...

2010 11 24 12:00:10 *x

2010 11 24 12:00:10 Connected to the Debugging Server: sirins-software.com:6219

2010 11 24 12:00:10 Model 204 Version: 7.2.0D

2010 11 24 12:00:10 Sirins Mods Version: 7.8

2010 11 24 12:00:10 Session name: 001D787022

2010 11 24 12:00:10 o

2010 11 24 12:00:41.1% 2 5 MS MSIR.1020: Debugger: JDBW Address=X'7C41F3B0'

2010 11 24 12:00:41.99 2 5 LI I QAXML2 L
2010 11 24 12:00:41.9% 2 5 MS M204.1168: IN FILE JALWORK INCLUDE QAXMLZ I
2010 11 24 12:02:06.90 2 5 MS MSIR.0690: Janus Web content compressed by 73.0 percent from 411 to 111 bytes

2010 11 24 12:02:06.90 2 5 AD MSIR.0359: WEB status 200 OK

2010 11 24 12:01:35 Response: received 264

2010 11 24 12:01:35 An existing connection was forcibly closed by the remote host

q it Communication Error X D

Search Search Next Search Prev | P Watch
g "3‘ An existing connection was farcibly closed by the remote host

o]

MSIR.1020: Debugger: JDBW Address=K'7C41F3B0'
T QAXMLZ

M204.1168: IN FILE JALWORK INCLUDE QAXML2
MSIR.0690: Janus Web content compressed by 73.0 percent from 411 to 111
MSIR.0359: WEB status 200 OK

guest.

< e v

Communication Error Receiving/forwarding web page

In its role as the browser's proxy, the Debugger Client has received an error
notification from a site that the browser has contacted, say to load an image, as part
of its normal setup and home page presentation.

Such errors are infrequent and usually harmless, and clicking OK releases the
Debugger to continue processing.

e The browser breaks the connection to the Debugger Client.

As the Debugger Client is processing code that a Janus Web Server sends in
response to a browser request, a user sends another browser request (or the
browser sends a scheduled polling request). The Client-browser socket gets
broken, and the Client displays a message like the one shown above. When you

click the message OK button, the Client-browser socket gets reestablished.

362 Janus/TN3270 Debugger User's Guide

Problem Diagnosis

The Debugger Client is not available

Browser requests return a "cannot find server" or "proxy server is unavailable" message
like the following when the Debugger Client goes down or is not started:

/
@ The page cannot be displayed

The page you are looking for is currently unavailable. The
Web site might be experiencing technical difficulties, or
you may need to adjust your browser settings. J

Please try the following: Jr/

¢ Click the [§] Refresh button, or try again later.

¢ If you typed the page address in the Address bar,
make sure that it is spelled correctly.

¢ To check your connection settings, click the F .
Tools menu, and then click Internet Options. On (J
Epp’ “-mections tab, glick Settings. The y,
) .- uld m?"' T ided by yowrrew o 4
W = " or

"

sure your Security settings can suppu. oL Lick

the Tools menu, and then click Internet |
Options. On the Advanced tab, scroll to the e

Security section and check settings for S5L 2.0, i

55L 3.0, TLS 1.0, PCT 1.0. s

- . -

® Click the ¥ Back button to try another link. -

-

¥

Cannot find server or DNS Error !
Interme ploes 1
v
_r

Once the Debugger Client becomes available, debugging continues when the browser
sends or resends a request. There is no need to recycle the browser.

8.4 Howthe TN3270 Debugger handles communication
breaks

If the TN3270 Debugger is not properly configured or if communication between the
Client workstation and the host Online is lost, the Debugger Client will display error
messages and will attempt to restore normal operation, typically without requiring a
recycle of any of the components.

The most likely types of communication breaks (not related to product configuration) and
the Debugger responses are described below.

Janus/TN3270 Debugger User's Guide 363

Problem Diagnosis

The network connection between the PC and the host Online is lost, or the
Debugger Server port is not started

If the Debugger Client was in the process of debugging code, the next Client operation

you attempt produces a Client message like the following, and Communication Erroris
displayed in the Status barlss}:

Communication Error L&J

ig} Invalid response from debugger: An existing connection was forcibly closed by the remote host

Clicking OK here removes the message, but processing cannot continue until the
connection to the Online is reestablished or the Debugger port on the Online is restarted.
There is no need to recycle the Debugger Client, although any program that was being
processed is discarded.

If the Online was waiting while the Debugger Client was processing, loss of connection
to the PC returns control to the Online user and causes the program to run to
completion.

Once the broken connection is reestablished, debugging continues when the Online
sends or resends a request. There is no need to recycle the Client.

Worker thread lost

The Web Server or Debugger Server encounters a Model 204 or Janus error while doing
work for the Client, leaving the Client in an extended waiting state (Waiting for Online
is displayed in the Status bar):

Search Search Next Search Prev | Value Trace Run to Change

' %2

I RIGHT re -
M204.1168: IN FILE JALWORK INCLUDE RIGHT %

Executed one statement. Waiting for Online

364 Janus/TN3270 Debugger User's Guide

Problem Diagnosis

The Server eventually times out (two minutes), and the Client displays Communication
Error in the Status bar as well as the following error message box:

Communication Error L&J

'8' Invalid response from debugger: Worker thread lost

Shortly thereafter, the Client resumes processing.

You can review the Audit Trail page for information to help locate the error in the Online
processing.

The Debugger Client goes down or is not started

Online requests run as normal when the Debugger Client is not available: that is, the
program executes without first being intercepted by the Debugger.

Once the Debugger Client becomes available, debugging continues when the Online
sends or resends a request.

If the Online is waiting while the Client was in the process of debugging code, a
shutdown of the Client causes control to return to the Online user, and the code that was
being debugged runs to completion in the Online.

8.5 Tracking Client performance

Programs with thousands of lines of code can introduce a slight delay while the
Debugger Client reads, parses, and displays the code in the Source Code tab. As an aid
to program tuning, you can have the Client log the time it spends processing program
code. For example, you can isolate the elapsed time between the arrival of program
code on the workstation and its display in the Source Code tab, ready for debugging.

To send code handling data to the Client log file (1og.txt), you add an entry to the Client
configuration file (debuggerConfig.xml). This file is installed in the same directory as
the Debugger Client executable file, and it is initially configuredlzsd as part of the
Debugger Client installation.

To update the file:

1. Open the debuggerConfig.xml file in a text editor.

Janus/TN3270 Debugger User's Guide 365

Problem Diagnosis

2. Adda<collectTuningData/> element at the same level (as a sibling of) the
existing <serverList> element.

When complete, your configuration file should have a structure like the following:

<debuggerConfig version="1.0">
<serverList>

</proxy>

</serverList>
<proxy>

</debuggerConfig>

<collectTuningData/>

3. Save and close the file; then restart the Debugger Client.

After each subsequent Client interaction with the Online, the log. txt file will contain

blocks of time-stamped lines like the followin

?%hedamissethXMLdocwﬂenG,as

described in Debugging the Janus Debuggerizsil and in Debugging the TN3270 Debuagger

[esd):

2008
2008
2008
2008
2008
2008
2008
2008
2008

10
10
10
10
10
10
10
10
10

03
03
03
03
03
03
03
03
03

10:
10:
10:
10:
10:
10:
10:
10:
10:

07:
07:
07:
07:
07:
07:
07:
07:
07:

20
20
20
20
20
20
21
21
21

Receive:
Receive:
Receive:
Receive:
Receive:
Incoming
Receive:
UI: load
UI: load

read XML begin

read XML end, bytes read=1819
parse XML begin

parse XML end

process XML begin

program state: S Prior state: I
process XML end

source begin

source end

The last two sample lines above are recorded only when a new program is sent to the
Client. Otherwise, all Client GUI commands provoke an XML message exchange

between the Client and the Debugger Server that is reflected in a block of single pairs
each of read, parse, and process lines.

366

Janus/TN3270 Debugger User's Guide

Problem Diagnosis

8.6 Resolving issues when automatically maintaining IE
proxy settings

The installation of the Janus Debugger calls for setting up the Debugger Client as a
proxy server to intercept HTTP calls made from a browser. For sites using the Internet
Explorer browser, an option in IE lets them designate certain exceptions, URL addresses
that will not be routed to the proxy server. This option is the "Do not use proxy server for
addresses beginning with:" box (accessed by Tools > Internet Options > Connections >

LAN Settings > Advanced).

Although the Client has Preferences (File menu > Preferences) options to automatically
deactivate the proxy bypassingkel], the Debugger can be subject to issues such as
hangs or timeouts when these exception URLs are invoked. The set of preconditions is:

e An IE proxy server is set up, and at least one exception URL is specified in IE
e Client Preferences settings include both of these:
= The proxy option of IE Mode

= Clear IE proxy override in the IE Options area

The recommended initial remedy for these kinds of problems is a Client Preferences
option that routes these exception URLs through the Debugger Client to the proxy server
IE was using before the Debugger installation. The Preferences option is Use existing IE
proxy for URLs not to be debugged (in the IE Options area). As a result, the Client will
collect troubleshooting information concerning its handling of these URLs, and it will
display messages in its Audit Trail page:

2010 06 08 08:01:46 Web request: GET http://www.google.com/ HTTP/1.1
2010 06 08 08:01:46 Web request will NOT be debugged:
www.google.com:80 not listed in the configuration ...

2010 06 08 08:01:46 Passing thru not debugged request:
http://www.google.com/ to proxy: 127.0.0.1:808

Janus/TN3270 Debugger User's Guide 367

368 Janus/TN3270 Debugger User's Guide

Installation and Configuration

chaptere | NStallation and Configuration

This section describes how to install the Janus Debugger, the TN3270 Debugger, or
both. Once you complete this installation, you can begin to use either or both products.

The working part of this section consists of two subsections of mostly cookbook-style
directions. It is recommended that you first complete the steps in the "Online
Configuration" section, then complete the "Workstation Configuration" section.

Most of the steps are to be performed whether you are installing one or both Debugger
products, and exceptions are noted.

If you will be using a local editor (Xtend or UltraEdit) with the Debugger, finish the
Debugger installation first, then see Using a local editorfieal.

For information about setting up at your site a centralized distribution of updated
Debugger Client replacement files, see Providing updated versions of the Debugger
Clientlao2].

Janus/TN3270 Debugger User's Guide 369

Installation and Configuration

9.1 Overview

To use the Janus Debugger or the TN3270 Debugger, you must first install and configure

two components:

Debugger Server

Client GUI

Located in the Online for which Janus Web or 3270/Batch2
threads are to be debugged, this is a Janus Sockets server
socket application. The Server manages the “worker”
threads used by the Debugger to control the threads that
are being debugged.

Installing and configuring this Server is done once for each
Model 204 Online whose web or 3270/Batch2 threads are
to be debugged.

Located on each workstation where the Debugger is to be
used. The Client acts as an intermediary between the
developer’s Web browser or output terminal and the online,
and it provides the user interface for controlling the
Debugger.

Installing and configuring this Client is done once for each
workstation.

The Model 204 Online portion of the installation should be done first, since decisions
made doing the Online setup are input to the Client setup (for example, the port number
of the debugging server). Because there are two installation locales, each of which will
often be done by different people in an organization, the installation instructions are

divided into two "tracks”:

Online Configuration

Workstation
Configuration

Performed by Model 204 system manager or equivalent.

Most likely performed by individual developers on their own
machines, after the Online configuration is complete.

It is recommended that the system manager do one
workstation configuration after completing the online
configuration, verifying that the installation and
configuration were successful.

370

Janus/TN3270 Debugger User's Guide

Installation and Configuration

9.2 Online Configuration

This section shows how to prepare a Model 204 Online for use of the Janus Debugger,
the TN3270 Debugger, or both.

The installation tasks require Model 204 system manager privileges. Also, since you
must set at least one User 0 parameter, a cycle of the Model 204 Online will be required.

The Online configuration tasks are listed below.

Check prerequisitesm

Authorize the Debuggerkr1]

Set Model 204 system parameters/s72l

Define and start the Debugger Server portk73)

Define and start a client socket port (TN3270 Debugger only)ls7

9.21 Check prerequisites

Do not continue until the following product version requirements have been met:

1. For the Janus Debugger or TN3270 Debugger, make sure that you are running
Version 7.0 or higher of the Sirius Mods, and at least Model 204 Version 6.1.

You can verify this by issuing the STRIUS command at the Model 204 command
prompt, for example:

Site - SIRIUS Job name ULSPFPRO
Sirius Mods version - 7.8 Model 204 version 7.2.0D

2. AJanus SOAP license or Model 204 version 7.5 or greater are required to use the
DebuggerTools class methods|1sd.

9.2.2 Authorize the Debugger

1. Through your Rocket Software Sales representative:

a. Arrange a Janus Debugger Trial or TN3270 Debugger Trial agreement for one
or more seats of the Janus Debugger or TN3270 Debugger.

The number of “seats” or connections indicates the number of programmers
who will be able to use the Debugger concurrently.

Janus/TN3270 Debugger User's Guide 371

Installation and Configuration

2.

b. Obtain information about applying (zapping) the Authorization Key that enables
the appropriate software.

You may need to download a key from the Rocket Software web site. The
"Rocket M204 Customer Care” page (https://m204.rocketsoftware.com/)
contains information about the required site user ID and password and also
contains a link to download an authorization zap.

The Download product authorization keys link accesses the "Authorization keys
for Sirius Software Inc." page, which contains links to comprehensive and
product-specific authorization zaps you apply using the Rocket Rockzap utility.

Once authorization is complete, view the output of the STRIUS command in your
Model 204 Online to verify that you have some authorized Debugger seats. The
output should contain one or both of lines like this:

Janus Debugger Expires ©02/24/2014 Max connections 10
TN3270 Debugger Expires 02/24/2014 Max connections 3

9.2.3 SetModel 204 system parameters

User 0 parameters

1.

Set the Model 204 User 0 parameter DEBUGMAX. This parameter, which defaults to
0, is the number of internal debugging control blocks that will be allocated.

Specify a DEBUGMAX value of at least the number of seats authorized by the
Authorization Key (or the sum of the numbers of seats, if keys for both Debuggers)
you obtained in the previous step. You can set it higher, however, if you anticipate
getting a key in the future that adds seats.

Note: The maximum number of concurrent debugging sessions may never exceed
the seat count of the key(s), no matter what value you specified for
DEBUGMAX.

Set the User 0 parameter DEBUGPAG, if necessary. This parameter specifies the
upper limit of the CCATEMP page allowance for a debugging session (for the
combination at any one time of Audit Trail and Source Code data). The Debugger
uses CCATEMP pages for its audit trail and source code lines.

DEBUGPAG defaults to 100.

If you are going to debug large programs (more than 1000 lines in a single request),
increase the DEBUGPAG setting to, say, 250. Its maximum is 25000.

Note: Although DEBUGPAG is resettable by the system manager, DEBUGMAX is
not resettable.

372

Janus/TN3270 Debugger User's Guide

https://m204.rocketsoftware.com/
https://sirius-software.com/maint/authlist?nickname=SIRIUS
http://m204wiki.rocketsoftware.com/index.php/RockZap

Installation and Configuration

3. The SDAEMDEV User 0 parameter sets the IODEV number for the sdaemon
threads that are the Debugger Server worker threads. In any Online where either
the Janus or TN3270 Debugger will be used, these threads require a pushdown-list
size (Model 204 LPDLST parameter setting) of at least 9000.

Note: As described below, the PDL size is user-resettable, and the Model 204
thread that is running the program that is being debugged also uses
additional PDL space.

4. The User 0 parameters SDEBGUIP and SDEBWRKP set the default values
respectively of the workstation port num berl76l on which the Debugger Client is
listening, and the port number in your Online that is definedfs73 for worker threads.
Explicitly setting these parameters is optional.

5. The MINDEBCL parameter specifies the minimum Debugger Client build number
that can be used with the Online, letting you enforce Client upgradingm. This
enforcement is available as of Client build 65 and Model 204 7.7, and by default it is
off.

5. Cycle the Online, so the parameter settings take effect.

User parameters

1. As stated above, the Debugger Server worker sdaemon threads require a
pushdown-list size of at least 9000.

2. Athread that runs a request to be debugged under the Debugger will use more
PDL, VTBL, and STBL space than normal. If you suspect the existing values at your
site for the size of these areas may not be adequate, add 2000 bytes to the the PDL
size, about 100 bytes (3 units) to VTBL, and about 300 bytes to STBL. You can use
UTABLE LVTBL, UTABLE LSTBL, and UTABLE LPDLST commands.

9.24 Define and start the Debugger Server port

1. Select an unused TCP port number on which your Online will run the Debugger
Server.

A Janus server socket port will be opened on that port number to service requests
for Debugger Server worker threads. Make sure that port number is free of any
security restraints at your site that might prevent access by any Debugger Client
workstation seeking a connection.

2. Confirm that, as described in Set Model 204 system parametersf73], the Debugger
Server worker threads have a Model 204 LPDLST parameter setting of at least 9000
in any Online where either the Janus or TN3270 Debugger will be used.

3. Define and start a Debugger Server port.

You may want to consult with your system manager or whomever sets up Janus
port definitions for your site. The Rocket M204wiki JANUS DEFINE command
documentation describes port definition particulars.

Janus/TN3270 Debugger User's Guide 373

http://m204wiki.rocketsoftware.com/index.php/JANUS_DEFINE

Installation and Configuration

For Debugger purposes, the JANUS DEFINE command format is:
JANUS DEFINE portName portNumber DEBUGGERSERVER maxConnections

Note the DEBUGGERSERVER port type, which is a Debugger-only, license-free,
Janus server socket.

An example command sequence follows, which creates/recreates and starts a
server port on port 3226, then displays the full port definition:

JANUS DRAIN DEBUGSERVER3226

JANUS DELETE DEBUGSERVER3226

JANUS DEFINE DEBUGSERVER3226 3226 DEBUGGERSERVER 15 TRACE ©
JANUS START DEBUGSERVER3226

JANUS DISPLAY DEBUGSERVER3226

For your convenience, you may want to store this command sequence for reuse in
a Model 204 procedure.
4. Issue the following command to check that the Server port started:
JANUS STATUS

You should see a line like the following (using the naming convention in these
examples and procedures):

DEBUGSERVER portNumber portNumber sockType Start statistic-values

Where portNumber is the port number from above, and sock Type is DEBUGSRV.

5. Once you know the Debugger Server has started, the best way to verify its
functioning is to install the Debugger Client on a workstation and make sure the
workstation can connect, as described in Workstation Configuration@.

9.2.5 Define and start a client socket port (Sirius Debugger only)

To initiate TN3270 Debugger sessions from this Online, you must have a Janus client
socket port to connect to the Debugger Client that is running on the workstation. You
may want to consult with your system manager or whomever sets up Janus port
definitions for your site, and the Janus Sockets Reference Manual documents the port
definition particulars.

A sample Janus port definition (for the port DEBCLIENT7) follows. The
DEBUGGERCLIENT port type is a Debugger-only, Janus client socket that requires a
Debugger license.

374 Janus/TN3270 Debugger User's Guide

Installation and Configuration

JANUS DEFINE DEBCLIENT7 * -
DEBUGGERCLIENT 5 REMOTE * * -
LINEND ODOA -
TRACE © -
TIMEOUT 40 -
MASTER -
SOCKPMAX 1

JANUS START DEBCLIENT?7

JANUS CLSOCK DEBCLIENT7 ALLOW
Notes:

e [f you have a Debugger license and a Janus Sockets license, you can use a
CLSOCK port type instead of DEBUGGERCLIENT.

e The JANUS DEFINE parameters KEEPALIVE and SSL are valid for CLSOCK ports
but not for DEBUGGERCLIENT ports or for a CLSOCK port used for the Debugger.

e The JANUS CLSOCK ALLOW statement applies to both CLSOCK and
DEBUGGERCLIENT ports. As specified above (with no additional parameters),
unrestricted access is allowed to the port.

9.3 Workstation Configuration

This section specifies how to prepare a workstation for use by the Janus Debugger,
TN3270 Debugger, or both.

These are the workstation configuration tasks:

Perform preliminary tasksfs73)

Run, check, and verify the Client installationk7]
Customize the debuggerConfig.xml filelsdl

Configure the web browser (Janus Debugger only)lss!

Test the end-to-end configurationkssl

9.3.1 Perform preliminary tasks

1. Make sure your workstation environment is adequate for the Debugger Client:

e The operating system must be Windows 7 or Windows 8. Windows 2000 is
also acceptable for builds of the Client prior to 51.

Janus/TN3270 Debugger User's Guide 375

Installation and Configuration

e The target drive of the workstation must have at least fifteen megabytes of free
disk space.

e The Microsoft .NET Framework (3.5 SP1) must be installed on your machine.
Version 3.5 is included with Windows 7.

If NET 3.5 is not on your machine at the time of Client installation, the installer
program will not complete, and it will inform you to download and install the
Framework. You can get the Framework from:

http://msdn.microsoft.com/en-us/netframework/cc378097.aspx

Or locate the download from:

http://msdn.microsoft.com/en-us/netframework/default.as px

e For Janus Debugger sessions, your browser must support proxy servers.

Most, if not all, current popular browsers have this support. Consult your
browser's documentation or "properties" information. The "Configure the web
browser"zs8 section describes how to set up a proxy for several popular
browsers.

e ltis assumed you are accessing the Debugger Client locally, that is, from the
machine on which the software is installed. Accessing the Debugger Client and
its online Help file from another workstation may be problematic. Microsoft
security may prevent you from accessing the Debugger compiled Help file from
a networked location. For more information, contact Rocket Software Technical
Support.

Obtain the following information from the system manager of the Online running the
web or 3270/Batch2 threads that are to be debugged:

e Confirmation that the Debugger Server is running
e The host name (or IP number) of the Online
e The port number of the Debugger Server

e For Janus Debugger sessions, the port number on that Online of the web
server whose threads are to be debugged

e For TN3270 Debugger sessions, the name of the client socket port set upk74lin
that Online for the programs that are to be debugged

On this workstation, select a local TCP port number for the Debugger Client to listen
on, if the default (8081) is not available.

For Janus Debugger sessions, the Client acts as a proxy server between the local
web browser and the Janus Web Server; it's "address" is localhost:port, where
localhost is the workstation machine's host name or IP address, and port is the
listening port number. For TN3270 Debugger sessions, the workstation port is for
communication between the Debugger Client and Model 204 Online.

If you are already using port 8081 for something else, or if you cannot use 8081 for
some other reason, you must select a new port number. Port numbers in the 8000
range are often used for proxies, but any unused port number is acceptable.

376

Janus/TN3270 Debugger User's Guide

http://msdn.microsoft.com/en-us/netframework/cc378097.aspx
http://msdn.microsoft.com/en-us/netframework/default.aspx

Installation and Configuration

For information about the TCP ports that are currently active on your workstation,
you can issue the NETSTAT command from an MS DOS command box on your
machine.

If you are going to change this port number, have the new number ready when you
customize the debuggerConfig.xml filefesd, later.

4. For IE and Chrome browsers: if you want to use the Client PAC file optionks2), where
the Client acts as a proxy server only for requests for Client-configuredisol hosts but
for no other browser requests, you may want to find an additional port number on
the Debugger host workstation or on another suitable machine that can service
HTTP requests.

5. For TN3270 Debugger sessions, determine the host identification of the workstation
where the Debugger Client will run.

This may be either an IP number or DNS name. Two ways to obtain the IP number
are:

e Select the Audit Trail tab in the Client main window, and click the Top button.
Approximately the fourth line from the top displays the Local IP address of
the Client workstation.

e Openan MS DOS box, and issue the IPCONFIG command. You will see output
similar to this:

Ethernet adapter
Connection-specific DNS Suffix

IP Address. . . « ¢« « « « « « « « ¢ X.X.X.X <==youwant this
Subnet Mask « « « ¢ . I VY.YVVY
Default Gateway ! Z.Z.Z.Z

9.3.2 Run, check, and verify the Client installation

1. Toinstall or upgrade the Debugger Client, download, extract, and run the SETUP.
EXE file, which invokes a Windows installer, using either of the the following links:

] http://www.sirius-software.com/debclient.zip

= The "Download the ZIP file" link you reach via the "Download client
(workstation) files" link in your individual Customer Maintenance Area —
reached from https://m204.rocketsoftware.com/maint/cllist?
nickname=SIRIUS — on the Rocket Software web site.

If you are upgrading to a newer build of the Client, the installer program will not
remove the previous Debugger Client configuration file (debuggerConfig.xml).

If you are re-installing the same build version of the Client, the installer insists that
you first remove the existing Client files (using the Add/Remove program from the
Windows Control Panel). The uninstaller program will not remove the Client
configuration file (debuggerConfig.xml), and the installer will not overwrite it.

Janus/TN3270 Debugger User's Guide 377

http://www.sirius-software.com/debclient.zip
https://m204.rocketsoftware.com/maint/cllist?nickname=SIRIUS
https://m204.rocketsoftware.com/maint/cllist?nickname=SIRIUS

Installation and Configuration

2. After the installer finishes, double-click the Debugger Client icon (from the Windows

system Start menu or from the desktop). The Client should open, displaying a list of
messages that identify the Client and its host, as well as key file locations and
software versions; the last message is yellow-highlighted:

A5 The Rocket Software Debugger Client |

File Window Search Breakpoints Execution DataDisplay Error Macros Help
Top | Bottom | Clear Audit | Run | Step | Step Over | Trace All | Cancel | Clear Breaks | Clear Watch
Audit Trail | Source Code | Web Buffer | Execution Trace | Proc Selection

2013 03 27 14:05:22 The Rocket Software Debugger Client
2013 03 27 14:05:22 ila: 2013) Tag: 7 GA
2013 03 27 14:05:22 Listening for debug requests on port 8082
2013 03 27 14:05:22 o are

2013 03 27 14:05:23 for debugging.

2013 03 27 14:05:23 lient: 127.0.0.1:8082

2013 03 27 14:05:24 Ignored (not debugged) filetypes: oss,gif hte,i0o,jpeg,Ipg, s, png,sml,xsl

2013 03 27 14:05:24 Output files written to: C:\Program Files (x86)\Sirius Software\Sirius Software Debugger Client 62\

2013 03 27 14:05:24 UI customization files read from: C:\Program Piles (x86)\Sirius Software\Sirius Software Debugger Client 62\

2013 03 27 14:05:24 Macro search path: C:\Users\jlapierre\Documents\Debugger\testInst\, C:\Program Files (x86)\Sirius Software\Sirius Software Debugger Client 62\
2013 03 27 14:05:24 ersion: Microso £t Windows NT 6.1.7601 Service Pack 1

2013 03 27 14:05:28
2013 03 27 14:05:28
2013 03 27 14:05:28
2013 03 27 14:05:28
2013 03 27 14:08:10

soft Windows 7 Enterprise
2.0.50727.5466

\Program Files (xB6)\SiTius Software\Sirius Software Debugger Client 62\JanusDebugger.sxe

le date: 3/26/2013 4:17:43 PM

thru not debugged request: ping. -net:80/ping’ ftware . indexs2F: i 77x] ak§

12013 03 27 14:08:12 d.
l|[o015 03 27 13:12:25 Passing thrn not debuggea request: ping. -net:50/ping stware. indexs2e : 7730 axs
2015 03 27 12:12:25 asstnra completsa.
,
Search Search Next SearchPrev | Watch |

3. Make sure the installer did the following:

o
i
e Placed an icon on your desktop to run the Debugger Client: 2

e Created a Windows Start Menu item under:
Programs > Rocket Software > Rocket Software Debugger Client

For Client builds prior to 50, the target folder name is Client for Janus and
Sirius Debuggers.

378 Janus/TN3270 Debugger User's Guide

Installation and Configuration

¢ Installed these files in the target installation folder:

JanusDebugger.exe The actual Debugger Client program.
updateGet.exe Program for downloading updated versions 02
of the Client.
unzip.exe Freeware program for unpacking zipped files.
debuggerConfig.xml XML-based configuration file that sets startup

parameters for the Debugger Client. You
must tailor this file, as directed in the next
step.

Org.Mentalis.Security.dll Supportfor SSL connections.

msvcr71.d11 Microsoft C library functions used by .NET
programs.

gdiplus.dll Microsoft graphics file.

whitelist.txt White Listl 771 file template.

dir.txt Empty file installed to test the writability of the

folder(s) designatedhsal to contain various
Client work files.

JanusDebugger.chm A Windows compiled HTML Help file. To view
the Help, double-click the .chm file or access
it from the Debugger Client GUI Help menu.

jdebugr.pdf The Janus/TN3270 Debugger User's Guide,
which includes installation instructions and a
copy of the online Help contents, formatted for
convenient printing.

To display PDF files, you need the Adobe
Acrobat Reader, which you can download
from http://www.adobe.com/products/acrobat/

For Client builds prior to 50, the jdebugr.pdf
file is installed in the Doc installation subfolder.
As of build 67, the folder location can be
specified in the Client configuration file
(debuggerConfig.xml).

4. Set uphsol the Debugger Client configuration file.

Janus/TN3270 Debugger User's Guide 379

http://www.adobe.com/products/acrobat/

Installation and Configuration

9.3.3 Customize the Debugger configuration file

After you install the Debugger Client for the Janus Debugger, you must modify the Client
configuration file (debuggerConfig.xml) as described in the numbered steps below.
This file is installed in the same directory as the Debugger Client executable file. It can
be accessed for editing via the Client's File menu.

If you are using the Client only for the TN3270 Debugger, begin with step 5/ze2

If this is an initial installation of the Debugger and you are primarily interested in getting
the Client up and running, you may ignore for now and return later to view the Additional
configuration options [384), below.

The configuration file contains parameters that associate the Debugger with the Model
204 online(s) whose Janus Web threads you want to debug. A template
debuggerConfig.xml file is placed in your client installation target folder along with the
executable for the Debugger Client (JanusDebugger.exe). The template file is amply
annotated with XML-style comments which describe the contents.

Basic configuration steps

1. As supplied, debuggerConfig.xml contains a single serverList element (bounded
by the <serverList> start tag and the <\serverList> end tag) that has a single
server sub-element. A server element defines a Janus Web Server whose User
Language requests you can debug.

Provide within the serverList element a server element for each Web Server with
which you want to use the Janus Debugger. Simply copy and paste the supplied
server element.

For example, if you are debugging for two Web Servers, the structure of your
serverlList element should be like this:

<serverList>
<server>
<host></host>
<webPort></webPort>
<workerPort></workerPort>
</server>

<server>
<host></host>
<webPort></webPort>
<workerPort></workerPort>
</server>
<\serverList>

380

Janus/TN3270 Debugger User's Guide

Installation and Configuration

2. Foreach server element within serverList, provide values for the three entries
shown in the Field column below. You obtained the appropriate values earlierls7s\

Specify the values between the pairs of angle-bracketed tags, as shown in the
Comment column below:

Field Comment

<host></host> The identifier of the machine that hosts the Janus Web
Server application for which requests will be debugged.
Either a TCP/IP host name or an IP Number may be
specified. For example: <host>rocketsoftware.com</
host>.

Note: If you use an IP Number in this configuration file
to identify a host, you must use the IP number
when you reference a URL in your web browser. If
you use a DNS name in this configuration file,
you must also use it from the browser.

<webPort></webPort> The port on this host that runs a Janus Web Server
whose threads you want to debug. For example:
<webPort>3224</webPort>.

<workerPort></workerPort> The port on which this host provides Janus Debugger
worker threads. These are the server socket threads
that control the thread being debugged. They are set up
k73 as part of your Model 204 Online configuration for
the Debugger. For example: <workerPort>3226</
workerPort>.

Note: The worker port must be defined in the same
Online that runs the Web Senrver identified by the
values for host and webPort. If you are
debugging multiple Web Servers in the same
Online, they may all use the same worker port.

When an incoming HTTP request is received by the Debugger Client, its host and
web port are extracted and matched against those of the servers in the serverList
element. This matching is case insensitive, but otherwise it must be an exact
match.

If you specify an invalid value (for example, a non-numeric port number), the Client
will fail to start and you will receive an "Error reading the debuggerConfig.xml|"
message box.

3. [faWeb Server you are debugging is secured (Janus Network Security), you must
direct the Debugger Client to connect to the Web Server using the Secure Sockets
Layer (SSL) protocol. Add an empty ss1 sub-element to the appropriate server
element defined in the previous step.

Janus/TN3270 Debugger User's Guide 381

Installation and Configuration

For example:

<server>
<host>rocketsoftware.com</host>
<webPort>3224</webPort>
<workerPort>3226</workerPort>
<ssl/>

</server>

By default, when the Janus Debugger examines a web request a browser sends, it
excludes URLs with the following file types from debugging:

css jpeg png
gif iPg xsl
htc js xml
ico

Each such skipped URL produces a "Web request will NOT be debugged"
message in the Client's audit trail.

You may replace (entirely) the default list of file types, above, with a list you specify
by adding a filter element to the debuggerConfig.xml file.

In the filetype subelement of the filter element, you specify (without regard for
case and without a leading period) only the file types that will not be debugged, and
these types replace the default list.

The file type filter applies to all web servers you debug, so the filter tagis a child
of the root in the debuggerConfig.xmlfile. For example:

<debuggerConfig version="1.0">
<serverList>

</serverList>

</editor>

<filter>
<filetype>jpg</filetype>
<filetype>xml</filetype>

</filter>
</debuggerConfig>

Note: If your browser is Internet Explorer, you can also filter by server hostfzsd the
web requests to be debugged.

As discussed in the preliminary tasksp73), the Debugger Client requires a host
workstation TCP port on which to listen during Janus Debugger or TN3270
Debugger sessions. If the default port number, 8081, is not available on your
workstation, specify a suitable value for the port field in the proxy element of the
debuggerConfig.xml file.

382

Janus/TN3270 Debugger User's Guide

Installation and Configuration

For example:

<debuggerConfig version="1.0">
<serverList>

</serverList>

<proxy>
<port>8888</port>

</proxy>

<editor>

</editor>
</debuggerConfig>

6. Alogfile (log.txt) that captures the Client and workstation browser activity is
installed by default in the Client installation folder. Useful for troubleshooting
purposes, the file can grow quite large if maintenance is neglected. The logging
element has attributes that let you control the size and retention of log files:

e The mode attribute's daily option lets you specify automatic creation of a new
log file on a daily basis to prevent excessive growth of the log:

<logging>
<mode>daily</mode>
<maxDays >2</maxDays>
</logging>
If daily is set, each day's new log file is named log.txt, and the previous
day's file is renamed with its date: logyyyymmdd. txt.

The default mode is single which leaves the file unmaintained, and regular
Client additions will accumulate. You can also specify the off option to stop
further additions to the log.

e The maxDays attribute of the logging element is a positive integer that
specifies the number of daily logs to retain prior to the current log.txt file.
maxDays is only valid if mode is daily.

If maxDays is set to 2, for example, as many as two prior daily logs are kept in
addition to log.txt.

The maxDays maximum is 99999, and the default is 100.

Janus/TN3270 Debugger User's Guide 383

Installation and Configuration

7. Save your changes to the debuggerConfig.xml file, then restart the Debugger

Client (either select Restart from the Client's File menu, or exit and run the Client
again). The changes to the debuggerConfig.xml file do not take effect until the

Debugger Client is recycled.

The Client should open, ready for debugging, with information lines like the
following:

HE The Debugger Client

File Window Search Breakpoints Execution DataDisplay Error Macros Help
Top | Bottom | Clear Audit | Run | Step | Step Over | Trace | Cancel | Clear Breaks | Clear Watch - 7

r il
Audit Trail Source Code | Web Buffer | Execution Trace = Proc Selection i
—
2010 11 22 16:50:54 Sirins Software Debugger Client: For Mods Version(s): 7.0-7.8 L
2010 11 22 16:50:54 Banild: 53 (30 November 2010) Tag: 9 _P‘
2010 11 22 16:50:54 Listening for debug reguests on port 8081 1
2010 11 22 16:50:54 Local IP address 158.242.244.16 J
2010 11 22 16:50:54 4 Janus Web Servers specified for debugging. .
2010 11 22 16:50:54 No IE proxy settings reguested ¥
2010 11 22 16:50:54 Ontput files written to: C:\Users\JAL\Documents\Debugger\testInst\ b
2010 11 22 16:50:54 UL customization files read from: C:\Users\JAL\Documents\Debugger\testInst\ ,—'/
2010 11 22 16:50:54 Macro search path: c:\Users\JAL\My Documents\Debugger\oldstuff), C:\Usars\JAL\Documents)r
2010 11 22 16:50:54 0S Version: Microsoft Windows NT 6.1.7600.0 o
2010 11 22 16:50:55 0S Name: Microsoft Windows 7 Home Premium L4
2010 11 22 16:50:55 -NET Version: 2.0.50727.4927
2010 11 22 16:50:55 Only Mods versions 7.0 or better may be used with this client.
2010 11 22 16:50:55 Executable: C:\Users\JAL\Documents\Debugger\testInst\JanusDebugger.exe
2010 11 22 16:50:535 Executable date: 10/20/2010 11:45:33 AM .
!
7
JS— T

o S e r 4l
— — m—
- r\uch_),_—: o - "f - 'Jf r . = T

For Janus Debugger sessions, the message report includes the number of Web

Servershasl for which the Client is configured and whether the Internet Explorer
browser settings, if any, will be automatically toggledfsd) by the Debugger. For
TN3270 Debugger-only sessions, the highlighted message will be the same as
seen earlierls77, reporting that the Janus Debugger is not active.

Note: Your modified debuggerConfig.xml file is not overwritten if you rerun the
Debugger Client setup.exe file, for this or any subsequent versions of the

Client.

Additional config

The following option

uration options

s are separated from the preceding steps because they are not

essential to an initial installation of the Debugger.

Alternative locations for Client work files

During your debugging session, the Client stores information in various text files it
creates or expects to find, by default, in the same folder as the Debugger Client
executable file. If this folder location is inconvenient, three optional elements in the

debuggerConfig.x

ml file let you specify alternative locations for the Client work files.

You can add these root-child elements to debuggerConfig.xml:

e <stateFileFolder> specifies where most Client work files are written (log,
preferences, searches, for example)

e <macroLibraryFolder> specifies where macro files are stored

384

Janus/TN3270 Debugger User's Guide

Installation and Configuration

e <uiFolder> specifies where the Client Ul customization settings (ui.xml, uimore.
xml) are stored

For example:

<debuggerConfig version="1.0">
<serverList>

</serverList>

<stateFileFolder>c:\myData</stateFileFolder>
<uiFolder>c:\myUI</uiFolder>
<macrolLibraryFolder>c:\work\macroLibrary</macroLibraryFolder>
<manual>c:\Doc\Debugger.chm</manual>

</debuggerConfig>

For more information about the Client work files, see Changing the location of Client
work files. o3

For information about how to specify a location for these folders from a command line,
see Specifying a startup command for the Client.}o1)

Alternative locations for Debugger documentation files

During Client installation, the Debugger product documentation files (. pdf and . chm) are
stored by default in the same folder as the Debugger Client executable file. To specify an
alternative location for these files, you can add the manual and helpFile elements to
debuggerConfig.xml:

e <manual> specifies where and with what name the Client searches for the Janus/
TN3270 Debugger User's Guide PDF file when you select Help Topics from the
Client Help menu.

For compatibility with older Client versions (prior to build 50), if this element is not
specified, the Client searches the folder containing the . exe Debugger executable
file and also searches its Doc subfolder, if any.

e <helpFile> specifies where and with what name the Client searches for its
Windows Help file (.chm) when you press the F1 key or select View PDF Manual
from the Client Help menu.

For both elements:

e The search is not case-sensitive.
e Arelative folder path is relative to the folder containing the Debugger executable file.

e An absolute path is accepted and treated as such.

Janus/TN3270 Debugger User's Guide 385

Installation and Configuration

e ltis an error to begin a relative path with a backslash (\).

e These locations are not affected if a separate folder is designated (by startup
commandbo1l or configuration file settinq@ﬂ) for Client working files.

For example, the following settings direct the Client to search for the so-named
documentation files in the Doco folder:

<debuggerConfig version="1.0">
<serverlList>

</serverList>

<manual>Doco\JDebugr.pdf</manual>
<helpFile>Doco\JDebugger.chm</helpFile>

</debuggerConfig>

Font size

The font size in most Client windows is scalablebos! by specifying a valid setting of the
fontScale element. For example:

<debuggerConfig version="1.0">
<fontScale>1.33</fontScale>
<serverList>

</serverList>
</debuggerConfig>

Window transparency

The degree of transparency of Preferences and external-button[421 windows is adjustable
by specifying a valid setting of the opacity element (max transparency is .01; max
opacity is 1; default is .9). For example:

<debuggerConfig version="1.0">
<opacity>.75</opacity>
<serverList>

</serverlList>
</debuggerConfig>
Information URLs

The destination URL of the Model 204 Wiki link in the Debugger Client's Help menu
defaults to http://m204wiki.rocketsoftware.com. If your Internet access is limited, you can
override the default by specifying the wikiURL element. For example:

386 Janus/TN3270 Debugger User's Guide

http://m204wiki.rocketsoftware.com

Installation and Configuration

<debuggerConfig version="1.0">
<wikiURL>http://123.4.5.666/myM204Wiki</wikiURL>
<serverList>

</serverList>
</debuggerConfig>

This must be an absolute URL, and the host domain specified may be a DNS name or
an IP number.

Text file editor

Many Debugger tasks entail the editing of small text files, and typically the Client opens
by default the Microsoft Notepad editor (notepad. exe), which is guaranteed to be
present on a Windows system. You can change default editors by specifying a suitable
value in the notepadReplacement element.

For example, the following defines Notepad++ (http://notepad-plus-plus.org/) as the
default text editor:

<debuggerConfig version="1.0">
<notepadReplacement>C:\Program Files\Notepad++\notepad++.exe</notepadReplacement>
<serverlList>

</serverList>
</debuggerConfig>

The element value must be a full operating system (DOS style) path that identifies the
executable file. An eligible editor must take the file to be edited as its first command line
parameter. Given the definition above, for example, and selecting the Edit
debuggerConfig.xml option from the Client's File menu, directs the Client to execute the
following:

C:\Program Files\Notepad++\notepad++.exe debuggerConfig.xml

Multiple Client configurations

If, for testing purposes, you want to have multiple configurations, you can specify a
configuration file other than debuggerConfig.xml on the command line:

1. Openand MS DOS command line window.
2. Navigate to the Debugger installation folder (it contains JanusDebugger .exe)

3. Atthe command line, issue JanusDebugger myconfig This starts the Debugger
using the file specified by myconfig, instead of debuggerConfig.xml. For
example:

JanusDebugger testl.xml

Janus/TN3270 Debugger User's Guide 387

http://notepad-plus-plus.org/

Installation and Configuration

If you are going to make multiple configuration files, start by cloning the
debuggerConfig.xml file that is installed by default. This will save work and minimize
the chance of errors.

Startup macro

A Debugger macrob17l lets you automate a variety of Client tasks. You can invoke a
macro in various ways, one of which is automatically, whenever the Client is started. To
invoke such an automatic running of a macro at Client startup, you specify the macro
name as the value of the startup attribute of the top level tag of the debuggerConfig.
xml file. For example:

<debuggerConfig version="1.0" startup="startup.macro">

PAC file server

The Chrome and Internet Explorer PAC file featurese2 requires that you provide an HTTP
(Web) server to hold the PAC files. You can use any web server that supports HTTP
PUT and GET. Further details and an example are provided in Setting up an HTTP
server for PAC files[s94. You specify the server location with the httpPacURL tag. For
example:

<debuggerConfig version="1.0">
<httpPacURL>http://pacServerHost: pacServerPort/pacman</httpPacURL>

</debuggerConfig>
Where:

e pacServerHost is the host name or IP number of the PAC web server.

e pacServerPort is the port number used by the PAC web server. It must not be the
same as any port in the serverList element in debuggerConfig.xml.

e pacman is an optional qualifier in the PAC file URL. It is used in the example in
"Setting up an HTTP server for PAC files" (see the JANUS WEB commands in the
Janus Web Server definition).

When the Debugger Client is started, and the httpPacURL element is specified in the
Client configuration, the Client validates the URL with an HTTP PUT and GET of a test
file. If there is a problem with httpPacURL, an error is displayed in the Client's Audit Trail
tab. For example:

& The Rocket Software Debugger Client

File Window Search Breakpoints Execution DataDisplay Error Macres Help
Top | Bottom | Clear Audit | Run | Step | Step Over | Trace All | Cancel | Clear Breaks | Clear Waich | View Text
Audit Trail | Source Code | Web Buffer | Execution Trace | Proc Selection

2015 06 03 12:48:18 The Rocket Software Debugger Client

2015 06 03 12:48:18 Build: 63 (25 May 2015) Tag: 1 Beta

2015 06 03 12:48:16 Configuration file: debuggerConfig.xml

2015 06 03 12:48:18 Listening for debug requests on port 8081 (port from config file)

2015 06 03 12:48:18 Local IP address 172.16.60.38

2015 06 03 12:48:19 Cannot use HTTP PAC feature: The remote server returned an error: (403) Forbidden.

388 Janus/TN3270 Debugger User's Guide

Installation and Configuration

9.3.4 Configure the web browser (Janus Debugger only)

Set up your web browser to use the Debugger Client as a proxy server. Information
follows for these individual browser types:

Chrome or Internet Explorer/zsd
Firefox[sedl
Lynxked]
Operaksed)
You need the Janus Proxy port number you determined earlier in the preliminary tasks[78)

section. The default port is 8081, but you can change this by editinglzsd the
debuggerConfig.xml file.

Once you define a proxy server for a browser:

e The Debugger Client must be running in order to operate that browser.

You will need to turn off the proxy in order to use the browser without the Debugger
Client. Automatic toggling of the proxy definition is a Client option availablefssdl for the
Chrome and Internet Explorer browsers (only). Otherwise, it may be more
convenient to point one browser at the Debugger Client proxy and use a different
browser for your other Internet access.

e While you are debugging, you can use a second tab in your browser to access the
Internet while another tab is occupied with User Language debugging. Secured
(HTTPS) connections are not allowed. The occupied tab, the tab that invoked the
Debugger, continues to remain unavailable for the duration of each debugging
session.

Note: If it is not possible or not desirable to change the proxy settings on your web
browser, an alternative way to debug web threads/issl is to invoke the Debugger
from a command you insert in procedures you run on Janus Web threads.

Chrome or Internet Explorer (IE)

The directions that follow describe Debugger Client modifications to the Internet

Properties dialog box on the browser workstation, which affects both Chrome and IE
Internet connections.

Note: These instructions were originally prepared for early Client versions that had no
features built into the Client to control the browser. It is now recommended that
you:

e Use these instructions for the Client GUI or commands to use to set up
Chrome or IE.

Janus/TN3270 Debugger User's Guide 389

Installation and Configuration

¢ Do not manually modify the Internet Properties dialog box invoked from
the browser except to specify proxy server bypass addresses =l

For more information about the Internet Properties dialog box, see Navigating to and
within the Internet Properties dialog boxkss),

Automatically setting and removing the proxy definition

To invoke the proxy service automatically without having to manually define it each
time (Chrome and Internet Explorer only; for other browsers, you must maintain proxy
settings manually):

1. Select Preferences from the Debugger Client File menu to display the Preferences
dialog box.

2. Inthe IE Options area, select the proxy option of IE Mode.

The initial IE Mode setting is none (browser settings are not maintained).

A% Preferences = | B ||

Execution Options Open at Startup

W i r
v Pause atend of evaluation Macro Autorun I External Main Button Bar

™ Run Until spans debug sessions
I Exira Button Bar

" Break after READ SCREEN ™ Windows When Suspended (7.9+)
I Source Preview (7.2+mods) Minimum:{1000 = Size:|[100 = || External Watch Window
EQpife I External Audit Trail Window
IE Mode =
proxy < 7 " External Web Buffer Window

Dis I" External Execution Trace Window

newPac

symergedPac list items. ¥ Restore watches on startup
Main Button Bar
I” Tnm blanks from selectionin View Text | History to Execulion Trace & Top
I” Show long watch values in a Tooltip ¥ Use !debugger directlives (7.6+) ¢ Center
© Botiom
Web Server Selection Program Titles

I~ Extra Buttons

¥ sirius-sofiware.com:3666 LD E LRI

‘ Main Window Options

" Hide Lower Section
Web Browser

‘Windows

Done

2. Click the Done button.

Now, whenever you start the Client, the Internet Explorer proxy settings are
modified automatically, for all running browser instances.

The proxy maintenance feature remains on until you clear the checkbox (it
persists between runs of the Client). When you shut down the Client or turn this
feature off, the proxy modifications are removed, again for all instances of IE.

390

Janus/TN3270 Debugger User's Guide

Installation and Configuration

Only the following Local Area network (LAN) Settings dialog box settings (see
Navigating to and within the Internet Properties dialog box[sé)) are modified, and
then restored:

e Use automatic configuration script (if specified) and Address values.

e Useaproxyserver...and its address and port.

The next subsection describes how to also include in the automatic maintenance
any exception URLs specified to be bypassed by the proxy server.

The Client will automatically specify and enforce the proxy definition when the Client is
started. When the Client is closed, the Client will restore the proxy settings to their
state before the Client was started.

Handling addresses specified to bypass the proxy server

It is an option of the automatic proxy maintenance to clear and save at Client opening
any settings in the "Do not use proxy server for addresses beginning with:" box (
accessed this wav@). The settings for these exceptions are then restored when the
Debugger Client is closed (or when the feature is disabled).

To enable this feature, you must select both the IE Mode option proxy and the Clear IE
proxy override checkbox in the Debugger Client's Preferences dialog box. The feature is
off by default.

Note: If you do enable this feature, then exception URLs you had specified in the
Internet Properties[e8 "Do not use proxy server for addresses beginning with:"
box will now be routed to and passed through the Debugger when the Client is
running. If the feature is not enabled (Clear IE proxy override is not selected), the
operating system handles these exception URLs and the Debugger never sees
them.

In the not very likely event that you want both to enable this feature and to have
the exception URLs processed by your original proxy server, you can select
the Use existing IE proxy for URLs not to be debugged checkbox in the Preferences
dialog box (in addition to the IE Mode option proxy and the Clear IE proxy override
checkbox).

Janus/TN3270 Debugger User's Guide 391

Installation and Configuration

In this case, the Debugger will process the exception URLs and pass them to
the original proxy server. In fact, this option is designed primarily for
troubleshooting purposes, as the Debugger Client Audit Trail page will then
contain information about the disposition of these URLs.

Using the Client as proxy exclusively for designated addresses

You can use the Debugger Client as a proxy server only for requests for the hosts
(Onlines) specified in the Debugger configuration filelssol, debuggerConfig.xml. The
browser is directed to do this host filtering by a script you create (by Client command
or Ul checkbox). Once this feature is in effect, the Client will act as a proxy server for
requests for hosts specified in the script but for no other browser requests.

The Javascript script (debuggerInternalPac.js)is called a Proxy Auto Config
(PAC) file, and it is created by default in the Client work-file foldero3\. If no such work
folder is configured, the Client installation folder is used.

The Client will automatically:

e Create the PAC script at Client startup.

e Specify the script location in the Use automatic configuration script > Address value
in the Local Area network (LAN) Settings dialog box (see Navigating to and within
the Internet Properties dialog box@).

¢ Run the script each time the browser invokes a URL.

e Remove the script location specification at Client shutdown.

By default, the Client uses a file-mode URL format (file://) to locate the PAC file.
As of Build 63, the Client can also use an HTTP-mode URL format (http://), storing
the file on a web server.k94 You select file or HTTP mode from the Client GUI or by
Client command, as described below.

Note: Caution is recommended when working with PAC files. Errors are not well
reported and have the potential to prevent the browser from operating. Be very
careful if you edit or create your own PAC files, and be sure to consult the
Guide at: http://www.proxypacfiles.com/proxypac/

Client steps to invoke the automatic creation and maintenance of a PAC file

e From the Client GUI:
1. Select Preferences from the File menu, and locate the IE Options area.

2. Inthe IE Mode box, select either newPac or mergedPac:

e newPac generates a PAC file from debuggerConfig.xml settings and it
modifies the Internet Properties dialog box[s98 settings to point to the file.
Any existing designated PAC file is ignored.

392

Janus/TN3270 Debugger User's Guide

http://
http://www.proxypacfiles.com/proxypac/

Installation and Configuration

e mergedPac generates a PAC file like newPac does, but it merges the
freshly generated file with any existing PAC file.

If Build 63 or higher, both newPac and mergedPac enable the PAC Options
button if the following are true (as described in the next section, Setting up
an HTTP server for PAC files 3o4):

e Asupporting web server is defined and running.

e The HTTP file location is identified in the Debugger configuration file.

3. Click the PAC Options button to display the PAC Options dialog box:

S PAC Options (o] 5) |

PAC URL mode for IE
 file:/ URL

& htip://URL (requires web server)

Select file://URL or http://URL to set the delivery mode for the
PAC file. A file-mode URL is the default.

If http, The Client instantly tests an HTTP PUT and GET of a
verification file to and from the designated PAC file HTTP serverksal.
The Client then displays a Status bar[49] message like the following
which reports the result of the test:

HTTP PAC files can be used.

4. Click the Done button.

e By Client command:
Issue the setIEmodebks3] command.

Use the newPac parameter to ignore any existing PAC file, or use the mergedPac
parameter to merge any existing PAC file with the PAC file freshly generated from
the settings in the debuggerConfig.xml file.

If Build 63 or higher, the http parameter gets the PAC file via HTTP. The default
file parameter gets the PAC file from a folder on the local workstation. If you
specify http, you must prepare a web server to service the PAC file; see the
next section, Setting up an HTTP server for PAC files.poal

Whether you use the GUI or a Client command, no restart of the browser or the Client
is necessary. The browser will run the script for each URL that is invoked from the
browser.

Janus/TN3270 Debugger User's Guide 393

Installation and Configuration

Setting up an HTTP server for PAC files

If you will be using HTTP to access a PAC file, you must provide an HTTP (Web)
server to hold the PAC files, and you must specify that server's location and port in
the Client's configuration file.

1. Provide a web server.

You can use any web server that supports HTTP PUT and GET. This section
provides an example of how to set up a Janus Web Server to handle HTTP-
based PAC files. This example is also supplied in a file in the Client's installation
folder.

Note: Note that the PAC files are temporary: when the Client starts, a new PAC
is generated and uploaded. This prevents the problem of HTTP PAC files
being out of date, since they are workstation-based configuration files
which can change at any time.

The following SOUL program takes one command line argument, a TCP/IP port
number, and it creates a Janus Web server for uploading and serving PAC files:

394 Janus/TN3270 Debugger User's Guide

Installation and Configuration

begin

variables are undefined

local subroutine closeFile(%iFile is string len 8 input)

* Close the file whose name is passed. Messages supressed.
%rc is float
$resetn('MSGCTL', 6, %rc)
$close('FILE ' with %iFile)
$resetn('MSGCTL', @, %rc)

end subroutine

local function openFile(%iFile is string len 8 input) is float
* Open the file whose name is passed and return @ for success or
* non-zero for failure. Messages supressed.
%rc is float
$resetn('MSGCTL', 6, %rc)
openc file %iFile
$resetn('MSGCTL', @, %rc)
return $status
end function

* Get and validate the command line argument: port number
%args is object stringlist
%args = %(system):arguments:unspace:parseLines(', ')
%portNumber is float
if (%args:count eq ©) then

print 'No port number specified’

stop
elseif (%args:count > 1) then

print 'Too many arguments'’

stop
elseif (%args(1l) is not like '/2-5(#)') then

print 'Invalid port number’

stop
else

%portNumber = %args(1)

end if
%pacRepo is string len 8 initial('JDPACREP')
%worker is object daemon auto new
%workForDaemon is object Stringlist auto new

* See if memory file for PAC repository is there, if not create it
if (%(local):openFile(%pacRepo) eq ©) then
printText Memory file {%pacRepo} already present
%(local):closeFile(%pacRepo)
else
printText creating memory file {%pacRepo}
text to %workForDaemon = new
ALLOCATE {%pacrepo} WITH MEMORY PAGES=300
CREATE {%pacrepo}
PARAMETER BSIZE=1, DSIZE=250
END
OPENC {%pacrepo}
IN {%pacrepo} INITIALIZE
CLOSE {%pacrepo}

end text
%worker:run(%workForDaemon) :print
end if

* Set up a simple Janus web server with web rules for loading

* serving and listing PAC files generated by the debugger client.
%portName is string len 8 initial('JDPACSRV')

* Get rid of any earlier one, so this script can be rerun as needed
text to %workForDaemon = new

Janus/TN3270 Debugger User's Guide 395

Installation and Configuration

JANUS DRAIN {%portName}

JANUS DELETE {%portName}
end text
%worker:run(%workForDaemon)

* Create the server and its rules
text to %workForDaemon = new
* Create a web server
JANUS DEFINE {%portName} {%portNumber} WEBSERV 20 TRACE 7
* Allow PAC file upload via HTTP PUT of URL of format /pacman/xxx.js
JANUS WEB {%portName} -
ON PUT /PACMAN/*.JS OPEN FILE {%pacRepo} RECV *.JS BASE64
JANUS WEB {%portName} ALLOW PUT /PACMAN/*.3JS
* Provide HTTP GET access for URLs of format /pacman/xxx.js
JANUS WEB {%portName} ON GET /PACMAN/*.JS OPEN FILE {%pacRepo} -
SEND *.JS BINARY EXPIRE +©
* Start the web server
JANUS START {%portName}
end text
%worker:run(%workForDaemon) :print
end

Since the PAC files are temporary, they are stored in an in-memory file (not
persistent between runs) which does not need any disk files, DD cards, etc. The
PAC files are stored as Model 204 procedures. The name of a PAC file
procedure created by the Client (see the following sections) is based on the IP
number of the Client workstation to avoid conflicts.

Update debuggerConfig.xml.

You do this by including the httpPacURL elementkssl in the debuggerConfig.xml
file.

The following example element suits the sample program in the preceding step
(note the use of PACMAN in that program's JANUS WEB commands):

<httpPacURL>http:// pacServerHost: pacServerPortNum/pacman</httpPacURL>

Restart the Client, or just issue the ret[yHttgPacEﬂ command to test your setup.

The Client must not be in proxy mode if and when you issue the command.

Note: Only when the HTTP server is defined to accept and serve PAC files, and the

Debugger Client configuration is updated to identify it, will the PAC Options
button be enabled in the IE Options box in the Client's Preferences dialog box (for
the newPac and mergedPac options).

Navigating to and within the Internet Properties dialog box

The following directions are provided primarily for information purposes. They show
the controls that the Client modifies automatically for Chrome and IE, as described in
the preceding subsections. It is recommended that you not make these modifications
manually except for any proxy server bypass addresses ko,

396

Janus/TN3270 Debugger User's Guide

Installation and Configuration

To access the Internet Properties dialog box:
e From Chrome:

1. Atthe right end of the bar that contains the Omnibox navigation control, open
the customization menu by clicking the three-stacked-lines icon:

2. Inthe menu, select Settings.
3. Atthe bottom of the the Settings tab, click the Show advanced settings... link.

4. Find the Network section, then click the Change proxy settings... link.

For Windows users, this opens the Internet Properties (or Internet Options)
dialog box.

e From IE:
1. From the Tools menu, select Internet Options.

To access the proxy server controls in the Internet Properties dialog box:

1. Select the Connections tab, and click the LAN Settings button.

2. Inthe Local Area network (LAN) Settings dialog box, locate the Proxy Server area,
then select the "Use a proxy server" checkbox:

a. Inthe Address box, the value the Client sets is: 1localhost.

b. Inthe Port box, the Client sets the proxy listening port number discussed in
the introduction above.

To access the proxy server bypass for certain connections:

1. Inthe Local Area network (LAN) Settings dialog box Proxy Server area, click the
Advanced button.

2. In the Exceptions area, in the list box labeled "Do not use proxy server for
addresses beginning with," specify the URLs of any locations the Debugger
Client should ignore.

Note: You can set up the Client to automatically save and restore these addressesel]

Janus/TN3270 Debugger User's Guide 397

Installation and Configuration

7 Firefox

To set up the proxy for Firefox browsers:

1. From the Tools menu, select Options > Advanced > Network.

2. Inthe Connection box, click Settings.

3. Inthe Connection Settings dialog box, select Manual proxy configuration.
a. Inthe HTTP Proxy box, specify localhost.

b. Inthe adjacent Port box, specify the port number discussed in the
introduction above.

c. Use the No Proxy for box to specify domain names that the browser will
access directly, that is, for which the Debugger proxy will be bypassed.

4. Click OK.

Once defined, the proxy remains in effect whether the Debugger Client is operating or
not.

Lynx

The Lynx character-mode browser is fast and handy for testing. To make it use a
proxy, set the environment variable http_proxy to the full URL of the Janus proxy.

Here is a Unix shell script example (running on a PC under Cygwin) that sets this
variable and runs Lynx:

#!/bin/bash
http_proxy=http://127.0.0.1:8081
export http_proxy

env

1lynx

Note: The http:// is required.

Once defined, the proxy remains in effect whether the Debugger Client is operating or
not.

398 Janus/TN3270 Debugger User's Guide

Installation and Configuration

Opera

To set up the proxy:

1. From the main Menu, select Settings > Preferences > Advanced > Network > Proxy
Servers.

2. Select the HTTP checkbox, and enter 1ocalhost and the proxy listening port
number discussed in the introduction above.

Once defined, the proxy remains in effect whether the Debugger Client is operating or
not.

9.3.5 Testthe end-to-end configuration

Subsections follow for the Janus Debugger and for the TN3270 Debugger. It is assumed
that the Debugger Client is up and running.

Janus Debugger
1. Open the browser you just set ug@ to use the Debugger as a proxy.

Note: It is not uncommon at this point for the Client to display a benign
communication error messagelsdl when a browser connection to an external
site gets closed. If this occurs, just click the OK button on the message box.

2. Invoke the URL of a User Language-based page from your target Janus Web
Server.

Note: If you normally use "https://" and not "http://" to begin the URL (that is, your
Web Server is SSL-secured), and if you set upksol the debuggerConfig.xml|
file for SSL support, make sure that you use "http://" here now to access the

secured web port.

Janus/TN3270 Debugger User's Guide 399

Installation and Configuration

The source code of the program should appear in the Source Code page of the Client
with its procedure name displayed in the title bar, similar to the following Source
Code display:

(A2 The Janus Debugger (QAXMLZ) SN ERE)
File Window Search Breakpoints Execution Data Display Error Macros Help

Top | Bottom | Clear Audit | Run | Step | Step Over | Trace | Cancel | Clear Breaks | Clear Watch
Audit Trail Source Code | Web Buffer | Execution Trace | Proc Selection

CM> 1 0 1 I QAXMLZ -
UL> 2 1 1 begin
TL> 3 1 2 class document
TL> 4 1 3
UL 5 1 4 public =
TL> 6 1 5 variable x is object XMLDoc 1
TL> 7 1 6 construoctor new
TUL> 8 1 T sobroutine addStooge (3iFirst is longstring, -
J L= 9 1 8 %ilast is longstring)
W | TL> 10 1 9 end public
TL> 1 1 10
TUL> 12 1 11 private
UL> 13 1 12 variable top is object XMLNode
i |oL> 14 1 13 end private
TL> 15 1 14
TL> 16 1 15 constructor new
UL> 17 1 16 #this:x = new
UL> 18 1 17 #this:top = %this:x:addElement('stooges’)
TL> 19 1 18 end constructor
UL> 20 1 13 52
Search Search Next Search Prev ‘ Value Trace Run to Change ‘Watch |

E | -l

MSIR.1020: Debugger: JDBW Address=X'7C42A390'
I QAXML2
M204.1168: IN FILE JALWORK INCLUDE QAMXML2

Ready for execution.

If instead, you receive a Communication Error message that reports an "error while
communicating with the remote host," you may have an error in the
debuggerConfig.xml settingsksdl. If so, and you find the error, restart the Debugger
Client and try the test URL again. For more information about error handling, see
How the Janus Debugger handles communication breaks [a60).

The Debugger Client is ready to use. From the Client GUI, you can control the execution
of your web application's User Language code (see Getting Started[7).

For an archive of information about features that are new or enhanced in the latest
version of the Debugger Client, see the Release Notes ko7,

TN3270 Debugger

1. From the Model 204 command prompt or within a BATCHZ input stream, start a
TN3270 Debugger session:

TN3270 DEBUG ON janClientPort pcHost pcPort workerPort

where:

TN3270 DEBUG For versions of Model 204 before 7.6, use SIRIUS DEBUG.

400 Janus/TN3270 Debugger User's Guide

Installation and Configuration

janClientPort

pcHost

pcPort

workerPort

For example:
TN3270 DEBUG

The name of the Janus client socket port that is defined[s74
for the TN3270 Debugger to use to contact the Debugger
Client workstation.

This port must be started.

The workstation running the Debugger Client. This may be
an IP number or a DNS name, as described earlierfs77.

The workstation port number on which the Debugger
Client is listening. As described earlierfd), this is typically
8081.

The port number in your Online that is definedfs73 for
worker threads. This can be the same port number that
provides worker threads for the Janus Debugger, as well.

ON DEBCLIENT 198.242.244.234 8081 3226

2. \Verify that you receive a message similar to:

*** MSIR.0915: Debugging is on; client is 198.242.244.234 port 8081,
sessionID: 00000069D812279

3. On the Debugger Client, verify that a "busy" cursor displays, as well as a Waiting
for Online message in the Status barlao}

-
AR The Sirius/3270 Debugger

NEE)

Top | Bottom | Clear Audit
Al ol

File Window Search Breakpoints Execution DataDisplay Eror Macros Help

Source Code Execution Trace | Proc Selection

Run | Step | Step Over | Trace | Cancel | Clear Breaks | Clear Watch

2010 11 22 15:33:12
2010 11 22 15:33:12
2010 11 22 15:33:12
2010 11 22 15:33:12
2010 11 22 15:33:12
2010 11 22 15:33:12
2010 11 22 15:33:12
2010 11 22 15:33:12
2010 11 22 15:33:12
2010 11 22 15:33:12
2010 11 22 15:33:12
2010 11 22 16:08:08
2010 11 22 16:08:08
2010 11 22 16:08:08
2010 11 22 16:08:08
2010 11 22 16:08:08
2010 11 22 16:08:08
2010 11 22 16:08:08
2010 11 22 16:08:08
2010 11 22 16:08:38.10

Local IP address 158.242.244.16 -
Janus Debugger not active, no Janms Web Servers defined in configmration.
Output files written to: C:\Users\JAL\Documents\Debugger)

UI customization files read from: C:\Users\JAL\Documents\Debugger)

Macro search path: C:\Users\JAL\Documents\Debugger)

0% Version: Microsoft Windows NT €.1.7600.0

0% Name: Microsoft Windows 7 Home Premium

-NET Version: 2.0.50727.4%27

Only Mods versions 7.0 or better may be used with this client.
Execuntable: C:\Users\JAL\Documents\Debngger\JanusDebugger.exe

Executable date: 9/26/2010 9%:29:42 AM

Connection From: 158.242.244.47

Connection from conline user: 00020

m

L
Connected to the Debugging Server: 198.242.244.47:6219

Model 204 Version: 7.2.0D

Sirins Mods Version: 7.8 P
Session name: 00020001D201366

)

L\

*x
1 20 MS MSIR.1020: Debugger: JDBW Address=X'TC4213B0°' 52

Search Search Next Search Prev ‘ | ‘Watch |

E | -

MSIR.1020: Debugger: JDBW Address=X'7C4213B0'

Connection from online Waiting for Online

Janus/TN3270 Debugger User's Guide 401

Installation and Configuration

Additional Audit Trail page messages identify the Debugger Server's port and the
address of its Online host, the user number assigned to the logged-in Model 204
user, as well as the Model 204 and Sirius Mods versions.

From this point on, any User Language program you initiate from the Model 204
command line will appear in the Source Code tab of the Debugger Client GUI for
debugging, the procedure name will appear in the Client's title bar, and the "busy"
cursor and Waiting for Online message will display between requests until your
session ends.

Turn off the TN3270 Debugger by doing either of the following:

e From the Model 204 command prompt (or at the end of your BATCH2 stream),
issue:

TN3270 DEBUG OFF

You should receive this response in Model 204:
*¥** MSIR.0913: TN3270 Debugger is now off

On the Debugger Client, Online has disconnected displays in the Status
area.

e Log off of Model 204 (any logoff is an implied TN3270 DEBUG OFF).

Note: Explicitly turning off the Debugger is necessary if you are using the Janus
Debugger as well as the TN3270 Debugger for the same Online and worker
port. To switch from a TN3270 Debugger session to a Janus Debugger
session, you must explicitly drop the TN3270 Debugger session. The Janus
Debugger automatically closes its connections and does not require an
explicit notification to switch or end a session.

Reissue the command from step 1 to restart the Debugger Client, and the
Debugger Client is ready to use.

From the Client GUI, you can control the execution of your Model 204 application's
User Language code (see Getting started| 7).

For an archive of information about features that are new or enhanced in the latest
version of the Debugger Client, see the Release Notes [a07,

Providing updated versions of the Debugger Client

You can configure the Debugger to obtain updated builds of the Client from a central
address, say, the URL of a local server. Then a Client menu item invokes a program
(updateGet.exe) from which you download a new executable file (JanusDebugger.
exe) to replace your existing Client.

402

Janus/TN3270 Debugger User's Guide

Installation and Configuration

This update maintenance feature assumes that each Client user has completed the
initial Client installation, then uses this tool to refresh the executable as needed for fixes
and enhancements. Currently, the Client does no checking of the version of the updated
executable file, so you are responsible for determining when it is appropriate to download
a new copy.

The updated executable file may be packaged in a zip file. If the file in the central URL
has a .zip extension, the JanusDebugger.exe file is automatically extracted from it (an
unzip.exe program is distributed).

To set up the feature:

1. Determine the URL where you will store updated Client executable files and prepare
the mechanism by which the files are to be served from this URL.

The updating program sends an HTTP GET call for the JanusDebugger.exe or .zip
file to this URL. You must provide code at this URL to respond to the GET.

2. In the Debugger Client configuration fileksol (debuggercConfig.xml), insert an
<updateURL> element as a child of the <debuggerConfig> element.

This element must contain the URL (which must not be for an SSL port) at which
you make available the updated Client executable file (and you may specify a .zip
file).

When complete, your configuration file should have a structure like the following:

<debuggerConfig version="1.0">
<serverList>

</serverlList>
<proxy>

</proxy>
<updateURL>http://rocketsoftware.com:3224/janusdebugger.exe</updateURL>

</debuggerConfig>

Janus/TN3270 Debugger User's Guide 403

Installation and Configuration

3. Check that the Debugger Client Help menu now contains the Updates option:

-
A& The Janus Debugger (QAXML2) o
File Window Search Breakpoints Execution Data Display Error Macros / P
Top | Bottom | Clear Audit | Run | Step | Step Over | Trace | Cancel | (Help Topics ole -
Audit Trail | Web Buffer | Execution Trag Keyboard Shortcuts -
oM> 1 o0 1 I QAXML? Ul)
UL> 2 1 1 begin View PDF Manual +
TL> 3 1 2 class document About
UL> 4 1 3 . i fj
ULs 5 1 2 public Sirius Documentation 3
TL> 6 1 5 variable x is object XMLDoc Sirius Wiki
UL> 7 1 [constructor new Updates
TL= 8 1 7 subrontine addStooge (%#iFirs = _%_ 3
UL 9 1 8 ®¢ilLast iz longstring)
UL> 10 1 9 end public ,Jf
TL> 11 ir/_)o-‘ —_—
UL 12 ivate T ety e . //
TR },__ “‘-_'i_;.hﬂ."" N - e

To get an updated version of the Client:

1. Inthe Client Help menu, click Updates.

The Debugger Client Update dialog box (updateGet.exe program) is invoked, and it is
passed the URL you specified in the <updateURL> tag in debuggerConfig.xml:

sAbEbupgeRGlicnt Update - [ax]
File Help

To download: http://sirius-software.com:9219/janusdebugger.exe
Close the Janus/Sirius Debugger Client and click 'Get It'.

'You may then restart the Debugger Client. Get it

Debugger Client Update

2. Close the Client; then press the Get It button.

The current JanusDebugger.exe is replaced with the new one. Closing the Client
first avoids a file locking error.

404 Janus/TN3270 Debugger User's Guide

Installation and Configuration

You should see a confirmation message like the following:

DEbEEERCliEnt Upaate: =
File Help
To download: hitp://sirius-software.com:9219/janusdebugger.exe ,J‘:'
Close the Janus/Sirius Debugger Client and click 'Get It". s
You may then restart the Debugger Client. e - o
4-——’_/ .

’Fltlp:llsirius—soﬂware.com:921 9/janusdebugger.exe Loaded

Janus/TN3270 Debugger User's Guide 405

406 Janus/TN3270 Debugger User's Guide

Release Notes

cHAPTER 10 Release Notes

This section contains brief descriptions of the features added in each update, or "build,"
of the Debuggers since their first commercial release. You can determine the current

build number of the Debugger Client by selecting the About option of the Client Help
menu or by viewing the Client Audit Trail lines for the time the Client started.

Model 204 Versions 7.1 -7.7

Build: 67 (05 July 2017)
These are the principal changes to the Debugger Client since the previous build:

Physical changes and additions to the Client user interface:

e Naming and limiting the number of daily Client log files 383

In the Client configuration file, in addition to invoking automatic creation of a new log
file on a daily basis, you can specify how many days worth of previous logs to retain.
The new daily log is always named log.txt; the names of previous daily logs
include their creation dates.

e Configuring the location for the Debugger documentation files|zss)

You can relocate and optionally rename the installed defaults of the Debugger Client
Help file, its PDF-file representation, or both.

Macro and command changes:

e None.
Other changes:
e None.

Build: 66 (03 April 2017)

= These are the principal changes to the Debugger Client since the previous build:

Physical changes and additions to the Client user interface:

e Controlling the size of the Client log file[zs3

In the Client configuration file you can specify automatic creation of a new log file
on a daily basis to prevent excessive growth of the log. You can also turn logging
off.

Janus/TN3270 Debugger User's Guide 407

Release Notes

Macro and command changes:

e None.
Other changes:
e None.

Build: 65 (01 September 2016)
= These are the principal changes to the Debugger Client since the previous build:

Physical changes and additions to the Client user interface:

. None.

Macro and command changes:

° None.

Other changes:

e Add"jandeb_" prefix to all generated Javascript function names in generated
Proxy Auto Configure (PAC) files. ko2l

e Support Microsoft IPV6 extensions in existing PAC files (FindProxyForURLEx
function).

e Send Debugger Client version information to the mainframe side to allow better

logging. The Client build and tag number are reported in the MSIR.1077
message.

e Assorted bug fixes.

Model 204 Versions 7.1 -7.6

Build: 64 (07 October 2015)

= These are the principal changes to the Debugger Client since the previous build:

These are the principal changes to the Debugger Client since the previous build:

Physical changes and additions to the Client user interface:

. None.

Macro and command changes:

° None.

408 Janus/TN3270 Debugger User's Guide

Release Notes

Other changes:

Add "jandeb_" prefix to all generated Javascript function names in generated
Proxy Auto Configure (PAC) files. ko]

Support Microsoft IPV6 extensions in existing PAC files (FindProxyForURLEx
function).

Send Debugger Client version information to the mainframe side to allow better
logging. The Client build and tag number are reported in the MSIR.1077
message.

Assorted bug fixes.

Build: 63 (06 July 2015)

Note: Build 53 or higher of the Client is recommended for sites running under version

7.8 or higher of the Sirius Mods.

= These are the principal changes to the Debugger Client since the previous build:

Physical changes and additions to the Client user interface:

Support procedures running on sdaemons for Run Untill 731 and White or Black
List processing|771.

This capability requires Model 204 version 7.6 or higher.

Support object expansionfiod for JSON class objects (Model 204 Version 7.6 or
higher).

The Preferences[181 window IE Mode options (newPac and newPac) are enhanced
to support HTTP URLs as well as MicroSoft file URLs. The options invoke
automatic creation and maintenance of Proxy Auto Configure (PAC) filesks2),
which designate the only host URLs that the Debugger Client will handle requests
for as a proxy server for the IE and Chrome browsers.

The Client may now use HTTP to upload generated PAC files to the HTTP server
specified in the Client's configuration file. Model 204 version 7.5 is sufficient for
this feature.

Added the httpPacURLFss element to the Debugger configuration . xm1 file to
identify the HTTP server that is set up to accept and serve PAC9? files.

Removed the Sirius Documentation Help menul s8] link.

Renamed the Sirius Wiki Help menu link to Model 204 Wiki, setting its default
destination to http://m204wiki.rocketsoftware.com/index.php.

Macro and command changes:

Updated setIEmodel263 command with option http to support HTTP PAC files.

Janus/TN3270 Debugger User's Guide 409

http://m204wiki.rocketsoftware.com/index.php

Release Notes

Updated showIE[272 command to display URL information for HTTP PAC files.

Added retryHttpPachs7l command to simplify testing and setting up of HTTP
PAC files.

Added httpPutFilel1d, httpPutStringlisl, and httpGetl:13 commands.

Added &¤tPacFilelsss function to return the URL of the current PAC file in
use.

Enabled the runUntilks command (which you invoke by using the Run Until

Procedure button[73] or the Execution > Run Until Proc menu option) to stop at
procedures that are included from an sdaemon[t3d thread.

This capability requires Model 204 version 7.6 or higher.

A synonym, TN3270 DEBUG, is added to the SIRIUS DEBUG commandm,
reflecting the change in the name of the Sirius Debugger to the TN3270
Debugger.

Removed the superseded ieAuto option from setPreference command.

Other changes:

The Sirius Debugger product name is changed to TN3270 Debugger.
This Client build fully supports Model 204 version 7.6.

Sirius Mods Versions 7.0 - 8.1
Model 204 Versions 7.1 -7.5

Build: 62 (10 December 2013)

Note: Build 53 or higher of the Client is recommended for sites running under version

7.8 or higher of the Sirius Mods.

= These are the principal changes to the Debugger Client since the previous build:

Physical changes and additions to the Client user interface:

New Preferences/ 18] window option:

The new IE Options area and IE Mode drop-down menu replace the former Web
Browser Options area and Automatically Maintain IE proxy settings option. In
addition, IE Mode options are available to invoke automatic creation and

maintenance of Proxy Auto Configure (PAC) fileske2), which designate the only
host URLs the Debugger Client will handle requests for as a proxy server.

410

Janus/TN3270 Debugger User's Guide

Release Notes

e The Proc Selection page now has Black List filtering[771 to accompany the already
existing White List filtering, and your filtering selection now persists over runs of
the Client.

Macro and command changes:

New commands:

e disableButtonpodl and enableButtonkod commands disable and enable Client
button bar buttons, and labelButtonli lets you replace the label of a button.

o gener‘atePacm command restricts the Debugger Client's role as-proxy-server
to handling only Internet Explorer requests for hosts (onlines) specified in
debuggerConfig.xml.

o setBlackListhsiland setWhiteListkedl commands let you temporarily override
(but not physically affect) the contents of an existing procedure Black List or
White List file.

e setIEmodels3 controls whether, and the host URLs for which, the Debugger will
serve as the proxy server for users of the Internet Explorer browser.

o setTitleksdland restoreTitleksdl let you change the title of the Client's main
window.

e showIER72displays the current IE browser operating mode (the setIEmodekbs3)
parameter setting that is in effect), and displays the current values of IE settings
that pertain to the Debugger Client.

° tur‘nOnBlacklist@, tur‘nO-F-FBlacklistEﬂ, and reloadBlacklisthall are
analogous to the already-existing turnOniWhitelist, turnOffihitelist,
reloadWhitelist commands.

Changed commands:

e The continueIffis5land continueMacroIfhies macro-only commands now
support expressions.

New Client functions:

o &¤tTitlehssl and &&originalTitlefd display the current and default
titles of the Client main window.

e &Rexistshsiltests if a macro variable is defined.

e &8&blackOrWhitelisthsdtests whether black-list filtering, white-list filtering, or
neither is in effect.

o &&ieModeladl returns the setting of the IE Mode[1s) option in the Client's
Preferences window.

Janus/TN3270 Debugger User's Guide 411

Release Notes

Other changes:

e Documentation added for setting up a Chrome browser as a Client proxy. fss3l

* Awork folder specification is added as the fourth parameter to a command line
Client invocation/fzol

Build: 61 (31 November 2012)

= These are the principal changes to the Debugger Client since the previous build:

Macro and command changes:
e nsLookupks? command added to aid in debugging setup problems
e Assorted bug fixes.

Build: 60 (31 October 2012)

= These are the principal changes to the Debugger Client since the previous build:

Physical changes and additions to the Client user interface:
e Status message improvements:

= Added a display of the value (if ten characters or less) to the message
received after a successful "run until variable = value"lz2] execution.

= ThemacroTrace, mapButton, mapKey, clearButton, and setPreference
commands now report after a successful operation (in the Status barf49,
Consolek23), and Client log).

Macro and command changes:
e New help command options:

. greferencem displays the preferences available to users via options of
the setPreferencelzs5 command.

= ignoredFiles[x:1 displays the Debugger's filtered file types|ssa.

e New ignoredFileTypeList/es| option of the setPreference command allows
on-off toggling of file-type filtering.

New Client functions:
e &Rexistshsiltests if a macro variable is defined.

e &¤tRunningMacrokssl returns the file-system path of a currently running
macro.

412 Janus/TN3270 Debugger User's Guide

Release Notes

&&preferencepsd returns the current value of a specified Client preference.

Build: 59 (17 August 2012)

= These are the principal changes to the Debugger Client since the previous build:

Physical changes and additions to the Client user interface:

Help menu Commands/3s) option now displays individual command syntax

Command lineb25! tool now maintains persistent history of commands,

reviewable via the keyboard up/down arrow keys

macroTraceb24 processing log now shows syntax help if commands have syntax

errors

Watch Window color panelkodl option (Out of Scope) for Watch Window items not in

code in currently active tab (Source Code or Daemon).

Degree of transparency of Preferences and external-button[421 windows is now

user-settablefs12]

Search box widened for "Hide Lower" models12)

Selecting Add Watch (from context menu for a Source Code line) automatically
opens external Watch Window if Client in "Hide Lower" models:2]

Support master thread and daemon thread interactionha1] (ReturnToDaemon
method/Continue method)

At least version 8.1 of the Sirius Mods is required.

Macro and command changes:

e New commands:

= setStatusMessagel2s7 lets you set a message in the Client Status barfs)

. unSet 283 deletes macro variables [327)

e <> ("not equal" operator) added to assertfizal command

e Argument added to helpm command to display help for a specific command or

function

New Client functions:

= &&statusMessagelsss returns most recent Client Status barl4s1 message

= &&numberOfLevels(s42 returns the number of source levels being debugged

= &8amDaemonlssd returns 1 if debugging a deamon, or 0 if not

» &&selectedTabl4d returns label of selected main window tab, or " if none

Janus/TN3270 Debugger User's Guide 413

Release Notes

Build: 58 (30 April 2012)

= These are the principal changes to the Debugger Client since the previous build:

Physical changes and additions to the Client user interface:

e New Help menu option (Functions) to display Client functions|s23

e Search and Watch Window controls display at bottom of main window when in
"Hide Lower" modefs:2)

Macro and command changes:

e Macro variables[s271 now allowed as arguments to Client functions

. New client functions:

] &&getMainSear‘chInputAr‘ea@

. &&getVariableOrFieldInputAr‘ea@

= 8&isWatchedlsd)
» &&numberWatchedfss2

] &&number‘O-FBr‘eakpointsm

. &&summ

] &8&windowStatus|ssd

= String functions:

0 &&concatenate|3_35'1

0 8&indexkal

0 &&lengthha)

o] &&substr‘ing|3_47'1
0 &&verifyMatchhpas)

o] &&ver'ivaoMatchm

e New commands:
= clearStatushoed clears current messages from Client Status barfas)
= feoDisplaylod displays current occurrence value in an FEO loop

= killl228 stops a running macro (like Kill Running Macro option of Macros
menu)

= reloadlists22 reloads the Exclude/Include proc/routine lists|es]

414 Janus/TN3270 Debugger User's Guide

Release Notes

= removeCurrentWatchl243 removes currently selected Watch Window item

= showFunctionsfri) displays all the Client functions in alphabetical order

e Command argument of loadWatchb22 and saveWatchbsol allows absolute path
name

e New option (valueDisplayOnConsole) of setPreferencel63 command to
control whether value disglays@ appear in a separate Value window when the
Console window is open

e Backslash (\) escape character[4s) for searches for strings beginning with an
ampersand (&)

o &&ar‘g@ function now restricted to commands within macros (in previous
builds, &&arg could be used outside of a macro, but its results were
unpredictable and unreliable)

e Client functions and constants now allowed on continuelfliesl and continueMacrolf
196

Build: 57 (31 January 2011)

= These are the principal changes to the Debugger Client since the previous build:

Physical changes and additions to the Client user interface:
e New Preferences[18] window options:

= Main Button Bar options (Top, Center, Bottom) allow changing the positionm
of the main (non-external) button bar

= Main Button Bar option (Extra Buttons(211) to add extra buttons to the main
button barl43]instead of to a second button bar

= Main Window Options option (Hide Lower Section |?2'1) to hide or restore the
lower section of the Client main window/s12

= More Open at Startup options to automatically open external windows/21] at
Client startup (for the Watch Window and Audit Trail, Web Buffer, and Execution
Trace pages)

e AStep outlez, Step over[s4), or tracefi28 followed by pressing the Enter key
launches another step out, step over, or trace if program execution has not
completed

e Named buttons may be replaced by separators bsd for visual separation between
buttons

e Edit uimore.xmi[22] option added to File menu

. Pinned external windows:

Janus/TN3270 Debugger User's Guide 415

Release Notes

= Context-menu options simplify Qinningm and unpinning
= Piniconls:din title bar

Additional StringTokenizer class variables are viewableli11: CurrentQuoted,
CurrentToken, String, and StringLength

At least version 8.0 of the Sirius Mods is required.

Macro and command changes:

New "global" versions of existing Client functions:
&&globalAsser'tFailureCountEﬁ'ﬂ, &&globalAsser‘tSuccessCount@, and

&&globalAsser‘tStatus@

New commands:

= clearButtonlsd removes all mappings from a Client named button
] clearKey@ removes all mappings from a Client hot key

= evaluatel3 builds and runs a Client command

. hideLowerm, r‘estor‘eLower'Ea, and toggleLower‘Ez'ﬂ commands for
hiding and restoring the lower section of the Client main window

» incrementl217 and decrementi99 add or subtract 1 from a numeric-valued
macro variable

= mainButtonBarl:2s positions the main button bar within the Client window
= mapKeyl228 command assigns keyboard shortcuts without requiring a
mapping file or Client restart

= resetGlobalAssertCountsl2s4 clears counts of new "global" Client
functions

= setBreakpointOnCurrentLinelzsd and clearBreakpointOnCurrentLine
18] expand flexibility of the commands for controlling breakpoints

= Macro-only commands:

0 continueMacroIfhos! conditionally processes the macro that contains it

0 includeIfp:sl conditionally calls another macro
0 macroWaithzslslows down macro execution

New option (main) of extraButtonBarfe8 command to combine the main and
second button bars

New option (ieAuto) of setPreferencelz63 command to control automatic proxy
maintenance for the Internet Explorer browser

"[In window] command' format and command parameters now allowed in
command mappings@ for Client button, keyboard shortcuts, and macros

Button-mapping keyword (separator) for mapButton command or mapping-file
mapping element converts a button to a visual separator@

416

Janus/TN3270 Debugger User's Guide

Release Notes

Build: 56 (22 August 2011)

= These are the principal changes to the Debugger Client since the previous build:

Physical changes and additions to the Client user interface:
e Optional second button bar 42

e Former Window menu option Open External Button Window renamed to Show Main
Button Bar in External Window/ 26)

 New Preferences window section Open at Startupl211 with checkboxes for button
bars:

= External main button bar
= Extra button bar

e On external windows, Enter key searches downlz08l when the search text box has
focus

Macro and command changes:
e New commands control the pinning of external-windows|s13: pin and unPin

e New extraButtonBarho5 command launches an extra button bar

e Addition to buttonBar command: new option showfsa

e New mapButtonEe'ﬂ command assigns button mappings without requiring a
mapping file or Client restart

e Other new commands:

» resetAssertCountsl244 clears counts of Client functions

. restart/2s5 and restartDefaultl4s restart the Client

¢ The descriptions of the "macro-only" commands (continueIf, include,
macroTrace, noSpan, setM2@4Data, and span) are moved to the Client command
referencel177)

Build: 55 (15 May 2011)

= These are the principal changes to the Debugger Client since the previous build:

Physical changes and additions to the Client user interface:

e Dock and File menus added to the external Button Bar|42]

e External Button Bar now dockable[42] (via Dock menu or buttonbarfsa)
command)

Janus/TN3270 Debugger User's Guide 417

Release Notes

e Search buttons[44] added to bottom of work windows and external windows

e Three additional Client buttons sl (bringing total to fifteen) for mapping Client
commands

e New Proc Selection tab checkboxes/sg1turn on or off the inspection of lists of
procedures/routines to exclude or include in source code displays in the Client

Macro and command changes:

e "[In window] command'format applies the searching commands to most any
Client window (main, external, or work), as follows:

In | window command
Is one of: Is one of:

about/39) bottomfsil
auditTrailliol searchDownps1)
commands|3s] searchFromBottomps2]
consolels24l searchFromTopEzﬁ
executionHistoryl(iz2 sear‘chUpEEﬂ
executionTrace|13) t_og@
kevboardShortcutsr%ﬁ
source1r]
textviewerfia?
value/os]
watchWindowl15)
webBuffer|12]

e windowToTopkssl now supports trailing wildcard searches

e getVariablesForClasshod display window now is non-modal (user interaction
not required)

e New buttonbarhei command

e setPreferencebssl command added for turning on and off the various code
exclude/include options

Other changes:
e New parameter values and defaults for SIRIUS DEBUG ONhsol command

At least version 7.9 of the Sirius Mods is required.

e Procedure name searches may now use asterisk and question mark wildcards
[741in any position, as well as double quotation marks to escape them

At least version 7.9 of the Sirius Mods is required.

e Number of code blocks you can exclude/include[es] from or in debugging in a
single request increased to 300

418

Janus/TN3270 Debugger User's Guide

Release Notes

At least version 7.9 of the Sirius Mods is required.

Build: 54 (28 February 2011)

= These are the principal changes to the Debugger Client since the previous build:

e Statement execution history now viewable in Source Code (or Daemon) tabl132,
controlled by:

New Execution menu options: Select Previous History Linelso), Select Next
History Linel30), Select First History Linelz0), Select Last History Line[s1]

New Client commands: pr‘eviousHistor‘vE&, nextHistor‘vE&,
-Fir‘stHistor‘an, lastHistor‘v@

o Reguirement@'ﬂ to have button mappings for the Client step, run, and cancel
commands is removed

e Macro and command changes:

New program-window position commands: moveBrowserToTopk29 and
moveTn327@ToTopl2d

The "macro-only" restriction for the set and assert commands is removed,
and their descriptions are moved to the Client command referencelt?7]

New Client commands:

o] pr‘eviousHistor‘ym, nextHistor‘yEa, fir‘stHistor‘ym,
lastHistorx@

o] openExternalButtonWindowEﬂ, closeExternalButtonWindowho?)

e Physical changes and additions to the Client user interface:

Button bar may be moved to an external window/ 2] via Open External Button
Window option of Window menu

New Search Prev button[44] searches backwards in the current Client tab
(same as Alt+Search button)

New Windows When Suspended option in Preferences dialog box brings up
3270 emulator window/[e1] or browser window43 for code not actively being

debugged

Get History option of Execution menul29] renamed to Get/Display History

Preferences| 18] dialog box is no longer modal: it can remain open while the

Client is active

Command Line[s25 window now remains on top of your PC's window stack

Janus/TN3270 Debugger User's Guide 419

Release Notes

Build: 53 (30 November 2010)

= These are the principal changes to the Debugger Client since the previous build:

e Build 53 or higher of the Client is recommended for sites running under version
7.8 of the Sirius Mods.

e Debugger Client now insists on Version 7.0 or greater of the Sirius Mods
(attempts to use earlier Sirius Mods versions produce an error message)

o Browsing-while-debugging@51 now allowed for browser on which the Client is

defined as proxy server

e Physical changes and additions to the Client user interface:

Button bar[ss] moved above main window, and Status arealss) moved to strip

at bottom of main window
Font size in most Client windows is now scalablefo3)

Two additional Client buttons 3 (bringing the total to twelve) now available
for mapping Client commands

New Help menulss] documentation links, whose default destinations are
also configurablefss:

e Sirius Documentation (links to Documentation page of the Sirius website)
e Sirius Wiki (links to Sirius wiki for Model 204 information)

|I;jﬁitor for Client text-editing tasks can now be set in debuggerConfig.xml file
387

READ SCREEN informationlsol now displayed in the Client's Audit Trail tab

Mouse double-click now opens external windows [z08]

Removed label Variable or Field for text box above Watch Window; changed
Trace Changes button label to Trace; changed the former Trace button label to
Trace All; changed the former Add Watch button label to Watch.

e Macro and command changes:

Macro command linefs23 tool is renamed to Command Line and now accepts
and runs non-macro commands

New macro-related commands:

e openCommandLineps3 and closeCommandLineliell toggle the Command
Line tool accessed from the Macros menu

e openMacroConsolelsslis now a synonym for the macroConsole macro

command, which opens the Macro Console; and closeMacroConsolefisa)
closes the console

420

Janus/TN3270 Debugger User's Guide

Release Notes

e createMacrohs8l mimics the action of the Macros menu New Macro option

e editMacroFromUISelectionl202 mimics the action of the Macros menu Edit
Macro option

e runMacroFromUISelectionks8l mimics the action of the Macros menu Run
Macro option

= New command and method options for sending user interface commands to
the Client:

e CLIENTCOMMANDI:53 subcommand of SIRIUS DEBUG

e DebuggerTools class additions:

= New ClientCommandi62 method

= New StatusMessagelis2l method

= New parameter (to execute Client command) for Break[isd method

= New parameter (to execute Client command) for Command|[is2
method

= The "macro-only" restriction for some commands (echo, toggle, varDump,
and windowToTop) is removed, and their descriptions are moved to the
Client command referencefi77]

Build: 52 (9 August 2010)

= These are the principal changes to the Debugger Client since the previous build:
e Bug fixes only.

Build: 51 (15 July 2010)

= These are the principal changes to the Debugger Client since the previous build:

e New Preferences (File > Preferences) option (Use existing IE proxy for URLs not to
be debugged) for troubleshooting IE proxy serverfsoll issues

e Some mapping errors[294in the ui.xml and uimore.xm1 files will now invalidate
only the individual item and not the entire file

e New selectWatchWindowssl command to give focus to an external Watch
Window

e Debugger Client now targets .NET Framework 3.5 SP1[73

Janus/TN3270 Debugger User's Guide 421

Release Notes

Build: 50 (31 March 2010)

= These are the principal changes to the Debugger Client since the previous build:

e Audit Trail, Web Buffer and Execution Trace windows may may now be moved to
separate external windows [06)

e Client Window menul241lists and tracks new Client external windows

e Multiple issues fixed concerning Client operation on a Windows 7 host, thereby
making build 50 the preferred Client build for Windows 7 users

e Client's display and watch facilities now work for Janus SOAP Arraylist objects
the same as they do for $lists or Stringlistsfio2)

e New Serialize option in context menu for XmIDoc or XmINode object variables in
the Watch Window for displaying serialized object contentfiod

e New Preferences (File > Preferences) option (Macro Autorun) automatically runs a
macrol2s when a same-named procedure is debugged

e New macro-only commands:
= macroTracelzi traces all macro statements in the debugging session
= setM204Dataks5 sets a Model 204 %variable or global variable
] windowToTopEa brings specified window to top of window stack

e New Client functionsls29l (&&assertFailureCount, &assertSuccessCount,
&&assertStatus) report macro assert command results

e New mappable commands for Client windows:

= clearHistorylssl and closeHistoryls3l affect the Execution History window/132)

= clearMacroConsolelissl and closeMacroConsolelio4 affect the Macro Console
window k24)

= closeExternalAuditTrailWWindowhe1l closes an externallzosl Audit Trail window

» closeExternalExecutionTraceWindowli92l closes an external Execution Trace
window

» closeExternalWatchWindow(192 closes an external Watch Window

» closeExternalWebBufferWindowli93 closes an external Web Buffer window

= closeExternalWindows/is3l closes any open external windows

» closeValueDisplayhexl closes Value windows/|ss]

= openExternalAuditTrailWindow[s3 opens an externalkos] Audit Trail window

422 Janus/TN3270 Debugger User's Guide

Release Notes

= openExternalExecutionTraceWindowl234 opens an external Execution Trace
window

= openExternalWebBufferWindowl2s5 opens an external Web Buffer window

e New showCommandsl78 mappable command displays all the Client commands
in alphabetical order

e Boolean enumeration variables (for example, %booll is enumeration Boolean
) may now be seth22l (only to True or False)

At least version 7.7 of the Sirius Mods is required.

e Single quotes now allowed on string literal values in macros, wherever string
literals may appear (for example with &&promptfz23)

e Search path for PDF copy of product User's Guidels77 (View PDF Manual option,

Client Help menu) now first tries the product installation folder, then the Doc
subfolder

e PDF version of Debugger User's Guide is installedk7in the target installation
folder instead of in a Doc subfolder.

Build: 49 (31 December 2009)

= These are the principal changes to the Debugger Client since the previous build:

. New macro commands: loadWatchbk22l and saveWatch/2s0

e Missing Save option added to File menu on Value windows| s3]

e New Client menu option (External Watch Window) and command

(openExternalWatchwindow) move the Watch Window to an external window
o)

e The assert[178l command now accepts a Client function as a target (left side)

Build: 48 (31 October 2009)

= These are the principal changes to the Debugger Client since the previous build:

e Added Proc Selection tab buttons for creating and editing Exclude and Include lists
for selectively excluding from debuggingles! the code for particular methods and
User Language subroutines

e New Debugger configuration file (debuggerConfig.xml) elements for modifying the
default location of Client work filesfo3)

e New Client functions /=28 (&&searchSuccess, &&searchResult, &&procName)

Janus/TN3270 Debugger User's Guide 423

Release Notes

e Binary view/[108l of a variable's value now also shows printable characters

e Client Value display windows/e9] now are non-modal for ease of use

Build: 47 (30 September 2009)

= These are the principal changes to the Debugger Client since the previous build:

¢ New Client menu option (Toggle Init Exclude) and command
(toggleInitExclude) control whether to invert the way exclude modeles)
operates: initially excluding code instead of initially including code (until an explicit
directive)

At least version 7.6 of the Sirius Mods is required.

e Added Edit White List button[so)to Proc Selection tab

e Added exclude/include procedure lists when debugger directives|es | are on

Build: 46 (15 September 2009)

= These are the principal changes to the Debugger Client since the previous build:

e Source Code lines can be explicitly excluded from Debugging[es]

e Debugger commands and macros may now be magged@ to numeric keys as
well as to alphabetic and function keys

e Multiple commandslzs3 added for Client tab selection and navigation:
= selectAuditTab
= selectSourceTab
= selectWebBufferTab
= selectExecutionTraceTab
= selectProcSelectionTab
= selectNextTab

o pafgi commandp:36l added for viewing field groups

At least version 7.6 of the Sirius Mods is required.

e Options PAl and PAFGI added to Data Display menuls3]

e Additional text items available for user-specified colorinq@ in the Client
windows:

= User Language TEXT and HTML statement blocks

424 Janus/TN3270 Debugger User's Guide

Release Notes

= User Language Macro Facility statements

e Add Watch and Display right-click options for lines within HTML or TEXT blocks
now detect Model 204 field-name expressions@

e New Client Preferences option|s! (Show long watch values in a Tool Tip) for
viewing Watch Window itemssg1too wide to fit

e $CURRECIes]calls as well as $FIELDGROUPID and
$FIELDGROUPOCCURRENCEN:13 calls can now be quickly evaluated/watched

At least version 7.6 of the Sirius Mods is required.

e Added the Value property to the exgansionm of a ScreenField object

Build: 45 (30 July 2009)

= These are the principal changes to the Debugger Client since the previous build:

e Additional class variables are viewable:[i11]
. Record class: RecordNumber and FileName variables

= RecordsetCursor class: RecordNumber, FileName, LoopLockStrength, and
State variables

= FastUnloadTask class: State variable
= StringTokenizer class: AtEnd and NotAtEnd variables

= UserStatistics class: LoginToString, RequestToString, and ToString
variables

At least version 7.6 of the Sirius Mods is required.

For all versions of the Sirius Mods, object variables belonging to these classes
are recognized as system objects, but no variables are suitable for display:

» CharacterMap class
= RandomNumberGenerator class

e Support added for viewing fields[o3) that belong to Model 204 field groups
At least version 7.6 of the Sirius Mods is required.

e paicommand added for viewing all fields[15l in a record

At least version 7.6 of the Sirius Mods is required.

Build: 44 (09 July 2009)

= These are the principal changes to the Debugger Client since the previous build:

Janus/TN3270 Debugger User's Guide 425

Release Notes

e Fixes for some cases where string data was erroneously shown in binary/hex
notation (X'aabbcc' format)

e FloatNamedArraylist class variables now viewablefod)

Build: 43 (30 June 2009)

= These are the principal changes to the Debugger Client since the previous build:

e Global variables referenced by $GETGle41calls can now be quickly evaluated/

watched by right-clicking their program line and selecting Add Watch or Display
from the context menu

e $STATUS and $STATUSDIss]calls can now be quickly evaluated/watched by

right-clicking their program line and selecting Add Watch or Display from the
context menu

At least version 7.6 of the Sirius Mods is required.

e New File menu item (Restart with Default Window Sizemﬂ) restarts the Client and
displays it with the size and position it occupied when it was first installed

Otherwise, the overall size and position of the Client window as well as the
dimensions of its internal windows is stored when the Client closes and reused
when the Client is next opened.

e New Macros menu items (Run and Edits6)) identify the most recently run macro
and enable quick re-execution or editing of that macro

e New mappable command (clearWebBufferfis1) and Window menu item (Clear
Web Buffer) that clear the contents of the Web Buffer tab.

e New mappable commands that help to debug requests that contain objects, lists,
or Stringlists. Probably better suited for macros, the commands may also be
mapped to buttons or keys:

. exgandObiectWﬂ displays a list of object variable names and values for its
object instance argument

. exgandListEeﬁ displays the list items in the $list or Stringlist referenced by
the variable specified as the command argument

e getVariablesForClass 209 displays a list of the names of the variable
members in the class specified as the command argument

e New mappable command (valuedisglay@) that, like the Value button[es),
displays in a separate window the value of the item currently in the Variable or
Field area

e New mappable command (showShortcuts|273) that displays the Client's current
(default as well as mapped) keyboard shortcuts

426 Janus/TN3270 Debugger User's Guide

Release Notes

e New macro-only command (macroConsolel23) that invokes the Macro Console
k22l window.

e Class variable members in system exception classes are now viewablefios]

¢ Increased drop-down history of search terms, procedure names, and variables
from ten to twenty

e Multiple bug fixes (listed in Client's Help menu, About option).

Build: 42 (27 March 2009)

= These are the principal changes to the Debugger Client since the previous build:

e User-specifiedlz07 colors for text and backgrounds in the Client windows

e Independent coloringl2ed for Source Code comments

At least version 7.6 of the Sirius Mods is required for comments bounded by
characters defined by COMSTART and COMEND commands.

e Ability to view dummy string substitutions[i25 in Model 204 commands (formerly
only in User Language statements)

At least version 7.6 of the Sirius Mods is required.

Build: 41 (30 January 2009)

= These are the principal changes to the Debugger Client since the previous build:

e Additions to the Preferences dialog box:

= 3270 Emulator option added to bring up 3270 emulator window/e1) at pause
for user input

= Web Browser option added to bring up browser windowl42 at pause for user
input

= Clear IE Proxy Override option enhances IE automatic proxy server
maintenance/ssd

e New session highwater marklisd item added to the output display of the SIRIUS
DEBUG STATUS command.

At least version 7.5 of the Sirius Mods is required.

e New File menu option (Edit debuggerConfig.xmlf181) opens the debuggerConfig.
xm1 file for editing

e "Web request will NOT be debugged" audit trail messagesks? now indicate
reason

Janus/TN3270 Debugger User's Guide 427

Release Notes

e Debugger Client now always becomes the topmost window when a breakpoint
[s61is reached

e The Add Watch button now works properly with %variables whose names also
have an embedded per cent (%x) character or whose names are enclosed in
curly braces {%x}.

Sirius Mods Versions 7.0 -7.3

Build: 40 (8 December 2008)

= These are the principal changes since the previous build:

e debugTrace tag added to debuggerConfig.xml file for additional diagnostic
Client logging

Build: 39 (15 October 2008)

= These are the principal changes since the previous build:
e Bug fixes only.

Build: 38 (30 September 2008)

= These are the principal changes since the previous build:

e The Dataset object is added to the list of viewablefiod] classes.

At least version 7.2 of the Sirius Mods is required.

Build: 37 (31 August 2008)

= These are the principal changes since the previous build:

e New Clear Execution Trace menu item[241and clearExecutionTrace command
for clearing the contents of the Execution Trace tab

e Ability to display statement execution historylis2l in Execution Trace tab

e Clear button added to Execution History and Macro Console windows.

e New macro-related commands: toqqleEe'sI continueif@, spanWﬂ, and noSpanEﬁ

428

Janus/TN3270 Debugger User's Guide

Release Notes

¢ New optional attribute, startUgMacroEﬂ, for the mappings element in a ui.xml
file mapping of alternative Client buttons, hot keys, and macros

Build: 36 (31 July 2008)

= These are the principal changes since the previous build:

e Improved display of statement execution historyhs2|

At least version 7.3 of the Sirius Mods is required.

Build: 35 (11 July 2008)

= These are the principal changes since the previous build:

e Ability to display the Model 204 Universal Bufferf21]

At least version 7.3 of the Sirius Mods is required.

e Ability to display the value of a Model 204 parameteri20l

At least version 7.3 of the Sirius Mods is required.

Build: 34 (20 June 2008)

= These are the principal changes since the previous build:

e New Execution Menu option (Get History) and mappable command (getHistory) for
displaying a history of the statements executedlts2l to the current point in a
program being debugged

At least version 7.3 of the Sirius Mods is required.

Build: 33 (30 April 2008)

= These are the principal changes since the previous build:
e Useritems specified during Client session now are preserved in the next
session:
= Previous search strings are accessible in a Search box drop-down list.

= Previous variables specified are accessible in a Variable or Field box drop-
down list.

= Watch Window contents are redisglayed@ by default.

Janus/TN3270 Debugger User's Guide 429

Release Notes

= Resizing of the Client window is preserved.

Watch Window operations are no longer prevented when no program is being
debugged

New DebbuggerTools class method, Command@, runs SIRIUS DEBUG
subcommands within a request

At least version 7.3 of the Sirius Mods is required.

Sirius Mods Versions 7.0 -7.2

Build: 32 (18 February 2008)

= These are the principal changes to the Debugger Client since the previous build:

A fix for a rare case where the Watch Window failed to display certain variables in
a program involving a persistent session

Build: 31 (08 February 2008)

= These are the principal changes since the previous build:

Enhancements to Source Preview| s3] feature:

= A Step or Search command is allowed and causes a download of the entire
source program

= ARuncommand runs the program without a code download

A fix for the case where the Client was failing to display a compilation error
message (M204.1265) for which a Model 204 MSGCTL was being issued

Build: 30 (28 January 2008)

= These are the principal changes since the previous build:

New option that allows previewing of program codels3]

At least version 7.2 of the Sirius Mods is required.

Array item references that have spaces between the array name and the left
parenthesis are now recognized properly by all the Client features

Build: 29 (09 December 2007)

= These are the principal changes since the previous build:

430

Janus/TN3270 Debugger User's Guide

Release Notes

Displaying in the Audit Trail tab the names of procedures excluded from
debugging by the White List processingl77 feature

At least version 7.2 of the Sirius Mods is required.
A command for interrupting@ﬁ White List or Run Until processing
At least version 7.2 of the Sirius Mods is required.

Syntax added for watching mixed-case global variables|o41

Changes to the Search feature(ssto enable keyboard-invoked consecutive
searches for a given string:

= The default response to pressing the Enter key while the Search text box has
focus is changed from "search from the top" to "search from current line."
This lets you press Enter repeatedly to find subsequent occurrences of a
search string. Formerly, pressing Enter again found the same occurrence
as the first time because it repeated the search from the top.

Note: This introduces a small upward incompatibility.

= New focusToSearchBox command gives the input focus to the Search
string text area. The Ctrl+F key combination is changed to perform the same
function by default.

Build: 28 (09 November 2007)

= These are the principal changes since the previous build:

A consolekzal for macro information

Macro Command Line menu ogtion@ to run a macro

Echo command output goes to consolel24 if console is open
A...macro running indicator to be displayed on the Client's title bar

New macro-related commands: set6d, assertfi78, and vardumplzsd

New mappable commands:

= addWatchOnCurrentLinefi7sl (with accompanying menu item Add Watch on
Current Line)

= toggleBreakpointOnCurrentLinel277 (with accompanying menu item Toggle
Breakpoint on Current Line)

] reIoadWhiteListm, turnOnWhiteList@, and turnOffW hiteLisths1) (with
accompanying menu items Reload White List, Turn On White List, and Turn Off
White List)

Janus/TN3270 Debugger User's Guide 431

Release Notes

New menu item (Execution > Run Until Proc) for Run Until processing, and the
runUntil commandkbasl is now mappable

Lines located via a Search button are now highlighted and displayed in the center
of the page

Build: 27 (27 September 2007)

= These are the principal changes since the previous build:

Jump featurelsrlis added

At least version 7.2 of the Sirius Mods is required.
New Client macro-related command (echolzot))

&argstring macro variablek22! for passing arguments to macro commands

&&prompt functionl23 for interactive prompting

An exception to ordinary request-cancellation handling for the purpose of ON
UNIT code debuggingfs?

Search buttons now located below the text box for search strings

Sirius Mods Versions 7.0 -7.1

Build: 26 (17 August 2007)

= These are the principal changes to the Debugger Client since the previous build:

A new utility for user-created macrosls1)

File types the Janus Debugger will not debug are settablefs2]

Build: 25 (13 July 2007)

= These are the principal changes since the previous build:

New Client Preferences option[18] (Trim blanks from selection) to remove blanks
from text copied to the Text Vieweris?)

Support for additional level of Client menu and keyboard reconfiguration via the

uimore.xmi|ss! file

Expanded menu barm, which accommodates all Client commands

432

Janus/TN3270 Debugger User's Guide

Release Notes

Build: 24 (29 June 2007)

= These are the principal changes since the previous build:

o heIgEﬂ and manualpzs) programmable commands simplify access to product
documentation

Build: 23 (27 June 2007)

= These are the principal changes since the previous build:

e turnOffDebuggingksil programmable command turns off debugging from the
Client

At least Client build 23 and version 7.1 of the Sirius Mods are required.

e Debugger now recognizes %variable names that include question marks (?) and
single-quotation marks (')

At least version 7.1 of the Sirius Mods is required.

e Screen and ScreenField objects are added to the list of viewablehod] classes

At least version 7.1 of the Sirius Mods is required.

Build: 22 (20 June 2007)

= These are the principal changes since the previous build:

e Two new SIRIUS DEBUG commands|i43 (SUSPEND and RESUME)

At least version 7.1 of the Sirius Mods is required.

e NamedArraylist objects are added to the list of viewable[i03l classes

Build: 21 (13 June 2007)

= These are the principal changes since the previous build:

e Client's Web Buffer tab displays output if you debug a web thread program@ that
contains an embedded SIRIUS DEBUG ON command

e File menu option to create or edit the ui.xml filemﬁ, which contains button and hot
key reconfigurations

o Settableli22] image/screen items

e Help menu Keyboard Shortcuts display can be printed and saved

Janus/TN3270 Debugger User's Guide 433

Release Notes

Build: 20 (08 June 2007)

= These are the principal changes since the previous build:

e \Viewing the Variables 108 in a Sirius or user-defined class

e Print options added to Value window/ s File menu

e New DebuggerTools method (DebugOff@ﬂ) mimics SIRUS DEBUG OFF
command

At least version 7.1 of the Sirius Mods is required.

Sirius Mods Version 7.0

Build: 19 (26 April 2007)

= These are the principal changes to the Debugger Client since the previous build:

e Fix provided for problem with requests longer than 64, 000 lines

Build: 18 (20 April 2007)

= These are the principal changes since the previous build:

e TextViewer window for copying, printing, or saving texth47 data from Client pages

e The button whose functionality the Enter key repeats 298 is highlighted by a white
background

Build: 17 (30 March 2007)

= These are the principal changes since the previous build:

e Settable buttons and hot keys

You may reconfigure@ﬂ any of the ten contiguous buttons below the main
window to invoke a different feature than its default. You also may create your
own keyboard shortcuts for commonly used features.

e From Help menu option, keyboard shortcutsbkoeil can be displayed

e Trace button[471 has a new default hot-key combination: Ctrl+T

e Enter key is alternative to the Set button in the Set dialog boxh22 for changing a
variable's value

434 Janus/TN3270 Debugger User's Guide

Release Notes

e Cosmetic changes to buttons

The button widths are now uniform, their labels have a smaller font, and disabled
buttons are more obviously so.

Build: 16 (05 March 2007)

= These are the principal changes since the previous build:

e Name of current procedure displays in GUI title bar[sod

e Workstation IP number displays on startup

The Audit Trail page initially displays k77 a line like the following:

Local IP address 198.242.244.234

Build: 15 (22 February 2007)

= These are the principal changes since the previous build:

e Pressing Enter key repeats last GUI action

Pressing the Enter key has the same effect as clicking the button that is currently
highlighted@. For example, when a request is first presented in the Source Code
tab, the Step button is highlighted. You can step through the program simply by
pressing Enter repeatedly.

Build: 14 (19 February 2007)

= These are the principal changes since the previous build:

e ltems in an array of $lists can be displayed in Value windowho?)

In this context, subscripts are allowed for $list identifiers. For example:
list %alpha(%i)

Build: 13 (09 February 2007)

= These are the principal changes since the previous build:

e Regular expressions supported in the Search boxl3s)

e SIRIUS DEBUG ONF4d command enhancement simplifies its syntax

Two command parameters are settable in the User 0 stream. At least version 7.0
of the Sirius Mods is required.

Janus/TN3270 Debugger User's Guide 435

Release Notes

Options to set multiple breakpoints at oncelss1— on all lines that match a search
string or regex, or on executable statements that follow comment lines that begin
with *Break

At least version 7.0 of the Sirius Mods is required.

Breakgoint@ maximum increased from 40 to 1000 per User Language request

At least version 7.0 of the Sirius Mods is required.

In FEO loops, display current occurrenceli14 value

At least version 7.0 of the Sirius Mods is required.

Build: 12 (22 January 2007)

= These are the principal changes since the previous build:

Additional way to display the items in a $list or Stringlistm variable

You can now right-click the variable's name in the Watch Window display. This is
available for Sirius Mods versions 6.9 and 7.0 and higher.

Copy page contents[10]to clipboard

You can press the Ctrl+C keyboard key combination to copy the contents of the
active (topmost) tab to the Windows clipboard.

Additional "trace until" option

The Run To Change button continues request execution until the value of a
selected variable changes. The new variation to this feature (press Alt key while
clicking Run To Change) continues execution unless or until a selected variable's
value becomes equal to a value you specify.

Tracing until a specific valueksilis available only for Sirius Mods version 7.0 and
higher.

Length limit increased to 255 for %variables whose value you set123

This is available for Sirius Mods versions 6.9 and 7.0 and higher.

Build: 11 (09 January 2007)

= These are the principal changes since the previous build:

STATUS option for SIRIUS DEBUG command

Using the STATUS optionli49 produces a simple status report of the Debugger
worker threads. At least version 7.0 of the Sirius Mods is required.

White List processing enhancements

436

Janus/TN3270 Debugger User's Guide

Release Notes

Processing is moved to the mainframe to eliminate code transfer and provide
response time benefit. Also, trailing wild cards[77)are now allowed in the W hite
List.

e Step Out option

By pressing the Alt key and clicking the Client GUI Step Over button, you can
immediately discontinue the Debugger processing of a called subroutine,
method, or daemon and continue processing at the statement after the call to the

subroutine, method, or daemon. This action is called a "Step Out".[62]
e Skipping over Daemon code

By pressing the Alt key and clicking the Client GUI Run button, you can
discontinue the interactive debuggingh+0 of the Daemon object calls in your
program. The Daemon code executes but is not displayed in the Debugger
Client.

e Assembler language replaces User Language for Debugger internals

= Downloading a User Language dump file (SIRDEBUG) to install the
Debugger Server is no longer necessary.

= The Windows Installer program (setup.exe) for the Debugger workstation
client, which is stored in the SIRDEBUG procedure file for the Sirius Mods
prior to version 7.0, is downloadable from the Sirius web site for Debugger
customers running Sirius Mods 7.0.

e Removal of reguirements@ to license Janus SOAP and Janus Sockets for the
Debugger for users running version 7.0 of the Sirius Mods

A new Debugger Server port type (DEBUGGERSERVER) replaces the
SRVSOCK type that is required for earlier versions of the Sirius Mods, and a new
port type (DEBUGGERCLIENT) replaces the CLSOCK type that is required for
the TN3270 Debugger for earlier versions of the Sirius Mods.

e New File > Preferences option[ed] lets you break Debugger execution after READ
SCREEN/MENU statements

New message (Full Screen Read Pending) prompts TN3270 Debugger Client
users when READ SCREEN is active. Formerly, the message was Waiting
for Online.

e Breakpoint/ss! maximum increased from 20 to 40 per User Language request

e Searching from bottom to top of page is added (via Alt key) to Search and Search
Ne_xt@ buttons

e After failed compilation, F11 and F10 keysEa allow navigation to next and
previous statement, respectively, that did not compile

e Watching variables within a class definition[eg] no longer requires explicit %this
specification

Janus/TN3270 Debugger User's Guide 437

Release Notes

Sirius Mods Versions 6.8 and 6.9

Build: 10 (04 December 2006)

= These are the principal changes to the Debugger Client since the previous build:

e Option to restart the Debugger Client

From the file menu, the Restart option[18] shuts down the Debugger Client. The
Client then restarts, doing the same processing as if you started it by clicking its
desktop icon.

e Main working area is resizeable

You can now drag the black bar just above the page-navigation buttons to resize
the main working window in the Client.

e Improvements to $list and Stringlist viewing

For a float variable $list handle or for a Stringlist object variable, you can now
request a displayfi07 of its elements, which will be presented in a data viewer
similar to the way XML documents are displayed.

Build: 9 (17 November 2006)

= These are the principal changes since the previous build:

e Run Until spans debug sessions

The Run Until spans HTTP requests option is renamed to Run Until spans debug
sessions, and it is generalized to work with the TN3270 Debugger as well as with
the Janus Debugger. With this option turned on, Run Until continues searching
through the source program until it finds the specified procedure, even if the
debugging session is interrupted by a loss of the connection to the Online or the
TN3270 Debugger is toggled off and on again. When the session resumes, the
Client keeps searching for the target procedure.

e Performance statisticsfed) kept in log file are enhanced to report the number of
bytes received per message incoming to the Debugger Client.

Build: 8 (13 November 2006)

= These are the principal changes since the previous build:

e Right-clicking Source Code lines lets you display variable values

As described in Displaying the value of a program data item|[9s), this approach
lets you display a variable’s value just as if you entered the variable name in the

Variable or Field input area, then clicked the Value button.

438 Janus/TN3270 Debugger User's Guide

Release Notes

Build: 7 (5 November 2006)

= These are the principal changes since the previous build:

e The installation kit now installs a required MicroSoft file (gdiplus.dll) to the
installation target folder instead of to the system root folder, avoiding any security
issues concerning folder write permissions.

e Minor memory-use and performance improvements for both source-code loading
and variable watching.

Build: 6 (25 October 2006)
= These are the principal changes since the previous build:

e Save and restore proxy settings for Microsoft Internet Explorer

The automatic maintenance of proxy settingskss! for Janus Debugger IE users
that was added in Build 5 did not save and restore all proxy-related settings. It
now does.

e Performance improvements for watching variables

The display of the values of watched variables is slightly accelerated.

Build: 5 (18 October 2006)

= These are the principal changes since the previous build:

e Better proxy control for Internet Explorer

For those Janus Debugger users whose browser is Microsoft Internet Explorer,
the task of defining the Debugger Client as the proxy server can be handled
automaticallyls9 by the Client when it starts up (and undone when the Client
shuts down).

e Improved source line scrolling

To avoid having the current execution position in a Client tabbed-page window
you are stepping through be the last line on the page (obscuring the next line of
code), the display of the highlighted current position now includes the next two
lines.

Build: 4 (2 October 2006)

= These are the principal changes since the previous build:

e Performance improvements for very long programs

Janus/TN3270 Debugger User's Guide 439

Release Notes

Elapsed time for transferring and displaying programs with thousands of lines of
code has been reduced by 90%. In addition, a new configuration file setting lets
you trace the time the Client spends handling program code (see Tracking Client

performancekes)).

Build: 3 (27 September 2006)

= These are the principal changes since the previous build:

Run Until Procedure processing can ignore the end of an HTTP request

This feature is designed to make it easier to debug HTML frame-based web
applications, since the Debugger Client by default terminates the search for a
designated Run Until procedure at the end of an HTTP request. Thus, a
procedure search stops by default after each User-Language produced frame in
a single HTML frameset statement.

The File > Preferences menu option displays a checkbox that lets you direct the
Client to continue across multiple HTTP requests until the specified Run Until
%%)cedure name or pattern is satisfied. See Precedence and scope for Run Until
75

Selecting which of multiple web servers are eligible for debugging

After selecting the File > Preferences menu option, you can choose which of the
Onlines specified in the Client configuration file (debuggerconfig.xml) are to
have their web requests debugged. For more information, see Debugging
multiple Web Servers|is3.

New hot-key combination for Preferences option

The Ctrl+P key combination now invokes the Preferences option of the File menu.

Build: 2 (4 September 2006)

= These are the principal changes since the previous build:

Simplified editing and reloading of a White List

You can now edit or create a white list file (whitelist.txt) with the Windows

Notepad editor by selecting Edit White List from the Debugger Client File menu. In
addition, instead of restarting the Client to reload the list when done editing, you
simply click the Reload White List button on the Proc Selection tab.

White list processing is described in Running only to listed procedures| 77

Enhanced status reporting

= An hourglass cursor displays whenever the Client is waiting for processing
to complete on the Online.

440

Janus/TN3270 Debugger User's Guide

Release Notes

= Additional status arealss) message values indicate that the GUI is waiting for
the Online to respond:

e Waiting for Online is displayed when source code is being sent from
the Online to the Client workstation, or when the Online is processing the
Client's Step, Run, Run Until, or Trace command. The Waiting for
Online message is also displayed in TN3270 Debugger sessions
whenever the Client awaits a new request from the Online.

e Receiving/Forwarding Web Page is displayed by the Janus Debugger
Client when a Web Server's HTTP response to a web request is being
read by the Client and forwarded to the web browser.

e Persistent Session Suspended (see Debugging Web Server
persistent sessions[i43) is changed to Session awaits browser.

= When White List processing is toggled on or off from the Proc Selection tab,
White list is active orWhite list turned off is displayed as
appropriate.

e New hot-key combination for Search command

The Ctrl+F key combination now performs the same function as the Search
button (see The navigation and execution buttons|ss)).

e Asummary of the changes since the last build

As described in Versions and builds| s, you can view a list of the changes in the
current build of the Client by selecting About from the Debugger Client File menu.

Janus/TN3270 Debugger User's Guide 441

442 Janus/TN3270 Debugger User's Guide

Index

| ndex

ldebugger exclude off statement 65
ldebugger exclude on statement 65
Idebugger include off statement 65
ldebugger include on statement 65
ldebugger statements 65, 265

$

$COMMBG requests 2
asynchronous 6

$CURREC function 85, 95
$FIELDGROUPID function 85, 119
$FIELDGROUPOCCURRENCE function 85,
119

$GETG function 94

$list 203

array 85, 96, 102

displaying 102

watching 85, 96

$listcnt function 96
$listinf function 96
$STATUS function 85, 95
$STATUSD function 85, 95

$Web Form Done requests 2, 142

%
Y%this keyword 98
&

&&amDaemon function, Debugger Client 330

&&arg function, Debugger Client 322, 323,

331

&&assertFailureCount function, Debugger Client
178, 244, 332

&&assertStatus function, Debugger Client

178, 332

&&assertSuccessCount function, Debugger

Client 178, 244, 333

&&blackOrWhiteList function, Debugger Client

334

&&buildNumber function, Debugger Client

315, 334

&&concatenate function, Debugger Client 335

&¤tPacFile function, Debugger Client

335

&¤tRunningMacro function, Debugger

Client 336

&¤tTitle function, Debugger Client 336

&&exists function, Debugger Client 337

&&functions 329

&&getMainSearchinputArea function, Debugger

Client 338

&&getVariableOrFieldInputArea function,

Debugger Client 338

&&globalAssertFailureCount function, Debugger

Client 178, 244, 338

&&globalAssertStatus function, Debugger Client
178, 244, 339

&&globalAssertSuccessCount function,

Debugger Client 178, 244, 339

&&iemode function, Debugger Client 339

&&index function, Debugger Client 340

&&isWatched function, Debugger Client 340

&&length function, Debugger Client 341

&&numberOfBreakpoints function, Debugger

Client 341

&&numberOflLevels function, Debugger Client

342

&&numberWatched function, Debugger Client

342

&&originalTitle function, Debugger Client 343

&&preference function, Debugger Client 343

&&procName function, Debugger Client 344

&&prompt function, Debugger Client 323, 344

&&searchResult function, Debugger Client

345

&&searchSuccess function, Debugger Client

345

&&selectedTab function, Debugger Client 346

&&statusMessage function, Debugger Client

346

&&substring function, Debugger Client 347

&&sum function, Debugger Client 347

&&verifyMatch function, Debugger Client 348

&&verifyNoMatch function, Debugger Client

349

&&windowStatus function, Debugger Client

349

&argstring variable, Debugger macro 322

Janus/TN3270 Debugger User's Guide

443

Index

*Break comment lines 58

.macro file extension 303, 317
.NET Framework 375
.watch file extension 89, 222, 250, 303

?

?& dummy strings 125
3

3270 Emulator, Preferences option 18, 61

A

About window 6, 270
About, menu option 6, 39, 270, 407
about.xml file 303
Account, UltraEdit FTP 171, 173
Add Watch on Current Line, menu option 33,
86
Add Watch, menu option
addWatch command 178
addWatchOnCurrentLine command 178
Alt + Run combination 140
Alt + Run To Change combination 132
Alt + Search combination 45, 126
Alt + Search Next combination 46
Alt + Step Over combination 62
Altkey 189, 226, 228, 290, 291
Alt+B key combo 58, 296
Alt+F10 key combo 62, 296
Alt+F5 key combo 140, 296
Alt+F9 key combo 46, 296
AmDebugging method, DebuggerTools class
160
APSY subsystem 124
architecture, Debugger 4
Arraylist object variables
arrays

Slist 85

%variable 85
assert command
audit trail 14, 126
Audit Trailtab 10, 40
AutoRun, Macro 265, 326

15, 33, 86

96, 102, 111, 203

178, 324

B

background color 18, 299
Background color panel 299

backslash, escape character 45, 251, 252,
254, 255

Binary button 91, 100, 121

binary value, display of 91, 100

Black list is active, message 79
Black List processing 13, 77
Black list reloaded message 80
blacklist.txt file 77, 241
blanks, removal of 18, 147
Boolean enumeration variables 122
Bottom button 39, 308
bottom command 181, 295
Bottom option, Preferences window 40
Bottom, menu option 24
Break after READ SCREEN, Preferences option
18, 60, 265
Break Background color panel 299
Break method, DebuggerTools class 160
Break on next proc set message 76, 80
Break Text color panel 299
breakAfterReadScreen option, setPreference
command 265
breakOnNextProc command
Breakpoint cleared 58
Breakpoint set 56
breakpoints 27, 55, 56, 58, 59, 160, 186, 262,
277, 341
Breakpoints cleared 40
Breakpoints menu 27
Breaks At, menu option 27, 58
breaks command 58, 182, 296
Breaks, menu option 27, 58
breaksAt command 58, 183, 296
browser, web
communication error 362
configuration 389
in Debugger architecture 4
surfing while debugging 389
buffer, web output 127
Build number, Client 315
builds, Debugger Client 6, 270, 407
button attribute, ui.xml file 291
button bar 26, 39, 226, 306
Dock menu 42, 184, 205
external window 42, 184, 205, 314
extra 21,42, 226, 289, 291

76, 80, 182

444

Janus/TN3270 Debugger User's Guide

Index

26, 39, 226, 306
42, 184, 205

button bar
File menu
position 40, 225
button modifier 226, 290
button, named 289
button, separator 226, 289, 292
buttonBar command 26, 42, 184
buttonModifier attribute, ui.xml file 292
buttons 226

common 39, 44

default settings 295

highlighted 53

program execution 40
reconfiguring settings of 288

Cc

Cancel button 40, 63
cancel command 185, 295, 296

Cancel Errors color panel 299

Cancel, menu option 29

Cannot find proxy server 363
caseSensitiveAssert option, setPreference
command 265

Center option, Preferences window 40
Change Value option 122

CharacterMap object, SOUL 111
characters, printable 127
CharacterTranslationException object, Sirius
111

Chrome browser 263, 389

class member Variables 98, 109, 209
Clear All Breakpoints, menu option 27, 59
Clear Audit button 40, 126

Clear Audit Trail, menu option 24

Clear Breaks button 40, 59

Clear Execution Trace, menu option 24
Clear IE proxy override, Preferences option
19, 367, 391

Clear Watch button 40, 88
Clear Watch, menu option 33
Clear Web Buffer, menu option
clearAudit command 185, 295
clearBreakpointOnCurrentLine command 58,
186

clearBreaks command 59, 187, 295
clearButton command 187, 288
clearExecutionTrace command 188
clearHistory command 132, 188

clearKey command 189, 288
clearMacroConsole command

12,24

189, 324

clearStatus command 190
clearWatch command 88, 190, 295
clearWebBuffer command 12, 191
Client, Debugger
See Debugger Client 2
ClientCommand method, DebuggerTools class
162, 177
CLIENTCOMMAND option, TN3270 DEBUG
command 149, 153, 162
Close External Windows, menu option 24
closeCommandLine command 191
closeExternalAuditTrailWWindow command 191
closeExternalButtonWindow command 42,
192
closeExternalExecutionTraceWindow command
192
closeExternalWatchWindow command 192,
307
closeExternalWWebBufferWindow command
193
closeExternalWindows command 24, 193
closeHistory command 132, 193
closeMacroConsole command 194, 324
closeValueDisplay command 194
code preview 18, 83
collectTuningData element, configuration file
365
Color Preferences 18
Color Preferences window 297
Color Preferences, menu option 297
color, text 18, 297
command attribute, ui.xml file 292
Command keyword 153, 160, 162
command line 325
command line, Client
Command Line, dialog box
Command Line, menu option
233, 325
Command method, DebuggerTools class 162
Commands window 38

177, 325
191, 233, 325
36, 177, 191,

commands, Debugger Client 177, 189, 226,
228, 289, 295
macro-only 177, 195, 196, 199, 203, 216,

217, 224, 225, 231, 265, 274

within a macro 317, 322, 323
Commands, menu option 38, 270
Comments color panel 299
Communication Error message
Compile Errors color panel 299
Compile errors! message 136
configuration

360, 363, 399

Janus/TN3270 Debugger User's Guide

445

Index

configuration
browser 389
Debugger Client
proxy server 389
configuration file, Debugger Client
See debuggerConfig.xml file 301, 380
Connection from Online message 150
connection, SSL 157, 380, 399
Console window 236, 324
console, macro 324
Console, menu option
console.xml file 303
Continue method, Daemon 141
ContinueAsync method, Daemon 141
continuelf command 195, 196
Continuelndependently method, Daemon 141

380

36, 194, 223, 236, 324

copy active display to clipboard 10, 24, 198
copy command 198, 296

copy cursor-selected content 147, 198
copy entire tab to Text Viewer 10, 147

Copy, menu option 10, 24

Count method, Stringlist 96
createMacro command 198

CRLF parameter, Serial method 108
Ctrikey 189, 226, 228, 290, 291
CtrI+B key combo 58, 296

Ctrl+C key combo 10, 296

Ctrl+F key combo 39, 44, 126, 296
Ctrl+P key combo 18, 296

CtrI+T key combo 47, 128, 296
Ctrl+U key combo 39, 45, 126, 296
Ctrl+X key combo 63, 296

current keyword, JumpToLine command 217
cursor, hourglass 400

D

Daemon object, SOUL 111
Daemontab 139
daemons 62, 139

Data Display menu 33
Dataset object, SOUL 111

Debugger Client 2, 301
build number 315
builds 6, 270, 407
configuration file 301, 380
customization 287
file updates 38, 402
hiding lower windows
installation 375
listening port 375
main window 14, 246, 268, 336, 343
release notes 407
restarting 18
user interface commands
228, 289, 295
window transparency 314
work files 301, 303, 384
workstation IP address 377, 400
Debugger Client Update dialog box 402
Debugger Server 351, 354
client socket port, Sirius Debugger
400
client socket port, TN3270 Debugger 150
server socket port 150, 373
DEBUGGERCLIENT port, Sirius Debugger
374
debuggerConfig.xml file
301, 377, 380, 402
debuggerDirectives option, setPreference
command 265
debuggerinternalPac.js file 207, 392
DEBUGGERSERVER port 373
DebuggerTools class 159
DEBUGMAX system parameter, Model 204
154, 372
DebugOff method, DebuggerTools class 163
DEBUGPAG system parameter, Model 204
372
debugPreview command 84, 199
DEBUGSERVER.UL procedure 351, 354
decrement command 199
details, procedure 124
dir.txt file 377

212, 246, 278, 312

177, 189, 226,

374,

18, 145, 168, 173,

Debug Previewed Source, menu option 29, 84 directives, Debugger 65, 265

Debugger disableButton command 200, 288
authorization 371 Display Options, Preferences options 18, 102
debugging of 351, 354 Doc folder 377
directives 65, 265 documentation, Debugger 7, 38, 377, 385, 386
documentation 7, 38, 385, 386 documentationURL element, configuration file
overview of 2 386
prerequisites 371 dummy strings 124, 125
starting 7

446 Janus/TN3270 Debugger User's Guide

Index

E

EBCDIC binary values 100

echocommand 201, 324

Edit Black List button 77, 80

Edit Black List, menu option

Edit button 124

Edit debuggerConfig.xml, menu option 18

Edit Exclude Proc List button 68

Edit Exclude Routine List button 68

Edit Include Proc List button 68

Edit Include Routine List button 68

Edit Macro, menu option 36, 202, 317

Edit ui.xml, menu option 18, 291

Edit uimore.xml, menu option 22, 295

Edit White List button 77, 80

Edit White List, menu option

Edit, menu option 36

editing procedures 124

editMacroFromUISelection command 202

editor element, configuration file 173

editor, Client text 164

editor, local 164

editor, source code

editor, text
element, configuration file

Email object, SOUL 111

enableButton command 202, 288

encrypted connection 157, 380, 399

Enter key 39, 44, 46, 53, 54, 62, 126, 131,

296, 308

18, 77, 80

18, 77, 80

164

387

Entity-name input box 15, 50, 93
Errormenu 35
errors 35
communication 360, 363, 399
compilation 35, 136, 294
program 35, 136
request cancellation 137

escape character 45, 251, 252, 254, 255
evaluate command 203
Evaluation successfully completed
exception classes, system 109
Exclude directives 64, 65
Exclude Parts of Program from Debugging 13,
65

excludeProc.txt file

53, 54

68, 242, 303

excludeRoutine.txt file 68, 242, 303
executed code
procedure details for 127

Executed one statement 53

Execution History window 18, 132
Execution menu 29
Execution Options, Preferences options 18
Execution Position color panel 299
Execution Trace tab 13, 127
capacity of 6
for execution history 18, 132
execution, program code 52
Expand Object option 109, 204
expandList command 102, 203
expandObject command 109, 204
expression, HTML or TEXT statement 94
external window 24, 191, 192, 193, 233, 234,
235, 238, 283, 286, 306, 310, 349
Extra Buttons window 42, 205
Extra Buttons, Preferences option
extraButtonBar command 205
main parameter 43

21,43

F

Fikey 7,38

F10 key 40, 54, 136, 296

F11 key 40, 53, 136, 296

F4 key 39, 40, 53, 296

F5key 39,40, 54, 296

FOkey 46, 126, 296

FastUnloadTask object, SOUL 111
FEO (FOR EACH OCCURRENCE OF)
statement 114, 206

FEO OCC INvalue 114, 206
feoDisplay command 114, 206

field groups, Model 204 33, 93, 118, 236
fields, Model 204 85, 93

File menu 18

file types, debugger-ignored 265, 382
file, PAC 207

file, procedure 124

filter element, configuration file
find.txt file 303

Firefox browser 398
firstHistory command 30, 134, 206
FloatNamedArraylist object, SOUL 111
focusToSearchBox command 207, 296
fontsize 305, 386

fontScale element, configuration file
frames, HTML 75

FTP Account, UltraEdit
FTP Server, Janus 170
Full Screen Read Pending message 60
function keys 189, 228

382

305, 386

171

Janus/TN3270 Debugger User's Guide

447

Index

Functions window 38
functions, Debugger Client 329
string rules 330

Functions, menu option 38, 271

G

generatePac command 207
Get It button 402

Get/Display History, menu option
getHistory command 132, 209
getVariableList.xml file 303
getVariablesForClass command
global variables 85, 94, 125

29,132

109, 209

H

help command 211
Help menu 38, 385
Help Topics, menu option
Help, online 38
printing 7
helpFile element, configuration file 385
Hide Lower Section, Preferences option 22,
212, 246, 278
hideLower command 22, 212, 312
highlight color 18, 297
History to Execution Trace, Preferences option
18, 132, 265
history, statement
222, 230, 240
history.xml file 303
historyToTrace option, setPreference command
265
Honor Line Ends button 99, 121
value of watched item 91
host, Model 204 Online 171, 380
hot keys 296
Alt+B key combo
Alt+F10 key combo 62, 296
Alt+F5 key combo 140, 296
Alt+F9 key combo 46
Alt-F9O key combo 296
Ctrl+B key combo 58, 296
CtrI+C key combo 296
CtrI+F key combo 44, 126, 296
Ctrl+P key combo 18, 296
Ctrl+T key combo 47, 128, 296
Ctrl+U key combo 45, 126, 296
Ctrl+X key combo 63, 296
default settings 296

38, 385

18, 29, 132, 134, 206, 209,

58, 296

Enter key 44, 46, 53, 54, 126, 131, 296
F1key 7,18,38
F10 key 39, 40, 54, 136, 296
F11 key 39, 40, 53, 136, 296
F2-F12 189, 228
F4 key 39, 40, 53, 296
F5key 39,40, 54, 296
FOkey 46, 126, 296
reconfiguring settings of 288
hourglass cursor 400
HTML output 12
HTML statement, User Language
HTTP Helper 158
HTTP server, PAC file 394
httpGet command 213
httpPacURL element, configuration file
394
httpPutFile command 214
httpPutString command 215
HttpRequest object, SOUL 111
HttpResponse object, SOUL 111
HTTPS protocol 157, 399

94, 299

388,

IE Mode, Preferences option 19, 263, 390, 391
IE Options, Preferences options 19, 390
ignoredFileTypeList option, setPreference
command 265, 382

ignoreMacroErrors option, setPreference
command 265

image items 85

In window, command prefix
254, 255, 279, 292

Inactive color panel 299
include command 64, 216, 317

Include directives 64, 65

INCLUDE statement 64

includelf command 216

includeProc.txt file 68, 242, 303
includeRoutine.txt file 68, 242, 303
increment command 217

Indent parameter, Serial method 108

Init Exclude mode 72

initExclude option, setPreference command
265

inner procedure 64

installation folder 303, 377, 384, 385
installation, product 369

Internet Explorer browser 265, 389
Internet Properties dialog box 389, 396

44,181, 251, 252,

448

Janus/TN3270 Debugger User's Guide

Index

Invalid Jump message 81

Invalid line for jump 82, 219
InvalidBase64Data object, SOUL 111
InvalidHexData object, SOUL 111
InvalidRegex object, SOUL 111

IP address

Debugger Client workstation 377, 400
Model 204 host 170, 171
IPCONFIG command, DOS 158, 377

ltem method, Stringlist 96
J

JANUS CLSOCK ALLOW command
JANUS commands, for FTP Server
Janus Debugger

overview of 2

starting 399
Janus FTP Server 170
Janus Network Security 157, 380
Janus Web Legacy Support sessions
Janus Web Server

debugging multiple instances of

port number 380

SSL port 157, 380, 399
Janus/TN3270 Debugger User's Guide
JanusDebugger.chm file 377
JanusDebugger.exe file 377, 402
jdebugr.pdf file 377
JSON object, SOUL 111
Jump Here option 81
jump operation 81, 217, 219
jumpToLine command 82, 217
jumpToMatch command 82, 219

374
170

145, 380

7,38

K

KEEPALIVE parameter, JANUS DEFINE 374
key attribute, ui.xml file 292
key modifier 189, 228, 291
keyboard shortcut 38, 177, 189, 228, 291
Keyboard Shortcuts window 38
Keyboard Shortcuts, menu option 38
keyModifier attribute, ui.xml file 292
keys, shortcut 38, 296

Alt+B key combo 58, 296

Alt+F10 key combo 62, 296

Alt+F5 key combo 140, 296

Alt+F9 key combo 46

Alt-F9 key combo 296

Ctrl+B key combo 58, 296

61, 144

CtrI+C key combo 296
Ctrl+F key combo
Ctrl+P key combo
Ctrl+T key combo
Ctrl+U key combo
Ctrl+X key combo

default settings

18, 296

63, 296
296

44, 126, 296

47, 128, 296
45, 126, 296

Enter key 44, 46, 53, 54, 126, 131, 296

F1 38
Flkey 7
F10 key 39, 40, 54, 136, 296
F11 key 39, 40, 53, 136, 296
F2-F12 189, 228
F4 key 39, 40, 53, 296
F5key 39,40, 54, 296
FOkey 46, 126, 296
reconfiguring settings of
kil command 220
Kill Running Macro, menu option

288

L

labelButton command 221, 288

36, 317

lastHistory command 31, 134, 222

LAUDPROC parameter 74
Ldap object, SOUL 111

Legacy Support sessions 61, 144
limitations, product 6
line number, procedure 124

line number, source code 11
line type, source code 11
line-end characters 99

in serialized output 104
printable 127
watched item 91

List Display option 102, 203

Load Watch, menu option
loadWatch command 222
LOBdata 6

33, 89

Local Area network (LAN) Settings dialog box

396

log, client 354, 359, 383
log.txt file 303, 354, 359, 383
logging element, configuration file
LPDLST parameter 372, 373
LSTBL parameter 372
LVTBL parameter 372

Lynx browser 398

383

Janus/TN3270 Debugger User's Guide

449

Index

M

Macro Autorun, Preferences option 18, 265,
326

macro command 223, 317, 322

Macro Command Line, dialog box 191, 233,
325

Macro Command Line, menu option 36, 191,
233, 317, 325

Macro completed 317
Macro Console window 194, 223, 236, 324
Macro Console, menu option 36, 236, 317,
324
Macro keyword 153, 160, 162
command line 325
Macro prompt 323
macro, Debugger
argument variable
autorun 265, 326
command line 325
commands 177, 195, 196, 199, 203, 216,
217, 224, 225, 231, 265, 274
console 324
functions 329
variables 276, 285, 327
macroAutorun option, setPreference command
265
MacroConsole command 223
macroLibraryFolder element, configuration file
301, 303, 380, 384
macro-only commands 177, 195, 196, 199,
203, 216, 217, 224, 225, 231, 265, 274
Macros menu 36
MacroTrace command 224
macroWait command 225
Main Button Bar, Preferences options 18, 21
Main Button Bar, Preferences window 40
main parameter, extraButtonBar command 43
Main Window Options, Preferences options
18, 22, 212, 246, 278
mainButtonBar command
mainline code 62
manual command 226
manual element, configuration file
mapButton command 226, 288
mapKey command 288
mapping element, ui.xml file 292
mappings element, ui.xml file 291
MaxDaemExceeded object, SOUL 111
maxDays attribute, logging element 383

36, 317, 322
322

225

380, 385

menu bar, Client 17
menus, Client 17,177
mergedPac option, |E Mode 392
methods, DebuggerTools class 159
MINDEBCL system parameter, Model 204
315, 372
Minimum program length, for preview 83
mode attribute. logging element 383
Model 204
fields, watching 93
parameter values 120
Universal Buffer 121
Model 204 Wiki, menu option
modifier, button 226, 290
modifier, key 189, 228, 291
Most Recent Audit Trail window 14, 126
moveBrowserToTop command 229
moveTn3270ToTop command 229
msvcr71.dll file 377
multiply occurring fields 93

386

N

named button 289

NamedArraylist object, SOUL 111
NETSTAT command, DOS 376

New Blank Macro, menu option 36, 317
New Macro, menu option 36, 198
newPac option, |E Mode 392

Next Compile Error, menu option 35, 136
nextCompileError command 136, 230, 294,
296, 321

nextHistory command 30, 134, 230
NoFreeDaemons object, SOUL 111

none option, IE Mode 265, 390
noSpan command 231
NotePad++ editor 164, 387

notepadReplacement element, configuration file
164, 387
nsLookup command 232

(0

object variables, Janus SOAP 95, 109
object variables, Janus SOAP XML 104
OCC IN phrase 114, 206

OFF option, TN3270 DEBUG command 149,
152, 153, 154
ON option, TN3270 DEBUG command 149,

150, 154, 155

ON UNIT debugging 137

450

Janus/TN3270 Debugger User's Guide

Index

Online has disconnected message 399

opacity element, configuration file 314, 386

Open at Startup, Preferences options 18, 21

Open External Audit Trail Window, menu option
24

Open External Button Window, menu option

26, 42

Open External Execution Trace Window, menu

option 24

Open External Watch Window, menu option

15, 24, 33, 307

Open External Web Buffer Window, menu option

24

openCommandLine command 233

openExecutionTraceWindow command 234

openExternaAuditTrailWindow command 233

openExternalAuditTrail command 24

openExternalButtonWindow command 42,

234

openExternalExecutionTrace command 24

openExternalWatchWindow command 24,

235, 307, 311

openExternalWebBufferWindow command

24,235

openMacroConsole command 236

Opera browser 399

Org.Mentalis.Security.dll file 377

Out of Scope color panel 299

outer procedure 64

output, HTML 12

output, tracing 13

P

PAC (Proxy Auto Config) file 207, 263, 272
PAC Options button 392, 394

PAFGI (Print All Fieldgroup Information)
statement 118

pafgi command 118, 236

PAFGI, menu option 33

page copying 10, 147

PAI (Print All Information) statement
pai command 115, 237

PAI, menu option 33
parameters, Model 204 85, 120
Paste, menu option 24

Path system variable, Windows
pattern, procedure name 73

Pause at end of evaluation, Preferences option
18, 59, 265

115

168, 173

pauseAtEndEval option, setPreference
command 265
performance, Debugger Client
persistent sessions 142
skipped over by Run Until 75
pin command 238, 310
Pin option, context menu
port number, TCP
Debugger Client proxy 382, 389
Debugger Server 372, 373, 380
Debugger Server client socket 374
Janus FTP Server 170, 171
Janus Web Server 380
port, client socket (Sirius Debugger)
port, SSL 157, 380, 399
preference option, help command 211
preferences command 239, 296
Preferences window, opacity of 314, 386
Preferences, menu option 18, 40, 59, 60, 75,
83, 102, 132, 145, 265, 312, 390
preferences.xml file 303
prefix
for class member Variables 98
for field names 93
for global variables 94, 125
for shared object variables 95
preview, source code 18, 83
Preview: bad compile, message 84
Preview: good compile, message 84
Previous Compile Error, menu option 35, 136
previousCompileError command 136, 240,
294, 296, 321
previousHistory command
Print button, Text Viewer window
Print option, online Help toolbar 7
Print option, text viewer 147
Print options, Value window 91, 99, 102
PRINT statement output 12
printable characters 127
Proc Selectiontab 13, 64, 73
procedure 77,124
Black List 77
details 124
editing 124
inner/outer 64
name, wilcards for 68
name, wildcards for 74
running execution until 73
White List 77
Procedure Information option

365

238, 310

374

30, 134, 240
147

124

Janus/TN3270 Debugger User's Guide

451

Index

Procedure Information option 124
for dummy strings 125
for trace data 127
Procedure Line Details dialog box
program execution buttons 40
program execution, controlling 52
Program Titles 18, 61, 142, 144
Program Titles, Preferences options 18
Proxy Auto Config (PAC) file 377, 388, 392,
394
Proxy Auto Configure (PAC) file 247, 335
proxy element, configuration file 382
proxy option, [E Mode 265, 367, 391
proxy server 265
automatic maintenance
367, 390, 391, 396
bypassing of 265, 367, 391, 396
Clientas 4, 263, 272, 351, 375
for HTTP Helper 158
settingup 380, 389
troubleshooting 367, 391, 396
proxy server, settingup 301
pushdown list (PDL) 372, 373

Q

124, 164

207, 263, 265,

Quit, menu option 35

R

RandomNumberGenerator object, SOUL 111
READ MENU statement 18, 60
READ SCREEN statement 18, 60, 144
Receiving/Forwarding Web Page 440
Record object, SOUL 111
Recordset object, SOUL 111
RecordsetCursor object, SOUL 111
regex

See regular expressions 45
regular expressions 45
Release Notes 407
Reload Black List button 79, 80, 241
Reload Black List, menu option 29, 241
Reload Proc/Routine/Method Lists button 68,
242
Reload White List button 79, 80, 241
Reload White List, menu option 29, 241
reloadBlackList command 29, 80, 241
reloadLists command 68, 242
reloadWhiteList command 29, 80, 241
Remove option, watched item 88

removeCurrentWatch command 88, 243

request cancellation 63, 137

resetAssertCounts command 244, 332, 333

resetGlobalAssertCounts command 244, 338,

339

resizing, display window 10

restart command 23, 245

Restart with Default Window Size, menu option
18, 23

Restart, menu option 23

restartDefault command 23, 245

Restore watches on startup, Preferences option

18, 89

restoreLower command 246, 312

restoreTitle command 246

RESUME option, TN3270 DEBUG command

149, 153, 154

retryHttpPac command 247

ReturnToMaster method 141

Run button 40, 54

run command 54, 248, 295, 296

Run Macro, menu option 36, 248, 317

Run method, Daemon 141

Run to Change button 47, 131

Run Until Proc, menu option 29, 73

Run Until Procedure button 73, 160

Run Until processing 64, 73

Run Until spans debug sessions, Preferences

option 18,75

Run Until Variable Changes, menu option 29,

131

Run Without Daemons, menu option

Run, menu option 29, 36, 54

RunAsync method, Daemon 141

Runindependently method, Daemon 141

runMacroFromUISelection command 248

runUntil command 249

runUntilVariableChanges command 131, 249

runWithoutDaemons command 140, 250,

295, 296

29, 140

Save button 147

Save Watch, menu option
saveWatch command 250
Screen object, SOUL 111
ScreenField object, SOUL 111
script, automatic configuration 390
SDAEMDEYV parameter 372, 373
sdaemons 62, 139, 372, 373

33, 89

452

Janus/TN3270 Debugger User's Guide

Index

SDEBGUIP parameter 150
SDEBWRKP parameter 150
Search button 44, 45, 126
Search Down button 308

Search Down, menu option 26, 46

Search From Bottom, menu option 26, 45
Search From Top, menu option 26, 44, 45
Searchmenu 26

Search Next button 44, 46, 126

Search Prev button 44, 46, 126

search string, for breakpoints 27, 58

Search Up button 46, 308

Search Up, menu option 26, 46
searchDown command 46, 251, 296
searchFromBottom command 45, 252, 296
searchFromTop command 44, 45, 254
searchUp command 46, 255, 296

Select First History Line, menu option 30, 134
Select Last History Line, menu option 31, 134
Select Next History Line, menu option 30, 134

Select Previous History Line, menu option 30,
134

selectAuditTab command 257
selectExecutionTraceTab command 257
Selection color panel 299

selectNextTab command 257
selectProcSelectionTab command 258
selectSourceTab command 258
selectWatchWindow command 258
selectWebBufferTab command 259
separator button 226, 289, 292
separator keyword 226, 289, 292
Serial method, Janus SOAP XML
Serialize option 104

server element, configuration file
server list 380

serverList element, configuration file
Session awaits browser 142
sessionID 351, 354

Set %var dialog box 122

set command 260, 328
setBlackList command 261
setBreakpointOnCurrentLine command
262

setEmode command 263, 272, 392
setM204Data command 122, 265
setPreference command 59, 60, 66, 132, 263,
265

setStatusMessage command
setTitle command 268, 336

104, 108
380

380

56,

267

setWhiteList command 269

shared object variables 95

shortcut keys 38
Alt+B key combo 58
Alt+F10 key combo 62
Alt+F5 key combo 140
Alt+F9 key combo 46
Ctrl+B key combo 58
Ctrl+F key combo 44, 126
Ctrl+P key combo 18
Ctrl+U key combo 45, 126
Ctrl+X key combo 63
default settings 295, 296

Enter key 44, 46, 53, 54, 126, 131
F1 38
Flkey 7
F10 key 39, 40, 54, 136
F11 key 39, 40, 53, 136
F4 key 39, 40, 53
F5key 39,40, 54
FOkey 46, 126
reconfiguring settings of
shortcut, keyboard 291
shortcuts.xml file 303
Show at most n list items, Preferences option
18, 102
Show Extra Button Bar Window, menu option
42,43
Show long watch values in a Tooltip,
Preferences option 18, 88
Show Main Button Bar in External Window,
menu option 26, 42
showAbout command 39, 270
showCommands command 38, 270
showFunctions command 38, 271
showlE command 272
showShortcuts command 273
Since Last Resume color panel
SIRIUS DEBUG command 149
Sirius Debugger
see TN3270 Debugger 2

288

299

Sirius Documentation, menu option 38
Sirius Mods versions 6

Sirius Wiki, menu option 38

Size of preview 83

Skip Previewed Source, menu option 29, 84

Skip Whole Programs 13, 73, 79
skipPreview command 84, 273
Socket object, SOUL 111

SOCKUSER thread 351, 354

Janus/TN3270 Debugger User's Guide

453

Index

SortedRecordset object, SOUL 111
SOUL

watchable entities 85
SOUL system classes 111
Source Code tab 11
source code, preview of 18, 83
Source Preview, Preferences option
span command 265, 274
SSL parameter, JANUS DEFINE 374
SSL ports, Web Server 157, 380, 399
startup attribute, debuggerConfig.xml file
388
startUpMacro attribute, ui.xml file
317
stateFileFolder element, configuration file
303, 380, 384
statement line number 11
statement, executable 52, 53
status bar 49
status messages 49
STATUS option, TN3270 DEBUG command
149, 150, 154
status report, worker thread 149, 154
StatusMessage method, DebuggerTools class

164

Step button 53
step command 53, 274, 295, 296
Step Next button 40
step out operation 62
Step Out, menu option 29, 62
Step Over button 40, 54, 160
Step Over, menu option 29, 54
Step, menu option 29, 53
stepOut command 275, 295, 296
stepOver command 54, 275, 295, 296
stopOnAssertFailure option, setPreference
command 265
string &&functions 330
Stringlist object variables 96, 102, 111, 203
StringTokenizer object, SOUL 111
structures, Janus SOAP 85
SUSPEND option, TN3270 DEBUG command
149, 153, 154
suspend-daemon-debugging mode 140
system exceptions 109

18, 83

317,
291, 311,

301,

T

text color 18, 299
Text color panel 299
text copying, printing, or saving 147

TEXT statement, User Language 94, 299
Text Viewer window 147
textviewer.xml file 303
The page cannot be displayed 363
tilde character (~) 44
TN3270 DEBUG command
163, 400
TN3270 Debugger
connection information 400
for Janus Web Server threads 155
overview of 2
resuming 149
starting 149, 400
stopping 149, 400
suspending 149
Toggle Breakpoint on Current Line, menu option
27, 56, 58

7,149, 155, 162,

Toggle Breakpoint, menu option 56, 58, 59
toggle command 276
Toggle Init Exclude, menu option 29, 72

toggleBreakpointOnCurrentLine command 56,
58, 186, 277
togglelnitExclude command 72, 278
toggleLower command 278, 312
Top button 39, 308
top command 279, 295
Top option, Preferences window 40
Top, menu option 24
Trace All button 47
Trace button 47, 128, 130
trace command 279, 295, 296
Trace To End, menu option 29, 128
Trace Until Variable Equals Value, menu option
29, 132
Trace Values, menu option 29, 130
traceUntilVariableEqualsValue command
280
traceValues command
Tracing dialog box 132
tracing execution 127
alllines 29, 128
of variable value updates 29, 130
until a specified value 29, 132
until value changes 29, 131
tracing, Debugger Server port 351, 354
tracing, simple 128
Trim blanks 18, 147
Trim blanks from selection in View Text,
Preferences option 18
troubleshooting 351, 354
tuning, Client performance 365

132,

130, 280

454

Janus/TN3270 Debugger User's Guide

Index

Turn Off Black List button 281

Turn Off Black List, menu option 29, 79, 281
Turn Off Debugging, menu option 29

Turn off Lists button 79

Turn Off White List, menu option 29, 79
Turn on Black List button 79, 282

Turn On Black List, menu option 29, 79
Turn on White List button 79

Turn On White List, menu option 29, 79

turnOffBlackList command 29, 79, 281
turnOffDebugging command 7, 152, 281
turnOffWhiteList command 29, 79, 281
turnOnBlackList command 29, 79, 282

turnOnWhiteList command 29, 79, 282

U

ui.xml file 42,147, 291, 295, 303, 322
uiFolder element, configuration file 301, 303,
380, 384

uimore.xml file 295, 303, 322

UL folder 377

UltraEdit editor 164, 170

Unicode %variables 122

Universal Buffer, Model 204 121
UnknownStatistic object, SOUL 111
unPin command 283, 310

UnPin option, context menu 283, 310
unSet command 284

until.txt file 73, 303

unzip.exe file 377

updateGet.exe file 38, 377, 402
Updates, menu option 38, 402

Use !debugger directives, Preferences option
18, 66, 265
Use automatic configuration script, Internet
Explorer 207, 263, 265, 390, 392
Use existing IE proxy for URLs not to be
debugged, Preferences option 19, 367, 391
Use Proc Lists for exclude/include 68, 242,
265
Use Routine Lists for exclude/include
265
useDefaults attribute, ui.xml file 291
useProcLists option, setPreference command
265
User Language

watchable entities 85
useRoutineLists option, setPreference
command 265
UserStatistics object, SOUL 111

68, 242,

\'

value
details of
206
Value button 33, 48, 91, 99, 284
Value Display, menu option 33
Value window 33, 85, 91, 99, 349
valueDisplay command 99, 284
valueDisplay.xml file 303
valueDisplayOnConsole option, setPreference
command 99, 265, 284, 324
varDump command 285, 329
variable value
setting 122
tracing until change 131
tracing updates to 130
updating 6
variables 85
array 85
class 98, 109, 209
Debugger macro 276, 285, 322, 327
global 94
object 95
watched 85
vars.txt file 303
View PDF Manual, menu option
View Text button 147
View Text, menu option 24, 147
viewText command 10, 147, 286

33, 91, 99, 102, 104, 109, 114,

7,38

w

Waiting for Online message
440
waiting messages 49, 360, 364
Watch button 33, 48, 86
Watch Window box
add or remove items
clearing 40
contents 18, 340, 342
description 15, 85
external window 307
long items 18, 88
remembered items 89
resizing 86
saving/restoring contents
Watch Window window 307
watched entity 85, 91, 340, 342
watchmemory.txt file 303

360, 364, 400,

33, 86

89, 222, 250

Janus/TN3270 Debugger User's Guide

455

Index

Web Browser text box 61, 142, 144
Web Browser, Preferences option 18
Web Buffertab 12, 127
capacityof 6
web output buffer 127
Web request will NOT be debugged, message
380
Web Server Selection, Preferences option 18,
145
Web Server, Janus
debugging multiple instances of 145, 380
debugging with Sirius Debugger 155
port number 380
Web Service application 158
webPort element, configuration file 380
White list is active, message 79
White List processing 13, 29, 77, 160
White list reloaded message 80
whitelist.txt file 77, 241, 303, 377
wiki, Model 204 386
wikiURL element, configuration file 386
wildcards, procedure name 68,73, 74,77
Window menu 24
window, external 24, 191, 192, 193, 233, 234,
235, 238, 283, 286, 306, 310, 349
window, main 14, 246, 268, 336, 343
windowmemory.xml file 303
Windows 7 422
Windows When Suspended, Preferences option
18, 61, 142
Windows, supported versions of 6
windowToTop command 286
work files, Debugger Client 301, 303, 384
worker port 380
worker thread lost 360
worker thread, Debugger Server 4, 149, 154,
351, 354, 372, 373
workerPort element, configuration file 380
workstation, Debugger Client
hostID 377
port number 376, 382
Wrap button 91, 99, 121

X

XML document variables, debugging 104
XmIDoc object, SOUL 111

XmINode object, SOUL 111

XmINodelist object, SOUL 111

Xtend editor 164, 166

XTEND subsystem 166

456

Janus/TN3270 Debugger User's Guide

	Title
	Contents
	1 Introduction
	1.1 About the Debuggers
	1.2 Getting started

	2 Getting Acquainted with the Client GUI
	2.1 The tabbed pages
	2.2 The lower windows
	2.3 The menu bar
	2.3.1 The File menu options
	2.3.2 The Window menu options
	2.3.3 The Search menu options
	2.3.4 The Breakpoints menu options
	2.3.5 The Execution menu options
	2.3.6 The Data Display menu options
	2.3.7 The Error menu options
	2.3.8 The Macros menu options
	2.3.9 The Help menu options

	2.4 The button bar
	2.5 The search facility
	2.6 The tracing options
	2.7 The value displaying controls
	2.8 The Status bar
	2.9 The Entity-name input box

	3 Performing Basic GUI Tasks
	3.1 Controlling the execution of program code
	3.1.1 Step, Step Over, and Run
	3.1.2 Using breakpoints
	3.1.3 Suppressing the break at the end of request evaluation
	3.1.4 Breaking after READ SCREEN or READ MENU statements
	3.1.5 Stepping out
	3.1.6 Cancelling execution
	3.1.7 Excluding sections of source code from debugging
	3.1.7.1 Selectively excluding source code blocks
	3.1.7.2 Running to a specific procedure
	3.1.7.3 Running only to listed procedures

	3.1.8 Altering the flow of execution
	3.1.9 Previewing program code

	3.2 Viewing and modifying program elements
	3.2.1 Watching program data items
	3.2.1.1 Adding and removing Watch Window items
	3.2.1.2 Saving and restoring Watch Window contents
	3.2.1.3 Getting a detailed view of the value of a watched item
	3.2.1.4 Watching Model 204 fields
	3.2.1.5 Watching global variables
	3.2.1.6 Watching object variables
	3.2.1.7 Watching $lists, Stringlists, and Arraylists
	3.2.1.8 Watching class member Variables

	3.2.2 Displaying temporarily the value of a program data item
	3.2.2.1 Displaying $lists, Stringlists, and Arraylists
	3.2.2.2 Displaying Janus SOAP XML document objects
	3.2.2.3 Displaying all Variables of an object's class
	3.2.2.4 Displaying the current occurrence value in an FEO loop
	3.2.2.5 Displaying all fields in a record
	3.2.2.6 Displaying Model 204 parameters
	3.2.2.7 Displaying the Universal Buffer content

	3.2.3 Setting the value of a variable

	3.3 Getting source file, audit trail, and web buffer information
	3.3.1 Locating and editing procedure source files
	3.3.2 Viewing dummy string variables
	3.3.3 Viewing the audit trail
	3.3.4 Viewing the web output buffer

	3.4 Tracing program execution
	3.4.1 Tracing all lines executed
	3.4.2 Tracing all updates to a variable’s value
	3.4.3 Tracing until a value change or until a value match
	3.4.4 Displaying a statement history

	3.5 Viewing programs that contain coding errors
	3.6 Debugging requests that spawn daemons
	3.7 Debugging Web Server persistent sessions
	3.8 Debugging multiple Web Servers

	4 Additional Debugger Functionality
	4.1 Copying, printing, or saving text
	4.2 Using the TN3270 DEBUG command
	4.3 Using the TN3270 DEBUG command for web threads
	4.4 Debugging SSL applications
	4.5 Debugging Web Service applications
	4.6 Using the DebuggerTools class methods
	4.7 Using a local editor
	4.7.1 Using Xtend with the Debugger
	4.7.2 Using UltraEdit with the Debugger

	5 The Client Command Reference
	5.1 addWatch command
	5.2 addWatchOnCurrentLine command
	5.3 assert command
	5.4 bottom command
	5.5 breakOnNextProc command
	5.6 breaks command
	5.7 breaksAt command
	5.8 buttonBar command
	5.9 cancel command
	5.10 clearAudit command
	5.11 clearBreakpointOnCurrentLine command
	5.12 clearBreaks command
	5.13 clearButton command
	5.14 clearExecutionTrace command
	5.15 clearHistory command
	5.16 clearKey command
	5.17 clearMacroConsole command
	5.18 clearStatus command
	5.19 clearWatch command
	5.20 clearWebBuffer command
	5.21 closeCommandLine command
	5.22 closeExternalAuditTrailWindow command
	5.23 closeExternalButtonWindow command
	5.24 closeExternalExecutionTraceWindow command
	5.25 closeExternalWatchWindow command
	5.26 closeExternalWebBufferWindow command
	5.27 closeExternalWindows command
	5.28 closeHistory command
	5.29 closeMacroConsole command
	5.30 closeValueDisplay command
	5.31 continueIf command
	5.32 continueMacroIf command
	5.33 copy command
	5.34 createMacro command
	5.35 debugPreview command
	5.36 decrement command
	5.37 disableButton command
	5.38 echo command
	5.39 editMacroFromUISelection command
	5.40 enableButton command
	5.41 evaluate command
	5.42 expandList command
	5.43 expandObject command
	5.44 extraButtonBar command
	5.45 feoDisplay command
	5.46 firstHistory command
	5.47 focusToSearchBox command
	5.48 generatePac command
	5.49 getHistory command
	5.50 getVariablesForClass command
	5.51 help command
	5.52 hideLower command
	5.53 httpGet command
	5.54 httpPutFile command
	5.55 httpPutString command
	5.56 include command
	5.57 includeIf command
	5.58 increment command
	5.59 jumpToLine command
	5.60 jumpToMatch command
	5.61 kill command
	5.62 labelButton command
	5.63 lastHistory command
	5.64 loadWatch command
	5.65 macro command
	5.66 macroConsole command
	5.67 macroTrace command
	5.68 macroWait command
	5.69 mainButtonBar command
	5.70 manual command
	5.71 mapButton command
	5.72 mapKey command
	5.73 moveBrowserToTop command
	5.74 moveTn3270ToTop command
	5.75 nextCompileError command
	5.76 nextHistory command
	5.77 noSpan command
	5.78 nsLookup command
	5.79 openCommandLine command
	5.80 openExternaAuditTrailWindow command
	5.81 openExternalButtonWindow command
	5.82 openExternalExecutionTraceWindow command
	5.83 openExternalWatchWindow command
	5.84 openExternalWebBufferWindow command
	5.85 openMacroConsole command
	5.86 pafgi command
	5.87 pai command
	5.88 pin command
	5.89 preferences command
	5.90 previousCompileError command
	5.91 previousHistory command
	5.92 reloadBlackList command
	5.93 reloadWhiteList command
	5.94 reloadLists command
	5.95 removeCurrentWatch command
	5.96 resetAssertCounts command
	5.97 resetGlobalAssertCounts command
	5.98 restart command
	5.99 restartDefault command
	5.100 restoreLower command
	5.101 restoreTitle command
	5.102 retryHttpPac command
	5.103 run command
	5.104 runMacroFromUISelection command
	5.105 runUntil command
	5.106 runUntilVariableChanges command
	5.107 runWithoutDaemons command
	5.108 saveWatch command
	5.109 searchDown command
	5.110 searchFromBottom command
	5.111 searchFromTop command
	5.112 searchUp command
	5.113 selectAuditTab command
	5.114 selectExecutionTraceTab command
	5.115 selectNextTab command
	5.116 selectProcSelectionTab command
	5.117 selectSourceTab command
	5.118 selectWatchWindow command
	5.119 selectWebBufferTab command
	5.120 set command
	5.121 setBlackList command
	5.122 setBreakpointOnCurrentLine command
	5.123 setIEmode command
	5.124 setM204Data command
	5.125 setPreference command
	5.126 setStatusMessage command
	5.127 setTitle command
	5.128 setWhiteList command
	5.129 showAbout command
	5.130 showCommands command
	5.131 showFunctions command
	5.132 showIE command
	5.133 showShortcuts command
	5.134 skipPreview command
	5.135 span command
	5.136 step command
	5.137 stepOut command
	5.138 stepOver command
	5.139 toggle command
	5.140 toggleBreakpointOnCurrentLine command
	5.141 toggleInitExclude command
	5.142 toggleLower command
	5.143 top command
	5.144 trace command
	5.145 traceUntilVariableEqualsValue command
	5.146 traceValues command
	5.147 turnOffBlackList command
	5.148 turnOffDebugging command
	5.149 turnOffWhiteList command
	5.150 turnOnBlackList command
	5.151 turnOnWhiteList command
	5.152 unPin command
	5.153 unSet command
	5.154 valueDisplay command
	5.155 varDump command
	5.156 viewText command
	5.157 windowToTop command

	6 Customizing Client Operations
	6.1 Reconfiguring GUI buttons and hot keys
	6.1.1 Introducing the configurable components
	6.1.2 Setting up the ui.xml file
	6.1.3 Default settings of buttons and hot keys

	6.2 Changing the colors in Client displays
	6.3 Specifying a startup command for the Client
	6.4 Changing the location of Client work files
	6.5 Changing the font size in Client displays
	6.6 Opening an external window
	6.7 Hiding the Client's lower windows
	6.8 Seeing through Client windows
	6.9 Enforcing a minimum Client build number

	7 Using Debugger Macros
	7.1 Creating and running a macro
	7.2 Mapping a macro to a button or hot key
	7.3 Passing a command argument to a macro
	7.4 Using the console and command line
	7.5 Using the Macro Autorun feature
	7.6 Working with macro variables
	7.7 Working with Client functions
	7.7.1 &&amDaemon function
	7.7.2 &&arg function
	7.7.3 &&assertFailureCount function
	7.7.4 &&assertStatus function
	7.7.5 &&assertSuccessCount function
	7.7.6 &&blackOrWhiteList function
	7.7.7 &&buildNumber function
	7.7.8 &&concatenate function
	7.7.9 &¤tPacFile function
	7.7.10 &¤tRunningMacro function
	7.7.11 &¤tTitle
	7.7.12 &&exists function
	7.7.13 &&getMainSearchInputArea function
	7.7.14 &&getVariableOrFieldInputArea function
	7.7.15 &&globalAssertFailureCount function
	7.7.16 &&globalAssertStatus function
	7.7.17 &&globalAssertSuccessCount function
	7.7.18 &&ieMode function
	7.7.19 &&index function
	7.7.20 &&isWatched function
	7.7.21 &&length function
	7.7.22 &&numberOfBreakpoints function
	7.7.23 &&numberOfLevels function
	7.7.24 &&numberWatched function
	7.7.25 &&originalTitle
	7.7.26 &&preference function
	7.7.27 &&procName function
	7.7.28 &&prompt function
	7.7.29 &&searchResult function
	7.7.30 &&searchSuccess function
	7.7.31 &&selectedTab function
	7.7.32 &&statusMessage
	7.7.33 &&substring function
	7.7.34 &&sum function
	7.7.35 &&verifyMatch function
	7.7.36 &&verifyNoMatch function
	7.7.37 &&windowStatus function

	8 Problem Diagnosis
	8.1 Debugging the Janus Debugger
	8.2 Debugging the TN3270 Debugger
	8.3 How the Janus Debugger handles communication breaks
	8.4 How the TN3270 Debugger handles communication breaks
	8.5 Tracking Client performance
	8.6 Resolving issues when automatically maintaining IE proxy settings

	9 Installation and Configuration
	9.1 Overview
	9.2 Online Configuration
	9.2.1 Check prerequisites
	9.2.2 Authorize the Debugger
	9.2.3 Set Model 204 system parameters
	9.2.4 Define and start the Debugger Server port
	9.2.5 Define and start a client socket port (Sirius Debugger only)

	9.3 Workstation Configuration
	9.3.1 Perform preliminary tasks
	9.3.2 Run, check, and verify the Client installation
	9.3.3 Customize the Debugger configuration file
	9.3.4 Configure the web browser (Janus Debugger only)
	9.3.5 Test the end-to-end configuration

	9.4 Providing updated versions of the Debugger Client

	10 Release Notes
	index

