
Rocket Model 204
Janus Open Server

Reference Manual
Version 7.4

July 2013
JOS-0704-RM-01

Notices

Edition

Publication date: July 2013

Book number: JOS-0704-RM-01

Product version: Rocket Model 204 Janus Open Server Version 7.4

Copyright

© Rocket Software, Inc. or its affiliates 1991-2013. All Rights Reserved.

Trademarks

Rocket is a registered trademark of Rocket Software, Inc. For a list of Rocket registered
trademarks go to: www.rocketsoftware.com/about/legal. All other products or services
mentioned in this document may be covered by the trademarks, service marks, or product
names of their respective owners.

Examples

This information might contain examples of data and reports. The examples include the
names of individuals, companies, brands, and products. All of these names are fictitious and
any similarity to the names and addresses used by an actual business enterprise is entirely
coincidental.

License agreement

This software and the associated documentation are proprietary and confidential to Rocket
Software, Inc. or its affiliates, are furnished under license, and may be used and copied only in
accordance with the terms of such license.

Note

This product may contain encryption technology. Many countries prohibit or restrict the use, import, or
export of encryption technologies, and current use, import, and export regulations should be followed
when exporting this product.

Contact information

Website: www.rocketsoftware.com

Rocket Software, Inc. Headquarters
77 4th Avenue, Suite 100
Waltham, MA 02451–1468
USA
Tel: +1 781 577 4321
Fax: +1 617 630 7100

Contacting Global Technical Support
If you have current support and maintenance agreements with Rocket Software and CCA,
contact Global Technical Support by email or by telephone:

Email: m204support@rocketsoftware.com

Telephone:

North America +1 800 755 4222

United Kingdom/Europe +44 (0) 20 8867 6153

Alternatively, you can access the Rocket Customer Portal and report a problem, download an
update, or read answers to FAQs. You will be prompted to log in with the credentials supplied as
part of your product maintenance agreement.

To log in to the Rocket Customer Portal, go to:

www.rocketsoftware.com/support

——

——

——
 Janus Open Server Reference Manual

——
 Contents
——

———————
 Contents

 Proprietary Notices . ii

 Contents . v

 Summary of Changes . ix
 Sirius Mods Version 6.0 . ix
 Sirius Mods Version 4.6 . ix

 Chapter 1: Janus Overview . 1

 Janus, the Sirius Mods, and UL/SPF . 3
 Versions and compatibility . 4
 Related manuals . 5
 Related products . 6
 System requirements . 6

 Chapter 2: Janus / Connectivity Concepts 9

 Server Ports . 9
 Language Requests and RPCs . 10
 EXEC2RPC . 11
 Parameter checking . 12
 Environment Definition . 13

 Chapter 3: Janus Commands . 15

 JANUS command overview . 16
 JANUS DEFINE . 18
 ALLOCC . 20
 AUDTERM . 20
 BINDADDR xxx . 20
 BSIZE xxx . 21
 CHARSET xxx . 21
 CMD 'xxx' . 21
 EXEC2RPC . 22
 IBSIZE xxx . 22
 LANGUAGE xxx . 23
 MASTER . 23
 MSG204 xxx . 23
 MSG204L xxx . 23
 NOAUDTERM . 24
 NOUPCASE . 24

——
Janus Open Server Reference Manual v

——
Contents
——

 OBSIZE xxx . 24
 OPEN list . 25
 PRELOGINUSER userid . 25
 RAWINPUT . 26
 RAWINPUTONLY . 26
 RPCONLY . 27
 SSL . 27
 SSLBSIZE xxxx . 28
 SSLCACHE xxxx . 28
 SSLCIPH xxx . 29
 SSLCLCERT and SSLCLCERTR . 30
 SSLIBSIZE xxxx . 31
 SSLMAXAGE xxx . 32
 SSLMAXCERTL xxx . 32
 SSLOBSIZE xxxx . 33
 SSLPROT xxx . 33
 SSLUNENC . 34
 TCPKEEPALIVE . 34
 TIMEOUT xxxx . 35
 TRACE xxx . 35
 UPCASE . 36
 XTAB table . 36

 Chapter 4: Janus Open Server $Functions 37

 $SRV_BIND . 39
 $SRV_CLOSE . 41
 $SRV_DATA . 42
 $SRV_DONE . 44
 $SRV_LANGGET . 45
 $SRV_MSG . 46
 $SRV_NUMPARM . 46
 $SRV_PARMGET . 47
 $SRV_PARMLEN . 48
 $SRV_PARMNAME . 49
 $SRV_PARMNUM . 50
 $SRV_PARMSET . 51
 $SRV_PARMTYPE . 52
 $SRV_RPCNAME . 53
 $SRV_SENDROW . 53
 $SRV_SETROW . 54
 $SRV_WAIT . 55

 Chapter 5: Open Server User Language Coding Considerations 57

 Open Server User Language debugging . 57

——
vi Janus Open Server Reference Manual

——
 Contents
——

 Appendix A: Sample Sybase Client Application 59

 Appendix B: Sample Open Server Programs 67

 Retrieve/Send data with $SRV functions . 67
 Generic RPC router . 70
 Send U.L. procedure to client with $SRV functions 72

 Appendix C: Datetime Processing Considerations 75

 Datetime Formats . 76
 Valid Datetimes . 80
 Processing Dates With Two-Digit Year Values 80
 CENTSPAN . 80
 SPANSIZE . 81
 Datetime and format examples . 82
 $SRV_ Functions CENTSPAN Argument . 86

 Index . 87

 Figures

 Figure 1: Model 204 TCP/IP Connectivity using Janus 2

 Figure 2: JANUS DEFINE command syntax 18

 Figure 3: $SRV_BIND function . 39

 Figure 4: $SRV_BIND return codes . 40

 Figure 5: $SRV_CLOSE function . 41

 Figure 6: $SRV_DATA function . 42

 Figure 7: $SRV_DONE function . 44

 Figure 8: $SRV_DONE return codes . 44

 Figure 9: $SRV_LANGGET function . 45

 Figure 10: $SRV_MSG function . 46

 Figure 11: $SRV_MSG return codes . 46

 Figure 12: $SRV_NUMPARM function . 46

——
Janus Open Server Reference Manual vii

——
Contents
——

 Figure 13: $SRV_NUMPARM return codes 47

 Figure 14: $SRV_PARMGET function . 47

 Figure 15: $SRV_PARMGET return codes 48

 Figure 16: $SRV_PARMLEN function . 48

 Figure 17: $SRV_PARMLEN return codes 49

 Figure 18: $SRV_PARMNAME function 49

 Figure 19: $SRV_PARMNUM function . 50

 Figure 20: $SRV_PARMNUM return codes 50

 Figure 21: $SRV_PARMSET function . 51

 Figure 22: $SRV_PARMSET return codes 51

 Figure 23: $SRV_PARMTYPE function . 52

 Figure 24: $SRV_PARMTYPE return codes 52

 Figure 25: $SRV_RPCNAME function . 53

 Figure 26: $SRV_SENDROW return codes 53

 Figure 27: $SRV_SETROW function . 54

 Figure 28: $SRV_SETROW return codes 55

 Figure 29: $SRV_WAIT function . 55

 Figure 30: $SRV_WAIT return codes . 56

——
viii Janus Open Server Reference Manual

——
 Summary of Changes
——

——————
 Summary of Changes

 This section describes significant changes to the documentation. Usually, these
 changes correspond to enhancements made to the underlying product, although they
 might be simple documentation improvements.

 Sirius Mods Version 6.0

 The following changes correspond to changes in Janus Open Server in version 6.0 of
 the Sirius Mods.

 ● DEBUG keyword replaced by TRACE

 ● AUDTERM replaced by NOAUDTERM as port default (JANUS DEFINE), and now
 applicable to OPENSERV ports

 Sirius Mods Version 4.6

 The following changes correspond to changes in Janus Open Server in version 4.6 of
 the Sirius Mods.

 ● Manual converted for layout changes

——
Janus Open Server Reference Manual ix

——
Summary of Changes
——

——
x Janus Open Server Reference Manual

——
 Janus Overview
——

——————
CHAPTER 1 Janus Overview

 Janus is a family of products that provides direct bi-directional access, via a TCP/IP
 network, between Model 204 and programs running on other platforms. One of the
 Janus products, Janus TCP/IP Base, can be used by itself, and is also required by the
 other Janus products, each of which is optional. The Janus product family consists of
 the following:

 Janus TCP/IP Base
 Janus TCP/IP Base provides TCP/IP connectivity to Model 204.

 It also includes a Janus IFDIAL Library for access to Model 204 similar to
 IFDIAL, enabling TCP/IP access to Model 204 from Unix workstations, DOS
 and Windows-based PCs, and other machines that support the C language
 and the TCP/IP protocol layers. The library has C routines for
 communication with a Model 204 Online and C programs that can be used to
 communicate with a Model 204 Online without additional programming,
 similar to the BATCH2 utility.

 Janus Open Server
 Janus Open Server provides a set of $functions that allow Model 204 to be a
 server in response to Sybase CT and DB-Library Open Client calls and SQL
 EXECUTE statements.

 A server application consists of a set of User Language procedures which
 are invoked by a client application's request. Client applications request the
 execution of a procedure via Sybase remote procedure calls (RPCs), which
 are implemented as part of Sybase's DB-Library Open Client code. The
 Sybase client sends the name of a stored procedure and an arbitrary
 number of parameters, and the Janus server executes the corresponding
 User Language procedure and returns the requested data in Model 204
 images (which appear as “rows” to the client) or as RPC return parameters.

 Janus Open Client
 Janus Open Client provides a set of $functions that allow Model 204
 applications to be client applications to Sybase SQL Servers or Open
 Servers. A Model 204 client application sends RPCs or language requests
 (for example, SQL) to a Sybase open server or Sybase SQL server, and
 retrieves the results for further processing. It is possible for a User
 Language application to act as a client to several different servers
 simultaneously, and it is possible for a server application to simultaneously
 act as a client application.

——
Janus Open Server Reference Manual 1

——
Janus Overview
——

 Janus Specialty Data Store
 Janus Specialty Data Store provides access to Model 204 from Sybase
 Adaptive Server OmniConnect or from the older Sybase Omni SQL Server
 or Gateway. This includes optimized translation of SQL into User Language
 and a cataloging facility for mapping Model 204 files to SQL structures. A
 user application issues SQL requests, which are routed to Sybase Omni and
 then routed to Janus Specialty Data Store, which provides the SQL response
 using data from one or more Model 204 files.

 The cataloging facility, JANCAT, maps Model 204 files and fields onto a
 table/column structure, which Sybase Omni can then re-map onto its own
 table/column definitions. Janus Specialty Data Store does not require
 UNIQUE attributes nor any other alteration of your Model 204 files.

 Janus Web Server
 Janus Web Server is a full-featured Hyper-Text Transmission Protocol (http)
 server for the World Wide Web (WWW). It provides an interface to all WWW
 data types stored in Model 204 procedures or database files. It can pass
 plain text, Hyper-Text Markup Language (HTML), and binary data types to
 web browser applications, and it can control access to secured, high-
 performance applications. Janus Web Server also provides a full API for
 building web applications in User Language.

 Janus Network Security
 Janus Network Security supports the SSL (Secure Sockets Layer) protocol,
 which provides secure communications for users of Janus products. It can
 be used with any Janus product, but it is most commonly used to secure
 communications of Janus Web Server applications. Users of web browsers
 communicating with such applications can be confident that their
 communications will be encrypted, and the identity of the server with which
 they are communicating is authenticated.

 Using Janus products involves the JANUS Model 204 command, which is documented
 in the Model 204 documentation wiki (see
 http://m204wiki.rocketsoftware.com/index.php/JANUS_command). This command
 provides Janus port definition, starting, stopping, and monitoring of ports; for Web
 implementations it also defines the Web Server rules.

——
2 Janus Open Server Reference Manual

——
 Janus Overview
——

SQL and Omni SQL
applications

Open client /

Applications
Open Server

World Wide Web
“Universal Client"
applications

Model 204

JANUS

TCP/IP

 Model 204 TCP/IP Connectivity using Janus

 The above figure shows that with TCP/IP as the communications protocol, Janus
 provides high-speed bi-directional access to Model 204 from any client.

 1.1 Janus, the Sirius Mods, and UL/SPF

 Janus Open Server is part of the Janus family of products that provides connectivity to
 the Model 204 database. A site that has Janus Open Server must have the Janus
 TCP/IP Base because without it, it is impossible to use Janus Open Server. A Janus
 Open Server site might also have one or more of the other products in the Janus family,
 though no others are required. Note that if Limited Janus Web Server is available, then
 Janus TCP/IP Base is automatically authorized. Limited Janus Web Server is a free,
 restricted version of Janus Web Server; they are both documented in the Model 204
 documentation wiki (see
 http://m204wiki.rocketsoftware.com/index.php/Janus_Web_Server).

 The Janus family of products is itself made up of two distinct components:

——
Janus Open Server Reference Manual 3

——
Janus Overview
——

 ● A collection of object code enhancements to the Model 204 database-engine
 nucleus.

 Prior to version 7.5 of Model 204, these enhancements were distributed as
 components of the Sirius Mods and made up a collection of products including those
 in the Janus family. The Sirius Mods included many non-connectivity related
 products (such as Fast/Backup, Fast/Reload, and the Fast/Unload User Language
 Interface) not part of the Janus family. No Sirius Mods products are required to run
 Janus Open Server other than itself and Janus TCP/IP Base.

 ● A collection of Model 204 procedures that contain User Language, documentation,
 and assorted other data.

 These Model 204 procedures install and implement the components of the User
 Language Structured Programming Facility, also known as UL/SPF. All the UL/SPF
 files reside in the SIRIUS procedure file, which also contains code and data useful
 to Janus users including Janus Open Server users.

 UL/SPF also includes files that are components of non-connectivity related products
 such as SirPro, SirScan, and SirMon. No other UL/SPF products are required to run
 Janus Open Server, or any other Janus product, for that matter.

 Thus, to install Janus Open Server, both the Sirius Mods and UL/SPF must be installed,
 following the instructions in the Sirius Mods Installation Guide and the UL/SPF
 installation guide
 (http://m204wiki.rocketsoftware.com/index.php/UL/SPF_installation_guide),
 respectively. If the Sirius Mods are installed, all other products owned by the installing
 site that are part of the Sirius Mods will also be installed. Similarly, when UL/SPF is
 installed, all other products owned by the installing site that are part of UL/SPF will be
 installed.

 1.2 Versions and compatibility

 Because the Sirius Mods and UL/SPF have somewhat different release cycles, the
 version numbers for these two components will often differ in a distribution. For
 example, version 7.6 of the Sirius Mods might be shipped with version 7.3 of UL/SPF.
 All the products in UL/SPF depend on certain features being present in the version of the
 Sirius Mods that is installed in the Model 204 load module under which UL/SPF is
 running. This implies, obviously, that the Sirius Mods must be installed for any UL/SPF
 component to operate correctly. The Sirius Mods version must match or be higher than
 the UL/SPF version number.

 The Sirius Mods however, do not depend on any particular features of the UL/SPF
 product, merely the presence of the UL/SPF SIRIUS file. The SIRIUS file contains the
 code for the sample Janus Web Server, and Janus port definitions have default rules
 that call to this file.

——
4 Janus Open Server Reference Manual

——
 Versions and compatibility
——

 Any User Language application (including UL/SPF) that uses the Sirius Mods runs
 correctly on subsequent versions of the Sirius Mods. It is, thus, always possible to
 upgrade the Sirius Mods without having to worry about upgrading UL/SPF. This is not to
 say that this is always a good idea, only that it is possible and that the installed version
 of a UL/SPF product will continue to run as it had before the Sirius Mods upgrade.

 While the Janus family of products has a UL/SPF component, most of the critical code is
 actually in the Sirius Mods — object code enhancements to the Model 204 nucleus. The
 UL/SPF component of the Janus family consists mostly of utilities, examples, and
 documentation. Because of this, the version number of a Janus product is generally
 considered to be the version of the Sirius Mods in which it is contained.

 Any documentation that requires at least a particular version of the Sirius Mods or
 UL/SPF will be clearly marked to indicate this. For example, a JANUS DEFINE
 parameter that is only available in versions 7.7 and later will have a sentence such as
 “This parameter is only available in version 7.7 and later of Sirius Mods” in its
 documentation. If a feature, $function, command, or parameter is not indicated as
 requiring any specific version of the Sirius Mods, it can be assumed that it is available,
 as documented, in all versions of Janus Open Server.

 1.3 Related manuals

 As mentioned in “Janus, the Sirius Mods, and UL/SPF” on page 3, Janus Open Server
 requires the installation of both the Sirius Mods (prior to version 7.5 of Model 204) and
 UL/SPF. As such, the person responsible for the installation of Janus Open Server
 should refer to the Sirius Mods Installation Guide and the UL/SPF installation guide
 (http://m204wiki.rocketsoftware.com/index.php/UL/SPF_installation_guide). In
 addition, documentation of Sirius Mods error messages
 (http://m204wiki.rocketsoftware.com/index.php/Category:Sirius_Mods_messages)
 might be useful to application programmers.

 As stated in on page 3, Janus Open Server depends on the Janus TCP/IP Base product,
 and there is much useful information starting at
 http://m204wiki.rocketsoftware.com/index.php/Janus_TCP/IP_Base.

 You are authorized to use a number of Sirius $functions along with Janus Open Server,
 including procedure processing $functions and $list processing $functions. Unless
 otherwise stated, these functions, and any $functions mentioned in this manual that are
 not documented here and that are not standard Model 204 $functions, are documented
 in the documentation wiki (see
 http://m204wiki.rocketsoftware.com/index.php/List_of_$functions).

——
Janus Open Server Reference Manual 5

——
Janus Overview
——

 1.4 Related products

 The Janus TCP/IP Base must be installed to use Janus Open Server. This is the only
 other product that must be installed in a Model 204 region to use Janus Open Server.

 If security is a concern, whether it be internet or intranet security, SSL (Secure Socket
 Layer) is the de-facto standard for providing encryption and validation security for web-
 based applications. The Janus Network Security product provides SSL support for
 Janus Open Server (as well as other products in the Janus family).

 One of the convenient debugging features available with Janus Open Server is a
 TRACE facility which logs Janus request/response information to the Model 204 journal.
 In addition, most application debugging in a Model 204 environment is done on a 3270
 or 3270 emulator — but since Janus Open Server applications are not associated with a
 3270, debugging techniques geared toward a 3270 will not work for them, so most of
 their debugging information goes to the Model 204 journal. If you don't have good tools
 to view the journal, using it for debugging is a tedious process. AUDIT204 and ISPF
 provide some capabilities for viewing the journal, but they have many inherent
 shortcomings and inefficiencies. Because of this, it is strongly recommended that any
 site that installs Janus Open Server also install SirScan.

 SirScan is a product in the UL/SPF family that facilitates the interactive extraction of
 journal information within the Model 204 region. It does so via a user-friendly web
 browser or full-screen 3270 interface and low-level routines to provide efficient access to
 in-memory and on-disk journal buffers. SirScan can provide an order of magnitude
 improvement in debugging efficiency for non-terminal-related Model 204 processes such
 as Janus Open Server, Horizon, BATCH2 and other Janus server applications.

 1.5 System requirements

 The current release of Janus Open Server requires the following components to run:

 ● Mainframe operating systems:

 ▪ Any supported version of z/OS
 ▪ z/VSE Version 4 or later or
 ▪ CMS (releases currently supported by IBM) running under
 any supported version of z/VM

 ● Model 204 Version 6 Release 1 or later

 ● One of the following mainframe TCP/IP implementations:

 ▪ IBM TCP/IP for z/VM or z/OS
 ▪ InterLink TCP/IP for MVS - Version 1.1 or later

——
6 Janus Open Server Reference Manual

——
 System requirements
——

 ▪ TCP/IP for VSE (Connectivity Systems, Inc., Columbus, OH) - Version 1
 Release 4.0 or later

 One of the following is required for a client communicating with Janus Open Server:

 Sybase DB-Library Release 4 or later

 any client software that uses TDS release 4 or later

——
Janus Open Server Reference Manual 7

——
Janus Overview
——

——
8 Janus Open Server Reference Manual

——
 Janus / Connectivity Concepts
——

——————
CHAPTER 2 Janus / Connectivity Concepts

 2.1 Server Ports

 In order for a client application to communicate with a server application it must have a
 way to identify the server application on the network. Under the TCP/IP protocols the
 identity of a server has two parts. The first part identifies the machine on which the
 server runs. This part is called the machine's (or host's) IP address. The second part
 distinguishes the server application from other applications on the host. This part is
 called the port number.

 A host's IP address is a 32 bit unsigned binary number that is displayed in “dotted”
 format, i.e. 198.242.244.33. To avoid having to refer to these types of addresses most
 networks have nameservers or names files that map names to IP addresses. That way
 a client application can connect to a host by a name (such as IBM3090) rather than an
 address.

 A port number is a number from 1 to 65535 that is assigned to every server application
 that is available on a host. In the case of a Janus IFDIAL Server or a Janus Open
 Server, this port number is specified by the second parameter on the JANUS DEFINE
 command. Since this port number must be unique for the host, it is impossible to start
 (JANUS START) a port with a port number that matches a port number for any other
 application running on the same host. This includes any Janus port on the same or
 different Online. This also includes any other non-Janus server application. For
 example, port number 23 is almost always used by the telnet server. An attempt to start
 a Janus server for port number 23 will undoubtedly encounter a port in use situation and
 be unable to start. On a system with several local server applications, or more than one
 Online (maybe test and production) with several Janus ports, a simple strategy to keep
 port numbers from conflicting is to simply assign a range of ports to each Online. For
 example, port numbers 300-399 might be reserved for the test Online and port numbers
 400-499 might be reserved for the production Online.

 Sybase provides a way of mapping an application name to a host name (or address) and
 port number. This makes it possible to access a specific application by specifying only a
 single application name. This mapping is done through a mapping file called the
 interfaces file on Unix workstations, and through entries in WIN.INI under Microsoft
 Windows. For more information on this mapping refer to the Sybase DB/Library
 manuals.

——
Janus Open Server Reference Manual 9

——
Janus / Connectivity Concepts
——

 2.2 Language Requests and RPCs

 Janus Open Server is designed to communicate with clients that use the Sybase Open
 Client protocol. These clients are typically designed to work with a Sybase SQL Server
 or its equivalent. Because of some significant differences between Sybase SQL Server
 and Janus Open Server, the Janus Open Server programmer should be aware of some
 issues that can be ignored by a Sybase SQL Server programmer.

 Specifically, the Janus Open Server programmer must be aware of the difference
 between Language Requests and RPCs. When a Sybase Open Client is
 communicating with a server it sends requests to the server. These requests will be
 either Language Requests or RPCs.

 A Language Request is simply a stream of character data to be compiled by the server.
 These Language Requests are almost always SQL or Transact-SQL commands and
 statements. Janus Open Server provides no general facility to interpret Language
 Requests. It does, however, interpret a small subset of Transact-SQL statements when
 the EXEC2RPC parameter is specified in a port definition. Language Requests can also
 be retrieved in a User Language procedure (using $SRV_LANGGET) and then
 interpreted by the User Language.

 An RPC (Remote Procedure Call) is a stream of binary data that contains the name of a
 remote procedure and parameters for that remote procedure. RPCs require no parsing
 by a server and (generally) no compilation. Because of this, RPCs are the
 recommended way of issuing requests when performance is an issue, whether the
 server is a Sybase SQL Server or a Janus Open Server.

 RPCs can come from one of three places. One, they can be explicitly coded in a C
 program using DB/Library. Second, they can be created by a third-party client package.
 Finally, they can be created from the compilation of an EXEC (or EXECUTE) Transact-
 SQL statement on a Sybase SQL Server. Because most third party clients do not
 generate RPCs and most applications are not coded in C, the most common source of
 RPCs is EXECUTE statements. Because of this, the term RPC is often used
 interchangeably to refer to EXECUTE statements. This is, in fact, incorrect. When a
 client sends an EXECUTE statement to a server that EXECUTE statement is actually
 part of a Language Request. When the server compiles this Language Request the
 EXECUTE statement is converted to an RPC that might be sent to another server at
 execution time.

 The distinction between Language Requests and RPCs and the superior support for
 RPCs in Janus Open Server means that if possible, a client should be coded to send
 RPCs to the server. If this is not possible (because of limitations in the client software),
 then the server port should be set up with the EXEC2RPC parameter and EXECUTE
 statements should be used in the client requests. In any case, Transact-SQL
 statements not supported in the EXEC2RPC conversion of Language Requests should
 not be sent by the client unless User Language is written to parse and process these
 statements.

——
10 Janus Open Server Reference Manual

——
 EXEC2RPC
——

 2.3 EXEC2RPC

 The EXEC2RPC parameter for Janus Open Server ports allows a certain subset of
 language requests to be mapped to RPCs. The key to this mapping is the similarity
 between the Transact-SQL EXEC (or EXECUTE) statement and RPCs. This similarity is
 not, of course, coincidence. EXEC statements are converted into RPCs by the
 Transact-SQL compiler. For a language request to be convertible into an RPC, it must
 contain an implicit or explicit EXEC statement. In addition to the EXEC statement a few
 other Transact-SQL statements are acceptable in a language request that can be
 converted into an RPC. These statements are DECLARE, SELECT and SET. In
 addition, Janus Open Server accepts implied EXEC statements if the language request
 begins with an RPC. That is, the request

 exec ulproc 18, 19

 could be written

 ulproc 18, 19

 The primary limitation on the EXEC (or EXECUTE) statement is that only one is allowed
 per language request, whether implied or explicit. The following language request would
 be rejected by a Janus Open Server EXEC2RPC port because it contains two EXEC
 statements.

 exec ulproc 18, 19
 exec retrieve “elmo”, 178945

 All forms of the DECLARE statement are accepted, with the exception that certain
 datatypes are currently unsupported by Janus Open Server. The unsupported datatypes
 are bit, nchar, and nvarchar.

 All forms of the SET statement are accepted, with the limitation that most set parameters
 have no effect on Janus Open Server. In fact, the only parameters that do anything on a
 Janus Open Server are noexec, parseonly, nocount and rowcount. The noexec and
 parseonly parameters are equivalent on a Janus Open Server.

 The only form of the SELECT statement that is accepted on an EXEC2RPC port is the
 form that assigns a constant value to a variable. The following SELECT statements are
 all valid on an EXEC2RPC port :

 select @grover = 22.17, @ernie = $12
 select @count = “Transylvania”
 select @snuffleupagus = 'Cabbages', @bert = 'oatmeal'

 Any form of the SELECT statement that would result in data being returned to the client
 or data being retrieved from a database is invalid on an EXEC2RPC port. In addition,
 assignments from variables or expressions is also invalid on an EXEC2RPC port. The
 statement

 select field1, field2
——
Janus Open Server Reference Manual 11

——
Janus / Connectivity Concepts
——

 is invalid because it requires a retrieval of data from a database. The statement

 select “Praire Dawn”

 is invalid because it results in the return of data (“Praire Dawn”) to the client. The
 statement

 select @bert = @ernie

 is invalid because the source of the assignment is a variable. The statement

 select @cyranose = 12 + 18 * 2

 is invalid because the source of the assignment is an expression (rather than a constant
 value).

 In addition to the above limitations, no statements can follow an EXEC statement in an
 EXEC2RPC language request. That is, the following program is invalid because there is
 a set statement after the EXEC statement.

 declare @cookie varchar(18)
 select @cookie = 'allistair'
 exec monster @cookie
 set rowcount 999999

 Finally, all limitations to Transact-SQL that apply when running against a SQL Server
 also apply when running against a Janus Open Server port. This means that a language
 request that runs against a Janus Open Server could be run against a Sybase SQL
 Server if the RPC specified on the EXEC statement is implemented on the Sybase SQL
 Server.

 2.4 Parameter checking

 Validity checking for RPC parameters in a Janus Open Server is the responsibility of the
 User Language application running on the EXEC2RPC port. For example, if a User
 Language application expects a return parameter called @kermit as the first parameter
 to an RPC called “bigbird”, the following request would still be treated as valid by Janus
 Open Server.

 exec bigbird @grover = 18 output

 Whether the User Language running on a Janus Open Server port should do parameter
 validity checking is an issue that must be addressed on a site by site (and maybe
 application by application) basis. One philosophy might be that the individual(s) coding
 the client application want them to work correctly so it is up to these individuals to
 determine the correct parameters for any RPC and to suffer the consequences of any
 miscoding. This is reasonable as long as an RPC is only used by one application that is

——
12 Janus Open Server Reference Manual

——
 Parameter checking
——

 written at the same time as the client, or if the same programmer or programming team
 is responsible for both the client application and the RPCs. If, on the other hand, an
 RPC is to be reused by many different client applications it might be worth the
 programming overhead to validate parameters.

 2.5 Environment Definition

 Once the Janus object modules are linked into Model 204, the system manager must
 modify the CCAIN stream for Janus operation.

 The following parameters should be set by all Janus sites:

 TCPSERV name of the TCP/IP server address space (MVS) or virtual machine
 (CMS). If not specified, this parameter defaults to TCPIP.

 TCPTYPE specifies the type of TCP/IP network to which Model 204 is connected.
 The valid values are

 IBM to specify IBM TCP/IP (the default).
 INTERLNK to specify InterLink TCP/IP.
 KNET to specify K-Net TCP/IP.

 Any Janus session which treats the Model 204 address space as a server — that is,
 IFDIAL or Open Server sessions — requires the same resources as any user session,
 including a Model 204 server and a thread on which to run. A special facility called an
 SDAEMON (pronounced ess-demon), makes these resources available.

 SDAEMONs are special users that are activated when Model 204 establishes a Janus
 Open Server or IFDIAL connection. SDAEMONs are also used by other $functions,
 methods, and Model 204 products. Janus IFDIAL and Server support require an
 SDAEMON for each active connection. This means that at least as many SDAEMONs
 must be defined in the Online as the maximum number of concurrent IFDIAL and Janus
 Open Server connections that must be supported. SDAEMON definition is explained in
 the Model 204 documentation wiki (see
 http://m204wiki.rocketsoftware.com/index.php/Sdaemons).

 Most of the communication with the TCP/IP address space is accomplished via a PST.
 Because of this, NSUBTKS may need to be increased by 1 before using Janus.

——
Janus Open Server Reference Manual 13

——
Janus / Connectivity Concepts
——

——
14 Janus Open Server Reference Manual

——
 Janus Commands
——

——————
CHAPTER 3 Janus Commands

 The Janus command set (simply referred to as "Janus commands") consists of
 commands and subcommands that begin with the string JAN. The two Janus
 commands currently supported are JANUS and JANUSDEBUG. For a full description
 of the Janus commands, see
 http://m204wiki.rocketsoftware.com/index.php/JANUS_command and
 http://m204wiki.rocketsoftware.com/index.php/JANUSDEBUG_command. The
 manual you are reading describes the commands and $functions that are specific to
 Janus Open Server.

 You use Janus commands to:

 ● Define Model 204 as a server on the TCP/IP network. Janus commands set port
 numbers for your Janus server applications and start, stop, and monitor Janus
 activity in the Model 204 address space.

 ● Define remote servers to the Model 204 client for access by Janus Open Client
 applications and Janus Sockets client applications, and define which remote hosts
 can establish connections with Janus Specialty Data Store, Janus Open Server, and
 Janus Sockets.

 ● Add security to Janus ports using Secure Sockets Layer (SSL) or Transport Layer
 Security (TLS) to provide encrypted communications.

 Janus commands require the executing user to have System Manager privileges. The
 JANUSDEBUG command, which can be issued by any logged-in user, is an exception.
 Janus commands can also be issued as operator commands (on the Online virtual
 console under VM) or as replies to the HALT message under OS/390.

 Janus commands make use of the following wildcard characters:

 * An asterisk represents any string of characters.
 ? A question mark represents any character.
 " A double quote escapes wildcard translation of the special character that
 follows it.

 For example, the following command starts all Janus ports whose names begin with the
 string BA (like BART, BARNEY, BALES, BAY):

 JANUS START BA*

——
Janus Open Server Reference Manual 15

——
Janus Commands
——

 The following command drains all Janus ports whose names are three characters long,
 beginning with BA (BAY, BAD, BAX, etc.):

 JANUS DRAIN BA?

 The following command starts all Janus ports whose names end in ? (WHODONEIT?,
 WHERES_THE_BEEF?, WHAT?_ME_WORRY?, WHO_YA_GONNA_CALL?, etc.):

 JANUS START *"?

 3.1 JANUS command overview

 The principal command of the Janus command set is the JANUS command, which
 consists of a set of mutually exclusive subcommands. To execute a subcommand, you
 specify it with the prefix JANUS: for example, JANUS DEFINE ..., JANUS STATUS ...,
 etc.

 The following list shows the JANUS subcommands with a brief description of what they
 do. For more information about the subcommands not described in this manual, see
 http://m204wiki.rocketsoftware.com/index.php/Janus_commands in the Model 204
 documentation wiki.

 Subcommand execution requires System Manager privileges.

 ADDCA Adds a trusted certifying authority's certificate to a port.

 CHARSET Specifies the default character set.

 CLSOCK Specifies rules to allow a User Language program to access a
 CLSOCK port.

 CONFIGURATION Displays global configuration values.

 DEFINE Defines a Janus port.

 DEFINEIPGROUP Defines a grouping of IP addresses for web access control.

 DEFINEREMOTE Defines a remote server for Janus Open Client, and associates it
 with a Janus OPENSERV or SDS port.

 DEFINEUSGROUP Defines a grouping of user IDs for web access control.

 DELCA Deletes a trusted certifying authority's certificate from a port.

 DELETE Deletes a port definition.

 DELETEIPGROUP Deletes a grouping of IP addresses.

——
16 Janus Open Server Reference Manual

——
 JANUS command overview
——

 DELETEREMOTE Deletes an association between a remote server and a Janus
 OPENSERV or SDS port.

 DELETEUSGROUP Deletes a grouping of user IDs.

 DISPLAY Displays Janus port definitions.

 DISPLAYCA Displays the contents of a trusted certifying authority's certificate.

 DISPLAYREMOTE Displays remoter server definitions.

 DISPLAYSOCK Displays CLSOCK and SRVSOCK port rules.

 DISPLAYWEB Displays WEBSERV port rules.

 DISPLAYXT Displays translate table definitions.

 DOMAIN Specifies the domain; used with IBM TCP/IP to resolve
 unqualified host names.

 DRAIN Prevents new connections to port and stops port when last
 connection is closed.

 FORCE Breaks all connections to port and stops port when last
 connection is closed.

 FTP Specifies Janus FTP Server processing rules.

 LANGUAGE Specifies default Janus Open Server language.

 LIMITS Displays the Janus connection limits for an Online.

 LOADXT Loads or reloads a translate table and, optionally, an entity
 translate table.

 NAMESERVER Specifies IP address and port number of the domain name
 server used with Janus Sockets CLSOCK applications and
 Janus Open Client applications; only used with the IBM TCP/IP
 interfaces.

 RELOAD Reloads the Model 204-to-SQL mappings from the JANCAT file
 for a Janus Specialty Data Store port.

 SRVSOCK Specifies rules that determine which SRVSOCK connections to
 allow.

 SSLSTATUS Displays SSL (Secure Sockets Layer) statistics for SSL ports.

 START Makes a port available for connections.

——
Janus Open Server Reference Manual 17

——
Janus Commands
——

 STATUS Displays port status.

 STATUSCA Displays the status of a trusted certifying authority's certificate.

 STATUSREMOTE Displays status of remote servers.

 TCPLOG Stores all input and output streams to and from a port.

 TRACE Changes trace settings for a port or for specific IP addresses
 connected to a port.

 TSTATUS Displays thread utilization statistics.

 WEB Specifies Janus Web Server processing rules.

 3.2 JANUS DEFINE

 The JANUS DEFINE command is used to specify the characteristics of a Janus Open
 Server port as well as any other Janus port. It defines the usage of the named port as
 one of the following:

 ● Access by IFDIAL clients
 ● Open Server or Open Client connections
 ● Specialty Data Store access
 ● Web access
 ● FTP server connections
 ● Telnet server connections
 ● Generic Sockets usage — with the Model 204 online either requesting (CLSOCK) or
 accepting (SRVSOCK) the connection
 ● Connection between the Janus Debugger or TN/3270 Debugger workstation GUI
 and programs being debugged in Model 204

 For any except a CLSOCK or DEBUGGERCLIENT port, this subcommand associates a
 service with a TCP/IP port number.

 Among the characteristics specified by JANUS DEFINE is whether the port will use
 Secure Sockets Layer (SSL) for encrypted communications.

 JANUS DEFINE portname portnum type maxcon other_parms...

 JANUS DEFINE command syntax

 Where each of the first four parameters is positional and required:

——
18 Janus Open Server Reference Manual

——
 JANUS DEFINE
——

 portname A 1- to 30-character name by which the port is identified. It is used on
 other JANUS subcommands, such as JANUS START and JANUS
 DISPLAY.

 portnum The TCP/IP port number at which the service is available. portnum is
 the server port number, and it must be between 1 and 65535, inclusive.
 This number is used by client applications on the network when they
 require access to the Model 204 server. The server port number must
 be unique on the host. Several “well-known” port numbers for various
 TCP/IP services (for example, 53 for nameserver) should be avoided.
 For a discussion of server ports, see
 http://m204wiki.rocketsoftware.com/index.php/Defining_server_ports.

 type Port type. For Janus Open Server ports, specify OPENSERV.

 maxcon Maximum number of simultaneous active connections to be allowed on
 the port. This number must be less than or equal to the number of
 TCP/IP connections for which the site is licensed.

 If you are defining multiple ports for your site, the sum of the maxcon
 connections you define is allowed to be greater than the number for
 which the site is licensed. In this case, Janus Web Server will
 automatically prevent any connection that would exceed the site license
 limit.

 For Janus Open Server, note that a server-to-server connection requires
 an extra connection for the site handler. Thus, a single connection to a
 remote server would use two connections, while 10 connections to a
 remote server would use 11.

 There are no restrictions on the allowed values for maxcon, but licensed
 thread limits are still enforced at the time a connection is made.

 You can use the JANUS TSTATUS command to view the thread usage
 and connection limits for your port, and you can use the JANUS LIMITS
 command to view similar information for your Online.

 other_parms A set of blank-delimited parameters that describe the characteristics of
 and processing to be performed on the port. These parameters are
 keywords, sometimes followed by values. They are all optional, except:

 ● for OPENSERV ports, CMD is required

 All the parameters allowed on the JANUS DEFINE command are documented in the
 documentation wiki at
 http://m204wiki.rocketsoftware.com/index.php/JANUS_DEFINE#JANUS_DEFINE_parameters
 For your convenience, only those applicable to port definitions used with Janus Open
 Server are described in the following subsections.

——
Janus Open Server Reference Manual 19

——
Janus Commands
——

 3.2.1 ALLOCC

 This parameter indicates that input, output and request buffers are to be allocated when
 a connection is established and are to be freed when the connection is closed. If
 ALLOCC is not specified, all necessary buffers are allocated when the JANUS START
 command is executed and are kept until the port is stopped, after a JANUS DRAIN or
 JANUS FORCE command. All buffers are allocated above the line using space
 reserved by SPCORE.

 3.2.2 AUDTERM

 This parameter is used to control whether the server thread sends “non-compiler
 terminal output” to the audit trail. Compiler terminal output is always sent to the audit
 trail. Any terminal output sent to the audit trail is sent as RK lines.

 AUDTERM specifies that terminal output is sent to the audit trail; NOAUDTERM
 (“NOAUDTERM” on page 24), which is the default port setting, specifies that (non-
 compiler) terminal output is not sent to the audit trail.

 Note that some "print output" can be "captured" on a $list
 (http://m204wiki.rocketsoftware.com/index.php/$lists), a Janus Socket, or a USE
 output stream, and thus it would not be sent as terminal output — to the audit trail or
 anywhere else. For further description of terminal output, Starting with version 6.0, this
 parameter applies to all Janus “server” port types, and the default setting is
 NOAUDTERM. Prior to this, the parameter only applied to WEB ports, and the default
 setting was AUDTERM.

 This introduces a small incompatibility. Starting with version 6.0, compared to earlier
 versions, any WEB port connection without an explicit AUDTERM or NOAUDTERM will
 probably generate fewer audit trail lines, as will any SDS or OPENSERV port. This
 should be a benefit, since most of this output is either uninteresting or already logged to
 the audit trail as ER, AD or MS lines. Logging these messages as RK lines as well is
 just a waste of journal space and I/O and makes application diagnosis and debugging
 from the audit trail more difficult because of the extra noise data. For WEB,
 OPENSERV, or SRVSOCK applications that wish to explicitly audit information, the User
 Language AUDIT statement should be used, not the PRINT statement.

 3.2.3 BINDADDR xxx

 This parameter specifies the IP address to which the port will be bound, if the host
 (machine) on which Model 204 is running supports multiple IP addresses. The IP
 address must be an IP address of the host. If BINDADDR is not specified, the port binds
 the port number for all IP addresses associated with the host; that is, it can be accessed
 via any IP address associated with the host.

——
20 Janus Open Server Reference Manual

——
 JANUS DEFINE
——

 This parameter only really makes sense on a host with more than one IP address. For
 example, if a host on which an Online is running has IP addresses 198.242.244.47 and
 198.242.244.130, a BINDADDR 198.242.244.47 specification indicates that the port
 can only be reached through IP address 198.242.244.47.

 This parameter is especially useful for allowing a single mainframe host or even an
 Online to act as more than one web server without the inconvenience of having port
 numbers on URLs. This can be done because there can be multiple port 80's (the
 default web port number) on the host, each accessed by its indicated BINDADDR. The
 separate IP addresses could, in turn, be associated with different DNS host names even
 though these separate names refer to the same underlying machine.

 Note that there is not likely to be much, if any, performance benefit to having multiple
 Janus ports with the same port number but different BINDADDRs in the same Online.
 There might certainly be, however, some organizational advantages to running such a
 configuration.

 3.2.4 BSIZE xxx

 This parameter specifies the size of the TCP/IP input and output buffers. The default is
 4096 for IBSIZE and 8192 for OBSIZE. BSIZE is a shorthand way of specifying both
 IBSIZE and OBSIZE when their sizes are the same.

 3.2.5 CHARSET xxx

 This parameter indicates, to the remote host, the character set being used by Janus.
 This allows a port-specific override of either the default character set or the character set
 specified on the JANUS CHARSET subcommand. The default character set is iso_1.
 CHARSET has no effect on the operation of any application in Model 204. The name of
 the specified character set is simply forwarded to the remote host.

 3.2.6 CMD 'xxx'

 This parameter specifies the Model 204 commands to be executed after the files and
 groups specified in the OPEN parameter (“OPEN list” on page 25) are opened. Multiple
 commands must be separated by the word "AND," and any command that contains
 blanks must be enclosed in quotes.

 CMD may span more than one line — continued with a hyphen (-) — but the total length
 of commands plus one overhead byte per command cannot exceed 255 bytes.

 For an OPENSERV, SRVSOCK, or TNSERV port, the commands specified by CMD
 specify the processing performed for each connection to the port. If the user logs off and
 logs on again during the same connection, the CMD command(s) are not executed.
 Because of this, using AUTOSYS is probably preferable to using CMD parameters for
 most TNSERV applications.

——
Janus Open Server Reference Manual 21

——
Janus Commands
——

 For SDS ports, the commands are executed before the port begins acting as a Specialty
 Data Store. It is strongly recommended that this command be used mainly to set user
 table sizes and user parameters for SDS ports. This might be necessary because Janus
 Specialty Data Store might have very different table size requirements than other
 applications running on an sdaemon.

 For WEB ports the commands specified by CMD are executed after all rules are
 executed except the ON rules. The specified commands can be used to invoke an
 APSY subsystem when using the Janus Web UL API or to reset UTABLEs and other
 parameters.

 Examples of some valid CMD clauses:

 JANUS DEFINE MYWEB 80 WEBSERV 10 CMD WEBAPSY
 JANUS DEFINE SDS204 1777 SDS 20 -
 CMD 'R MCPU 5000' AND 'UTABLE LQTBL 1000' -
 AND 'R PROMPT 16'
 JANUS DEFINE OPENXXX 1234 OPENSERV 15 -
 OPEN FILE OPENPROC CMD 'R PROMPT 16' AND -
 OPENAPSY

 This parameter is required for OPENSERV port types.

 3.2.7 EXEC2RPC

 This parameter indicates that language requests should be converted to RPCs. The
 types of language requests that can be translated into an RPC are described in
 “Language Requests and RPCs” on page 10.

 EXEC2RPC implies RPCONLY. That is, it is not possible to set up a port so that Janus
 attempts to convert language requests into RPCs but if the attempt fails the language
 request is then made available to the User Language via $SRV_LANGGET. If a
 language request is converted to an RPC, $SRV_WAIT returns a 1 indicating that an
 RPC has been received. Thus, it is impossible for a User Language application on an
 EXEC2RPC port to tell if the current request was a "true" RPC or one that was
 generated via EXEC2RPC.

 3.2.8 IBSIZE xxx

 This parameter specifies the size of the TCP/IP input buffer. The default is 4096, the
 minimum is 512, and the maximum is 65534 (prior to version 5.2 the maximum was
 32767). There is one input buffer used for each connection.

 A larger input buffer size provides better CPU performance in both Model 204 and the
 TCP/IP address space at the expense of more virtual (and real) storage. Generally, the
 size of the input buffer has an impact only on a port being used for Janus Open Client or
 Janus Sockets connections or on a Janus Web Server port used for file uploads.

——
22 Janus Open Server Reference Manual

——
 JANUS DEFINE
——

 3.2.9 LANGUAGE xxx

 This parameter indicates, to the remote host, the language being used by Janus. This
 allows a port-specific override of either the default language or the language specified on
 the JANUS LANGUAGE subcommand. The default language is us_english.
 LANGUAGE has no effect on the operation of any application in Model 204. The name
 of the specified language is simply forwarded to the remote host.

 3.2.10 MASTER

 This parameter specifies that this is the default port for outgoing connections to remote
 servers. A single MASTER port will serve as the access route to multiple external server
 address spaces. The servers may be other Model 204 servers or may be
 Sybase/Microsoft servers that are to receive Janus Open Client function calls.

 Users accessing the Model 204 address space over an OPENSERVER port will use the
 same port they came in on for any outgoing Janus Open Client connections. Users
 accessing the Model 204 address space with other threads (for example, 3270 or web
 based applications) must have a MASTER port defined in order for the Janus Open
 Client functions to establish connections to other address spaces.

 Note that the port number is irrelevant for outgoing purposes, though it must still be
 specified.

 Multiple ports may be DEFINEd and STARTed with the MASTER parameter specified,
 but the one used in any particular instance will not be predictable.

 3.2.11 MSG204 xxx

 This parameter specifies the Sybase message number to be used to return terminal
 output to the client. If this parameter is not specified, all terminal output for the open
 server will be sent to the Model 204 audit trail. Because the Sybase client server
 communications protocol is a half duplex protocol, only terminal output that occurs while
 the client is in the “receive” state will be sent to the client. Terminal output that occurs
 while the client is in the “send” state will be sent to the audit trail regardless of the setting
 of the MSG204 parameter. A client is in the “receive” state after it has sent an RPC to
 the server and before it has received the DONE message for the request. The error
 state and error class for terminal output messages are both always set to 0.

 3.2.12 MSG204L xxx

 This parameter specifies the Sybase message number to be used to return terminal
 output to the client. This parameter is identical to the MSG204 parameter except that it
 indicates that the Model 204 messages during logon will also be sent to the client. If
 MSG204 is specified instead of MSG204L, only the messages that occur after logon will
 be sent to the client.

——
Janus Open Server Reference Manual 23

——
Janus Commands
——

 3.2.13 NOAUDTERM

 This parameter is used to control whether the server thread sends “non-compiler
 terminal output” to the audit trail. Compiler terminal output is always sent to the audit
 trail. Any terminal output sent to the audit trail is sent as RK lines.

 NOAUDTERM, which is the default port setting, specifies that (non-compiler) terminal
 output is not sent to the audit trail; AUDTERM specifies that terminal output is sent to
 the audit trail.

 Note that some “print output” can be “captured” on a $list
 (http://m204wiki.rocketsoftware.com/index.php/$lists), a Janus Socket, or a USE
 output stream, and thus it would not be sent as terminal output — to the audit trail or
 anywhere else. For further description of terminal output, Starting with version 6.0, this
 parameter applies to all Janus “server” port types, and the default setting is
 NOAUDTERM. Prior to this, the parameter only applied to WEB ports, and the default
 setting was AUDTERM.

 This introduces a small incompatibility. Starting with version 6.0, compared to earlier
 versions, any WEB port that does not specify either AUDTERM or NOAUDTERM will
 probably generate fewer audit trail lines, as will any SDS or OPENSERV port. This
 should be a benefit, since most of this terminal output is either uninteresting or already
 logged to the audit trail as ER, AD or MS lines. Logging these messages as RK lines as
 well is just a waste of journal space and I/O and makes application diagnosis and
 debugging from the audit trail more difficult because of the extra noise data. For WEB,
 OPENSERV, or SRVSOCK applications that wish to explicitly audit information, the User
 Language AUDIT statement should be used, not the PRINT statement.

 3.2.14 NOUPCASE

 This parameter indicates that no client data is to be converted to upper case. By setting
 NOUPCASE the userid and password must be specified by the client in the correct case
 (probably upper case). Note that it is possible to have lower case userids and
 passwords in Model 204. For example, the userids HOMER, homer and Homer would
 be treated as three separate userids by Model 204. The NOUPCASE parameter
 simplifies the interaction between clients where names tend to be in lower case or case-
 insensitive and Model 204 where they tend to be in upper case.

 The NOUPCASE parameter is the opposite of UPCASE. The default is for all ports to
 have UPCASE set.

 3.2.15 OBSIZE xxx

 This parameter specifies the size of the TCP/IP output buffer. The default is 8192, the
 minimum is 512, and the maximum is 65534 (prior to version 5.2 the maxiumum was
 32767). There is one output buffer used for each connection.

——
24 Janus Open Server Reference Manual

——
 JANUS DEFINE
——

 A larger output buffer size provides better CPU performance in both Model 204 and the
 TCP/IP address space at the expense of more virtual (and real) storage.

 3.2.16 OPEN list

 This parameter specifies the name of one or more Model 204 files or groups to be
 opened when a server session is initiated.

 If you specify multiple files or groups in an OPEN clause, they must be separated by an
 AND keyword. You can also specify individual file open privileges; if not, they default to
 X'0221'.

 The syntax of each file or group specification is:

 [FILE | GROUP] name [[WITH] privs]

 The first file or group listed in an OPEN clause is set as the default file or group context
 for the thread. If neither the keyword FILE nor the keyword GROUP is specified, OPEN
 looks first for a permanent group, then for a file, to open. It does not look for a
 temporary group, since one cannot yet exist at open time.

 You can use the CMD parameter to specify a command to execute just after a file or
 group opens. If the CMD parameter specifies an INCLUDE command, the included
 procedure is assumed to come from the first file or group specified in the OPEN clause.

 Examples of valid OPEN clauses follow:

 JANUS DEFINE WEBXXX 80 WEBSERV 20 -
 OPEN WEBPROC AND -
 FILE DATAPROC WITH X'0761'
 JANUS DEFINE OPENDOOR 1234 OPENSERV 40 -
 OPEN GROUP DOORPROC AND -
 FILE DOORDATA X'BFFF' -
 CMD 'I DRIVER'

 3.2.17 PRELOGINUSER userid

 This parameter indicates the userid under which pre-login processing runs. Pre-login
 processing is that which occurs before a user login.

 Pre-login processing runs under the default userid of “NO USERID” or under the userid
 specified by the PRELOGINUSER parameter; it is visible to SirMon, the MONITOR
 command, and the LOGWHO command; and it is BUMP'able.

 On many port types, much processing can take place before a thread is actually logged
 on to a user. The PRELOGINUSER parameter can be useful in helping distinguish
 users in pre-login processing on different ports.

——
Janus Open Server Reference Manual 25

——
Janus Commands
——

 3.2.18 RAWINPUT

 This parameter tells Janus Web Server to save the raw input stream for an HTTP POST,
 regardless of the mime type set by the client in the content-type header. This has
 two basic advantages:

 1. The raw input content for an HTTP POST is always available to Janus Web Server
 applications (via $web_input_content) regardless of the content-type. This could be
 useful for debugging, or perhaps for logging, input content.

 2. It is possible for Janus Web Server to interact correctly with clients that don't set the
 mime type, regardless of what content they send. Prior to the availability of
 RAWINPUT, if a client sent, say, XML data, but it did not set the content-type, Janus
 Web Server would assume that the content was application/x-www-form-
 urlencoded (form POST) encoded. If after it read some of the content, Janus
 Web Server discovered that it was not HTML form data, it was too late: the request
 had to be rejected for having an invalid format.

 With the RAWINPUT parameter set, however, Janus Web Server proceeds as
 follows:

 a. It loads the input content into CCATEMP.

 b. If the mime type is set to application/x-www-form-urlencoded, or if it is
 not set at all, Janus Web Server determines if the input has the
 application/x-www-form-urlencoded format.

 c. If the format is not application/x-www-form-urlencoded, the request is
 not rejected, and the Janus Web Server application can still access the data.

 3.2.19 RAWINPUTONLY

 RAWINPUTONLY indicates that, regardless of the POST data content-type set by the
 client, Janus Web Server should do both of the following:

 ● Save the raw input stream of an HTTP POST.
 ● Refrain from parsing the input content into form fields.

 RAWINPUTONLY is very similar to the RAWINPUT port definition parameter
 (“RAWINPUT”), except that:

 ● RAWINPUTONLY can be an ON rule parameter, so it can be set for specific URLs.

 ● RAWINPUT does not prevent Janus Web Server from trying to parse the form
 parameters, if the content-type for the POST is set to application/x-www-
 form-urlencoded or multipart/form-data. RAWINPUTONLY prevents this
 parsing, so it protects Janus Web Server applications from errors in this parsing.
 These errors include invalid-form-data errors and request-buffer-full errors.

——
26 Janus Open Server Reference Manual

——
 JANUS DEFINE
——

 For more information about RAWINPUTONLY processing, see the "RAWINPUTONLY |
 NOTRAWINPUTONLY" section in
 http://m204wiki.rocketsoftware.com/index.php/JANUS_WEB_ON#Named_parameters.

 3.2.20 RPCONLY

 This parameter indicates that only RPC requests are allowed on the port. All non-RPC
 (language) requests are rejected. If the port is also defined as EXEC2RPC, an attempt
 is made to convert the language request to an RPC. If this is successful, the request is
 treated as a valid RPC request. If a port is defined as RPCONLY, the only valid return
 code from $SRV_WAIT (on that port) is 1 meaning an RPC was received.

 3.2.21 SSL

 The SSL parameter indicates that communications on this port should be encrypted
 using Janus Network Security SSL (Secure Sockets Layer) or TLS (Transport Layer
 Security) support. The parameter has the following mutually exclusive options:

 SSL procfile procname
 Identifies the file (typically JANSSL) and procedure that contain the
 certificate to be presented to clients on server ports and to the server on
 CLSOCK ports.

 SSL * Presents to the client or server the "self-signed certificate" provided for your
 site by Janus Network Security.

 SSL 0 Indicates for CLSOCK ports that, although the connection is encrypted, the
 client is not to provide a certificate to the server if requested.

 Server certificates are required to establish an encrypted connection, but
 client certificates are optional and are not used at all by many secured
 servers.

 Certificates and authentication are described further in the Janus Network Security
 Reference Manual.

 Other optional DEFINE command parameters used in conjunction with the SSL
 parameter include:

 ● For server sockets:
 SSLBSIZE, SSLCIPH, SSLCLCERT/SSLCLCERTR,
 SSLIBSIZE, SSLOBSIZE, SSLPROT, SSLSES

 ● For client sockets:
 SSLOPT

 ● For both types of sockets:

——
Janus Open Server Reference Manual 27

——
Janus Commands
——

 SSLCACHE, SSLMAXAGE, SSLMAXCERTL, SSLUNENC

 Other JANUS commands useful for SSL ports include:

 ● For ports that authenticate incoming certificates:
 ADDCA, DELCA, DISPLAYCA, STATCA

 ● For monitoring a port's SSL activity:
 SSLSTAT

 Janus Web Server $functions useful for SSL applications and described in the
 documentation wiki at
 http://m204wiki.rocketsoftware.com/index.php/List_of_Janus_Web_Server_$functions
 include:

 $WEB_CERT_INFO, $WEB_CERT_LEVELS, $WEB_CIPHER,
 $WEB_PROTOCOL, $WEB_SECURE

 3.2.22 SSLBSIZE xxxx

 This tuning parameter specifies the size of the input buffer used for reading encrypted
 data for an SSL port. An SSL port is a Janus port whose definition includes an SSL
 parameter (“SSL” on page 27) setting, which indicates that communications on this port
 may be encrypted using Janus Network Security SSL (Secure Sockets Layer) or TLS
 (Transport Layer Security) support.

 The SSLBSIZE parameter also specifies the size of the SSL output buffer. To set the
 input and output buffer sizes independently, you use the SSLIBSIZE and SSLOBSIZE
 parameters.

 The default for SSLBSIZE is 4096 bytes; the minimum and maximum values are 1024
 and 32767, respectively.

 If you set SSLBSIZE greater than the SSL specification maximum buffer size of 16000,
 the port's input buffer size is set to the SSLBSIZE value, but the output buffer size is set
 to 16000 bytes. Setting the input buffer greater than 16000 bytes might be necessary if
 the port will have connections with SSL implementations that don't fully conform to the
 SSL specification. For more information about buffer sizing and about Janus handling of
 oversized packets, see (“SSLIBSIZE xxxx” on page 31) and (“SSLOBSIZE xxxx” on
 page 33).

 3.2.23 SSLCACHE xxxx

 This parameter specifies the number of entries in virtual storage to be allocated for
 caching information related to this port's SSL sessions. A Janus port whose definition
 includes an SSL parameter (“SSL” on page 27) setting supports Janus Network Security
 SSL (Secure Sockets Layer) or TLS (Transport Layer Security) encrypted sessions.

——
28 Janus Open Server Reference Manual

——
 JANUS DEFINE
——

 The SSL cache helps limit the CPU overhead of establishing an SSL session. It does
 not reduce the effectiveness of security, but it does reduce the overhead at the cost of a
 relatively small amount of virtual storage.

 SSL sessions can persist for a length of time determined by either the client or server.
 Janus Network Security limits the life-span of SSL V2 connection sessions to the lesser
 of 2 minutes or the value of SSLMAXAGE (“SSLMAXAGE xxx” on page 32), and it limits
 SSL V3 and TLS connections to 1440 minutes (24 hours). For most sites, the default
 SSLCACHE should be sufficient.

 Each session requires approximately 512 bytes per entry to cache session related
 information. A further SSLMAXCERTL (“SSLMAXCERTL xxx” on page 32) bytes are
 required to hold server certificates for CLSOCK ports, or to hold client certificates for
 Janus server ports that request them by including SSLCLCERT or SSLCLCERTR
 (“SSLCLCERT and SSLCLCERTR” on page 30).

 If the SSLCACHE value is too small, and a larger than anticipated number of users
 attempt to access an SSL-secured port, entries in the cache are removed on a least-
 recently-used basis. This may lead to greater overhead for re-execution of the CPU
 intensive initial public-key/private-key encryption/decryption operations. The indicator
 that the SSLCACHE value is not large enough to hold all the contemporaneous SSL
 sessions is a non-zero value in the “SesNF” column of the JANUS SSLSTAT command
 result. This is not necessarily problematic as long as the SesNF value is relatively small,
 because it is not unreasonable to suffer an occasional lost session in order to reduce
 virtual storage.

 Note: SSLCACHE is specified in entries, and the default SSLCACHE allocation is the
 number of storage entries required for 16 times the number of threads defined on the
 port. So by default, 10 threads would result in 160 entries; at 512 bytes per entry, this
 would require 81,920 bytes of virtual storage. 100 threads would require 819,200 bytes.

 The default SSLCACHE value is likely to be excessively large for CLSOCK ports that
 only connect to a single or to a few servers. All CLSOCK connections to a particular
 server use the same SSL session regardless of how many different threads initiate
 connections.

 3.2.24 SSLCIPH xxx

 This parameter lets you limit the stream ciphers (encryption algorithms) that this port
 offers for SSL connections. A Janus port whose definition includes an SSL parameter
 (“SSL” on page 27) setting supports Janus Network Security SSL (Secure Sockets
 Layer) or TLS (Transport Layer Security) encrypted connections.

 Typically, SSLCIPH is allowed to default to 0: all the Janus-supported ciphers are
 available, and the cipher that is ultimately used depends on the outcome of the
 handshake negotiation with the client that seeks the service at this port. The negotiation
 selects the strongest available cipher that the client can support.

——
Janus Open Server Reference Manual 29

——
Janus Commands
——

 However, to make only a subset of the server ciphers available, you can specify
 SSLCIPH followed by the (bitmask) value that selects the subset. For example,
 SSLCIPH 2 indicates that only strong RC4 encryption is available.

 Currently, these ciphers are supported:

 1 RC4 bulk cipher with MD5 digest algorithm with 40 bits of the 128 bit RC4 key
 transmitted encrypted, the rest transmitted "in the clear" (unencrypted). This is
 considered a moderately strong encryption algorithm and is available on virtually
 every client implementation of SSL.

 2 RC4 bulk cipher with MD5 digest algorithm with all 128 bits of the RC4 key
 transmitted encrypted. This is considered a very strong encryption algorithm but is
 only available on clients that have been specially configured to support this cipher.
 This encryption level is not available for export from the United States.

 3.2.25 SSLCLCERT and SSLCLCERTR

 These parameters specify that an SSL server port will request an SSL certificate from
 the client. An SSL port is a Janus port whose definition includes an SSL parameter
 (“SSL” on page 27) setting, which indicates that communications on this port may be
 encrypted using Janus Network Security SSL (Secure Sockets Layer) or TLS (Transport
 Layer Security) support.

 If the client does not present a certificate when requested:

 ● SSLCLCERT specifies that normal processing should continue.

 ● SSLCLCERTR specifies either of the following:

 ▪ The connection should be closed with no further processing (and “MSIR.0646:
 Error requesting client certificate - client did not have required certificate” is
 journaled).

 ▪ Processing continues to run the SSLNOCERTERR exception handler, if this is
 a WEBSERV port and an ON SSLNOCERTERR clause is part of the port
 definition. For information about this exception handler, see
 http://m204wiki.rocketsoftware.com/index.php/JANUS_WEB_exception_rules,
 and also see the example below.

 To verify a certificate that is passed by a client, you must first have added to the port one
 or more CA-signed certificates by using the JANUS ADDCA command
 (http://m204wiki.rocketsoftware.com/index.php/JANUS_ADDCA).

 When a client presents a certificate, that certificate is available to User Language code
 via $WEB_CERT_LEVELS and $WEB_CERT_INFO on WEBSERV ports, and it is
 available via $SOCK_CERT_LEVELS and $SOCK_CERT_INFO on SRVSOCK ports.

——
30 Janus Open Server Reference Manual

——
 JANUS DEFINE
——

 The following example shows a web server SSL port definition that specifies the
 SSLCLCERTR parameter, JANUS ADDCA commands that are needed to store CA-
 signed certificates to authenticate the client certificate, and a rule that specifies the
 ONSSLCERTERR exception handler for cases where the client does not present a
 certificate:

 JANUS DEFINE CLCERTWEB 9733 WEBSERV 10 HTTPVERSION 1.1 -
 SSL JANSSL TM2008.PKEY SSLCLCERTR

 JANUS ADDCA CLCERTWEB MYPROC SECURESE.CERT
 JANUS ADDCA CLCERTWEB MYPROC THAWTE.CERT
 JANUS ADDCA CLCERTWEB MYPROC VERIJUNK.CERT

 JANUS WEB CLCERTWEB ON SSLNOCERTERR OPEN FILE MYPROC -
 CMD 'INCLUDE MISSING_CERTIFICATE_ERROR'

 3.2.26 SSLIBSIZE xxxx

 This parameter specifies the size of the SSL input buffer to be used on SSL ports. An
 SSL port is a Janus port whose definition includes an SSL parameter (“SSL” on page 27)
 setting, which indicates that communications on this port may be encrypted using Janus
 Network Security SSL (Secure Sockets Layer) or TLS (Transport Layer Security)
 support.

 The size of the SSL input buffer was specified with the SSLBSIZE parameter
 (“SSLBSIZE xxxx” on page 28) before the SSLIBSIZE parameter became available.

 Technically, the maximum “legal” SSL buffer size is 16000, but it may be necessary to
 use a larger input buffer if there will be connections with SSL implementations that don't
 fully conform to the SSL specification. If an application tries to send an SSL packet
 larger than SSLIBSIZE to a Janus SSL port, the connection will be broken and an error
 written to the audit trail (MSIR.0386 SSL INPUT MESSAGE TOO LONG - INCREASE
 SSLBSIZE). The other side of the SSL connection will not receive this error message or
 any other indication of why the connection was broken. There will be no effect on other
 users on the same port.

 The default for SSLIBSIZE is 4096, and the minimum and maximum allowable values
 are 1024 and 32767, respectively.

 For WEBSERV ports that are used for file uploads (HTTP PUT or form-based uploads),
 it will probably be necessary to set SSLIBSIZE to at least 16000, because most
 browsers will send SSL packets that are as large as possible. For most other
 applications, the SSLIBSIZE default is probably sufficient, though web applications that
 POST very large forms might require a slight increase of SSLIBSIZE.

——
Janus Open Server Reference Manual 31

——
Janus Commands
——

 3.2.27 SSLMAXAGE xxx

 This parameter specifies the maximum number of minutes that an SSL session is to be
 maintained. A Janus port whose definition includes an SSL parameter (“SSL” on page
 27) setting supports SSL (Secure Sockets Layer) or TLS (Transport Layer Security)
 encrypted sessions. The discussion of this SSLMAXAGE parameter uses "SSL" to refer
 to SSL or TLS.

 An SSL session is a series of SSL connections that are made using a single “master
 secret” shared by the SSL client and server. To set up an SSL session, the master
 secret must be exchanged using computationally expensive public-key/private-key
 encryption/decryption. SSL sessions are a way of reducing the overhead of SSL by
 reducing the number of public-key/private-key encryption/decryption operations.

 The SSLMAXAGE default is 1440 (24 hours), which is the specified maximum life-span
 of an SSL V3 or a TLS session. The maximum life-span of an SSL V2 session is 2
 minutes, so larger values of SSLMAXAGE are ignored for SSL V2 sessions.

 The 24-hour life-span of SSL V3 and TLS sessions is generally considered "safe," but if
 even greater security is required, a smaller SSLMAXAGE can be specified. Setting
 SSLMAXAGE to 0 forces a new session for every request, which forces a public-
 key/private-key encryption/decryption operation for every connection. This might be
 useful for benchmarking the overhead associated with the public-key/private-key
 operations. The JANUS SSLSTAT command can provide useful information in
 monitoring the efficacy of SSL session caching.

 3.2.28 SSLMAXCERTL xxx

 For a Janus port defined (by the SSL parameter) to support encrypted connections, this
 parameter indicates the number of bytes of virtual storage to be allocated to hold
 incoming certificates presented for authentication. Authentication verifies (or not) the
 certifying authority signature on the incoming certificate. Such a certificate may be:

 ● A server certificate sent in reply to a CLSOCK port.
 ● A client certificate sent in reply to a WEBSERV, SRVSOCK, OPENSERV, or SDS
 port that has the SSLCLCERT or SSLCLCERTR parameter in its definition.

 Since incoming certificates are cached, SSLMAXCERTL bytes are allocated for each
 SSL session in the cache, the size of which is determined by the explicit or implicit
 setting of the SSLCACHE parameter (“SSLCACHE xxxx” on page 28).

 The default SSLMAXCERTL size is 1024, which should be large enough to hold most
 certificates received from clients or servers. The minimum and maximum
 SSLMAXCERTL values are 256 and 32767, respectively. It is unlikely that any incoming
 certificate will be smaller than 512 bytes, and it is extremely unlikely that an incoming
 certificate will be larger than 2048 bytes. If an incoming certificate is larger than
 SSLMAXCERTL, an error message is logged to the audit trail and the connection is
 closed.

——
32 Janus Open Server Reference Manual

——
 JANUS DEFINE
——

 3.2.29 SSLOBSIZE xxxx

 This parameter specifies the size of the SSL output buffer to be used on SSL ports. An
 SSL port is a Janus port whose definition includes an SSL parameter (“SSL” on page 27)
 setting, which indicates that communications on this port may be encrypted using Janus
 Network Security SSL (Secure Sockets Layer) or TLS (Transport Layer Security)
 support.

 There is little or no performance benefit to using large SSL output buffers, because the
 amount of work associated with creating an SSL output packet is almost directly
 proportional to the size of the packet. Typically, it is sensible to use the default
 SSLOBSIZE of 4096, or even to make it smaller to save on memory.

 The default for SSLOBSIZE is 4096, and the minimum and maximum allowable values
 are 1024 and 16000, respectively.

 For Model 204 to Model 204 applications, the SSLOBSIZE on each side must be less
 than or equal to the SSLIBSIZE (“SSLIBSIZE xxxx” on page 31) on the other side.

 3.2.30 SSLPROT xxx

 This parameter lets you specify the degree of SSL-like encryption available at this port.
 Janus Network Security currently supports two Secure Socket Layer (SSL) protocols
 (SSL V2 and SSL V3) and the Transport Layer Security (TLS) protocol, an extension to
 SSL V3 but developed by the IETF Internet standards group.

 During the negotiation for a connection to or from this port, Janus will offer the most
 secure protocol available, then, if necessary, will fall back to the next lower one
 available, and so on. The SSLPROT parameter lets you explicitly disallow one or more
 protocols from the negotiation.

 SSLPROT is a bitmask parameter whose main values are:

 X'01' SSL, V2 support. This is less secure than SSL V3 or TLS.

 X'02' SSL, V3 support. This is less secure than TLS.

 X'04' TLS, V1 support.

 X'07' The default. SSL V2, SSL V3, and TLS are available. Janus will try for them in
 the order: TLS, SSL V3, SSL V2.

 A typical reason for explicitly specifying an SSLPROT value is to require a more secure
 connection for a port. If a client attempts to connect to a Janus server port using a
 protocol explicitly disallowed by SSLPROT, the connection is immediately broken,
 except for WEBSERV ports where the SSLPROTOCOLERR exception handler will be
 run if available.

——
Janus Open Server Reference Manual 33

——
Janus Commands
——

 Janus CLSOCK ports will attempt to connect under the most secure protocol available,
 and will fall back to the next-most secure protocol available; if less-secure protocols are
 disallowed by SSLPROT, the connection attempt will fail.

 3.2.31 SSLUNENC

 This parameter indicates that an unencrypted private key is being used in the certificate
 specified by the SSL parameter (“SSL” on page 27) on this Janus server port definition.

 This parameter is obsolete because Janus Network Security now automatically
 determines whether or not the private key is encrypted, and if not, prompts for a
 password. A corrupted private key procedure could lead Janus Network Security to
 believe that the private key must be encrypted, and so result in a password prompt.

 Using unencrypted private keys is discouraged.

 Formerly, SSLUNENC was required on a port definition if an unencrypted private key
 was used. Otherwise, the JANUS START command for an SSL-secured port would
 prompt for a password (technically, a seed for the encryption algorithm) to use to decrypt
 the private key. Any data, or even a null value, entered for the password will incorrectly
 be used in an attempt to decrypt the private key (rendering the key unusable), and the
 START will fail.

 Similarly, if an encrypted private key were used in the certificate specified on the SSL
 parameter, the SSLUNENC parameter was not to be specified. Specifying SSLUNENC
 would prevent password prompting for that key, thus bypassing decryption of the private
 key (rendering it unusable), and causing the START to fail.

 The certificate and private key generation process is described further in the Janus
 Network Security Reference Manual.

 3.2.32 TCPKEEPALIVE

 This parameter specifies that connections on the port should use TCP keepalives. TCP
 keepalives request that the TCP stack send periodic “keepalive” packets to the
 communications partner to see if it is still there. The time interval between these
 packets, which cannot be set by Janus, is set in the TCP/IP stack configuration. For
 example, with the IBM stacks, the keepalive interval is set in the TCPCONFIG
 INTERVAL parameter for BPX (IBM Communications Server) and in the
 KEEPALIVEOPTIONS INTERVAL parameter for VM TCP/IP.

 In some sense, the term “keepalive” is a misnomer — keepalive packets that are not
 responded to cause a connection to be closed, so keepalives actually cause connections
 to be closed faster than they might be otherwise.

——
34 Janus Open Server Reference Manual

——
 JANUS DEFINE
——

 TCPKEEPALIVE probably only makes sense for ports where connections are held open
 for long periods of time. TNSERV ports are the most likely candidate. For these ports,
 TCPKEEPALIVE might be useful for two reasons:

 1. It can detect connections lost due to a client failure (say, a turned-off workstation),
 reducing threads wasted for connections to lost clients.

 2. It can reassure certain routers, especially those doing network address translation
 (NAT) that the connection is still active. Some routers will stop routing packets for
 connections on which no activity is seen for some period of time. Keepalives ensure
 that there is periodic activity on a connection, even if there is no user interaction. Of
 course, for this to be successful, the TCP/IP stack's keepalive interval must be less
 than any applicable router's inactivity timeout. For this particular application,
 keepalives live up to their name.

 Since the TCP/IP stack does the keepalives, the overhead in Model 204 for setting this
 parameter is virtually zero.

 3.2.33 TIMEOUT xxxx

 This parameter specifies the number of seconds of inactivity after which clients
 connected to this port will be disconnected. The default for TIMEOUT is 0, which means
 that connections never time out.

 For WEBSERV ports Browser requests never involve waits on user input so the
 TIMEOUT parameter for WEBSERV ports involves
 terminating connections when network response is extremely
 slow or cases where the client workstation has been turned
 off before a response is received from Janus Web Server.
 Because of this, TIMEOUT can be set fairly aggressively for
 WEBSERV ports. A value of 60 (seconds) would be
 reasonable.

 For all other port types The TIMEOUT value should reflect the fact that a connection
 might require user input waits.

 3.2.34 TRACE xxx

 This parameter specifies the initial TRACE setting for the port. The TRACE setting
 controls what Janus-related trace information is logged to the audit trail. The port
 TRACE setting can be overridden by the JANUS TRACE command.

 Like the JANUS TRACE command, the TRACE parameter value is a bit mask integer
 that sums the values of the options that will be logged. The default value is 3 for SDS
 and OPENSERV ports, and it is 0 for WEBSERV and all other ports. For a description of
 the individual bit options and for more information about the TRACE setting, see
 http://m204wiki.rocketsoftware.com/index.php/JANUS_TRACE.

——
Janus Open Server Reference Manual 35

——
Janus Commands
——

 3.2.35 UPCASE

 This parameter indicates that all client “names” are to be converted to upper case.
 “Names” includes userids and passwords, variable names for OPENSERV ports, column
 names for SDS ports and header parameters, header values, cookie names, and form
 field names for WEBSERV ports. By setting UPCASE as a port parameter, the userid
 and password can be specified by the client in case insensitive form, that is, it can be
 specified in lower case.

 Note that it is possible to have lower case userids and passwords in Model 204. For
 example, the userids HOMER, homer, and Homer would be treated as three separate
 userids by Model 204. The UPCASE parameter simplifies the interaction between
 clients (where names tend to be in lower case) and Model 204 (where they tend to be in
 upper case).

 Note: The UPCASE parameter never results in data being converted to upper case.
 That is, if a client sends variable “@customer” with a value of “Dolly Dinkle”, and
 UPCASE is active for the connection, the User Language application would see a
 variable called “@CUSTOMER” with a value of “Dolly Dinkle”.

 For SDS ports, the UPCASE parameter means that all table and column names passed
 from the Adaptive Server will be converted to upper case. This means that when
 defining the columns and tables (using JANCAT), the names must all be upper case. It
 also means that if an SDS port has the UPCASE parameter set but has mixed case
 table and column names, those tables and columns will be inaccessible.

 The UPCASE parameter is the opposite of NOUPCASE. The default is for all ports to
 have UPCASE set.

 3.2.36 XTAB table

 This parameter indicates the EBCDIC-to-ASCII, ASCII-to-EBCDIC, and character entity
 translation tables to be used for the port.

 You can specify a translation table that has not yet been loaded with the JANUS
 LOADXT command, but the table must be loaded before the port can be started.

 The default translation table is STANDARD, which is a fairly generic pair of EBCDIC-to-
 ASCII and ASCII-to-EBCDIC translate tables that formerly was the only available option.

 You can replace a translate table with the JANUS LOADXT command at any time, even
 if the port has active connections.

 The XTAB parameter is Valid for all port types.

——
36 Janus Open Server Reference Manual

——
 Janus Open Server $Functions
——

——————
CHAPTER 4 Janus Open Server $Functions

 Once a Janus Open Server port is defined and started, Sybase clients can establish a
 connection to the port via Sybase DB-Library Open Client function calls. The Janus
 Server Functions (those prefixed with $SRV_) provide the facility by which the User
 Language server programs communicate back to the client.

 When a connection is established, it is associated with an SDAEMON thread (if one is
 available). A Model 204 logon is then attempted for the userid and password passed by
 the Sybase client. If the logon succeeds, the file specified in the OPEN clause of the
 JANUS DEFINE command, if any, is opened. After this the command specified by the
 CMD clause of the JANUS DEFINE command is executed as if the user had typed this
 command at a terminal.

 At this point the Janus thread acts much the same as any other Model 204 thread, with a
 few exceptions. First, because the thread has no terminal associated with it, it cannot
 issue any terminal input requests. Any terminal input requests result in a user restart
 due to a "lost connection." Terminal output, on the other hand gets routed to the audit
 trail (as type RK journal entries). The other major difference between a Janus thread
 and any other thread is its ability to issue Janus server function calls.

 Once a Janus thread is logged on, the thread is in a “receive” state. That is, it is up to
 the server to receive data from the client. The first server function a Janus thread should
 call is $SRV_WAIT. This function indicates that the server should wait for a request (an
 RPC or language request) from the client. $SRV_WAIT returns when a request is
 received. If the client request is an RPC, $SRV_WAIT reads the RPC input parameters
 into the thread's RPC buffer, and the thread switches to "send" state upon return from
 the $SRV_WAIT. This means that the server is now responsible for sending data back
 to the client until a $SRV_DONE is issued. After the $SRV_DONE, the server should
 issue another $SRV_WAIT if another RPC is to be handled.

 The Model 204 $functions that work with and respond to Sybase RPCs are listed below
 and described in individual sections thereafter. Although mixed-case User Language is
 available for use with Janus products, the Janus Open Server Reference Manual retains
 the all-uppercase presentation for $function names and User Language entities. For
 more information about mixed-case User Language, see
 http://m204wiki.rocketsoftware.com/index.php/Mixed-case_User_Language.

 $SRV_BIND Bind a variable or literal to a column.

 $SRV_CLOSE Close a connection.

 $SRV_DATA Get the value of a parameter.

 $SRV_DONE Send a “done” message to client.
——
Janus Open Server Reference Manual 37

——
Janus Open Server $Functions
——

 $SRV_LANGGET Retrieve text of language request from client.

 $SRV_MSG Send a message to the client.

 $SRV_NUMPARM Return the number of RPC parameters.

 $SRV_PARMGET Return the value of an RPC parameter.

 $SRV_PARMLEN Return the length of an RPC parameter.

 $SRV_PARMNAME Return the parameter name of a numbered RPC parameter.

 $SRV_PARMNUM Return the parameter number of a named RPC parameter.

 $SRV_PARMSET Set the value of an RPC parameter.

 $SRV_PARMTYPE Return the datatype of an RPC parameter.

 $SRV_RPCNAME Return the name of the RPC.

 $SRV_SENDROW Send a row of data (an image) to the client.

 $SRV_SETROW Set the image for subsequent rows.

 $SRV_WAIT Wait for a client request or action.

 These functions can only be called by User Language programs running on a Janus
 server thread. If any of the Janus server functions are called by a user who is not
 running as a Janus server thread, the results of the function will be meaningless. (See
 “Open Server User Language Coding Considerations” on page 57 for instructions on
 how to debug a Janus Open Server application.)

 If any of the Janus server functions are called after the client has been disconnected, a
 user restart will occur. Because $SRV_CLOSE causes the client to be disconnected,
 care should be taken that no further calls are placed to $SRV_xxxxxx functions after any
 call to $SRV_CLOSE.

 Furthermore, as a user restart in APSY context will cause the server session to execute
 its APSY error procedure, care should be taken that no calls to $SRV_xxxxxx functions
 should ever be placed in the APSY error procedure on a logical path that is followed for
 user restarts resulting from a lost connection. This is the same consideration
 programmers would give to not coding full-screen I/O in an APSY error proc when the
 error proc is invoked because of a lost connection.

——
38 Janus Open Server Reference Manual

——
 $SRV_BIND
——

 4.1 $SRV_BIND

 $SRV_BIND binds the next column to a %variable, image item, or literal; it determines
 the source of a column value sent by $SRV_SENDROW.

 $SRV_BIND accepts one required and three optional arguments and returns a numeric
 result code.

 %RESULT = $SRV_BIND(variable_or_lit, -
 column name, type, -
 length_or_centspan)

 $SRV_BIND function

 Either this function or $SRV_SETROW (but not both) is used to bind the columns of
 rows sent by $SRV_SENDROW. $SRV_BIND is called once for each column in the
 order they occur in a row.

 The binding is only valid for the duration of the request.

 A PACKED, ZONED, EFORMAT or DBCS image item may not be bound to a column.

 The maximum length of a column name is 30. If the name is omitted, no name is given
 to the column.

 The third argument specifies the type of the column; it may be one of the following:

 INT DATETIME <format>
 SMALLINT SMALLDATETIME <format>
 TINYINT CHAR
 FLOAT VARCHAR
 REAL BINARY
 MONEY VARBINARY

 If the third argument is omitted, the following defaults are used:

 ● Float %variables or image items
 Type=FLOAT Default len=8

 ● Other numeric %variables or image items
 Type=INT Default len=4

 ● Numeric literals
 Type=FLOAT Default len=8

 ● Other
 Type=VARCHAR Default len=len of var or literal

——
Janus Open Server Reference Manual 39

——
Janus Open Server $Functions
——

 The fourth argument specifies the length of the column, unless the type is DATETIME or
 SMALLDATETIME. The default length depends on the type, as shown in the table
 above.

 For date types:

 ● The third argument is either the keyword DATETIME or SMALLDATETIME, followed
 by the format of the datetime string values. See “Datetime Formats” on page 76 for
 an explanation of datetime formats.

 ● The fourth argument is a CENTSPAN value; the default is -50. See “CENTSPAN”
 on page 80 for an explanation of CENTSPAN processing.

 $SRV_BIND may be called only before $SRV_SENDROW is called, or after
 $SRV_DONE('MORE') is called and before $SRV_SENDROW is called.

 0 - Bind successful
 1 - Invalid call, RPC/language
 request not active
 2 - Invalid call, already bound
 to row image by $SRV_SETROW
 3 - First argument missing, or invalid
 type of first argument, or invalid
 third or fourth argument
 4 - Insufficient storage, as determined by
 RBSIZE. Each column requires 33 bytes plus
 the length of the column name; for a date
 type, an additional 1 byte plus the length
 of the date format is required.
 -100 - Connection lost

 $SRV_BIND return codes

 A null value is sent by $SRV_SENDROW if the source value cannot be converted to the
 client representation. For example, the following User Language fragment will send a
 null date value:

 %X = $SRV_BIND(%S, 'DUE', 'DATETIME MMDDYY')
 %S = 'PIZZA'
 %X = $SRV_SENDROW

 Example: In order to send rows consisting of a company name and fax number, the
 following User Language fragment binds columns to %COMPANY and %FAX and sends
 them to the client:

——
40 Janus Open Server Reference Manual

——
 $SRV_BIND
——

 %RESULT = $SRV_BIND(%COMPANY, 'COMPANY')
 %RESULT = $SRV_BIND(%FAX, 'FAX_NUMBER')
 LBBL: FIND ALL RECORDS FOR WHICH ...
 FRBL: FOR EACH RECORD IN LBBL
 %COMPANY = COMPANY NAME
 %FAX = FAX
 %RESULT = $SRV_SENDROW
 END FOR
 %RESULT = $SRV_DONE
 %RESULT = $SRV_CLOSE

 4.2 $SRV_CLOSE

 $SRV_CLOSE terminates a client connection.

 $SRV_CLOSE accepts no arguments and always returns a 0.

 %RESULT = $SRV_CLOSE

 $SRV_CLOSE function

 Applications may be written so that at the completion of processing the server closes the
 connection with the client, as in the example code fragment that follows.

 %Y = $SETROW('TEXASTEA')
 LBBL: FIND ALL RECORDS FOR WHICH ...
 FRBL: FOR EACH RECORD IN LBBL
 %TEXASTEA:WELL.IDENT = WELL.IDENT
 ...
 %X = $SRV_SENDROW
 END FOR
 %X = $SRV_DONE
 %X = $SRV_CLOSE
 RETURN

 No calls to any $SRV_xxxxxx function should ever be made after a call to
 $SRV_CLOSE. Calls placed to any $SRV_xxxxxx function (including another call to
 $SRV_CLOSE) after the client connection has been closed, will cause a user restart on
 the Janus server thread.

——
Janus Open Server Reference Manual 41

——
Janus Open Server $Functions
——

 4.3 $SRV_DATA

 This retrieves the value of parameters associated with a connection, and optionally
 resets the value of certain parameters.

 $SRV_DATA accepts two arguments and returns a null string for any errors, or a string
 containing the value of the parameter.

 %RESULT = $SRV_DATA(parm-name, new-value)

 $SRV_DATA function

 The first argument is the name of a parameter which might either have been passed by
 the Sybase client application or might be locally produced by the Janus server. This is a
 required argument.

 The second argument is a value to which the first parameter should be set. This
 argument is optional.

 Following is a list of valid parameters that may be viewed:

 APPNAME Name of application.

 CHARNAME Type of character.

 HOSTNAME Host processor identifier.

 IPADDR Client internet address in 'dotted' format (e.g. 204.0.0.1).

 LANGNAME Initial language.

 NAME The server name formatted as 'm204.jobname.portname'. This is the
 name that is returned to the client message handling routine.

 PROCESSID Host process identification.

 PROCNAME Name of application.

 PROGNAME Client DB-Library name.

 PROGVER Client DB-Library version.

 ROWCOUNT The setting of the ROWCOUNT option (set via the SET statement) in
 an EXEC2RPC request. This option indicates the maximum number of
 rows to be sent by the server for any client request. A value of 0
 indicates that there is no maximum.

 RPCNAME Remote Procedure Call name.

——
42 Janus Open Server Reference Manual

——
 $SRV_DATA
——

 SERVNAME Name of server.

 USERNAME Name of user.

 Following is a list of parameters that may be viewed or set:

 EXEC2RPC When this parameter is set to 'ON', language requests are automatically
 converted into RPC's (where possible). The initial setting for the
 EXEC2RPC parameter is determined by the JANUS DEFINE command
 for the port. When EXEC2RPC is 'ON', the only possible return code
 from a $SRV_WAIT is 1 (indicating RPC has been received).

 MSG204 When this parameter is set to a non-zero value, it indicates the Sybase
 message number to be used to return terminal output to the client. If
 this parameter is set to 0, all terminal output for the open server will be
 sent to the Model 204 audit trail. The initial setting for the MSG204
 parameter is determined by the JANUS DEFINE command for the port.

 Because the Sybase client server communications protocol is a half
 duplex protocol, only terminal output that occurs while the client is in the
 “receive” state will be sent to the client. Terminal output that occurs
 while the client is in the “send” state will be sent to the audit trail
 regardless of the setting of the MSG204 parameter. A client is in the
 “receive” state after it has sent an RPC to the server and before it has
 received the DONE message for the request. The error state and error
 class for terminal output messages are both always set to 0.

 RPCONLY When this parameter is set to 'ON', only RPC's are accepted on the
 connection. Any language requests converted because of the
 EXEC2RPC parameter are treated as RPC's for the purposes of the
 RPCONLY parameter, in fact EXEC2RPC effectively implies RPCONLY.
 The initial setting for the RPCONLY parameter is determined by the
 JANUS DEFINE command for the port. When RPCONLY is 'ON', the
 only possible return code from a $SRV_WAIT is 1 (indicating RPC has
 been received).

 UPCASE When this parameter is set to 'ON', identifiers passed from the client are
 translated to uppercase. This includes RPC names, parameter names,
 and data returned by $SRV_DATA. Parameter values are not translated
 regardless of the setting of the UPCASE parameter.

 This parameter is useful for writing applications that are not dependent
 on the case of client identifiers. It also helps bridge the gap between
 Model 204, where the natural representation of identifiers is in
 uppercase, and workstations where the natural representation is in
 lowercase.

 Value is either 'ON' or 'OFF' and the initial value is always 'OFF'.

——
Janus Open Server Reference Manual 43

——
Janus Open Server $Functions
——

 Examples:

 %RESULT = $SRV_DATA('IPADDR')

 In the previous example, %RESULT is set to the value of the client's
 internet address.

 %RESULT = $SRV_DATA('UPCASE', 'ON')

 In the previous example, 'UPCASE' is set to 'ON', translating all
 parameter names to upper case.

 %RESULT = $SRV_DATA('MSG204', 20001)

 In the previous example, 'MSG204' is set to 20001 meaning that all
 terminal output on the open server (when the client is in receive mode)
 is to be sent to the client as Sybase message number 20001.

 4.4 $SRV_DONE

 This tells the client that the server has completed its processing of the current request.

 $SRV_DONE accepts one argument and returns a numeric code.

 %RESULT = $SRV_DONE(parm1)

 $SRV_DONE function

 The only argument is optional, and may contain either of the following strings, which are
 passed back to the client application:

 ERROR

 indicating that an error was encountered in server processing. Processing continues.

 MORE

 indicating that the server has completed sending the current table, and data for another
 table has yet to be sent.

 0 - Successful termination/Server continues running
 1 - Invalid call, not in valid state to send data

 $SRV_DONE return codes

——
44 Janus Open Server Reference Manual

——
 $SRV_DONE
——

 An RPC continues to be active until a $SRV_DONE is issued without 'MORE' specified.
 Once the $SRV_DONE is issued, a $SRV_WAIT must again be issued before another
 RPC can be processed.

 %RESULT = $SRV_DONE

 In the previous example, the client is informed that the current RPC is finished and no
 errors were encountered. After this call, the server must issue a $SRV_WAIT to wait for
 the next request.

 %RESULT = $SRV_DONE('MORE')

 In the previous example, the client is informed that the current set of rows (table) is
 finished, no errors were encountered and more data is to follow.

 %RESULT = $SRV_DONE('MORE ERROR')

 In the previous example, the client is informed that the current set of rows (table) is
 finished, there was an error processing the previous set of rows and more data is to
 follow.

 4.5 $SRV_LANGGET

 This retrieves language input from client.

 $SRV_LANGGET accepts one argument and returns the language request sent by a
 client.

 %RESULT = $SRV_LANGGET(num_bytes)

 $SRV_LANGGET function

 The only argument is the number of bytes to retrieve. This parameter is required and
 must be less than 256.

 %RESULT = $SRV_LANGGET(255)

 In the previous example, %RESULT is set to the first 255 bytes of language data sent by
 the client.

——
Janus Open Server Reference Manual 45

——
Janus Open Server $Functions
——

 4.6 $SRV_MSG

 This sends a message to the client.

 $SRV_MSG accepts three arguments and returns a numeric code.

 %RESULT = $SRV_MSG(msg_num, -
 error_class, msg_text)

 $SRV_MSG function

 The first argument is a message number which may be used when the message text or
 handling is performed in the client application. This is a required argument. Messages 1
 through 9999 are reserved by Sybase, and users should not reuse these message
 numbers unless they replace them with identical meanings as they would have in a
 Sybase server.

 The second argument is the error class of the message.The values of this parameter are
 application specific, and may be used by the client code to determine severity level or
 other handling characteristics. This argument is optional.

 The third argument is message text. This is an optional argument.

 0 - Message send successful.
 1 - Invalid call, not in valid message state.
 2 - Message number or error class invalid.

 $SRV_MSG return codes

 The message number, error class and message text are passed to the client message
 handler.

 %RESULT = $SRV_MSG(10472, 6, 'Invalid customer ID passed')

 In the previous example, the client message handler is entered with the message 'Invalid
 customer ID passed', with message number 10472 and message class 6. The server
 name passed to the client is 'm204.jobname.portname'.

 4.7 $SRV_NUMPARM

 This returns the number of RPC parameters.

 $SRV_NUMPARM accepts no arguments and returns a numeric code.

——
46 Janus Open Server Reference Manual

——
 $SRV_NUMPARM
——

 %RESULT = $SRV_NUMPARM

 $SRV_NUMPARM function

 In the above example, %RESULT is set to the number of parameters in the RPC.

 >= 0 - Successful return.
 -1 - Invalid call, RPC not active

 $SRV_NUMPARM return codes

 4.8 $SRV_PARMGET

 This gets the value of an RPC parameter.

 $SRV_PARMGET accepts four arguments and returns a numeric code.

 %RESULT = $SRV_PARMGET(parm_no, parm_name, -
 dest_variable, date_time_format)

 $SRV_PARMGET function

 The first argument is the number of the RPC parameter for which the function should
 return the value. This is an optional argument, but must be specified if the second
 argument is null.

 The second argument is the name of the RPC parameter for which the function should
 return the value. This is an optional argument, but must be specified if the first argument
 is null. If both the first and second arguments are specified, the RPC parameter number
 specified by argument 1 is used if the indicated parameter number and all parameters
 before it are unnamed, that is, are positional parameters. Otherwise, the parameter
 name is used to locate the parameter.

 The third argument is the name of a destination Model 204 %variable which will be
 assigned the value of the retrieved RPC parameter. This argument cannot be a
 constant, a field name or an expression. For example, 'TEST', 22 and %VAR1 +
 %VAR2 are examples of invalid values for the third argument.

 The fourth argument is for parameters that are Sybase DATETIME or SMALLDATETIME
 types; it specifies the string datetime format that will be used for storing the result into
 the destination %variable specified as the third argument. The default format is
 'MON DD YYYY HH:MI:SS'. See “Datetime Formats” on page 76 for an explanation of
 datetime formats.

——
Janus Open Server Reference Manual 47

——
Janus Open Server $Functions
——

 The fourth parameter is ignored if the incoming parameter is not a DATETIME or
 SMALLDATETIME type.

 0 - Function successful.
 1 - Invalid call, RPC not active.
 2 - Parameter not found.
 3 - Argument 3 is an invalid target.
 4 - Data conversion error.
 5 - Invalid datetime format.

 $SRV_PARMGET return codes

 %RESULT = $SRV_PARMGET(1,, %PARM1)

 In the previous example, the value of the first RPC parameter passed by the client is
 placed in %PARM1.

 %RESULT = $SRV_PARMGET(,'CLIENT.ID', %CLIENT.ID)

 In the previous example, the value of the RPC parameter passed by the client under the
 name 'CLIENT.ID' is placed in %CLIENT.ID.

 %RC = $SRV_PARMGET(4,'START_DATE',%START_DATE,'YYYYMMDD')

 In this example, the client passes the fourth parameter, named START_DATE; its value
 will be placed into %START_DATE as a string in YYYYMMDD format.

 4.9 $SRV_PARMLEN

 This gets the length of an RPC parameter.

 $SRV_PARMLEN accepts three arguments and returns a numeric code.

 %RESULT = $SRV_PARMLEN(parm_no, -
 parm_name, dest_variable)

 $SRV_PARMLEN function

 The first argument is the number of the RPC parameter for which the function should
 return the length. This is an optional argument, but must be specified if the second
 argument is null.

 The second argument is the name of the RPC parameter for which the function should
 return the length. This is an optional argument, but must be specified if the first
 argument is null. If both the first and second arguments are specified, the RPC

——
48 Janus Open Server Reference Manual

——
 $SRV_PARMLEN
——

 parameter number specified by argument 1 is used if the indicated parameter number
 and all parameters before it are unnamed, that is, are positional parameters. Otherwise,
 the parameter name is used to locate the parameter.

 The third argument is the name of a destination Model 204 %variable which will be
 assigned the length of the retrieved RPC parameter. This argument cannot be a
 constant, a field name or an expression. For example, 'TEST', 22 and %VAR1 +
 %VAR2 are examples of invalid values for the third argument.

 0 - Function successful.
 1 - Invalid call, RPC not active.
 2 - Parameter not found.
 3 - Argument 3 is an invalid target.

 $SRV_PARMLEN return codes

 %RESULT = $SRV_PARMLEN(1,, %PARM1LEN)

 In the previous example, the length of the first RPC parameter passed by the client is
 placed in %PARM1LEN.

 %RESULT = $SRV_PARMLEN(,'CLIENT.ID', %LEN)

 In the previous example, the length of the RPC parameter passed by the client under the
 name 'CLIENT.ID' is placed in %LEN.

 For char or varchar datatypes, $SRV_PARMLEN returns the maximum length of the
 string regardless of the current length. That is, if the specified parameter is defined as
 varchar(18) but currently is set to 'small', $SRV_PARMLEN would return 18.

 For all other datatypes, $SRV_PARMLEN simply returns the length of the binary
 representation of the datatype. For example, if the datatype is smallint,
 $SRV_PARMLEN returns 2; if the datatype is float, $SRV_PARMLEN returns 8.

 4.10 $SRV_PARMNAME

 This returns the parameter name of a numbered RPC parameter. $SRV_PARMNAME
 accepts one argument and returns a string value.

 %PARM.NAME = $SRV_PARMNAME(parm_num)

 $SRV_PARMNAME function

 The first and only argument is the number of an RPC parameter for which the name is
 requested. Returned is either the name of the parameter, or null ('') to indicate no such

——
Janus Open Server Reference Manual 49

——
Janus Open Server $Functions
——

 parameter number, not a server or no RPC, or that the specified parameter is being
 passed by number and has no name.

 %NAME1 = $SRV_PARMNAME(1)

 In the previous example, the name of the first RPC parameter passed by the client is
 placed in %NAME1.

 %RESULT = $SRV_PARMGET(, $SRV_PARMNAME(1), %VALUE1)

 is the same as

 %RESULT = $SRV_PARMGET(1, , %VALUE1)

 4.11 $SRV_PARMNUM

 This returns the parameter number of a named RPC parameter.

 $SRV_PARMNUM accepts one argument and returns a numeric code.

 %RESULT = $SRV_PARMNUM(parm_name)

 $SRV_PARMNUM function

 The first and only argument is the name of an RPC parameter for which the parameter
 number is to be returned.

 Returned is one of the following codes

 >0 - Parameter number (successful completion).
 0 - Name missing or not found.
 1 - Invalid call, RPC not active.

 $SRV_PARMNUM return codes

 %NUM1 = $SRV_PARMNUM('ADDRESS')

 In the previous example, the number of the RPC parameter passed by the client under
 the name 'ADDRESS' is placed in %NUM1.

 %RESULT = $SRV_PARMGET($SRV_PARMNUM('FNAME'), , %VALUE1)

 is the same as

 %RESULT = $SRV_PARMGET(, 'FNAME', %VALUE1)

——
50 Janus Open Server Reference Manual

——
 $SRV_PARMSET
——

 4.12 $SRV_PARMSET

 This sets the value of an RPC parameter. $SRV_PARMSET accepts five optional
 arguments and returns a numeric code.

 %RESULT = $SRV_PARMSET(parm_no, parm_name, -
 value, date_time_format, centspan)

 $SRV_PARMSET function

 The first argument is the number of the RPC parameter for which the function should set
 the value. This is an optional argument, but must be specified if the second argument is
 null.

 The second argument is the name of the RPC parameter for which the function should
 set the value. This is an optional argument, but must be specified if the first argument is
 null. If both the first and second arguments are specified, the RPC parameter number
 specified by argument 1 is used if the indicated parameter number and all parameters
 before it are unnamed, that is, are positional parameters. Otherwise, the parameter
 name is used to locate the parameter.

 The third argument is the value to which the RPC parameter should be set. This is an
 optional argument; if omitted the parameter is set to null. The parameter being set must
 have been defined in the client RPC call as an output parameter.

 The fourth argument is the datetime format of the value being set, for parameters that
 are Sybase DATETIME or SMALLDATETIME data types. The default format is
 'MON DD YYYY HH:MI:SS'. See “Datetime Formats” on page 76 for an explanation of
 datetime formats.

 The fifth argument is a CENTSPAN value; the default is -50. See “CENTSPAN” on page
 80 for an explanation of CENTSPAN processing.

 The fourth and fifth arguments are ignored if the parameter is not a Sybase DATETIME
 or SMALLDATETIM type.

 $SRV_PARMSET returns one of the following codes

 0 - Function successful.
 1 - Invalid call, RPC not active.
 2 - Parameter not found.
 3 - Parameter is not an output parameter.
 4 - Conversion error.
 5 - Invalid datetime format.

 $SRV_PARMSET return codes

——
Janus Open Server Reference Manual 51

——
Janus Open Server $Functions
——

 %RESULT = $SRV_PARMSET(1,, 22)

 In the previous example, the first RPC parameter passed by the client is set to 22. This
 first parameter must have been indicated to be an output parameter by the client for this
 to work. When the RPC is completed (as indicated by $SRV_DONE) the value 22 will
 be returned as the output value of the first RPC parameter.

 %RESULT = $SRV_PARMSET(,'ACTION', %ACTION)

 In the previous example, the value of the RPC parameter passed by the client under the
 name 'ACTION' is set to the value in %ACTION.

 4.13 $SRV_PARMTYPE

 This gets the datatype of an RPC parameter.

 $SRV_PARMTYPE accepts three arguments and returns a numeric code.

 %RESULT = $SRV_PARMTYPE(parm_no, -
 parm_name, dest_variable)

 $SRV_PARMTYPE function

 The first argument is the number of the RPC parameter for which the function should
 return the datatype. This is an optional argument, but must be specified if the second
 argument is null.

 The second argument is the name of the RPC parameter for which the function should
 return the datatype. This is an optional argument, but must be specified if the first
 argument is null. If both the first and second arguments are specified, the RPC
 parameter number specified by argument 1 is used if the indicated parameter number
 and all parameters before it are unnamed, that is, are positional parameters. Otherwise,
 the parameter name is used to locate the parameter.

 The third argument is the name of a destination Model 204 %variable which will be
 assigned the datatype of the retrieved RPC parameter. This argument cannot be a
 constant, a field name or an expression. For example, 'TEST', 22 and %VAR1 +
 %VAR2 are examples of invalid values for the third argument.

 0 - Function successful.
 1 - Invalid call, RPC not active.
 2 - Parameter not found.
 3 - Argument 3 is an invalid target.

 $SRV_PARMTYPE return codes

——
52 Janus Open Server Reference Manual

——
 $SRV_PARMTYPE
——

 %RESULT = $SRV_PARMTYPE(1,, %PARM1TYPE)

 In the previous example, the datatype of the first RPC parameter passed by the client is
 placed in %PARM1TYPE.

 %RESULT = $SRV_PARMTYPE(,'CLIENT.ID', %TYPE)

 In the previous example, the datatype of the RPC parameter passed by the client under
 the name 'CLIENT.ID' is placed in %TYPE.

 The possible datatypes returned by $SRV_PARMTYPE are char, varchar, int, smallint,
 tinyint, float, real, money, smallmoney, text, image, binary and varbinary. For the char,
 varhchar, text, image, binary and varbinary datatypes, the length can be retrieved using
 the $SRV_PARMLEN function.

 4.14 $SRV_RPCNAME

 This returns the current Remote Procedure Call (RPC) name.

 $SRV_RPCNAME accepts no arguments and returns either the RPC name, or null ('') to
 indicate that no RPC is active.

 %RESULT = $SRV_RPCNAME

 $SRV_RPCNAME function

 In the above example %RESULT is set to the name of the active RPC.

 4.15 $SRV_SENDROW

 This sends a row of data to the client.

 $SRV_SENDROW accepts no arguments and returns a numeric code.

 %RESULT = $SRV_SENDROW

 $SRV_SENDROW function.

 %RESULT is set to a numeric code indicating the success of sending the row.

——
Janus Open Server Reference Manual 53

——
Janus Open Server $Functions
——

 0 - Row sent successfully
 1 - Invalid call, RPC/language request not active
 2 - Invalid call, no current row image.
 3 - Image not found.
 100+n - Conversion error occurred for `n'
 columns in the row. Each such column
 was sent as a null value.

 $SRV_SENDROW return codes

 $SRV_SENDROW must be preceded by a $SRV_SETROW or $SRV_BIND to indicate
 the source of the data. $SRV_SENDROW must be invoked from the same procedure as
 $SRV_SETROW or $SRV_BIND unless $SRV_SETROW specified an image defined as
 PERM GLOBAL.

 %RESULT = $SRV_SETROW('OUTREC') FOR EACH RECORD IN FIND1
 %OUTREC:FNAME = FNAME %OUTREC:LNAME = LNAME %OUTREC:SSN = SSN
 %RESULT = $SRV_SENDROW END FOR

 In the previous example $SRV_SENDROW sends the contents of the image 'OUTREC'
 to the client as a row of data. A row is sent for each record in the found set 'FIND1'.

 4.16 $SRV_SETROW

 This sets the Model 204 image name for subsequent rows.

 $SRV_SETROW accepts one argument and returns a numeric code.

 %RESULT = $SRV_SETROW(imagename)

 $SRV_SETROW function

 The image 'imagename' becomes the Model 204 IMAGE which contains the row of data
 to be sent to the client for all subsequent $SRV_SENDROW function calls.

 The Model 204 image specified in $SRV_SETROW must have been defined with the
 NAMESAVE option. This option is only available if Janus is installed and is, therefore,
 not documented in the Model 204 User Language Reference Manual.

 IMAGE STIMPY NAMESAVE PART.NO IS BINARY LEN 4 COST IS BINARY LEN
 4 DESC IS STRING LEN 20 END FOR

 In the previous example, the image named 'STIMPY' is defined with the NAMESAVE
 option and hence can be specified by the $SRV_SETROW function.

——
54 Janus Open Server Reference Manual

——
 $SRV_SETROW
——

 If the Model 204 image specified in $SRV_SETROW does not conform to certain rules,
 the $SRV_SETROW will fail with a return code of 4. The rules for $SRV_SETROW
 images are :

 ● Images cannot contain a DEPENDING clause (an image array element whose
 number of occurrence depends upon a value within the image itself).

 ● Images cannot contain an array whose number of occurrences is specified as
 UNKNOWN.

 ● Images cannot contain PACKED, ZONED, EFORMAT or DBCS datatypes.

 %RESULT is set to one of the following values.

 0 - Row successfully set to image name.
 1 - Invalid call, RPC/language request not active.
 2 - Invalid call, already have current row image or column binding.
 3 - Image invalid or not found.
 4 - Image has invalid format.

 $SRV_SETROW return codes

 %RESULT = $SRV_SETROW('OUTREC1') %RESULT = $SRV_SENDROW %RESULT
 = $SRV_DONE('MORE') %RESULT = $SRV_SETROW('OUTREC2') FOR EACH
 RECORD IN FIND1 %OUTREC2:FNAME = FNAME %OUTREC2:LNAME = LNAME
 %OUTREC2:SSN = SSN %RESULT = $SRV_SENDROW END FOR %RESULT =
 $SRV_DONE

 In the previous example $SRV_SETROW sets the current output image to 'OUTREC1'.
 $SRV_SENDROW is then used to send the contents of image OUTREC1 to the client as
 a row. $SRV_DONE is issued to indicate that the server is done sending rows of
 OUTREC1 but is not done with the RPC. The server then issues a $SRV_SETROW to
 set the current output image to 'OUTREC2'. $SRV_SENDROW is used to send the
 contents of image OUTREC2 to the client for each record in the found set called 'FIND1'.
 Finally, a $SRV_DONE is issued to indicate that the RPC is done.

 4.17 $SRV_WAIT

 This causes the server application to wait for a call from the client.

 $SRV_WAIT accepts no arguments and returns a numeric code.

 %RESULT = $SRV_WAIT

 $SRV_WAIT function

——
Janus Open Server Reference Manual 55

——
Janus Open Server $Functions
——

 The following $SRV_WAIT return codes are possible

 1 - RPC request.
 2 - Language request.

 $SRV_WAIT return codes

 The example Model 204 server application at the end of this manual shows how
 $SRV_WAIT is used in a driver routine that processes a number of RPCs within a single
 procedure.

 $SRV_WAIT must be called before an RPC or language request can be processed. The
 $SRV_WAIT is satisfied when a client request is received. Processing then continues
 until a $SRV_DONE is issued. After a $SRV_DONE is issued, the server must again
 issue a $SRV_WAIT before it will be able to process another RPC request.

——
56 Janus Open Server Reference Manual

——
 Open Server User Language Coding Considerations
——

——————
CHAPTER 5 Open Server User Language Coding
 Considerations

 Coding Janus server applications is not very different from coding any other User
 Language application. The main difference is that Janus applications run on TCP/IP
 threads that are not attached to a full screen I/O device. Instead, the client application
 performs all screen formatting, and the Janus server application communicates with the
 client using $SRVxxx functions rather than READ SCREEN statements.

 Any attempt to perform full screen I/O in a Janus session will result in a user restart. No
 READ SCREENS should be employed in Janus applications, and programmers should
 make sure that all $READs and dummy string substitutions are satisfied without prompts
 being sent to the (non-existent) screen.

 JANUS DEFINE REGION1 1001 OPENSERV 20 OPEN FILE PRODPROC -
 CMD 'I REGIONAL.QUERIES,1,HIGH'
 JANUS START REGION1

 PROCEDURE REGIONAL.QUERIES
 BEGIN
 ...
 FDX: IN DATAFILE FD REGION = ??REGNUM
 PRIVLEGE = ??PRIV
 ...

 In the previous example, the two global FIND criteria are satisfied by values
 concatenated onto the INCLUDE statement specified in the DEFINE for the port.

 When coding ON units in Janus server applications, programmers should keep in mind
 that any “DO YOU REALLY WANT TO...” messages will cause a user restart of the
 server session because they send a prompt to the non-existent full screen device. All
 error, enqueuing and locking conditions should be handled so as not to cause these
 messages.

 5.1 Open Server User Language debugging

 Because full screen I/O cannot be performed in a Janus application, the primary source
 of information for debugging User Language server programs is the Model 204 journal.
 A journal formatting and scanning tool, like SirScan, is highly recommended.

——
Janus Open Server Reference Manual 57

——
Open Server User Language Coding Considerations
——

 User Language PRINT and AUDIT statements are routed to the Model 204 journal,
 along with any other messages that would ordinarily appear at a user's terminal.

——
58 Janus Open Server Reference Manual

——
 Sample Sybase Client Application
——

——————
APPENDIX A Sample Sybase Client Application

 The following Sybase client application program demonstrates the use of DB-LIBRARY
 open client code to pass a request to a Janus/Model 204 Janus Open Server example
 that follows.

——
Janus Open Server Reference Manual 59

——
Sample Sybase Client Application
——

 #include <stdio.h>
 #include <sybfront.h>
 #include <sybdb.h>
 #define USER “sa”
 #define PASSWORD “”
 #define LANGUAGE “us_english”
 #define SQLBUFLEN 255
 #define ERR_CH stderr
 #define OUT_CH stdout
 extern void error();
 extern int err_handler();
 extern int msg_handler();
 /* forward declarations of the error/message handler routines. */
 int err_handler();
 int msg_handler();

 char null_str[10] = “nuttin” ;
 main()
 {
 LOGINREC *login;
 DBPROCESS *dbproc;

 int i, j, numcols, collen, totlen;
 int rc;
 char data[20][80];
 int sel_lat1, sel_lat2, sel_long1, sel_long2;
 int min_lat, max_lat, min_long, max_long;
 char *ptr;
 char display_buf[512];
 char *display_ptr;
 DBCHAR database[31];
 DBCHAR username[31];
 DBINT indicator ;
 DBCHAR unit_id[81];
 DBCHAR unit_name[80] ;

 /* Initialize DB-Library. */

 /* Install the user-supplied error-handling and message-handling
 * routines. They are defined at the bottom of this source file.
 */
 dberrhandle(err_handler);
 dbmsghandle(msg_handler);

 /* init dblib */
 if (dbinit() == FAIL)
 exit(ERREXIT);

 /* Allocate and initialize the LOGINREC structure to be used
 * to open a connection to a server.
 */

 if ((login = dblogin()) == NULL)
 {
 printf(“dblogin failed\n”) ;
 fflush(stdout) ;
 dbexit() ;

——
60 Janus Open Server Reference Manual

——
 Sample Sybase Client Application
——

 exit(-1) ;
 }

 /* print the version of dblib */
 printf(“%s\n”, dbversion()) ;

 /* set the username and pwd for logging in to the server */
 DBSETLUSER(login, “homer”);
 DBSETLPWD(login, “homer”);

 if ((dbproc = dbopen(login, (BYTE *)NULL)) == NULL)
 {
 printf(“dbopen failed\n”) ;
 fflush(stdout) ;
 dbexit() ;
 exit(-1) ;
 }

 dbrpcinit(dbproc, “WELL_RANGE”, 0);
 dbrpcparam(dbproc, “sel.lat.min”, DBRPCRETURN, SYBINT4, -1, -1,
 &min_lat);
 dbrpcparam(dbproc, “sel.lat.max”, DBRPCRETURN, SYBINT4, -1, -1,
 &max_lat);
 dbrpcparam(dbproc, “sel.long.min”, DBRPCRETURN, SYBINT4, -1, -1,
 &min_long);
 dbrpcparam(dbproc, “sel.long.max”, DBRPCRETURN, SYBINT4, -1, -1,
 &max_long);
 dbrpcsend(dbproc);
 dbsqlok(dbproc);

 if (rc = dbresults(dbproc) != SUCCEED) {
 printf(“Unexpected result from WELL_RANGE\n”);
 Goto close;
 }

 if (rc = dbresults(dbproc) != NO_MORE_RESULTS) {
 printf(“Unexpected result from WELL_RANGE\n”);
 Goto close;
 }

 min_lat = * (int *) dbretdata(dbproc, 1);
 max_lat = * (int *) dbretdata(dbproc, 2);
 min_long = * (int *) dbretdata(dbproc, 3);
 max_long = * (int *) dbretdata(dbproc, 4);

 printf(“Min latitude = %9d Max latitude = %9d\n”, min_lat ,
 max_lat);
 printf(“Min longitude = %9d Max longitude = %9d\n”, min_long,
 max_long);

 for (;;) {

 dbrpcinit(dbproc, “WELL_LIST”, 0);

 printf(“Bottom left corner latitude = ”);
 rc = getn(&sel_lat1, min_lat, max_lat);
 if (rc < 0) break;

——
Janus Open Server Reference Manual 61

——
Sample Sybase Client Application
——

 if (rc > 0)
 dbrpcparam(dbproc, “sel.lat1”, 0, SYBINT4, -1, -1, &sel_lat1);
 else sel_lat1 = min_lat;

 printf(“Bottom left corner longitude = ”);
 rc = getn(&sel_long1, min_long, max_long);
 if (rc < 0) break;
 if (rc > 0)
 dbrpcparam(dbproc, “sel.long1”, 0, SYBINT4, -1, -1, &sel_long1);
 else sel_long1 = min_long;

 printf(“Top right corner latitude = ”);
 rc = getn(&sel_lat2, sel_lat1, max_lat);
 if (rc < 0) break;
 if (rc > 0)
 dbrpcparam(dbproc, “sel.lat2”, 0, SYBINT4, -1, -1, &sel_lat2);

 printf(“Top right corner longitude = ”);
 rc = getn(&sel_long2, sel_long1, max_long);
 if (rc < 0) break;
 if (rc > 0)
 dbrpcparam(dbproc, “sel.long2”, 0, SYBINT4, -1, -1, &sel_long2);
 dbrpcsend(dbproc);
 dbsqlok(dbproc);

 /* Process the results */

 while ((rc = dbresults(dbproc)) != NO_MORE_RESULTS)
 {
 if (rc == FAIL)
 {
 printf(“ERROR ON DBRESULTS!!!!!!!!!!!!!!!!!!\n”);
 Goto close;
 }
 printf(“\n”);
 numcols = dbnumcols(dbproc);
 if (numcols > 20) numcols = 20;
 totlen = 0;
 for (i = 1; i <= numcols; i++) {
 collen = dbcollen(dbproc, i);
 dbbind(dbproc, i, STRINGBIND, 80, &data[i - 1]) ;
 ptr = dbcolname(dbproc, i);
 for (j = 1; j <= collen; j++) {
 if (*ptr == '\0') putchar(' ');
 else {
 putchar(*ptr);
 ptr++;
 }
 }
 totlen = totlen + collen;
 putchar(' ');
 totlen = totlen + 1;
 }
 printf(“\n”);
 for (i = 1; i <= totlen; i ++) putchar('-');
 printf(“\n”);

——
62 Janus Open Server Reference Manual

——
 Sample Sybase Client Application
——

 while (dbnextrow(dbproc) != NO_MORE_ROWS)
 {
 for (i = 1; i <= numcols; i++) {
 collen = dbcollen(dbproc, i);
 ptr = &data[i - 1][0];
 for (j = 1; j <= collen; j++) {
 if (*ptr == '\0') putchar(' ');
 else {
 putchar(*ptr);
 ptr++;
 }
 }
 putchar(' ');
 }
 printf(“\n”);
 }
 }
 printf(“\n%d rows affected\n”, DBCOUNT(dbproc)) ;
 }
 close:
 fflush(stdout);
 dbclose(dbproc) ;
 dbexit();
 exit(STDEXIT);
 }

 int getn(idata, min, max)
 int *idata;
 int min, max;

 {
 char data[80];
 char *digit;
 char negative;

 for (;;) {
 if (gets(data) == NULL) return(-1);
 if (strlen(data) == 0) return(0);
 *idata = 0;
 digit = data;
 negative = 0;
 if (*digit == '-') {
 negative = 1;
 digit++;
 }
 for (;;) {
 if ((*digit < '0') || (*digit > '9') ||
 (*idata > 100000000)) {
 digit = data;
 while (*digit > '\0') {
 *digit = toupper(*digit);
 digit++;
 }
 if (strcmp(data, “EXIT”) == 0) return(-2);
 if (strcmp(data, “STOP”) == 0) return(-2);
 if (strcmp(data, “END”) == 0) return(-2);
 if (strcmp(data, “QUIT”) == 0) return(-2);

——
Janus Open Server Reference Manual 63

——
Sample Sybase Client Application
——

 printf(“Invalid integer”);
 break;
 }
 *idata = *idata * 10 + (*digit - '0');
 if (*++digit == '\0') {
 if (negative) *idata = -*idata;
 if ((*idata >= min) && (*idata <= max)) return(1);
 printf(“Value must be in the range %d to %d”,
 min, max);
 break;
 }
 }
 printf(“ - please reenter - ”);
 }
 }

 int err_handler(dbproc, severity, dberr, oserr, dberrstr, oserrstr)
 DBPROCESS *dbproc;
 int severity;
 int dberr;
 int oserr;
 char *dberrstr;
 char *oserrstr;
 {
 if (dberr == SYBESMSG)
 return (INT_CANCEL);

 if ((dbproc == NULL) || (DBDEAD(dbproc)))
 return(INT_EXIT);
 else
 {
 fprintf(stderr, “DB-Library error:\n\t%s\n”, dberrstr);
 if (oserr != DBNOERR)
 fprintf(stderr, “Operating-system error:\n\t%s\n”,
 oserrstr);
 return(INT_CANCEL);
 }
 }

 int msg_handler(dbproc, msgno, msgstate, severity, msgtext,
 srvname, procname, line)

 DBPROCESS *dbproc;
 DBINT msgno;
 int msgstate;
 int severity;
 char *msgtext;
 char *srvname;
 char *procname;
 DBUSMALLINT line;

 {
 fprintf (stderr, “Msg %ld, Level %d, State %d\n”,
 msgno, severity, msgstate);
 if (strlen(srvname) > 0)
 fprintf (stderr, “Server '%s', ”, srvname);
 if (strlen(procname) > 0)

——
64 Janus Open Server Reference Manual

——
 Sample Sybase Client Application
——

 fprintf (stderr, “Procedure '%s', ”, procname);
 if (line > 0)
 fprintf (stderr, “Line %d”, line);
 fprintf(stderr, “\n\t%s\n”, msgtext);
 return(0);

——
Janus Open Server Reference Manual 65

——
Sample Sybase Client Application
——

——
66 Janus Open Server Reference Manual

——
 Sample Open Server Programs
——

——————
APPENDIX B Sample Open Server Programs

 B.1 Retrieve/Send data with $SRV functions

 The following Janus/Model 204 server application program communicates with the
 previous Sybase client code. The following JANUS DEFINE and START statements
 would have been previously executed to allow clients to access this server program:

 JANUS DEFINE SRVWELL 2001 OPENSERV 50 -
 OPEN FILE SIRGENR CMD 'INCLUDE SRVWELL' -
 TIMEOUT 300
 JANUS START SRVWELL

 The define statement above causes the procedure SRVWELL to be automatically
 included from file SIRGENR as soon as the client connection is established. Processing
 within the procedure is based on the RPC name, which is found with $SRV_RPCNAME
 and processed with the IF statement at label RPC.

 Once the server program is included, it waits at $SRV_WAIT until the client sends the
 RPC. After either of the two RPC is handled, a $SRV_DONE is issued, and processing
 returns to the $SRV_WAIT to wait for another RPC. If the value sent by the client is not
 a valid RPC, a $SRV_CLOSE is executed, disconnecting the client.

 Note that $SRV_WAIT must be called before an RPC can be processed, and
 $SRV_DONE must be called without its parameter set to 'MORE', to terminate the RPC.
 As this program sits in a loop, processing repeated RPCs from the same client,
 $SRV_WAIT is called again after the $SRV_DONE, to ready the server program for the
 next RPC.

 PROCEDURE SRVWELL
 B

 %RC IS FLOAT
 %I IS FLOAT
 %SEL.LAT1 IS STRING LEN 50
 %SEL.LAT2 IS STRING LEN 50
 %SEL.LONG1 IS STRING LEN 50
 %SEL.LONG2 IS STRING LEN 50

 IMAGE LIST TEMP GLOBAL NAMESAVE
 API.NBR IS STRING LEN 14
 SEL.LAT IS STRING LEN 7
 SEL.LONG IS STRING LEN 9
 FNL.CLS IS STRING LEN 8
 OPER.NM IS STRING LEN 23
 TOT.DEPTH IS STRING LEN 9
 END IMAGE

——
Janus Open Server Reference Manual 67

——
Sample Open Server Programs
——

 %RC = $SRV_DATA('UPCASE', 'ON')

 RPC_LOOP:

 %RC = $SRV_WAIT
 IF %RC NE 1 THEN
 JUMP TO ERROR
 END IF

 RPC:

 IF $SRV_RPCNAME EQ 'WELL_RANGE' THEN
 JUMP TO WELL_RANGE
 ELSEIF $SRV_RPCNAME EQ 'WELL_LIST' THEN
 JUMP TO WELL_LIST
 END IF

 %RC = $SRV_MSG(20001, 7, 'Invalid RPC')
 JUMP TO ERROR

 WELL_RANGE:

 FV1: IN FILE SIRGENR FOR 1 VALUE OF SEL.LAT IN ASCENDING
 %RC = $SRV_PARMSET(, 'SEL.LAT.MIN', VALUE IN FV1)
 END FOR

 FV2: IN FILE SIRGENR FOR 1 VALUE OF SEL.LAT IN DESCENDING
 %RC = $SRV_PARMSET(, 'SEL.LAT.MAX', VALUE IN FV2)
 END FOR

 FV3: IN FILE SIRGENR FOR 1 VALUE OF SEL.LONG IN ASCENDING
 %RC = $SRV_PARMSET(, 'SEL.LONG.MIN', VALUE IN FV3)
 END FOR

 FV4: IN FILE SIRGENR FOR 1 VALUE OF SEL.LONG IN DESCENDING
 %RC = $SRV_PARMSET(, 'SEL.LONG.MAX', VALUE IN FV4)
 END FOR

 %RC = $SRV_DONE

 JUMP TO RPC_LOOP

 **
 *WELL_LIST - Handle well list RPC *
 **

 WELL_LIST:

 PREPARE IMAGE LIST
 %RC = $SRV_SETROW('LIST')

 %RC = $SRV_PARMGET(, 'SEL.LAT1' , %SEL.LAT1)
 %RC = $SRV_PARMGET(, 'SEL.LAT2' , %SEL.LAT2)
 %RC = $SRV_PARMGET(, 'SEL.LONG1' , %SEL.LONG1)
 %RC = $SRV_PARMGET(, 'SEL.LONG2' , %SEL.LONG2)

 **

——
68 Janus Open Server Reference Manual

——
 Retrieve/Send data with $SRV functions
——

 *-> Locate well data. *
 **

 IN SIRGENR CLEAR LIST PUMPERS
 G1: IN SIRGENR FDWOL
 P1: PLACE RECORDS IN G1 ON LIST PUMPERS
 RELEASE RECORDS IN G1

 IF %SEL.LAT1 NE '' THEN
 G2: FD ON LIST PUMPERS FOR WHICH SEL.LAT IS GE %SEL.LAT1
 C2: CLEAR LIST PUMPERS
 PLACE RECORDS IN G2 ON LIST PUMPERS
 END IF

 IF %SEL.LAT2 NE '' THEN
 G3: FD ON LIST PUMPERS FOR WHICH SEL.LAT IS LE %SEL.LAT2
 C3: CLEAR LIST PUMPERS
 PLACE RECORDS IN G3 ON LIST PUMPERS
 END IF

 IF %SEL.LONG1 NE '' THEN
 G4: FD ON LIST PUMPERS FOR WHICH SEL.LONG IS GE %SEL.LONG1
 C4: CLEAR LIST PUMPERS
 PLACE RECORDS IN G4 ON LIST PUMPERS
 END IF

 IF %SEL.LONG2 NE '' THEN
 G5: FD ON LIST PUMPERS FOR WHICH SEL.LONG IS LE %SEL.LONG2
 C5: CLEAR LIST PUMPERS
 PLACE RECORDS IN G5 ON LIST PUMPERS
 END IF

 %I = 0
 FOR EACH RECORD ON LIST PUMPERS
 %I = %I + 1
 IF (%I GT 200) THEN
 %RC = $SRV_MSG(20002, 1, -
 'More rows available but not sent')
 LOOP END
 END IF
 %LIST:API.NBR = API.NBR
 %LIST:SEL.LAT = SEL.LAT
 %LIST:SEL.LONG = SEL.LONG
 %LIST:FNL.CLS = FNL.CLS
 %LIST:OPER.NM = FLD.NM
 %LIST:TOT.DEPTH = TOT.DEPTH
 %RC = $SRV_SENDROW
 IF %RC NE 0 THEN
 PRINT '$SRV_SENDROW = ' WITH %RC
 JUMP TO ERROR
 END IF
 END FOR

 %RC = $SRV_DONE

 JUMP TO RPC_LOOP

——
Janus Open Server Reference Manual 69

——
Sample Open Server Programs
——

 ERROR:

 %RC = $SRV_DONE('ERROR')
 %RC = $SRV_CLOSE

 END
 END PROCEDURE SRVWELL

 B.2 Generic RPC router

 This Janus/Model 204 server program looks in JANUS for a User Language procedure
 of the same name as the client-supplied RPC. If the procedure is found it is executed.
 The JANUS DEFINE command causes the driver routine to be automatically invoked
 when the client connects.

 JANUS DEFINE ADHOC 3001 Janus 10 - OPEN FILE OPENSERV CMD 'INCLUDE
 ADHOC_RPC_DRIVER' JANUS START ADHOC

 This procedure is a good example of a driver routine that allows the client to request the
 execution of any User Language procedure in a designated procedure file.

 PROCEDURE ADHOC_RPC_DRIVER
 --
 * Description: Driver routine which will look for and include
 *
 * any stored procedure in file JANUS.
 *
 --
 B

 * Variable declarations.

 %PROC IS STRING LEN 255
 %RC IS FLOAT COMMON
 %X IS FLOAT

 * Force upper case translation of RPC and parameter names.

 %RC = $SRV_DATA('UPCASE','ON')

 * $SRV_WAIT must be called before an RPC is processed.

 %RC = $SRV_WAIT
 IF %RC NE 1 THEN
 CALL ERROR(20001, 7, '$SRV_WAIT function failed.')
 END IF

 * Retrieve the name of the RPC (the stored User Language procedure).

 %PROC = $SRV_RPCNAME
 IF %PROC EQ '' THEN
 CALL ERROR(20002, 7, 'Null RPC specified.')
 END IF
——
70 Janus Open Server Reference Manual

——
 Generic RPC router
——

 * Verify the RPC exists in file JANUS.

 %X = $RDPROC('OPEN','JANUS',%PROC)
 IF $STATUS THEN
 %X = $RDPROC('CLOSE',%X)
 CALL ERROR(20003, 7, 'Invalid RPC. Procedure does not exist.')
 END IF
 %X = $RDPROC('CLOSE',%X)

 * Build a temporary procedure to INCLUDE the RPC.

 %PROC = 'IN FILE JANUS INCLUDE ' WITH %PROC
 %RC = $BLDPROC(-3,'*','OPEN')
 %RC = $BLDPROC(-3,%PROC,'CLOSE')

 * Error routine to null-out the INCLUDE procedure and close
 * connection.

 SUBROUTINE ERROR (%MSG.NO IS STRING LEN 10, -
 %MSG.CLS IS STRING LEN 2, -
 %MSG.TXT IS STRING LEN 255)
 %RC IS FLOAT COMMON

 IF %MSG.NO NE '' THEN
 %RC = $SRV_MSG(%MSG.NO, %MSG.CLS, %MSG.TXT)
 %RC = $SRV_DONE('ERROR')
 ELSE
 %RC = $SRV_DONE('')
 END IF
 %RC = $SRV_CLOSE
 %RC = $BLDPROC(-3,'*','OPEN')
 %RC = $BLDPROC(-3,'*','CLOSE')
 STOP
 END SUBROUTINE ERROR
 END

 * INCLUDE the user-selected RPC.

 INCLUDE -3
 END PROCEDURE ADHOC_RPC_DRIVER

——
Janus Open Server Reference Manual 71

——
Sample Open Server Programs
——

 B.3 Send U.L. procedure to client with $SRV functions

 This Janus/Model 204 server program sends a user-selected User Language procedure
 to the client. This procedure could be invoked as an RPC from the driver routine in the
 previous example.

 PROCEDURE ADHOC_PROC_SEND
 --
 * Description: Send the lines of a user-specified
 *
 * User Language procedure to the client.
 *
 --
 B

 */ Variable declarations.

 %FILE IS STRING LEN 8
 %HOLD IS STRING LEN 132
 %PASS IS STRING LEN 8
 %PROC IS STRING LEN 255

 %RC IS FLOAT COMMON
 %X IS FLOAT

 %CURPRIV IS FIXED DP 0
 %CURPRIV.0200 IS FIXED DP 0

 IMAGE PROC NAMESAVE
 LINE IS STRING LEN 132
 END IMAGE

 */ Retrieve the procedure name, the file and the optional password,
 */ which should have been passed by client as named parameters.

 %RC = $SRV_PARMGET(,'FILE', %FILE)
 %RC = $SRV_PARMGET(,'PASSWORD',%PASS)
 %RC = $SRV_PARMGET(,'PROC', %PROC)

 IF %FILE EQ '' THEN
 CALL ERROR(20005, 7, 'No source procedure file specified.')
 END IF

 IF %PROC EQ '' THEN
 CALL ERROR(20006, 7, 'No procedure specified.')
 END IF

 */ Open the source file.

 IF %PASS EQ '' THEN
 OPENC FILE %FILE
 ELSE
 OPENC FILE %FILE PASSWORD %PASS
 END IF

 */ See if we got access to the file.

——
72 Janus Open Server Reference Manual

——
 Send U.L. procedure to client with $SRV functions
——

 %CURPRIV = $VIEW('CURPRIV',%FILE)
 IF $STATUS AND NOT %CURPRIV THEN
 CALL ERROR(20007, 7, 'Unable to open specified source file.')
 END IF

 */ See if we have adequate privileges to read procedures.

 %CURPRIV.0200 = %CURPRIV / 512
 IF NOT $MOD(%CURPRIV.0200,2) THEN
 CALL ERROR(20008, 7, 'Insufficient privileges to read proc.')
 END IF

 */ Open the procedure.

 %X = $RDPROC('OPEN',%FILE,%PROC)
 IF $STATUS THEN
 CALL ERROR(20009, 7, 'Specified procedure does not exist.')
 END IF

 */ Retrieve the procedure's LINEND character.

 %HOLD = $RDPROC('LINEND',%X)
 IF $STATUS THEN
 CALL ERROR(20010, 7, '$RDPROC LINEND error.')
 END IF

 */ Set the image for passing data back to client.

 PREPARE IMAGE PROC
 %RC = $SRV_SETROW('PROC')

 */ Send each line of the procedure to the client.

 REPEAT WHILE $STATUS = 0
 %PROC:LINE = $RDPROC('GET',%X)
 %RC = $SRV_SENDROW
 IF %RC THEN
 %HOLD = '$SRV_SENDROW Failure. Return Code = ' WITH %RC
 CALL ERROR(20011, 7, %HOLD)
 END IF
 END REPEAT
 %RC = $SRV_DONE('')
 %RC = $SRV_CLOSE

 */ Error routine: optionally sends client a message & closes
 connection.

 SUBROUTINE ERROR (%MSG.NO IS STRING LEN 10, -
 %MSG.CLS IS STRING LEN 2, -
 %MSG.TXT IS STRING LEN 255)
 %RC IS FLOAT COMMON

 IF %MSG.NO NE '' THEN
 %RC = $SRV_MSG(%MSG.NO, %MSG.CLS, %MSG.TXT)
 %RC = $SRV_DONE('ERROR')
 ELSE

——
Janus Open Server Reference Manual 73

——
Sample Open Server Programs
——

 %RC = $SRV_DONE('')
 END IF
 %RC = $SRV_CLOSE
 STOP
 END SUBROUTINE ERROR
 END
 END PROCEDURE ADHOC_PROC_SEND

——
74 Janus Open Server Reference Manual

——
 Datetime Processing Considerations
——

——————
APPENDIX C Datetime Processing Considerations

 This chapter presents date processing issues, including usage of Janus Open Server
 past the year 1999, an explanation of its processing of dates, and any rules and
 restrictions you must follow to achieve correct results using date values with Janus Open
 Server.

 Janus Open Server uses dates in the following ways:

 ● To examine the CPU clock (as returned by the STCK hardware instruction) to
 determine the current date, in case Janus Open Server is under a rental or trial
 agreement

 ● As values communicated between an Open Client and an Open Server, using the
 Sybase DATETIME and SMALLDATETIME types

 ● As arguments to various other $functions, and returned values from them — in
 addition to the $SRV_ functions, you may use the Sirius Functions to develop Janus
 Open Server applications. The Sirius Functions are incorporated into Model 204
 version 7.5 and later. See
 http://m204wiki.rocketsoftware.com/index.php/List_of_$functions for
 descriptions of those $functions, some of which process date values.

 Please note that in addition to the above date processing performed by Janus Open
 Server, you can use it to transmit values between an Open Server and an Open Client,
 and you can use any number of Sirius $functions to manipulate values; any of these
 values might contain two digit year date values. The customer must ensure that any
 application using that data has an algorithm or rule for unambiguously determining the
 correct century for the values.

 For headers on pages or rows that occur on printed pages or displayed screens, Sirius
 Software products generally use a full four-digit year format, although they may display
 dates with two-digit years in circumstances where the proper century can be inferred
 from the context.

 You must examine all uses of date values in your applications to ensure that each of
 your applications produces correct results. Furthermore, both the operating system and
 Model 204 must correctly process and transmit dates beyond 1999 in order for Janus
 Open Server to operate properly.

 When a value of type DATETIME or SMALLDATETIME is transmitted between an Open
 Client and an Open Server, it is represented as a numeric value in units of 1/300 second
 since January 1, 1900 at 12:00 AM. When one of these values is sent from, or received
 by, Janus Open Server, it is converted from, or converted to, a representation containing

——
Janus Open Server Reference Manual 75

——
Datetime Processing Considerations
——

 calendar date components such as year, month, and day. This is the only kind of explicit
 date value manipulation performed by the $SRV_ functions; you may, however, use a
 number of datetime $functions (described in the documentation wiki at
 http://m204wiki.rocketsoftware.com/index.php/List_of_$functions) that have
 different modes of operation.

 The rest of this chapter contains a discussion of datetime formats, valid datetime strings,
 and processing of two-digit year values. It also contains example datetime formats and
 corresponding example datetime strings.

 C.1 Datetime Formats

 The representation of a date is determined by a datetime format. This value is a
 character string, composed of the concatenation of tokens (for example, "YYYY" for a
 four-digit year, and "MI" for minutes) and separator characters (for example, "/" in
 "MM/DD/YY" for two-digit month, day, and year separated by slashes).

 These datetime format strings are used in many products in addition to Janus Open
 Server. The products using datetime format strings are:

 ● Fast/Unload
 ● Janus Open Client
 ● Janus Open Server
 ● Janus Specialty Data Store
 ● Janus Web Server
 ● SirDBA
 ● Sirius Functions
 ● Sir2000 Field Migration Facility
 ● Sir2000 User Language Tools

 The rules for these datetime format strings are consistent throughout all these products,
 though certain uses of these strings might impose extra restrictions. For example, a
 leading blank may match an HH, DD, or MM token in $SRV_ function arguments, but it
 may not in some cases in other products.

 There are certain rules applied to determine if a format is valid. The basic rules are:

 1. If a format string contains a numeric datetime token (that is "ND", "NM", or "NS"),
 then the format string must consist of only one token. Numeric datetime tokens are
 only supported in format strings for the Sir2000 Field Migration Facility.

 2. You must specify at least one time, weekday, or date token.

 3. Except for "weekday", you can't specify redundant information. More specifically
 this means

 ● Except for "I", no token can be specified twice.

——
76 Janus Open Server Reference Manual

——
 Datetime Formats
——

 ● At most one year format (contains Y) can be specified.

 ● At most one month format (contains MON, Mon, or MM) can be specified.

 ● At most one day format (DD or Day) can be specified.

 ● At most one weekday format (WKD, Wkd, WKDAY, or Wkday) can be specified.

 ● If AM is specified, then PM can not be specified.

 ● At most one fractions-of-a-second format (contains X) can be specified.

 ● If DDD is specified, then neither a day nor month format can be.

 4. If ZYY is specified in a format string, no other token that denotes a variable-length
 value may be used.

 5. If a format string contains other tokens that denote variable length values, then an *
 token may only appear as the last character of the format string.

 6. The DAY token may not be immediately followed by another token whose value may
 be numeric, regardless of whether the following token repsents a variable length
 value. Thus, DAY may not be followed by *, I, YY, YYYY, CYY, MM, HH, MI, SS, X,
 XX, or XXX; DAY may not be followed by a decimal digit separator, and DAY may
 not be followed by a quote followed by a decimal digit.

 7. The maximum length of a format string is 100 characters.

 Note: A common mistake is to use "MM" for minutes; it should be "MI".

 The valid tokens in a date format are shown in the following list. In general, the output
 format rule for a token is shown, that is, the result when a DATETIME or
 SMALLDATETIME numeric value is converted to a datetime character string in a User
 Language %variable. The input format rules for $SIR_ functions are less strict; for
 example, all of the tokens that convert from an alphabetic string (for example, "MON")
 will allow any case string (for example, "jan" or "JAN" or "Jan").

 NM numeric datetime value containing the number of milliseconds (1/1000 of a
 second) since January 1, 1900 at 12:00 AM. (This token is allowed only in
 the Sir2000 Field Migration Facility.)
 NS numeric datetime value containing the number seconds since January 1,
 1900 at 12:00 AM. (This token is allowed only in the Sir2000 Field Migration
 Facility.)
 ND numeric date value containing the number of days since January 1, 1900.
 (This token is allowed only in the Sir2000 Field Migration Facility.)
 * Ignore entire variable-length substring matching pattern, if any. See
 “Datetime and format examples” on page 82.

——
Janus Open Server Reference Manual 77

——
Datetime Processing Considerations
——

 I Ignore corresponding input character. See “Datetime and format examples”
 on page 82.
 " Following character is "quoted", that is, it acts as a separator character. See
 “Datetime and format examples” on page 82.
 YYYY Four-digit year
 YY Two-digit year
 CYY Year minus 1900 (three digits, including any leading zero). See “Datetime
 and format examples” on page 82.
 ZYY Year minus 1900, two-digit or three-digit year number (variable length data).
 See “Datetime and format examples” on page 82.
 MONTH Full-month name (uppercase variable length). When used as an argument
 to a $SRV_ function for converting from a string, this is the same as Month.
 Month Full-month name (mixed-case variable length). When used as an argument
 to a $SRV_ function for converting from a string, this is the same as
 MONTH.
 MON Three-character month abbreviation (uppercase). When used as an
 argument to a $SRV_ function for converting from a string, this is the same
 as Mon.
 Mon Three-character month abbreviation (mixed case). When used as an
 argument to a $SRV_ function for converting from a string, this is the same
 as MON.
 MM Two-digit month number. When used as an argument to a $SRV_ function
 for converting from a string, this is the same as BM (leading blank is
 allowed). See “Datetime and format examples” on page 82.
 BM Two-character month number; when used as an argument to a $SRV_
 function for converting from a string, this is the same as MM. See “Datetime
 and format examples” on page 82.
 DDD Three-digit Julian day number
 DD Two-digit day number. When used as an argument to a $SRV_ function for
 converting from a string, this is the same as BD (leading blank is allowed).
 See “Datetime and format examples” on page 82.
 BD Two-character day number; when used as an argument to a $SRV_ function
 for converting from a string, this is the same as DD. See “Datetime and
 format examples” on page 82.
 DAY One-digit or two-digit day number (variable length data). See “Datetime and
 format examples” on page 82.
 WKDAY Full day-of-week name (uppercase variable length). when used as an
 argument to a $SRV_ function for converting from a string, this is the same
 as Wkday.
 Wkday Full day-of-week name (mixed-case variable length). when used as an
 argument to a $SRV_ function for converting from a string, this is the same
 as WKDAY.
 WKD Three-character day-of-week abbreviation (uppercase). When used as an
 argument to a $SRV_ function for converting from a string, this is the same
 as Wkd.
 Wkd Three-character day-of-week abbreviation (mixed case). When used as an
 argument to a $SRV_ function for converting from a string, this is the same
 as WKD.

——
78 Janus Open Server Reference Manual

——
 Datetime Formats
——

 HH Two-digit hour number. When used as an argument to a $SRV_ function for
 converting from a string, this is the same as BH (leading blank is allowed).
 See “Datetime and format examples” on page 82.
 BH Two-character hour number; When used as an argument to a $SRV_
 function for converting from a string, this is the same as HH. See “Datetime
 and format examples” on page 82.
 MI Two-digit minute number
 SS Two-digit second number
 X Tenths of a second
 XX Hundredths of a second
 XXX Thousandths of a second (milliseconds)
 AM AM/PM indicator
 PM AM/PM indicator

 The valid separators in a date format are:

 blank (" ")
 apostrophe ("'")
 slash ("/")
 colon (":")
 hyphen ("-")
 back slash ("\")
 period (".")
 comma (",")
 underscore ("_")
 left parenthesis ("(")
 right parenthesis (")")
 plus ("+")
 vertical bar ("|")
 equals ("=")
 ampersand ("&")
 at sign ("@")
 sharp ("#")
 the decimal digits ("0" - "9").
 In addition, any character may be a separator character if preceeded by the quoting
 character (").

 See “Datetime and format examples” on page 82 for examples which include use of
 various separator characters.

——
Janus Open Server Reference Manual 79

——
Datetime Processing Considerations
——

 C.2 Valid Datetimes

 For a datetime string to be valid it must meet the following criteria:

 ● Its length must be less than 128 characters.
 ● It must be compatible with its corresponding format string.
 ● It must represent a valid date and/or time. For example, at most 23:59:59.999 for a
 time, 01-12 for a month, 01-31 or less (depending on the month) for a day, February
 29 is only valid in leap years (only centuries divisible by 4 are leap years: 2000 is
 but neither 1800, 1900, nor 2100 are). Note: weekdays are not checked for
 consistency against the date; for example, both Saturday, 02/15/97 and Friday,
 02/15/97 are valid.
 ● It must be within the date range allowed for the corresponding format. A datetime
 string used with a CYY or ZYY format can only represent dates from 1900 to 2899,
 inclusive. A datetime string used with a YY format can only represent dates in a
 range of 100 or less years, as determined by CENTSPAN and SPANSIZE. The
 valid range of dates for all other formats is from 1 January 1753 thru 31 December
 9999.

 C.3 Processing Dates With Two-Digit Year Values

 A date field with only two digits for the year value is capable of representing a range of
 up to one hundred years. When we compare a pair of two-digit year values we are
 accustomed to thinking of the century as fixed, so that all dates are either "19xx" or
 "20xx". However, a date field with two-digit year values can actually represent dates
 from two different centuries, provided that the range of dates does not exceed 100
 years.

 C.3.1 CENTSPAN

 CENTSPAN provides a mechanism for unambiguously converting dates with two-digit
 year values into dates with four-digit year values. The CENTSPAN mechanism allows
 two-digit year values to span two centuries without confusion. CENTSPAN identifies the
 four-digit year value that is the start of a range of years represented by the two-digit
 year values.

 CENTSPAN may be specified as an absolute unsigned four digit value between 1753
 and 9999, or it may be specified as a relative signed value between -99 and +99,
 inclusive. A relative CENTSPAN value is dynamically converted to an effective absolute
 value before it is used to perform a YY to YYYY conversion. The effective CENTSPAN
 value is formed by adding the relative CENTSPAN to the current four-digit year value at
 the time the relative value is converted.

——
80 Janus Open Server Reference Manual

——
 Processing Dates With Two-Digit Year Values
——

HHLL

Defines 100 year period

HHLL+99

Conversion rules, YY to YYYY
if YY < LL YYYY = (HH+1)YY
else YYYY = HHYY

HHLL = absolute or effective
CENTSPAN

1947 2046
19YY

2000
20YY

Example:

CENTSPAN = -50
current date = 1997
effective CENTSPAN = 1947

 A simple algorithm is used to convert a two-digit year value (YY) to a four-digit year
 value, using a four-digit absolute or effective CENTSPAN value (HHLL). If the two-digit
 year value is less than the low-order two digits of the CENTSPAN value, then the
 resulting century is one greater than the high-order two digits of the CENTSPAN value.
 Otherwise the resulting century is the same as the high-order two digits of the
 CENTSPAN value.

 Using all one hundred available years for mapping two-digit year values can cause
 significant confusion and result in data integrity errors: dates just above and just below
 the 100-year window are mapped to the other end of the window. From the previous
 example, the date "47" will be intepreted as 1947, when it could have conceivably been
 2047. Similarly, the date "46" will be intepreted as 2046, when it might have been 1946.

100 year periodCENTSPAN CENTSPAN+99

ambiguity at each endpoint

CENTSPAN too low
CENTSPAN too high

(1947) (2046)

 If CENTSPAN is set to a value that is too high, dates that are just prior to CENTSPAN
 will appear to occur 100 years hence. If CENTSPAN is set to a value that is too low,
 dates that fall just after CENTSPAN+99 will appear to have occured 100 years earlier. A
 full one-hundred year window also can not detect attempts to represent more than one
 hundred years of values with a two-digit year.

 C.3.2 SPANSIZE

 There is a method to protect from the ambiguities that can occur at each end of the
 100-year window defined by CENTSPAN. SPANSIZE is used to restrict the size of the
 window used for mapping two-digit year values. The effect is to create two guard bands,
 one just below the date window and one just above. An attempt to represent a date
 value that lands in a guard band produces an error.

 Each guard band contains CENTSPAN-SPANSIZE years, hence a SPANSIZE of 100
 removes the protection. The default SPANSIZE is 90, which provides protection for two
 ten year windows: one below the CENTSPAN setting and one starting at

——
Janus Open Server Reference Manual 81

——
Datetime Processing Considerations
——

 CENTSPAN+90. From our previous example:

Example: CENTSPAN = -50
SPANSIZE = 90
current date = 1997

endpoint YY values illegal

19YY
1947 20362000

20YY
1937-1946 2037-2046

 An attempt to represent the values "37" through "46" will be rejected. This protects the
 range 1937 through 1946 as well as the range 2037 through 2046. Note that an
 intended value of 2047, expressed as "47" will be accepted and interpreted as 1947. In
 general a smaller SPANSIZE provides the highest assurance of correct mappings.
 However, any setting of SPANSIZE less than 100 will probably detect the case where a
 range greater than one hundred years is being used.

 C.4 Datetime and format examples

 There is an extensive set of format tokens, as shown in “Datetime Formats” on page 76.
 These tokens and the various separator characters can be combined in almost limitless
 possibility, giving rise to an extremely large set of datetime formats. This section
 provides examples of some common datetime formats, and also tries to explain the use
 of some of the format tokens which might not be obvious. Each example format is
 explained and also presented with some matching datetimes; again, bear in mind that
 these tokens can be combined in very many ways and only a very few are shown here.
 It is assumed that these examples are invoked sometime between the years 1998-2040,
 as the basis for relative CENTSPAN calculations.

 Note that in addition to the $SRV_ functions, you may use the Sirius Functions to
 develop Janus Open Server applications (see
 http://m204wiki.rocketsoftware.com/index.php/List_of_$functions). The datetime
 handling in the Sirius Functions is more diverse than that that used in communicating
 values between an Open Client and an Open Server.

 YYMMDD This is the common six-digit date format which supports sort order if all dates
 are within a single century. The following User Language fragment

 %RC = $SRV_PARMSET(, 'ADD_DATE', -
 '960229', 'YYMMDD')

 will set the DATETIME parameter named "ADD_DATE" to the Sybase
 representation of February 29th, 1996.

——
82 Janus Open Server Reference Manual

——
 Datetime and format examples
——

 YYYYMMDD
 This is the common eight-digit date format which supports sort order with
 dates in two centuries. The following User Language fragment

 %RC = $SRV_PARMSET(, 'ADD_DATE', -
 '19921212', 'YYYYMMDD')

 will set the DATETIME parameter named "ADD_DATE" to the Sybase
 representation of December 12th, 1992.

 MM/DD/YY
 This is the U.S. six-digit date format for display. The following User
 Language fragment

 %RC = $SRV_PARMSET(, 'ADD_DATE', -
 '12/14/94', 'MM/DD/YY')

 will set the DATETIME parameter named "ADD_DATE" to the Sybase
 representation of December 14th, 1994.

 Notes - in the $SRV_ functions:

 ● The leading zero corresponding to an MM token may be given as a
 blank, thus allowing " 7/15/98".

 ● The BM token can be used in an input format instead of MM.

 DD.MM.YY
 This is a European six-digit date format for display. The following User
 Language fragment

 %RC = $SRV_PARMSET(, 'ADD_DATE', -
 '14.12.94', 'DD.MM.YY')

 will set the DATETIME parameter named "ADD_DATE" to the Sybase
 representation of December 14th, 1994.

 Notes — in the $SRV_ functions:

 ● The leading zero corresponding to a DD token may be given as a blank,
 thus allowing " 7.04.89".

 ● The BD token can be used in an input format instead of DD.

 Wkday, DAY Month YYYY "A"T HH:MI
 This is a format which could be used for report headers. The following User
 Language fragment

——
Janus Open Server Reference Manual 83

——
Datetime Processing Considerations
——

 %RC = $SRV_PARMSET(, 'ADD_DATE', -
 'Friday, 7 February 1998 ' WITH -
 'AT 21:33', -
 'Wkday, DAY Month YYYY "A"T HH:MI')

 will set the DATETIME parameter named "ADD_DATE" to the Sybase
 representation of February 7th, 1998, 9:33 PM.

 Notes — in the $SRV_ functions:

 ● If a format contains AM or PM, then the time (HH:MI) must be between
 00:01 and 12:00 and must be accompanied by either AM or PM.

 ● If a format contains DAY (for example, "DAY MON YY"), the string
 matching it may have a leading zero, thus allowing "06 MAY 98".

 ● If a format contains HH, the string matching it may have a leading blank,
 thus allowing " 8:30".

 ● The BH token can be used in an input format instead of HH.

 YYIIII This is a format which could be used for data which contains a 2-digit year
 prefixing other information, such as a sequence number. The following User
 Language fragment

 %RC = $SRV_PARMSET(, 'ADD_DATE', -
 '92ABCD', 'YYIIII')

 will set the DATETIME parameter named “ADD_DATE” to the Sybase
 representation of January 1st, 1992.

 YY* This is a format which could be used for data which contains a 2-digit year
 prefixing other information, such as a sequence number, when the other
 information is variable length. The following User Language fragment

 %RC = $SRV_PARMSET(, 'ADD_DATE', -
 '92', 'YY*')
 %RC = $SRV_PARMSET(, 'EXP_DATE', -
 'ABC1992', '*YYYY')

 will set both of the DATETIME parameters named "ADD_DATE" and
 "EXP_DATE" to the Sybase representation of January 1st, 1992.

 Notes:

 ● At most one occurrence of the asterisk (*) token may appear in a
 datetime format.

——
84 Janus Open Server Reference Manual

——
 Datetime and format examples
——

 CYYDDD This is a compact six-digit date format with explicit century information, from
 1900 through and including 2899. The following User Language fragment

 %RC = $SRV_PARMSET(, 'ADD_DATE', -
 '097031', 'CYYDDD')

 will set the DATETIME parameter named "ADD_DATE" to the Sybase
 representation of January 31st, 1997.

 ZYYMMDD
 This is a compact six- or seven-digit date format with explicit century
 information, from 1900 through and including 2899, that can often be used
 with "old" YYMMDD date values in the 1900s. The following User Language
 fragment

 %RC = $SRV_PARMSET(, 'ADD_DATE', -
 '971201', 'ZYYMMDD')
 %RC = $SRV_PARMSET(, 'EXP_DATE', -
 '1001201', 'ZYYMMDD')

 will set the DATETIME parameters named "ADD_DATE" and "EXP_DATE",
 respectively, to the Sybase representations of December 1st, 1997 and
 December 1st, 2000.

 Notes — in the $SRV_ functions:

 ● A three digit number with a leading zero may correspond to a ZYY
 token, thus allowing "0971201".

 YY0000 Decimal digits can be used as separator characters. The following User
 Language fragment

 %RC = $SRV_PARMSET(, 'ADD_DATE', -
 '92000', 'YY000')

 will set the DATETIME parameter named "ADD_DATE" to the Sybase
 representation of January 1st, 1992.

 Notes:

 ● Numeric separators, unlike alphabetic separators, do not need to be
 preceeded by a quote character (").

 ● Numeric separators are available starting with version 5.2 of Janus
 Open Server.

——
Janus Open Server Reference Manual 85

——
Datetime Processing Considerations
——

 C.5 $SRV_ Functions CENTSPAN Argument

 Some of the $SRV_ functions accept an optional argument containing a CENTSPAN
 value to be used for the call. The default value of these CENTSPAN arguments is -50.
 The default value should be adequate in most cases; if you have carefully determined it
 should be different in some application, code the value on the relevant $function
 invocations.

 For a different approach, see the description of the CENTSPLT and DEFCENT
 parameters (for example,
 http://m204wiki.rocketsoftware.com/index.php/CENTSPLT_parameter) and
 $function arguments.

——
86 Janus Open Server Reference Manual

——
 Index
——

——————
 Index

A DELETE, JANUS subcommand ... 16
DELETEIPGROUP, JANUSADDCA, JANUS subcommand ... 16
 subcommand ... 16ALLOCC parameter, JANUS DEFINE ... 20
DELETEREMOTE, JANUS subcommand ... 16AUDTERM parameter
DELETEUSGROUP, JANUS JANUS DEFINE command ... 20
 subcommand ... 17
DISPLAY, JANUS subcommand ... 17B
DISPLAYCA, JANUS subcommand ... 17BINDADDR parameter, JANUS DEFINE ... 20
DISPLAYREMOTE, JANUSBSIZE parameter, JANUS DEFINE ... 21
 subcommand ... 17
DISPLAYSOCK, JANUS subcommand ... 17C
DISPLAYWEB, JANUS subcommand ... 17

CENTSPAN ... 80, 86 DISPLAYXT, JANUS subcommand ... 17
CENTSPLT argument ... 86 DOMAIN, JANUS subcommand ... 17
CENTSPLT parameter ... 86 DRAIN, JANUS subcommand ... 17
Certificate, SSL ... 27
 in SSL cache ... 29, 32 E
 requested by server ... 30

EncodingCHARSET parameter
 HTML form ... 26 JANUS DEFINE ... 21
Ending a request ... 44CHARSET, JANUS subcommand ... 16
 $SRV_DONE ... 44Client certificate ... 27, 30
Environment definition (overview) ... 13Client IP address ... 42
EXEC2RPC ... 11CLSOCK, JANUS subcommand ... 16
EXEC2RPC parameter ... 43CMD parameter
EXEC2RPC parameter, JANUS DEFINE ... 22 JANUS DEFINE command ... 21

CONFIGURATION, JANUS subcommand ... 16
FConnection limit ... 19
FORCE, JANUS subcommand ... 17Content type
FTP, JANUS subcommand ... 17 client Post data ... 26

ID
IBSIZE parameter, JANUS DEFINE ... 22Datatype of parameter ... 52
Installation ... 4 $SRV_PARMTYPE ... 52
Introduction to JANUS ... 1Date processing ... 75, 86
IP address of client ... 42DEFCENT argument ... 86

DEFCENT parameter ... 86
JDEFINE, JANUS subcommand ... 16

DEFINEIPGROUP, JANUS subcommand ... 16 JANCAT ... 2
DEFINEREMOTE, JANUS subcommand ... 16 Janus commands
DEFINEUSGROUP, JANUS introduction to ... 15
 subcommand ... 16 wildcards used with ... 15
DELCA, JANUS subcommand ... 16 JANUS concepts ... 9
——
Janus Open Server Reference Manual 87

——
Index
——

Janus functions ... 39, 41-42, 44-55 N
 $SRV_BIND ... 39 Name of current RPC ... 53
 $SRV_CLOSE ... 41 $SRV_RPCNAME ... 53
 $SRV_DATA ... 42 Name of parameter ... 49
 $SRV_DONE ... 44 $SRV_PARMNAME ... 49
 $SRV_LANGGET ... 45 NAMESERVER, JANUS subcommand ... 17
 $SRV_MSG ... 46 NOAUDTERM parameter
 $SRV_NUMPARM ... 46 JANUS DEFINE command ... 24
 $SRV_PARMGET ... 47 NOUPCASE parameter ... 24
 $SRV_PARMLEN ... 48 Converting client data to upper case ... 24
 $SRV_PARMNAME ... 49 Number of parameter with name ... 50
 $SRV_PARMNUM ... 50 $SRV_PARMNAME ... 50
 $SRV_PARMSET ... 51 Number of RPC parameters ... 46
 $SRV_PARMTYPE ... 52 Retrieving with $SRV_NUMPARM ... 46
 $SRV_RPCNAME ... 53
 $SRV_SENDROW ... 53 O
 $SRV_SETROW ... 54 OBSIZE parameter, JANUS DEFINE ... 24
 $SRV_WAIT ... 55 OPEN parameter
JANUS parameters ... 13 JANUS DEFINE command ... 25
 TCPSERV ... 13 Open Server User Language Coding ... 38
 TCPTYPE ... 13 OPENSERV port type ... 19
JANUS, introduction to
 Janus IFDIAL Library ... 1 P
 Janus TCP/IP Base ... 1

Parameter ... 47-52
 Datatype of ... 52K
 $SRV_PARMTYPE ... 52

Keepalive connection, TCP ... 34 Length of ... 48
 $SRV_PARMLEN ... 48

L Name of ... 49
LANGUAGE parameter $SRV_PARMNAME ... 49
 JANUS DEFINE ... 23 Number of name ... 50
Language requests ... 10 $SRV_PARMNUM ... 50
LANGUAGE, JANUS subcommand ... 17 Retrieving value ... 47
Length of parameter ... 48 $SRV_PARMGET ... 47
 $SRV_PARMLEN ... 48 Setting return value ... 51
LIMITS, JANUS subcommand ... 17 $SRV_PARMSET ... 51
LOADXR, JANUS subcommand ... 17 Parameters ... 46

 Number of in RPC ... 46
M $SRV_NUMPARM ... 46
MASTER parameter, JANUS DEFINE ... 23 Performance ... 22, 25
 defining OPEN CLIENT ports ... 23 Port, Janus
Mixed-case User Language ... 37 definition ... 18
Model 204 resource requirements ... 20 Ports ... 9
 buffer space requirements ... 20 PRELOGINUSER parameter, JANUS
MSG204 parameter ... 23, 43 DEFINE ... 25
 Sending terminal output to client ... 23, 43
MSG204L parameter ... 23
 Sending terminal output to client ... 23

——
88 Janus Open Server Reference Manual

——
 Index
——

R SSLIBSIZE parameter, JANUS DEFINE ... 31
SSLMAXAGE parameter, JANUSRAWINPUT parameter, JANUS DEFINE ... 26
 DEFINE ... 32RAWINPUTONLY parameter, JANUS
SSLMAXCERTL parameter, JANUS DEFINE ... 26
 DEFINE ... 32RELOAD, JANUS subcommand ... 17
SSLOBSIZE parameter, JANUS DEFINE ... 33Retrieving language input ... 45
SSLPROT parameter, JANUS DEFINE ... 33 $SRV_LANGGET ... 45
SSLSTATUS, JANUS subcommand ... 17Retrieving value of parameter ... 47
SSLUNENC parameter, JANUS DEFINE ... 34 $SRV_PARMGET ... 47
START, JANUS subcommand ... 17Rows ... 53-54
STATUS, JANUS subcommand ... 17 Sending row image to client ... 53
STATUSCA, JANUS subcommand ... 18 $SRV_SENDROW ... 53
STATUSREMOTE, JANUS subcommand ... 18 Setting current row image ... 54

 $SRV_SETROW ... 54
TRPCONLY parameter ... 43

RPCONLY parameter, JANUS DEFINE ... 27 TCP keepalives ... 34
RPCs ... 10 TCPKEEPALIVE parameter, JANUS

 DEFINE ... 34
S TCPLOG, JANUS subcommand ... 18

Terminal output ... 20, 23-24, 43Sample code ... 59, 67, 70, 72
 Sending to client ... 23, 43 Sybase client ... 59
TIMEOUT parameter Sybase server 1 (send/receive data) ... 67
 JANUS DEFINE ... 35 Sybase server 2 (Generic RPC router) ... 70
Timeouts, session ... 35 Sybase server 3 (send proc to client) ... 72
TNSERV port typeSDAEMON ... 13
 TCPKEEPALIVE processing ... 35 defined ... 13
TRACE parameter ... 35SDAEMONs ... 13
TRACE, JANUS subcommand ... 18 setting NSUBTKS ... 13
Translation, character set ... 36SDS port type ... 19
TSTATUS, JANUS subcommand ... 18Sending a message to the client ... 46

 $SRV_MSG ... 46
USending a row to a client ... 53-54

 $SRV_SENDROW ... 53 UL/SPF ... 4
 $SRV_SETROW ... 54 UPCASE parameter ... 36, 43
Server ports ... 9 Converting client data to upper case ... 36,
Setting an output parameter ... 51 43
 $SRV_PARMSET ... 51 User Language coding considerations ... 57
SIRIUS file ... 4 AUDIT ... 57
Sirius Mods ... 4 debugging JANUS UL applications ... 57
SRVSOCK, JANUS subcommand ... 17 full screen I/O ... 57
SSL certificate ... 30 ON units ... 57
 See also Certificate, SSL Open Server applications ... 57
SSL parameter, JANUS DEFINE ... 27 PRINT ... 57
SSLBSIZE parameter, JANUS DEFINE ... 28 Userid and password ... 24, 36
SSLCACHE parameter, JANUS DEFINE ... 28 Converting to upper case ... 24, 36
SSLCIPH parameter, JANUS DEFINE ... 29
SSLCLCERT parameter, JANUS DEFINE ... 30
SSLCLCERTR parameter, JANUS
 DEFINE ... 30
——
Janus Open Server Reference Manual 89

——
Index
——

W X
Wating for client requests ... 55 XTAB parameter
 $SRV_WAIT ... 55 JANUS DEFINE command ... 36
WEB, JANUS subcommand ... 18
WEBSERV port type ... 19

——
90 Janus Open Server Reference Manual

	Title
	Notices
	Contacting Global Technical Support
	Contents
	Summary of Changes
	Sirius Mods Version 6.0
	Sirius Mods Version 4.6

	1. Janus Overview
	1.1. Janus, the Sirius Mods, and UL/SPF
	1.2. Versions and compatibility
	1.3. Related manuals
	1.4. Related products
	1.5. System requirements

	2. Janus / Connectivity Concepts
	2.1. Server Ports
	2.2. Language Requests and RPCs
	2.3. EXEC2RPC
	2.4. Parameter checking
	2.5. Environment Definition

	3. Janus Commands
	3.1. JANUS command overview
	3.2. JANUS DEFINE
	3.2.1. ALLOCC
	3.2.2. AUDTERM
	3.2.3. BINDADDR xxx
	3.2.4. BSIZE xxx
	3.2.5. CHARSET xxx
	3.2.6. CMD 'xxx'
	3.2.7. EXEC2RPC
	3.2.8. IBSIZE xxx
	3.2.9. LANGUAGE xxx
	3.2.10. MASTER
	3.2.11. MSG204 xxx
	3.2.12. MSG204L xxx
	3.2.13. NOAUDTERM
	3.2.14. NOUPCASE
	3.2.15. OBSIZE xxx
	3.2.16. OPEN list
	3.2.17. PRELOGINUSER userid
	3.2.18. RAWINPUT
	3.2.19. RAWINPUTONLY
	3.2.20. RPCONLY
	3.2.21. SSL
	3.2.22. SSLBSIZE xxxx
	3.2.23. SSLCACHE xxxx
	3.2.24. SSLCIPH xxx
	3.2.25. SSLCLCERT and SSLCLCERTR
	3.2.26. SSLIBSIZE xxxx
	3.2.27. SSLMAXAGE xxx
	3.2.28. SSLMAXCERTL xxx
	3.2.29. SSLOBSIZE xxxx
	3.2.30. SSLPROT xxx
	3.2.31. SSLUNENC
	3.2.32. TCPKEEPALIVE
	3.2.33. TIMEOUT xxxx
	3.2.34. TRACE xxx
	3.2.35. UPCASE
	3.2.36. XTAB table

	4. Janus Open Server $Functions
	4.1. $SRV_BIND
	4.2. $SRV_CLOSE
	4.3. $SRV_DATA
	4.4. $SRV_DONE
	4.5. $SRV_LANGGET
	4.6. $SRV_MSG
	4.7. $SRV_NUMPARM
	4.8. $SRV_PARMGET
	4.9. $SRV_PARMLEN
	4.10. $SRV_PARMNAME
	4.11. $SRV_PARMNUM
	4.12. $SRV_PARMSET
	4.13. $SRV_PARMTYPE
	4.14. $SRV_RPCNAME
	4.15. $SRV_SENDROW
	4.16. $SRV_SETROW
	4.17. $SRV_WAIT

	5. Open Server User Language Coding Considerations
	5.1. Open Server User Language debugging

	A. Sample Sybase Client Application
	B. Sample Open Server Programs
	B.1. Retrieve/Send data with $SRV functions
	B.2. Generic RPC router
	B.3. Send U.L. procedure to client with $SRV functions

	C. Datetime Processing Considerations
	C.1. Datetime Formats
	C.2. Valid Datetimes
	C.3. Processing Dates With Two-Digit Year Values
	C.3.1. CENTSPAN
	C.3.2. SPANSIZE

	C.4. Datetime and format examples
	C.5. $SRV_ Functions CENTSPAN Argument

	Index

