MRocket

Rocket Model 204
Janus/TN3270 Debugger

User’s Guide

Version 7.7

September 2016
JDB-0706-UG-65

www.rocketsoftware.com

Notices

Edition

Publication date: September 2016

Book number: JDB-0706-UG-65

Product version: Version 7.7

Copyright

© Rocket Software, Inc. or its affiliates 2006-2016. All Rights Reserved.

Trademarks

Rocket is a registered trademark of Rocket Software, Inc. For a list of Rocket registered trademarks go
to: www.rocketsoftware.com/about/legal. All other products or services mentioned in this document
may be covered by the trademarks, service marks, or product names of their respective owners.

Examples

This information might contain examples of data and reports. The examples include the names of
individuals, companies, brands, and products. All of these names are fictitious and any similarity to
the names and addresses used by an actual business enterprise is entirely coincidental.

License agreement

This software and the associated documentation are proprietary and confidential to Rocket Software,
Inc. or its affiliates, are furnished under license, and may be used and copied only in accordance with
the terms of such license.

Note: This product may contain encryption technology. Many countries prohibit or restrict the
use, import, or export of encryption technologies, and current use, import, and export regulations
should be followed when exporting this product.

http://www.rocketsoftware.com/about/legal

Corporate information

Rocket Software, Inc. develops enterprise infrastructure products in four key areas: storage, networks,
and compliance; database servers and tools; business information and analytics; and application
development, integration, and modernization.

Website: www.rocketsoftware.com

Rocket Global Headquarters
774 Avenue, Suite 100
Waltham, MA 02451-1468
USA

To contact Rocket Software by telephone for any reason, including obtaining pre-sales information
and technical support, use one of the following telephone numbers.

Country Toll-free telephone number
United States 1-855-577-4323
Australia 1-800-823-405
Belgium 0800-266-65
Canada 1-855-577-4323
China 800-720-1170
France 08-05-08-05-62
Germany 0800-180-0882
Italy 800-878-295
Japan 0800-170-5464
Netherlands 0-800-022-2961
New Zealand 0800-003210
South Africa 0-800-980-818
United Kingdom 0800-520-0439

Contacting Technical Support

The Rocket Customer Portal is the primary method of obtaining support. If you have current support
and maintenance agreements with Rocket Software, you can access the Rocket Customer Portal and
report a problem, download an update, or read answers to FAQs. To log in to the Rocket Customer
Portal or to request a Rocket Customer Portal account, go to www.rocketsoftware.com/support.

In addition to using the Rocket Customer Portal to obtain support, you can use one of the telephone
numbers that are listed above or send an email to support@rocketsoftware.com.

http://www.rocketsoftware.com
http://www.rocketsoftware.com/support
mailto:support@rocketsoftware.com

v

Janus/TN3270 Debugger User's Guide

Contents

Contents
Chapter 1: Introduction ... 1
ADOUL the DEDUGJETSoooiiiieiie e e e e e e e saee e 2
(€1 o =3 =T o =T T 7
Chapter 2: Getting Acquainted with the Client GUI........................ccocceiiine, 9
The tabbed PAgESooo e 10
The IOWEr WINAOWSocoueiiiieceie ettt eaeeeaeenaeeeneeenneas 14
L= 10 1= oLV N o= R 17
The File MeNU OPLIONS ..o e 18
The WIindowW Menu OPLIONSoooiiiieiiie e 24
The Search MenU OPLIONSccooiiiiiieeee e 26
The Breakpoints Menu OptioNnsc.cccueviiiieiciie e 27
The Execution Menu OPLIONSoooiiie e 29
The Data Display menu optionsccoooiiiiiiiii e 33
The Error Menu OPLIONSoooooeeeee e e e 35
The Macros MenuU OPLIONSceoeeieeee e e 36
The Help MeNnU OPLIONSooeeeieeeee et 38
The bUtton Dar e 39
The SEarCh faCilityc..couiiiiiiee e 44
The tracing OPLIONSooeieeie et et ee et et e e eneas 47
The value displaying CONtrolScooeiiiiiiicie e 48
The STatus Dar ...ttt ere e 49
The Entity-name iNPUEDOXcovieieiieee et 50
Chapter 3: Performing Basic GUI Tasks.............cccccciiiiiiiiiiii e, 51
Controlling the execution of program COAEccueeeeeeeee e eeeeeeeeeeaaa s 52
Step, Step Over, anNd RUNcoooiiiiceee e 53
UsiNg breakpointscc.oooieieieee e 55
Suppressing the break at the end of request evaluationc.....c...... 59
Breaking after READ SCREEN or READ MENU statements 60
ST (=To] o] T Ko | A 62
CancelliNg XECULIONc.ooouieeeeeecee ettt 63
Excluding sections of source code from debuggingcccccoovveeeveeveeeeene. 64
Selectively excluding source code bIOCKScccoecveveiiiiiieeeeciie e, 65
Running to a specific procedureccccevieeeiiie i 73
Running only to listed procedurescccveiiiiiiiiiiee e 77
Altering the flow of @XECULIONcceeiiiiiciceece e 81
Previewing program COEcccoeveeieiieecee e 83
Viewing and modifying program elementsccveeoeeeooeeeeeeeeeee e 85
Watching program data itemscccoeeeeeieie e 85
Adding and removing Watch Window itemscccoociiiiicee e 86

Janus/TN3270 Debugger User's Guide v

Contents

Saving and restoring Watch Window contentscccccccoceeeiiiiineeneee. 89

Getting a detailed view of the value of a watched item 91
Watching Model 204 fieldscooouiieiiiiiie e 93
Watching global variables ... 94
Watching object variablesccooiiiiiiiii 95
Watching $lists, Stringlists, and Arraylistsccccccceevieiieeceecieee, 96
Watching class member Variablescccccceeiiiiiiiieie e, 98
Displaying temporarily the value of a program dataitemcc..ccooe...... 99
Displaying $lists, Stringlists, and Arraylistsc.cccceeveeeeiererere e, 102
Displaying Janus SOAP XML document objectscccocvveieennennen. 104
Displaying all Variables of an object's classc.ccccoveeeviiiiieeiccnnen.n. 109
Displaying the current occurrence value in an FEO loopccc......... 114
Displaying all fields in @ record ... 115
Displaying Model 204 parametersooccveeiiiiiieeiinieeee e 120
Displaying the Universal Buffer contentcccccocoeiiiiiiiiiec e, 121

Setting the value of a variablecooooiiiiiceeeeee e 122
Getting source file, audit trail, and web buffer informationcccccovvevene. 124
Locating and editing procedure source filesccocovoveeievceeecveeeiee 124
Viewing dummy string variablescoooiiiiiiicee e 125
Viewing the audit trailccooooiiiiiie e 126
Viewing the web output BUFEr ..o 127
Tracing program €XECULIONccceeiiuieeieieieeie e eeee e e vee e e e eans 127
Tracing all iNes eXeCUtedcccoiiiieie i 128
Tracing all updates to a variable’s valuecccoeeeeeooeeeeeeee e 130
Tracing until a value change or untilavalue matchccccoovvviein, 131
Displaying a statement NiStOrycccoovviiiiii e 132
Viewing programs that contain coding errorsccccceevveeeeeiecceee e 136
Debugging requests that spawn daemonscccooooeiooe e 139
Debugging Web Server persistent SESSIONSccceeveieieeieieeie e 142
Debugging multiple Web SErverscooooioiiiiiceeeee e 145
Chapter 4: Additional Debugger Functionality......................ccccoviiiiiniiniieee 147
Copying, printing, or SAVING TEXLc.ooiiiiii e 147
Using the TN3270 DEBUG COMMANccoooiieieeeeeeeeeee e 149
Using the TN3270 DEBUG command for web threadscccoovovvivveeeeinn. 155
Debugging SSL appliCationscceeeeeeirieieecee et 157
Debugging Web Service applicationsccoeeeeeeeeiceceeeeeeeee e 158
Using the DebuggerTools class Methodscc.oeeeeeveeeee e 159
(6] g ol (o Tez= 1 =To 1 (o] SRR 164
Using Xtend with the DebUuggercccoooeiiiiie i 166
Using UltraEdit with the Debuggercccoeoeeieeeece e 170
Chapter 5: The Client Command Reference................cccccoooiiiieiicinc e, 177
addWatch commandooouieiiieeeee e 178
addWatchOnCurrentLine commandc.ccccoooiiieiicieceeeee e, 178
ASSErt COMMANGccuiiiiiiiii et ettt reeeaneeas 178
POttOM COMMEANGooiiii e 181
breakOnNNextProc COMMANGccoooiiiieeececeee e 182
breaks COMMANdc..ccoiiuiiiiecee et 182

Vi

Janus/TN3270 Debugger User's Guide

Contents

PreakSALt COMMEANGoooiieiie et e e e e e e e e e e e s s eaaeeeeaans 183
buttonBar COMMEANGccueiiieie e eneeeens 184
Loz g ToT=] WoTo o1 o2 =1 oL [N 185
clearAudit COMMEANGc.ooiiiiieeee e e s 185
clearBreakpointOnCurrentLine commandooovioeee oo 186
ClearBreaks COmMmMaANdccoviieiiiceie e s 187
clearButton COMMANGooouiiiiie e 187
clearExecutionTrace COMMaNAcccoouiiiieii i 188
ClearHistory commandc.oooiiiiie e 188
ClearKey COMMANGccuiiiiieeceee e et 189
clearMacroConsole COMMANGoooeeeeeeeeeee e e e e 189
clearStatus COMMEANGooouiiiiie e e s 190
clearWatCh COMMANGcooeeiii e e e 190
clearWebBuffer COMmaNdcc.oociiiiiiciece e 191
closeCommandLing COMMANdcooiiiiieeee e 191
closeExternalAuditTrailWindow commandcccoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeen 191
closeExternalButtonWindow commandccooooeeeieieeeeeeeeeeeeeeeeeeeee e 192
closeExternalExecutionTraceWindow commandccooveeeeiieeeeee e 192
closeExternalWatchWindow commandccccooovioeeeeeeee e 192
closeExternalWebBufferWindow commandcccoeveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaen 193
closeExternalWindows COmMmMaNdcccoeeiiiieiieieieee e 193
CloseHisStory COmMmMaNdc.oooiuiiiiie e 193
closeMacroConsole COMMEANGcooeeeeoeeeeee e e 194
closeValueDisplay COMMaNGccooveiiuieiiiecee e etee e 194
continUElf COMMANGoc.oiiiieeeee et 195
continueMacrolf COMMANGccoocuiiiie e 196
(oTo])V oTo] 1 4] 0 4 F= T T TR 198
createMacro COMMEANGoccuiiiieie et e e s e s s ae e sae e 198
debugPreview COMMANGccoouviiiieie e e 199
decrement COMMANGcooouieiiiieeceie e e et et ereeeeanes 199
disableButton commandooceiiiiiiiee e s 200
€CNO COMMANA ...t e e e e e s e e s s e e saeeesanes 201
editMacroFromUISelection commandcccooooiiiioie i 202
enableButton COMMANGoooouiiiiie e 202
eVvaluate CoOMMIANGcoocueeeieie et e et e e e e s ere e e saneeesanes 203
expandLiSt COMMANGoocuiiiiie e e s 203
expandObject COMMANAc..coouiiiiece e 204
extraButtonBar commandcoooiiiiiiii i 205
feoDisplay COMMANGcocoiieieiie et 206
firstHISTOry COMMANGc.ooiiiieeeeeecee e ree e 206
focusToSearchBoX COMMANAcooeiieieieeee e e 207
generatePac COMMANdc.oooiiuiiiiiie e 207
getHISTOry COMMANGooiieiiceeee ettt e e 209
getVariablesForClass commandc.ccccooieiiiiiiicieceeeee e, 209
RElp COMMANG ..o e e e e e e e e s s eaeeeeeaans 211
hideLower COMMANGccuoiiiie et e e enee e 212
httPGet COMMEANG ... 213
httpPUtFile COMMANG ...t 214
httpPutString COMMANGoooiieeeceece e 215
INCIUAE COMME@NGooiiiiiiiiie et e e ee et e e e e eaeeeeneeeans 216

Janus/TN3270 Debugger User's Guide Vil

Contents

INCIUdEf COMMANG ... 216
INCremMENt COMMANGccueiiiiie et tee e e et e e e e e e eneeeeeneeesneeeans 217
JUMPTOLING COMMANGoeeiieeieee ettt 217
jumpToMatch COMMANc.ooiieieece et 219
KIlECOMMAaNd e e eree e 220
[abelButton COMMANAc.ooiiiieeceee e 221
[astHIStOry COMMANc.ooeiiiie et 222
[oZ=To {TAVE= 1 (e T eTo] 0 41 4 aF=T o Lo [T 222
gaP=Tod foRoTe] 1 41 4 o F=T Lo OO RRRTR 223
MacroConsole COMMANGcccoeuiieeieieie e see et e e eneas 223
MACroTrace COMMEANGcc.coovuieiieiieieieeeeee e et e e e eeee e et e e et e e s et e s sereeeseneeesneeeans 224
macroWait COMMANGccooiiieiee et e e te et e e neas 225
mainButtonBar COMMANGcoouiiiiiee e 225
Manual COMMANGc.oooiiiie ettt aeeneas 226
MapBUtoN COMMANAcc.oiiiie e 226
MaPKEY COMMANGc.ooioeiiieie ettt et et e et eeteeeaeeeneeenneas 228
moveBrowserToTop COMMANAccoeeiiiiiiieie e 229
MoveTn3270ToTOP COMMANGc.ceeviieiiiie et e e e eneeens 229
NexXtComMPpPIlEError COMMANGc.ooiouiiiee e 230
NEXtHISTOry COMMANAcoooiiieee et 230
NOSPAN COMMEANGooiuiiieieieie et ctee et e e e et e e etee et e e et e et e e saeesateeeteeaneeennens 231
NSLOOKUP COMM@NGc.ooiiiiiieceee ettt e et eeneeeens 232
openCommandLing COMMANGc.ccooueiiuieiie e ee e eee e ee e 233
openExternaAuditTrailWindow commandcoooooeeeiee oo 233
openExternalButtonWindow commandccccoeiviiiii e 234
openExternalExecutionTraceWindow commandccccccceeeieieeeciee e, 234
openExternalWatchWindow commandcccoeeiviieiciee e 235
openExternalWebBufferWindow commandccooueeeeiiiiiiieieeeeeeeeee e 235
openMacroConsole COMMANAc..cooueeiuieiee e ree e 236
[oZ=1 (eI ool 0 10 1 F=T oo O 236
[oX= Tl el)0 0] 4 F=1 0 e KNSR 237
PIN COMMANG Lottt e et e e e e e e e e e e s eaeeeseaeeesneeesneeeans 238
preferenCces COMMEANGcooocuiiiiecie et eeeete et e e eneas 239
previousCompileError COMmMAaNdccoeeicuiiiieieecee e 240
PreviousHIStory COMmMANdooviiiieie e 240
reloadBIlackList COMMANAccoouiiiiiii e 241
reloadWhiteList COMmMaNdocoviiiiiii e 241
reloadLists COMMEANc.cooooiuiiiiie e 242
removeCurrentWatch commandcoooiiii i 243
resetAssertCounts COMMANoooouiiiiiii et 244
resetGlobalAssertCounts COMMaNdc.ooooiiiiiiee e 244
restart COMMEANGc.oooiiiiie ettt 245
restartDefault commandc.oooeiiiii e 245
restoreLOWEer COMMANGcceiiieeeeecee et et e eeeneas 246
restoreTitle COMMANGc.oooiiiiicie e 246
retryHttpPac Commandooouiiiiiie e 247
0 g oTe] o1 oo =T oo 1RO 248
runMacroFromUISelection commandccoooeieiiiieecce e 248
rUNUNLIE COMM@NG ...t e e e e e ens 249
runUntilVariableChanges commandcccooovioiiieiiceeccee e 249

Vil

Janus/TN3270 Debugger User's Guide

Contents

runWithoutDaemons commandcooooiiii i 250
saveWatCh ComMmMaANdoociiiiieeeee e 250
S€archDOWN COMMANccoiiiii e 251
searchFromBottom commandccooouiiiiii i 252
searchFromTop COMMANGccoeiiiuieeciee e e 254
S€archUP COMMANGcceiiiiieecie e e et e e e e e eans 255
selectAuditTab COMMANdooouiiiiiieece e e 257
selectExecutionTraceTab commandcccooooiiiiii e 257
selectNextTab CommMaNdoooeiiiiiiice e 257
selectProcSelectionTab commandc.ooooiiiioie e, 258
selectSourceTab COMMANGc.ooouiiiie i 258
selectWatchWindow commandcocoeiiiiiiiie e 258
selectWebBufferTab commandcccoooiiiiiiiic i 259
ST 0 oT] .4 ¢ =T o 260
SetBlackList COMMANGccooiiiiieee e 261
setBreakpointOnCurrentLine commandccooeieeooeeeeeeee e 262
SetlEMOode COMMANGoooiviieeeeeeee e 263
setM204Data COMMANGccoeeiieieeeeee e e 265
setPreference COMMANGoooviieiiie e 265
setStatusMessage COMMANGcooiieiieiecie e eree e 267
SetTitle COMMANG ... e e e e e nees 268
SetWhiteLiSt COmMMANGccoiiiieeeeee e 269
ShOWADOUL COMMEANGceviiieiieceee e e 270
showCommands COMMANGcceeiieiiiiecie et eee e ee e eee e 270
ShOWFUNCHIONS COMMANGoooiiiiiie e 271
ShOWIE COMMANG ... e 272
ShOWShOrtCULS COMMANGooiiiiieie et 273
SKIPPreview COMMEANGooouiieeie et e 273
S oz= a I eTe] 0 o100 T= 10 o H RO 274
5] (=T ol eTo]0 10 1= 1o T 274
StEPOUL COMMANG ...t e e ee e e see e 275
STEPOVEr COMMANGooieeiieceee et e s s 275
t0ggIe COMMANA ... e e 276
toggleBreakpointOnCurrentLine commandcccocovieeeeeeice e 277
togglelnitExclude commandcooeiiiieie e 278
toggleLower COMMANGccviiiiiecie ettt e e ae e e eee e 278
L(e] oI oTe] 141 44 =T o Lo 1O 279
trace COMMANGA ooiieiiiie et e et e e e e ree e eanes 279
traceUntilVariableEqualsValue commandcoooooeeieeeoeeeeeeeeeeeeeeeeeeen 280
traceValues COMMANGooveiouieeeee et reeeee e 280
turnOffBlackList comMmMandcc.ooviiiiiiie e 281
turnOffDebugging COMMANGc..coeiiiiiecee e 281
turnOffWhiteList COMMANdc.oooiiieeee et 281
turnONBIackList COMMaNAdcoooiiiiiiiee e e 282
turnONWhiteList COMM@ANdccoooiiiiiiie e 282
(81011 g I oo T 0 0] 0 £ F=1 0 o KN 283
UNSEE COMMANG ..ot e e e st et seee e eae e 284
valueDisplay COMMANGc..coouiieuieiie ettt ee e eree e 284
varDump ComMmandcoooiiiiie e s 285
VIEWTEXE COMMANG ..ot et e et enee e eans 286

Janus/TN3270 Debugger User's Guide IX

Contents

WINdOWTOTOP COMMANAccoeiiiiieiciie e 286
Chapter 6: Customizing Client Operations.................cccccoeiiiiniiie i 287
Reconfiguring GUI buttons and hot KEYSoooovoeeeeeeeeeeeeeeeeeee e 288
Introducing the configurable componentscccccoeve oo 289
Settingup the Ui.XmMIIleo 291
Default settings of buttons and hot Keyscoooveveoeiiceee e 295
Changing the colors in Client diSPIAYSoooeee e 297
Specifying a startup command forthe Clientc..ooooeioeee e 301
Changing the location of Client WOrk filesooooioeeeeeeeee e 303
Changing the font size in Client diSPIAYSc..ooooeeeeeeeeeeeeeeeeee e 305
Opening an external WiNAOWccccoveiiieiieiee e e 306
Hiding the Client's lower WINAOWScccoooiiiiiieeeecee e 311
Seeing through ClIent WINAOWSccooeiiiiiieie et 313
Enforcing a minimum Client build nUMDbercoooieioeeeeeeeeeeeeeeeeeee e 314
Chapter 7: Using Debugger Macros...............cocoiiiiiiiiiniiiee e 317
Creating and runniNg @ MACKOceecieieeeeee e eeeeeree s 317
Mapping a macro to a button Or hOt KeYoovivieeeeieeeee e 322
Passing a command argumentto @ Macrocccccceeeeeeeeeececceece e 322
Using the console and command liNEc.cccooieeiiii e 324
Using the Macro Autorun featurecooooviiiie e 326
Working with macro variablesccooouiiiiiii e 327
Working with Client fUNCONSc..coouiiieee et 329
&&amDaemon fUNCHIONc.c.oocueiiieeceece e 330
e (o I U] o3 (1o o R 331
&&assertFailureCount FUNCLIONcooiiiii i 332
&&assertStatus fUNCHONc.oooiiii e 332
&&assertSuccessCount FUNCHIONc...ccceiiiiiiiiee e 333
&&blackOrWhiteList funCtionccoeoeeiieiceeee e 334
&&DbuUildNUMDbEr FUNCIONceeieeee e 334
&&concatenate fFUNCHONc.cooiiiiiiceece e 335
&¤tPacFile funCtionc.coveecieee e 335
&¤tRunningMacro funCtioncccceeeveeecce e 336

LT e U =T o 1 1= PR 336
&&EXISTS FUNCHON ... 337
&&getMainSearchinputArea functionccccceeieiiiii e, 338
&&getVariableOrFieldinputArea functionccccoooveooeeeeeeeeeeeeeeeeeee 338
&&globalAssertFailureCount fuNCLiONcooviieee e, 338
&&globalAssertStatus functionccoeve i 339
&&globalAssertSuccessCount fUNCLONccooeeiieoieeeeeeeeeeeeeeeeee 339
=1V oTo (= (W g Tox i] o R 339

Lo aTe =y U] o Ted 1o o H R 340
&&isWatched fUNCHONc.oooeiiieece e 340
&&IENGN FUNCHIONceieeeceeecee e 341
&&numberOfBreakpoints fUNCLIONccoeiiiiiiee e 341
&&numberOflLevels FUNCLIONccoeeiieiie e 342
&&numberWatched functionccoooiiii i 342
&&OrIGINAITIIEoeeeieeeeceeeee e e 343

X Janus/TN3270 Debugger User's Guide

Contents

&&preference FUNCHIONcceiiiieeeeee e 343
&&ProcName fUNCHIONcooiiiiceccee e 344

&&Prompt FUNCHIONcoouiiieie e 344
&&searchResult fUNCHIONocviiiieeece e 345
&&searchSuccess fUNCHONc..covviiieie e 345
&&selectedTab fuNCONc.c.oooiiiiicceece e 346
BESTAtUSIMESSAGE ...t e e 346
&&SUDSTIING FUNCHON ... 347

&&SUM FUNCHION ... 347
&&verifyMatch fUNCHONooviiiice e 348
&&verifyNoMatch FUNCLONcooiiiiiccee e 349
&&windowStatus fFUNCHIONccveiiieceece e 349

Chapter 8: Problem Diagnosis...............cccoiiiiiiiiii i 351
Debugging the Janus Debuggercoovioiiiiciiieceeecee e 351
Debugging the TN3270 DebUQGQgETc.oooiieeeeeeeeeeee e 354

How the Janus Debugger handles communication breaksccccccoueeeeenn. 360

How the TN3270 Debugger handles communication breakscccoeeeeei... 363
Tracking Client performancCeocoiieioiece e 365
Resolving issues when automatically maintaining IE proxy settings 367
Chapter 9: Installation and Configuration.................cc.ccooiiii, 369
@Y 1= 370
Online ConfIQUIrALIONcoiieiieee et 371
ChecCk PrereqUISILEScoceiiieeeeeceee et 371

Authorize the DEeDUJQETc.ooi i 371

Set Model 204 system parameterscccoeeeeeeeeeeee e 372

Define and start the Debugger Server portccccoovoeeeeeeeeeeeeeeeeeee 373

Define and start a client socket port (Sirius Debugger only)cc..ccc....... 374
Workstation CONfIQUIratioNooo oo 375
Perform preliminary taskscocooeiiiieiee e 375

Run, check, and verify the Client installationccccooveveoiieeee 377
Customize the Debugger configuration filecccoooveooeeeeieceeeeee 380

Configure the web browser (Janus Debuggeronly)ccccceveveveveveeeennn.. 387

Test the end-to-end configurationcocoeeeiee i 397

Providing updated versions of the Debugger Clientcccooovoeiioiceiieeeeeee, 400
Chapter 10: Release NOtes............cooiiiiiiii e 405
[T (=G PSSO PRPPTN 439

Janus/TN3270 Debugger User's Guide Xl

Xl Janus/TN3270 Debugger User's Guide

Introduction

cHaPTER1 I Ntroduction

This chapter describes how this document is organized, then provides brief product
overview[21 and guick—start|_7'1 subsections.

Note: Most cross-references in this document are underlined (hyperlinked and shown in
a blue font if viewed online) and accompanied by a page icon like the following,
which frames the number of the page that contains the target of the reference:

-

Using this document

This document assumes that you have completed the mainframe and workstation tasks
described in Installation and Configuration|zesl.

These are the information subdivisions:

e This "Introduction," which includes an overview of the Debugger products and a
"getting started" section that outlines how to begin to use the products.

e The Getting Acquainted with the Client GUIl 971 and Performing Basic GUI Tasks/s1]
chapters are designed to orient you quickly to the Debugger Client and get you
working.

e The Additional Debugger Functionalitym chapter describes features or tasks that
are not primarily concerned with the Client GUI.

e The Client Command Referencefi77] chapter provides detailed descriptions of the
Debugger Client commands you can use to program the Client interface controls
and displays.

e The Customizing Client Operations 267 chapter describes how to modify the default
arrangement of Client buttons and hot keys, as well as the colors of the text or
background of Client displays.

e The Using Debugger Macros k17 chapter describes how to define scripts containing
one or more of the commands that activate the various Debugger controls.

e The Problem Diagnosisls_sﬂ chapter provides a closer inspection of how the
Debuggers handle errors and get and manipulate the data you see in the Client.

e The Installation and Configurationfss| chapter includes product installation and set up
information, as well as information about setting up at your site a centralized
distribution of updated Debugger Client replacement files.

e The Release Noteskosl provide an archive of information about features that are new
or enhanced in each build of the Debugger Client.

Janus/TN3270 Debugger User's Guide 1

Introduction

1.1 About the Debuggers

The Janus Debugger is a tool designed for software developers who create and
maintain Janus Web Server applications. With software installed on the Web Server
host Model 204 Online, as well as on a workstation with a browser that can access the
Web Server, the Debugger lets you examine in statement-by-statement detail the User
Language code that the Web Server executes.

The TN3270 Debugger (formerly named the Sirius Debugger) is designed for developers
who create and maintain Model 204 3270-screen and Batch2 applications. With software
installed on the host Model 204 Online, it uses essentially the same Debugger Client as
the Janus Debugger, letting you examine 3270-screen and Batch2 code.

An instance of the Debugger Client can be debugging a web application (acting as the
Janus Debugger), or it can be debugging a 3270/Batch2 application (acting as the
TN3270 Debugger). At any given time, however, it may only be debugging one type of
application. It "knows" the type of thread being debugged (the title bar of the Client
toggles to reflect the thread type) and it communicates that information to the Online
(which ultimately controls the granting of permission to debug).

These subsections continue the overview of the Debuggers:
The basic operation[2
The feature set/ 37
The architecture[41
Versions and builds[¢
System requirements| ¢

Known limitations/ ']

The basic operation
When you are running under the Janus Debugger, and Janus Web Server is about to run

a request on your behalf, or you are running under the TN3270 Debugger and you submit
a 3270-screen or Batch2 request:

1. Request source code is sent to the Debugger Client deployed on a workstation.

2. The Debugger Client displays the code, navigable to top and bottom, with search
features available.

3. Program execution is paused, the Debugger awaiting the instructions you provide
through the Client GUI.

Although the Janus Debugger is limited to Janus Web Server applications, the programs
you debug with the Janus Debugger may be, or contain, the following:

Janus/TN3270 Debugger User's Guide

Introduction

SOUL O-0 and Janus SOAP XML applications

Sdaemons or transactional sdaemons, including those spawned by other
sdaemons or by SCOMMBG requests

Synchronous $COMMBG requests, including those spawned by other SCOMMBG
requests or by sdaemons

SWEB_FORM_ DONE persistent mode requests

The TN3270 Debugger is primarily for debugging SOUL programs other than web
applications. These include:

3270 full screen applications
Batch2 applications
HTTP client applications that use the Janus Sockets HTTP Helper

Any other programs run from the Model 204 command prompt, including those that
do line mode input via SREAD.

The feature set

Both Debuggers provide these typical debugging capabilities:

Viewing code while running it

Stepping through the code one statement at a time

Examining variable values

Using a separate "watch window" for the display of specified data items
Setting breakpoints at which code execution pauses

Skipping over selected subroutines

In addition, the Debuggers provide these special features:

Acom Qactm Graphical User Interface with user-configurable buttons and hot keys
Views of the Model 204 audit trail and code executed by sdaemons

Tracing of statements that modify variables in executed code lines, or tracing until a
variable becomes a certain value

Saving of sets of variables to be watched, which are restorable at any time

Display of Web Server output-buffer data (Janus Debugger) and screen variables
(TN3270 Debugger)

A code line's Model 204 procedure details (subsystem, file, name, line number, text
preceding dummy string substitution)

Janus/TN3270 Debugger User's Guide 3

Introduction

e Filtering of program code to skip over all but the Model 204 procedure you identify or
the procedures you pre-selected (added to "White List")

e Stepping out of of a called subroutine, method, or daemon and continuing
processing at the statement after the call to the subroutine, method, or daemon

e Examination of former-Sirius extensions to User Language (including LongStrings,

$lists, objects)

e System class methods that let you insert code in User Language that runs only

under the Debuggers

e Facilitated access for code editors (for example, Xtend®, UltraEdit®)

The architecture

The following figure displays the principal components in a Janus Debugger

configuration:

Worker Thread

Model 204 Online

JanusWeb Thread

Workstation

Web Browser

Debugger Client
\

/

\/

Application Developer

The main components in a TN3270 Debugger configuration parallel those in the Janus
Debugger configuration, the principal exception being the absence of the web browser:

Model 204 Online

Worker Thread 3270/Batch2 Thread
/4
Workstation
Debugger Client
\\

Application Developer

Janus/TN3270 Debugger User's Guide

Introduction

Per Debugger session for a Janus Web Server or 3270/Batch2 program, these
components are active in the Online and on the workstation:

Model 204 nucleus hooks
(Assembiler; not shown above)

Janus Web thread
3270/Batch2 thread

Worker threads

(Assembler and User Language,
one each to the thread being
debugged and to the Debugger
Client, respectively)

Debugger Client
(WIN32 GUI, written in VB.NET)

Web browser

Compiler:

e Capture source lines, before and after
dummy string substitution.

¢ Note source of line (procedure and file).
Evaluator:

e Can step one statement at a time, and can
step over routines and methods.

e Can stop on breakpoints.

e Between statements, can get variable, field,
and global values, to support display, trace,
watch, etc.

Janus Debugger only.
TN3270 Debugger only.

For each debugging session, a “worker thread”
arbitrates between the thread being debugged and
the workstation-based client.

A worker thread does the following:

e Passes data between the thread being
debugged and the Client.

e Controls the execution of the thread being
debugged, at the behest of the Client.

The Debugger Client resides on the developer's
workstation. It is a proxy server in a Janus
Debugger session: the browser no longer directly
connects to the Web Server, but instead it
"sends" to and "receives" from the Client.

The Client GUI lets you control the application and
view variable values, source code, traces, and for
Janus Debugger sessions, the web output buffer.

Janus Debugger only. Any web browser that
allows proxy servers.

Janus/TN3270 Debugger User's Guide

Introduction

Versions and builds

First available in Version 7.0 of the Sirius Mods, the Debuggers also include features that
are available only with later versions of the Sirius Mods. Those features are labeled as
such in this documentation.

Independent of the version of the Sirius Mods being run on the Model 204 host machine,
the Debugger Client has its own integer-numbered sequence of "builds" that contain new

and updated features. From build to build of the Debugger Client, the About box
(accessed by the Help menu) provides a searchable list of the principal changes in each
of the previous builds of the Debugger Client.

System requirements

The Online Configurationf71 section of this document specifies the requirements for
Model 204 product release levels, licenses, and maintenance, as well as Debugger
product authorization. In addition are instructions for configuring a Model 204 Online that
hosts the Debugger, which include User O parameter and TCP port definitions and
increases in storage table and work area sizes for both of these:

e The worker thread that services a debugging session

e The thread on which the program to be debugged is running

Known limitations

The following are known limitations and issues concerning the Janus and TN3270
Debuggers:

e You may not use either Debugger for DBCS data.

e You may use the Janus Debugger against a Janus Web Legacy Support thread if
you also have a license for the TN3270 Debugger.

e The Janus Debugger Web Buffer tab only displays printable output, binary data is
not shown.

¢ No asynchronous daemon or $COMMBG requests may be debugged. They are
simply ignored by the Debugger (and they execute normally).

e Windows 95, Windows 98, and Windows ME are not supported by the client. You
must be running Windows 2000, 2003 Server, Vista, 7 or 8.

e On the workstation, you currently must hand-edit the debuggerConfig.xml file to
configure it after installation or to alter the configuration.

e Both the Execution Trace tab (output from one trace) and the Web Buffer tab have
5000-line capacities. If the capacity is exceeded, the last 5000 lines are shown.

6 Janus/TN3270 Debugger User's Guide

Introduction

1.2 Getting started

In place of a tutorial, it is recommended that you teach yourself to use the Debugger. To
get started:

1. Make sure the following are true:

e The product has successfully been installed and confiqured@, on the
mainframe and on the workstation that is to host the Debugger Client, recently
enough that you are confident that the various port numbers and names
assigned and, say, your web browser's definition of the Debugger Client as a
proxy server (Janus Debugger), are still valid.

If you are unsure, you may want to review the installation documentation and/or
rerun the final installation test.[ze?

e The Debugger Server server socket port is started.ls73)

e Only for the TN3270 Debugger, the Debugger Server client socket port is
started.[s74

e The Debugger Client is started.[s7

2. Start the Debugger Server worker thread:
e Janus Debugger: This is done automatically by the next step. Go to Step 3.

e TN3270 Debugger: From the Model 204 command line, issue the TN3270
DEBUG ONl4sl command. Your session lasts until you log off Model 204 or
issue TN3270 DEBUG OFF or its Debugger Client-commandpssl equivalent,
turnOffDebugging.

3. Run arequest you want to debug:

e Janus Debugger: From your web browser, invoke a URL that accesses a
program that is run by your Janus Web Server.

e TN3270 Debugger: From the Model 204 command line, start a SOUL/User
Language program (Include a procedure or invoke an APSY subsystem).

4. Using the Debugger Client GUI, control the execution of the SOUL/User Language
code.

You might take a few minutes with Getting Acquainted with the Client GUIl 91, then
try some of the operations described in Performing Basic GUI Tasks|st1.

Accessing and printing Help information

For quick access to Debugger Client Help information (accessed from the Help menu or
the F1 key), try finding in the Index the name of the GUI control (button, tab, box label)
involved in the operation you want to know more about.

Janus/TN3270 Debugger User's Guide 7

Introduction

The online Help information is reproduced in PDF format (as this Janus/TN3270
Debugger User's Guide) in your Debugger Client installation folder. This PDF is

immediately accessible by selecting the View PDF Manual option from the Debugger

Client Help menu. It is highly recommended that you use the PDF document as the
source for any lengthy Debugger Help printing.

The Print option that is available from the toolbar on your Microsoft HTML Help viewer

gives reasonable results. To print multiple topics, select Print from the toolbar, then
select the option to Print the selected heading and all subtopics.

8 Janus/TN3270 Debugger User's Guide

Getting Acquainted with the Client GUI

ciarter2 GGetting Acquainted with the Client GUI

The following image of the Debugger Client (debugging a Janus Web program) has
numbered labels that point to the principal areas of the Debugger, which are described in
the corresponding numbered sections in the linked list below. The image is also "live":
you can simply click any area of the image you want to find out about. In a TN3270

Debugger session, the Web Buffer tab is not present.

—

The tabbed pages/|i0]

The lower windows/[14]

The menu bar[171
The control button bar/39)

The search facility[44)

The tracing buttons/47]

The value displaying controls[4g)

The Status bar 49

© © N o o »~ w N

The Entity-name input box|s0]

K
3

45 The Janus Debugger L2) BTN
File Window Search Breakpoipte Execution | Data Display Erds, Macros Help

Top | Botom | Clear Audit| Run | Step | Step Over TgceAll ncel | Clear Breaks-|Clear Watch

@/ Audit Trail Sotirce Codeé | web Buﬁel‘ Exe nﬁunTlace‘ Proc Selecﬁnn}

TS 10 1 I QaxmL2 =
UL> 2 1 1 begin
UL> 3 1 2 class document
UL> 41 3
UL> 5 1 4 public
UL> 6 1 5 variable x is object XMLRec
UL> 71 3 constructor new
UL> 8 1 7 subroutine addStooge (¥iFirht is longstring, -
UL> 9 1 8 #ilast'is longstring)
UL 10 1 9 end public
o> 11 1 10
o> 12 1 11 private
v 13 1 12 variable top is object XMLNode

blo> 18 1 13 end private
uL> 15 1 14
uL> 16 1 15
o> 17 1 16
vl 18 1 17 is:x:addElement ('stooges') .
uL> 18 1 1% 9)
uL> 20 1 19 -

» -
|y Search |y Search Next Search Prev | Valie | Trace Ryn to Change Watch |
s =] =]

MSIR.1020: Debugger: JDBW Address—X'7C42A390°
I QaxmML2

M204.1168: IN FILE JALWORK INCLUDE QAXML2 ‘
Ready for execution.

Janus/TN3270 Debugger User's Guide 9

Getting Acquainted with the Client GUI

21 The tabbed pages

An important part of the user interface to the Janus Debugger or the TN3270 Debugger
is the set of tabbed pages that use the main display window below them (the Web Buffer
tab is not present for TN3270 Debugger sessions; Daemon tabs 139 display dynamically
if the program invokes daemons):

ﬂ‘% The Debugger Client

File Window Search Breakpoints Execution Data Display Error Macros Help

Top | Bottom | Clear Audit | Run | Step | Step Over | Trace All | Cancel | Clear Breaks | Clear Watch | ¢

Audit Trail [Suurce Cudel Web Buffer l Execution Tracel Proc Selectiunl
“|2010 11 17 16:46:18 Sirin=s Software Debngger Client: For Mods Version(s): 7.(

2010 11 17 16:46:18 __ Build: 53 (30 Noyember 2810} Tag: 11 B e

—_— I

o

These pages are resizable by mouse if you grab and drag the black border bar at the
bottom of the main window.

The pages are copyable:

e [fyou press the Ctrl+C keyboard key combination or select the Copy option from the
Window menu, the contents of the active (topmost) page are copied to the Windows
clipboard. The number of lines copied is displayed in the Status bar[451. Only the
Proc Selection page is not copyable.

e If you map the viewText commandPpsdl to a Client button or hot key, or select its

equivalent from the Window menu, you can invoke a text viewerfs7 that lets you
copy, edit, print, and save text data from Client pages.

Some of the pages are displayable in windows outside of the Client. These external
ko8l windows are easily invoked by double-clicking their tabbed page name, by selection
from the Client's Window menu, or by mappable com mandlzssl

Audit Trail tab
The Audit Trail page displays, from the beginning of the debugging session:

e The Model 204 audit trail lines produced by the online thread that is servicing web
requests from your browser(s) or by the thread that is servicing your 3270/Batch2
requests

e The Model 204 audit trail lines produced by any threads that run daemons on behalf
of your web or 3270/Batch2 requests

e Information about the state of the Debugger Client, such as the port on which it is
listening and the port whose web server requests it is debugging

e All outgoing HTTP messages sent by your browser (passed-through by the Janus
Debugger)

10

Janus/TN3270 Debugger User's Guide

Getting Acquainted with the Client GUI

Audit Trail Source Code | Web Buffer Execution Trace Proc Selection

2006 07 12 21:34:00 Connection From: 127.0.0.1

2006 07 12 21:34:00 Web request: GET http://global .msads.net/ads/1/replay.swf?fd=dellnet.msn.
2006 07 12 21:34:00 Web request will NOT be debugged. ..

2006 07 12 21:34:00 Response: received 1480

2006 07 12 21:34:00 Response content-length: 1062

2006 07 12 21:34:00 Receive of HTTP Response complete, 1480 bytes.

2006 07 12 21:34:00 Response code: 200 OK

2006 07 12 21:34:02 Connection From: 127.0.0.1

2006 07 12 21:34:02 Web request: GET http://sirius-software.com:9219/jalwork/daemon5 HTTE/1.0
2006 07 12 21:34:02 Web request will be debugged...

2006 07 12 21:34:03 Ry T T Y
2006 07 12 21:34:03 Connected to the Debugging Server: sirius-software.com:3355

2006 07 12 21:34:03 Mcdel 204 Versicn: 6.1.0G

2006 07 12 21:34:03 Sirius Meods Version: 6.9

2006 07 12 21:34:03 Session name: 034D230656

2006 07 12 21:34:03 Ry sy
2006 07 12 21:34:03.15 1 3 LI I DAEMONGE

2006 07 12 21:34:03.15 1 3 Ms M204.1168: IN FILE JALWORK INCLUDE DAEMONS

The Most Recent Audit Trail window[141also and only displays audit trail lines.

The Audit Trail page is displayable separate from the Client in an externallsosl window.

Source Code tab

The Source Code page displays the source code lines of the User Language request that
is currently being debugged. Here is where most of your interactions with program code
take place: setting breakpoints, viewing the current execution position, getting detailed
information about a source code line, watching variables from a selected source code

line.
Audit Trail | Source Code Web Buffer Execution Trace | Proc Selection
CM> 1 0 1 I DAEMONS
CM> 2 1 1 *nesting new daemon instances and checking their master numbers
UL> 3 1 2 b
UL> 4 1 3 Audit 'I am starting'
UL> 5 1 4 %speed is object daemon
UL> 6 1 5 %list is object stringlist
UL> 7 1 6 %X is object stringList
UL> 8 1 7T %speed = new
UL> 9 1 8 %n is float
UL> 10 1 9 %n = %speed:usernumber
UL> 11 1 10 Audit 'n is: ' %n Toggle BreakPoint
UL> 12 1 11 %n = %speed:masternumber Procedure Information
UL> 13 1 12 Audit 'n is: ' %n
UL> 14 1 13 %n = %spe?d:parentnwnber Display %n
UL> 15 1 14 Audit 'n is: ' %n
UL> le 1 15 %list = new

Janus/TN3270 Debugger User's Guide 11

Getting Acquainted with the Client GUI

The page display format is:

Column 1 Line type:

CM> — command

UL> — User Language statement
ER> — error message

BR> — breakpoint

Column 2 Simple line number
Column 3 Include level
Column 4 Line number within include

Web Buffer tab

Not ordinarily present for TN3270 Debugger sessions, the Web Buffer page displays the
lines the Janus Web Server application is preparing to send to the browser at the
completion of the request. The page is updated in real time, each time you break
execution, as you step through a code program and PRINT and HTML statements are
executed. The most recent lines added to the page are highlighted, and you can watch

your output HTML being built.

Audit Trail | Source Code | Web Buffer Execution Trace | Proc Selection

<html>

<head>

<title>*Default Janus Web Home Page</title>
</head>

<body bgcolor="#ffffda">

<table cellpadding=2 cellspacing=5 border=0>
<tr>

<td wvalign=top halign=left>

Top, Bottom, and search buttons are available. The page is cleared when a new request
is initiated or if you clear it manually (via the Window > Clear Web Buffer button or the

clearWebBufferhell command).

The Web Buffer page is displayable separate from the Client in an externallodl window.

12 Janus/TN3270 Debugger User's Guide

Getting Acquainted with the Client GUI

Execution Trace tab

The Execution Trace page displays the output of the various tracing operations. It is
discussed further in Tracing program execution[127.

f -
‘E‘ The Janus Debugger (WIDGET) 7

File Window Search Breakpoints Execution DataDisplay Error Macros Help s
Top | Bottom | Clear Audit | Run | Step | Step Over | Trace All | Cancel | Clear Breaks | Clear Watch | View Text L
Audit Trail | Source Code | Web Buffer | E: VT Proc Selection PE

—

$web_type (' text/html’) e

html o

%tcount = $unblank($web_ form parm('count'))

if (mot %count) then .
print 'You did not order anything'

-
html R

end L

Proc Selection tab

The Proc Selection page lets you designate some sections of your program or entire
programs, for debugging while omitting others. This may be for reasons of time or space
economy. You can execute but not display in the Debugger Client specified sections of
your code, ranging from a few lines to whole routines or inner or outer procedures.

A2 The Janus Debugger (UDPSQCK) [E= e
File Window Search Breakpoints Execution DataDisplay Error Macros Help
Top | Bottom | Clear Audit | Run | Step | Step Over | Trace All | Cancel | Clear Breaks | Clear Waich
Audit Trail | Source Code | Web Buffer | Execulion Trace Proc Selection
Exclude Parts of Program From Debugging Skip Whole Programs
Run Until Procedure: ‘
Edit ExcludeProcList | Edit Exclude Routine List | | E
Edit Include Proc List | Edit Include Routine List ‘ White/Black List
= = o Edit White List
Reload Proc/Routine/Method Lists |
i Edit Black List
Use Proc Lists for Use Routine Lisis for -
v v O Reload Lists
v excludefinciude v excludefinclude e B
Search Search Next Search Prev ... Value Trace Run to Change Watch
s e Bt T et T e o [e : THa ,—*——-_,_.4,——_)/-

——

The Exclude Parts of Program from Debugging section lets you specify multiple User
Language methods, subroutines, or inner procedures whose source code will be
executed but not shown in the Debugger Client. From this excluded source code, you
can also specify methods, subroutines, or inner procedures whose code you want to be
able to view.

Janus/TN3270 Debugger User's Guide 13

Getting Acquainted with the Client GUI

The Skip Whole Programs section of the page lets you specify by name or name pattern
only the outer procedures you want to debug. Those procedures not identified are
executed but their code is not sent to or displayed in the Client. You can identify the
procedures directly (by explicitly specifying them by name or pattern in a "white list") or
indirectly (by explicitly excluding the procedures you do not want to debug by specifying
them by name or pattern in a "black list").

The Proc Selection page options are discussed further in Excluding sections of source
code from debugging./e4)

See Also

Performing Basic GUI Tasks/[s1]

Opening an external window/z08)

2.2 The lower windows

The windows described here are positioned below the Client's principal display area, the
main window.

The Most Recent Audit Trail window

This window displays only the last few lines of the audit trail for this web user or 3270/
Batch2 thread. It displays no non-audit trail information.

i
_r
Search Search Next Search Prev | Value .Jl - I
j %statusMsg ,
-
MSIER.1020: Debugger: JDBW Address=X'T7C4213B0' :
I RIGHT ¥
M204.1165: IN FILE JALWORE INCLUDE RIGHT
MSIR.0913: Debugger Debungging i= already turned on "
MEIR.1026: Debugger: sending CLIENTCOMMAND='COMMAND CLEARWATCH'
Executed one statement. L

The Most Recent Audit Trail display is not deleted if you click the Clear Audit button in the
button barss).

14 Janus/TN3270 Debugger User's Guide

Getting Acquainted with the Client GUI

The Watch Window

The Watch Window box can display the current value of one or more SOUL data items (%
variables, $list items, object variables, etc.). It is updated as the program runs, each time
execution is paused by the Debugger:

L
|

Value Trace Run to Change Watch I
%rc j

#ztatusMsg=""
*ro=0

D CLEARWATCH® L

To add an item to the Watch Window, you can use the Entity-name input box below the
main window:

Value Trace Run to Change m
e

¥statusMsg=""
*re=0

D CLEARWATCH' N

Or you can right-click a Source Code line and select Add Watch from the context menu:

Janus/TN3270 Debugger User's Guide 15

Getting Acquainted with the Client GUI

r = =
A‘Q The Janus Debugger (QAXML2) r - - - L4 o .

File Window Search Breakpoints Execution Data Display Error Macros Help
Top | Bottom | Clear Audit | Run | Step | Step Over | Trace All | Cancel | Clear Breaks | Clear Watch | Console j
Audit Trail Source Code | Web Buffer] Execution Trace | Proc Selection] ([
TL> 25 1 24 *oneStooge:addelement ("firstName' , *¥iFirst) '_,/
TL> 26 1 23 *oneStooge:addelement ('lastName',6 ¥ilast) I
TL> 27 1 26 return j
TL> 28 1 27
TL> 29 1 28 end subroutine
TL> 30 1 29 J
TL> 31 1 30 end class L
UL> 32 1 31 {
TL> 33 1 32 K.
TL> 34 1 33
TL> 35 1 34 *d is object document
UL> 36 1 35 #d = new
UL> 37 1 36 %1 is longstring Add Watch i
UL> 38 1 37 Toggle BreakPoint f
TL> 39 1 38 *d:addSteoge ("Moe' , "Howard') P d Inf "
UL> 0 1 39 2d:addStooge (' Larry’, 'Fine') racedure Infarmatian |
UL> 41 1 40 #d:addStooge ('Curly’, 'Howard') FEQ OCCIN value
TL> 4z 1 41 #*d:addS5tooge (' Shemp' , "Howard') Jump K= k
TL> 43 1 42
UL> 42 1 43 #d:x:print Display %d
TL> 45 1 44 %]l = %d:x:serial
UL> 6 1 45 Fa

Search ‘ Seﬂ;ﬂl Next | Search Prev | Value | Trace | I{J

% -
- : N | 7
ot ~ -
. b l”/ A 4

- _,r"J - ,,f

For watched variables that have large values, there are multiple display options@ that

include manually widening the the Watch Window, viewing the value in a tooltip box,
displaying the value in a separate window, or displaying the Watch Window itself in a

separate window/08)

See Also

Viewing the audit trail[126)

Watching program data items/es]

Opening an external window|z06)

Hiding the Client's lower windows[311]

16 Janus/TN3270 Debugger User's Guide

Getting Acquainted with the Client GUI

2.3 The menu bar

The Debugger Client has multiple menus, each of which is described in the following
subsections. Many of the menu options duplicate the actions of default Client buttons
and keyboard shortcuts, and most menu options are associated with Client commands.

AL The Janus Debugger (QAXMI2)

File Window 5Search Breakpoints Execution Data Display Error Macros Help

Top | Bottom ear

If a hot key is mapped to a command that is associated with a menu option, the hot key
is displayed in parentheses next to the menu option.

The File menu options| 1€

The Window menu options /241
The Search menu options|26]
The Breakpoints menu options[27]

The Execution menu options /291

The Data Display menu options|?3'1
The Error menu options 5]
The Macros menu options|ze]

The Help menu options/sel

Janus/TN3270 Debugger User's Guide 17

Getting Acquainted with the Client GUI

231 The File menu options

The File menu options are identified below:

42 The Janus Debugger (UDPSOCK)

F

File | Window 5earch Breakpoints Execution Data Display Error M_:'

Preferences (ctrl+p)

Colar Preferences

Edit White List
Edit Black List
Edit uixml

Edit uimorexml

Edit debuggerConfigaml

Restart

Restart with Default Window Size

Exit

L> 13 1
L> 14 1

Preferences

12
13 end

ep | Step Over Tracél
|Buffer] Execution |
T

¥
| r

ongstring ’.

bject ndpSocke

2
10031?01"1;:}2'*;
oot = 0 [

I

r df’ o
EndpSo

nd { sme s,
s n

Also accessible (by defaultkssl) by using the Ctrl+P
keyboard shortcut, this option opens a dialog box[239 that
lets you control certain Debugger Client operating options:

= Execution Options:

e Pause atend of evaluation

Whether to pause at the end of the evaluation of a
reguest@ (to review program data as it is at the
end of request processing) before sending any
contents of the web output bufferfi27 or any 3270/
Batch2 terminal output.

e Run Until spans debug sessions

Whether Client "Run Until" processing@ should
continue searching until it finds a specified
procedure, even if the program contains HTML
frames, the debugging session is interrupted by a
loss of the connection to the Model 204 Online, or
the TN3270 Debugger is toggled off and on again.

18

Janus/TN3270 Debugger User's Guide

Getting Acquainted with the Client GUI

e Break after READ SCREEN

Whether the TN3270 Debugger automatically
breaks execution after READ SCREEN or READ
MENU statements (see Breaking at the end of
READ SCREEN or READ MENU statements|eo).

e Source Preview

Whether the Client should initially display only a
greview@ of the entire source code program (for
programs with at least 1000 lines, by default).

e Macro Autorun

Whether an include of a procedure from command
level will automatically invoke a macrobzsl whose
name matches the name of the included

procedure.
= |E Options:
e |EMode

Whether the Client should automatically configure
and maintain proxy server settingshss for the
Internet Explorer and Chrome browsers, and
whether the proxy is for all host URLs or only for a

specified few. kool

New in Build 62. Same as the setIEmode 263
command.

e Clear proxy override

Whether the Client's browser maintenance should
clear and preserve any exception URLs designated
in Internet Explorerfedl to bypass the Client as proxy
server.

e Use existing proxy on not debugged URLs

Whether the Client should re-route exception URLs
[390] (designated in Internet Explorer to bypass the
proxy server) to a preexisting proxy server rather
than directly to the Internet.

Janus/TN3270 Debugger User's Guide 19

Getting Acquainted with the Client GUI

= Display Options:

e Showat most <x> list items

What the display maximum is for the number of
$list, Stringlist, or Arraylist object items whose
values you can view in a separate Value window/102

e Restore watches on startup

Whether to restore this session's remaining Watch
Window contents when the Client starts its next
session.

e Trimblanks from selection in View Text

Whether leading and trailing blanks should be
trimmed from selections you copy to the Text
Viewer[147.

e History to Execution Trace

Whether execution historyhs2! data should display in
the Execution Trace page instead of a separate
window.

e Showlong watch values in a Tooltip

Whether to display in a tooltip box Watch Window
items/ e8] that are too wide to fit within the Watch
Window.

e Use !debugger directives

Whether to enable Debugger directives [65), which
let you exclude designated source code from the
debugging session.

= Web Server Selection:

e Which of the Onlines specified in the Client
configuration file (debuggerconfig.xml) are to
have their web requests debugged. For more
information, see Debugging multiple Web Servers
[145

20 Janus/TN3270 Debugger User's Guide

Getting Acquainted with the Client GUI

= Program Titles:

3270 Emulator

Whether to bring to the top of the PC screen (when
the Debugger Client pauses for user to provide
external input) the 3270 emulator(ed] or web
browser window42l whose title is matched by the
text specified in the appropriate one of these
boxes.

= Open at Startup:

Whether the Client should automatically start/restart

with:

The main button bar in an external window/421.

An extra button bar|42).

The Watch Window, or the Audit Trail, Web Buffer or

Execution Trace page, or a combination of these,
opened in external windows fa11l.

= Main Button Bar:

Top, Center, or Bottom

Whether to change the position[4d1 of the main
(non-external) button bar from its default (Top),
above the main window) to either just below the
main window (Center), or to the very bottom of the
Client window (Bottom).

Extra Buttons

Whether extra buttons|+2) defined in the ui . xm1 file
should be added to the display of the main button
bar (wherever it is located). If the checkbox is
cleared, they display in a separate external window
when invoked by menu or command.

New in Build 57. Same as the extraButtonBar |03
command with the argument main.

Janus/TN3270 Debugger User's Guide

21

Getting Acquainted with the Client GUI

= Main Window Options:

o Hide Lower Section

Whether to hide the lower section of the main
window (everything below the ml?ﬂ). This is
useful in a multiple monitor environment where the
Audit Trail and Watch Window are in separate
windows on another monitor.

New in Build 57. Same as the hideLower[212)
command.

Color Preferences Lets you change the colorfs7l of text and highlighting in the
various Client windows and pages.

Edit White List Lets you create or edit an existing whitelist.txt file.
This file contains a list of the Model 204 procedures that
you want to debug.

When white Iisting|77'1 is activated and the Debugger runs
your source code, it filters procedures automatically,
stopping to interactively debug only the requests that are
on the white list. Other procedures execute normally, but
they are not interactively debugged.

Edit Black List Lets you create or edit an existing blacklist.txt file.
This file contains a list of the Model 204 procedures that
you want not to debug.

When black Iisting|77'1 is activated and the Debugger runs
your source code, it filters procedures automatically,
stopping to interactively debug only the requests that are
not on the black list. Other procedures execute normally,
but they are not interactively debugged.

Edit ui.xml Lets you create or edit an existing ui.xml filekoil. This file
specifies maodifications to the Client's default operational
buttons and keyboard shortcuts. You can set the buttons to
perform actions (commands), or you can set hot keys to
commands.

Edit uimore.xml Lets you create or edit an existing uimore.xml filelss.. This
file provides the same kind of functionality as, but entirely
overrides the ui.xml file. New in Build 57.

22 Janus/TN3270 Debugger User's Guide

Getting Acquainted with the Client GUI

Edit debuggerConfig.

xml

Restart

Restart with Default
Window Size

Exit

Opens the debuggerConfig.xmlksdl file for viewing and
editing its elements (which define Online connection
parameters, file-type filtering, and local editors, among
other things).

Restarts the Debugger Client. Same as the resta rtl243
command.

Restarts the Debugger Client with the default size (as
when initially installed) for the main window instead of the
size at last exit.

Same as the restartDefault4s command.

Does no further processing and immediately closes the
Client.

Janus/TN3270 Debugger User's Guide 23

Getting Acquainted with the Client GUI

23.2 The Window menu options

The Window menu options are identified below:

S The Janus Debugger (QAXML2) r',
File [Window | Search Breakpoints Execution Data Display Error Macros Help ;
Top Top Trace | Cancel | Clear Breaks | Clear Wat!
Au L il xecution Trace | Proc Selection ||
CM> Clear Audit Trail f,.—"
UL Clear Execution Trace F
TL> iy [,
UL Clear Web Buffer >
TL> _—

—i= (1 ”~
UL> Copy (ctrl+c) ohiect XMLDoc 4
UL Paste W J
TL= View Text Stooge (¥iFirst is=s longstl_
UL> tiLast is longstri
OL> Open External Watch Window _+__.—"f
UL B . S i E
L Open External Audit Trail Window)
TL> Open External Web Buffer Window = object }D-ILN?V" =
UL> Open External Execution Trace Window |
UL> [
OL> Show Main Button Bar in External Window { S
UL> . P
L Show Extra Button Bar Window P
P b
s Close External Windows 4
TL>|
O
— J_ Jr
T Regeety-, Search Next J
—,—‘, = W g
Top Scrolls to the top of the currently displayed tab. Same as

the Top button|se]. Comparable mappable command, top
Rﬂ, can be applied to the Client window (main, external,
work) that you specify.

Bottom Scrolls to the bottom of the currently displayed tab. Same
as the Bottom button[3s]. Comparable mappable
command, bottomlsil, can be applied to the Client window
(main, external, work) that you specify.

Clear Audit Trail Clears the contents of the Audit Trail tab. Same as the
Clear Audit[126) button and the clearAudit[is5 command.

24 Janus/TN3270 Debugger User's Guide

Getting Acquainted with the Client GUI

Clear Execution
Trace

Clear Web Buffer

Copy

Paste

View Text

Open External Watch
Window

Open External Audit
Trail Window

Open External Web
Buffer Window

Open External
Execution Trace
Window

Clears the contents of the Execution Trace tab. Same as
the clearExecutionTracelis8l command.

Clears the contents of the Web Buffer tab. Equivalent
mappable command is clearWebBufferfoil

Copies to the clipboard the lines currently visible in the
active tabbed page. Described further in The tabbed

pages. m

Pastes the current clipboard contents to the Client's Search
text box or to the text box above the Watch Window.

Invokes a separate viewer[147 for copying, printing, and
saving Client text data.

Displays in an external window/[s08), that is, separate from

the main window, the current contents of the Client Watch
Window. Or, it brings the existing external Watch Window to
the top of your current stack of open windows.

Same as the openExternalWatchWindowlssl command.

Displays in an external windowfsoél the current contents of
the Client Audit Trail tab. Or, it brings the existing external
Audit Trail window to the top of your current stack of open
windows.

Same as the openExternalAuditTraills3 command.

Displays in an external window/[s0él the current contents of
the Client Web Buffer tab. Or, it brings the existing external
Web Buffer window to the top of your current stack of open
windows.

Same as the openExternalWebBufferEa command.

Displays in an external window/[sodl the current contents of
the Client Execution Trace tab. Or, it brings the existing
external Execution Trace window to the top of your current
stack of open windows.

Same as the openExternalExecutionTracelsi
command.

Janus/TN3270 Debugger User's Guide 25

Getting Acquainted with the Client GUI

Show Main Button
Bar In External
Window

Show Extra Button
Bar Window

Close External
Windows

Displays in an external window/[s08l the current contents of
the Client main button bar[as). Or, it brings the existing
external Button Bar window to the top of your current stack
of open windows.

Same as the buttonBar showlisd command.

Displays in an external window/[s0él the current contents of
the Client Extra button bar| 42\. Or, it brings the existing
external Extra Buttons window to the top of your current
stack of open windows.

Closes all Client external windows.Boél Same as the
closeExternalWindows|ied command.

2.3.3 The Search menu options

The Search menu options are identified below:

AZ: The Janus Debugger (QAXML2) P

Top | Botton
Audit Trail

CM> 1
TL>

File Window [Search Breakpeints

Search From Top
Search From Bottom (ctrl+u)
Search Down (f9)
Search Up (alt+f9)

Execution Data Display Error Mal

Trace | Cance}

Execulim.’,’

UL>
UL>
TL>
TL>
TUL>
UL>
TL> 9
TL> 10
TL> 11

T T i S o

2

mo=d e W N

W oo =] oo

R

11

Search From Top

P »

class document

poblic .
variable x (/
construoctor
subrontif™ ™

end_}il:gf-_ =

o
3

Searches (without regard for case) from the top of the
current tab for the string you specify in the Search box.
Same as the Search button[+4). Comparable mappable
command, searchFromTopksA, can be applied to the Client
window (main, external, work) that you specify.

26

Janus/TN3270 Debugger User's Guide

Getting Acquainted with the Client GUI

Search From Bottom Searches (without regard for case) from the bottom of the
current tab for the string you specify in the Search box.
Same as the Alt + Search button combination. Comparable
mappable command, searchFromBottombs2, can be
applied to the Client window (main, external, work) that you
specify.

Search Down Searches (without regard for case) down (relative to the
current line) in the current tab for the string you specify in
the Search box. Same as the Search Next button/ 4]
Comparable mappable command, searchDownpsil, can
be applied to the Client window (main, external, work) that
you specify.

Search Up Searches up (relative to the current line) in the current tab
for the string you specify in the Search box. Same as the
Search Prev buttonl4s]or pressing Alt + Search Next
button. Comparable mappable command, sea r‘chUpEa,
can be applied to the Client window (main, external, work)
that you specify.

2.3.4 The Breakpoints menu options

The Breakpoints menu options are identified below:

,‘_"5‘% The Janus Debugger (QAXMLZ) r'f"
File Window Search |Breakpoints | Execution Data Display Error Maq/' o’
'| §—] =

Top | Bottom | Cleal Breaks At (alt+b) Igcf-
Audit Trail | Breaks (ctrl+b) P'[

..... . . L3
ErEEETCTE Toggle Breakpoint on Current Line r
UL 2 1 Clear All Breakpoints r/
UL> 301 1
UL> 4 1 Break on Mext Proc
UL> 5 1 4 public 3
TUL> & 1 L1 variable x is object XHL.D}
TL> T 1 6 constroctor new o
UL> it 7 ™, subroutine addStooge [%}I
OL> 3 8. P e

Breaks At Sets a breakpoint on each executable line in the request

(from the beginning of the request) that contains a case-
insensitive match of the string or regex specified in the
Search box. Described further in Setting multiple
breakpoints at oncelss.

Janus/TN3270 Debugger User's Guide 27

Getting Acquainted with the Client GUI

Breaks

Toggle Breakpoint on
Current Line

Clear All Breakpoints

Sets breakpoints on lines that follow comments that have
the form *break. Described further in Setting multiple
breakpoints at oncelss).

Sets or removes a breakpoint for the current Source Code
line if the line is or starts an executable statement.

Described further in Setting a single breakpoint|_%'1 Same
as the toggleBreakpointOnCurrentLinel271 command.

Removes all breakpoints in the request. Same as the

clearBreaks|isn command.

28

Janus/TN3270 Debugger User's Guide

Getting Acquainted with the Client GUI

2.3.5 The Execution menu options

The Execution menu options are identified below:

ﬂ‘% The Janus Debugger (UDPSOCK) - ——a 7
File Window 5earch Breakpoints | Execution | Data Display Error Macres Help f
Top | Bottom | Clear Audit | R Step (f4] (f11) icel | Clear Breaks
Audit Trail Source Code Step Out (alt+f10) Proc Seleclinn]
1> 1 0 1 I UDPSO SleplovEgiD) .
1> 2 1 1%
UL> 3 1 2 b b o
TL> 4 1 3 Zmessag Run Without Daemons (alt+f5) i ',-\’
UL 5 1 4 FundpSoc| Run Until Variable changes r(—"rj
L> s 1 3 Run Until Proc E
UL> 7 1 € sudpSoc un
TL> B 1 7 #udpSoc . .
L A o 8 repeat Get/Display History ;
TL> 10 1 g Smess Select Previous History Line
UL> 1 1 10 %udpS Select Next History Line -
OL> 12 1 11 end rep| . . . 1
TL> 13 1 12 Select First History Line g
UL 14 1 13 end Select Last History Line !
Trace Until Variable Equals Value I":
Trace Values |
Trace To End (ctri+t) d
Turn On White List !
Turn Off White List I|
Reload White List I
Turn On Black List !
Turn Off Black List rJ
Reload Black List
f
Skip Previewed Source ;
Debug Previewed Source P
Search Search Next Toggle Init Exclude FI
Cancel (ctrl+x) fl
Turn Off Debuggin r
gging J,r"
Step Executes the next executable User Language statement.
Step Out Discontinues debugging and leaves the current simple or
complex subroutine, user method, or daemon, and
resumes debugging on the statement following the
statement that called that subroutine, user method, or
daemon. Described further in Stepping out/e2).
Step Over Executes the next executable SOUL statement, if it is not

a simple or complex Model 204 subroutine or an O-O
method. Skips to the statement after, if the next executable
statement is such a subroutine or method invocation.
Same as using the Step Over button[s41.

Janus/TN3270 Debugger User's Guide 29

Getting Acquainted with the Client GUI

Run

Run Without
Daemons

Run Until Variable
Changes

Run Until Proc

Get/Display History

Select Previous
History Line

Select Next History
Line

Select First History
Line

Executes User Language statements in the program being
debugged until the end of the request or until interrupted by
a breakpoint, program error, or sdaemon call.

Performs the same functionality as Run, but unlike Run, is
not interrupted by sdaemon codefsol.

Steps through the program being debugged, stopping if a
statement modifies the value of the variable specified in
the text box above the Watch Window. Displays the
statement that modified the variable and the new variable
value in the Execution Trace tab. Same as the Run to
Change button|[i31)

Runs program code without interruption until it reaches
the procedure specified on the Proc Selection page in
the Run Until Procedure text box, then displays that
procedure for debugging. Same as the Run to
Procedure button| 731,

Displays a histog@ of the statements executed thus far
during program evaluation. The history includes calls and
returns for methods and subroutines (as many as 1000
statements).

Scans chronologically backward in the statement
execution historylz2), then highlights in the Source Code or
Daemon tab the statement that was executed immediately

prior to the statement that is currently highlighted with the
Execution Position colorfzea.

Same as the previousHistorylsd command.

Scans chronologically forward in the statement execution
historyfis2, then highlights in the Source Code or Daemon tab
the statement that was executed immediately following the
statement that is currently highlighted with the Execution
Position colorfz28

Same as the nextHistor‘yEc'ﬂ command.

Scans chronologically backward in the current statement
execution historyl32), then highlights in the Source Code or
Daemon tab the first (earliest) statement in the history.

Same as the firstHistoryWﬂ command.

30

Janus/TN3270 Debugger User's Guide

Getting Acquainted with the Client GUI

Select Last History Scans chronologically forward in the current statement
Line execution historyl32), then highlights in the Source Code or

Daemon tab the last (latest) statement in the history.

Same as the lastHistory@ command.

Trace Until Variable Steps through the program being debugged, stopping if a

Equals Value statement modifies the value of the variable specified in
the text box above the Watch Window so that it equals a
value you specify. Displays the statement that modified the
variable and the new variable value in the Execution Trace
tab. Same as Alt key + Run to Change/132 button.

Trace Values Performs the same functionality as Run, but also reports in
the Execution Trace tab all statements that modify a
selected variable and what value was assigned to the
variable. Described further in Tracing all updates to a
variable's valuefisol.

Trace To End Performs the same functionality as Run, but also reports in

the Execution Trace tab a list of all the statements

|e_jxgcuted. Described further in Tracing all lines executed
128|,

Turn On White List Activates White List filteringﬁﬁ, which by default is not
active. Same as clicking the Turn On White List button on

the Proc Selection page or executing the turnOnWhitelList
262 command.

Turn Off White List Deactivates White List filtering[79). Same as clicking the
Turn off Lists button on the Proc Selection page or executing
the turnOffihitelist[2s1l command.

Reload White list Updates the existing White List with the current contents of
the whitelist.ixt filel77], so you can dynamically update your
White List. Same as clicking the Reload White List button
on the Proc Selection page or executing the
reloadwhitelist[»41 command.

Turn On Black List Activates Black List fiIterianﬁ, which by default is not
active. Same as clicking the Turn On Black List button on
the Proc Selection page or executing the turnOnBlackList
263 command.

Janus/TN3270 Debugger User's Guide 31

Getting Acquainted with the Client GUI

Turn Off Black List

Reload Black list

Skip Previewed
Source

Debug Previewed
Source

Toggle Init Exclude

Cancel

Turn Off Debugging

Deactivates Black List filtering[791. Same as clicking the
Turn off Lists button on the Proc Selection page or executing
the turnOffBlackList[2s1 command.

Updates the existing Black List with the current contents of
the blacklist.txt filel771, so you can dynamically update your
Black List. Same as clicking the Reload Black List button on
the Proc Selection page or executing the reloadBlackList
241 command.

When the Source Preview featurelssis enabled, executes
the program that is being previewed but does not download
the rest of the source code for viewing or controlled
execution.

When the Source Preview feature(ssis enabled, triggers a
full download of the program source code for normal
debugging. If the program has compilation errors, the full
compilation error listing is downloaded.

Inverts the way Exclude modeles] operates so that it initially
excludes code instead of initially including code (until an

explicit directive). Same as togglelnitExcludek7sl command.

Requires at least version 7.6 of the Sirius Mods.

Cancels the request being debugged; same as the Cancel
button[e3). Described further in Cancelling executionles1.

Stops a debugging session if it is a TN3270 Debugger
session or if the TN3270 DEBUG command is being used
for a web thread. Same as TN3270 DEBUG OFF[152]
command.

32

Janus/TN3270 Debugger User's Guide

Getting Acquainted with the Client GUI

23.6 The Data Display menu options

The Data Display menu options are identified below:

[,‘_"5‘% The Janus Debugger (QAXML2) /f
File Window Search Breakpoints Execution [gata Display | Error Macres Help J—"
Top | Bottom | Clear Audit | Run | Step | 5 Load Watch l Clear Wi
Audit Trail ; l Web B SaveWatch selectic
CM>= 1] 1 I QAXMLE Add Watch 1
iz Z L L EEI Add Watch on Current Line J
TL> 3 1 2 class docume Clear Watch Jr
UL= 4 1 3
UL> 5 1 4 public) ;r/
UL> 6 1 5 variak alielPiplaty 7
UL> 7 1 [const1] T L
UL> 8 1 7 subrou string, °
Ul> % 1 a8 PAFGI Ering)

TUL= 10 1 9 end publi
UL> 11 1 10 Open External Watch Window
UL> 12 1 11 private -
UL> 13 1 _}2 variable top is object XMLNode fl
UL> 14{/’f - end prigrse -
||oL= LY i g e T

M . P

- ¥

Load Watch Restores from a local file a list of items to display in the
Watch Windowl 151 Same as the loadWatchkz2 command.
For more information, see Saving and restoring Watch
Window contents|es).

Save Watch Saves to a local file (for later loading) the list of items
currently displayed in the Watch Window. Same as the
saveWatchl2s0l command. For more information, see
Saving and restoring Watch Window contents|s9).

Add Watch Adds to the Watch Window the item currently specified in
the text area above the Watch Window. Same as the Watch
button[es] or addWatchhz7l command.

Add Watch on Adds to the Watch Window any variables found in the

Current Line current Source Code line. Same as right-clicking the current
line and selecting Add Watch from the context menu@,
and same as the addWatchOnCurrentLineh7sl command.

Clear Watch Removes all items from the Watch Window and instructs

the mainframe portion of the Debugger to stop collecting
any watch data. Same as the Clear Watch button or
clearWatchlied command.

Janus/TN3270 Debugger User's Guide 33

Getting Acquainted with the Client GUI

Value Display

PAl

PAFGI

Open External Watch
Window

Displays in a separate window the details of the value of
the item currently specified in the text area above the Watch
Window. This is one of multiple ways to display a value.[s9]
Same as the valueDisplaylsi command.

Displays in a separate window the values of all the visible
fields in the current Model 204 record. This is the output of
the User Language PAI (Print All Infformation) statement.
Same as the pail2s7lcommand.

Requires at least version 7.6 of the Sirius Mods and at
least version 7.2 of Model 204.

Displays in a separate window the values of all the fields in
the current or specified Model 204 field group. This is the
output of the User Language PAFGI (Print All Fieldgroup
Information) statement. Same as the pafgi kssl command.

Requires at least version 7.6 of the Sirius Mods and at
least version 7.2 of Model 204.

Displays in an external window [s08] separate from the main
Client window the current contents of the Client Watch
Window. Or, it brings the existing external Watch Window to
the top of your current stack of open windows.

Same as the openExternalWatchWindowEa command.

34

Janus/TN3270 Debugger User's Guide

Getting Acquainted with the Client GUI

23.7 The Error menu options

The Error menu options are identified below. This menu is not enabled if the program you
are debugging has no compilation errors.

rﬂ‘% The Janus Debugger (QAXML2) .
File Window Search Breakpeints Execution Data Display [Error Macros Help P -
Top | Bottom | Clear Audit | Run | Step | Step Over | Tr Mext Compile Error (f11 (cmpl err]) - 5
Audit Trail SUU[GBCDdB Web Buffer l Ext Previous Cornpile Error (FLO (cmpl err)) -4
CM= 1 0 1 I BADCOMFPILE.UL Quit (£5) u:
UL= 2 1 1 begin
UL> 3 1 2 variables are undefined -
TUL> 4 1 3 this is wrong E
M204,022%: INVALID STATEMENT =
£hi i wrono e
Next Compile Error Advances to the next line that has a compilation error, if the

request being debugged has more compilation errors after
the current one. Described further in Viewing programs
that contain coding errors 136\,

Previous Compile Returns to the previous line that has a compilation error, if
Error the request being debugged has more compilation errors
before the current one.

Quit Stops processing the current request; sends the
compilation error messages to the browser (if Janus
Debugger) or to the terminal (if TN3270 Debugger).

Janus/TN3270 Debugger User's Guide 35

Getting Acquainted with the Client GUI

23.8 The Macros menu options

The Macros menu options are identified below. Macros are discussed in Using Debugger
macros.[s17

i lgTheJam.ls Debugger{QAKh&LZ}- Y WP W T e /
File Window Search Breakpoints Execution Data Display Error | Macros | Help - _’,r—"’
Top | Bottom | Clear Audit | Run | Step | Step Over | Trace | C Run Macro s
Audit Trail Source Code | Web Buffer | Executic Edit Macro =
TL= 26 1 25 *oneStooge:addelement REc +
UL> 27 1 26 retarn Kill Running Macro ;

UL> 28 1 27 s

vL> 28 1 28 end subroutine Console "
UL> 30 1 29 i ¥
UL> 31 1 30 end class Command Line }
gt; g: i g; Run C:\Users\JAL\My Documents\Debugger\oldstuffitogglesh.macro "
UL> 34 1 33 Edit C:\Users\JAL\My Documents\Debugger\oldstuff\togglesh.macroJ—js'

| TL=> 35 1 34 %d is object document u
UL 36 1 35 #d = new o

| |oL> 37 1 36 _. %) is longstring ~
o> 38 1 o e -~ P

-‘JL‘ri_:j;,_," .nae_L'_uqr”) —— B P e

Run Macro Invokes a Windows file-selection dialog box for you to
locate the Debugger macro you want to run.
runMacroFromUISelectionlsdl is the equivalent
mappable command.

Edit Macro Invokes a Windows file-selection dialog box for you to
locate the macro you want to modify. Opens the file in the
Windows Notepad text editor or an alternate editor
specified in the Debugger configuration filefsss\.

New Macro Invokes a Windows file-selection dialog box for you to
identify the name and location of the new, blank macro file
you are creating. Once you name the file, it is created, then
opened for you in the Windows Notepad text editor.
Equivalent Client command is createMacrohosl.

This option is labeled New Blank Macro in Client builds prior
to 53.

Kill Running Macro Stops the execution of the macro that is running. This can
be useful if a macro's execution spans more than one
request.

killlo20lis the equivalent mappable command.

36 Janus/TN3270 Debugger User's Guide

Getting Acquainted with the Client GUI

Console Invokes a console window that displays information about
the macros and commands you run. The console reports
the starting and completing of the macro execution, as well
as any error messages. Equivalent Client commands are
macroConsolel223 and openMacroConsolepss.

This option is labeled Macro Console in Client builds prior to
53.

Command Line Invokes a dialog box for you to enter the name and any
parameters of the macro (or command) you want to run.
The macro you identify must be located in the same folder
as the Debugger Client executable file or a work folder
knownko3l to the Client.

Equivalent Client command is openCommandLinefps3l.

This option is labeled Macro Command Line in Client builds
prior to 53.

Run Displays the path to the macro file you last executed.
Selecting this item executes the macro again.

Edit Displays the path to the macro file you last executed.
Selecting this item opens the macro for editing in the
Notepad text editor.

Janus/TN3270 Debugger User's Guide 37

Getting Acquainted with the Client GUI

239 The Help menu options

The Help menu options are identified below:

2 The Janus Debugger (QAXMLZ) S
File Window Search Breakpoints Execution Data Display Error Macros f/—_,_/_'
Top | Bottom | Clear Audit | Run | Step | Step Over | Trace | Cancel | (™ Help Topics le -
il | Web Buffer | Execution Trac Keyboard Shortcuts -
CM> 1 0 1 I QAXML2 LammEns]
TL> 2 1 1 begin Functions "
TL> 3 1 2 class docoment View PDF Manual J[_/
UL> 4 1 3
UL> 5 1 4 public About r
TL> 6 1 5 variable x is object XMLDoc Model 204 Wiki
TL> 7 1 [constroctor new
N . Updates
TL> 8 1 7 subrontine addStooge (*iFirs
TL> s 1 8 *¥ilast i= longstring) b
UL> 10 1 9 end public f
UL> 11 1 [W ' B
oL> 12 1_/_'1 vate S N PR 4
e N arippld” o~ — —
-
Help Topics Displays the Windows online Help contents for the

Keyboard Shortcuts

Commands

Functions

View PDF Manual

Debugger. Alternative to pressing the F1 key.

Displays the Client's current (defaultkes) as well as
mapped) keyboard shortcuts in the Keyboard Shortcuts
window. Equivalent mappable command is
showShortcuts[273.

Displays a "quick reference" of the set of Client commands
[177in the Commands window. The commands are listed in
alphabetical order and with simple definitions.

Its equivalent mappable command is showCommands k7ol

Displays a "quick reference" of the set of Client functions
328 in the &&Functions window. The &&functions are listed
in alphabetical order and include simple definitions.
&&functions that may only be used in a macro include a
(macro only) designation.

New in Client Build 58. Its equivalent mappable command
is showFunctions/27dl

Accesses the Janus/TN3270 Debugger User's Guide (in
your Debugger Client installation folder). lts equivalent
mappable command is manualkpzsl

38

Janus/TN3270 Debugger User's Guide

Getting Acquainted with the Client GUI

About Displays the contents of the Client's "About box." Its
equivalent mappable command is showAbout 7ol

Model 204 Wiki Opens your browser to the Main Page of the wiki for Model
204 documentation (by defaulthss)). This wiki contains
documentation topics and tutorials for users of Model 204
and its add-on products.

Updates Invokes a program (updateGet.exe) from which you can
download a new executable file (JanusDebugger.exe)
from a central location to replace your existing Client — if
this featurelsod has been set up at your site.

2.4 The button bar

Many of the Client's basic operations are controlled by the buttons arrayed in the button
bar, which by default is displayed above the main window:

‘g‘ The Janus Debugger (QAXML2)

File Windo T
Top | Bottom | Clear Audit | Run | Step | Step Over | Trace All | Cancel | Clear Breaks | Clear Watc

...............] — — N T oinction L - e

These same operations can also be invoked by Client menu(171 options and by keyboard
shortcut. The operations are implemented by Client commands hosl, of which there are
many more than there are buttons. You can change the default mapping of buttons and
hot keys@ to commands to suit your preference.

The subsections below describe how:

e The buttons may be divided into function categories.

e The position of the main button bar 40} may be changed.

e You can extract the button bar(42]to a window that is external to the Client.

e You can create an extra button barf421if you want more than the 15 buttons that the
main button bar can accommodate.

Types of buttons
The Client default buttons may be divided by function as follows:

e Page navigation

Janus/TN3270 Debugger User's Guide 39

Getting Acquainted with the Client GUI

The Top and Bottom buttons operate on the currently active Audit Traill 0], Source
Codel11] (or Daemonkssl), or Web Buffer[121tab. Top brings to the top of the page
the first line of the current page. Bottom highlights the last line of the current page.

The mappable Client commands 289 that perform the same actions are topl73 and
bottom. 181l

e Program execution

The Step, Step Over, and Run buttons advance the Source Code page (or Daemon
page) processing position by executing one or more "executable" User Language
statements. For more details, see Step, Step Over, Run.[s3]

By defaultl205, the F5 key is equivalent to the Run button; F4 is equivalent to Step (as
is F11); and F10 is equivalent to Step Over.

The Cancel button stops the executionles] of the current program in the Source Code
page. You can cancel the request at any time.

The mappable Client commands that perform these execution actions are step@,
stevaer‘ES'I r‘unm, and cancel. 55'1

e Page clearing

The Clear Audit, Clear Breaks, and Clear Watch buttons remove entirely the contents

of the Client's Audit Trail tabbed page, the breakpoints[ss] defined in the program
being debugged, and the Client's Watch Window| 151.

The mappable Client commands that perform these actions are clearAuditfes]
clear‘Br‘eaks@, and clear‘Watchm;ESﬁ

Positioning the button bar within the Client window

You can change the location of the main button bar from its default (above the main tabs)
to either of these other positions in the Client window:

e Immediately below the main tabs (but above the search, tracing, and value
displaying controls):

o v £LanT AT aa 3ada . AnaRnt

50 print %*recs3:tostring

51 print &recs3

52 print %cursi:tostring

53

54 end <

o
@
HOE R R

Top | Bottom | Clear Audit | Run | Step | Step Over | Trace All | Cancel | Clear Breaks CIearWalchI

Search Search Next Search Prev | Value | Trace EI Run to Change ‘Watch
Sirius | |%i -~

MSIR.1020: Debugger: JDBW Address=X"T7C4133B0" & &i=5
I RECSET4
14204.1168: IN FILE JALWORK INCLUDE RECSET4

Breakpoint cleared. Recsiving/forwarding web page

40 Janus/TN3270 Debugger User's Guide

Getting Acquainted with the Client GUI

To move the button bar to this position:

1. From the Client's File menu, select Preferences, or use the Ctl-P keyboard
shortcut or the preferenceslzsd command.

2. In the Main Button Bar area of the Preferences dialog box, select the Center

option:
K
External Web
watches on starlup Buffer Window
geculoniliacs External Execution

Trace Window
Jger directives (7.6+)

= Main Button Bar
ulafor

« Top

& Center

s
Jwser ¢ Bottom

Firefox

I~ Extra Buttons

The button bar immediately relocates.

e At the very bottom of the Client window:

50 print %recs3:tostring

L> 51 1 =
L> 52 1 51 print %recs3 4
53 1 52 print %cursl:tostring
L> 54 1 53
L> 55 1 54 end | 1
Search ‘ Search Next Search Prev ‘ Value Trace || Run to Change Watch
Sirius - %i =
|
MSIR.1020: Debugger: JDBW Address=X'TC4133B0" - %i=5
T RECSET4
M204.1168: IN FILE JALWORK INCLUDE RECSET4 =
] m »] m 3 W
W
!Top Bottom | Clear Audit | Run | Step | Step Over | Trace All | Cancel | Clear Breaks CIearWatchI
—

To move the button bar to this position, select the Bottom option in the Main Button
Bar area of the Preferences dialog box.

The mappable Client commandbss) that positions the button bar is mainButtonBar. p25)

Janus/TN3270 Debugger User's Guide 41

Getting Acquainted with the Client GUI

Launching an external button bar

For your convenience, the location of the button bar is not fixed. In addition to changing
its position on the main Client window as described above, you can move the main
button bar to a separate window outside the Client application window. You do so in
either of the following ways:

e Selecting the Show Main Button Bar in External Window option of the Window menu
(prior to Client Build 56, this is the Open External Button Window option)

¢ Invoking a button, key, or macro magged@'ﬂ to the openExternalButtonWindowfsa
or the buttonBarhss command

The resulting external Button Bar window shares the characteristics of the other Client
external windows. |06l You can close the external window at any time by Client command
(closeExter‘nalButtonWindow@), by the Exit option of the button bar File menu, or
simply by clicking the X button in the upper-right corner. In addition, the opened Button
Bar window has Dock menu options, as described below.

ﬂ‘% Button Bar: The Janus Debugger (QAXMLZ) | i S
File Dock

Top | Bottom | Clear Audit | Run | Step | Step Over | Trace All | Cancel | Clear Breaks

The buttonBar command has parameter options that let you select where on your
desktop to locate the window. You can dock it, stationary, in the top or bottom left corner
of the desktop, or you can simply open it, undocked, as with the launching options (menu

and command) described above. Also, once opened, the Button Bar window Dock menu

has Top, Bottom, and Float options that perform the same functions as the
corresponding buttonBar command arguments.

Launching a second button bar

As of Client Build 56, you may open an additional button bar (in the Extra Buttons external
window) which can contain as many as 15 buttons. Like the buttons in the main button
bar, these extra buttons are maggablem in the ui.xml file or via the maQButtonEa
command. You launch such an extra button bar by either of the following:

e Selecting the Show Extra Button Bar Window option of the Window menu
¢ Invoking a button, key, or macro magged@'ﬂ to the extraButtonBar]o5 command

42 Janus/TN3270 Debugger User's Guide

Getting Acquainted with the Client GUI

The resulting external Extra Buttons window is just like the external main Button Bar
window (described above), and it shares the characteristics of the other Client external
windows . fs0é)

File Dock
About | Step | Commands | Help | Show Manual | Save Watch

As stated above, you add buttons to the extra button bar by mapping them in the ui.xml
file to the commands you want them to execute. The mapping commands are the same
as those for the buttons in the main button bar, except the buttons are named|zs9)
extraButtone through extraButtonl4. For example, the buttons in the extra button
bar shown above result from the following commands:

<mapping command="showAbout" button="extrabuttone" />
<mapping command="step" button="extrabuttonli" />
<mapping command="showCommands" button="extrabutton2" />
<mapping command="help" button="extrabutton3" />
<mapping command="manual" button="extrabutton4" />
<mapping command="saveWatch" button="extrabutton5" />

As of Build 57, you may add your extra buttons to the existing main button bar instead of
opening an additional window. For example, the following image shows the extra buttons
(defined above) added to the main button bar, which is positioned at the bottom of the
Client main window:

The Debugger Client ‘

Top | Bottom | Clear Audit | Run | Step | Step Over | Trace All | Cancel | Clear Breaks | Clear Watch | About | Step | Commands | Help
Show Manual | Save Waich

To merge extra buttons with those in the main button bar (instead of opening a second
button bar), define the mapping commands in ui.xml as above, then do either of the
following:

e Select the Extra Buttons checkbox of the Preferences| 15! dialog box

e Invoke a button, key, or macro mapped to an extraButtonBarlos command that
specifies the position parameter main.

If the main and second button bars are open in separate external windows, selecting the
Extra Buttons checkbox or invoking an extraButtonBar main command merges all the
buttons in the primary external button bar.

Janus/TN3270 Debugger User's Guide 43

Getting Acquainted with the Client GUI

Once a merged button bar exists, the extra buttons remain part of the primary button bar
if it is subsequently moved to an external window from the Client, or if moved back to the
Client from an external window.

To decouple a merged button bar, you can clear the Extra Buttons checkbox. Less
directly, you can select Window > Show Extra Button Bar Window; this action
simultaneously clears the Extra Buttons checkbox.

2.5 The search facility

The Client search facility is available for its main pages as well as for its many Value and
work windows. The most handy search controls are the Search, Search Next, and Search
Prev buttons that operate on the currently active page.

UL> 19 1 18 end constructor >
TL> 20 1 19 i o
o
=
Search Search Next Search Prev |]
| B -
F
H
i
MSIR.1020: Debugger: JDBW Address=X'TC42A350" o
I QAXMLZe="" = S - F
hanng 3 .F"_,.r’ A ~ Bt

Comparable controls are available, alternatively, from the Search menul261and its
analogous Client commandslze3, and from the multiple hot key and key combinations
(described below) that also perform these search functions.

These search functions are also provided from an on-window search bar when you
choose to view the main pages as external windows |08 or when you invoke a Client

Value or other work window (Consolels24, historyfis2], etc.):

- 3
A Value of Sxserial || e

File

<a>
Hello
moe
<c>larry</c>

Length: 53 " Honor LineEnds * Wrap " Binary
I

Search Down | Search Up | Top | Bottom
L

44

Janus/TN3270 Debugger User's Guide

Getting Acquainted with the Client GUI

The search functions on these windows are subject to Client command control via an In
window prefix for the individual search command (sear‘chDownEﬂ, searchFromBottom
Eﬂ, sear‘chFr‘omTopEﬂ, sear‘chUpEa, topEE‘ﬂ, bottom@).

The Search button

Clicking the Search button on the main window searches the current tab from its top
(first) line for the string you specify in the text box above (without regard for case).

To repeat a search from the current line, you use the Search Next button. As an
alternative, you can also click (give focus to) the Search text box below or use the Ctrl+F
key combination (which performs the same function, by defaultle), then press the Enter
key.

To search from the last line of the tab toward its first, you press the Alt key while clicking
the Search button (or use the Ctrl+U key combination, which by default performs the

same function). You can then use the Search Prev[461 button to search backwards for the
next occurrence of the search string.

To repeat a search for a previous search string, click the arrow button to the right of the
search box for a history of as many as twenty previous search terms.

To use regular expressions in the search string, begin the string with a tilde (~). For
example, the following string matches variable declarations of format %Zname IS
whatever:

~%\W+\S+IS

Note: The rules for VB .net regular expressions are observed; these differ from the rules
for User Language regular expressions. For background information about regular
expressions, a good resource is Mastering Regular Expressions, by Jeffrey E. F.
Friedl, published by O'Reilly Media, Inc. (2nd edition, July 15, 2002).

To use the value of a macro variable or Client function, both of which begin with an
ampersand (&), in the search string, simply specify the name as is. To search for a
string that starts with an ampersand and is not a macro variable or function name, prefix
the initial ampersand with a backslash character (\) to treat the the string as a literal.
Similarly, specify \\ to search for a single backslash character. This backslash escape
character is valid as of Client Build 58.

The Search button has the same effect as the Search From Top/[261 option in the Search
menu and as the sear‘chFr‘omTopEz‘ﬂ command. The Alt + Search button has the same

effect as the Search From Bottom/26) option in the Search menu and as the
searchFromBottombs2l command.

Janus/TN3270 Debugger User's Guide 45

Getting Acquainted with the Client GUI

The Search Next button

Clicking the Search Next button starts from the current position and searches the current
tab for the string you specify, or it repeats the previous forward search. The F9 key
performs the same function (by defaultle3). And pressing the Enter key after clicking
Search Next (or whenever the Search Next button is highlighted) repeats the Search Next
action.

If you press the Alt key while clicking the Search Next button (or press Alt+F9), you search
again for the current search string, but the search is backwards, towards the top from
the current position. This is the same as using the Search Prev button, as described
below.

The Search Next button has the same effect as the Search Down|[261 option in the Search

menu, as the Search Down button in Client external windows, and as the sea rchDownles1)
command.

The Search Prev button

Clicking the Search Prev button starts from the current position and searches backwards
(towards the top) in the current tab for an occurrence of the currently specified search
string. Pressing the Enter key after clicking Search Prev (or whenever the Search Prev
button is highlighted) repeats the Search Prev action.

Alternatives that have the same affect as the Search Prev button are:

e Pressing the Alt key while clicking the Search Next button

e Pressing the Alt+F9 key combination, which (by default@) performs the same
function

The Search Prev button has the same effect as the Search Ug|_%'1 option in the Search

menu, as the Search Up button in Client external windows, and as the searc hUQEa
command.

46 Janus/TN3270 Debugger User's Guide

Getting Acquainted with the Client GUI

2.6 The tracing options

The Trace All control button lets you trace from the current program point to the end of
the program, displaying a list of all executed statements. The Ctrl+T keyboard shortcut is
equivalent (by defaultkes) to clicking the Trace button:

=
9 The Janus Debugger (QAXML2) ,”
File Window Search Breakpoints Execution Data Display _Ergr Macros Help ,__,;'
Top | Bottom | Clear Audit | Run | Step | Step Over Cancel | Clear Breaks | Clear Watch |
Audit Trail f"'S'ﬁ'ﬁ'fﬁé"'C'ﬁ'ﬂé""l Web Buffer] Execution Trace] Proc Selection =
M 1 0 1 I QAXML2 —
TL> 2 1 1 begin ——
UL> 3 1 2 class document ——
TL> 4 1 3 S —————

e —_,__,—-....\._'I.-;_.._‘,__rf

The Trace button below the main window lets you trace all statements that modify a
variable you specify, also displaying what value was assigned to the variable:

ad (" Command addwatch #N)

L

4
v
»
)
L]
Value | Trace |\| Run to Change | Wﬂtcuj
L% 3 4
|%|2 |Trace all changes to the named Variab|e| ¥
e
| I 7
sesdsf_f ,fj; s PO ._J/

" gt

The Run to Change button stops program execution if the variable you specify is modified:

1d (' Command addwatch %N)

-

4
-

E

4

L
Value | Trace Run to Change | Wﬂtcl}j
= J

|%'2 |Traceti|l the named variable changes; uze alt for Until \rar:\ralue|

sessf—r‘L P N, r.

P) o N I e S W

Janus/TN3270 Debugger User's Guide 47

Getting Acquainted with the Client GUI

See Also

Tracing executionli2?

2.7 The value displaying controls

The Watch button adds to the Watch Window the item you specify in the Entity-name input

box]s01 below the button:
L
L]
Value Trace | Run to Change | r\WathJ,;
|y
|%'2 |Add the named variable to the watch windowl
P
_— 7
- N o
kel e b P

The Value button displays in a separate window the value of the item you specify in the
Entity-name input box:

Value [\J Trace Run to Change | Watch 4
Lot
' |%t2 |Di5p|a}fthr:‘.falur: 0fth&nam&d*.fariab|r:| j"'
7
ses.s’j.-aw‘""— o f
ine v-"u. - o - /

See Also

Watching program data items/es]

Displaying temporarily the value of a program data item| o)

48 Janus/TN3270 Debugger User's Guide

Getting Acquainted with the Client GUI

2.8 The Status bar

The Status bar in the Client's bottom left corner displays the state of the Debugger after

each operation you invoke:

Search Search Next Search Prev

I RIGET
M204.1168: IN FILE JALWORE INCLUDE RIGHT

4 1

xecuted one statement.

"Waiting" messages (say, for lengthy online processing or network transmissions) are
also displayed along with the operational messages:

Search Search Next Search Prev |

-

Value Trace Run to Change

%12

I RIGHT i
M204.1168: IN FILE JALWORK INCLUDE RIGHT :%

. [0

Executed one statement. Waiting for Online

Janus/TN3270 Debugger User's Guide

49

Getting Acquainted with the Client GUI

2.9 The Entity-name input box

This text box, located below the Client's main window, is used for supplying the name of
any of a variety of program code entities (%variable or field, for example) to be variously
traced, watched, displayed, expanded, and so on:

[ESTEEE=SC)

anus Debugger (RECSET4)

low Search Breakpoints Execution Data Display Eror Macros Help

“om | Clear Audit | Run | Step | Step Over | Trace All | Cancel | Clear Breaks | Clear Watch | About | Step | Commands | Help
.ual | Save Watch

irail Source Code | Web Buffer | Execution Trace | Proc Selection

=6 1 5 *UPDATE

1 6 begin
T class z

1 8 pubklic shared -
w1 9 subroutine (Record in file jalproc) :printName currentRecord in file jalproc 3
= . 10 end public shared
-1 .

subrontine (Record in file jalproc):printName currentRecord in file Jjalproc
for record currentRecord
print HAME
end for
» End Subroutine
tenlagE Z

wction (record in file jalproc) :getDoc is object XmlDoc currentRecord in file jalproc

.rch Prev ‘ Value Watch
-

T T

L0
P

d&g—_f‘_-'_

S ———

P e . J'f.—

50 Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

chapters Performing Basic GUI Tasks

These sections describe how you perform basic operations using the Debugger:

Controlling the execution of program codels2)

Viewing and modifying program elements]ss|

Getting source file, audit trail, and web buffer information[124]
Tracing program executionf27]

Viewing programs that contain coding errors|isdl

Debugging requests that spawn daemons|i33)
Debugging Web Server persistent sessions/[i42

Debugging multiple Web Serversfisd)

Janus/TN3270 Debugger User's Guide 51

Performing Basic GUl Tasks

3.1 Controlling the execution of program code

This section describes how to navigate through and control the execution of the program
code you are debugging.

GUI buttons, menus, and commands let you execute a User Language request all at
once, or let you advance execution in increments (by pausing after executing individual
statements, optionally bypassing the code display from calls to subroutines and
methods).

You can explicitly set "breakpoints" in a request before which program execution is to
pause, and you can toggle defaults a) to pause or not at the end of the evaluation of a
request, and b) to pause or not after processing READ SCREEN statements.

You can discontinue the debugging of all or part of a request called by your program,
skipping the execution of the entire request or of the remaining part of the request.

You can continue code execution without interruption until a procedure you identify by
name or pattern is reached. And you can jump out of the normal flow of code execution,
executing the statement to which you jump, but not executing the intervening
statements.

These subsections follow:
Step, Step Over, and Runls3]
Using breakpoints|ss]
Suppressing the break at the end of request evaluation|ss)
Breaking after READ SCREEN or READ MENU statements 601
Stepping out/62]

Cancelling execution[e3]
Excluding sections of source code from debugging@
Altering the flow of execution[s1]

Previewing program codefss!

52 Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

3.1.1 Step, Step Over, and Run

These three action options (activated by same-named control buttons, commands, or
menu item) advance the Source Code page (or Daemon gageEs'ﬂ) processing position by
executing one or more "executable" User Language statements:

Step

‘ Run ‘ Step ‘ Over

A statement is executable if it produces a run-time action. Neither a variable declaration
statement nor a SOUL class definition statement, for example, is executable in this
sense.

When no executable code operations remain, these buttons are dimmed.

When a button is highlighted (color is white, border is bold), the action it invokes can be
executed by pressing the Enter key.

Step
Step executes a single User Language statement. When the statement has executed:

e Executed one statement is displayed in the Status box] 4.

e The next line to be executed is highlighted.

If you click Step and the current statement (a subroutine call, for example) invokes other
statements in the program, the Debugger first "executes" the call statement itself by
moving to and highlighting the first of the executable subroutine statements. With each
subsequent click of Step, the Client steps through the subroutine, executing one
statement at a time.

If you are at the end of a request (the End statement is highlighted) and click Step,
Evaluation successfully completed is displayed in the status box, and execution
pauses (by default[s9)), giving you a final review. If you click Run, the Debugger Client
sends any contents of the web output bufferhi271 to the browser, or it sends any 3270/
Batch2 terminal output to the terminal; then it advances execution to the next request, if
any more requests are queued.

Note: Pressing the F4 key or the F11 key is the same as clicking Step button (unless you
have reconfiguredbks#l your hot keys).

Pressing the Enter key after clicking Step (or whenever the Step button is
highlighted with a white background) repeats the Step action.

The other Step button equivalents are the stepl7al command and the Step option of
the Execution menu.

Janus/TN3270 Debugger User's Guide 53

Performing Basic GUI Tasks

Step Over

Step Over functions like Step with one important difference: it skips subroutines and
methods. If the execution position is immediately before an invocation of a SOUL method
or a simple or complex Model 204 subroutine, clicking Step Over advances the execution
position to immediately before the statement after the subroutine or method invocation.
No debugging is done in the stepped-over subroutine or method, nor in any code or
daemons that it might call.

Step Over is useful if you know a particular subroutine or method works and you do not
want to interactively execute it.

Note: Pressing the F10 key is the same as clicking the Step Over button (unless you
have reconfiguredbss! your hot keys).

Pressing the Enter key after clicking Step Over (or whenever the Step Over button is
highlighted with a white background) repeats the Step Over action.

Pressing the Alt key while clicking Step Over invokes a Step Outle2). Pressing the
Alt+F10 key combination has the same effect.

The other Step Over button equivalents are the stepOverf278l command and the
Step Over option of the Execution menu.

Run

The Run button “resumes execution” of the program. The User Language statements
execute normally, until one of the following events occurs:

e End of request (the final end statement is highlighted, and Evaluation
successfully completed is displayed in the status box)

e Acancelling error such as subscript out of range, or a null object reference (the line
that raised the error is highlighted)

e Abreakpoint/ss) (the line containing the breakpoint is highlighted)

e Code that an sdaemon executes is called

Once the end of a request is reached, execution pauses (by default[ss)), giving you a final
review. You must click Run again for the Debugger to send any contents of the web
output bufferf:27 to the browser or any 3270/Batch2 terminal output to the terminal, and
advance execution to the next request, if any more requests are queued.

If no further requests are queued, the Run button is disabled.

Note: Pressing the F5 key is the same as clicking the Run button (unless you have
reconfiguredfedl your hot keys).

54

Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

Pressing the Enter key after clicking Run (or whenever the Run button is
highlighted with a white background) repeats the Run action.

The other Run button equivalents are the M@ command and the Run option of
the Execution menu.

3.1.2 Using breakpoints

If you set a breakpoint on a line on the Source Code tab (or Daemon tablts3)), then run
the program, program execution is paused just before that line is to be executed (if that
line is to be executed). When you set a breakpoint:

e Execution will be paused immediately before the execution of the line for which the
breakpoint is set.

¢ The line with the breakpoint is highlighted.

e Breakpoint setis displayed in the status bar.

These subtopics follow:
Setting a single breakpoint/se]
Setting multiple breakpoints at oncelss)
Clearing a breakpoint/se]
Clearing all breakpoints/se]

Janus/TN3270 Debugger User's Guide 55

Performing Basic GUl Tasks

Setting a single breakpoint

To set a breakpoint on a line, you can simply double-click the desired line. Alternatively,
you can right-click the line and select Toggle BreakPoint from the context menu:

Erlleh _'}-“'—“" Fo-T21 WORK INCLUDE USERSTAT2
S ——

5

N The Janus Debugger (USERSTAT2) = &
File Window Search Ereskpoints Execution DataDisplay Error Macros Help f’
Top | Bottom | Clear Audit | Run | Step | Step Over | Trace All | Cancel | Clear Breaks | Clear Watch | View Text !H
Audit Trail Source Code | Web Buffer | Execution Trace | Proc Selection i
UL> 25 1 24 Print #statEnd:ToString(Zeros=true, NamesToLower=false) L
UL> 26 1 25 %doc = new]
TL> 27 1 26 *x#ikkk+% the following statement produces bug and user restartrriddddddss T
TL> 28 1 27 *%doc = %statEnd:ToXmlDoc (Zeros=trne, NamesTolLower=true) f
UL> 29 1 28 %doc = new -
UL> 30 1 29 *doc = %¥statEnd:ToXmlDoc (attribuotenames=trune, NamesTolower=false) 5
UL> 3L 1 30 3doc:Print 1
UL> 32 1 31 Add Watch ,_FI'
TL> 33 1 32 printText PDL: {&stat Toggle BreakPoint -
uL> 41 33 ¥print $statind Procedure Information e fr
UL> 33 1 34 L
TL> 36 1 35 %statNew is objeg FEO OCCIN value 2
TL> 37 1 36 %statNew = new Jump Here [

TL> 38 1 37 %cpuUsed is float)’
UL> 39 1 38 Display Jcloc:Print ¥y
UL> 40 1 39 %cpuUsed = %statNew:o v - ’_,_r"J
TUL> 41 1 40 printText {~} = {%cpuUsed) "
TL> 4z 1 41 %*1s = istatNew:differenceTostring(#statStart, zeros=true) I
TL> 43 1 42 Printtext {~} = {%1s} ,r
TL> 44 1 43 end ’r,”
Search Search Next Search Prev ‘ Value b
=] 1 calar
list -
-
e rod

MSTIR.0690: Janus Web content compressed by 62.4 percent from 2410 to S - | |3g
MSIR.0359: WEB status 200 OK — | ~
MSIR.1020: Debugger: JDBW Address=X'7C41F3B0’ p

|I USERSTAT2 j

56

Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

Other ways to set this breakpoint are:
e Select Toggle Breakpoint on Current Line from the Breakpoints menu.

e Use the setBreakpointOnCurrentLine@ or the toggleBr‘eakpointOnEﬂ
mappable[2s3 Client command.

Once a breakpoint is set, the UL> at the beginning of the source code line changes to
BR>, the highlight color changes, Breakpoint set is displayed in the status bar[4s), and
the Debugger Client is made the topmost window on the browser screen:

e
L4
N o e . [— [RVETE & S - OWE'[':fﬂ.l_L . : j
i TL> 267 1 25 #doc = new L -
TUL= 27 1 26 *dkdkdddd the following statement produces bung and nser restartddds
TL= 28 1 27 *%doc = %¥statEnd:ToXmlDoc (Zeros=true, NamesTolower=true) ;
UL> 2% 1 28 %*doc = new
TUL> 30 1 29 Fdoo = FstatEnd:ToXmlDoc (attribontenames=true, NamesTolower=false) ,_r
1 %doc:Print
1 31
TUL> 33 1 32 printText PDL: {%=statEnd:requnestValuoe('pdl’)} -
TL> 34 1 33 #print %statEnd '
TUL> 3\ 1 34
TUL> 36 1 35 #=tatNew iz object nserStatistics
UL> 37T 1 36 *=ztatNew = new rJ
UL> 38 1 37 #cpuUsed is float [
| |oL= 39 1 38 k
UL> 40 1 39 #cpuUsed = ¥=tatNew:difference(*statStart, "cpm') .,i"
UL> 41 1 40 printText {~} = {%*cpulU=sed} L
UL> 4z 1 41 #%l1ls = ¥statNew:differenceTostring(¥statStart, =zeros=truoe) I—..
UL> 43 1 42 Primttext {~} = {%1s} r)’
UL> 44 1 43 end [
|
Search Search Next Search Prev | 7

- 1

MSTIR.06%0: Janms Web content compressed by 62.4 percent from 2410 to S » | |#g has no r
MSIR.035%: WEB statms 200 OF r,r
MSIR.1020: Debungger: JDBW Address=X'TC41F2B0' |
I USERSTATZ

M204.1168: IN FILE JALWORE INCLUDE USERSTATZ2

4 (1] S

| Breakpoint set. _;

Only executable statements may be breakpoints: if you try to make a non-executable
statement a breakpoint, the Debugger sets the breakpoint on the next executable
statement below the line you selected.

You can set as many as 1000 breakpoints in a single User Language request.
Attempting to set more than the maximum is not allowed (results in an error message
display).

Janus/TN3270 Debugger User's Guide 57

Performing Basic GUI Tasks

Setting multiple breakpoints at once
You can set multiple breakpoints at once, using either of two approaches:

e With a search string, set breakpoints on all matching lines

e With a Ctrl+B keystroke (if using the default assignments|zs5)), set breakpoints on
executable statements that follow "*Break" comment lines in the source code

Using a search string:

1. In the Search text box]as), specify a search string or a regular expression|4s]
(regex).

2. Press the Alt+B key combination (if using the default assignments), or use the
Breakpoints menu Breaks At option.

A breakpoint is set on each executable line in the request (from the beginning of the
request) that contains a case-insensitive match of the string or regex.

No Breakpoints are set in code that is not currently displayed in the Source Code
page (for example, in daemons called by the current request).

Your current execution point in the request is not affected.

The mappable Client command that sets multiple breakpoints based on a search string
is breaksAt . his3)

Using Ctrl+B:

When you click the Ctrl+B key combination (if using the default assignments), or when
you use the Breakpoints menu Breaks option, the Debugger Client scans the current User
Language request from the beginning to the end of the request for lines beginning with
the string *Break. Whenever such a line is found, a breakpoint is set on the next line if it
is an executable statement.

No breakpoint is set after an occurrence of *Break unless the following is true:

e *Break (case not important, but no intervening blanks allowed) must be the first
non-blank characters on the line. Any other characters may follow.

e The line immediately following the *Break comment must be an executable
statement.

The mappable Client command that sets multiple breakpoints based on *Break is

breaks. iz

Clearing a breakpoint

To remove a single breakpoint, do any of the following:

e Double-click the line.

58

Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

¢ Right-click the line and select Toggle Breakpoint.
e Select Toggle Breakpoint on Current Line from the Breakpoints menu.

e Use the clearBreakpointOnCurrentLine@'ﬂ or the
toggleBreakpointOnCurrentLinel27l mappable Client command.

As a result, the BR> indicator changes back to UL> to indicate successful removal, the
highlight color changes, and Breakpoint cleared is displayed in the status box.

Clearing all breakpoints

To clear all the breakpoints that are set, click the Clear Breaks button or use the
Breakpoints menu Clear All Breakpoints option. All breakpoints get cleared, and all
breakpoint indicators in the source display are changed back.

The mappable Client command that clears all breakpoints is clearBreaks. is?

See Also

Break method|i60)
Running to a specific procedure@

Stepping out/e2)

3.1.3 Suppressing the break at the end of request evaluation

By default, the Debugger Client pauses at the end of the evaluation of a request before it
sends any contents of the web output bufferli27] or any 3270/Batch2 terminal output. This
lets you review program data as it is at the end of request processing.

If you prefer to have processing continue without stopping at this point, you can suppress
the pause, as follows:

1. Inthe Client, select Preferences from the File menu (or use the Ctrl+P keyboard
shortcut).

2. Inthe Preferences dialog box, clear the Pause at end of evaluation checkbox, then
click Done:

e

Execution Options
I.. Pause at end of evaluation I Macro Au'lplyrr‘

I Run Until spans debug sessions
™ Break afterREAD SCREEN e

I Source Preview (7 2+ mods) fI_ﬂigir_

—_—
A Dnbimne fr"

Janus/TN3270 Debugger User's Guide 59

Performing Basic GUl Tasks

Pausing can be restored at any time by selecting the checkbox again.

Note: The Client setPreferencelzsd command has an option that lets you toggle
the Pause at end of evaluation checkbox.

The Pause at end of evaluation setting that exists at the end of the Debugger Client
session persists to the next run of the Client.

3.14 Breaking after READ SCREEN or READ MENU statements

Normally, the Debugger Client for the TN3270 Debugger pauses at a READ SCREEN or
READ MENU statement (displaying a Full Screen Read Pending message in the

Status bar[s9)), waiting for input from the Online user. Once you complete the input, the

Client evaluates your response, displays a READ SCREEN Completed message in the
Status bar, and continues (without pause, by default) processing statements until it
reaches a breakpoint or the end of the request.

These events are reported in a sequence of lines in the Client Audit Trail page like the
following:

... 10:01:48.27 2 20 LI I SCREENO

.. 10:01:48.27 2 20 MS M204.1168: IN FILE GWDEB INCLUDE SCREENO
... 10:02:10 Full Screen Read Pending

. 10:02:22 READ SCREEN completed

If you want to examine how the program handles the user response to the READ
SCREEN or READ MENU, for example, you can do either of the following:

e Explicitly set a breakpoint/se) after the READ SCREEN or READ MENU statement.

e Have processing automatically paused by default after the user interaction following
READ SCREEN or READ MENU.

To invoke the second of the preceding options:

1. In the Client, select Preferences from the File menu (or use the Ctrl+P keyboard
shortcut).

2. Inthe Preferences dialog box, select the Break after READ SCREEN checkbox (it is
clear by default), then click Done:

Execution Options —
v Pause atend of evaluation [Macro, A=
I Run Uniil spans debug sessions e

J
I’%Break after READ SCREEN ’__,_r

I Source Preview (F_i:-);uquLJ/’ e

60

Janus/TN3270 Debugger User's Guide

Performing Basic GUI Tasks

After the Online user replies to the next READ SCREEN or READ MENU statement,
the Debugger will pause at the statement following the READ SCREEN or READ
MENU, and READ SCREEN completed will display in the Status bar.

Running without a break after replying to READ SCREEN or READ MENU can be
restored at any time by clearing the Break after READ SCREEN checkbox.

Note: The Client setPreferencel268 command has an option that lets you toggle
the Break after READ SCREEN checkbox.

The Break after READ SCREEN setting that exists at the end of the Debugger Client
session persists to the next run of the Client.

Note: As a convenience, the Debugger can bring your 3270 emulator application to the

top on your PC screen when the Client pauses for the READ SCREEN or READ
MENU.

To invoke this feature:

1. Select Preferences from the File menu (or use the Ctrl+P keyboard
shortcut).

2. In the Preferences dialog box, locate the 3270 Emulator text box (in the

Program Titles section) and provide a text string that matches some or all of
the title that displays at the top of the emulator window.

The characters in your matching string can be any case and match
anywhere in the title. Any trailing blanks you enter are preserved.

2 Tooltip " Use !debuggerdirectives (7.6+)

Program Titles
T 3270 Emulator

[TN3270
by

Web Browser

Done I

Note: If you are working with READ SCREENs or READ MENUSs in a Janus
Web Legacy Support application, your browser is the tool with which you
respond. Therefore, to have the Debugger pop up your browser window when
the Client pauses for the READ SCREEN or READ MENU, provide a
browser-name-matching string in the Web Browser text box instead of in the
3270 Emulator text box.

Janus/TN3270 Debugger User's Guide 61

Performing Basic GUI Tasks

3. Click Done.

The feature takes effect at the next execution of a READ SCREEN or
READ MENU. The 3270 Emulator (or Web Browser) setting that exists at the
end of the Client session persists to the next run of the Client.

Note: By default, this feature does not take effect if the Client is not
debugging the part of a program that contains the READ SCREEN or
READ MENU. For example, these statements might be in code selected to
be excluded from debugging.fe4

However, if in addition to a Program Titles value you also select the Windows
When Suspended option in the Preferences dialog box (Execution Options
section), the feature will apply whenever these statements occur, even in
code the Debugger is not actively executing. This will apply whether or not
you have selected the Break after READ SCREEN checkbox.

[E=8(ECR =5

™ Macro Autorun
ns

T%Winduws When Suspended (7.9+)

Minimum:| 1000 Hj Size: 100 Hj

axy setlings I Clear IE proxy override

“snot to be debugged

3.1.5 Stepping out

If for any reason you no longer want to continue debugging or examining the subroutine,
user-written SOUL method, or daemonl:39) that you are currently stepping through, you
can discontinue debugging and leave ("step out" of) the subroutine, method, or daemon
code and resume debugging on the statement following the statement that originally
called the subroutine, method, or daemon.

This would be equivalent to having set a breakpoint|?6'1 on the statement after the
subroutine, method, or daemon call, then clicked the Run button. You might also view it
as a "pop" out of the level of code you are debugging and to the level of the calling code.

To execute a Step Out from within a simple or complex subroutine, a SOUL user-written
method, or a daemon, select Step Out from the Execution menu, or use stepOut 273, the
command equivalent.

If you step out from mainline code (that is, not a subroutine, method, or daemon),
execution simply completes normally, as if you had clicked the Run button.

62

Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

If you press the Enter key immediately after executing a step out, another step out is
executed (as of Client Build 57) if program execution has not completed.

3.1.6 Cancelling execution

When you run a request that includes User Language, the Debugger Client displays the
program in the Source Code tab, prior to the execution of any program statements. At this
point or at any point after you begin to execute the code, you can terminate the execution
of the program by clicking the Cancel control button.

A% The Janus Debugger (QAXML2) b
/
File Window Search Breakpoints Execution Data Display Error Macros Help __;
Top | Bottom | Clear Audit | Run | Step | Step Over | Trace All m Clear Breaks | Clear Watch C(l;".sr*’r
Audit Trail Source Code | web Buffer | Execution Tra e8| Proc Se clion} .
Cancel the request L
TL> 26 1 25 *oneStooge:addelement ('lastName' 6 #¥ilast) o
UL> 27 1 26 return =
UL> 28 1 27 1
TUL> 2% 1 28 end subroutine
TL> 30 1 29 4
TUL> 31 1 30 end class 4
TL> 32 1 31 "
TL> 33 1 32 | 4
UL> 38 1 33 b
TUL> 35 1 34 %d is object document ¥
TL> 36 1 35 *d = new
UL 37T 1 36 %1 is longstring
TL> 38 1 37
TL> 3% 1 38 #*d:addS5tooge ("'Moe', "Howard') ;
TUL> 40 1 39 #d:addStooge (" Larry’', "Fine") [
UL> 41 1 40 %d:addStooge ('Curly’, "Howard') ’f
TUL> 42 1 41 %d:addStooge (" Shemp' , "Howard')
UL> 43 1 42, f
UL> 44 r_}f' ® &d:x:print ; S Fa
UL> a5 | = Edigp w P T W
- =" =./

When you click Cancel, you receive a "do you really want to" message because the
operation is not reversible. You can view the remainder of the current program but
cannot subsequently execute any of that code, unless you invoke it for debugging again.

If you click the Cancel button, you receive a Do you really want to cancel? prompt
because the operation is not reversible. If you click Yes for the prompt:

e (Cancelled on request is displayed in the status box.
¢ You can view the remainder of the current program but cannot execute any of it.

e The Client takes no further action until you click the Run button, which finishes the
request (omitting the execution of the statements from the point at which you click
Cancel until the request End statement). A cancellation message is then issued:

For a web request, the Debugger sends the browser a message like the following:

Janus/TN3270 Debugger User's Guide 63

Performing Basic GUl Tasks

| = ; ; . e 1

AlInternal server error - request cancelled - Microsoft|Intern... /7—/
File Edit View Favorites Tools Help ._f/
bk - © - [B @ - Search <7 Favorites) vig = @ ;ﬁ;ff B

Address | €] http://sirius-software.com:9219/jalproc/qaxml2.ul > Go}_'LIr.

Internal server error - request cancelled

Unable to process browser request No Model 204 error! -
- . e -~ =

e —
NN, .) - .

For a 3270 request, a message like the following is sent to the terminal:

*** MSIR.0943: Request cancel performed from debugger

Note: The Ctrl+X key combination (by defaultkes)) is equivalent to clicking the Cancel
button.

3.1.7 Excluding sections of source code from debugging

Debugging a large application may involve the scanning of a large volume of code to get
to the parts of the program that you need to debug. It can be cumbersome and time
consuming to ship so much code to the Debugger Client and/or to inspect so many
pages of code. To gain some time and space economy, the Debugger lets you debug
some sections of your program while omitting others.

Two Debugger features let you exclude code from debugging:

e Exclude/include directives let you mark blocks of code of any length to be
excluded from display and debugging — but not from execution. You explicitly mark
the beginning and ending of such blocks, or if they are procedures, SOUL methods
or subroutines, you specify them by name or by name pattern, and you can provide
them by list. You can also similarly identify blocks of code within these excluded
blocks that will not be excluded from display.

e "Run Until" processing operates on procedures only. You can have the Debugger
run your program code without interruption until it reaches a procedure you want to
display for debugging. You can identify this procedure by name or name pattern, and
you can provide a list of such procedures in a "white list" or a "black list."

Run Until procedure processing differs from Exclude directive processing of procedures
in that Run Until excludes complete programs, while Exclude directives (explicitly or
implicitly) exclude parts of programs (those called by "inner procedures"). An inner
procedure is within a Begin/End block, invoked by a SOUL INCLUDE statement. A
procedure invoked by a command-level INCLUDE is an "outer" procedure. Once a
procedure is running in the Debugger and a request Begin is seen, Run Until procedure
detection does not stop until after the End of the request. It ignores inner procedures and
looks only for outer procedures.

The Proc Selection page in the Client contains most of the controls for both types of code
exclusion techniques.

64

Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

Exclude and Include directives are described in:

Selectively excluding source code blocks/es

Run Until processing may be invoked once for a single specified procedure, or it may be
applied to any of multiple procedures specified in a list. Run Until processing is
described in:

Running to a specific procedure(73)

Running only to listed procedures|77'1

3.1.7.1 Selectively excluding source code blocks

The User Language Macro Facility statements called Debugger directives let you
exclude one or more blocks of source code or entire procedures, methods, or User
Language "complex" subroutines from interactive debugging.

“Excluding” code from interactive debugging means:

e The excluded code is not displayed in the Debugger Source Code tab, nor are the
excluded source code lines sent from the mainframe to the client.

e You may not step through or set breakpoints in the excluded code.

e Excluded statements are not shown in the results of Debugger execution tracing or
statement history displays.

e However, the excluded code is executed normally (there is no difference in the
runtime evaluation of the request), and the Janus Debugger Audit Trail and Web
Buffer tabs will show output from excluded statements.

This feature is useful both for tidying your source code display (removing non-pertinent
sections of code) and for decreasing the download time of source code sent from the
mainframe to the Client.

The Debugger directives have the following format:
ldebugger directive

Where directive may be one of the following:

exclude on

exclude off

exclude proc pname_or_pattern
exclude routine rname_or_pattern

include on

include off

include proc pname_or_pattern
include routine rname_or_pattern

Janus/TN3270 Debugger User's Guide 65

Performing Basic GUl Tasks

Within excluded code you can specify blocks of lines that will not be excluded and will be
presented for debugging; for example, an important subroutine or method. You indicate
such non-excluded blocks by Include directives.

As described in Using the code-exclude feature in its normal modeles), Debugger
Exclude and Include directives are also implied and invoked if you use the buttons in the
Exclude Parts of Programs from Debugging section on the Proc Selection page to specify
lists of procedures or lists of subroutines or methods to exclude/include.

As described in Using Init Exclude mode(72}, another approach to debugging a small
block of code within a larger excluded block is to invert the way the code-exclude feature
operates: Instead of including all code from the beginning of the request until an Exclude
directive, the "Init Exclude" variation of the feature initially excludes all code from the
beginning until an Include directive. You invoke Init Exclude mode from a Client menu
item or command (or mapped button or hot key).

User Language Macro Facility statements, which start with an exclamation character (!),
are described in the Model 204 wiki at http://m204wiki.rocketsoftware.com/
index.php/User Language Macro Facility.

Using the code-exclude feature in its normal mode

In any single compilation unit (BEGIN statement to END), you may exclude as many as
300 blocks of code from debugging, and within excluded blocks, you may designate as
many as 300 blocks of code that will not be excluded. (The block limits are 40 if Sirius

Mods version is 7.8; 20 if prior to 7.8.) A block may be a designated group of code lines
or a named routine or procedure.

To exclude code:

1. Enable Debugger directives. By default, the feature is not enabled (no code is
excluded from debugging).

a. From the Client File menu, select the Preferences option.

66 Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

b. Inthe Display Options section of the Preferences dialog, select the Use !debugger
directives option:

e =
Execution Options Open at Startup
¥ Pause atend of evaluation I Macro Autorun

" External Main Button Bar
" Run Until spans debug sessions

" Exira Button Bar

" Break afterREAD SCREEN " Windows When Suspended (7.9+)

I Source Preview (7 2+ mods) Minimum:[1000 =] Size:[100 = | I' Extemnal Watch Window

HOpions I External Audil Trail Window
IE Mode

none " External Web Buffer Window

splay Options " External Execution Trace Window
Show atmost |10p = listitems. ¥ Restore watches on startup
Main Button Bar

¥ Tnm blanks from selectionin View Text [History to Execution Trace & Top

long watch values in a Toolfip W[%Use Idebugger directives Center

¢ Bottom
Web Server Selection
I Exira Butions

W sinus-sofiware_.com:9219 SZiHE iy

| Main Window Options

- Hi .
Web Browser Hide Lower Section

[Mozilla Firefox

Done

2. Inyour source code, specify an Exclude directive to indicate the code to be
excluded from debugging:

e To exclude any block of consecutive lines, indicate the beginning of the block to
be excluded:

ldebugger exclude on

This statement must appear between a BEGIN and END statement — it may
not be used at command level.

e To exclude a particular procedure, or the code that defines a method or
subroutine:

= Use the appropriate keyword and case-insensitive name in the directive.
You can also use wildcards (described below/ss]) to form a name pattern.
Also, for a method or User Language subroutine, use routine:

ldebugger exclude proc MyProc*
ldebugger exclude routine MyMethod

Janus/TN3270 Debugger User's Guide 67

Performing Basic GUl Tasks

Use the Edit Include Proc List or Edit Include Routine List buttons on the Proc

Selection page to provide a list of the procedures or a list of the routines you
want to exclude:

[42 The Janus Deb !
e Janus Ui
73 o
]

File Window Search Breakpoints Execution Data Display Error Macros Help J
Top | Bottomn | Clear Audit | Run | Step | Step Over | Trace All | Cancel | Clear Breaks Clear Wali
Audit Trail | Source Code | Web Buffer | Execufion Trace | Proc Selection

T
4

Exclude Parts of Program From Debugging Skip Whole me‘;
Edil Exclude ProcList | Edit Exclude Routine List | o
Editinclude ProcList | Edit Include Routine List | White Lig

Reload Proc/Routine/Method Lists |

" Use ProcLists for " Use Routine Lisis for i
excludefinclude excludefinclude y
J‘f : 3
i R

These buttons open a blank excludeProc.txt or excludeRoutine.txt
file in Microsoft's Notepad or in your local editorlisal. In the files, you specify
the items you want to exclude, observing the following syntax rules:

e One entry per line
e Leading and trailing blanks are ignored
e (Case matching is insensitive

e Wildcard matching using asterisk (*), question mark (?), and double
quote (") is allowed (see Shortcuts for procedure names|74))

e Blank lines are ignored
e Any line starting with a number sign (#) is treated as a comment

After you save and Exit the file(s), click the Reload Proc/Routine/Method Lists
button to make the file content known to the Client. Equivalent to using this
button is the reloadListsbs2 Client command.

The Use Proc Lists for excludefinclude and Use Routine Lists for exclude/
include checkboxes enable and suspend the feature. They are selected by
default. For earlier builds, only the Use !debugger directives option on the
Preferences dialog box controls the feature. If you are running under a Sirius
Mods version lower than 7.9, you must select one or both of the Proc
Selection page checkboxes as well as the Use !debugger directives option;

under 7.9 or higher, the Proc Selection page checkboxes alone are sufficient
to control the feature.

68

Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

Note: Whether or not you select these checkboxes does not affect
Debugger recognition of any !debugger directives you specify in source
code outside of these lists. Such directives are controlled only by the Use !
debugger directives option.

Your checkbox selections are remembered in subsequent Client sessions.

3. [fexcluding a block of lines (that is, not a named procedure or routine), indicate the
last line to exclude.

From the exclude on directive, source code lines are excluded until the first of the
following is encountered:

e Aldebugger exclude off statement
e The end of the compilation (END statement is reached)
e The end of the procedure that contains the starting exclude on directive

e AnInclude directive (described next)

4. Indicate (with Include blocks) any lines within the excluded code that you do not
want to be excluded:

If a (non-named) block of lines:

a. Specify an include on directive to indicate the beginning of a section of code
you want to be included in debugging:

ldebugger include on

b. Indicate the last line to include.

From the include on directive, source code lines are included for debugging
until the first of the following is encountered:

e A ldebugger include off statement

e The end of the Exclude block that contains the starting include on
directive

e The end of the compilation (END statement is reached)

e The end of the procedure that contains the starting include on directive

If a named procedure or routine:

e Specify after the Exclude directive and before the procedure or routine an
include proc name_or_pattern or include routine name_or_pattern
directive to indicate the code you want to be included in debugging.

Or:

Janus/TN3270 Debugger User's Guide 69

Performing Basic GUl Tasks

e Specify the procedures or routines in a list file you access via the Edit Include
Proc List or Edit Include Routine List buttons on the Proc Selection page (see

image and description above).

In the file, specify the items you want to include (that are located within code

you are excluding).

After you save and Exit the files, click the Reload Proc/Routine/Method Lists
button (or use the reloadLists command) to make the file content known to

the Client.

5. Invoke and debug the code.

In place of the excluded lines, the Debugger inserts a comment to the exclude off
directive in the Client Source Code display that specifies the number of lines
excluded. Any lines within the excluded block that contain Include directives are also
denoted. All directive statements are shown in purple text by default: o)

The Janus Debugger (EXCLUDE4)

File Window Search Breakpoints Execution Data Display Macros Help .
Audit Trail |Source Code | Web Buffer | Execution Trace | Proc Selection 2
-
cM> 10 1 I EXCLUDE4 -"!
UL> 2 1 1 Begin —
UL> 3 1 2 a: subroutine —
UL> 4 1 3 trace 'debug me: subroutine’
UL> 5 1 4 ldebugger exclude on
UL> 10 1 5 ldebugger exclude off: 3 lines excluded __’_,/‘
UL> 11 1 6 call a *
UL> 12 1 7 ldebugger exclude on r,- -
UL> 15 1 8 !debugger exclude off: 1 lines excluded |
UL> le 1 9 trace 'debug me: main' !
UL> 17 1 10 end 4
’,__-'_..._-J
of
e r—————
e e it 7
s g
Usage notes:

e [f you define more than 300 Exclude blocks, or more than 300 Include blocks, an
error is issued. (These block limits are 40 if Sirius Mods version is 7.8; 20 if prior to
7.8.) Ablock may be a designated section of consecutive code lines or a named

routine or procedure.

e Until an exclude on directive ends, subsequent exclude on statements are
ignored. This is also true for the implied exclude on created by Init Exclude mode

(described in the subsection below).

70

Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

e A ldebugger include on directive has an effect only within an Exclude block. For

example:

ldebugger exclude on

. lots of code that is not debugged
Idebugger include on
. an important subroutine that needs debugging
ldebugger include off
. lots more code that is not debugged
ldebugger exclude off

e Dummy string substitution is done on !debugger directives before they are parsed
and processed. This lets you build a directive conditionally, perhaps to keep code
compatible with Sirius Mods versions earlier than 7.6.

For example:

begin

trace $sirver
if ($sirver >= 706) then
$setg('COMMENT',"")

else

$setg('COMMENT',"'*")

end if
end
begin

* Code to debug
trace 'Debug me'
?&COMMENT !debugger exclude on
* Code not to debug

trace 'Do not debug me'
?&COMMENT !debugger exclude off

end

e When you compile a program that contains Exclude blocks or Exclude and Include
blocks, Model 204 writes a summary of the exclusions to the Audit Trail at the end of

compilation:

MS MSIR.1003:
MS MSIR.1004:
MS MSIR.1005:
MS MSIR.1004:
MS MSIR.1005:

2 Debugger Exclude block(s) defined

Lines
Quads
Lines
Quads

5-9 excluded from the debugger
24-135 excluded from the debugger
15-18 excluded from the debugger
160-271 excluded from the debugger

e The Client setPreferencebssl command has options that let you toggle the Use!

debugger directives, Use Proc Lists for exclude/include, and Use Routine Lists for
excludef/include checkboxes.

Janus/TN3270 Debugger User's Guide

71

Performing Basic GUl Tasks

Using Init Exclude mode

By default, starting from your program's Begin statement, the code-exclude feature
preserves for your debugging all the code lines that you do not explicitly exclude via
directives. However, you may have cases where it would be advantageous to invert the
default behavior, that is, starting from the Begin statement, to exclude all the code from
debugging except the blocks you explicitly preserve via directives. "Init Exclude" mode
provides such an inversion of the default.

Init Exclude mode is the equivalent of explicitly specifying !debugger exclude on
immediately following your program's BEGIN statement. It changes nothing else about
the operation of the code-exclude feature. All program code lines are excluded from
debugging until one of the following directives is encountered explicitly or is encountered
implicitly via specification of an Include Proc or Include Routine list (Proc Selection tab):

ldebugger include on
!debugger include proc
ldebugger include routine
ldebugger exclude off

Subsequent code is then included until the first of one of the following:

e Aldebugger include off or a !debugger exclude on statement

e Aldebugger exclude proc or a !debugger exclude routine statement
(explicit, or implicit via Proc Selection page button)

e The end of the compilation (END statement is reached)

e The end of the procedure that contains the starting include on directive

To invoke Init Exclude mode:

1. Enable Debugger directives by selecting the Use !debugger directives option from the
Client File menu, Preferences option.

2. Do either of the following:
= Select Toggle Init Exclude from the Client's Execution menu.

= Select the Client button, hot key, or macro you configured@ to execute the
toggleInitExcludelsl command.

An Init Exclude mode is on message in the Client's Status bar[s1as well as a

checkmark next to the Toggle Init Exclude option in the Execution menu confirm that
Init Exclude mode is on.

3. Run the program you want to debug.

72

Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

A "ldebugger exclude on set by client" comment in the code indicates that lines
were excluded from the beginning of the program:

The Janus Debugger (EXCLUDE4)

File Window Search Breakpoints Execution Data Display Macros Help f
Audit Trail |Source Code Web Buffer Execution Trace | Proc Selection .~
CM> 1 0 1 I EXCLUDEA4 i
UL> 2 1 1 Begin 1
UL> 4 1 3 ldebugger exclude on set by client !
UL> 13 1 4 ldebugger include on: exclude on suspended !
UL> 14 1 5 Print 'An important subroutine that needs debugging' /:
UL> 15 1 6 ldebugger include off
UL> 21 1 7 'debugger exclude off: 11 lines excluded
UL> 22 1 8
UL> 23 1 9 call a L
UL> 24 1 10 trace 'do not debug me: main’
UL> 25 1 11 trace 'debug me: main’ 3
UL> 26 1 12 end L
7
S
s Y NS = _//‘J
b _ - | S
—) . - —

To leave Init Exclude mode, you repeat step 2, above.

See Also

Running to a specific procedure|73)

Running only to listed procedures|77'1

3.1.7.2 Running to a specific procedure

You can direct the Debugger to run an application's code without interruption until it
reaches a specific outer, command-level, procedure, and then to display that procedure
for debugging.

Note: As of version 7.6 of Model 204 and Client Build 63, the Debugger also stops at
procedures that are included from an sdaemonlisd) thread.

For example, you are having a problem with the procedure P.MOE, but the normal flow
of the application moves through procedures LARRY, SHEMP, and CURLY prior to P.
MOE. The three preceding procedures are known to work fine, and you don't want to
interactively debug them.

To run the application normally, executing the preceding procedures, but stopping at P.
MOE to begin debugging:

1. Beginning with your application program displayed in the Source Code page, select
the Proc Selection tab.

Janus/TN3270 Debugger User's Guide 73

Performing Basic GUI Tasks

2. Inthe text area below the Run Until Procedure button in the Skip Whole Programs area,
specify the name of the procedure at which to begin debugging (this input is not
case sensitive).

mor Macros Help
Trace All | Cancel | Clear Breaks | Clear Waich
‘tion Trace Proc Selection 4

Skip Whole Programs ,

T Run Until Procedure: |
toutine List |
e g -,
Routine ist_ | White/Black List 1
. o Edit White List o
e Edit Black List 1
ndusdE iy & Reload Lists ! \
r'
y
P
~r
p - 4
F ¥ o _ F

3. Click Run Until Procedure.

The application executes until it reaches the specified procedure, then the Source
Code page highlights the first executable User Language statement in that
procedure. You are ready to debug.

You can also execute Run Until processing by using:

e The Execution menu Run Until Proc option, which will run immediately, using the
procedure name currently specified on the Proc Selection tab

e The maggable@ Client command runUntil[49

e Awhite list, as described in Running only to listed procedures.|77'1 Run Until for a
specific procedure is the same as a white list that contains a single procedure.

Shortcuts for specifying procedure names
Instead of specifying the whole procedure name in the Run Until Procedure text box:

¢ You may be able to find the name you want by clicking the arrow to the right of the
Run Until Procedure text box.

This reveals a drop-down list of the names of as many as the last twenty
procedures you entered (for this and from previous sessions). These names are
also saved in the until.txt file.

74

Janus/TN3270 Debugger User's Guide

Performing Basic GUI Tasks

e You can also use leading, trailing, or intermediate wildcards to form a name pattern
to stop the Debugger on the first procedure that matches the pattern:

» An asterisk (*) represents any string of characters.

* . M* would stop the code execution at procedure ACC.MOE, or HOME . MARY, or
P.M0O., and so on.

= Aquestion mark (?) represents any single character.

?.* matches P. MO0, but not ACC.MOE.

= Adouble quote (") escapes wildcard translation of the asterisk or question mark
that follows it.

?."* matches P.*, but not P.MOO.

Prior to Sirius Mods version 7.9, only an asterisk wildcard is allowed.

Note: The Model 204 LAUDPROC (Length of Audit Procedure Names) User 0
parameter (default: 21) must be set to the size of the largest procedure name
that will be filtered. Otherwise, name matching is done against truncated
procedure names.

Precedence and scope for Run Until

As described for the Break method]isd, the "run until" processing takes precedence over
any Break method calls that may be present in your procedures. Run Until ignores such
calls.

Run Until also continues without interruption past any persistent-session suspend/
resume sequences.

The default boundaries beyond which Run Until does not continue processing are these:

e The end of the debugging session

Once a session ends, either normally or through a lost connection, and Run Until
searching is interrupted before it finds a specified procedure, a restarted Client does
not automatically resume its search.

e The end of an HTTP request (Janus Debugger)

If the current HTTP transaction completes and the Debugger does not encounter
the target procedure, it does not continue its search for the target into subsequent
HTTP requests. This is ordinarily not an issue.

It may be the case, however, that you want the Debugger not to respect these
boundaries. You do not want to have to repeatedly invoke Run Until for the same
procedure. For example, you are working with HTML frames, where each frame and
frameset is a separate HTTP transmission to the browser, and you want Run Until to
span all these HTTP requests rather than stopping for each frame that involves User
Language.

Janus/TN3270 Debugger User's Guide 75

Performing Basic GUl Tasks

To change the span of Run Until:

1. Inthe Client, select Preferences from the File menu (or use the Ctrl+P keyboard
shortcut).

2. Inthe Preferences dialog box, select the Run Until spans debug sessions checkbox
(which is clear by default), then click Done.

e TR W

Execution Options

r;
=
v Pause at end of evaluation I~ Macro Au'lpl_urv-‘
% Run Until spans debug sessions)

e

™ Break afterREAD SCREEN e

I Source Preview (7_2+ mods) /I!Iirlir_

—_—

A Dnbimne f!"

Now, with a single invocation of Run Until, you can be sure to display the procedure
you want. If, for example, the TN3270 Debugger was turned off and then on again,
the Client will resume an incompleted Run Until search. Or in the case where you
are debugging a request that satisfies an individual frame or frameset, the Client will
continue (with no other execution breaks) through the code for subsequent frames
until it finds the specified procedure.

This setting takes effect immediately, and it persists over multiple runs of the Client.
Interrupting Run Until processing
Run Until processing is manually interruptable: the mappable Client command

breakOnNextProc lets you override a Run Until to interactively debug the next included
procedure.

To use a manual interrupt for Run Until processing:

1. Map the breakOnNextProc command to a Client button or hot key (as described in

|S_jefttinq up the ui.xml file)loll or in @ macro (as described in Using Debugger macros
317)_

2. While debugging an application where Run Until processing is active, invoke the
button or hot key or macro.

Break on next proc set displays in the Client's Status barf+s)to indicate the
command has been successfully issued, and the next procedure included at
command level (or from APSY) will be debugged, even if the Run Until would
normally ignore it.

You cannot invoke an interrupt while debugging sdaemon code.

In the same way you interrupt Run Until processing, you can also interrupt White List
procedure processing.|so

76 Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

See Also

Selectively excluding source code blocks/es]

Locating and editing procedure source files[124]

3.1.7.3 Running only to listed procedures

From a large domain, you may only want to interactively debug a particular set of
procedures, say the procedures for which you are responsible. “Run Until Procedure”
Qrocessing|73'1 lets the Debugger run through code until it reaches a procedure whose
name matches a name or pattern you specified. But it may be simpler to forego the
repeated specifying of individual names and instead to debug just the procedures pre-
specified in a list. In the Debugger, this is "White List" processing. Alternatively, it might
be easier to pre-specify in a "Black List" the procedures you do not want to debug.

To enable White or Black List processing, you:

1. Provide a file that contains either the names of the procedures to be debugged or a
file that contains the names of the procedures not to be debugged.

2. Invoke the feature in the Client GUI.

Black List processing is new in Client Build 62.

Enabling and updating white or black list processing is discussed further in the following
subsections:

Setting up a White or Black List filel+7]
Invoking White or Black List processing[7s]
Updating a White or Black List filelso)

Setting up a White or Black List file

You must create a simple ASClII text file named whitelist.txt or blacklist.txt. In
whitelist.txt, you list the Model 204 procedures that you want to debug; in
blacklist.txt, you list those you do not want to debug. The Debugger Client will
create these files for you (using MicroSoft's Notepad, as described below). Or, you can
create "manually" the file you want, in the same folder as the Debugger Client executable
file (JanusDebugger.exe), using any text editor.

If you provide no whitelist.txt or blacklist.txt file, the user interface for White List
or Black List invocation is disabled.

Janus/TN3270 Debugger User's Guide 77

Performing Basic GUl Tasks

In the Debugger Client:

1. From the File menu, select Edit White List or Edit Black List (or, as mentioned below,
use the Edit White List or the Edit Black List button in the White/Black List box in the

Proc Selection page).

A% The Janus Debugger (UDPSOCK)

Preferences (ctrl+p)

Color Preferences

Edit White List k
Edit Black List

Edit uixml

Edit uimorexml

Edit debuggerConfig.xml

Restart
Restart with Default Window Size

Exit

[[File] Window Search EBreakpoints Executig

A blank Notepad whitelist.txt or blacklist.txt file is opened for you. (If such a
file already exists, that file is opened.)

B whitelist.txt - Notepad
File Edit Format View Help

2. Ifawhitelist.txt file, specify the procedures you want to debug; if a blacklist.
txt, specify those you don't want to be debugged. As of version 7.6 of Model 204
and Client Build 63, you can also list procedures that are included from an sdaemon
[139) thread.

Note the following syntax rules:

One entry per line

Leading and trailing blanks are ignored

Case matching is insensitive

Wildcards(74) are allowed

Blank lines are ignored

Any line starting with a number sign (#) is treated as a comment

Here is an example of a valid file specification:

white list the three stooges

p .moe
p.larry
p.shemp

78

Janus/TN3270 Debugger User's Guide

Performing Basic GUI Tasks

3. Save and Exit the file.

Invoking White List or Black List processing

If the Debugger Client detects a valid White List or Black List file, it enables the option to
turn the appropriate feature on or off.

To invoke white or black list filtering at any time (it is off by default):

1. Select the Client's Proc Selection tab.

2. Ifthe Client was already started before you created or updated the whitelist.txt

or the blacklist.txt filefile, click the Reload White List or Reload Black List button
so the Client can detect the file. This enables the button that invokes White List or
Black List processing, and it also reports the file's contents to the Client log file
(log.txt).

3. Inthe White/Black List box in the Skip Whole Programs area, click the Turn on White
List or Turn on Black List button.

Error Macros Help
-| Trace All | Cancel | Clear Breaks | Clear Walch
ation Trace Proc Selection

Skip Whole Programs

Run Until Procedure: |

_Routine st _ | |] :

v 4

T P
= White/Black List p

(1, Turn on White List __ EditWhiteList |

* [Only debug pri Edit Black List
Jne Lists for

ocedures on white list.
efindlude © Tum off Lists Reload Lists

Once you click the Turn on White List button, for example, White list is active
displays in the Status bar[49), and white list filtering is enabled for the session until
you turn it off by clicking the Turn off Lists button. As of Client Build 62, your filtering
selection persists over runs of the Client until you undo it.

The Client's Execution menu also has Turn On White List and Turn Off White List and
Turn On Black List and Turn Off Black List options that have the same effect as the
Proc Selection tab buttons.

When white or black listing is on, the Debugger filters outer procedures automatically,
stopping to interactively debug only the requests that are on the white list or not on the
black list. A procedure not on the white list or on the black list still executes normally, but
it is not interactively debugged, and the Client's Audit Trail displays are immediately
refreshed to specify that such a procedure has been "skipped."

Janus/TN3270 Debugger User's Guide 79

Performing Basic GUl Tasks

As of version 7.6 of Model 204 and Client Build 63, you can also list procedures that are
included from an sdaemonli39 thread.

You can also enable and disable White List or Black List processing by using the
mappable Client commands kedl that are equivalent to the above steps. The commands
are turnOnWhitelList, turnOnBlackList, turnOffWhitelList, and
turnOffBlackList.

Interrupting White List processing

Once White List or Black List processing is invoked, it continues in effect unless you
explicitly turn it off or until you exit the Client. It is manually interruptable, however: the
mappable Client command breakOnNextProc lets you override the White List or Black
List to interactively debug the next procedure.

To use a manual interrupt for White List or Black List processing:

1. Map the breakOnNextProc command to a Client button or hot key (as described in
Setting up the ui.xml file)Eﬂ or in a macro (as described in Using Debugger macros

l317)).

2. While debugging an application where White List or Black List processing is active,
invoke the button or hot key or macro.

Break on next proc set displays in the Client's Status barf4s]to indicate the
command has been successfully issued, and the next procedure included at
command level (or from APSY) will be debugged, even if the active White List or

Black List would normally ignore it. When this next procedure is debugged, the Audit
Trail will display, for example, "White list accepted: procedurename."

The interrupt applies only to a single procedure, and you must manually invoke it
again for each subsequent procedure you want to exclude from White List or Black
List processing.

You cannot invoke an interrupt while debugging sdaemon code.

In the same way you interrupt White List or Black List processing, you can also interrupt
Run Until procedure processing.[76]

Updating a White List or Black List file

To update a White List, for example, at any time, from the Debugger Client:

1. Select either of the following two options (which let you update and save in Notepad
the current whitelist.txt file)

e The Edit White List button in the White List box in the Proc Selection page
e The Edit White List option of the File menu

80 Janus/TN3270 Debugger User's Guide

Performing Basic GUI Tasks

2. Onthe Proc Selection page, click the Reload White List button (or execute the
reloadwhiteListl24 command).

After a successful reload, White list reloaded displays in the Status barf4s).

Alternatively, you can use your text editor to modify a White List or Black List file at any
time, after which you click the Reload White List or the Reload Black List button on the
Debugger Client Proc Selection page.

See Also

Selectively excluding source code blocks|es1

Locating and editing procedure source files[124

3.1.8 Altering the flow of execution

When debugging, you might want to test a code fix by resetting a variable's value and
then re-executing one or more statements. Or you might want to alter the flow of control
in the program to ensure that hard-to-reach code is tested, such as error paths. You can
accomplish these tasks using the Debugger's Jump feature.

The Jump feature lets you transfer control to a statement and then execute that
statement. The target statement may be earlier or later in the request than the current
statement.

You invoke a jump by right-clicking a line in the Source Code window or by using
commands|e2]. The commands offer additional functionality: jumps to a line number,
jumps that are a number of lines relative to the current line, and jumps to lines that
contain specified strings.

Manually executing a jump
To perform a jump from a Source Code line to a statement you manually select:

1. Right-click the target line to which you want to transfer program execution.
If the target is the first line of an executable statement, the context menu will contain
a Jump Here option.

2. Select Jump Here.

The Debugger validates this target line, using the rules described below in Jump
validation rules.s2]

If the target is valid:

a. Control is immediately transferred to the target statement (intervening
statements are not executed).

Janus/TN3270 Debugger User's Guide 81

Performing Basic GUI Tasks

b. The target statement executes.

c. The next executable statement after the target is highlighted, and program
execution pauses.

If the target is not valid: control is not transferred, and an Invalid Jump message is
displayed in the status barl4s).

Note: Be aware that the execution of a statement you validly jump to may result in an
unexpected request error because the jump bypassed the execution of
statements that were logically-necessary predecessors to the target statement.

Invoking a jump from a macro or mapped command
The jumpToLineli7 and jumpToMatchlidl commands let you add a jump to a macro or

Client button or hot key. With these commands, since you cannot manually select the
line to which to jump, you select the target lines by number or by matching a string.

Jumping to a target line by absolute or relative line number

Like a manually-executed jump, the jumpToLine command transfers control to a
specified request statement within the Source Code page, then executes that statement.
You identify the target statement by supplying a keyword or a number:

jumpToLine [current | number]

For further information about specifying the command, see jumpToLine. pa?)

Jumping to a target line by matching a string

The jumpToMatch command transfers control to a request statement within the Source
Code tab that contains a specified matching string, then it executes that statement. The

target statement is the first statement from the top (first) line in the Source Code page that
contains a match for the string you provide.

For further information about specifying the command, see jumpToMatch. pad)

Jump validation rules
A jump operation is allowed if it follows these rules:

¢ You must have executed at least one statement in the request.

e Jumps are confined to the current nesting level. You may jump within but not into or
out of nested code, which includes the following SOUL constructs:

Loops (For, Repeat)

Subroutines (both simple and complex)
0O-0O methods

On units (all types)

82

Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

For example, once the Client's current-line indicator moves from the statement that
calls a user-defined method into the code that defines the method, any attempted
jump to a statement outside the method definition is invalid. And any attempted jump
into the definition code from the method-calling statement (or from any statement
outside the method definition) is invalid.

Note: Although you may not jump out of nested code, you can step outls2] of the
current level and resume debugging on the statement following the original
call of the nested code.

e The jumpToLine and jumpToMatch commands transfer control only to target
statements that are executable.

e The jumpToLine command indicates the target statement absolutely by statement
line number11] or relatively by a number of lines forward or backward from the
current line. It is an invalid jump if you absolutely specify the statement line number
of an empty line, but it is valid to jump relatively to an empty line (in which case, the
jump attempts to go to the line following the empty line).

3.1.9 Previewing program code

If you work with User Language programs that require an appreciably long time to
download for debugging, due to their size alone or to a slow network connection or high
network traffic, you may prefer to use a Debugger feature that lets you inspect a small
"chunk" of the beginning of the program to decide whether to download the entire
program for debugging or just to run it.

The Source Preview feature lets you download a program's initial 100 lines (at
minimum). After inspection of this code chunk, you can download the entire program as
usual or you can simply run the program without downloading it.

Enabling Source Preview

To enable the Source Preview feature (which is disabled by default):

1. Inthe Client, select Preferences from the File menu (or use the Ctrl+P keyboard
shortcut).

2. Inthe Preferences dialog box, in the Execution Options section, select the Source
Preview checkbox (it is clear by default).

Execution Options
-
¥ Pause at end of evaluation ™ Macro Autorup-
-

P

I Run Until spans debug sessions

I Break after READ SCREEN [plamer

3

T%Suurce Preview (7.2+ mods) Minit™™
3 _—

CIEOpfions "

Janus/TN3270 Debugger User's Guide 83

Performing Basic GUI Tasks

3. The Minimum value (to the right of the Source Preview checkbox) is the default for the
minimum length a source program must be in order to be previewed. No programs
less than 1000 lines may be previewed. Modify this setting (increments of 1000;
maximum of 100,000) if you want previewing available only for longer programs.

4. The Size value (to the right of Minimum) is the default for the size of the preview code
chunks. Modify this setting (increments of 100; maximum of 10,000) if you want
larger chunks.

5. Click the Done button to save your settings and enable the feature.

Operating in preview mode

When Source Preview is enabled and you encounter a program with a number of lines
greater than or equal to the Source Preview Minimum setting, the following happens:

1. As many as Source Preview Size lines of the program are sent to the Client Source
Code page.

2. The Status bars] confirms that you are in preview mode and informs whether the
source program compiles. It displays either Preview: good compile or Preview:
bad compile. Even if the program does not compile, you will still have the option to
download and view the entire program and its embedded compilation error
messages.

3. You inspect the preview and decide whether to download the entire program for
debugging or to skip the debugging of the program. Or, if the program did not
compile, you decide whether to download and view the entire program or to skip it.

e To download the entire program for debugging:

Select the Debug Previewed Source option from the Execution menu, or use a
button or hot key you mapped to the skipPr‘eview@ command, or click the
Client's Step button or perform a Source Code text search.

e To download the entire program to view compilation error messages:

Select the Debug Previewed Source option from the Execution menu, or use a
button or hot key you mapped to the debugPreviewledl command.

e To skip the program:

Click the Client's Run button, or select the Skip Previewed Source option from

the Execution menu, or use a button or hot key you mapped to the skipPreview
command.

84 Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

3.2 Viewing and modifying program elements

The Debugger Client provides two principal ways of examining the values of individual
items in your source code:

e The Watch Window shows you the current values of as many items as you add to the
window. If these values are changed by your code, their updated values are shown
in the Watch Window the next time the Debugger execution pauses.

e The quick-display Value window shows you the current value of the single item you
are selecting by a right-click on the line of code that contains it. Alternatively, the
Client Value button displays in a Value window the value of the item you explicitly
enter in the text box above the Watch Window.

You can use either of these approaches for most of the code elements whose values
are viewable.

These sections are included:
Watching program data items/es]
Displaying temporarily the value of a program data item[es)

Setting the value of a variablefi22)

3.21 Watching program data items

The Watch Window box can display the current value of one or more program code data
items. It is located in the lower right corner of the main window, unless it is opened in a
separate window/[s08l external to the Client.

The Watch Window is updated as the program runs, each time execution is paused by the
Debugger. If the value of a watched item is changed by the last statement execution, it is
highlighted:

The following types of items can be “watched”:

* %variable scalar values (for example: %x, %y)

Janus/TN3270 Debugger User's Guide 85

Performing Basic GUl Tasks

e Elements of %variable arrays (for example: %names (%I1), %names(34))

¢ Image items (including image array elements) (for example: %input:name)
e Global variables

¢ Database fields

e Model 204 parameters

e Elements of $lists and Stringlist and Arraylist objects

e Counts of items in a $list or Stringlist or Arraylist

e Certain $function calls: $STATUS and $STATUSD, $CURREC, $FIELDGROUPID,
and $FIELDGROUPOCCURRENCE

e SOUL O-O structure elements (for example: %address:city)
e SOUL O-O object variables (for example: %xmlInput:serial)

e SOUL O-0O user-defined class member variables

Note: If any of the above items has subscripts or parameters within parentheses (for
example, a %variable or $list array item or a parameter in a SOUL O-O class
method) that are not simple variables or constants, the item cannot be watched in
the Debugger.

These subsections follow:

Adding and removing Watch Window items|ss)

Saving and restoring Watch Window contents|ss)
Getting a detailed view of the value of a watched item/[o1]
Watching Model 204 fields[s3)

Watching global variables[s4)

Watching object variables/es]

Watching $lists and Stringlists[6]

Watching class member variables/[os)

3.2.1.1 Adding and removing Watch Window items

You explicitly add to and remove from the Watch Window the items whose values you
want to view.

86 Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

Displaying items
These are the simplest ways to add an item to the Watch Window:

¢ Inthe Source Code display, right-click a program line that contains variables, and
select Add Watch from the context menu. All variables on that line are added to the
Watch Window.

UL> 16 1 15 SURL = $WEB HDR PARM('URL')
= 1 - T
1 $AGENT = $WEB_HDR PARM('USER-AGENT') ——pm—r
UL> 18 1 17 Toggle BreakPoint
UL> 19 1 18 IF $INDEX (3AGENT, 'GOLD ') THEN Progcidure Information
UL> 20 1 19 $NAVIGATOR = 1
UL> 21 1 20 END IF Display %AGENT

The maggable@ Client command that performs the same action is
addWatchOnCurrentLine.[178]

e For the program line in the Source Code display that is highlighted to indicate it is in
the current execution position, an alternative to right-clicking the current line is to
select Add Watch on Current Line from the Client's Data Display menu. All variables on
the line are added to the Watch Window.

e Type the name (case is not important) of the item in the Entity-name input box[so},
then click the Watch button (or select the Data Display > Add Watch menu item):

ad (' Command addwatch %N)
-
¢
o

o

|

%

Value Trace | Run to Change | Wﬂlcp ’
!

|%|2 ‘Add the named variable to the watch winduwl

sefff_fdlw ‘ /_7./ —— . #

The mappable Client command that performs the same action is addWatch. 73]

e For these types of items, you must specify more than just the item name in the text
box:

Model 204 fields|s3)

User Language global variables|o41
SOUL 0-O shared object variables|ss)
Slists|oe!

Janus/TN3270 Debugger User's Guide 87

Performing Basic GUI Tasks

Viewing long items
To display lengthy values, you can do one of the following:

e Expand the Watch Window by dragging its left edge to the left:

h

[Drag to size watch window]

e Hover your mouse over the item to display it entirely in a tooltip box:

~""*doc has no value: %DOC not found
%statEnd:ToXmlDoc (attributenames=true, NamesToLower:

9%statEnd: ToXmlDoc(attributenames=true, NamesTol ower=false) has no value: %STATEND not found

This feature is enabled by selecting the Show long watch values in a Tooltip option in
the Client's Preferences box[181 (it is off by default).

e Double-click the value to display it in a Value window/e1.

¢ Display the entire Watch Window in a window that is external to the Client. [s08]

Removing items

To remove a single item from the Watch Window, right-click the item and select Remove
from the context menu:

AT ol VAT® om
vdlLll Wallpke
%K='1---665' has no walue: Not currently evaluat:

FE— i .

%I=92 has no value: g s zvaluating a re
%J=665 has no value"evaluating a:

Change Value

The mappable Client command that performs the same action is
removeCurrentWatch. ps3)

To remove all items from the Watch Window, click the Clear Watch button, below the main

window. This button empties the Watch Window and instructs the mainframe portion of
the Debugger to stop collecting any watch data.

88 Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

The mappable Client command that removes all Watch Window items is clearWatch. [177

Redisplaying items

Each item you add to the Watch Window is also added to a drop-down list you can view in
the Entity-name input box/so] by clicking the arrow at the right. To redisplay an item you
previously removed from the Watch Window, simply select from the drop-down list the
item you want to watch again:

%n3 [
%n3

. %your
j %doc §

%your has no value: %YOUR not found

&nl='Null’
An3='Null’

< >

The items in the drop-down list persist across Debugger Client sessions. The contents
of the Watch Window itself are redisplayed in subsequent Client sessions by default. If you
do not want the Watch Window contents to persist across Client sessions, clear the
Restore watches on startup checkbox accessed from the Preferences option in the File
menu.

3.2.1.2 Saving and restoring Watch Window contents

If you anticipate watching the same or many of the same items in subsequent debugging
sessions, you can save to a local file the entire list of items displayed in the Watch
Window, then restore those items to the Watch Window whenever you want. This may
significantly minimize the effort of repopulating the Watch Window.

For example, say you are watching the function specifications $LISTCNT(%G), $LISTINF
(%G, 1), $LISTINF(%G, 2), and $LISTINF(%G, 3). To save them for later use:

1. Select Save Watch from the Debugger Client File menu.

2. Specify a workstation folder location and a name for the storage file.

Janus/TN3270 Debugger User's Guide 89

Performing Basic GUl Tasks

The list of watched items (only) is stored in a text file with a .watch file name
extension:

riwatch3test.watch - Notepad ¢

File Edit Format View Help -
SLISTCNT (%G) ——
SLISTINF(%G, 1) o

SLISTINF (%G, 2)
SLISTINF (%G, 3)

- F

S "

Alternatively, you can run the saveWatchlsd command from a magged@ Client button,
key, or macro that has the same effect as the above two steps.

Restoring

To restore (at any time) to the Watch Window these or other items from any .watch file
(including any you create independently):

1. Select Load Watch from the File menu.

2. Locate and select the .watch file in the Windows Select Watch File dialog box.

By defaultfz03, the search for the .watch file begins with the folder specified in the
stateFileFolder element in the debuggerConfig.xml file.

The file's contents are added to the Watch Window display with whatever current
value they may have in the current source code.

Again, as an alternative, you can run the loadwatchl223 command from a magged@
Client button, key, or macro that has the same effect as the above two steps.

You can save as many watched lists as you like.

90 Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

3.2.1.3 Getting a detailed view of the value of a watched item

You can double-click an item in the Watch Window to display a detailed value window. For
example, if you double-clicked %X :SERIAL (whose value is a single string that may

include line-ends) in the Watch Window box shown below:

Value Trace Run to Change

Sex:senal

i%x:seria1='<a> Hello moe< /b> <orlarry<fo></ax"

The value is displayed in a separate window:

‘% Value of %wserial i |
File
<a>
Hello
moe
<c>larry</c>

Length: 53 " HonorLineEnds + Wrap " Binary Close

Search Down | Search Up | Top | Bottom

Janus/TN3270 Debugger User's Guide 91

Performing Basic GUl Tasks

By default, any line-end characters in the value are honored in this Value window, and the
value is broken into lines accordingly. To see the value unbroken at line ends, you click

the Wrap radio button:
rﬂ‘% Value of %oxserial [E=NEEN)
File
<a> Hello moe <cerlarry</c>
Length: 53 " HonorLineEnds & Wrap " Binary Close
Search Down | Search Up | Top | Bottom
LS .

From wrap-view mode, you can always revert to line-end mode by clicking the Honor
Line Ends button.

To see the hexadecimal values of the data, click the Binary button.

To print or save the value, use the Print or Save options of the File menu. The Save option
saves the file in the window's current display format (ordinary text or hexadecimal digits).
To search the value display, use the search bar on the bottom of the window.

Note: As an alternative way to get the same detailed view of a variable that double-
clicking it in a Watch Window provides, you can specify the variable name in the
text box above the Watch Window, then click the Value button below it. As described
in Displaying temporarily the value of a program data item [99), a variation of this
alternative approach is also the way to get detailed views of the values of $list,
Stringlist object, and XmIDoc object variables — which you cannot get by double-
clicking them in the Watch Window.

See Also

Adding and removing Watch Window items| s6)

Displaying temporarily the value of a program data item| o9

92 Janus/TN3270 Debugger User's Guide

Performing Basic GUI Tasks

3.214 Watching Model 204 fields

When the program you are debugging is in a Model 204 record context, you can view the
value of any visible database field in that record by explicitly adding the field name to the
Watch Window. The field name requires a special prefix, as described below.

If a field name is referenced within an expression in an HTML or TEXT block in your
code, you can also add it to the Watch Window (or display it in a Value window) by right-
clicking the code line that contains it, as described below.

In addition, if a multiply occurring field is ina FOR EACH OCCURRENCE loop, you can
display its occurrence numberli14l. You can also display the values of all the fields in the
current recordli15 or in the current field groupli18.

Adding fields to the Watch Window

To watch the value of a Model 204 field:

1. Type its name preceded by F. or f. (for example, f.name) in the Entity-name input
box(sol

2. Click Watch:

Value Trace Run to Change r Watch I

Lo

f.name j

+ |f.name has no value: No current record

D CLEARWATCH' L

By default, the value of the first occurrence of the field is shown in the Watch Window;
however, you may select later occurrences by subscripting the field name. For example:
f.name(2) watches and displays the second occurrence of the field name, while f.
name is equivalent to specifying f.name(1).

Watching fields that belong to field groups

If you are using the Model 204 field group feature under version 7.6 or higher of the Sirius
Mods, you can watch or display the value of fields in the current field group by preceding
their name by F. or f.

The execution context must be a current field group (that is, within an FEO FieldGroup
loop).

Janus/TN3270 Debugger User's Guide 93

Performing Basic GUl Tasks

Watching fields specified within HTML or TEXT blocks

You can view the value of a Model 204 field that is specified as an expression within a
User Language HTML or TEXT statement block. In such blocks, the Client detects a field
name enclosed by opening and closing braces (for example, { FIELDNAME}), and it

shows you the field value if you select the Add Watch or Display right-click option for a line
that contains the expression.

See Also

Displaying the current occurrence value in an FEO Ioopm

Displaying all fields in a record[i13

3.2.15 Watching global variables

Like Model 204 fields, watched global variables must be specified using a prefix. To
watch a global variable:

1. In the Entity-name input box/so}, specify G. or g. followed by the variable's name
within single quotation marks. For example: g. "‘Next'

2. Click the Watch button.

The current value of the variable is displayed in the Watch Window:

Value Trace Run to Change

g 'Next'

ig.'Next'-'E.Login'

Note: For global variables whose names are all uppercase, you can omit the single
quotation marks enclosing the name. In this case, the Debugger searches for
(only) the variable with the all-uppercase form of the name. Whether you
specify g.next or g.Next or g.NEXT, the value of only the global variable
NEXT is displayed.

94

Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

For a global variables that is referenced by a $GETG call in a source code statement,
you can also right-click its program line and select Add Watch from the context menu.

A‘E‘ The Janus Debugger (GETG) /r
File Window Search Breakpoints Execution Data Display Error Macros Help f"'
—
Top | Bottom | Clear Audit | Run | Step | Step Over | Trace All | Cancel | Clear Breaks | Clear Watch pre
= = = = e
Audit Trail Source Code | Web Buffer | Execution Trace | Proc Selection =
CM> 1 0 1 I GETG i
TUL> 2 1 1 Begin
TL> 2 1 2
TL> 4 1 3 PRINT $SETG('CamelCase','Yes') ',
TUL> 5 1 4 print 'cc ' with §getg('CamelCase'} Add Watch b e
UL> 6 1 5 print 'lc ' with $getg('camelcase’) atc [F
UL> T 1 6 print 'me ' with $getg('CAMELCASE®) Toggle BreakPoint _’
L G U Procedure Information !
TL> 9 1 8 PRINT SSETG('CASE','YES')
UL> 10 1 S PRINT $SETG('case','ves') FEOQ OCCIN value
TL> 11 1 10 PRINT S$SETG('Case’,'Yes') Jump Here
TL> 1z 1 11 print 'cc ' with §Sgetg('Case’) 4
UL> 13 1 12 print 'le ' with Sgetg('case') Display g.'CamelCase’ o
UL> 14 1 13 print 'me ' with $getg('CASE') I
UL> 15 1 _Llf-snd
. N B #
l - - e - - A

F r ”

The global variable is added to the Watch Window and its current value is displayed.

To view the variable value without adding it to the Watch Window, you can right-click the

program line and select the Display option. The value is shown in a separate Value
window.

Note: Just as it recognizes $GETG calls, the Client also recognizes and evaluates
$STATUS, $STATUSD, and $CURREC calls as of Sirius Mods 7.6.

See Also

Watching Model 204 fieldses]
Viewing dummy string variablesi2s)

3.2.1.6 Watching object variables

You add a SOUL object variable to the Watch Window using either of the ways described
earlier(ss}: right-click the line of code in which it's contained and select the Add Watch

option, or type its name in the text box above the Watch Window and click the Watch
button.

But for shared objects, class variables within a class definition, and Stringlist and
XmIDoc objects, you need to use variations of these techniques. Otherwise, for
Stringlist and XmIDoc objects, the Debugger only informs you whether or not the object
has content. And for shared objects, the Debugger may fail to "find" the object.

Janus/TN3270 Debugger User's Guide 95

Performing Basic GUl Tasks

Handling shared objects and class variables are described below. Stringlist objects are
discussed in Watching $lists and Stringlistsr%'l and XmIDoc objects are discussed in
Displaying Janus SOAP XML document objectsioal.

Watching shared objects

The simplest way to add a shared object variable to the Watch Window is to right-click its
source code line and add it. When you do so, the class-name qualifier is automatically
added as a prefix for the variable. For example, if the line you select on the Source Code
page is:

Print %(tester):sharedPubNum

The variable that appears in the Watch Window is %(tester) :sharedPubNum, and you
can successfully watch the shared variable's value as you step through the program.

However, if you choose to add the shared variable by first typing its name in the Entity-
name input box/so), you must be sure to prefix the variable with its class name, explicitly
specifying:

%(tester):sharedPubNum

If you specify only the variable name (%sharedPubNum), the variable is added to the Watch

Window as is, with no % (tester) class name prefix. The Debugger does not recognize
this as the shared variable in your program, and a "not found" message eventually
displays in the Watch Window.

See Also

Displaying temporarily the value of a program data item| o)

3.2.1.7 Watching $lists, Stringlists, and Arraylists

To inspect $lists, Stringlists, and Arraylists, you apply additional $functions or object
methods to the $list, Stringlist, or Arraylist variable in the text box above the Watch
Window. Otherwise, the Debugger will merely report whether or not these variables have
content.

This section describes how to watch individual list items or list counts. Using a related
technigue@, you can display all the list items and their values at once.

96 Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

To watch $lists, Stringlists, or Arraylists:

e For $lists, specify either of these $functions in the Entity-name input boxIso:

$listcnt(1listID) Gets the number of items in the list
$listinf(1istID, subscript) Gets the value of a particular list item.
Where:

» listIDis a $list identifier, most often a Float variable. It must be a simple
variable or a constant; it may not be an image item or a %variable array item,
for example.

. subscriptis a 1-based list-item subscript that identifies the item to watch.

e For Stringlists or Arraylists, specify either of the following in the Entity-name input
box for the %list Stringlist or Arraylist object variable:

%1ist:count Gets the number of items in the list
%list:item(num) Gets the value of a particular list item.
Where:

» %listis a Stringlist or Arraylist object variable.

= numis a 1-based positive integer that identifies the item to watch. It must be a
simple variable or a constant; it may not be an image item or a %variable array
item, for example.

For example, here are the results of watching the function specifications $LISTCNT (%G),
$LISTINF (%G, 1), $LISTINF(%G, 2), and $LISTINF(%G, 3):

SLISTCNT (%G)=2

SLISTINF(%G,1)='All work and no play’
SLISTINF(%G,2)=' makes Jack a dull boy."'
SLISTINF(%G,3) has no value: Invalid item number

Janus/TN3270 Debugger User's Guide 97

Performing Basic GUl Tasks

The contents of the Watch Window, above, result from evaluating the following test
program:

INCLUDE LISTTEXT
b
%i is float
%g is float
%g = $listnew
%i = 777
$listadd(%g, 'All work and no play')
$listadd(%g, ' makes Jack a dull boy."')
$list_print(%g)
end

3.2.1.8 Watching class member Variables

In much the same way as for ordinary %variables, you can use the Client's watch or
display[es] facilities for viewing class member Variables (that is, a variable that is a
member of a class, not an instance of a class). If you right-click a code line that is
outside the definition of the class, and you use the Add Watch or Display options, the
Client shows the class Variable and the object to which it is applied in the Watch Window

or the Value window's title.

If you choose to add the Variable to the Watch Window by first specifying it in the text box

above the Watch Window, you must precede the Variable name by the object variable to
which it is applied.

The Client also has a related featurelod that lets you display at once the names and
current values of all the Variables in a given class.

Watching Variables within a class definition

To watch the value of a class Variable within a method within the class definition, it may
be necessary to add it via the Entity-name input box[s0), rather then by right-clicking its
source code line.

The following example of a Source Code program helps to demonstrate how to work with
%this in Sirius Mods 6.x versions of the Debuggers. In more recent Debugger versions,
class Variables are detected as such, and their value is displayed in the Watch Window
whether or not you have explicitly preceded the variable name with %this.

In the example, the celsius variable is referenced in the fahrenheit property definition.
The class definition is valid and works as intended: both %celsius and %this:celsius
are valid formats for referencing celsius in this class definition context.

98

Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

Begin
class thermometer
public
variable celsius is float
property fahrenheit is float
end public

property fahrenheit is float
get
return (1.8 * %celsius) + 32
end get
set
%this:celsius = (%fahrenheit - 32) / 1.8
end set
end property fahrenheit
end class

%temp is object thermometer
%temp = new

%input is float

%input="'33"

%temp:fahrenheit = %input
print 'Temperature fahrenheit: '
print 'Temperature celsius: '
End

%temp:fahrenheit
%temp:celsius

In the Client, you can right-click and select the Add Watch menu option to add both %

celsius and %this:celsius to the Watch Window. However, as you step through the
program, the pre-Mods-7.0 Debuggers will only find and display the value for %this:
celsius.

In cases like this where class definition code does not explicitly specify %this, you must
provide the %this explicitly yourself by typing it in the Entity-name input box followed by a
colon, followed by the class variable name. Then you click the Watch button to add the
variable to the Watch Window.

See Also

Displaying all Variables of an object's classiod)

3.2.2 Displaying temporarily the value of a program data item

While the Debugger Client is evaluating program code in the Source Code tab, you can

view the value of a code variable or field (one time), without adding it to the Watch Window
for continuous watching. You use either of the following ways:

Janus/TN3270 Debugger User's Guide 99

Performing Basic GUl Tasks

Or:

Right-click the Source Code line in which the variable (say, %var), is referenced or
declared, then select the resulting "Display %var" menu option.

Type its name in the Entity-name input box below the main window; then click the
Value button.

Note: For some types of variables, you also need to type the name of special Client
functions that produce the appropriate display. Such variables include mlﬁa
, Stringlist or Arraylist objectl102], and XmIDoc objectfioal. And for class
member Variables 03], you select a right-click option from the Watch Window.

Either of the preceding approaches displays the %var variable value in a separate Value
of %var window:

.
A‘% Value of %celsius |5|E|éj

File

0.555555555556EE6

Length: 17 " Honor LineEnds ~ Wrap " Binary

Search Down | Search Up | Top | Bottom

Note: If you have the consolefs2a open, the value is displayed there instead of in a Value

window. To override this default, use the valueDisplayOnConsole option of the
Client setPreferencelessl command.

By default, any line-end characters in the value are honored in the Value display window,
and the value is broken into lines accordingly.

To see a value unbroken at line ends, you click the Wrap View button. From wrap-
view mode, you can always revert to line-end mode by clicking Honor Line Ends.

To see the raw binary representation of the value (16 bytes per line), click the Binary
button.

This option is useful if the data is not printable (for example, whitespace
characters), or if you simply want to see the pre-translation EBCDIC values of the
data (since the Debugger Client normally converts strings to ASCII for display).

The binary display shows any printable characters to the right of the hex data,
enclosed by asterisks. Non-printable characters are represented by periods:

100

Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

-
Q\"alue of %celsius =NRSA X
File

FO4BF5FEFbFEFAFAFEFAFAFEFEFAFEFE *0. 5655565566555
F6 *6

*
*

il »
Length: 17 " HonorLineEnds " Wrap « Binary

Search Down | Search Up | Top | Bottom

Clicking either Honor Line Ends or Wrap restores the original ASCII representation.

e To print or save the value, use the Print or Save options of the File menu. The Save
option saves the file in the Value window's current display format (ordinary text or
hexadecimal digits) in the location you select. To search the value display, use the
search bar controls on the bottom of the window.

Note: The valueDisplaykbsa) mappable Client command has the same effect as the
Value button for the value in the Watch Window text box.

See Also

Getting a detailed view of the value of a watched item[e1)
Displaying $lists, Stringlists, and Arravlists@
Displaying Janus SOAP XML document objects 102

Displaying all Variables of an object's class/09)

Displaying the current occurrence value in an FEO looph14

Janus/TN3270 Debugger User's Guide 101

Performing Basic GUl Tasks

3.2.2.1 Displaying $lists, Stringlists, and Arraylists

You can use the Client's displayl+s1 or watchleél facilities for $lists, Stringlist objects, or
Arraylist objects to view or watch an individual item or the count of items. However, when
a quick view of the entire $list, Stringlist, or Arraylist is important, you can access a
special type of Value window display to see all the list items and their values at once. For
example:

rﬂe List expansion of %g =ARC X

File

Total list items=6
1==>211 work and no play
2==> makes Jack a dull boy.
3==>al1ll1 work and no play
4==> makes Jack a dull boy.
5==>al11 work and no play
6==> makes Jack a dull boy.

[}

Length: 129

Search Down | Search Up | Top | Bottom

You can also print the window's contents by accessing the File menu's print options, and

a search bar on the bottom of the window provides controls for searching the window
content.

To access the Value window from the Watch Window:

1. @@ the variable to the Watch Window.

2. In the Watch Window, right-click the variable.

102 Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

If this is a list variable and its value is currently non-Null, the List Display context

menu option is enabled:

Value Trace Run to Change Watch
7

%g

Remove
Change Value
List Display

= Expand Object

Senialize
ot

- =

3. Select List Display.

Note: For this feature, subscripted references are allowed for $list variables. For
example, to display $list item i in array %L, add %L (%1) to the Watch Window.

Note: The expandList mappable Client commandPss has the same effect for its

argument as clicking List Display for a watched item.

By default, a limit of 100 items is enforced. If there are more items than the limit, this
is noted in the “Total list items” line, and only the first 100 are displayed, as shown

below:

ﬂ‘% List expansion of %g

(S | |

File

Total list items=400 (limit exceeded, only 100 shown)
1==>A11 work and no play
2==> makes Jack a dull boy.
3=>A11 work and no play
4==> makes Jack a dull boy.
5==>A11 work and ne play
6==> makes Jack a dull boy.
T7==>A11 work and no play
8==> makes Jack a dull boy.
9==>A11 work and no play

10==> makes Jack a dull boy.
11=—>A11 work and no play
12==> makes Jack a dull boy.
13=—>A11 work and nc play
14==> makes Jack a dull boy.
15==>A11 work and no play
16==> makes Jack a dull boy.
17==>Al11 work and no play
18==> makes Jack a dull boy.
19==>A11 work and no play

Length: 2150

Search Down | Search Up | Top | Bottom

Close

Janus/TN3270 Debugger User's Guide

103

Performing Basic GUl Tasks

If the limit of 100 is too low, you can reset it in the Display Options area in the
Preferences dialog box (accessed via the Preferences option of the File menu):

‘;—2‘ Preferences

Execulion Options
¥ Pause atend of evaluation

™ Run Until spans debug sessions

I Break afterREAD SCREEN

I Trim blanks from selection in View Text
" Show long watch values in a Tooltip

Web Server Selection

¥ sirius-software com:9219

I” Macro Autorun

I Windows When Suspended (7.9+)

I Source Preview (7.2+mods) Minimum:[1000 | Size:[100 =
IE Options
IE Mode ¥~
none -l | P

Display Option
Show atmost |1gp = listitems. Restore walches on startup

I" History to Execution Trace
¥ Use !debugger directives (7.6+)

Program Titles
3270 Emulator

Web Browser

\Windows

Done

Open at Startup
" External Main Button Bar
" Extra Button Bar

" External Waich Window

™ External Audit Trail Window

" External Web Buffer Window

" External Execution Trace Window

Main Button Bar
= Top
~ Center

" Bottom

" Exfra Buttons

Main Window Options

" Hide Lower Section

The limit may be set in the range from 100 to 10,000, in increments of 1000.

See Also

Watching $lists, Stringlists and Arraylistsr%ﬁ

3.2.2.2 Displaying Janus SOAP XML document objects

Applications using Janus SOAP XML document objects are an increasingly common
type of Janus Web application. Ordinarily, however, to inspect the contents of an
XmIDoc or XmINode object, it must be serialized by one of the XML document serializing
methods like Serial, WebSend, Xml, or Print. And in either the Janus Debugger or the
TN3270 Debugger, if you are debugging a request in which a line like the following is

executed:

%x:loadxml('<a>Hellomoe<c>larry</c>")

104

Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

Reguesting@ the value of %x merely reports whether the object has content:

Aﬁ‘ The Janus Debugger (QAXMLI)
File Window Search Breakpoints Execution Data Display Eror Macros Help r
Top | Bottom | Clear Audit | Run | Step | Step Over | Trace All | Cancel | Clear Breaks | Clear Watch | View Text r
Audit Trail Source Code l Web Buffer | Execution Trace | Proc Selection |
M 1 0 1 I QAMMLL [,
TL> 2 1 1 begin _,I
TL> 3 1 2 #x is object xmldoc
UL> 4 1 3 %1 i= longstring _ -P'J
oL> 5 1 PRI rH_f’J
UL> 6 1 5 X = new T
UL._> 7_1 6 #x:loadxml (‘<a>Hello<brmoe<crlarry</cr' i y
[o I) -
Ve N Twas u
Fil fj
L Not null XmlDoc a [
o
=
L
Lo
I
[4
e
———
| Vﬂluel; Tmt';r
! Tax |
|
- L
| | 2
Length: 15 ¢ HonorLineEnds & Wrap ' Binary f
i 7
Search Down | Search Up | Top | Bottom 'r_n'

Exemﬂ.:mmmu. : » Nes

If the program in the preceding example contained a subsequent assignment statement
to a string variable like the following, you could display the XmIDoc content by watching
for or requesting the value of %1ongstring:

%longstring = %x:serial(, 'EBCDIC')

For parts of the code where no such serializing statement is present, however, the
Debugger Serialize feature lets you implicitly call the Janus SOAP XML document Serial
method to view the contents of an XmIDoc or or XmINode object variable.

You can invoke the feature multiple ways for XmIDoc variable %doc:
e Display the expanded value of %doc:serial in a Value window.
a. Enter %doc:serial in the Entity-name input box below the main window.

b. Click the Value button.
Or:

a. Add %doc to the Watch Window (by right-clicking the Source Code line containing
%doc and selecting the Add Watch option, or by entering %doc in the text box
above the Watch Window and clicking the Add Watch button).

Janus/TN3270 Debugger User's Guide 105

Performing Basic GUl Tasks

b. Right-click %doc in the Watch Window and select the Serialize option.

¢ Display the non-expanded value of %doc:serial in the Watch Window:
a. Enter %doc:serial in the Entity-name input box.
b. Click the Watch button.

For the example code above, if you specify %x: serial in the Entity-name input box and
click the Value button (at any point after the execution of the %x: loadxml statement cited
at the beginning of this section), the following Value window displays:

‘% Value of %xserial | e S|
File
<a>
Hello
moe
<crlarry</c>

Length: 53 " HonorLineEnds Wrap Binary Close
L
Search Down | Search Up | Top | Bottom
k. =

The Debugger Serialize feature formats the return value of the Serial call as if you
specified the following form of the method (which calls for a single string with EBCDIC
characters, added carriage-return/line-feed character sequences, and added three-blank
character sequences for the indent of nested elements):

Serial(, 'EBCDIC CRLF Indent 3')

The Serial method defaults are UTFS8 instead of EBCDIC, and no added line-end or
indentation characters. So for user convenience, the Debugger is internally providing its
own Serial method defaults (which you can adjust, as described in the "Serial method
formatting defaults"[104 subsection).

106 Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

Debugger Serial method compared to source code Serial methods

The Debugger's internal Serial method handling is independent of Serial method calls
actually specified in the source code you are debugging. For example, in the following
excerpt, the User Language object pointed to by %d (of type document) contains a
variable member named x that is an XmIDoc:

class document
public
variable x is object XmlDoc
constructor new
subroutine addStooge(%iFirst is longstring, -
%iLast is longstring)
end public

%d is object document
%d = new
%1 is longstring
%d:addstooge('Moe", 'Howard')
%1 = %d:x:serial
If you are watching %1, which is not an object variable, you find that its value is shown as

an Unicode binary string when the %1 = %d:x:serial statement in the request is
executed:

Value Trace Run to Change

%I = j

i ¥1=X'3CT3T46F6F6T65T33E3CT3T46F6F6T653E3C6669T2T46F6F67653E3C666972

However, you can use the Debugger's Serial method feature and request a detailed view
of the XmIDoc object variable x:

1. Specify %d:x:serial in the Entity-name input box below the main window.

Janus/TN3270 Debugger User's Guide 107

Performing Basic GUl Tasks

2. Click the Value button.

You see the serialized form of the XmIDoc in the Value window:

A& Value of %docserial =ARCE X ﬂ
File
<stooges> »
<stooge>

<firstName>Moe</firstName>
<lastName>Howard</lastName>

</stooge>

<stooge>
<firstName>Larry</firstName>
<lastName>Fine</lastName>

</stooge>

<stooge>
<firstName>»Curly</firstName>
<lastName>Howard</lastName>

</stooge>

<stooge>
<firstName>Shemp</firstName>
<lastName>Howard</lastName>

</stooge>

il </stooges>

m

Length: 411 # HonorLineEnds © Wrap " Binary Close

Search Down | Search Up | Top | Bottom

Serial method formatting defaults

The preceding Value window display also shows again the effect of the implicit Debugger
Serial parameters CRLF and Indent 3. These formatting defaults (for XmIDoc and
XmINode objects) are specified in the Debugger Client configuration filefsdl
(debuggerConfig.xml):

<serialParms>CRLF INDENT 3</serialParms>
You can change this formatting, for example, to increase the indentation:
<serialParms>CRLF INDENT 10</serialParms>

To suppress this feature (never have the Debugger add parameters to serial), specify no
value:

<serialParms></serialParms>

See Also

Watching object variables|95)

108 Janus/TN3270 Debugger User's Guide

Performing Basic GUI Tasks

3.2.2.3 Displaying all Variables of an object's class

Although you can view the contents of SOUL Stringlists and XmIDocs, the Debugger
cannot display the entire contents of most SOUL system objects. However, you can
display for a given object variable the names and values of the Variables (public and

private) or Variable-like members defined for its class.

For user classes, members defined as Variables are displayed. For system classes,
members that are similar to Variables, that is, that take no arguments (certain Functions
and Properties) and return simple values (names, counts, positions, etc.), are displayed.

This feature is supported for SOUL system classes (including system exception
classes) and for user-defined classes, excluding these classes:

System and Subsystem
DebuggerTools

For any class, the display does not include class methods (Functions, Subroutines,
Properties, or Constructors).

The Variable-like members you can display for the SOUL system classes are
summarizedfi11 later in this section.

The expandObject mappable Client commandkssl also invokes this feature, and the
getVariablesForClass command invokes a variant of the feature that retrieves variable
names but not values.

To display the member variables in the class represented by a particular object variable:

1. M@ the object variable to the Watch Window.

2. In the Watch Window, right-click the object variable.

If this is indeed an object variable and its value is currently non-null, the Expand
Object context menu option is enabled:

T R U S B PR, e

— s
Value Trace Run to Change Watch |

%scout j

%¥=cont="Not nmll Cat'
| Remove

Change Value
List Display
Expand Chject [b

Serialize
P

If the object variable's value is Not-null, its class name is automatically displayed
as well. If the current object variable value is other than Not-null, no class nhame
appears and the Expand Object option is not enabled.

Janus/TN3270 Debugger User's Guide 109

Performing Basic GUl Tasks

3. Select Expand Object if the object variable's value is Not-null.

A Value window opens, displaying the names and current values of the member
variables in the class. For example, a window like the following displays:

r - . s 0 N
A% Expansion of %D, an instance of: document = | |
File
FSCOUT:
name==>Scout
type=—>tabby
color==>>gold
I
4 *
Length: 14 Close
Search Down | Search Up | Top | Bottom

This is the class definition for the variable display above:

class cat

public
variable name is longstring
variable type is longstring
variable color is longstring
constructor new (%iName is longstring)
subroutine talk

end public

constructor new (%iName is longstring)
%this:name = %iName
end constructor new

subroutine talk
print %this:name ' says Meow'
end subroutine talk
end class cat

At the same time the Variables are displayed, a status bar(9] message reports the
number of Variables in the class. For this example: Found 3 variables in CAT.

110 Janus/TN3270 Debugger User's Guide

Performing Basic GUI Tasks

Note: If the Variables of a class are themselves objects, the only displayable information
about their values may be that they are "Not null."

For example, for %d, an instance of a user-defined Document class that contains
a Janus SOAP XmINode variable and an XmINodelist variable, the class Variable

display is similar to this:

A‘% Expansion of %0, an instance of: document
File

&D:
x==>Not null XmlDoc
top==>Not null XmlNode

Length: 31

Search Down | Search Up | Top | Bottom

Close

Summary of variable members in SOUL system classes

If the object variable you expand (as described above) is an instance of a SOUL system
class, the members that display are summarized in the table below.

Class

Arraylist

CharacterMap

CharacterTranslationException

Dataset

Daemon

DaemonLost

Viewable members

Count
Lastltem

none suitable

BytePosition
CharacterPosition
Description
HexValue

Reason

State
AmDaemon
HaveDaemon
MasterNumber

ParentNumber

none suitable

Janus/TN3270 Debugger User's Guide

111

Performing Basic GUl Tasks

Class

Email

FastUnloadTask

FloatNamedArraylist

HttpRequest

HttpResponse

InvalidBase64Data
InvalidHexData

InvalidRegex

JSON (Model 204 V7.6+)

Ldap

MaxDaemExceeded

NamedArraylist

Viewable members

GetReplyCode
GetReply Text
Host

Port

State (Sirius Mods 7.6+)

Count
Default
UseDefault

Fieldcount
Headercount
Host
Httpversion
Maxredirects
Page

Port
Protocol
Proxy
Timeout

Url

Code
Content
HeaderCount
Message
StatusLine
Success

Url

Position
Position
Code

Description
Position

Type
ToString
Count

ErrorNumber
ErrorText

none suitable
Count

Default
UseDefault

112

Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

Class
NoFreeDaemons
RandomNumberGenerator

Record

Recordset

RecordsetCursor

Screen

ScreenField

Socket

SortedRecordset

StringTokenizer

Stringlist

Viewable members
none suitable
none suitable

FileName (Sirius Mods 7.6+)
LockStrength
RecordNumber (Sirius Mods 7.6+)

ISEmpty
LockStrength

FileName (Sirius Mods 7.6+)
LockStrength

LoopLockStrength (Sirius Mods 7.6+)
RecordNumber (Sirius Mods 7.6+)
State (Sirius Mods 7.6+)

ActionKey
Columns
Rows

Column
Invisible
ltemld
Modified
Numeric
Protected
Row
Value
Width

Errinfo(CODE')
Errinfo('SOCKNUM")
Errinfo(FUN")
Info(REMOTE")
Info('STAT)

ISEmpty

AtEnd (Sirius Mods 7.6+)
CurrentQuoted (Sirius Mods 8.0+)
CurrentToken (Sirius Mods 8.0+)
NotAtEnd (Sirius Mods 7.6+)
String (Sirius Mods 8.0+)
StringLength (Sirius Mods 8.0+)

Count
Lastltem
MaxItemLength

Janus/TN3270 Debugger User's Guide

113

Performing Basic GUl Tasks

Class Viewable members
UnicodeNamedArraylist Count
Default
UseDefault
UnknownStatistic Name
UserStatistics LoginToString (Sirius Mods 7.6+)

RequestToString (Sirius Mods 7.6+)
ToString (Sirius Mods 7.6+)

XmIDoc DefaultURI
Length
LocalName
Prefix
Qname
Type
URI
Value

XmINode DefaultURI
Encoding
InvalidChar
Length
LocalName
Prefix
Qname
Type
URI
Value
XpathOrder

XmINodelist Count

3.2.2.4 Displaying the current occurrence value in an FEO loop

In User Language, the OCC IN phrase lets you refer back to the label of a FOR EACH
OCCURRENCE OF (FEO) statement to get the number of the current field occurrence
in the loop. For example:

ff: FEO MISCINFO
%array(OCC IN ff) = VALUE IN ff

If you are debugging a request that contains FEO loops, you can easily display the
current occurrence number value in the Debugger Client:

1. Inthe Source Code page, right-click on a line that contains an FEO statement.

114 Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

2. Select FEO OCC IN value from the context menu:

File Window Search Breakpoints Execution Data Display Error Macros Help -
Top | Bottom | Clear Audit | Run | Step | Step Over | Trace All | Cancel | Clear Breaks | Clear Waich Vie\ﬁ
Audil Trail Source Code l Web Buffer I ExecutiunTIace] Proc Selecljnn] —
[OL> 20 1 19 AttributeValues=true, - ,;]
UL> 21 1 20 namesTolLower=true, - '
[OL> 22 1 21 allovunreversible=true)
[OL> 23 1 22 & %#doc = %rec:ToXmlDoc (AttributeValues=true) ;
UL> 24 1 23 t
UL> 25 1 24 'y
UL> 26 1 25 bt
uL> 27 1 26 r
OL> 28 1 27 print "a%%" b
UL> 29 1 28 pai ’
OL> 30 1 29 ff: FEQO HAME ik
UL 31 1 30 tarray(0CC IN £f) = | Add Watch .
[OL> 32 1 31 %v = walne in ff Toggle BreakPoint i
gti :i 1 gi I;Ecliu;civ Procedure Information 'r
TL> 35 1 34 print '#*% End of record FEO OCCIN value b f
UL> 36 1 35 #doc:print Jump Here ?
UL> 37 1 36 end for F
OL> 38 1 37 7
OL> 39 1 38 end =
—

The occurrence value displays in the Value of OCC IN for FEO loop window:

G Value of OCC N for FEC loop =la ==

File
1 -

Length: 1 * HonorLineEnds & Wrap " Binary

Search Down | Search Up | Top | Bottom

The Client feoDisglayE&'ﬂ command performs the same operation.

3.2.25 Displaying all fields in a record

The User Language PAI (Print All Information) statement displays the values of all the
visible fields in a given Model 204 record. You can get this same display from within the
Debugger by using the pai command.

The pailes? command is a Debugger Client commandlzs3 you specify in a macroki7 or
you map to a Client button or hot key. If you then issue the command while debugging at
an execution point where there is a current record (for example, inside of a record
oriented FOR loop), the Client generates a display of the record's fields that is the same
as that of the User Language PAIl statement.

Janus/TN3270 Debugger User's Guide 115

Performing Basic GUl Tasks

A typical scenario for using the pai command might include these steps:

1. You map the command to a Client hot key.

In a ui.xml filels1), you specify the following to set up ctrl-a as a hot key to issue a
pai command:

<mapping command="pai" key="a" keyModifier="ctrl"/>

2. While debugging a request, you press ctrl-a when you are in a record context.

In a Value window, you see a PAl-style display of the current record:

5 |

A‘% PAI of current record

File

ZIP = 00211

CITY = Portsmouth
STATE = NH

LATITUDE = 43.005885
LONGITUDE = -71.013202
TIMEZONE = -5

DST = 1

<)
Length of value:100 * HonorLine Ends i

A Value window display is the default. As shown below, the output may also be
displayed in the macro console window.

Alternatively, you can use the pails7l command in a Debugger macro or from the
command linel24. For example, say your macro is a pai.macro text file that has the

single statement:

pai

116 Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

You run the macrok:7 at a debugging execution point where there is a current record,
and although it is not required, you have the macro consolef24] open. The record's PAI

output displays on the console:

=
ﬂ‘% Conzole

File

Console Started

ZIP = 00211

CITY = Portsmouth
STATE = NH

LATITUDE = 43.0058858
LONGITUDE = -71.013202
TIMEZCNE = -5

DST = 1

Clear

Invoking Macro: c:\Users\JAL\My Documentsh\Debugger\oldstuff‘\pai.macro

Print Save | Close I

Janus/TN3270 Debugger User's Guide

117

Performing Basic GUl Tasks

Displaying a record's field groups

If you are using Model 204 VV7R2 or better, and you are debugging a request against a file
in which field groups are defined, the pai command display of a record also includes the
field group occurrences, each beginning with a backward slash (\) and ending with a
forward slash (/):

AQ PA] of current record =fo_ x|
File

BIN = 0 -
NOREP = NoRep

\GRP = 1

FLDA = FldAa
FLDB = FldB
JGRP = 1
\GRP = 2
FLDA = FldAaZ2
FLDB =
JGRP = 2
\STOOGES = 3
STOOGE = Moe
COUSIN = Schmoe
/8TOOGES = 3
\STOOCES = 4
STOOGE = Larry
COUSIN = Harry
/STODCES = 4
\OUTER = 5
OUTF = OUT
\INNER = &
j| INF = INO i
J/INNER = &
\INMNER = 7
INF = IN1
/INNER = 7
JOUTER = 5

Length of value- 301 HonorLine Ends = Close

To display only the fields in the current or specified field group, you use the pafgilsd
command, which produces the same output as the User Language PAFGI (Print All
Fieldgroup Information) statement. The discussion above about ways to map and use
the pai command applies entirely to the pafgi command as well.

118 Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

Invoking the pafgi command while within field group context produces a display of the
fields in the current or specified field group. For example, for the STOOGES field group
in the same request and record as in the preceding example, this is the pafgi display:

r 5
% PAFGI of current field group |££Iéj

File

\STOOCES — 4
STOOGE = Larry
COUSIN = Harry

/STOOGES = 4

Length of value: 54 HonorLineEnds 8

Field group $functions

The Debugger recognizes and evaluates User Language $FieldGroupID and
$FieldGroupOccurrence function calls. These functions are useful for operating
selectively on field group instances.

$FieldGrouplID returns the unique numeric identifier that Model 204 assigns to each field
group in a record. $FieldGroupOccurrence returns the current occurrence number of an
occurrence of a repeating field group.

Janus/TN3270 Debugger User's Guide 119

Performing Basic GUl Tasks

To view the value of either $function, you can right-click its program line in the Source
Code page and select Add Watch from the context menu.

}% The Janus Debugger (RFGRP1) e /,
File Window Search Breakpoints Execution DataDisplay Error Macros Help r'!
Top | Bottom | Clear Audit | Run | Step | Step Over | Trace All | Cancel | Clear Breaks | Clear Watch | View Text
Audit Trail Source Code | Web Buffer | Execution Trace | Proc Selection E
TL> 65 1 &4 Print 'pafgi for 2 next:' ™
TL> 66 1 &5 FOR FIELDGROUP STOOGES (2) f',r r'J
UL> 67 1 66 PAFGI = -
TL> 68 1 67 End For
TL> 6% 1 68
TL> 70 1 69 For 1 record in FDB r’

TL> 71 1 70 FEO FIELDGROUF STOOGES

UL> 72 1 71 *INNOCC = SFIELDGROUPOCCURRENCE

UL> 73 1 72 Print '0CC is ' INNOCC e

TL> T4 1 73 If STOOGE EQ 'Moe' Then .'_'

UL 75 1 T4 #STGID = SFIELDGROUPID o

oL 76 L5 End 1E ddearch ¥

UL> 77T 1 76 Print "ID is ' %STGID Toggle BreakPeint

L= Ll UL Lt Procedure Information s

TL> 79 1 78 FOR FIELDGROUF STOOGES = %S5TGID o =

UL> 80 1 79 PAFGT FEQ OCCINvalue i

UL> 81 1 80 End For Jurnp Here [

TL> 82 1 81 End For

UL> 83 1 82 Display %5TGID |

TL> 84 1 83 For 1 record in FDB Display SFIELDGROUPID _[
Search Search Next Search Prev | Value Trﬂclp

- - =

The $function is added to the Watch Window and its current value is displayed whenever
the current program context is a field group. The function value subsequently displays
when the program execution point is in any field group.

To view the $function value without adding it to the Watch Window, you can right-click a
program line that explicitly contains it and select the Display option. The value is shown in
a separate Value window.

3.2.2.6 Displaying Model 204 parameters

You can use the Client's display or watch facilities to view the value of any legal Model
204 parameter:

1. In the Entity-name input box below the main window, specify p. followed by the
parameter's name. For example:

p.userid

Case does not matter, nor do leading or trailing blanks.

2. Click the Value button above the Watch Window.

120 Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

The parameter value displays in a separate Value of p.parm window:

r
A‘% Value of p.userid S| B ||
File

WEBUSER

P)
Length of value- 7 % HonorLine Ends " Wrap View " Binary

Note: If the parameter is a file parameter, the value of that parameter is returned for
the current file. If there is no current file, an error is returned.

If the parameter is a User parameter, the value returned is that for the current
web thread (if Janus Debugger) or for the current Online user (if TN3270
Debugger).

An alternative path to the same Value window is via the Watch Window:
1. In the Entity-name input box, specify p. followed by the parameter's name.
2. Click the Watch button above the text box to add the parameter to the Watch Window.

3. Inthe Watch Window, double-click the parameter name.

3.2.2.7 Displaying the Universal Buffer content

You can use the Client's display or watch facilities to view the current content of the
user's Universal Buffer. The Model 204 Universal Buffer is used used to transport Large
Object data and with the MQ/204 interface.

1. In the Entity-name input box[so] below the main window, specify the following:
u.buffer

Case does not matter, nor do leading or trailing blanks.

2. Click the Value button above the text box.

Janus/TN3270 Debugger User's Guide 121

Performing Basic GUl Tasks

The buffer content displays in a separate Value of u.buffer window:

A‘% Value of u.buffer k | o

File \

Number:1l Number:2 Number:3 Number:4 Number:5 Number:6 Number:7 Number:8
Number:9 Number:10 Number:1l Number:12 Number:13 Number:14 Number:15
Number:16 Number:1l7 Number:18 Number:1l9 Number:20 Number:2l Number:22
Number:23 Number:24 Number:25 Number:26 Number:27 Number:28 Number:23
Number:30 Number:31l Number:32 Number:33 Number:34 Number:35 Number:3é
Number:37 Number:38 Number:39 Number:40 Number:41 Number:42 Number:43
Number:44 Number:45 Number:46 Number:47 Number:48 Number:49 Number:50
Number:51 Number:52 Number:53 Number:54 Number:55 Number:56 Number:57
Number:58 Number:59 Number:60 Number:6l Number:62 Number:63 Number:64
Number: 65 Number:66 Number:€67 Number:68 Number:69 Number:70 Number:71
Number:72 Number:73 Number:74 Number:75 Number:76 Number:77 Number:78

Length: 1012 " HonorLineEnds & Wrap " Binary Close

Search Down | Search Up | Top | Bottom

Features of the window include:

e AWrap button to see a value unbroken at line ends (from which, you can revert
to line-end mode by clicking Honor Line Ends)

e ABinary button to see the raw EBCDIC/binary representation of the value (16
bytes per line)

e Familiar Windows Print, Page Setup, and Print Preview dialog boxes accessible
from the viewer's File menu

e Buttons to search within the displayed value, as well as buttons to move to the
top or bottom of the value.

e Standard mouse-based copying of text data (but altering or deleting text is not
allowed)

An alternative path to the same Value window is:
1. In the Entity-name input box, specify: u.buffer
2. Click the Watch button above the text box to add the buffer to the Watch Window.

3. Inthe Watch Window, double-click the u.buffer string.

3.2.3 Setting the value of a variable

You may set or update the value of certain types of variables with the Janus and TN3270
Debuggers. The following types of variable values may be modified:

e String %variables (255 character limit)
¢ Unicode %variables (UTF-16 bytestreams)

. Float %variables

122

Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

¢ Fixed %variables

e Longstrings (255 character limit)
e Global variables

e Screen and Image items

e SOUL O-0O Boolean enumeration variables (as of Version 7.7 of the Sirius Mods;
only True and False [case not important] are valid values)

Currently, only scalar variables may be set; array elements may not be set. In addition,
most object variables may not be set.

To set the value of a variable with the Debugger:

1. Addlssthe variable to the Watch Window.

2. In the Watch Window, right-click the variable.

If this type of variable can be set, and it is settable at this point in the execution of the
program, the Change Value context menu option is enabled.

3. Select Change Value.

A Set %var dialog box like the following displays, where %var is replaced by the
variable you are modifying, and the variable's current value is displayed:

Q Set "Y%price’ li:hl

‘ Please enter a new value for "%price’

‘ | - Set

Cancel

—

4. Specify the new variable value, and click Set or press the Enter key.

The Watch Window is refreshed with the new value, Variable Set displays in the
Status bar[4s), and the new value becomes the current value of the variable in the
program at the current point of program execution.

The setM204Datal65 command is equivalent to right-clicking a Watch Window item and
selecting Change Value.

Note: Setting a new value in the Debugger follows the rules of User Language
assignment. For example, specifying a text value for a float variable results in
setting the variable to zero.

Janus/TN3270 Debugger User's Guide 123

Performing Basic GUl Tasks

See Also

Watching program data items/es |

Displaying temporarily the value of a program data item |99

3.3 Getting source file, audit trail, and web buffer
information

These sections are included:
Locating and editing procedure source files 122
Viewing dummy string variables 23]
Viewing the audit trail128
Viewing the web output bufferfi27

3.3.1 Locating and editing procedure source files

If your application has a complex structure of nested procedure includes, the Model 204
procedure that contains a particular source code line may not be apparent. The
Debugger Client provides a simple way to determine this information:

1. Right-click a code line in the Source Code, Execution Trace, or a Daemon tab to display
the context menu's Procedure Information option:

ﬁ% The Janus Debugger /
File Window Search Breakpoints Execution Data Display Error Macros Help /-"
Top | Bottom | Clear Audit | Run | Step | Step Over | Trac Can Clear Breaks | Clear Watch | View Text /

Audit Trail | Source Code | Web Buffer | Exec Trace | Proc Selection | Daemon (1) |
Andit 'I am starting’
#speed = new 3
*n = %speed:unsernumber 4
Amdit 'm is: ' %n he
*n = %speed:masternomber fj
Andit 'm is: ' n 3
*n = *speed:parentnomber ¥
Andit 'm is: ' ®n Procedure Information [
%list = new m 4
text to #¥list end "END TEXT OUTER' F
2X = new E
St rJ

r_/" F o I . ‘//

g Y - o~ e Pt
-

124 Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

2. Select Procedure Information to display a Procedure Line Details dialog box like the

following:
A& Procedure Line Details = | B [kl
IIN JALWORK INCLUDE DAEMONS I
flLine number: 13 Quad offset: 184 | |

No dummy strings.

The top line of the dialog box, which identifies the procedure file and procedure name,
also identifies the APSY subsystem within which the procedure was invoked, if any.

The middle line in the dialog box identifies the statement's line number within the
procedure, and the bottom line in the dialog box displays the original dummy string
variables if the statement is the result of a dummy string substitution.

If you click the Edit button on the Procedure Line Details dialog box, you invoke a local text
editor (if you have configuredfisd a Rocket-supported editor). You then can edit the
procedure, and save it back to the Online.

3.3.2 Viewing dummy string variables

If you invokel24] a source code line's procedure details, and the line had ?& (global
variable) dummy string substitutions, the text of the original line, prior to the substitution
of the global variable value for the dummy string, is displayed.

For example, a statement you suspect to have contained a dummy string variable is
displayed in the Source Code page as:

print 'Hello'

When you select Procedure Information after right-clicking the code line, you see a

Procedure Line Details display like the following, which identifies the source procedure
and shows the dummy string variable name:

| " Procedure Line Details x|

IN JALWORK INCLUDE QADUMMY
Line number: 5 Quad offset: 0

efore dummy strings: print '?&GREETING

4

If subsequently you want to watchlss the values of this dum my string variable, you must
specify it explicitly with a "g." prefix[941 (omitting the ?& characters) and add it to the Watch
Window.

Janus/TN3270 Debugger User's Guide 125

Performing Basic GUI Tasks

Note: To view dummy string substitutions in Model 204 commands, you must be
running at least version 7.6 of the Sirius Mods.

See Also

Locating and editing procedure source files|124

Watching global variables/[s4)
Source Code tab|11)

3.3.3 Viewing the audit trail

Model 204 audit trail information is available in two places in the Debugger Client:

e The Audit Trail tabbed page

e The Most Recent Audit Trail window

The Audit Trail tab

This tab displays the Model 204 audit trail lines produced by the thread that is servicing
your web request or executing your 3270/Batch2 request, and by any threads that run
daemons on behalf of either of these types of thread. In addition, this page displays
information about the state of the Debugger Client, such as the port on which it is
listening, and for the Janus Debugger, about incoming connections to the web server
from other web browsers.

To see audit trail lines that are no longer displayed on the page:

¢ Click the Top button (below the page) to display the beginning of the audit trail, or
click the Bottom button to display the end of the audit trail.

e Use the scroll bar (to the right of the page), drag a highlighted line toward the top or
bottom of the page, or use the Search, Search Next, and Search Prev buttons.

By defaultl2e5), the F9 key is equivalent to the Search Next button. Search Prev (or

pressing the Alt key while clicking either the Search or Search Next button) makes the
search operate backwards, that is, from bottom to top (the Ctrl+U key combination
has the same result).

Pressing the Enter key after clicking Search Next (or whenever the Search Next button
is highlighted) repeats the Search Next action. To get this same result you can also

press the Ctrl+F key combination (to give focus to the Search text area), then press
the Enter key.

126

Janus/TN3270 Debugger User's Guide

Performing Basic GUI Tasks

To clear the Audit Trail display, click the Clear Audit button, below the page. The lines
from the entire session are removed. Subsequent actions update the display —
recording from the moment of the action and not from the beginning of the session,
however.

The Most Recent Audit Trail window

This window displays only the last few lines of the audit trail for this web user or 3270/
Batch2 thread. It displays no non-audit trail information.

The Most Recent Audit Trail display is not deleted if you click the Clear Audit button, above
the page.

See Also

Audit Trail tabl 10]

3.34 Viewing the web output buffer

Always available for Janus Debugger sessions, the Web Buffer tab displays a program's
web output buffer lines: the lines the Web Server application is preparing (in CCATEMP)
to send to the browser at the completion of the request. Since the page is updated in real
time as you step through a code program and PRINT and HTML statements are

executed, you can view the Web Buffer page to watch your output HTML being built.

The page is cleared after the current request output is sent and the next web request is
ready for execution.

The Web Buffer tab displays printable characters only. Binary and non-text content is not
represented. Line-end characters are printable characters, though they may be
represented by blanks.

The Web Buffer tab is also available when the TN3270 Debugger is used to debug web
threads|iss\.

See Also

Controlling the execution of program codelsz]

3.4 Tracing program execution

When debugging code, you may not want to step one statement at a time, nor to set a

Janus/TN3270 Debugger User's Guide 127

Performing Basic GUl Tasks

breakpoint on a line and run until you hit it. You may want to run the program without
breaking, collecting data (such as the lines that were executed and the value of a

variable) as it changes. To do so, the Debugger provides several options for tracing
execution. In all cases, the results of tracing are displayed in the Execution Trace tab.

To get information on any line in the execution trace, you double-click it, or right-click it
and select Procedure Information from the context menu (described further in Locating
and editing procedures i24).

If you invoke one of these tracing options after you have begun to debug a program, the
tracing starts from the current execution point in the program. Statements executed prior
to this point are not recorded. If you want to determine how you got to the current point
(especially if complicated logic or several layers of calls were involved), the Debugger
also provides an option for examining a history of the statements that already executed.

These subsections follow:
Tracing all lines executed[128
Trace all updates to a variable's valuelisd
Trace until a value change or until a value matchlisl)

Displaying a statement historys2]

3.41 Tracing all lines executed

The simplest form of tracing starts from the current execution point and notes which
lines were executed. You invoke this feature by clicking the Trace All button on the button
barlss] (or by pressing the Ctrl+T keyboard combination (by defaultks3)), or by selecting
the Trace To End option in the Client's Execution menu).

The tracing continues until one of the following events:

e The request ends
e Abreakpoint is hit
e Acancelling error occurs

e Adaemon is entered

128

Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

The output, a list of the statements executed, is displayed in the Execution Trace tab:

ﬁ‘% The Janus Debugger (WIDGET) f;
File Window Search Breakpoints Execution DataDisplay Error Macros Help f
Top | Bottom | Clear Audit | Run | Step | Step Over | Trace All | Cancel | Clear Breaks | Clear Watch | View Text A
Audit Trail | Source Code | Web Buffer | Execution Trace| Proc Selection o
Sweb type('text/html’) #

A -
html JIR
tcount = $unblank ($web_form parm('count')) 1
if (not %count) then =

print 'Yom did not order anything' =
html ™
d &
- e
- 5
— e
o
el ot SIS

If tracing was interrupted by a breakpoint or by daemon code, you can continue tracing
by clicking the Trace All button again or by pressing the Enter key.

The Execution Trace tab display can help you with testing. You can see from the code in
the example trace, above, that the execution path hit only the case where no orders are
made. Contrast this with a trace of the same program where something was ordered:

.
‘% The Janus Debugger (WIDGET.UL)

- >
File Window Search Breakpoints Execution Data Display Error Macros Help ’;{
Top | Bottom | Clear Audit | Run | Step | Step Over | Trace All | Cancel | Clear Breaks | Clear Watch | View Text "f"
Audit Trail | Source Code | Web Buffer | E: T Proc Selection ,;/
Sweb_type (' text/html') ""
html
%tcount = $unblank ($web form parm('count')) —(

if (not %coumnt) then
*total = *count * *price |
call computeTax
¥tax = .05 * %total 1
if (#tax > 10) then

return
¥total = %total + %tax

call computeShipping ;
%shipping = 1 [
end subroutine '
*total = %total + %shipping
print 'Your price is: ' and %total
html
end 3

P

— —
Search F/r’_ - i e Vﬂlue/
—— — - T
— - e

Janus/TN3270 Debugger User's Guide 129

Performing Basic GUl Tasks

3.4.2 Tracing all updates to a variable’s value

Another type of tracing is to note all statements that modify a selected variable or data
item and what value was assigned to the variable or item. To do this:

1.

4.

Enter a variable or data item name in the Entity-name input box below the main
window.

Note: ltems like global variables or Model 204 fields or parameters require the
additional prefixes before their names that are described in Viewing and
modifying program elements.[ss]

Click the Trace button:

ad (" Command addwatch %h)

o

v
N
rF
Value | Trace[\| Run to Change | Watcbj
L5 J
|%t0t3| |Tracea|l change:tothenamecl‘.fariable| 4
e
14
A | 7
sessi™ ™ F 4
re=r - - ot
”~ ' /,

The traceValues maggable@ command and the Trace Values option in the Client's
Execution menu have the same effect as the Trace button.

The trace continues until one of the events listed in Tracing all lines executed|i28)
oCcCurs.

View the result in the Execution Trace page.

Only lines that modified the variable are shown, along with the new value:

A The Janus Debugger (WIDGET2.UL) -~

pt?

File Window Search Breakpoints Execution Data Display Error Macros Help (/‘,-—/_
Top | Bottom | Clear Audit | Run | Step | Step Over | Trace All | Cancel | Clear Breaks | Clear Watch View Tekl

Audit Trail | Source Code | Web Buffer Execution Trace | Proc Selection -

%¥total = %count * %price *total=8 ',
%¥total = %total + %tax *total=8.4 rF
*total = %*total + %#shipping *total=5.4

If tracing was interrupted by a breakpoint or by daemon code, you can continue
tracing by clicking the Trace button again or by pressing the Enter key.

130

Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

3.4.3 Tracing until a value change or until a value match

Another tracing option lets you step through a program, stopping on each statement that
changes a specified data item. In this case, both the statement that modified the item
and the resulting value are shown in the Execution Trace tab.

To trace until a variable value changes:

1. Enter a variable or data item name in the Entity-name input boxlso] below the main
window.

Note: ltems like global variables or Model 204 fields or parameters require the
additional prefixes before their names that are described in Viewing and
modifying program elements.[ss]

2. Click the Run to Change button:

ad (' Command addwatch ¥k)

f

Value | Trace Run to Change | Wﬂlcg,/
L3

|%[2 ‘Tracetill the named variable changes; use alt for Until ‘.far:‘.falue|

The request runs until the specified item is modified.

If the value of the item does not change, execution runs until the end of the request
or one of the events listed in "Tracing all lines executed."f128

3. View the result in the Execution Trace page.

If the request contains further changes to the value, you can click the Run to Change
button again, or you can press the Enter key (which repeats the Run to Change
action whenever the Run to Change button is highlighted.

The runUntilVariableChangesPk+ mappable command and the Run Until Variable
Changes option in the Client's Execution menu have the same effect as the Run To
Change button.

Janus/TN3270 Debugger User's Guide 131

Performing Basic GUI Tasks

A variation of the "tracing until" technique lets you continue a request's execution until a
selected item's value is equal to a value you specify. For example, you may want to use
this feature to verify that a variable does not ever become a certain value.

To trace until a particular data item value:

1.

2.

Enter the item name (prefixed if necessary) in the Entity-name input box.

Press the Alt key while clicking the Run to Change button.

The traceUntilVariableEqualsValuebsd mappable command and the Trace Until
Variable Equals Value option in the Client's Execution menu have the same effect as
Alt + the Run To Change button.

In the Tracing dialog box, specify the value of the variable at which tracing will stop:

-~ Tiracing: ‘%I’ |

Trace until:"%I' =

Trace
Cancel

Click the Trace button, at the right.

The request will run until the statement that makes the value of the selected item
equal to the value you just specified, or the request will run until the end of the
request or one of the events listed in "Tracing all lines executed"[123,

3.4.4 Displaying a statement history

If you are in the middle of debugging a lengthy or complicated program, and you have not
invoked tracing, you can produce a display of all the statements that have already
executed. Perhaps you got an unexpected runtime error or hit a breakpoint you set, and
you want to review how you got to this point in the program.

To display a history of statement execution:

1.

In the Client's Execution menu, select the Get/Display History option.

132

Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

The Execution History window displays a history of statements executed up to the
program's current execution point:

e)
File

How we got here -
Sweb_type ("text/html')
html
%count = Sunblank(Sweb_form parm('count'))
if (not %count) then
%*total = %count * %price
(Routine/Method Call) %tax = %({extraCosts) :computeTax(%total)
%tax = .05 * %iTotal
if (%tax > 10) then
(Return) return %tax
(Routine/Method Call) %shipping = % (extraCosts) :computeShipping(%total)
ishipping = 1 + .02 % %iTezal
(Return) return %shipping
%total = %total + %tax
%total = %total + %shipping
print 'Your price is: ' and %total
%root = %shoppingCart:AddElement('order"')
%root:AddElement ("quantity', %count)
%root:AddElement ("total’, %total)

%orderRequest:url = %webServiceUR

Clear Print Save | Close I

Search Down | Search Up | Top | Bottom

The execution history is as many as the last 1000 statements executed. Calls and
returns for methods and subroutines are labeled:

e Foracall a (Routine/Method Call) indicator precedes the User Language
statement.

e Forareturn, a (Return) indicator precedes the User Language statement.

While the Execution History window is open, you can interact with the main Client
window, and any hot keys defined for the Client will work when the history viewer
has focus.

2. Use the Clear, Print, Save, and Close buttons as necessary. And the search bar on
the bottom of the window provides controls for searching the history.

You can also invoke this feature with the getHistor‘y@ mappable command, clear the
window with the clearHistorylss com mand, and close the window with the
closeHistorylsdl command.

Using the Execution Trace tab

You can arrange to view the statement history in the Execution Trace page instead of in
the Execution History window:

1. Select Preferences from the File menu.

Janus/TN3270 Debugger User's Guide 133

Performing Basic GUI Tasks

2. Inthe Display Options section of the Preferences dialog box, enable the feature by
selecting the History to Execution Trace checkbox (it is clear by default), then click

Done.
‘;—;‘ Preferences | =HRE X
Execution Options Open at Startup
¥ Pause atend of evaluation I Macro Autorun

I~ External Main Button Bar
™ Run Until spans debug sessions

I Break after READ SCREEN I~ Windows When Suspended (7.9+) LEdEEutionBay
I Source Preview (7.2+ mods) Minimum:[1000 = Size:[100 = || External Waich Window
IE Options

" External Audit Trail Window

IE Mode ~
; " External Web Buffer Window

" External Execution Trace Window

isplay Options

Show atmost |1gp = listitems. ¥ Restore watches on startup
Main Button Bar

I Tnm blanks from selection in View Text IT%Hislnrylu Execulion Trace & Top
rs long watch values in a Tooltip Use !debugger directives © Center
" Bottom

Web Server Selection ogram Titles

3270 Emulator I Extra Buttons

¥ sirnus-software com9219

‘ Main Window Options

- Hi .
Web Browser Hide Lower Section

\Windows

Done

Note: The Client setPreferencelzsi command has an option that lets you toggle
the History to Execution Trace checkbox.

3. Invoke a statement history as usual from the Execution menu.

Using the Source Code tab

You can review the statements in the execution history in their actual context, that is,
highlighted in the program in the Source Code tab (or Daemon tab). Four Execution menu
options (or corresponding Client commands) let you select which executed statement(s)
to view: the first or the last (that is, the statement at the beginning or the end of the
history), or the previous or the next executed statement, relative to the currently
highlighted line.

To inspect in the program code a previously executed statement:

1. Atany point during the debugging of a request after some statements have been
executed, either:

a. Open the Execution menu, and click one of the history-selection options: Select
Previous History Line[so), Select Next History Line[30), Select First History Line[s0),
Select Last History Line.[31)

134

Janus/TN3270 Debugger User's Guide

Performing Basic GUI Tasks

Or:

b. Run (mapped to a button or key, or via macro or command line) one of the
Client commands that corresponds to the above-mentioned menu options:
pr‘eviousHistor‘ym, nextHistor‘ym, fir‘stHistor‘yEa, lastHistory. k22

You do not have to use the Get/Display History option to open the normal Execution
History window, as described earlier in this section.

The Client responds by moving the current line to the executed statement you
selected — in the Source Code or Daemon page that contains the statement.

2. Continue reviewing the executed statements by using the Execution menu history
options or their command counterparts.

The Client locates and highlights the statement you select, and it removes the
highlighting from the statement you viewed in the previous step.

Note: Although each history statement you view gets highlighted as if it were the
current execution position, the actual execution position, the statement to be
executed next if you invoke a debugging Step or Run operation, remains
(non-highlighted) where it was when you began reviewing the statement
history.

3. Resume normal debugging operations.

Janus/TN3270 Debugger User's Guide 135

Performing Basic GUl Tasks

3.5

Viewing programs that contain coding errors

Debugger Client handling of programming errors differs according to the type of error:
compilation errors or request-cancelling errors.

= Compilation errors

If a program contains a compilation error, you can still use the Debugger to view the
source code, along with the Model 204 error messages embedded (highlighted and
prefixed with ER>) after the program statements that caused them:

[4 The Janus Debugger (BADCOMPILELL) s

File Wndow Sesrch Breskponts Execwbion Deta Deplay EBrer Macros Help .r

" Tep | Bottom | Clear Audit ltunlitl-p Step Over | Trace | Cancel | Clear Broaks | Clear Watch | View Taxt

Audit Trail Source Code | Web Buffer | Execulion Trace | Proc Selection

1 I BADCOMPILE,UL ¥

1 o

2 1 1 begin

Tl 3 1 4 wariables are nndefined -'I

L= 4 1 3 this iz wrong r’

ME04 . 0229 : INVALID STATEMENT r,-
this i® wrong 1 -

(PILE = JALPROC , PROCEDURE = BADCOMPILE.UL, LINE = 3) b

L 5 1 4

TL> 6 1 5 &b is float

oL 71 ['f

oL 8 1 7 Ra = 1

M204 0595 : UKDECLARED VARIABLES ARE HOT PERMITTED WITH THE UNDEFINED OPTION -
da = 1 o

(PILE = JALFROC , PROCEDURE = BADCOMPILE.UL, LINE = 7) -3

oL % 1 i

oL 10 1 9 Ra = 1 3 3 1

M204 , 0052 : ILLEGAL TERM 'pl
fa = 1 2 3

W |Mz204 . 0033 : INVALID EXFEESSION

(FILE = JALFEQC , FROCEDORE = BADCOMPILE.UL, LINE = 5) #

Search | Senrch Mext r
E| | |
Ll
r
da =1 2 3 - !
(FIL® = JALPROC , PROCEDURE = BADCOMPILE.UL, LINE = 3) f
MI04. 0033 : INVALID EXFRESSICH !-
ba = 1 2 3 T
(FILE = JALFROC , PROCEDURE = BADCOMPILE.UL, LINE = 9} .
HM204 0228 :; PART OF STATEMENT ICHORED f
] m] f

 Compile errors! -

As shown above, the Client status strip displays a Compile errors! message, and
the Run button is the only program execution operation available.

You can move to the next program statement that did not compile, if any, by

pressing the F11 key (by defaultl203), by selecting the Error > Next Compile Error
menu item, or by us|igg% a button to which you have mapped@ﬂ the
nextCompileErrorfso command.

136

Janus/TN3270 Debugger User's Guide

Performing Basic GUI Tasks

* You can move to the previous statement that did not compile, if any, by
pressing the F10 key, by selecting the Error > Previous Compile Error menu

item, or by using a button to which you have mapped the
previousCompileErrork4 command.

Clicking Run (or selecting Error > Quit) invokes no further operation on the code, and
(if Janus Debugger) the Web Server sends the compilation error messages to the
browser, then advances to the next program, if any. If under the TN3270 Debugger,
the compilation error messages are sent to the terminal.

= Request cancellation errors

If the program you are debugging contains a request-cancelling error, the Debugger
lets you step through the program until you execute the statement that causes the
error, or if you clicked Run, executes until the point of the error. At this point, the
Client:

e Displays the source code (highlighting the line that has the error)

e Reports the values of any watched variables at the point of the error

e Reports the cancelling error message in the Client's audit trail displays

e Lets you inspect in the Web Buffer the results of statements that executed
successfully prior to the error, if debugging a web request.

Janus/TN3270 Debugger User's Guide 137

Performing Basic GUl Tasks

B The Jasuis Desbugaer (QAXML)
_F.I|E.TI-I'.II$D\‘;I. Search Breskpoints Eloecl.-mn:ln Data Display Error f-'la-:n.i.s- Help

| Top | Bottom | Clear Audit | Run Sup :S‘rnp Ovar | Trace | Cancel | Clear Breaks | Clear Watch | View Taxt

Audit Trail Source Code | web Bul‘!‘ar| Execulion Trace | Proc Selecttun|

!

M 1 0 1 1 QAXML i
Ui 2 1 i begin
oL 3 1] &% is object ¥mldoo
OL> 4 1 3 Bl is longstring
oL 3 1 4 . J—__..r
Tl & 1 L] BX = paw -
OL> T 1 & bx:loadxml | "<arHellochsmond fbadorlarrys /o< fas") k
oL 8 1 7 px:print)
oL 10 1 9 % &1 = dx:serial(, "ERCDIC' 'orlf' "indent 3]
oL 11 1 10 print "®l im: ' Bl
OL> 12 1 11 end :
T
.
A
[T~
L
4
o
Senrch | SearchMext r
-] :
Al
k
MSIR.0690: Janus Web content cospressed by 55.7 parcent from 589 to 2€ - .
MSIR.0359: WEB status 200 OF r
MSIR.1020: Debogger: JDEW Address=X"7C421380° 3
I QML i
M204.1168: IN FILE JALFROC INCLUDE QAXML]
CANCELLING BEQOEST: MEIR.07EQ: Claza KmlDes, fanstlien Serial (argnament f
: - !
I
Runtime error, request cancelled. Receiving/forwarding web page Jg

ON UNIT

Furthermore, except in the case described below, the Client does not let you
continue stepping through the request (Step buttons become unavailable). If you
now click the Run button:

If the Janus Debugger, the Debugger sends the cancelling error message to

the Web Buffer, and it also sends an "internal server error" message to the
browser.

If the TN3270 Debugger, the Client sends to the terminal the the cancelling

error message as well as the results of any statements you executed
successfully before the error.

An exceptional case is a cancelling error of the following type, which occurs within a
User Language ON UNIT:

M204.1982: ILLEGAL JUMP ATTEMPTED OUT OF COMPLEX SUBROUTINE

If this error occurs, debugging is allowed to continue: you are not prevented from

continuing to step through the request. This exception is designed for the debugging
of ON UNIT code.

138

Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

3.6

Debugging requests that spawn daemons

If the application you are debugging spawns an sdeamon in either of the following cases,
the sdaemon code is displayed in a dynamically created Daemon tab:

e A SOUL Daemon object Run method for an sdaemon or transactional sdaemon
(shares record sets with the spawning thread, maintaining one logical unit of work)

e Asynchronous $COMMBG request (an output $list parameter is specified for the
function)

A‘% The Janus Debugger

File Window Search Breakpoints Execution Data Display Error Macros Help r[/
Top | Bottom | Clear Audit | Run | Step | Step Over | Trace | Cancel | Clear Breaks | Clear Watch | View Text rg
Audit Trail | Source Code | Web Buffer | Execution Trace | Proc Selection Daemon (1)] I
UL> 87 0 1 BEGIN L
TL> 88 0 2 N1 IS FLOAT ",
UL>» 83 0 3 ¥N2 IS FLOAT f
UL> %0 0 4 ¥N3 IS FLOAT /-'r
UL> 31 0 5 ¥SPEED2 IS OBJECT DAEMON o
UL> 92 0 & ¥SPEEDZ = NEW L
TL> %3 0 7 %Nl = %SPEED2:USERNUMBER i
TL> 54 0 8 %¥H2 = % (DAEMON) :MASTERNUMBER _’_y'
TL> %5 0 9 %N3 = % (DAEMON) : PARENTNUMBER —_—
TL> %6 0 10 PRINT &N1 o N -
UL>» 37 0 11 PRINT &N2 I
UL> 98 0 12 PRINT &N3]
UL> 9% 0 13 =
UL> 100 O 14 %LIST2 IS OBJECT STRINGLIST I
TL> 101 0 15 %LIST2 = NEW ,'-
TL> 102 0 16 TEXT TO %LIST2 END 'EWD TEXT MIDDLE' .
TL> 103 0 17 -r -
TL> i04 0 18 BEGIN I
UL» 105 O 19 N4 IS FLOAT T
UL> 106 O 20 #N5 IS FLOAT ;r'—"-r
1
Search Search Next Search Prev ‘ |
- e
-
——— J

%Y = NEW

==l PRINT
.

%Y IS OBJECT STRINGLIST

*Y = %SPEED2:RUN (%LIST2)
»
PRINT 'HERE FOLLOWS SPEED3 USER, MAST, AND PAREI\Bf

— J

R o

P A

While the code in the Daemon (1) tab has focus, the current program in the Source Code
tab waits for the sdaemon code to execute. The code line that spawned the sdaemon is
highlighted, while the remaining Source Code lines are dimmed as a reminder that this
code is not executable (the Run, Step, and Step Over buttons apply to the active code in
the Daemon (1) tab). The Source Code lines are scrollable, however.

Janus/TN3270 Debugger User's Guide

139

Performing Basic GUl Tasks

A‘;—;‘ The Janus Debugger »”
- = - - r 4
File Window Search Breakpoints Execution DataDisplay Eror Macros Help _—
Top | Bottom | Clear Audit | Run | Step | Step Over | Trace | Cancel | Clear Breaks | Clear Watch | View Text /— _’f
Audit Trail Source Code | Web Buffer | Execution Trace | Proc Selection | Daemon (1) } r,.
UL> 7 Z [
UL> 4
UL> m; paren m: 3
UL> 1
UL> L
UL> E
UL> g
7
UL>
UL> pare ams ,J
UL>
ULs [
UL>
UL>
UL> 82 1 81 *X = new b
UL> 83 1 82 %) = %*speed:run(*list) L
UL> 84 1 83 Pri here follows speed?2 user and master noms; parent nom to andit trail rj"
OL> 84 nt
p
" r
L _— e
= _Search = — - r”ﬂ r W -

Commands you invoke, like Step or Run, execute for the code on the Daemon (1) tab.
When the sdaemon execution is complete, the spawning program regains focus and
the Daemon (1) tab is removed.

Multiple sdaemons

If your program has sdaemons that call additional sdaemons, the Debugger will display
their code on a separate tab, dynamically spawning more Daemon tabs (Daemon (2),
Daemon (3), and so on up to 5). Each new Daemon page will get focus and respond to
the code execution buttons, while the Source Code page and preceding Daemon pages
will wait for the current sdaemon execution to complete. After the current sdaemon code
runs to completion, its tab will be removed, Daemon thread completed will be displayed
in the Status bar, and the preceding Daemon page will regain focus.

Discontinue Daemon debugging

You can optionally have the Debugger run in a mode that does not display sdaemon
code in the Debugger Client. In this mode, the Debugger runs all other code as usualls4]
but suspends the display (but not the execution) of sdeamon code.

To enter this mode, from the Source Code page at any point during program execution,
you simply press the Alt key and click the Run button (the Alt+F5 key combination is also
equivalent, by defaultks®)). Equivalent alternatives are the runWithoutDaemons 250
command and the Run Without Daemons option of the Execution menu.

Once this mode is entered, all debugging of Daemons is suspended:

e Subsequent sdaemon code executes normally but is not displayed

140 Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

e No Daemon (1) tab is shown in the GUI

e No sdaemon source code is sent from the mainframe to the PC
As in normal running mode, this "discontinue-Daemon-debugging" mode stops on

breakpoints. For example, if you have a program that spawns five daemons, only the last
of which you want to debug, you could:

1. Put a breakpoint(ss 1 on the line that invokes the fifth daemon (or just before it).

2. Simultaneously press the Alt key and click the Run button.

3. Click the Run button.

The Debugger Client will skip over the first four daemons but stop on your
breakpoint.

Debugging an interactive daemon

An sdaemon you have spawned with a SOUL Daemon class Run method (or
RunAsynchronously or RunIndependently) might temporarily return control to its
master thread by issuing a ReturnToMaster method. The master thread may do further
processing and then return control to the sdaemon by issuing a Continue method (or
ContinueAsync or ContinueIndependently). There may be multiple such exchanges
of control.

This interactive processing is captured in the Debugger by:

1. Keeping a tab (Source Code) open for the code of the master thread and a tab (
Daemon) open for the sdaemon, as usual.

2. Giving focus to the tab whose code is executing, and dimming the code in the other
tab.

If a master thread issues a ContinueAsync or ContinueIndependently call,

however, the focus does not shift to the Daemon tab (though its code remains
available for inspection).

See Also

Controlling the execution of program codels21
Source Code tab[11]

Janus/TN3270 Debugger User's Guide 141

Performing Basic GUl Tasks

3.7

Debugging Web Server persistent sessions

You can use the Janus Debugger to debug Janus Web Server "persistent session”
applications. These are applications in which Online program execution is suspended
while a browser user returns data to the program, whereupon the program continues.
The Debugger supports two such types of Web Server programs:

HTML form processing using the $Web_Form_Done function

Janus Web Legacy Support, which processes User Language 3270-screens in a
web browser

$Web_Form_Done sessions

Using the $Web_Form_Done function, a User Language procedure can serve an HTML
form, suspend execution until the form is submitted, then resume executing the program
at the point where it was suspended.

To debug a $Web_Form_Done application:

1.

Invoke the program from your browser; then, in the Debugger Client, step through
the program as usual.

When a $Web_Form_Done executes, the execution of the User Language program
pauses, and Session awaits browser displays in the Status barl49l.

Move from the Debugger Client to your web browser, respond to the directives in the
HTML form, and submit the form.

Return to the Debugger Client, where Persistent Session Resumed displays in
the Status bar, and continue debugging.

Note: As a convenience, the Debugger can make your web browser window the

topmost on your PC screen when the Client pauses as it processes the $
Web_Form_Done call.

To invoke this feature:

1. In the Client, select Preferences from the File menu (or use the Ctrl+P
keyboard shortcut).

142

Janus/TN3270 Debugger User's Guide

Performing Basic GUI Tasks

2. In the Preferences dialog box, locate the Web Browser text box (in the Program
Titles section) and provide a text string that matches some or all of the
browser-identifying title that displays at the top of the browser window.

The characters in your matching string can be any case and match
anywhere in the browser title. Any trailing blanks you enter are preserved.

2 Tooltip " Use !'debugger directives (7.6+)

Program Titles
-] 3270 Emulator

Web Browser

|Wind0ws

Done I

3. Click Done.

The feature takes effect at the next execution of a $Web_Form_Done
statement. The Web Browser setting that exists at the end of the Debugger
Client session persists to the next run of the Client.

Note: By default, this feature does not take effect if the Client is not
executing the part of a program that contains the $Web_Form_Done. For
example, the statement might be in code selected to be excluded from
debugging.[e4]

However, if you also select the Windows When Suspended option in the
Preferences dialog box (Execution Options section), you can make the
feature apply whenever this statement occurs, even in code the Debugger
is not actively executing.

=5 ECR =5

™ Macro Autorun
ns

T[%Winduws When Suspended (7.9+)

Minimum:| 1000 E|j Size: | 100 E|j

axy setlings I Clear IE proxy override
_snotto be debugged

Janus/TN3270 Debugger User's Guide 143

Performing Basic GUl Tasks

Legacy Support sessions

By automatically converting 3270 screens to HTML, the Janus Web Legacy Support
feature lets you run under the Janus Web Server applications that do 3270 full screen
reads. You can debug such an application with the Janus Debugger only if you also
license the TN3270 Debugger and you are running under Version 6.9 of the Sirius Mods
or higher.

To debug a Legacy Support application:

1. Invoke the User Language program from your browser, and in the Debugger Client,
step through the program as usual.

2. When a READ SCREEN executes, the execution of the program pauses, and
Session awaits browser displays in the Status bar 9.

If you have not also purchased the TN3270 Debugger, the web thread is softly
restarted and the debugging session is terminated.

3. Move from the Debugger Client to your web browser, respond to the screen (now
HTML form) prompts, and submit the form by clicking the Enter button or a PF key
button.

4. Return to the Debugger Client, where Persistent Session Resumed displays in
the Status bar, and continue debugging.

These events are reported in a sequence of lines in the Client Audit Trail page like the
following:

2010 11 08 10:01:48.27 2 20 LI I SCREENO

2010 11 08 10:01:48.27 2 20 MS M204.1168: IN FILE GWDEB INCLUDE SCREENO
2010 11 08 10:02:10 Full Screen Read Pending

2010 11 08 10:02:22 READ SCREEN completed

Note: As described above for $Web_Form_Done applications, the Debugger can bring
your browser to the top on your PC screen when the Client pauses for the READ
SCREEN.

To invoke this feature:

1. Select Preferences from the File menu.

2. In the Preferences dialog box, locate the Web Browser text box (in the Program
Titles section) and provide a text string that matches some or all of the title
that displays at the top of the browser window.

The characters in your matching string can be any case and match
anywhere in the title. Any trailing blanks you enter are preserved.

3. Click Done.

144 Janus/TN3270 Debugger User's Guide

Performing Basic GUl Tasks

3.8 Debugging multiple Web Servers

You can configure the Janus Debugger to debug applications that run on any of multiple
Janus Web Servers. By default, a browser request sent to any of these web servers is
intercepted by the Debugger Client proxy for the purpose of debugging. If you want to
temporarily turn off debugging of one or more of these web servers, you can do so
dynamically in the Debugger Client.

You configure the Janus Debugger to debug any of multiple Janus Web Servers by
manually editing the debuggerConfig.xml file, as described[sed in the product
installation information.

To disable the debugging of web requests for a particular Web Server:

1. Inthe Client, select Preferences from the File menu (or use the Ctrl+P keyboard
shortcut).

2. Inthe Preferences dialog box, in the Web Server Selection list, clear the checkbox next
to the entry for the web server you want to disable, then click Done.

=X

A‘;—;‘ Preferences.

Execution Options Open at Startup

¥ Pause atend of evaluation I Macro Autorun

I~ External Main Button Bar
™ Run Until spans debug sessions

I Break afterREAD SCREEN I Extra Button Bar

" Windows When Suspended (7.9+)

= size:100 -

I Source Preview (7.2+ mods) Minimum:| 1000 I External Watch Window

EQpiE I External Audit Trail Window
IE Mode ~
none - " External Web Buffer Window

Display Options " External Execution Trace Window

Show at most

100 = hstitems.
[Tnm blanks from selection in View Text

™ Show long watch values in a Tooltip

¥ Reslore walches on stariup
I Hislory to Execution Trace

¥ Use !debugger directives (7.6+)

Main Button Bar
& Top
 Center

¢ Bottom

Program Titles
3270 Emulator

Web Server Selection

I~ Extra Buttons

I sirius-software.com:3000
sirius-software com:3666 ‘
¥ sirus-software com:3667

Main Window Options

- Hi .
Web Browser Hide Lower Section

\Windows

Done

Browser requests for this Web Server will no longer be debugged. This setting
takes effect immediately, and it persists over multiple runs of the Debugger Client.

Janus/TN3270 Debugger User's Guide 145

Performing Basic GUl Tasks

Disabling the debugging of a server does not remove it from the debuggerConfig.xml

file. You can re-enable the debugging of a server by marking its Web Server Selection
checkbox.

146 Janus/TN3270 Debugger User's Guide

Additional Debugger Functionality

ciarter4 Additional Debugger Functionality

These sections are included:

Copying, printing, or saving textha?)

Using the TN3270 DEBUG commandhsa)

Using the TN3270 DEBUG command for web threads iss)
Debugging SSL applicationsEﬂ

Debugging Web Service applications sl

Using the DebuggerTools class methods s3]

Using a local editorfiea

4.1 Copying, printing, or saving text

You can invoke a separate text viewer window in which you can display, copy, print, and
save the text data contained in a Client tabbed page.

Janus/TN3270 Debugger User's Guide 147

Additional Debugger Functionality

The viewer copies the contents of the current Client tab when you click the button or
press the hot key to which you have assigned the viewText command (as described

A% The Janus Debugger (WIDGET) = | B ks,
File Window Search Breakpoints Execution DataDisplay Error Macros Help f’
Top | Bottom | Clear Audit | Run | Step | Step Over | Trace | Cancel | Clear Breaks | Clear Watch o
Audit Trail Source Code] Web Buffer I Execution Trace | Proc Selecliunl L3 f,’j’_’
UL> 5 1] %oount is float i
uL> 6 1 5 stotal is £ 3

o i Of X
uL> 701 6 sprice is £] Hk Text Viewer = ,.-’J
uL> 8 1 7 stax is £1[g F
TUL> 2 1 8 %shipping i
uL> 10 1 9 HEh 0 j
UL 11 1 10 * specify a <html>
R <headr<title>0rder Reporu</titler</head> "
uL> 12 1 11 Sweb_type (<body bgcolor="white™s
L LR L2 Order Report</strongs<hr> |
uL> 14 1 13 * start the end nrml)
uL> 15 1 14 html J
UL> 16 1 15 <html> * get the count
UL> 17 1 <head. tcount = $unblank (§web_form parm('count’)) f
UL> 18 1 <body ra
TL> 19 1 18 <stroj if (not %count) then L -~
oL> 20 1 19 end html print 'You did not order anything® 3
uL> 21 1 20 elae o
UL> 2z 1 21 * get ths c . J
UL> 23 1 22 oount = §m jtotal = Scount $price 4
uL> 24 1 23
call computeTax
itotal = $total + %tax —
Si h Si h Next Ch
sarc earch vex call computeShipping | onge g
ttotal = total + Eshipping
print 'Your price is: ' and Stotal -
end if '

MSIR.1020: Debugger: JDBW Address=] * finish the page =
I WIDGET heml i {J
M204.1168: IN FILE JALPROC INCLUDE .

e Print Save Close /J
r—"fr . - T —— T
[} -] i |
| L rf’ = J/r' N _P/
- f,_; - e
Y
r

The scrollable, expandable Text Viewer window displays just the text content of the
currently active tab (excluding, for example, the additional line numbers and identifying
information that the Client automatically adds to the Source Code page display). The
viewer scrolls to and highlights the current line from the page that is copied. As many as
one thousand lines of the tabbed-page text, starting from the top, are copied.

Other features include:

e The viewer works with lines from any Client tab except the Proc Selection tab.

e The viewer has Print and Save buttons, which act on the entire copied content,
whether currently visible or not.

e Familiar Windows Print, Page Setup, and Print Preview dialog boxes are accessible
from the viewer's File menu.

e Standard mouse-based copying of text data is enabled, but altering or deleting text
is not allowed.

¢ You can automatically remove any leading and trailing blanks from selections you
copy.

148 Janus/TN3270 Debugger User's Guide

Additional Debugger Functionality

To enable the Text Viewer window:

1. Create a text file named ui.xml in the folder where the JanusDebugger . exe file is
installed, or edit the existing ui.xml file.

2. Inthe ui.xml file, map the viewText[2s8 command to a Client button or keyboard
shortcut, as described in "Setting up the ui.xml file"[2o1).

For example, this mapping associates a viewText command with button5:

<mappings useDefaults="true">
<mapping command="viewText" button="button5"/>
</mappings>

3. Save the ui.xml file, and restart/18] the Debugger Client.

4. If you want to enable automatic trimming of leading and trailing blanks from data you
copy to the Text Viewer:

a. Select Preferences from the Client File menu.

b. Inthe Display Options area, mark the Trim blanks from selection in View Text
checkbox.

c. Restart the Debugger Client.

5. Select the Client tab whose text you want to copy, and click the View Text button,
press the key you assigned to the viewText command, or select the View Text
option of the Window menu.

4.2 Using the TN3270 DEBUG command

Unlike the Janus Debugger, the TN3270 Debugger is started and stopped by a
command switch, the TN3270 DEBUG command. The name of this command, as well
as the name of this Debugger, are new as of Model 204 version 7.6 and Build 63 of the
Debugger. The command name is a synonym for the SIRIUS DEBUG command, which
is an exact equivalent and continues to be available.

The command, which can be issued from the Model 204 command prompt or in a
procedure, has these mutually exclusive subcommands:

{TN3270|SIRIUS} DEBUG {[ON|OFF] [SUSPEND|RESUME] [CLIENTCOMMAND] [STATUS]}

As described below:

e The ONI[isdl subcommand starts a TN3270 Debugger session (it requires additional
parameters). It can also be used for debugging Janus Web threads hiss).

e The OFFis2 subcommand stops a debugging session.

Janus/TN3270 Debugger User's Guide 149

Additional Debugger Functionality

e The SUSPEND/153 and RESUME 154 subcommands discontinue and continue a
debugging session.

e The CLIENTCOMMAND 153 subcommand sends a command to the Debugger
Client.

e The STATUSs subcommand gets a status report about the worker threads for
the Janus Debugger, the TN3270 Debugger, or both.

The TN3270 DEBUG commands that change the Debugger's state from on to off or
from suspended to resumed may interchangeably be issued from the command line or
within a procedure. You can control the Debugger's state entirely from the command
line, entirely through one or more procedures, or from a combination of both places.

TN3270 DEBUG commands issued from a procedure must not be placed between
explicit procedure BEGIN and END statements.

TN3270 DEBUG ON

To initiate a TN3270 Debugger session, you issue the TN3270 DEBUG ON command
from the Model 204 command prompt or within a BATCH2 input stream or procedure.
The command requires the parameters described below that identify the network ports
and the workstation used in your debugging session. The values of these parameters
are established during product installation:

TN3270 DEBUG ON [janClientPort] [pcHost] [pcPort] [workerPort]

where:

janClientPort The name of the Janus client socket port that is defined
374 for the TN3270 Debugger to use to contact the
Debugger Client workstation.

As of Sirius Mods version 7.9, the default value is an
asterisk (*), which means to use a Janus port whose
definition includes the MASTER parameter. Such a port
can be accessed on a Debugger connection request
without specifying its port name on the TN3270 DEBUG
ON command.

This port must be started.

pcHost The workstation running the Debugger Client. This may
be an IP number or a DNS name, as described[s77 during
product installation.

As of Sirius Mods version 7.9, the default value is a period
(.), which means to use the IP address of the machine
from which the TN3270 session was initiated.

pcPort The workstation port number on which the Debugger
Client is listening. As describedf7d) during product
installation, this is typically 8081.

150

Janus/TN3270 Debugger User's Guide

Additional Debugger Functionality

The Model 204 User 0 parameter SDEBGUIP sets the
default value of this port. Valid values for this parameter,
which is also resettable by the system manager, range
from 0 to 65535. If 0, no default is set, and the
parameter's value must be explicitly specified in the
TN3270 DEBUG ON command. A VIEW SDEBGUIP
command returns the current setting of SDEBGUIP.

Note: As shown in an example below, to omit an explicit
specification of pcPort (letting it default to the
setting of SDEBGUIP) but still provide an explicit
value for workerPort, use an asterisk (*) for the
missing pcPort specification to indicate the
respective position of the parameter values.

workerPort The port number in your Online that is definedls73 for
worker threads. This can be the same port number that
provides worker threads for the Janus Debugger, as well.

The Model 204 User 0 parameter SDEBWRKP sets the
default value of this port. Valid values for this parameter,
which is also resettable by the system manager, range
from 0 to 65535. If 0, no default is set, and the
parameter's value must be explicitly specified in the
TN3270 DEBUG ON command. A VIEW SDEBWRKP
command returns the current setting of SDEBWRKP.

For example:

TN3270 DEBUG ON DEBCLIENT 198.242.244.235 8081 3226

After issuing the command, you receive a message similar to this:

*** MSIR.0915: Debugging is on; client is 198.242.244.235 port 8081,
sessionID: 00000069D812279

If you had set the workstation and worker port numbers with the SDEBGUIP and
SDEBWRKP User 0 parameters, as revealed by a VIEW command:

VIEW SDEBGUIP,SDEBWRKP

SDEBGUIP 8081 TN3270 DEBUG DEFAULT GUI PORT NUMBER
SDEBWRKP 3226 TN3270 DEBUG DEFAULT WORKER PORT NUMBER

The previous DEBUG ON command could be simplified:
TN3270 DEBUG ON DEBCLIENT 198.242.244.235

In this case, you receive different confirmation messages:

*%% MSIR.0942: TN3270 Debugger GUI port defaulted to 8081

*%% MSIR.0942: TN3270 Debugger Worker port defaulted to 3226

*** MSIR.0915: Debugging is on: client is 198.242.244.235 port 8081,
sessionID: sessionID: 00000069D812279

Janus/TN3270 Debugger User's Guide 151

Additional Debugger Functionality

You can also use asterisks to indicate that the port defaults are to be taken. These
two commands are equivalent:

TN3270 DEBUG ON DEBCLIENT 198.242.244.235 * *
TN3270 DEBUG ON DEBCLIENT 198.242.244.235

You receive an error message if you use either of the above commands without
having set the default port values. To take the GUI port default but specify a value for
the worker port, you must use an asterisk in the GUI port position:

TN3270 DEBUG ON DEBCLIENT 198.242.244.235 * 3226

You can further simplify the connection command by taking advantage of the
JanClientPort and pcHost parameter defaults (added in Sirius Mods 7.9). If the
DEBCLIENT port is defined with the MASTER parameter, and SDEBGUIP and
SDEBWRKP are as above, these commands are equivalent:

TN3270 DEBUG ON * .
TN3270 DEBUG ON

On the Debugger Client, Connection from Online displays in the Status bar(4s1 after
the DEBUG ON command is issued. This indicates that the Debugger is "on" and
awaiting the next program to debug.

After the command runs successfully, any User Language program you initiate from the
Model 204 command line will appear in the Source Code tab of the Debugger Client GUI
for debugging.

TN3270 DEBUG OFF

TN3270 DEBUG OFF stops a debugging session. The command is issued as is from
the Model 204 command prompt (or from your BATCH2 stream or a procedure); it has
no additional parameters.

After issuing the command, you should receive this response in Model 204:
% MSIR.0913: TN3270 Debugger is now off

On the Debugger Client, Online has disconnected displays in the Status bar.

You can also turn off the TN3270 Debugger by logging off of Model 204 (any logoff is an
implied TN3270 DEBUG OFF).

Note: Explicitly turning off the Debugger is necessary if you are using the Janus
Debugger as well as the TN3270 Debugger for the same Online and worker port.
To switch from a TN3270 Debugger session to a Janus Debugger session, you
must explicitly drop the TN3270 Debugger session. The Janus Debugger
automatically closes its connections and does not require an explicit notification to
switch or end a session.

152

Janus/TN3270 Debugger User's Guide

Additional Debugger Functionality

The turnoffDebugging mappable commandpssl for a Client button, hot key, or macro is
equivalent to TN3270 DEBUG OFF. This alternative lets you turn off the Debugger at
any time during the debugging of a program, and it provides even more flexibility than
using a procedure to issue TN3270 DEBUG OFF.

TN3270 DEBUG SUSPEND

TN3270 DEBUG SUSPEND immediately discontinues the debugging of the current
request, but preserves the connection from the Online thread to the Debugger Client
(that is, debugging is inactive but in a state where it can be readily reactivated).
Debugging can continue if a TN3270 DEBUG RESUME command is issued from the
command line or in an included procedure.

Issuing TN3270 DEBUG SUSPEND has no effect and receives a harmless error
message in either of these cases:

e Debugging is not currently active for this thread (via TN3270 DEBUG ON or TN3270
DEBUG RESUME).

e Debugging is already suspended (via TN3270 DEBUG SUSPEND).

Once you suspend debugging, the current program (if any) executes immediately, and
the Debugger continues in the suspended state until you issue a TN3270 DEBUG
RESUME or a TN3270 DEBUG OFF command. While debugging is suspended, you can
execute Model 204 commands from the command line as usual; the difference between
debugging being suspended and being off is that the Client remains in a "waiting" state.

Note: TN3270 DEBUG OFF turns off debugging for a thread for which debugging is
suspended, but TN3270 DEBUG ON does not resume debugging a thread for
which debugging is suspended.

TN3270 DEBUG CLIENTCOMMAND

Available as of version 7.8 of the Sirius Mods, TN3270 DEBUG CLIENTCOMMAND lets
you send a com mand[177 or macroki7 to be invoked by the Debugger Client. The single
parameter of TN3270 DEBUG CLIENTCOMMAND is the command or macro you want
to send, specified without regard for case:

{TN3270|SIRIUS} DEBUG CLIENTCOMMAND [COMMAND | MACRO] command

If command is preceded by a keyword or followed by its parameter(s), such a "clause"
must be quoted. See the examples below.

If command is not qualified by the keyword Command or Macro, the Debugger Client
searches first for a macro named command, then for a Client command named
command. You can use the Command or Macro keyword to search exclusively for a
specified command or exclusively for a specific macro. The macro search is restricted
to the Client installation folder or the designated@ macro folder.

Janus/TN3270 Debugger User's Guide 153

Additional Debugger Functionality

Three examples follow:
TN3270 DEBUG CLIENTCOMMAND clearWatch
TN3270 DEBUG CLIENTCOMMAND 'Addwatch %watchthis’
TN3270 DEBUG CLIENTCOMMAND 'Macro mymacro %s’

If the TN3270 Debugger is not currently in a session, issuing TN3270 DEBUG
CLIENTCOMMAND has no effect and receives a harmless error message.

You can also execute Client commands and macros from the ClientCommandlie2 and
Commandfis2l methods of the DebuggerTools class.

TN3270 DEBUG RESUME

TN3270 DEBUG RESUME lets you resume debugging that was previously suspended
with TN3270 DEBUG SUSPEND. When you issue TN3270 DEBUG RESUME (from the
command line or in a procedure) while debugging is suspended, the Debugger
immediately returns to normal debugging mode.

Issuing TN3270 DEBUG RESUME has no effect and receives a harmless error
message in either of these cases:

e Debugging is already active for this thread (via TN3270 DEBUG ON or TN3270
DEBUG RESUME).

e Debugging is currently off (via TN3270 DEBUG OFF or because it has yet to be
initiated for this thread via TN3270 DEBUG ON).

You can use TN3270 DEBUG OFF (or the turnOffDebuggingpsl) mappable Client
command) to turn off debugging for a thread for which debugging is resumed.

Note: After a successful TN3270 DEBUG RESUME, the Client restores any White List
[771 or Run Until[72 processing that was active prior to the TN3270 DEBUG
SUSPEND.

TN3270 DEBUG STATUS

TN3270 DEBUG STATUS provides a simple status report about the worker threads for
TN3270 Debugger sessions, Janus Debugger sessions, or both for a given Model 204
Online.

154 Janus/TN3270 Debugger User's Guide

Additional Debugger Functionality

The command is issued as is from the Model 204 command prompt (or at the end of
your BATCH2 stream); it has no arguments. After issuing the command, you receive a
display like the following:

*** Janus/TN3270 Debugger status: Total workers=12

*** Janus/TN3270 Debugger status: Janus Debugger Sessions=3

*** Janus/TN3270 Debugger status: TN3270 Debugger Sessions=1
*¥** Janus/TN3270 Debugger status: Total Active Sessions=4

*** Janus/TN3270 Debugger status: Draining=0

*** Janus/TN3270 Debugger status: Available=8

*** Janus/TN3270 Debugger status: Janus Debugger Session HWM=5
*** Janus/TN3270 Debugger status: TN3270 Debugger Session HWM=1

where:

Total workers The number of workers created with the
DEBUGMAX]s72 User 0 parameter

Janus Debugger Sessions ~ Worker threads currently being used for Janus
Debugger sessions, if any

TN3270 Debugger Sessions Worker threads currently being used for
TN3270 Debugger sessions

Total Active Sessions Janus Debugger Sessions + TN3270
Debugger Sessions

Draining Workers that are transitioning from Active to
Available

Available Total workers - (Total Active Sessions +
Draining)

Session HWM The greatest value that the number of

concurrent users has reached, per Debugger
product (Janus Debugger and TN3270
Debugger) since the Online was started.

4.3 Using the TN3270 DEBUG command for web threads

If you license the Janus Debugger, you can use the TN3270 DEBUG command to invoke
the debugging of programs served by Janus Web Server threads. This may be useful if
you need to avoid changing the proxy server settings on your web browser, for example.

You invoke a Janus Web procedure from your browser, a TN3270 DEBUG ON command
you embedded in the procedure starts the Debugger, and you work with your source
code in the Debugger Client as usual. The thread you are debugging counts as one of
your Janus Debugger authorized "seats."k71)

Janus/TN3270 Debugger User's Guide 155

Additional Debugger Functionality

Using the TN3270 DEBUG command to invoke debugging requires no additional
configuration@ of the Debugger. You must make sure, however, that no proxy server is
defined for the browser with which you send a request to the Janus Web Server.

To debug a Janus Web thread:

1.

In the Janus Web program you want to debug, insert a TN3270 DEBUG ON

command}isal to invoke the Janus Debugger.

The command must not be placed between explicit BEGIN and END User
Language statements.

Start the Debugger Client.

Make sure the Client is not automatically maintaining a proxy server for you:
a. From the File menu, select Preferences.
b. Make sure the Automatically Maintain IE proxy settings checkbox is clear.

In the browser you use to invoke debugging, confirm that the Debugger Client is not
defined as a proxy serverfss.

From your browser, invoke the URL for the web program that contains the TN3270
DEBUG ON command.

The browser pauses in a loading state, and the web program is sent to the
Debugger Client Source Code page.

Work with the procedure code in the Client as usual.

156

Janus/TN3270 Debugger User's Guide

Additional Debugger Functionality

As the code is evaluated, output destined for a web pagefi27) goes to a Web Buffer
page in the Client:

#% The Janus Debugger (QAXML2)

File Window Search Breakpoints Execution DataDisplay Error Macros Help ;
Top | Bottom | Clear Audit | Run | Step | Step Over | Trace | Cancel | Clear Breaks | Clear Watch | Console E

- - - - L
Audit Trail | Source Code Web Buffer | Execution Trace | Proc Selection |
<html> Fa
<head> .
<title>Defanlt Janus Web Home Page</title> ¥
</head> —t
<body bgcolor="#ffffds"> -

<table cellpadding=2 cellspacing=5 border=0>
<tr>

<td valign=top halign=left>

 F
 e
</td> rl
<td wvalign=top halign=left> rf)’-_
<h2>Defanlt Janus Web Home Page</h2>

<ftd></tr> [
</table> PP
</body> ;

</html> =

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitionalfi?’_;i'_' -

<HTML>

] W ——

et e

When code execution completes, output (including error messages and Web Buffer
contents) is sent to the browser instead of to the Model 204 "terminal." At this point,
the connection to the web thread is closed and the debugging session ends. It is not
necessary to provide an explicit TN3270 DEBUG OFF command.

You can also embed TN3270 DEBUG SUSPEND and RESUME[s3 commands in the
procedures that are included in your program to take advantage of those features. And
you can similarly embed a TN3270 DEBUG OFF command or invoke its equivalent
programmable command tur‘nOffDebuggingm from a Client button or hot key.

Once debugging is on and the Client has the web thread source code, TN3270 DEBUG
command input from the command line at the Model 204 host has no effect on
debugging — the command line thread is separate from the web thread.

4.4 Debugging SSL applications

If you are using Janus Network Security, you may want to debug User Language
programs that run on a secure Web Server (normally accessed with URLs beginning
with "https").

The Janus Debugger manages SSL applications by maintaining an unencrypted
connection between the web browser and Debugger Client, and a secure connection
between the Debugger Client and the secure Web Server. This lets the Client examine
the HTTP request and response in unencrypted form, while all data to and from the Web
Server travels the network in encrypted form.

Janus/TN3270 Debugger User's Guide 157

Additional Debugger Functionality

To use the Debugger with a secure Web Server, you must "inform" the Debugger Client
that it must connect to the Web Server using the Secure Sockets Layer (SSL) protocol.
You do this simply by adding a line (an empty ss1 element) to the Client configuration
XML file for each secure server you debug, as describedksdl in the installation
documentation.

Then, in the URL to access the secure site, you use http:// instead of https://.

A Short SSL Example

If you use https://secureapp.myhost.com:123 to access your secure Janus Web
application, do the following to debug this application with the Janus Debugger:

1. Inthe serverList element in the debuggerConfig.xml file (located in the same
directory as JanusDebugger.exe), add a server element (as described[ssdl in the
installation instructions) that includes an empty ss1 sub-element (which you can
specify either as <ss1/> or as <ssl></ssl>:

<serverList>
<server>
<host>secureapp.myhost.com</host>
<webPort>123</webPort>
<workerPort>321</workerPort>
<ssl></ssl>
</server>
</serverList>

2. Pointhks? your web browser at the Debugger Client.
3. Start, or restart, the Debugger Client.

4. From your browser, access your application with this URL:

http://secureapp.myhost.com:123

Note: HTTPS is not specified in the URL.

4.5 Debugging Web Service applications

While the Janus Debugger is designed for debugging HTTP server applications whose
client is a web browser (that is, Janus Web Server applications), the TN3270 Debugger
also lets you debug an HTTP server application whose client is a User Language HTTP
socket program written with the Janus Sockets HTTP Helper. This Debugger versatility
is possible because the Debugger Client functions as a proxy server, and the HTTP
Helper can use a proxy server.

To debug a User Language Web Service client:

1. Install and configure the TN3270 Debugger normally.

158

Janus/TN3270 Debugger User's Guide

https://secureapp.myhost.com:123

Additional Debugger Functionality

2. Point the HTTP Helper application code to the Debugger Client.
Add code like the following to your HTTPRequest object code:

%HTTPReq is object HttpRequest auto new

%HTTPReq:URL = 'http://mywebservice

if (%(DebuggerTools):AmDebugging) then
%HTTPReq:Proxy = http://workstation: port

end if

where:

e AmDebugging is a DebuggerTools class[is8 shared method that queries
whether or not the program is being run under the Debugger.

* workstation is the IP address of your Debugger Client workstation, and port is
the workstation listening port number you specified in the Debugger
configuration filefs73).

One way to get the workstation IP number is to use the IPConfig command at
the MS DOS prompt on your workstation. For example:

C:\Documents and Settings\username> ipconfig
The response will show your port number:
Windows IP Configuration

Ethernet adapter Wireless Network Connection:
Media State : Media disconnected

Ethernet adapter Local Area Connection:

Connection-specific DNS Suffix : hsdl.ma.comcast.net.

IP Address. : 192.168.1.104 <== you want this
Subnet Mask : 255.255.255.0

Default Gateway : 192.168.1.1

4.6 Using the DebuggerTools class methods

You can use methods from the DebuggerTools system object in your User Language
code to aid in the debugging process in either the Janus Debugger or the TN3270
Debugger.

You can use these methods without error in SOUL code running in Model 204 Onlines
not licensed for the Debugger, as long as those Onlines are version 7.5 or greater or
licensed for the Janus SOAP product.

The following methods are available:

AmDebugginglied

Janus/TN3270 Debugger User's Guide 159

Additional Debugger Functionality

e Breaklieo
e ClientCommandhfis2]

e Commande?
e DebugOfflie3]
e StatusMessagelsa)

AmDebugging method

The AmDebugging shared method queries whether or not a User Language program is
being run under the Janus Debugger or the TN3270 Debugger.

The method takes no arguments, and it returns a numeric result:

%num = %(DebuggerTools):AmDebugging

where:
%num is a numeric variable that can be either of these:

0 The program is not running under either Debugger. This includes the
case where the program runs after debugging is suspended by a
TN3270 DEBUG SUSPEND[53 command.

1 The program is running under the Janus Debugger or under the
TN3270 Debugger.

AmDebugging lets you insert code that runs only when debugging, as in the following
example:

b
if (%(DebuggerTools):AmDebugging) then
print 'extra debugging information'’
end if
* normal processing

Break method

The Break shared method pauses execution on the statement that follows the Break
method specification. If your User Language request is not being run under the
Debugger, the Break method does not act— which lets you leave it in code. It essentially
has the same effect as using the Debugger Client to put a breakpoint on the statement
that would follow the Break method call.

160 Janus/TN3270 Debugger User's Guide

Additional Debugger Functionality

The Break method has one, optional, argument:

[%statusMsg] = %(DebuggerTools):Break[(command)]

where:

%statusMsg is a string that contains the message in the Client status bar[s] that results
from the execution of command. If the request containing the method is not running in
the Debugger, %statusMsg contains a "break is ignored" message.

command is a string expression (case not important) that contains the Client command
.77 or macrob17] to be executed im mediately following the break in execution. The
command or macro in the string may be preceded by the keyword Command or Macro.
This option requires at least version 7.8 of the Sirius Mods.

If command is not qualified by the keyword Command or Macro, the Debugger Client
searches first for a macro named command, then for a Client command named
command. You can use the Command or Macro keyword to search exclusively for a
specified command or exclusively for a specific macro. The macro search is restricted
to the Client installation folder or the designatedIs03l macro folder.

The Break method will not break execution in the following cases:

e [fitis invoked in a routine or method that you have elected to step over|sa]

e If you have issued a Run Until Procedurel73), and the Break call is encountered in a
procedure that precedes the "Run Until" procedure

e Ifawhite listl77is enabled, and the Break method is contained in a procedure that is
not on the white list

This code fragment includes a Break method invocation:

%status is longstring

%status = %(DebuggerTools):break('clearWatch')

* Break, execute the clearWatch command, and pause

* (awaiting instruction to execute the next statement)
%X = 666

When a Break method pauses execution, DebuggerTools:break hit is displayed in
the Status bar[49] of the Debugger Client (except, if Break executes a command, the
effect of the command is displayed). Also, unlike Client-set breakpoints, the UL> at the
beginning of the source code line does not change to BR>, and no red color highlighting is
applied to the line.

You can also use the DebuggerTools ClientCommand method to execute a Client
command; it does so without an execution break.

For more information about breakpoints, see Using breakpoints [55).

Janus/TN3270 Debugger User's Guide 161

Additional Debugger Functionality

ClientCommand method

The ClientCommand shared method lets you execute a Client com mand/i77 or macrof1?)
from within a User Language request. If your request is not being run under the
Debugger, the ClientCommand method harmlessly takes no action. The method
requires version 7.8 or higher of the Sirius Mods.

The ClientCommand method takes one argument and returns a string value:

%status = %(DebuggerTools):ClientCommand([Command | Macro] command)

where:

%status is a string that contains the message in the Client status barf4s1that results
from the execution of the command parameter.

command is a string expression (case not important) that identifies the Client command
or macro to execute, and it includes any parameters of the command or macro. If
command is not qualified by the keyword Command or Macro, the Debugger Client
searches first for a macro named command, then for a Client command named
command. You can use the Command or Macro keyword to search exclusively for a
specified command or exclusively for a specific macro. The macro search is restricted
to the Client installation folder or the designated@ macro folder.

For example:

%statusMsg is longstring
%statusMsg = %(DebuggerTools):clientCommand('Addwatch %x")
%statusMsg = %(DebuggerTools):clientCommand('Macro mymacro %i')

After execution of the above statements, %statusMsg contains the string "1 watch item
added".

Note: ClientCommand does not pause request debugging execution before (or after) it
executes a Client command. If you want to produce a debugging execution pause
before command exection, use the Breakli60l command with a command
parameter.

Command method

The Command shared method lets you effectively execute a TN3270 DEBUGH43)
command within a User Language request, that is, as a statement.

The Command method takes one argument and returns a numeric value:

%rc = %(DebuggerTools):Command(string)

162

Janus/TN3270 Debugger User's Guide

Additional Debugger Functionality

where:
%rc is a numeric variable that can be either of these:

0 The command/method succeeded.

<>0 The command/method failed.

string is a quoted string that specifies which TN3270 DEBUG subcommand to execute.
It may be in one of the following forms:

e Theterm OFF, SUSPEND, RESUME, or STATUS.

e The term ON, followed by the additional parameters required by the TN3270 DEBUG
ON command.

e The term CLIENTCOMMAND, followed by a blank, followed by its argument "clause,"
which consists of a Client command[177 or macrols17 and any parameters it
requires, optionally preceded by a Command or Macro keyword:

"CLIENTCOMMAND [Command | Macro] command [cmdparms]’

If command is accompanied by a preceding Command or Macro keyword or by a
following value for cmdparms, then such a clause must itself be enclosed in quotes
(as shown in the second example below).

Without a qualifying Command or Macro keyword, the Debugger Client searches first
for a macro named command, then for a Client command named command. The
Command or Macro keyword lets you search exclusively for a specified command or
exclusively for a specific macro.

Macro searches are restricted to the Client installation folder or the designated@
macro folder.

The CLIENTCOMMAND option requires version 7.8 or higher of the Sirius Mods. It is
likely to be simpler to use the DebuggerTools ClientCommand method than to use
the CLIENTCOMMAND option of the Command method.

In the following example, the Command method turns debugging on for the next
procedure that runs; the Janus client port and Debuggger client workstation are
specified:

%rc = %(DebuggerTools):command('ON DEBSOCK 198.242.444.234")

In this example, Command sends a user interface command to the Client:

%rc = %(DebuggerTools):command('CLIENTCOMMAND ' ‘'AddWatch %i''")

DebugOff method

The DebugOff shared method turns off debugging for a thread for which debugging was
turned on with a TN3270 DEBUG_ONf49l command. It is thus a way to issue a TN3270
DEBUG OFF command via a method call.

Janus/TN3270 Debugger User's Guide 163

Additional Debugger Functionality

The DebugOff method takes no arguments and returns a numeric result:

%num = %(debuggerTools) :DebugOff

where:
%num is a numeric variable that can be either of these:

0 TN3270 Debugger debugging was not on when the DebugOff method
was invoked.

1 TN3270 Debugger debugging was on and is now turned off.

When debugging is on and a DebugOff method executes, debugging stops immediately,
the Client/Online connection is broken, Online has disconnected is displayed in the
Status barls9] of the Debugger Client, and the request completes at the Online thread.

StatusMessage method
The StatusMessage shared method contains the message in the Client Status bar[4s]

that results from the last interaction with the Client. The method requires Version 7.8 or
higher of the Sirius Mods.

The StatusMessage method returns a string value:

%status = %(DebuggerTools):Statusmessage

4.7 Using a local editor

As described in this section, you can use a local editor to view and modify most of the
small text files that the Debugger Client provides for its various purposes. You can also
use a local editor to interactively modify your source code procedure files.

Editing small text files

The Debugger configuration file (debuggerConfig.xml) contains an element with which
you can specify a non-default text editor to work with the various small text files
employed by the Debugger Client. As described in this steg@ in the configuration of
debuggerConfig.xml, you use the notepadReplacement element to select your own
local editor to replace the Client default MicroSoft Notepad editor.

164

Janus/TN3270 Debugger User's Guide

Additional Debugger Functionality

Editing procedure files

The Procedure Line Detailsfi22 dialog box in the Debugger Client provides detailed
information about a source code line, such as the name of the procedure and procedure
file from which it comes. You can configure the Edit button on the Procedure Line Details
dialog box to copy the procedure code to an editor on your workstation.

From the editor, you can change and save the the code, and the saved file is
immediately returned to the Online to replace the original procedure. To see if the
change had the desired results, you re-issue from the browser the call that produced the
original procedure code.

Currently, two editors are supported:

e Xtend® from Yoda Software (http://yoda-software.com.au)

Xtend is a GUI-based editor designed specifically to edit procedures written in Model
204 User Language. It is aware of User Language syntax.

Xtend transfers files to and from the Model 204 Online using the HTTP protocol, and
you must either define a Janus Web Server port or set up an RCL Connect*
connection to use it. This document describes only the Web Server connection
(which requires Janus Web Server authorization). For information about using RCL
Connect*, you must see the Xtend documentation.

e UltraEdit® from IDM Computer Solutions, Inc. (http://ultraedit.com)

UltraEdit is a GUI-based text editor that is designed to edit program source code
from a wide variety of languages.

UltraEdit transfers files to and from the Model 204 Online using the FTP protocol,
and you must define a Janus FTP Server port to use it. This means you must be
authorized for Janus Sockets.

These sections follow:

Using Xtend with the Debuggerlisd
Using UltraEdit with the Debuggerfi7al

Janus/TN3270 Debugger User's Guide 165

http://yoda-software.com.au
http://ultraedit.com

Additional Debugger Functionality

471 Using Xtend with the Debugger

To use Xtend as an adjunct to your debugging, you set up a Janus Web Server port and
an APSY subsystem in the Model 204 Online, as well as configure the Xtend GUI and the
Debugger Client on your workstation. Once this configuration is complete, you can use
Xtend with the Debugger, as described above in Using a local editorlisal.

Note: You must use version 2.11 or higher of Xtend. The set up details provided below
are for version 2.11.

Also, as stated in in Using a local editorkes, RCL Connect* is an alternative to
Janus Web Server, but this document describes only the Web Server
connection.

The configuration steps below are described in this section. They assume the Debugger
installation has been completed and tested, as described in Product Installation[zsd. Much
of the Xtend product installation and set up is also documented in greater detail in Help
files provided with the product.

1. Install and set up Xtend in your Model 204 Online/i6é)

2. Install and set up the Xtend GUIke?)

3. Update the Debugger Client configuration file[1e3

4. Testthe configurationm

Install and set up Xtend in your Model 204 Online

Skip to the next subsection (Install and set up the Xtend GUIEﬂ) if Xtend is already
installed at your site.

1. From http://www.yoda-software.com.au, download to your workstation two
Windows installation files (one for the Xtend GUI and one for the Model 204
subsystem and web port).

2. Set up a Model 204 subsystem (XTEND) to control Xtend processing.

Notes for doing this are provided in the XtendInstall.HLP file in the XtendInstall
folder. See the "Xtend Apsy" section.

3. From the PC, run the Xtend installer executable (XtendInstall.exe), which will
populate the XTEND subsystem files.

4. Inthe Online, run the XTEND.JANUS.DEFINE procedure in the XTENDPRC
procedure file to start the Xtend Janus Web port.

The default port number for the non_SSL port is 7878; for the secure port it is 7879.
Change these numbers if necessary for your site.

166

Janus/TN3270 Debugger User's Guide

http://www.yoda-software.com.au

Additional Debugger Functionality

Install and set up the Xtend GUI

1. Ifyou will use Janus Debugger and have set up a proxy server for the Internet
Explorer browser, update the proxy settings to provide a bypass for connections to
the Xtend web port.

a.

d.

From the Tools menu, select Internet Options; then select the Connections tab,
and click the LAN Settings button.

Locate the Proxy Server area, and click the Advanced button.

In the Exceptions area, in the list box labeled "Do not use proxy server for
addresses beginning with," specify the URL of the Xtend web server port you
defined/iss.

Click OK as needed to close the multiple dialog boxes.

2. Set up a remote connection to Model 204 from the Xtend GUI.

a.

e.

Open the Xtend GUI executable file (Xtend. exe), and select Options from the
View menu.

In the Options dialog box, select the Remote tab.

In the grid in the main work area, specify a name for this connection and supply
a Model 204 user ID, host name, and the web server port you definedlies, and

click the Apply button.

If you will use TN3270 Debugger, select the name (Caption) of the remote
connection you just defined from the Default edit online when using

TN3270 Debugger drop-down list, then click the OK button.

Optionally, review and update the settings in the other Options tabs.

3. Add the names of the procedure files (and their privileges) whose procedures you
will be editing with Xtend.

a.

b.

Select Administrator Functions from the Admin menu; then select the Files tab.

In the File columns, name the procedure files that contain the procedures you
want to make accessible from Xtend; in the Privileges column, select a privilege
level.

This information can alternatively be specified in the XTEND subsystem
itself.

Click the Save Details button, followed by the Close button.

Janus/TN3270 Debugger User's Guide 167

Additional Debugger Functionality

Note: For procedure files that have explicit passwords, you must either add the file
name to the XTEND subsystem files listed in the Subsystem File Use screen
in the Model 204 Subsystem Management facility, or you must modify a
subroutine in the XTENDPRC procedure file (as described in the
XtendInstall.HLP file).

4. Test your connection.

a. Inthe Procedure List dialog box, select the tab that is labeled with the name of
your remote connection.

A list of your procedures is retrieved and displayed.

b. Display a test procedure's code (double-click the procedure name), make
some update, then save the updated procedure by clicking the Save File icon
on the toolbar.

c. Inyour Online, check that the updated procedure has replaced the original.

d. [f your connection test is successful, close Xtend.

Update the Debugger Client configuration file

Once Xtend is installed and configured for debugging, you enable the Debugger(s) to
invoke it by adding an entry to the Debugger Client configuration file (debuggerConfig.
xml). This file is installed in the same directory as the Debugger Client executable file,
and it is initially configuredhsdl as part of the Debugger Client installation.

To update the file:

1. Open the debuggerConfig.xml file in a text editor.

2. Addan <editor> element (bounded by an <editor> start tag and an <\editor>
end tag) at the same level (as a sibling of) the existing <serverList> element.

168 Janus/TN3270 Debugger User's Guide

Additional Debugger Functionality

Include these <editor> sub-elements, and specify values for them as described in

the Comment section below:

Sub-element

<program></program>

Comment
The identifier of the Xtend program executable file (case
does not matter). For example: <program>xtend</

program>.

Note: If the Windows system variable Path does not

include the folder path that points to the Xtend
executable (for example, C:\Program
Files\Xtend), either add it to the Windows
variable now, or specify the folder path before the
executable file name in the <program> value.

To locate the Path variable specification on a
Windows 7 workstation, find the Control Panel
(say, Start menu > Settings > Control Panel),
then select System > System advanced settings
> Advanced tab > Environment Variables button >
System variables > Path, then click Edit to see
the full specification of the Path variable.

When complete, your configuration file should have a structure like the following:

<debuggerConfig version="1.0">

<serverList>

</serverList>
<proxy>

</proxy>
<editor>

<program>xtend</program>

</editor>

</debuggerConfig>

3. Save and close the file.

Janus/TN3270 Debugger User's Guide

169

Additional Debugger Functionality

Test the configuration

In the Debugger Client, edit a procedure.
1. Restart the Debugger Client.

2. Load a procedure in the Source Code tab of the Debugger Client:

e Janus Debugger: From your web browser, invoke a URL that includes a
procedure.

e TNB3270 Debugger: Issue the TN3270 DEBUG ONls3l command; then include a
procedure from the Model 204 command line.

3. Right-click a line of code, select Procedure Information from the context menu, then
click the Edit button on the Procedure Line Details dialog box.

Xtend should open, displaying in its working area the procedure that contains the
code line that you right-clicked. If it fails to do so, and you verified earlier that, by
itself, Xtend successfully transfers files from the Model 204 Online, begin your
troubleshooting in the Debugger Client debuggerConfig.xml file settings for the
<editor> element.

4.7.2 Using UltraEdit with the Debugger

To use UltraEdit as an adjunct to your debugging, you must set up a Janus FTP server in
the Model 204 Online as well as configure UltraEdit and the Debugger Client on your
workstation. Once this configuration is complete, you can use UltraEdit with the
Debugger, as described above in Using a local editor[ical.

Note: You can use any version of UltraEdit that supports FTP Open. The set up details
provided below are for version 12.10b and later.

The configuration steps below are described in this section. They assume the Debugger
installation has been completed and tested, as described in Product Installationlsed.

1. Set up a Janus FTP server in the Model 204 Onlinefi7ol

2. Set up UltraEdith71)

3. Update the Debugger Client configuration file[173)

4. Test the configuration[i73)

Set up a Janus FTP server in the Model 204 Online

You must have the Janus Sockets product enabled, and you should refer to the "Janus
FTP Server" chapter in the Janus Sockets Reference Manual.

170

Janus/TN3270 Debugger User's Guide

Additional Debugger Functionality

The following steps provide a simple example of JANUS commands you can use to set
up a Janus FTP Server configured to access the procedures in the MYPROCFILE file:
1. Create an FTP Server port with the JANUS DEFINE command:

JANUS DEFINE FTPULTRA portnum FTPSERVER 8 -
AUDTERM -
BINDADDR XXX .XXX XXX .XX

where portnum will be the TCP port number for accessing your FTP Server, and
XXX.xxX.xxx.xx is the IP address on your Model 204 host to which the port is
bound.

2. Create a mapping that provides FTP Write access to the procedure file.

The following example gives Write access to the file to all users, for the port defined
in the previous step. The JANUS FTP command is described in the Janus Sockets
Reference Manual.

In this example, MYPROCFILE is made the home folder, although it need not be (for
example, if you already have a home folder set to something else).

JANUS FTP FTPULTRA ASSIGN /MYPROCFILE TO FILE MYPROCFILE
JANUS FTP FTPULTRA HOME /MYPROCFILE TO ALL
JANUS FTP FTPULTRA ALLOW /MYPROCFILE WRITE TO ALL

3. Start the FTP Server port:
JANUS START FTPULTRA

4. Issue the following command, and verify that your port is defined and started:
JANUS STATUS

Set up UltraEdit

1. Download and install a copy of UltraEdit on the workstation that hosts the Debugger
Client.

2. Start UltraEdit, and in the File menu, select FTP, then Open from FTP.

3. From the FTP Open dialog box, set up an account that contains the information
UltraEdit needs to access your procedure file via the Janus FTP Server you set up:

Janus/TN3270 Debugger User's Guide 171

Additional Debugger Functionality

a. Click the Accounts button, and in the FTP/SFTP Account Manager dialog box, click
the Add Account button:

Account:

/

v Browse Site [show Log

FTP/SFTP Account Manager

Name

Dat| Gt oo | con
General |Advanced|| Proxy | SSH | fa

Transfer Type:

File name:

Add Account...

l

Remove Accg

~"4] Close Dial g.after Transfel
o _.r-"'p [y

b. Provide values for the fields that are displayed in the General tab:

Account Identifies this set of FTP connection values to UltraEdit, and
you must also specify this value in the Debugger Client
configuration file.

Protocol Leave the default value, FTP.

Server The DNS name of the Model 204 Online's host machine, or
the IP address on your Model 204 host to which the Janus
FTP port is bound (BINDADDR in the Janus FTP Server
port definition[173)).

Port Replace the default value (21) with the port number you
specified in the Janus FTP Server port definition178.

Username UltraEdit accesses Model 204 with this user ID and the
Password value, below. Case does not matter.

Password The password for Username, above. Case does not matter.

User Account

Any value specified here, or no value, is ignored by the
Janus FTP Sener.

172

Janus/TN3270 Debugger User's Guide

Additional Debugger Functionality

Initial Directory Your initial location upon connecting to the FTP Senver. This
must correspond to a folder you specified — including the
forward slash (/) separator that precedes it — in a JANUS
FTP pname ASSIGN command in the set upli7d of your
Janus FTP Sener. Case does not matter.

c. Click the Apply button, then click the OK button.

On the FTP Open page, your Account name displays in the Account drop-down
list, and your Initial Directory value displays below that list.

¢ FTP Open X
JALTEST v [Jshow Log
Change Dir

Filter:

d. Test your FTP connection: select the Show Log checkbox, then click the Browse
Site button.

The files in your procedure file should display in the central list box.

The FTP functions represented by the various buttons on the right side of the
FTP Open dialog box are all operational (except for Create Dir and Permissions,
which Janus FTP does not support), so be cautious if you experiment further in
this dialog box. For more information about what these buttons do, see the
UltraEdit online Help.

e. Select a default Transfer Type option — it will be associated with this account —
then click the Cancel button to exit.

4. Close UltraEdit.

Update the Debugger Client configuration file

Once UltraEdit is installed and configured for debugging, you enable the Debugger(s) to
invoke it by adding an entry to the Debugger Client configuration file (debuggerConfig.
xml). This file is installed in the same directory as the Debugger Client executable file,
and it is initially configuredksdl as part of the Debugger Client installation.

To update the file:

1. Open the debuggerConfig.xml file in a text editor.

2. Add an <editor> element (bounded by an <editor> start tag and an <\editor>
end tag) at the same level (as a sibling of) the existing <serverList> element.

Janus/TN3270 Debugger User's Guide 173

Additional Debugger Functionality

Include these <editor> sub-elements, and specify values for them as described in
the Comment section below:

Sub-element Comment

<program></program> The identifier of the UltraEdit program executable file
(case does not matter). For example:
<program>uedit32</program>.

Note: If the Windows system variable Path does not
include the folder path that points to the UltraEdit
executable (for example, C:\Program
Files\Ultra-Edit-32), either add it to the
Windows variable now, or specify the folder path
before the executable file name in the <program>
value.

To locate the Path variable specification on a
Windows 7 workstation, find the Control Panel
(say, Start menu > Settings > Control Panel),
then select System > Advanced system settings
> Advanced tab > Environment Variables button >
System variables > Path, then click Edit to see
the full specification of the Path variable.

<account></account> The name of the UltraEdit account you set upm to
connect to the Janus FTP Server folder that contains
the procedures you will be debugging. For example:
<account>JALTEST</account>

Note: This value is case-sensitive; it must exactly
match the value specified in UltraEdit.

174 Janus/TN3270 Debugger User's Guide

Additional Debugger Functionality

When complete, your configuration file should have a structure like the following:

<debuggerConfig version="1.0">
<serverList>

</serverList>
<proxy>

</proxy>

<editor>
<program>uedit32</program>
<account>JALTEST</account>

</editor>

</debuggerConfig>

3. Save and close the file.

Test the configuration
1. Restart the Debugger Client.

2. Load a procedure in the Source Code tab of the Debugger Client:

e Janus Debugger: From your web browser, invoke a URL that includes a
procedure.

e TNB3270 Debugger: Issue the TN3270 DEBUG ON[48l command; then include a
procedure from the Model 204 command line.

3. Right-click a line of code, select Procedure Information from the context menu, then
click the Edit button on the Procedure Line Details dialog box.

UltraEdit should open, displaying in its working area the procedure that contains the
code line that you right-clicked. If it fails to do so, and you verified earlier that, by
itself, UltraEdit successfully transfers files from the FTP Server, begin your
troubleshooting in the Debugger Client debuggerConfig.xml file settings for the
<editor> element.

Note: UltraEdit 12.10a versions open the procedure to line 1 in your procedure
code. 12.10b and later versions, as well as 12.0x versions, open the
procedure to the same line number as that from which you invoke the edit in
the Debugger Client.

Janus/TN3270 Debugger User's Guide 175

176 Janus/TN3270 Debugger User's Guide

The Client Command Reference

charteErs 1 he Client Command Reference

Client commands are the operations that you invoke from Client menus and can assign
to a Debugger Client button, keyboard shortcut, or macro. It is intended that there be a
command available for any Client operation you want to automate.

The following subsections describe individually the available commands, which are
specified without regard for case.

Later sections in this document describe ways to use the commands:

e Reconfiguring GUI buttons and hot keys [2s8 describes how you can map any
command to a Client button or hot key.

e Default settings of buttons and hot keys@ lists the default hot keys and buttons
with which some of these commands are associated.

e Using Debugger Macrosk17 describes how you can use script multiple commands
to run consecutively.

A very few of the commands are macro-only: commands that may be used only in a

Debugger macro. The descriptions of these commands include a Scope section that
reminds of this restriction.

As a quick means of testing what a command does, you can open the Command Linekzs)
tool and run your command from there (specifying a qualifying Command keyword if a
same-named macro command exists). For informational, error, and trace messages
from the command, you can use the Consolel24 tool.

You can also execute a command from within a User Language request by using the
ClientCommand method of the DebuggerTools[sdl class.

Janus/TN3270 Debugger User's Guide 177

The Client Command Reference

5.1 addWatch command

Action: Adds to the Watch Window(se) the item currently specified in the Entity-
name input box]sol.

Syntax:

addWatch [item]

where jitem is the name of the item to be added (one of these@). Ina
macro, this argument is required.

Client menu: Data Display > Add Watch

Introduced: Build 26

5.2 addWatchOnCurrentLine command

Action: Adds to the Watch Window[s any variables found in the current Source
Code line.
Syntax:

addWatchOnCurrentLine

Client menu: Data Display > Add Watch on Current Line

Introduced: Build 28

5.3 assert command

Action: Performs an equality or inequality comparison between a) the value of
program data or a macro variablez27 or Client functionkz3], and b) a
constant or the value of a macro variable or macro function. For
example:

assert %i=666

178 Janus/TN3270 Debugger User's Guide

The Client Command Reference

This command lets you create simple testing macros that ensure that
key elements in your code have the values you expect. If the
comparison expression you construct with assert is not logically true,
you receive a failure message. If true, you receive no confirmation.

assert failure messages are displayed in the consolelz24, if it is open.
Otherwise, they are displayed in a Windows message box. They have
the following format:

Assert failed: failing_assert_statement
For example:
Assert failed: assert & = "no way"
The assert command syntax follows:
ASSERT &var | %xxx | g.xxx | f.xxx | $listcnt(X)
| $listinf(x,y) | &&function
=] <
string | [-1nnn | &var | &&function

where:

e &varis a previously defined macro variable.
e /xxxis a mainframe variable.

e g.xxx is a Debugger global variable referencefod).

e f.xxxis a Debugger field referencelos), possibly with a subscript.

e Slistcnt/$listinf are the Debugger functions for viewing $list counts
and elements.[s6]

e &&function is a macro function.
e <>is an inequality operator (as of Client Build 59).

e string is a quoted string constant (double-quotes or single quotes
are valid).

e [-]nnnis an integer constant with an optional leading minus sign.
Here are examples of valid assert statements:
assert g.JACK = "No play makes Jack a dull boy."
ASSert %s='Hey Moe'
ASSERT $listcnt(%g)=2

ASSERT $listinf(%g,2) = " makes Jack a dull boy."

Janus/TN3270 Debugger User's Guide 179

The Client Command Reference

Client menu:

Introduced:

assert &this = 'that'

assert &this <> &that
Notes:

e The &assertFailureCounths?, 8&assertSuccessCounths3, and
&&assertStatushsa Client functions, as well as
&&globalAssertFailur‘eCountEéI
&&globalAsser‘tSuccessCount@, and &&globalAssertStatus
339, report assert command results.

e If you are specifying a Client mapping commandps2 and your
assertion includes an ampersand character (&) or the not-equal
operator (<>), you must XML entity-encode the character. For
example, to map the command assert &i<>6, you specify it like
this:

<mapping command="assert &i<>6" button="button9"/>

For Client builds before 54, assert is allowed only in Debugger
macroshi7 and is not available as a mappable Client command.

Build 28

180

Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.4 bottom command

Action: Scrolls to the bottom of the current tab; has no effect if the Proc
Selection[13] page is being displayed.

Optionally, scrolls to the bottom of the Client window you specify as the
value of the command's In window prefix.

Syntax:
[In window] bottom

where:

window is one of the following keywords, not case sensitive, which
identify a Client window. Links are provided to help identify the less
common windows:

about/39)

auditTrail
commands|38)

console
executionHistorylia2)
executionTrace
keyboardShortcuts/ss)
source
textvieweria?
value[oo]
watchWindow
webBuffer

Client menu: Window > Bottom

Introduced: —

Janus/TN3270 Debugger User's Guide 181

The Client Command Reference

5.5 breakOnNextProc command

Action:

Client menu:

Introduced:

Interrupts White List[so) or Run Until[76} processing. The next
procedure will be debugged.

Syntax:

breakOnNextProc

Build 29

5.6 breaks command

Action:

Client menu:

Introduced:

Sets breakpoints on lines after comments that have the form *Break
(see Setting multiple breakpoints at oncelss)).

Syntax:

breaks
Note: The search for the *Break lines begins from the current line, so

you probably should precede the breaks command by a topk7a)
command if used in a macro.

Breakpoints > Breaks

182

Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.7 breaksAt command

Action: Sets breakpoints on lines that match a search string (see Setting
multiple breakpoints at once@).

Syntax:
breaksAt [string]

where string is the search string or regular expression.[ss] The default
is to use the value in the Search text box.|391

Note: The search for the lines on which to set breakpoints begins from
the current line, so you probably should precede breaksAt by a
t_og@ command if used in a macro.

In a macro (only), you must explicitly specify the string at which
breaksAt is to break.

Client menu: Breakpoints > Breaks At

Introduced: —

Janus/TN3270 Debugger User's Guide 183

The Client Command Reference

5.8 buttonBar command

Action: Opens and determines the position of the Client's main button bar|so1in
a Client external window. 306l To locate the button bar within the Client
main window, use the mainButtonBar]285 command.

Syntax:
buttonbar [position]

where position is one of these options that control the disposition of the
external button bar (the Button Bar window):

e top docks the window (places it, immobile) at the top left corner of
the desktop.

e bottom docks the window at the bottom left corner of the desktop.

e float places the window centrally and non-docked (mobile) on the
desktop.

° hide closes the window.

e show opens the window and restores the previous dock mode, if
any.

= [f the main button bar is not currently an external window, show
makes it external and restores its previous dock mode, if any,
or uses float as the default mode.

= [f the main button bar is already in an external window, show
has no effect.

The show parameter, new in Build 56, is the default.

Client menu: Window > Show Button Bar in External Window

Introduced: Build 55

184 Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.9 cancel command

Action: Cancels|631the User Language request that is being, or about to be,
debugged. Gives a "do you really want to" prompt.

Syntax:

cancel

Client menu: Execution > Cancel

Introduced: —

5.10 clearAudit command

Action: Clears the Audit Trail display.

Syntax:

clearAudit

Client menu: Window > Clear Audit Trail

Introduced: —

Janus/TN3270 Debugger User's Guide 185

The Client Command Reference

5.11 clearBreakpointOnCurrentLine command

Action:

Client menu:

Introduced:

Clears a breakpoint[sé1on the currently selected line in the Source Code

(or Daemonlissl) page; if the currently selected line is not an executable
statement, clears a breakpoint on the next executable line after the
currently selected line.

Syntax:

clearBreakpointOnCurrentLine
Notes:

e If you have not explicitly selected a code line, the current line is the
highlighted code line in the current execution position.

e If you execute this command for a line that already has no
breakpoint set, no additional action is taken.

For code lines for which a breakpoint is set, the
toggleBreakpointOnCurrentLinel2z7 command has the same effect
as the clearBreakpointOnCurrentLine command.

To set a breakpoint on the current line, you can use the
setBreakpointOnCurrentLine@ command or the
toggleBreakpointOnCurrentLine command

To clear all breakpoints, you can use the clearBreakshs2l command.

Build 57

186

Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.12 clearBreaks command

Action: Removes all previously set breakpoints [s).

To remove an individual breakpointi_ygu can use the
clearBreakpointOnCurrentlineli86l command.

Syntax:

clearBreaks

Client menu: Breakpoints > Clear All Breakpoints

Introduced: —

5.13 clearButton command

Action: Removes all previously set maggings@ for a particular Client button.

Syntax:
clearbutton buttonName
where buttonName is one of:

e button®, buttoni, ... button14, the names of the main button
@F@ﬁ buttons

° extraButton®, extraButtoni, ... extraButton14, the names of
the extra button barl+2] buttons

After you execute the command, the button is removed immediately
from the button bar to which it applies but not from the button-mapping
file (ui.xml or uimore.xml) if it was specified there. A restart of the
Client restores any mappings you remove with clearButton, if they
were in the ui.xml or uimore.xml file.

See also the mapButtonkzsl command.
Client menu: —

Introduced: Build 57

Janus/TN3270 Debugger User's Guide 187

The Client Command Reference

5.14 clearExecutionTrace command

Action: Clears the Execution Trace[13 display.

Syntax:

clearExecutionTrace

Client menu: Window > Clear Execution Trace

Introduced: Build 37

5.15 clearHistory command

Action: Clears the Execution History window.[132)
Syntax:
clearHistory
Client menu: —

Introduced: Build 50

188 Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.16 clearKey command

Action: Removes all previously set maggings@ for a particular Client
keyboard-key combination.
Syntax:

clearKey key

where key is a keyboard key: a single letter or digit, or one of F2
through F12 (the function keys)

Immediately after you execute the command, the keyboard shortcut
loses effect but its mapping is not removed from the button-mapping
file (ui.xml or uimore.xml) if it was specified there. A restart of the
Client restores any mappings you remove with clearKey.

See also the mapKeyb28 and clearbuttonfis?l commands.
Client menu: —

Introduced: Build 57

5.17 clearMacroConsole command

Action: Clears the Console window. k23]
Syntax:
clearMacroConsole
Client menu: —

Introduced: Build 50

Janus/TN3270 Debugger User's Guide 189

The Client Command Reference

5.18 clearStatus command

Action: Clears current message (error or informational), if any, from the Client
Status barlss1.

Syntax:
clearStatus

This command be useful to reduce confusion when developing
macros: at the start of the macro, you can clear any earlier messages,
so you will know that any subsequent messages are from the macro
under development.

Client menu: —

Introduced: Build 58

5.19 clearWatch command

Action: Removes|ss) all watched items from the Watch Window.

Syntax:

clearWatch

Client menu: Data Display > Clear Watch

Introduced: —

190 Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.20 clearWebBuffer command

Action: Clears the Web Buffer page[121.
Syntax:
clearWebBuffer

Client menu: Window > Clear Web Buffer

Introduced: Build 43

5.21 closeCommandLine command

Action: Closes the Command Line dialog boxfs23] (entitled Macro Command Line
prior to Client build 53), which lets you run a macro by entering its
name and any parameters.

Syntax:
clearCommandLine

See also openCom mandLineps3.

Client menu: —

Introduced: Build 53

5.22 closeExternalAuditTrailWindow command

Action: Closes an external Audit Trail window.[zoé)

Syntax:
closeExternalAuditTrailWindow

Client menu: —

Introduced: Build 50

Janus/TN3270 Debugger User's Guide 191

The Client Command Reference

5.23 closeExternalButtonWindow command

Action: Closes an external Button Bar window.42)

Syntax:
closeExternalButtonWindow

Client menu: —

Introduced: Build 54

5.24 closeExternalExecutionTraceWindow command

Action: Closes an external Execution Trace window.[208)

Syntax:
closeExternalExecutionTraceWindow

Client menu: —

Introduced: Build 50

5.25 closeExternalWatchWindow command

Action Closes an external Watch Window. kos]

Syntax:
closeExternalWatchiWindow

Client menu: —

Introduced: Build 50

192

Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.26 closeExternalWebBufferWindow command

Action Closes an external Web Buffer window.[z0d

Syntax:
closeExternalWebBufferWindow

Client menu: —

Introduced: Build 50

5.27 closeExternalWindows command

Action: Closes any open Client external Windows.[06)
Syntax:
closeExternalWindows

Client menu: Window > Close External Windows

Introduced: Build 50

5.28 closeHistory command

Action: Closes the Execution History window.[132]
Syntax:
closeHistory
Client menu: —

Introduced: Build 50

Janus/TN3270 Debugger User's Guide 193

The Client Command Reference

5.29 closeMacroConsole command

Action:

Client menu:

Introduced:

Closes the macro consolels2a.

Syntax:
closeMacroConsole

See also openMacroConsole. Eeﬁ

Build 53

5.30 closeValueDisplay command

Action:

Client menu:

Introduced:

Closes the current Value window@, if any; takes no action if no Value
window is open.

Syntax:
closeValueDisplay

A Value window is used by multiple Client operations and commands
to display or expand values (for example, the expandList@,
expandObiectEﬁ,pafgiEﬁ,paiEﬁ,andvalueDisplayEﬁ
commands).

Build 50

194

Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.31 continuelf command

Action Determines whether the processing of a Debugger macrolsi7] may
continue. If the state ("True" or "False") of a specified command argument (
macro variable|3_27'1, client function@, or constant) is True, the macro
continues. As of Build 62, continueIf can evaluate the truth of an
expression (equality or inequality) involving macro variables, client
functions, or constants.

If the state of the continueIf argument or comparison expression is
False, the macro containing this command and any macro(s) within
which this macro is contained terminate (without error). This behavior
contrasts with that of the continueMacroIflies com mand, which exits only
the macro containing the continueMacroIf command.

Syntax:
continueIf test
and prior to Build 62 fest is:
&var | &&function | const
and as of Build 62 test is:
&var | &&function | const [= | <> &var | & function | const]
Where:
e &varis a macro variable that may or may not already exist.
e &&function is a Client function. Requires Build 58 or higher.
e constis a constant. Requires Build 58 or higher.

e = and <> are equality and inequality operators, respectively.

Notes:

If continueIf is used with a single argument and that argument is © or a
zero length (null) string, or if it is undefined, its state is considered to be
False. For all other values, its state is considered to be True.

In an equality comparison, a null string compared to a null string is True,
and any undefined item makes an equality comparison False. Each of
these truth outcomes is reversed in an inequality comparison.

Example:

Janus/TN3270 Debugger User's Guide 195

The Client Command Reference

Scope:

Client
menu:

Execute Step and optionally update history
nospan

step

continueIf &historyWanted

getHistory

continueIf &testMe <> &testMe2

Allowed only in Debugger macros; not available as a mappable Client
command

Introduced: Build 37

5.32 continueMacrolf command

Action:

Determines whether the processing of the Debugger macrof17l that
contains this command may continue. If the state ("True" or "False") of a
specified command argument (macro variable|3_251, client functionpzsl, or

constant) is True, the macro continues. As of Build 62, continueMacroIf

can evaluate the truth of an expression (equality or inequality) involving
macro variables, client functions, or constants.

If the state of the command argument is False, the macro terminates
(without error). This behavior contrasts with that of the continueIf[e3)
command, which exits not only the macro containing the continueIf
command but also any macro(s) within which that macro is contained.

Syntax:

continueMacroIf test
and prior to Build 62 fest is:

&var | &function | const

and as of Build 62 test is:

&var | &&function | const [= | <> &var | & function | const]

Where:

e &varis a macro variable that may or may not already exist.

e &&function is a Client function. Requires Build 58 or higher.

196

Janus/TN3270 Debugger User's Guide

The Client Command Reference

e constis a constant. Requires Build 58 or higher.

e = and <> are equality and inequality operators, respectively.

Notes:

If continueMacroIf is used with a single argument and that argument is
or a zero length (null) string, or if it is undefined, its state is considered to
be False. For all other values, its state is considered to be True.

In an equality comparison, a null string compared to a null string is True,
and any undefined item makes an equality comparison False. Each of
these truth outcomes is reversed in an inequality comparison.

Example:

See if it is watched, done if not

in watchWindow searchFromTop &argstring
continueMacrolf &&searchSuccess

#

It was watched, remove and tell what we did
removeCurrenthatch

echo &&concatenate("removed watch ", &argstring)

continueMacrolf &testMe = 1

continueMacroIf &8&blackOrWhitelList <> 'black'

Scope: Allowed only in Debugger macros; not available as a mappable Client
command

Client —

menu:

Introduced: Build 57

Janus/TN3270 Debugger User's Guide 197

The Client Command Reference

5.33 copy command

Action: Copies to the clipboard the lines currently visible in the active tabbed
gagem.

Syntax:

copy

Client menu: Window > Copy

Introduced: —

5.34 createMacro command

Action: Lets you name (via a Windows dialog box) and edit (via Windows
Notepad) a new blank Debugger macrobi7lfile.

Syntax:

createMacro

Client menu: Macros > New Macro

Introduced: Build 26

198 Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.35 debugPreview command

Action: When the Source Preview feature[sslis enabled, triggers a full
download of the program source code for normal debugging. If the
program has compilation errors, the full compilation error listing is
downloaded.

Syntax:

debugPreview

Client menu: Execution > Debug Previewed Source

Introduced: Build 30

5.36 decrement command

Action: Decreases the value by 1 of a specified numeric macro variablels2?. If
the macro variable is non-numeric or is undefined, an error is issued.

Syntax:
decrement &var

where &var is a macro variable that may or may not already exist.

The inverse of this command is increment.bi7] A related Client function
is &&sumpa7l.

Client menu: —

Introduced: Build 57

Janus/TN3270 Debugger User's Guide 199

The Client Command Reference

5.37 disableButton command

Action: Disables the (currently enabled) button bar button[ss1that you specify. A
disabled button performs no action and has gray text. You might want to
disable a button to simplify the button bar display for a particular
context.

Syntax:
disableButton buttonName

where buttonName is button@, buttonl, etc; thatis, the name of a
currently mappedbssl button.

If the command executes successfully, you receive a Disabled
button: buttonName message, and the button's label changes from
black text to gray.

See also the enableButton[02 command.

Client menu: —

Introduced: Build 62

200 Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.38 echo command

Action: Displays a message to the user.
Syntax:
echo message
where message is one of these:

e Anon-quoted string that contains the message.

e AClient functionls29. The result of the function execution is
displayed as the message.

The message string starts with the first non-blank character after the
echo keyword, and it continues as far as the end of the line. For
example:

echo Have a nice day!

The message is normally displayed in a standard Windows
informational box (entitied Macro message). If the macro consolek2al is
open, however, the message is sent to the console instead.

Note: If you are specifying a Client mapping commandps2l and your
message includes an ampersand character (&), you must XML
entity-encode the character. For example, to map the
command echo &foo, you specify it like this:

<mapping command="echo &foo" button="buttonl3"/>

Client menu: —

Introduced: Build 27

Janus/TN3270 Debugger User's Guide 201

The Client Command Reference

5.39 editMacroFromUISelection command

Action:

Client menu:

Introduced:

Lets you select and open for editing (via Windows file-selection dialog)
an existing Debugger macrob17 file.

Syntax:
editMacroFromUISelection

Macros > Edit Macro

Build 53

5.40 enableButton command

Action:

Client menu:

Introduced:

Enables the (currently disabled) button bar button[ss) that you specify. A
disabled button performs no action and has gray text.

The enableButton command affects only buttons that are disabled
because they were specified in a previous disbleButtonpodl
command. If a button is disabled because its action is not appropriate in
the current debugging context, enableButton does not enable the
button. For example, after you cancel a request, the Cancel and Clear
Breaks buttons are disabled, and an enableButton command for one of
these buttons has no effect: the button remains disabled and no return
message is displayed.

Syntax:
enableButton buttonName

where buttonName is button@, buttonl, etc; that is, the name of a
currently mappedfs3l button.

If the command executes successfully, you receive an Enabled

button: buttonName message, and the button's label changes from
gray text to black.

Build 62

202

Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.41 evaluate command

Action: Constructs and runs a Client command. The evaluate argument
values are concatenated into a single string and run as a Client
command.

Syntax:
evaluate {&var|['stringl'|"string2"} ...
where:

e &varis a previously defined macro variables27.

e string1 and string2 are single- or double-quoted string literals.

No blanks are placed between the argument values when they are
concatenated, so you may have to provide for them within quoted string
values. If a macro variable is not defined, or if the string that is built is
not a valid command, an error is issued.

Here is a macro definition that makes heavy use of the evaluate
command:

histButtons.macro: Assign extrabutton<extrBtn>-<extrBtn+3>
for history traversal

Usage: macro historyButtons <extrBtn>

extraButtonbar main

set &bnum = &argstring

evaluate 'mapButton extrabutton' &bnum ' previousHistory'
increment &bnum

evaluate 'mapButton extrabutton' &bnum ' nextHistory'

increment &bnum

evaluate 'mapButton extrabutton' &bnum ' firstHistory'

increment &bnum

evaluate 'mapButton extrabutton' &bnum ' lastHistory'

evaluate 'echo buttons ' &argstring '-' &bnum ' set for history’

Client menu: —

Introduced: Build 57

5.42 expandList command

Action: Disglays@ in a Value window the list items in the $list, Stringlist, or
Arraylist referenced by the variable specified as the command
argument.

Janus/TN3270 Debugger User's Guide 203

The Client Command Reference

Same as the List Display context menu option for Watch Window items,
including how to control the number of items displayed.

For example:
expandList %ls

If the command argument does not reference a $list, Stringlist, or
Arraylist, you receive an error message.

If issued by a macro, and the Macro Consolep2alis open, then the value
is displayed in the Macro Console window.

Client menu: —

Introduced: Build 43

5.43 expandObject command

Action: Disglaysmﬂ in a Value window a list of the class Variable names and
values of its required object instance argument. Same as the Expand
Object context menu option for Watch Window items.

For example:
expandObject %scout

If the command argument does not reference an object, or if the object
does not have class variables, you receive an error message.

If issued by a macro, and the Macro Consolepz4l is open, the value is
displayed in the Macro Console window.

Client menu: —

Introduced: Build 43

204 Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.44 extraButtonBar command

Action: Opens and determines the position of a Client's extra button bar(421,
Command options locate the bar in an external window /308l or on the
Client main window, merged with the main button bar.

Syntax:
extraButtonbar [position]

where position is one of these options that control the disposition of the
extra button bar (the Extra Buttons window):

e top docks the window (places it, immobile) at the top left corner of
the desktop.

e bottom docks the window at the bottom left corner of the desktop.

e float places the window centrally and non-docked (mobile) on
the desktop.

e main adds the extra buttons to the main button bar, immediately
following the last main button. Available in Client build 57. This is
equivalent to selecting the Extra Buttons option in the Preferences
[181 dialog box.

e hide closes the the Extra Buttons window.

e show opens the window and restores the previous dock mode, if
any, or uses float as the default mode.

If the Extra Buttons window is already open, show has no effect.

The show parameter is the default.

Client menu: Window > Show Extra Button Bar Window

Introduced: Build 56

Janus/TN3270 Debugger User's Guide 205

The Client Command Reference

5.45 feoDisplay command

Displays FOR EACH OCCURRENCE OF (FEO) statement

Action: information[114 (current OCC subscript value) for the current source
line (if it is an FEO statement). If the current source line is not an FEO
statement, an error is issued.

This command is equivalent to right-clicking a source line and
selecting FEO OCC IN Value from the context menu.
Syntax:
feoDisplay
Client menu: —

Introduced: Build 58

5.46 firstHistory command

Action: Scans chronologically backward in the current statement execution
historyfis2], then highlights in the Source Code or Daemon tab the first
(earliest) statement in the history.

Syntax:

firstHistory

Client menu: Execution > Select First History Line

Introduced: Build 54

206 Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.47 focusToSearchBox command

Action: Gives the input focus to the Search text areal+4). Once that area has
focus, pressing the Enter key invokes the searchDownls1) command,
SO you can repeat a search using only the keyboard.

Syntax:
focusToSearchBox

By default, the Ctrl+F key combination also gives focus to the Search
text area.

Client menu: —

Introduced: Build 29

5.48 generatePac command

Action: Generates a PAC (Proxy Auto Config) JavaScript file from the Debugger
configuration settings in debuggerConfig.xml. If this file is defined to
the Internet Explorer browser, IE will use the Debugger Client as a
proxy only for requests for the hosts (Onlines) specified|ssol in
debuggerConfig.xml.

The IE browser does this host filtering if the PAC file location is
specified for it in the Address value in Tools > Internet options >
Connections > LAN settings > Use automatic configuration script.

By default, generatePac merges the code it generates with that of an
existing PAC file (if such a file is already specified in the Internet
Explorer configuration options).

Syntax:

generatePac [file [overwrite|nomerge]]
Where file is the name of a file which, if not specified, defaults to
debuggerInternalPac.js. The generated file is placed by default in

the Client work-file folderlo3l. If no such work folder is configured, the
Client installation folder is used.

If you specify a file value:

Janus/TN3270 Debugger User's Guide 207

The Client Command Reference

¢ You can use quotation marks to indicate an absolute or relative
Windows file-system path:

= [f quoted (for example, generatePac "c:\pac\debuggerPac.
js"), the file value is treated as an absolute file path.

= If not quoted (for example, generatePac foo.js), the value is
treated as a path relative to the work-file folder.

* You can also use a file URL (for example, file://c:\xxx\yyy.]js
) to specify the file.

If a file with the same name as file already exists, it will not be
overwritten, unless you specify overwrite. If you use overwrite, the
file value must be explicitly specified.

Note: If your file specification contains an error (typo, incorrect file or
path name, etc.), the Internet Explorer browser ignores the command
and does not inform you of the error.

When generatePac runs, it reports its activity in the Debugger Client
consolef24. For example:

Command: generatePac foo.js overwite
Cenerated New Pac file: foo.js
Added: 5 web servers fromthe configuration.
Cenerated Pac Fil e:
/1 foo.js generated by debugger client on: 2013 05 23 15:59: 20
function Fi ndProxyFor URL(url, host) {

urlLc = url.tolLowerCase();

i sDebuggabl e = (

(shExpMmat ch(url Lc, "http://sirius-software.com 3666/*")

W
(shExpMat ch(url Lc, "http://sirius-software.com 9219/*"))

I
(shExpmat ch(url Lc, "http://sirius-software.com3667/*")

I
(shExpMat ch(url Lc, "http://sirius-software.com 3000/*")

I
(shExpMmat ch(url Lc, "http://sirius-software.com80/*")

W
(shExpMat ch(url Lc, "http://sirius-software.coni*")

);
if (isDebuggable) return "PROXY 127.0.0. 1: 8081; DI RECT";
return "D RECT";

}

The quoted host URLs above are copied from the debuggerConfig.
xml file. The last of them (with no explicit port number appended) is
generated when a port 80 specification is present in debuggerConfig.
xml.

208

Janus/TN3270 Debugger User's Guide

http://sirius-software.com:3666/*")
http://sirius-software.com:9219/*")
http://sirius-software.com:3667/*")
http://sirius-software.com:3000/*")
http://sirius-software.com:80/*")
http://sirius-software.com/*")

The Client Command Reference

See also the setIEmodelsd command, which combines the
generatePac functionality with automatic specification and removal of
the PAC file in the IE configuration settings when the Client starts and
closes.

Client menu: —

Introduced: Build 62

5.49 getHistory command

Action: Displays a historyfa2 (in an Execution History window or in the Execution
Trace page) of the statements executed thus far during program

evaluation. The history includes calls and returns for methods and
subroutines (as many as 1000 statements).

Syntax:
getHistory

See also the pr‘eviousHistor‘ym, nextHistor‘ym, firstHistory
208, and lastHistory@ commands, which let you view highlighted

history statements within the program in the Source Code tab (or
Daemon tab).

Client menu: Execution > Get/Display History

Introduced: Build 34

5.50 getVariablesForClass command

Action: Disglaysmﬂ a list of the names (not values) of the variable members in
the system or user class that is specified as the command argument.

Similar to expandOb‘iectm, but does not scan the code for the values
of a particular object instance.

For example:

getVariablesForClass cats

Janus/TN3270 Debugger User's Guide 209

The Client Command Reference

If the class in the command argument is not found, or if the class does
not have member variables, you receive an error message.

If issued by a macro, and the Macro Consolek24lis open, then the value
is displayed in the Macro Console window.

Client menu: —

Introduced: Build 43

210 Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.51 help command

Action: Displays the Debugger's Windows Help file, or as of Builds 59 and 60,
displays a brief description of a specified Client com mandhz7 or
function[z23, or displays a list of the available user preference options or
of the file types that the Debugger ignores (that is, does not display for
debugging).

Syntax:
help [command | function | preference | ignoredFiles]
Where these are the parameter options:

e Specify a Client command or function (without regard for case).

e Specify preference to display the user preferences available to
you as options of the setPreferencebssl command. This option is
available as of Build 60.

e Specify ignoredFiles to display a list of the filtered file types 2\
This option is available as of Build 60.

If you issue help preference, output like the following is displayed:
Targets for setPreference:

breakAfterReadScreen
caseSensitiveAssert
debuggerDirectives
historyToTrace
ignoredFileTypelist
ignoreMacroErrors
initExclude
macroAutorun
pauseAtEndEval
stopOnAssertFailure
useProclLists
useRoutinelLists
valueDisplayOnConsole

If you issue help ignoredFiles, output like the following is displayed:

Ignored file types (if ignoredFileTypeList is on):
css,gif,htc,ico,jpeg,jpg,js,png,xml,xsl

Client menu: Help > Help Topics

Introduced: —

Janus/TN3270 Debugger User's Guide 211

The Client Command Reference

5.52 hideLower command

Action: Hides the lower sectionl:1) of the Client main window. This is useful
where the Audit Trail and Watch Window are in separate windows on the
same or another monitor.

This command is equivalent to selecting the Hide Lower Section option
of the Main Window Options section of the Preferences|1¢1 dialog box.

Syntax:
hideLower

hideLower has no effect if the lower windows are hidden when the
command is issued.

See also:

e The toggleLowerEa command also hides the lower windows if
they are not hidden when the command is issued, but which
restores the windows if they were hidden.

e The restorelower|8 command restores the lower windows if
they were hidden.

e The openExternalWatchWindowlssl command lets you access

the Watch Window if the lower section of the main window is
hidden.

Client menu: File > Preferences > (Main Window Options) Hide Lower Section

Introduced: Build 57

212 Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.53 httpGet command

Action: Attempts to execute an HTTP GET file download for the file whose
URL you specify as the command parameter. Useful for testing the
Proxy Auto Configure (PAC) filelssdl feature and as needed. Bypasses
current settings in the Client's Preferences|1s] window.

Syntax:
httpGet file url

If the GET succeeds, the Client Status barl4¢ displays a message like:
HTTP GET completed.

You can use the Client consoleb2al to view the content of the file you
download.

See also httgPutFilem and retryHttpPac pa.

Client menu: —

Introduced: Build 63

Janus/TN3270 Debugger User's Guide 213

The Client Command Reference

5.54 httpPutFile command

Action:

Attempts an HTTP PUT file upload of the file you specify to the URL you
specify.

Useful for testing the Proxy Auto Configure (PAC) fileked) feature.
Bypasses current settings in the Client's Preferences|1s] window.

Syntax:
httpPutFile file url

where the Client searches first for £ilein the Client's work files [3s4.

For example:

httpPutFile debuggerInternalPac.js
http://sirius.sirius-software.com:9292/pacman/PAC.172.16.60.38.3S

The Client Status bar reports on the result of the command; for example,
a message like:

HTTP PUT file upload completed.

See also httpPutStringhis), httpGethid, retryHttpPacks7), and
&¤tPacFilehss),

Client menu: —

Introduced:

Build 63

214

Janus/TN3270 Debugger User's Guide

http://sirius.sirius-software.com:9292/pacman/PAC.172.16.60.38.JS

The Client Command Reference

5.55 httpPutString command

Action: Attempts an HTTP PUT upload using the string and the URL you
specify.

Useful for testing the Proxy Auto Configure (PAC) filefso0l feature and as
needed, the command bypasses the current settings in the Client's
Preferences| 18] window.

Syntax:

httpPutString string url
For example, the following command stores a quoted literal string in a
file in a Janus Web Server configured to use the file name MYSTRING.
JS:

httpPutString 'debuggerInternalPac.js'
http://sirius.sirius-software.com:9292/pacman/MYSTRING.JS

The Client Status bar[49] reports on the result of the command, with for
example, a message like:

HTTP PUT string upload completed.

See also httpPutFilebid) httpGethid, retryHttpPacks?), and
&¤tPacFilelss.

Client menu: —

Introduced: Build 63

Janus/TN3270 Debugger User's Guide 215

http://sirius.sirius-software.com:9292/pacman/MYSTRING.JS

The Client Command Reference

5.56 include command

Action:

Scope:

Client menu:

Introduced:

Calls another Debugger macroli7,

Syntax:
include macroname

where macroname is the non-quoted name of the macro.

Allowed only in Debugger macrosbi7l; not available as a mappable
Client command.

5.57 includelf command

Action:

Scope:

Client menu:

Introduced:

Conditionally calls another Debugger macrols17. The specified macro is
included if and only if the state ("True" or "False") of a specified macro
variablekz27is True. If the state of the macro variable is False, no
action is taken and the macro continues.

If the variable is o or a zero length (null) string, or if it is undefined, its
state is considered to be False. For all other values, its state is
considered to be True.

Syntax:
includeif &var macroName
where:

e &varis a macro variable that may or may not already exist.

e macroName is the non-quoted name of a macro.

Allowed only in Debugger macros; not available as a mappable Client
command.

Build 57

216

Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.58 increment command

Action: Increases the value by 1 of a specified numeric macro variablels21. If
the macro variable is non-numeric or is undefined, an error is issued.

Syntax:
increment &var

where &var is a macro variable that may or may not already exist.

For an example that uses the increment command, see the evaluate
203 command.

The inverse of this command is decrement/iod. A related Client
function is &&sumba7l

Client menu: —

Introduced: Build 57

5.59 jumpToLine command

Action: Transfers control to a specified request statement in the Source Code
or Daemon page, then executes that statement.

The command's required argument is a number or keyword that
indicates the target statement:

jumpToLine [current | number]
where:

e The keyword current specifies a jump to and then execution of
the current statement.

e numbermay be in one of three forms:
nnn | -nnn | +nnn

= nnnspecifies an "absolute jump" to the nnn statement line

number[111in the Source Code or Daemon page display, then
an execution of that statement.

Janus/TN3270 Debugger User's Guide 217

The Client Command Reference

Client menu:

Introduced:

. -nnnor +nnnspecifies a "relative jump," jumping the
indicated number of statements backward or forward relative
to the current (yellow highlighted) line, followed by the
execution of that statement.

For example, specifying -1 re-executes the statement prior to the
current line. +1 skips the current executable statement and
executes the one following it.

If you use the command in a macroka7t

1.

2.

When you specify the jumpToLine command in the macro,
explicitly supply its argument (the current keyword or a number
to indicate the target line) or specify an argument variable.[z22

Observe the jump validation rules.[s2)

If you use the command in a mapped button or hot key@'ﬂ:

1.

2.

Do not specify an argument for the jumpToLine command in the
mapping; you specify the argument (the current keyword or a
number to indicate the target line) in the Entity-name input box]so].

Observe the jump validation rules.

For information about invoking a jump by right-clicking a line in the
Source Code or Daemon tab, see Altering the flow of execution. [s1]

Build 27

218

Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.60 jumpToMatch command

Action: Transfers control to a request statement that contains a specified
matching string, then attempts to execute that statement.

Syntax:
jumpToMatch string

where string is the string for which a match is searched from the top
(first) line in the Source Code or Daemon page. The search string may
be a regular expression, as described for the Search button[391.

The nesting level of a statement has no effect on whether it is located.
If a match is not found, JumpToMatch string not found is displayed
in the Status area.[9] If a match is found but the statement is not

executable, Invalid line for jump is displayed in the Status area.

If you use the command in a macrob7\

1. When you specify the JumpToMatch command in the macro,
explicitly supply its argument (the current keyword or a number
to indicate the target line) or specify an argument variable. [:22]

2. Observe the jump validation rules.[sz]

If you use the command in a mapped button or hot keyleed:

1. Do not specify an argument for the JumpToMatch command in the
mapping; you specify the argument (the current keyword or a
number to indicate the target line) in the Search text box.

2. Observe the jump validation rules.

For information about invoking a jump by right-clicking a line in the
Source Code or Daemon tab, see Altering the flow of execution. [s1]

Client menu: —

Introduced: Build 27

Janus/TN3270 Debugger User's Guide 219

The Client Command Reference

5.61 Kkill command

Action: Stops a running macrolsi7and issues a message indicating that fact.
If kill is issued and the specified macro is not running, you receive a
message indicating that no such macro is running. This is most
suitable if a macro's execution spans multiple requests.

Syntax:
kill macroName

where macroName is the name of the macro you want to stop.

Client menu: Macros

Introduced: Build 58

220 Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.62 labelButton command

Action: Lets you replace the label of a Client button bar button[as1.

Syntax:
labelButton buttonName newlabel
where:

e puttonName is button@, buttonl, etc; that is, the name of a
currently magged@ button.

e newabel can be as many as 50 characters (the button is
expandable).

If the command executes successfully, the label changes immediately,
and you receive a Label set for: buttonName message.

Example:

The following macro uses labelButton:

continueMacrolIf &&blackOrWhiteList = 'black'
labelButton button® BlackList On

turnOffBlackList
restoreTitle

set &changed = 1
clearStatus

Client menu: —

Introduced: Build 62

Janus/TN3270 Debugger User's Guide 221

The Client Command Reference

5.63 lastHistory command

Action:

Client menu:

Introduced:

Scans chronologically forward in the current statement execution
history@, then highlights in the Source Code or Daemon fab the last
(latest) statement in the history.

Syntax:

lastHistory

Execution > Select Last History Line

Build 54

5.64 loadWatch command

Action:

Restores from a local .watch file a list of items to display in the Watch
Window, as described in Saving and restoring Watch Window
contents.[ss)

Syntax:
loadWatch [watchfile]
where the command's optional argument is the name of the .watch file

to be loaded. If you omit watchfile, a Windows file selection dialog box
lets you select a saved .watch file when the command executes.

Otherwise, if you specify a watchfile argument (the .watch extension
may be omitted), the named file opens when the command executes.

To locate the watch file you identify, the Client looks in the folder that
contains the JanusDebugger . exe file, by defaultfo3. If the watch file
cannot be found, an error is issued.

You may also specify the watch file name in these ways:

e As amacro variablefz?. For example:

set & = "foo"
loadWatch &a

e As part of an absolute file system path, which must be enclosed in
quotation marks. Requires Build 58 or higher. For example:

loadWatch "c:\temp\foo.watch"

222

Janus/TN3270 Debugger User's Guide

The Client Command Reference

The saveWatchbsol command saves the Watch Window contents to a
watch file.

Client menu: Data Display > Load Watch

Introduced: Build 49

5.65 macro command

Action: Identifies a user-defined macro[s17.

Syntax:
macro macroName

where macroName is the name of the macro you are identifying.

Client menu: —

Introduced: Build 26

5.66 macroConsole command

Action: Invokes the macro consolek24, which reports the starting and
completing of macro execution, as well as any error messages.

Syntax:
macroConsole

A synonym for macroConsole is openMacroConsole. [238)

See also closeMacroConsole. 94

Client menu: Macros > Console

Introduced: Build 43

Janus/TN3270 Debugger User's Guide 223

The Client Command Reference

5.67 macroTrace command

Action: Starts or stops a display in the macro consolek24) of a trace of all
macro statements in your debugging session.

Syntax:
macroTrace [on | off]
where:

e on indicates that macro lines will be traced until turned off with
macroTrace off.

e off turns off macroTrace, if it is on.

Note: When macroTrace is turned on, the trace output is produced
only if the macro console is open.

This is an example of macro trace output:

>>>macroTrace: step

>>>macroTrace: assert %i =1
>>>passed...

>>>macroTrace: run
>>>macroTrace: step
>>>macroTrace: assert %i = 2

>>>passed...
Note that the trace includes the pass or fail status of assert/i78
commands, and it includes syntax help if commands have syntax
errors (as of Client Build 59).

Client menu: —

Introduced: Build 50

224 Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.68 macroWait command

Slows down Debugger macro execution by adding a wait after each

Action: command in the macrofs17.

Syntax:
macroWait nnn
where:

e nnnis the number of milliseconds to wait after the execution of
each command in the macro.

Scope: Allowed only in Debugger macros; not available as a mappable Client
command

Client menu: —

Introduced: Build 57

5.69 mainButtonBar command

Action: Determines the position within the Client window (non-external) of the
Client's main button barfssl. To place the button bar in an external
window, use the buttonBarfis? command.

Syntax:
mainButtonBar position
where position is one of these options:

e top places the bar in its default location, above the Client main
window.

e center places the bar below the main window (but above the
search, tracing, and value displaying controls).

e bottom places the bar at the very bottom of the Client window.

The show parameter, new in Build 56, is the default.
Client menu: File > Preferences > Main Button Bar

Introduced: Build 57

Janus/TN3270 Debugger User's Guide 225

The Client Command Reference

5.70 manual command

Action Displays the PDF reference manual for the Debugger.

Syntax:

manual

Client menu: Help > View PDF Manual

Introduced: —

5.71 mapButton command

Action: Lets you assign a command to a Client buttonbss! without having to edit
a mapping file (ui.xml or uimore.xml) and to restart the Client.

Syntax:
mapButton [buttonModifier-]buttonName command
Where (case not important):

e bputtonModifier is one of:
L] Alt

Maps the Alt-key version of the button (command runs when
you click the button while holding down Alt)

= Cntrl, Control, Cntl, Ctl, or Ctrl

Maps the control-key version of the button (command runs
when you click the button while holding down Citrl)

buttonModifier is optional, and its default is no modifier (command
runs when you click the button).

e buttonName is one of:

= button®, buttoni, ... buttoni4, the names of the main
button barlss] buttons

. extraButton®, extraButtonl, ... extraButtonl4, the
names of the extra button bar(42] buttons

226

Janus/TN3270 Debugger User's Guide

The Client Command Reference

e command is either:

= AClient command[i77

= The separator keyword (case not important), which

%werts the buttonName button to a visual separator button
289

Examples:

mapbutton buttone viewtext

mapButton ctl-button® showAbout

mapButton ALT-button® showCommands

mapButton eXTRAbutton® openmacroConsole
After you execute the command, the new mapping is reflected
immediately in the button bar to which it applies. The new mapping

does not appear in the button-mapping file. The new mapping does
not survive a Client restart.

The command to remove a button mapping is clearButton. 187 The
command to map a keyboard shortcut is mapKey. 23]

Client menu: —

Introduced: Build 56

Janus/TN3270 Debugger User's Guide 227

The Client Command Reference

5.72 mapKey command

Action: Lets you assign a keyboard shortcutpssl without having to edit a
mapping file (ui.xml or uimore.xml) and to restart the Client.

Syntax:
mapKey [modifier-]key command
Where (case not important):

e modifier is one of:
" Alt

Maps the Alt-key version of a key combination (command
runs when you hold down the Alt key and press the specified

key)
= Cntrl, Control, Cntl, Ctl, or Ctrl

Maps the control-key version of a key combination

modifier is optional, and its default is no modifier.

* Kkeyis a keyboard key: a single letter or digit, or one of F2 through
F12 (the function keys)

e commandis a Client command[i77)

Examples:

mapkey f2 Step
mapKey alt-f2 stepover
mapkey Ctl-f2 stepout

Mapkey ALT-2 run

After you execute the command, the new mapping is reflected
immediately in the keyboard. The new mapping does not appear in the
mapping file, and it does not remain if the Client is restarted.

The command to remove a keyboard shortcut mapping is clearKey.
188 The command to map a Client button is mapButton. [228)

Client menu: —

Introduced: Build 57

228 Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.73 moveBrowserToTop command

Action: Brings the web browser window to the top of your current stack of
open windows.

Syntax:
moveBrowserToTop

Formerly available for cases where the Client was paused while
awaiting user input (for example, READ SCREEN or

$WEB_FORM DONE processing), this window stack manipulation is
invoked at any time by executing moveBrowserToTop. Like the window
feature for READ SCREEN or SWEB_FORM DONE code, you set up
moveBrowserToTop processing by specifying your browser's program

@m in the Preferences dialog box in the Debugger Client.

Client menu: —

Introduced: Build 54

5.74 moveTn3270ToTop command

Action: Brings the window of your 3270 terminal-emulator program to the top
of your current stack of open windows.

Syntax:
moveTn3270ToTop

Formerly available for cases where the Client was paused while
awaiting user input (for example, READ SCREEN processing), this
window stack manipulation is invoked at any time by executing
moveTn3270ToTop. Like the window feature for READ SCREEN code,
you set up moveTn3270ToTop processing by specifying your emulator's

program title[s11in the Preferences dialog box in the Debugger Client.

Client menu: —

Introduced: Build 54

Janus/TN3270 Debugger User's Guide 229

The Client Command Reference

5.75 nextCompileError command

Action: Finds the next line in error relative to the current line, if the request
being displayed fails to com pilefss

Syntax:
nextCompileError
You can map this command to a button that also has another

command or macro mapped to it. See Button toggle for compilation
errors|eed)

Client menu: Error > Next Compile Error

Introduced: —

5.76 nextHistory command

Action: Scans chronologically forward in the statement execution history[132,
then highlights in the Source Code or Daemon tab the statement that
was executed immediately following the statement that is currently
highlighted with the Execution Position color. |0l

Syntax:

nextHistory
Client menu: Execution > Select Next History Line

Introduced: Build 54

230 Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.77 noSpan command

Action: Reverses the default spanning behavior of a Debugger macrohi7 By
default, macro execution spans the evaluation of requests (if a request
completes before a macro is finished, the remaining macro
commands apply to the next request).

With noSpan in effect, any running macro is terminated at the end of
request evaluation.

Syntax:
noSpan

The spank74 command reverses a previously issued noSpan
command.

Scope: Allowed only in Debugger macroshi7]; not available as a mappable
Client command

Client menu: —

Introduced: Build 37

Janus/TN3270 Debugger User's Guide 231

The Client Command Reference

5.78 nsLookup command

Action: Requests a host name or IP address from the Domain Name System (DNS).
This is useful for debugging setup issues such as getting the IP number of the
Client workstation host or for testing the Client's ability to resolve a host name. It
is similar to the operating system nsLookup command.

Syntax:
nslookup [host]

Where host is the name of a TCP/IP host machine known to your local DNS
server. Specifying a host value displays that host's IP number. If host is not
specified, the IP number of the workstation on which the Client is running is
displayed.

Examples:

e Specifying:
nslookup google.com
produces the following output:

Looking up IP number for: google.com
IP Number is: 74.125.226.233

e Specifying:
nsLookup

produces the following output:

Looking up this workstation's IP number
IP Number is: 198.242.244.3

e Specifying an unknown host reults in an error message:

Looking up IP number for: googlasdasd
DNS lookup failure for: googlasdasd: No such host is known

Client —
menu:

Introdu Build 61
ced:

232 Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.79 openCommandLine command

Action: Invokes the Command Line dialog box, which lets you run a macro or
command. Any macro you identify must be located in the same folder
as the Debugger Client executable file or in a folder sgecified@ in the
debuggerConfig.xml file.

Syntax:
openCommandLine

See also closeCommandLinefol)

Client menu: Macros > Command Line

Introduced: Build 53

5.80 openExternaAuditTrailWindow command

Action: Displays in a separate, external windowls0d the current contents of the
Client Audit Trail tab. Or, it brings to the top of your current stack of
open windows the external Audit Trail window.

Syntax:

openExternalAuditTrailWindow

Client menu: Window > Open External Audit Trail Window

Introduced: Build 50

Janus/TN3270 Debugger User's Guide 233

The Client Command Reference

5.81 openExternalButtonWindow command

Action:

Client menu:

Introduced:

Displays in a separate, external window/z08 the current contents of the
Client's main button bar[ss] (restoring any previous docking position).
Or, if the main button bar is already open, it brings to the top of your
current stack of open windows the external Button Bar window.

Syntax:
openExternalButtonWindow

AbuttonBar showlsdl command has very similar effects.

Window > Show Main Button Bar in External Window

Build 54

5.82 openExternalExecutionTraceWindow command

Action:

Client menu:

Introduced:

Displays in a separate, external window 308 the current contents of the
Client Execution Trace tabl13) Or, it brings to the top of your current
stack of open windows the external Execution Trace window.

Syntax:

openExternalExecutionTraceWindow

Window > Open External Execution Trace Window

Build 50

234

Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.83 openExternalWatchWindow command

Action: Displays in a separate, external window/z08 the current contents of the
Client Watch Window. Or, it brings to the top of your current stack of
open windows the external Watch Window.

Syntax:

openExternalWatchWindow

Client menu: Window > Open External Watch Window
Data Display > Open External Watch Window

Introduced: Build 49

5.84 openExternalWebBufferWindow command

Action: Displays in a separate, external window/z08 the current contents of the
Client Web Buffer tabl121 Or, it brings to the top of your current stack of

open windows the external Web Buffer window.

Syntax:

openExternalWebBufferWindow

Client menu: Window > Open External Web Buffer Window

Introduced: Build 50

Janus/TN3270 Debugger User's Guide 235

The Client Command Reference

5.85 openMacroConsole command

Action:

Client menu:

Introduced:

Invokes the consolefs24, which reports the starting and completing of
macro or command execution, as well as any error messages.

Syntax:
openMacroConsole

The openMacroConsole command is a synonym for the
macroConsolel223 command.

See also closeMacroConsole. fied)

Macros > Console

Build 53

5.86 pafgi command

Action:

Client menu:

Introduced:

Displays all the visible fields for the current Model 204 field group, just
like the User Language PAFGI statement.

Syntax:
pafgi
Note: The debugging context must be a field group (for example, within
an FEO Of Fieldgroup loop), the version of the Sirius Mods

must be at least 7.6, and the version of Model 204 must be at
least 7.2.

For more information, see Displaying a record's field groups. 18]

Data Display > PAFGI

Build 46

236

Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.87 pai command

Action: Displays all the visible fields for the current Model 204 record just like
the User Language PAI statement.
Syntax:

pai

Note: The debugging context must be a record, and the version of the
Sirius Mods must be at least 7.6.

For more information, see Displaying all fields in a record.[115)

Client menu: Data Display > PAI

Introduced: Build 45

Janus/TN3270 Debugger User's Guide 237

The Client Command Reference

5.88 pin command

Action:

Client menu:

Introduced:

Pins the specified Client external window(s)@ﬂ, that is, keeps the
window(s) at the top of the Client PC's open window stack. Such a
window can be moved by mouse around the screen, and it can be
joined by other pinned windows. It remains at the top as long as it is
open, even if other external windows or applications are subsequently
opened. It can only be removed from the top by by closing it, by
unpinning it (the unpinps3l command), or by clicking its upper-right-
corner "Minimize" button.

Syntax:
pin {windowname | pattern | *}
where you must specify one of these:

e windowname, the (case not important) name, or title, at the top of a
Client work window or external window

e pattern, a character sequence that ends with an asterisk (*),
which performs a "wildcard" search (for example, ab* finds the

About window)

e Alone asterisk (*), which pins all open external windows
If you pin a window that is already pinned, the command is ignored. If

the command indicates a window that is missing or invalid, or if it does
not match an open external window, an error message is issued.

Context menu option (Pin) of external window title bar

Build 56

238

Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.89 preferences command

Action: Displays the Preferences dialog box (shown below), which is also
accessible from the File menul 181 and by default by the Ctrl+P
keyboard shortcut|2ssl.

Syntax:

preferences

Client menu: File > Preferences

Introduced: —

‘% Preferences o
Execution Options Open at Startup
72 i O
v Pause atend of evaluation Macro Autorun ~ External Main Button Bar
™ Run Until spans debug sessions
I BreakafterREAD SCREEN I Windows When Suspended (7.9+) ||| EXiraButionBar
I Source Preview (7.2+ mods) Minimum:[1000 | Size:[100 = ||I” External Watch Window
IHOpion= I Exlernal Audil Trail Window
IE Mode [
none j " " External Web Buffer Window

Display Options ™ External Execution Trace Window

Show atmost (100 = listitems. ¥ Restore watches on startup
Main Button Bar
™ Trim blanks from selectionin View Text [History to Execution Trace & Top
" Show long watch values in a Tooltip ¥ Use !debugger directives (7.6+) Center
 Boltom
Web Server Selection Program Titles

I" Exira Buttons

3270 Emulator

¥ sirus-software com9219
| Main Window Optlions

- Wi _
Web Browser Hide Lower Section

|Windows

Done

Janus/TN3270 Debugger User's Guide 239

The Client Command Reference

5.90 previousCompileError command

Action:

Client menu:

Introduced:

Finds the previous line in error relative to the current line, if the request
being displayed fails to com pilefss). If the program you are debugging
has no compilation errors, the commands does nothing.

Syntax:
previousCompileError
This command is unusual in that you can map it to a button that also

has another command or macro mapped to it. See Button toggle for
compilation errors boal

Error > Previous Compile Error

5.91 previousHistory command

Action:

Client menu:

Introduced:

Scans chronologically backward in the statement execution historyia2),
then highlights in the Source Code or Daem on tab the statement that
was executed immediately prior to the statement that is currently
highlighted with the Execution Position color.l08]

Syntax:

previousHistory

Execution > Select Previous History Line

Build 54

240

Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.92 reloadBlackList command

Action: Updates the existing Black List[771 with the current contents of the
blacklist.txt file, so you can dynamically update your Black List.

Same as clicking the Reload Black List button on the Proc Selection
page.

Syntax:

reloadBlackList

Client menu: Execution > Reload Black List

Introduced: Build 62

5.93 reloadWhiteList command

Action: Updates the existing White List[771 with the current contents of the
whitelist.txt file, so you can dynamically update your White List.

Same as clicking the Reload White List button on the Proc Selection
page.

Syntax:

reloadWhiteList

Client menu: Execution > Reload White List

Introduced: Build 28

Janus/TN3270 Debugger User's Guide 241

The Client Command Reference

5.94 reloadLists command

Action: Loads or reloads to the Client the Exclude/Include lists @, that is, lists
of procedures or routines (methods, or User Language "complex"
subroutines) whose code you want to be excluded from interactive
debuggingles|. These lists must be specified in particular text files:
excludeProc.txt, excludeRoutine.txt, includeProc.txt, and
includeRoutine.txt.

Syntax:

reloadLists

Same as clicking the Reload Proc/Routine/Method Lists button on the
Proc Selection page.

Client menu: —

Introduced: Build 58

242 Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.95 removeCurrentWatch command

Action: Removes the currently selected Watch Window(es1item. If there is no
currently selected item, it does nothing.

The current selected item may simply be the last added or clicked line
(and not highlighted), or it may be a highlighted line as the result of a
search or location (top or bottom) command.

Using removeCurrentWatch to remove a watched item is essentially
the same operation as right-clicking an item and selecting Remove from
the context menu.

Syntax:
removelatch
This "removeWatch" macro is an example of using the command:

RemoveWatch.macro

#
#
Usage: removeWatch varName

where varName is name of watched variable to remove
as it appears in the Watch Window.

For example, removelWatch %j

#

See if it is watched. If not, done:

in watchWindow searchFromTop &argstring
continueMacroIf &&searchSuccess

#

It was watched, so remove and report:
removeCurrentiatch

echo &&concatenate("removed watch ", &argstring)

Client menu: —

Introduced: Build 58

Janus/TN3270 Debugger User's Guide 243

The Client Command Reference

5.96 resetAssertCounts command

Action:

Client menu:

Introduced:

Normally, the assert counts accessible from the
&&assertFailureCount, &assertStatus, and
&&assertSuccessCount Client functionsfz29 are reset when the Client
is started/restarted and when a new macro is invoked. If you want to
clear them at any arbitrary time, executing resetAssertCounts resets

them to O.

Syntax:

resetAssertCounts

Build 56

5.97 resetGlobalAssertCounts command

Action:

Client menu:

Introduced:

Normally, the assert counts accessible from the
&&globalAssertFailureCount, &&globalAssertStatus, and
g&&globalAssertSuccessCount Client functions /28 are reset only
when the Client is started/restarted. If you want to clear them at any
arbitrary time, executing resetGlobalAssertCounts resets them to

0.

Syntax:

resetGlobalAssertCounts

Build 57

244

Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.98 restart command

Action: Restarts the Debugger Client.

1. Terminates all socket connections between the Client and the
Online, and/or between the Client and a web browser.

2. Shuts down the Client normally, as if the Exit option were selected,
and closes the Client window.

3. Starts the Client, reopening its window and invoking the same
processing as if started by a click of the Client desktop icon
(which includes reading the debuggerConfig.xml file).

Syntax:

restart

Client menu: File > Restart

Introduced: Build 56

5.99 restartDefault command

Action: Restarts the Debugger Client, restoring the window dimensions with
which the Client displayed when it was initially installed. Otherwise, the
Client restarts with the size and position (including internal window
dimensions) it occupied upon last exit.

Syntax:

restartDefault

Client menu: File > Restart with Default Window Size

Introduced: Build 56

Janus/TN3270 Debugger User's Guide 245

The Client Command Reference

5.100 restoreLower command

Action:

Client menu:

Introduced:

Restores the display of the lower section[141 of the Client main window,
after it was hidden by a previous hideLowerl212 or toggleLower‘@

command or by selecting the Hide Lower Section option of the Main
Window Options section of the Preferences|1s] dialog box.

Syntax:

restorelLower

This command is equivalent to clearing the Hide Lower Section option of
the Preferences dialog box.

restorelLower has no effect if the lower section is not hidden when the
command is issued.

See also the toggleLowerE&'ﬂ command, which also restores the
lower section if it is hidden when the command is issued, but which
hides the section if it was not hidden.

File > Preferences > (Main Window Options) Hide Lower Section

Build 57

5.101 restoreTitle command

Action:

Client menu:

Introduced:

Restores to the default the title of a Client main window that was
changed by the setTitlelssl command. The default main window title
is "The Janus Debugger" or "The TN3270 Debugger."

Syntax:
restoreTitle

See also &¤tTitlehksd and &&originalTitlehsd

Build 62

246

Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.102 retryHttpPac command

Action: Attempts to execute an HTTP PUT and GET of a Proxy Auto Configure
(PAC}@ verification file to and from the HT TP server that is set ug@
to service PAC files.

retryHttpPac simulates simultaneous selection of both of the
following in the Preferences[18] window:

e Either of the IE Mode options newPac or mergedPac

e The PAC Options option http://URL

Setting both of these items together triggers the automatic creation and
maintenance of PAC files using HTTP URLs -- given an appropriately-

setup HTTP server and Client configuration file httpPacURLss7
element.

Note: Command execution does not modify current settings in the
Client's Preferences|1s] window. However, if the IE Mode option
proxy is selected, the command fails.

Syntax:
retryHttpPac

If the file verification test succeeds, the Client Status barl4s displays a
message like:

HTTP PAC files can be used.

See also httpPutFilem, htthetEE'l and &¤tPacFilekss.

Client menu: —

Introduced: Build 63

Janus/TN3270 Debugger User's Guide 247

http://URL

The Client Command Reference

5.103 run command
Action: Executes the code displayed in the Client's Source Code page until end-
of-request or until an error, breakpoint, or daemon is encountered.

Syntax:

run

Client menu: Execution > Run

Introduced: —

5.104 runMacroFromUISelection command

Action: Lets you select and open for editing (via Windows Explorer) an existing
Debugger macrobi7 file.

Syntax:

runMacroFromUISelection

Client menu: Macros > Run Macro

Introduced: Build 53

248

Janus/TN3270 Debugger User's Guide

The Client Command Reference

5.105 runUntil command

Action: Runs program code without interruption until it reaches a specific
procedure, then displays th|€£|[.|)rocedure for debugging. Same as the
Run Until Procedure button|731.

Note: As of version 7.6 of Model 204 and Client Build 63, the Debugger

also stops at procedures that are included from an sdaemonlis3)
thread.

Syntax:
rununtil targetProc

where targetproc is the name of, or a character pattern for, the target
procedure.

Client menu: Execution > Run Until Proc

Introduced: Build 26 (macros only); Build 28 (menu)

5.106 runUntilVariableChanges command

Action: Steps through the program being debugged, stopping if a statement
modifies the value of the variable specified in the text box above the
Watch Window. Di