
Rocket M204 SirTune

Reference Manual

September 2013
TUN-0704-RM-01

Notices

Edition

Publication date: September 2013

Book number: TUN-0704-RM-01

Product version: Rocket M204 SirTune

Copyright

© Rocket Software, Inc. or its affiliates 1995-2013. All Rights Reserved.

Trademarks

Rocket is a registered trademark of Rocket Software, Inc. For a list of Rocket registered
trademarks go to: www.rocketsoftware.com/about/legal. All other products or services
mentioned in this document may be covered by the trademarks, service marks, or product
names of their respective owners.

Examples

This information might contain examples of data and reports. The examples include the
names of individuals, companies, brands, and products. All of these names are fictitious and
any similarity to the names and addresses used by an actual business enterprise is entirely
coincidental.

License agreement

This software and the associated documentation are proprietary and confidential to Rocket
Software, Inc. or its affiliates, are furnished under license, and may be used and copied only in
accordance with the terms of such license.

Note

This product may contain encryption technology. Many countries prohibit or restrict the use, import, or
export of encryption technologies, and current use, import, and export regulations should be followed
when exporting this product.

Contact information

Website: www.rocketsoftware.com

Rocket Software, Inc. Headquarters
77 Fourth Avenue
Waltham, MA 02451–1468
USA
Tel: +1 781 577 4321
Fax: +1 617 630 7100

Contacting Global Technical Support
If you have current support and maintenance agreements with Rocket Software and CCA,
contact Global Technical Support by email or by telephone:

Email: m204support@rocketsoftware.com

Telephone:

North America +1 800 755 4222

United Kingdom/Europe +44 (0) 20 8867 6153

Alternatively, you can access the Rocket Customer Portal and report a problem, download an
update, or read answers to FAQs. You will be prompted to log in with the credentials supplied as
part of your product maintenance agreement.

To log in to the Rocket Customer Portal, go to:

www.rocketsoftware.com/support

——
 Contents
——

———————
 Contents

 Proprietary Notices . ii

 Contents . iii

 Summary of Changes . vii
 SirTune Version 7.2 . vii
 SirTune Version 7.0 . vii
 SirTune Version 1.6/6.9 . viii
 SirTune Version 1.5 . viii
 SirTune Version 1.4 . x
 SirTune Version 1.3 . x

 Chapter 1: Introduction . 1

 Versions . 1
 System requirements . 2

 Chapter 2: Collecting Data Under MVS: SIRTUNE 3

 Versions of SirTune after 1.5 . 3
 JCL for SirTune . 3
 The SirTune DD statements . 4
 Version 1.5 or earlier of SirTune . 5
 Invoking the SIRTUNE module . 5
 The SIRTUNE DD statements . 5
 JCL example . 6

 Chapter 3: Collecting Data Under CMS: SIRTUNE 7

 Versions of SirTune after 1.5 . 7
 Invoking SirTune . 7
 Optional SirTune DD name . 8
 Version 1.5 or earlier of SirTune . 8
 Invoking the SIRTUNE module . 8
 Optional SIRTUNE DD names . 9
 The SIRTUNED virtual machine . 9

 Chapter 4: Configuration Statements for the Data Collector 13

 ALLComp . 13
 AUTHorize userid1 [userid2] ... 14
 CMSout vmid [ddname] . 14

——
SirTune Reference Manual iii

——
Contents
——

 COLLect state [extra_data] . 15
 EXClude [start_time end_time] [days_of_week] 17
 INClude [start_time end_time] [days_of_week] 20
 INTerval num_sec . 23
 MIXed . 23
 NOSeq . 24
 PGM pgm_name . 24
 PREComp . 24
 SAMPle ON | OFF | AUTO . 25
 UPper . 25

 Chapter 5: MODIFY and SMSG commands 27

 BUMP user_num . 28
 CLOSE . 28
 MONITOR . 28
 RESTART abend_code USER user_num | TASK task_num 29
 SAMPLE ON | OFF | AUTO . 30
 STATUS . 30
 STOP . 30

 Chapter 6: Generating Reports . 31

 Generating reports prior to Sirius Mods 7.2: MVS 33
 Generating reports prior to Sirius Mods 7.2: CMS 34

 Chapter 7: Configuring the Report Generator 37

 Configuration parameters . 38
 CHARACTERSPERLINE or CPL . 39
 comp31 . 39
 DATaset list . 40
 LINESPERPAGE or LPP . 42
 MAPcore . 43
 MAXDelay max_msec . 43
 MIXed . 43
 MPVirt . 44
 NOSeq . 44
 RANge start_time end_time [FOR for_num] [SKIP skip_num] 44
 REPort report_desc | NODEFAULT . 46
 RESolution res_num [PROC pname] [FILE fname] [SUBSYS sname
] . 47
 TITle title_string . 51
 TOP num_top . 51
 TABLEOFCONTENTS or TOC . 52
 TWOpass . 52
 UPper . 52
 Using XML input for report configuration . 53

——
iv SirTune Reference Manual

——
 Contents
——

 General notes on TUNERPTI formatting 54
 A template for the XML input . 54
 Guidelines for the three main XML elements 56
 <SirtuneInput>: Document root element 56
 <reportFormat>: Controlling report format 56
 <report>: Specifying individual reports 57

 Chapter 8: SirTune Reports . 59

 REPORT CFRROOT . 61
 REPORT CSECT | CSECTM | CSECTS TOTAL | CHUNK ch_size 62
 REPORT DISKIO TOTAL | TABLE | CHUNK ch_size 63
 REPORT INFO . 64
 REPORT QUADC | QUADCM | QUADCS TOTAL | CHUNK ch_size 64
 REPORT REPSTAT [RESET] . 65
 REPORT SERVIO . 66
 REPORT SERVUSE [CHUNK ch_size] . 66
 REPORT STATE state_name activity . 67
 REPORT SUMMARY . 71
 REPORT SYSPARM . 72
 REPORT WHATC | WHATCM | WHATCS TOTAL | CHUNK ch_size 72
 The TOP parameter . 73

 Chapter 9: Model 204 States . 75

 The RUNGM and RUNGS states . 79
 Wait types . 79
 Critical file resource states . 81

 Chapter 10: Model 204 Quad Types . 85

 Chapter 11: Wildcard Strings in SirTune and SIRTUNER Statements 95

 Chapter 12: Estimating SIRTUNED Size Requirements 97

 A formula for the estimate . 97
 An example estimate . 98

 Appendix A: SirTune Data Collector Messages 101

 Appendix B: SirTune Report Writer Messages 109

 Appendix C: Installation . 115

 Installation from the web . 115
 MVS installation . 116
 CMS Installation . 118

——
SirTune Reference Manual v

——
Contents
——

 Appendix D: Date Processing . 121

 Index . 123

——
vi SirTune Reference Manual

——
 Summary of Changes
——

——————
 Summary of Changes

 This section describes significant changes to the documentation. In most cases these
 changes correspond to enhancements made to the underlying product.

 SirTune Version 7.2

 ● The SIRTUNER reporting module is no longer required and will no longer work with
 SirTune Version 7.2. Reports are now requested via a User Language program
 named SIRTUNEREPORT which is distributed in the SIRIUS file as part of UL/SPF.
 See “Generating Reports” on page 31.

 ● The report configuration parameters DATASET, MAPCORE, MPVIRT, and UPPER
 (“Configuration parameters” on page 38) are no longer supported.

 ● These report configuration parameters are added:
 ▪ CHARACTERSPERLINE (“CHARACTERSPERLINE or CPL” on page 39)
 ▪ LINESPERPAGE (“LINESPERPAGE or LPP” on page 42)
 ▪ TABLEOFCONTENTS (“TABLEOFCONTENTS or TOC” on page 52)

 ● The effect of the TWOPASS configuration parameter is unchanged, but its name is
 now misleading, because two passes are no longer needed to place the table of
 contents at the start of the report. See “TWOpass” on page 52.

 ● Support for XML input to SIRTUNEREPORT is added. See “Using XML input for
 report configuration” on page 53.

 SirTune Version 7.0

 ● SirTune now issues an internal VIEW SYSTEM CWAIT command and saves the
 output to the sample dataset. This data can then be used to produce the
 SYSPARM report (“REPORT SYSPARM” on page 72) by the SirTune Report Writer.

 ● As of Sirius Mods version 7.0, SirTune data collector can distinguish system
 methods from each other. Before this release, all system methods would show up
 as $CLASS_METHOD in the QUAD reports.

 Because this change for methods required a change to the sample dataset format,
 only the SirTune Report Writer version 1.6 and later can process a SirTune 7.0
 sample dataset.

——
SirTune Reference Manual vii

——
Summary of Changes
——

 SirTune Version 1.6/6.9

 The following changes correspond to changes in SirTune since version 1.5:

 ● As of Sirius Mods version 6.9, SirTune data collector functionality is integrated into
 the Sirius Mods product collection. You no longer install SirTune as a separate
 product. The SirTune Report Generator (SIRTUNER), however, is still installed
 separately. See item “3.” on page 116.

 For SirTune users that are upgrading to this version, these are the main effects and
 changes to the running of SirTune that accommodate the new product distribution:

 ▪ Under previous releases of SirTune, the SIRTUNE module was invoked instead
 of the Model 204 load module during initialization. Under z/OS or OS/390, you
 did this as follows:

 //ONLINE EXEC PGM=SIRTUNE,...

 Now, there is no SIRTUNE module to invoke, and the EXEC statement in your
 JCL should directly invoke the Model 204 load module:

 //ONLINE EXEC PGM=ONLINE,...

 ▪ Once Sirius Mods is link edited with the Model 204 ONLINE module, the
 SirTune data collector is initialized by default, and a new EXEC JCL statement
 parameter (SIRTUNE) is available to allow an override of the default. See “JCL
 for SirTune” on page 3.

 ▪ You can use the new version of SirTune without modifying any of your existing
 SirTune configuration information. SIRTUNEI configuration statements and the
 SIRTUNED dataset may be used as-is with Sirius Mods version 6.9.

 Note: The SIRTUNEO dataset is obsolete under Sirius Mods version 6.9 and
 later. It is ignored if it is allocated.

 ● The SirTune 1.6 report writer now has a new report: SYSPARM (“REPORT
 SYSPARM” on page 72).

 SirTune Version 1.5

 The following changes correspond to changes in SirTune since version 1.4:

 ● Maintenance and support:

 ▪ Multiple authorization criteria are supported, allowing a single copy of the
 SIRTUNE load module to support a set of CPUs, each with its own expiration
 date.

——
viii SirTune Reference Manual

——
 SirTune Version 1.5
——

 ▪ All SirTune authorization zaps now contain a checksum that is stored with the
 zap. If you apply an authorization zap with incorrect content (for example, by
 misreading a fax), a SirTune “invalid checksum” error message is issued, and
 data collection is not performed (although Model 204 will still be invoked).

 This checksum is in addition to a checksum that is displayed in a comment in
 the zap, which will be used with a future enhancement to SirZap to alert you to
 zap errors at the time of application.

 ▪ The SIRTUNEO output of load module SIRTUNE will show the following new
 information:

 ♦ The date and time of running SIRTUNE

 ♦ The CPU ID

 ♦ The customer site ID

 ♦ One or more lines displaying patch usage

 ♦ The date and time that the authorization zap was generated at Sirius
 Software

 ♦ If SirTune is authorized on the CPU, the expiration date of that
 authorization

 This information may help in various problem diagnosis; in particular, it may
 help you to make sure that the correct zap has been applied.

 ● Model 204 V6R1 support.

 ● New features:

 ▪ The SirTune data collector can now execute in 31-bit storage.

 ▪ Support is added for an ONLINE module using RMODE(SPLIT) linkage.

 ▪ The data collector has two new record types: one for end of compilation, and
 one, for APSY compilations, signaling switches from precompile mode to non-
 precompile mode. These record types help to simplify reporting, but they do
 not affect the actual reports.

 Note: Although this data collector change does not affect the size of the
 dataset, it does alter the format of the sample dataset: earlier releases of
 SIRTUNER cannot process a SIRTUNE 1.5 sample dataset.

 ▪ New SIRTUNER reports: WHATC (“REPORT WHATC | WHATCM | WHATCS
 TOTAL | CHUNK ch_size” on page 72) and QUADC (“REPORT QUADC |
 QUADCM | QUADCS TOTAL | CHUNK ch_size” on page 64).

——
SirTune Reference Manual ix

——
Summary of Changes
——

 SirTune Version 1.4

 The following changes correspond to changes in SirTune since version 1.3:

 ● Support for M204 V4R1, then for later Model 204 versions as they were released
 (V4R2, V4R2.1, V5R1, V5R2, V5R3).

 SirTune Version 1.3

 The base version of this manual was converted for version 1.3.

——
x SirTune Reference Manual

——
 Introduction
——

——————
CHAPTER 1 Introduction

 The primary function of SirTune is to provide information to User Language
 programmers to make it easy for them to improve the performance of their programs.
 This is accomplished in two stages:

 1. Data is collected in a running ONLINE or BATCH204 region. This data is obtained
 by “polling.” That is, at regular intervals SirTune examines the state of the ONLINE
 or BATCH204 region and records data pertinent to this state.

 The part of SirTune that collects this data is called the data collection portion,
 which is integrated with the Sirius Mods for SirTune versions after 1.5, or which
 consists of a separately distributed load module named SIRTUNE for SirTune 1.5
 and earlier versions.

 Occasionally in this document, the product name “SirTune” is also used to refer to
 just the data collection portion of the product.

 2. After this data is collected, it is summarized and presented in a set of reports that
 indicate to a User Language programmer the potential performance problem areas.
 These problem areas can generally be refined to an arbitrary level of detail (for
 example, individual lines of code in a procedure).

 The part of SirTune that summarizes and produces reports is called the reporting
 portion, which consists of a User Language program named SIRTUNEREPORT,
 distributed in the SIRIUS file as part of UL/SPF. Pre-7.2 releases required a
 separate reporting load module distributed under the name SIRTUNER.

 1.1 Versions

 This document, the SirTune Reference Manual, assumes that a site is running SirTune
 version 1.4 or later. Any documented feature or facility that requires a later version of
 SirTune will be clearly marked to indicate this.

 For example, a statement that is only available in versions 1.5 and later of SirTune will
 have a sentence in its documentation such as, “This statement is only available in
 version 1.5 or later of SirTune.” If a feature or parameter is not indicated as requiring any
 specific version of the SirTune, it can be assumed that it is available in all versions
 covered by this document: that is, versions 1.4 and later of SirTune.

——
SirTune Reference Manual 1

——
Introduction
——

 1.2 System requirements

 SirTune requires the following components to run:

 ● Mainframe operating systems — one of the following:

 ▪ MVS/SP Version 1.3 or later (including MVS/XA, MVS/ESA, OS/390, and z/OS)
 ▪ CMS (releases currently supported by IBM) under VM/ESA or z/VM
 ▪ Hitachi VOS3
 ▪ Fujitsu OSIV

 ● Model 204 V5R1 or later, running in its ONLINE, BATCH204, or IFAM4
 configuration.

 ● For version 1.5 or earlier of SirTune, installing the Sirius Mods is not required for
 SirTune; however, if the Sirius Mods is installed with the Model 204 load module,
 the Sirius Mods must be:

 ▪ Version 6.2 or later

 For versions of SirTune after 1.5, the SirTune data collector is integrated with the
 Sirius Mods, and you must install the Sirius Mods, which must be:

 ▪ Version 6.9 or later

 ● Version 7.2 or later For versions of SirTune after 7.0, the UL/SPF file SIRIUS must
 be downloaded to make the SIRTUNEREPORT program available for reporting.

——
2 SirTune Reference Manual

——
 Collecting Data Under MVS: SIRTUNE
——

——————
CHAPTER 2 Collecting Data Under MVS: SIRTUNE

 As of the integration of the SirTune data collector with the Sirius Mods (in Sirius Mods
 version 6.9), how you invoke SirTune depends on its version.

 2.1 Versions of SirTune after 1.5

 The data collection portion of SirTune is part of the Sirius Mods object. The data
 collector becomes available once the Sirius Mods is link edited with the Model 204
 ONLINE module.

 2.1.1 JCL for SirTune

 To invoke SirTune, The EXEC statement in your JCL should directly invoke the
 Model 204 load module:

 //ONLINE EXEC PGM=ONLINE,...

 This statement differs from that required for version 1.5 and earlier of SirTune (which is
 described in “Invoking the SIRTUNE module” on page 5).

 In addition, the JCL that invokes Model 204 must include a DD statement for the
 SIRTUNED dataset (see “The SirTune DD statements” on page 4). Then, if SirTune is
 authorized for use at your site, the SirTune data collector will be initialized,

 If you are upgrading from an earlier version of SirTune, no changes are necessary to the
 SirTune DD statements you were using. However, if you specified SIRTUNEI
 configuration statements for the data collector, the PGM statement is ignored, since
 SirTune no longer loads the Model 204 ONLINE or BATCH204 load module.

 If you want to prevent the SirTune data collector from being initialized, do either of the
 following:

 ● Under z/OS or OS/390, include no SIRTUNED DD statement during initialization.

 ● Set the SIRTUNE parameter to 0.

 SIRTUNE, which is only allowed as a parameter in the EXEC JCL statement,
 controls whether the SirTune data collector is initialized at the start of a Model 204
 run.

——
SirTune Reference Manual 3

——
Collecting Data Under MVS: SIRTUNE
——

 The SIRTUNE parameter can be set to either of these values:

 0 Disables initialization of the integrated SirTune product for a particular run.
 1 Enables initialization (this is the default).

 For example:

 //ONLINE EXEC PGM=ONLINE,PARM='SIRTUNE=0'

 2.1.2 The SirTune DD statements

 SirTune uses one or both of the DD statements described below.

 Note: The SIRTUNEO dataset used in earlier versions of SirTune is obsolete in
 versions of SirTune after 1.5.

 ● SIRTUNED

 This required DD specifies the data set that receives the data collected by SirTune.
 This data set must have variable blocked (VB) format, and it should generally have
 a large block size (>10000). If DCB information is not explicitly specified, the
 defaults selected by SirTune should be adequate for all but the most extreme cases.

 If SIRTUNED is pre-allocated under ISPF or its equivalent, the recommended
 blocksizes are 23,476 on a 3380 and 27,998 on a 3390. If this dataset fills up,
 SirTune will simply stop collecting data for the duration of the run. A 20 megabyte
 SIRTUNED should be sufficient for most shops, while a 50 megabyte SIRTUNED
 should be sufficient for almost any requirements.

 Since the only cost of running out of space in SIRTUNED is the loss of some data,
 it's not worth spending a lot of time trying to size SIRTUNED exactly. Simply
 allocate SIRTUNED at 20 megabytes (or less if disk space is tight), and adjust the
 size based on experience. For more information on sizing SIRTUNED, see
 “Estimating SIRTUNED Size Requirements” on page 97. To keep available data
 from several runs, make SIRTUNED part of a GDG.

 ● SIRTUNEI

 This optional DD specifies a data set that contains statements that alter the SirTune
 defaults. These statements allow control over the name of the Model 204 load
 module, the level of detail to which data is collected, the time intervals over which
 data is collected, the sampling rate, authorization to issue MODIFY commands, and
 more. For a list of the available statements, see “Configuration Statements for the
 Data Collector” on page 13.

 SIRTUNEI can have either fixed or variable format, and it can have any record
 length.

——
4 SirTune Reference Manual

——
 Version 1.5 or earlier of SirTune
——

 2.2 Version 1.5 or earlier of SirTune

 The data collection portion of SirTune consists of a single load module called SIRTUNE.

 2.2.1 Invoking the SIRTUNE module

 To have SirTune collect data for a particular ONLINE or BATCH204 job, you must do
 the following so that SirTune will run Model 204 as a subtask of SIRTUNE, collecting
 polling data as required:

 ● Modify the JCL that invokes Model 204 so that it invokes SIRTUNE instead. For
 example, to have SirTune monitor an ONLINE invoked with:

 //ONLINE EXEC PGM=ONLINE,REGION=4096K,TIME=1440,
 // PARM='LIBUFF=600,SYSOPT=155,NJBUFF=2'

 change the line to read:

 //ONLINE EXEC PGM=SIRTUNE,REGION=4096K,TIME=1440,
 // PARM='LIBUFF=600,SYSOPT=155,NJBUFF=2'

 ● Place the SIRTUNE load module into the same load library as the ONLINE or
 BATCH204 load library, or concatenate the library containing the SIRTUNE load
 module with the Model 204 load library.

 SirTune data collection should have no significant impact on the performance of the
 ONLINE or BATCH204 region.

 If the Model 204 load module that is being monitored with SirTune must run authorized,
 the SIRTUNE load module must be placed into an APF-authorized library.

 If SIRTUNE is able to load Model 204 but cannot sample for some reason (including
 unknown Model 204 release, SirTune expiration, or operation on an unauthorized CPU),
 Model 204 will still proceed. This lets you leave SIRTUNE in place in your JCL while a
 temporary problem is being solved.

 2.2.2 The SIRTUNE DD statements

 The SIRTUNE load module uses as many as three DD statements: the first (SIRTUNED)
 is required and specifies the dataset to receive the collected data; the other two are
 optional:

 SIRTUNED See list item “SIRTUNED” on page 4.

 SIRTUNEI See list item “SIRTUNEI” on page 4.

——
SirTune Reference Manual 5

——
Collecting Data Under MVS: SIRTUNE
——

 SIRTUNEO This optional DD receives informational SIRTUNE messages. If this DD
 is not specified, these messages go to the MVS job log. SIRTUNEO
 must have LRECL greater than or equal to 80.

 2.2.3 JCL example

 The following is an example of JCL that runs a BATCH204 job under SIRTUNE in an
 MVS environment.

 //DAILY204 JOB (0),CLASS=C,MSGCLASS=A
 //BATCH204 EXEC PGM=SIRTUNE,REGION=4096K,
 // PARM='SYSOPT=209,LIBUFF=1000'
 //STEPLIB DD DSN=M204.V410.LOADLIB,DISP=SHR
 // DD DSN=SIRIUS.LOAD,DISP=SHR
 //SIRTUNEI DD *
 PGM BATCH204
 /*
 //SIRTUNED DD DSN=SIRTUNE.SAMPLE.DATA,DISP=SHR
 //CCAPRINT DD SYSOUT=*
 //CCAAUDIT DD SYSOUT=*
 //CCASNAP DD SYSOUT=*
 //CCATEMP DD UNIT=WORK,SPACE=(CYL,(40,0))
 //CCASTAT DD DSN=M204.CCASTAT.DISP=SHR
 //POPDATA DD DSN=LOCAL.PROD.POPDATA,DISP=SHR
 //POPPROC DD DSN=LOCAL.PROD.POPPROC,DISP=SHR
 //CCAIN DD *
 SPCORE=20000,MAXBUF=1000,MINBUF=50,SERVSIZE=300000

 //

——
6 SirTune Reference Manual

——
 Collecting Data Under CMS: SIRTUNE
——

——————
CHAPTER 3 Collecting Data Under CMS: SIRTUNE

 As of the integration of the SirTune data collector with the Sirius Mods (in Sirius Mods
 version 6.9), how you invoke SirTune depends on its version.

 3.1 Versions of SirTune after 1.5

 The data collection portion of SirTune is part of the Sirius Mods object. It also requires a
 load module called SIRTUNED, which runs in a separate service machine. The data
 collector becomes available once the Sirius Mods is link edited into the Model 204
 ONLINE module and once the SIRTUNED service machine is made available.

 3.1.1 Invoking SirTune

 To invoke SirTune, the EXEC that invokes the Model 204 load module should do so
 directly:

 M204CMS M204ONLN ...

 This statement differs from that required for version 1.5 and earlier of SirTune (which is
 described in “Invoking the SIRTUNE module” on page 8).

 SirTune also requires the presence of a virtual machine running the SIRTUNED load
 module (as described in “The SIRTUNED virtual machine” on page 9). Then, if SirTune
 is authorized for use at your site, the SirTune data collector will be initialized,

 If you are upgrading from an earlier version of SirTune, no changes are necessary to
 any SirTune DDs you were using. However, if you specified SIRTUNEI configuration
 statements for the data collector, the PGM statement is ignored, since SirTune no longer
 loads the Model 204 ONLINE or BATCH204 load module.

 If you want to prevent the SirTune data collector from being initialized, do the following:

 ● Set the SIRTUNE parameter to 0.

 The SIRTUNE parameter, which controls whether the SirTune data collector is
 initialized at the start of a Model 204 run, can be set to either of these values:

 0 Disables initialization of the integrated SirTune product for a particular run.
 1 Enables initialization (this is the default).

——
SirTune Reference Manual 7

——
Collecting Data Under CMS: SIRTUNE
——

 For example:

 M204CMS M204ONLN (SIRTUNE 0 ...

 3.1.2 Optional SirTune DD name

 SirTune has the optional DD described below, for which a FILEDEF can be added to
 M204FDEF EXEC or any other EXEC invoked before the ONLINE module.

 Note: The SIRTUNEO DD used in earlier versions of SirTune is obsolete in versions of
 SirTune after 1.5.

 SIRTUNEI This optional DD contains configuration statements that alter the SirTune
 defaults. These statements (“Configuration Statements for the Data
 Collector” on page 13) allow control over the name of the Model 204 load
 module, the level of detail to which data is collected, the time intervals
 over which data is collected, the sampling rate, authorization to issue
 MODIFY commands, and more.

 SIRTUNEI can have either fixed or variable format, and it can have any
 record length.

 The following is a sample FILEDEF:

 FILEDEF SIRTUNEI DISK SIRTUNE INPUT A

 3.2 Version 1.5 or earlier of SirTune

 The data collection portion of SirTune consists of a load module called SIRTUNE that
 runs in the Model 204 ONLINE virtual machine or virtual machines and another load
 module called SIRTUNED which runs in a separate service machine.

 3.2.1 Invoking the SIRTUNE module

 To have SirTune collect data for a particular ONLINE machine, do the following:

 1. Place the SIRTUNE load module on a minidisk accessible to the virtual machine
 running Model 204.

 2. Modify the EXEC that invokes Model 204 so that it invokes SIRTUNE instead.

 For example, to have SIRTUNE monitor an ONLINE that is invoked with

 M204CMS M204ONLN (SYSOPT 155 LIBUFF 600

——
8 SirTune Reference Manual

——
 Version 1.5 or earlier of SirTune
——

 change the line to read

 M204CMS SIRTUNE (SYSOPT 155 LIBUFF 600

 SIRTUNE will then invoke Model 204, collecting polling data as required.

 SirTune data collection should have no significant impact on the performance of the
 ONLINE virtual machine.

 If SIRTUNE is able to load Model 204 but cannot sample for some reason (including
 unknown Model 204 release, SirTune expiration, or operation on an unauthorized CPU),
 Model 204 will still proceed. This allows leaving SIRTUNE in place in your EXECs while
 a temporary problem is being solved.

 3.2.2 Optional SIRTUNE DD names

 The SIRTUNE load module has some optional DDs. FILEDEFs can be added for these
 DDs to M204FDEF EXEC or any other EXEC invoked before SIRTUNE. The optional
 DDs are:

 SIRTUNEI See “Optional SirTune DD name” on page 8.

 SIRTUNEO This optional DD receives informational SIRTUNE messages. If this DD
 is not specified, SIRTUNE messages go to the virtual console.
 SIRTUNEO must have LRECL greater than or equal to 80.

 The following is a sample FILEDEF:

 FILEDEF SIRTUNEO FISK SIRTUNE LISTING A

 3.3 The SIRTUNED virtual machine

 SirTune requires the presence of a virtual machine running the SIRTUNED load module.
 It is recommended that this virtual machine be given the userid SIRTUNED. The
 installation tape contains a sample exec called SIRTUNED EXEC which can be used as
 PROFILE EXEC for this service machine.

 This service machine communicates with all running ONLINE virtual machines running
 SirTune, saving their sample data to disk. Because of this, appropriate directory
 statements must be added to the CP directory to allow IUCV communications between
 the Model 204 virtual machines and the SIRTUNED virtual machine. The easiest way to
 accomplish this is by adding the IUCV ALLOW directory statement for user SIRTUNED.

 The sample SIRTUNED EXEC invokes the SIRTUNED MODULE as follows:

 'SIRTUNED';

——
SirTune Reference Manual 9

——
Collecting Data Under CMS: SIRTUNE
——

 To authorize users to issue commands to SIRTUNED via SMSG, list the authorized
 users after the SIRTUNED command. The userids in the list can contain wildcard
 characters. For example,

 'SIRTUNED SYSOPER MARGE*';

 authorizes userid SYSOPER and any userid begining with the characters MARGE to
 issue a command to SIRTUNED via SMSG. For more information on using wildcards in
 this list, see “Wildcard Strings in SirTune and SIRTUNER Statements” on page 95.

 SIRTUNED will use MSGNOH for its responses if it is authorized; otherwise it will use
 MSG.

 It is generally not important to terminate the SIRTUNED service machine “cleanly” if the
 Model 204 virtual machines running SirTune are themselves terminated cleanly.
 However, if it becomes necessary to terminate the SIRTUNED service machine while
 Model 204 virtual machines are running, log onto SIRTUNED and issue any one of the
 following commands:

 ● QUIT
 ● END
 ● STOP
 ● SHUTDOWN

 Note: When SIRTUNED terminates, data collection on all Model 204 service machines
 running SirTune will be immediately terminated. They will, however, continue to run
 Model 204 without interruption.

 Every time an ONLINE running SirTune is brought up, SirTune attempts to establish an
 IUCV connection with SIRTUNED. If it is unable to do so, the ONLINE is not brought up.
 If a connection is established, SIRTUNED immediately invokes an EXEC called
 SIRTUNEF. This exec can then issue FILEDEFs or other commands as required.

 After SIRTUNEF returns to SIRTUNED, SIRTUNED attempts to open the file that will
 contain the SirTune sample data. The default DDNAME used for the open is the userid
 of the Model 204 service machine. The actual DDNAME can be modified with a SirTune
 statement (“Configuration Statements for the Data Collector” on page 13), and it is
 passed to SIRTUNEF.

 A sample SIRTUNEF is provided on the installation tape and should be modified to suit
 installation requirements. SIRTUNEF is passed two parameters:

 ● The userid of the Model 204 virtual machine

 ● The DDNAME to be used for the open (that is, the name to be used on a FILEDEF
 command)

——
10 SirTune Reference Manual

——
 The SIRTUNED virtual machine
——

 If SIRTUNEF sets a non-zero return code, SIRTUNED will return an open error to
 SIRTUNED and close the IUCV connection, preventing the ONLINE from coming up.
 After SIRTUNEF returns to SIRTUNED, SIRTUNED attempts to open the appropriate
 DDNAME for output. If this open fails, an open error is reflected to SirTune and the
 IUCV connection is closed, preventing the ONLINE from coming up.

 In general, it is sufficient to allow the sample datasets to reside on a CMS format
 minidisk. Although data can be sent to tape, delays in manual tape handling could result
 in hung Model 204 virtual machines waiting for SIRTUNED to process a tape mount.
 Data can also be sent to OS format minidisks. To do this, however, SIRTUNED must be
 run under the Model 204 CMS interface (M204CMS). To do this, change the line in
 SIRTUNED EXEC that reads

 'SIRTUNED';

 to read

 'M204CMS SIRTUNED';

 While it is somewhat more efficient to send sample data to an OS format minidisk than to
 a CMS format disk, this advantage is probably outweighed in most cases by the
 advantage of not having to preallocate space for each sample dataset.

 The sample datasets must be variable format and should generally have a large block
 size (greater than 10000). If DCB information is not explicitly specified, the defaults
 selected by SirTune should be adequate for all but the most extreme cases. If a sample
 dataset fills up or a CMS minidisk becomes full, the virtual machine(s) running SirTune
 and associated with the full minidisk or dataset will simply stop collecting data for the
 duration of the run. 20 megabytes for each SirTune sample dataset should be sufficient
 for most shops, while 50 megabytes per dataset should be sufficient for almost any
 requirements.

 Since the only cost of running out of space on SIRTUNED is the loss of some data, it's
 not worth spending a lot of time trying to size SIRTUNED exactly. Simply allocate the
 SIRTUNED minidisk at 20 megabytes per Model 204 virtual machine for which data is to
 be collected (or less if disk space is tight), and adjust the size based on experience.

 For more information on sizing SIRTUNED, see “Estimating SIRTUNED Size
 Requirements” on page 97. The sample SIRTUNEF EXEC on the installation tape is an
 example of how samples from several runs can be kept simultaneously available.

 If Model 204 ONLINE service machines are brought up (AUTOLOG'ed) automatically at
 system initialization and some of these virtual machines will run with SirTune, the
 SIRTUNED service machine must complete SIRTUNED initialization before any SirTune
 in a Model 204 virtual machine attempts to establish an IUCV connection to SIRTUNED.
 Because SIRTUNED initialization is extremely quick, this can probably be guaranteed by
 placing an AUTOLOG command for SIRTUNED ahead of AUTOLOG commands for
 Model 204 service machines in the exec(s) doing the AUTOLOG'ing. To be even more

——
SirTune Reference Manual 11

——
Collecting Data Under CMS: SIRTUNE
——

 certain, a CP SLEEP x SEC can be placed after the AUTOLOG of SIRTUNED to give
 SIRTUNED time to get through initialization, where x is some small number (1 is
 probably sufficient).

 Using SIRTUNEA EXEC guarantees that the Model 204 service machines won't be
 logged on until SIRTUNED has completed initialization. SIRTUNEA EXEC is invoked by
 SIRTUNED after it has completed initialization. If the AUTOLOG commands for the
 Model 204 service machines are moved into SIRTUNEA EXEC, SIRTUNED is
 authorized to issue the appropriate AUTOLOGs, and an AUTOLOG command for
 SIRTUNED is added to the initialization exec, then SIRTUNED will automatically be
 logged on, and it will initialize and then bring up (AUTOLOG) the Model 204 service
 machines.

——
12 SirTune Reference Manual

——
 Configuration Statements for the Data Collector
——

——————
CHAPTER 4 Configuration Statements for the Data
 Collector

 An optional DD card (or FILEDEF under CMS) called SIRTUNEI allows users to specify
 characteristics of the reporting run and to customize which reports are requested and
 how they are ordered.

 The configuration statements take the form of control cards. There can be only one
 SirTune configuration statement per line, there are no line continuations, and a line
 beginning with an asterisk character (*) is treated as a comment and ignored.

 Available SirTune configuration statements are described in the subsections that follow.
 The minimum abbreviation allowed for each statement is indicated with uppercase
 characters, while optional characters are indicated with lowercase. Optional statement
 parameters are enclosed in brackets ([]). Alternatives are separated with a vertical bar
 (|).

 4.1 ALLComp

 This statement specifies that SirTune should collect compilation data for all procedures;
 it is the inverse of the PRECOMP statement (“ALLComp”).

 The default for a single user run (NUSERS = 1) is that SirTune collects compilation data
 for all procedures. The default for a multi-user run (NUSERS > 1) is that SirTune
 collects compilation data only for pre-compiled procedures. It is unnecessary to specify
 ALLCOMP in a single-user run since it is the default.

 If ALLCOMP is not used explicitly in a multi-user run, or if it is overridden by the
 PRECOMP statement in a single-user run, the report generator can produce line-by-line
 breakdowns for pre-compiled APSY procedures only. Using the ALLCOMP statement
 makes it possible for the reporting module to provide line-by-line breakdowns for all User
 Language procedures executed in the job.

 Specifying the ALLCOMP statement can significantly increase the size of the sample
 dataset, and in extreme cases, it can adversely affect the performance of an ONLINE.
 Because of this, it is generally recommended that you use only the ALLCOMP option
 when running SirTune against a single-user batch job, or when running multi-user jobs
 that do a lot of processing in non-APSY or non-pre-compiled procedures.

 Note: SirTune cannot provide line-by-line breakdowns for User Language programs not
 contained in procedures, including in-line procedures in CCAIN, IODEV3, or BATCH2
 input streams, or those entered at a terminal without use of the editor.
——
SirTune Reference Manual 13

——
Configuration Statements for the Data Collector
——

 4.2 AUTHorize userid1 [userid2] ...

 This statement specifies the userids from whom SirTune should accept MODIFY
 commands (under MVS) or SMSG commands (under CMS). The default is that
 MODIFY or SMSG commands to SirTune are not accepted from any userid.

 Since MVS provides no information about the user issuing a MODIFY statement, the
 only AUTHORIZE statement that makes any sense under MVS is:

 AUTHORIZE *

 This indicates that SirTune will accept MODIFY commands from any user that has the
 privilege to issue a MODIFY command (either an operator at a console or a user in
 SDSF).

 Under CMS, an arbitrary number of userids can be specified, and the userids can
 contain wildcard characters. For example:

 AUTHORIZE BART HOMER*

 The statement above indicates that SirTune should accept SMSG commands from
 userid BART and from any userid that starts with the characters H O M E R. For more
 information on wildcards, see “Wildcard Strings in SirTune and SIRTUNER Statements”
 on page 95.

 SIRTUNEI can contain an arbitrary number of AUTHORIZE statements. The
 AUTHORIZE statements are cumulative, so the userids specified on an AUTHORIZE
 statement are added to the list of userids specified by all previous AUTHORIZE
 statements.

 For more information on the commands that can be issued via MODIFY or SMSG by
 authorized users, see “MODIFY and SMSG commands” on page 27.

 4.3 CMSout vmid [ddname]

 This statement has meaning only under CMS. It specifies the userid of the virtual
 machine (vmid) running the SIRTUNED load module, and it specifies the DD name
 (ddname) that virtual machine is to use for the sample dataset. The default for vmid is
 SIRTUNED, and the default for ddname is the userid of the virtual machine running
 SirTune.

 For example, this statement indicates that there is a SIRTUNED service machine with
 userid HOHO that should use DD name MARGE for the sample dataset:

 CMSOUT HOHO MARGE

——
14 SirTune Reference Manual

——
 CMSout vmid [ddname]
——

 The CMSOUT statement makes it possible to run multiple SIRTUNED service machines,
 because it allows SirTune in each Model 204 service machine to indicate the userid of its
 SIRTUNED service machine. This is not a generally recommended mode of operation,
 however, because of the extra overhead of running multiple virtual machines.

 4.4 COLLect state [extra_data]

 This statement makes it possible to increase the quantity of data collected by SirTune.
 While collecting extra data increases the size of the sample dataset, it also makes it
 possible to produce extended reports.

 The default for COLLECT in multi-user runs is COLLECT RUNG, which means that data
 is only collecting for running users (users consuming CPU), and no extra data is
 collected. The default for COLLECT in single-user runs is COLLECT ALLN BLKU
 DISKIO, which means that the only user for which data is not collected is waiting PSTs.
 Data is always collected for running users, regardless of the COLLECT statements in
 SIRTUNEI.

 state is a list of one or more blank-delimited user states. SirTune will collect sample
 data for a user in any of the states indicated by COLLECT statements at the moment a
 sample is collected.

 For example, if the following is specified, SirTune will collect sample data for any user
 that is swapping into or out of a server at the instant a sample is collected:

 COLLECT SWPG

 To be able to produce a report for a particular state, data must be collected for that state
 with SirTune. For example, if you want to produce a report for STATE SWPG, you can
 ensure the appropriate data will be collected by SirTune by placing this statement in
 SIRTUNEI:

 COLLECT SWPG

 For a discussion of available states and their meanings, see “Model 204 States” on page
 75.

 In addition to requesting that sample data be collected for users in specific states, it is
 also possible to request extra data to isolate the cause of certain wait types. The only
 valid values for extra_data are DISKIO and/or CFR.

 Specifying DISKIO as a parameter on a COLLECT statement indicates that SirTune
 should collect data for every wait on Model 204 disk I/O. This data allows the reporting
 module to produce the DISKIO reports. These reports allow breakdowns of waits on
 Model 204 disk I/O by file, table, and groups of pages within tables.

——
SirTune Reference Manual 15

——
Configuration Statements for the Data Collector
——

 Specifying DISKIO on a collect statement implies the BLKIN parameter. That is, this
 statement:

 COLLECT DISKIO BLKIN

 is functionally equivalent to this:

 COLLECT DISKIO

 Specifying CFR as a parameter on a COLLECT statement indicates that SirTune should
 collect data for users with “Critical File Resource” activity. Critical file resources are
 used to provide concurrency control among updating and retrieving operations on the
 same file. Contention on critical file resources can exacerbate performance problems,
 sometimes dramatically.

 The CFR data allows the reporting module to produce the CFRROOT, STATE
 CFRH???, and STATE CFRB??? reports. These reports allow breakdowns of:

 ● The root causes of critical file resource waits
 ● Activities that result in the holding of critical file resources

 Since critical file resources are used to provide multi-user concurrency control, the CFR
 parameter is meaningless in a single-user run.

 COLLECT statements are cumulative. That is, this sequence:

 COLLECT SWPGI
 COLLECT BLKIN
 COLLECT BLKON

 is functionally equivalent to this:

 COLLECT SWPGI BLKIN BLKON

 and it results in data being collected for all users in state SWPGI, BLKIN, or BLKON.
 There is no limit to the number of COLLECT statements in SIRTUNEI.

 The first COLLECT statement in SIRTUNEI for a single-user run is treated as an
 override to the single-user default. That is, if the following is the first COLLECT
 statement in SIRTUNEI for a single-user run:

 COLLECT RUNG

 it would turn off data collection for all other user states in the single-dser default and for
 DISKIO data.

——
16 SirTune Reference Manual

——
 EXClude [start_time end_time] [days_of_week]
——

 4.5 EXClude [start_time end_time] [days_of_week]

 This statement makes it possible to limit the times in which sample data is collected.
 Note that compilation data is always collected, whether or not sample data is being
 collected.

 start_time and end_time can have the format HH, HH:MM, or HH:MM:SS, where HH
 represents an hour of the day, MM represents minutes, and SS represents seconds.
 The maximum allowable time is 24 or 24:00 or 24:00:00, which corresponds to midnight.

 For example, the following indicates that no sample data should be collected from
 midnight through 8 AM every day of the week:

 EXCLUDE 0 8

 The following indicates that no sample data should be collected from 11:30 AM through
 1:30 PM every day of the week:

 EXCLUDE 11:30 13:30

 The following indicates that no sample data should be collected from 30 seconds before
 12 noon through 50 seconds after 1 PM every day of the week:

 EXCLUDE 11:59:30 13:00:50

 If start_time is greater than end_time, the times are assumed to wrap. For example, the
 following means that no sample data should be collected between 11 PM and 1 AM:

 EXCLUDE 23:00 1:00

 days_of_week is a blank-delimited list of days of the week. The following are valid days
 of the week, with the minimum abbreviations in uppercase:

 ● SUNday
 ● MONday
 ● TUEsday
 ● WEDnesday
 ● THUrsday
 ● FRIday
 ● SATurday

 For example, the following indicates that no sample data should be collected all day
 Sundays and Saturdays:

 EXCLUDE SUNDAY SAT

——
SirTune Reference Manual 17

——
Configuration Statements for the Data Collector
——

 The following indicates that no sample data should be collected from 6:30 PM through
 midnight on Mondays through Fridays:

 EXCLUDE 18:30 24:00 MOND TUES WEDN THU FRIDAY

 In addition to the days of the week, the following groupings are also available in a
 days_of_week list:

 ● WEEKDay = Monday, Tuesday, Wednesday, Thursday, Friday

 ● WEEKEnd = Saturday, Sunday

 ● ALL = Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday

 For example, the following indicates that no sample data should be collected all day
 Saturday through Sunday:

 EXCLUDE WEEKE

 The following indicates that no sample data should be collected on any day of the week:

 EXCLUDE ALL

 The following indicates that no sample data should be collected between 10 AM and 12
 noon on Sunday, Saturday, and Monday:

 EXCLUDE 10 12 WEEKEND MONDAY

 The following indicates that no sample data should be collected between 11 PM and
 midnight on all days of the week:

 EXCLUDE 23:00 24:00 ALL

 Note that the statement above is identical to this:

 EXCLUDE 23:00 24:00

 If no INCLUDE or EXCLUDE statements occur in SIRTUNEI, sample data is collected as
 if INCLUDE ALL had been specified.

 The order of INCLUDE and EXCLUDE statements in SIRTUNEI is important: If the first
 INCLUDE or EXCLUDE statement in SIRTUNEI is EXCLUDE, it is treated as if it were
 preceded by an INCLUDE ALL. That is, data will only not be collected over intervals
 explicitly indicated by EXCLUDE statements.

 For example, if this is the only INCLUDE or EXCLUDE statement in SIRTUNEI:

 EXCLUDE 0 9

——
18 SirTune Reference Manual

——
 EXClude [start_time end_time] [days_of_week]
——

 sample data will be collected between 9 AM and midnight every day of the week. No
 data will be collected at other times. If SIRTUNEI contains the following sequence, data
 should be collected on Monday, Tuesday, Wednesday, Thursday, Friday, and Saturday:

 EXCLUDE WEEKEND
 INCLUDE SATURDAY

 If SIRTUNEI contains the following sequence, data should be collected on every
 weekday from 8 AM to 5 PM and on Fridays from 10 PM to midnight:

 EXCLUDE WEEKEND
 EXCLUDE 0 8
 EXCLUDE 17 24
 INCLUDE 22 24 FRIDAY

 Note that there is no harm in EXCLUDE'ing a range that has already been excluded.
 For example, the following

 EXCLUDE 0:00 7:00
 EXCLUDE 4:00 10:00

 is the same as

 INCLUDE 0:00 10:00

 The INCLUDE/EXCLUDE statements are only honored if sampling is set to AUTO
 (automatic) mode, either by default or via a SAMPLE statement or a MODIFY or SMSG
 SAMPLE command. When sampling is in manual mode, INCLUDE/EXCLUDE
 statements have no effect.

 Generally, you should use the INCLUDE/EXCLUDE statements to avoid collecting data
 for time intervals in which there is nothing interesting likely to be happening, that is,
 periods of low activity. The only real cost of this is the disk space and the minor amount
 of CPU consumed collecting this sample data.

 If you are only interested in collecting data at peak hours, say 10 AM to 11:30 AM and
 1:30 PM to 4 PM on weekdays, simply put the following in SIRTUNEI:

 INCLUDE 10 5 WEEKDAY
 EXCLUDE 11:30 13:30

——
SirTune Reference Manual 19

——
Configuration Statements for the Data Collector
——

 4.6 INClude [start_time end_time] [days_of_week]

 This statement makes it possible to limit the times in which sample data is collected.
 Note that compilation data is always collected, whether or not sample data is being
 collected.

 start_time and end_time can have the format HH, HH:MM, or HH:MM:SS where HH
 represents an hour of the day, MM represents minutes, and SS represents seconds.

 The maximum allowable time is 24 or 24:00 or 24:00:00, which corresponds to midnight.
 For example, the following indicates that sample data should be collected from 8 AM
 through 6 PM every day of the week:

 INCLUDE 8 18

 The following indicates that sample data should be collected from 8:30 AM through 5:30
 PM every day of the week:

 INCLUDE 8:30 17:30

 The following indicates that sample data should be collected from 10 seconds before 9
 AM through 10 seconds after 5 PM every day of the week:

 INCLUDE 8:59:50 17:00:10

 If start_time is greater than end_time, the times are assumed to wrap. For example, the
 following means that sample data should be collected between 11 PM and 1 AM:

 INCLUDE 23:00 1:00

 days_of_week is a blank-delimited list of days of the week. The following are valid days
 of the week, with the minimum abbreviations in uppercase:

 ● SUNday
 ● MONday
 ● TUEsday
 ● WEDnesday
 ● THUrsday
 ● FRIday
 ● SATurday

 For example, indicates that sample data should be collected all day Mondays and
 Tuesdays:

 INCLUDE MONDAY TUE

——
20 SirTune Reference Manual

——
 INClude [start_time end_time] [days_of_week]
——

 The following indicates that sample data should be collected from 8:45 AM through 5:45
 PM on Mondays through Fridays:

 INCLUDE 8:45 17:45 MOND TUES WEDN THU FRIDAY

 In addition to the days of the week, the following groupings are also available in a
 days_of_week list:

 ● WEEKDay = Monday, Tuesday, Wednesday, Thursday, Friday

 ● WEEKEnd = Saturday, Sunday

 ● ALL = Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday

 For example, the following indicates that sample data should be collected all day
 Monday through Friday:

 INCLUDE WEEKD

 The following indicates that sample data should be collected all day on every day of the
 week:

 INCLUDE ALL

 The following indicates that sample data should be collected between 10 AM and 12
 noon on Sunday, Saturday, and Monday:

 INCLUDE 10 12 WEEKEND MONDAY

 The following indicates that sample data should be collected between 11 PM and
 midnight on all days of the week:

 INCLUDE 23:00 24:00 ALL

 Note that the above statement is identical to this:

 INCLUDE 23:00 24:00

 If no INCLUDE or EXCLUDE statements occur in SIRTUNEI, sample data is collected as
 if INCLUDE ALL had been specified.

 The order of INCLUDE and EXCLUDE statements in SIRTUNEI is important: If the first
 INCLUDE or EXCLUDE statement in SIRTUNEI is INCLUDE, it is treated as if it were
 preceded by an EXCLUDE ALL (that is, data will only be collected over intervals explicitly
 indicated by INCLUDE statements).

 For example, if this is the only INCLUDE or EXCLUDE statement in SIRTUNEI:

 INCLUDE 9 17

——
SirTune Reference Manual 21

——
Configuration Statements for the Data Collector
——

 sample data should be collected between 9 AM and 5 PM every day of the week. No
 data should be collected at other times. If SIRTUNEI contains the following sequence:

 INCLUDE WEEKDAY
 EXCLUDE TUESDAY THURSDAY

 data should be collected on Monday, Wednesday, and Friday. If SIRTUNEI contains the
 following sequence:

 INCLUDE 8 17 TUESDAY
 EXCLUDE 11 14
 INCLUDE 12 13 TUESDAY

 data should be collected on Tuesdays from 8 AM to 11 AM, 12 noon to 1 PM, and 2 PM
 to 5 PM.

 Note: There is no harm in INCLUDE'ing a range that has already been included. For
 example, the following range

 INCLUDE 9:00 13:00
 INCLUDE 12:00 17:00

 is the same as

 INCLUDE 9:00 17:00

 The INCLUDE/EXCLUDE statements are only honored if sampling is set to AUTO
 (automatic) mode, either by default, or via a SAMPLE statement or a MODIFY or SMSG
 SAMPLE command. When sampling is in manual mode, INCLUDE/EXCLUDE
 statements have no effect.

 Generally, you should use the INCLUDE/EXCLUDE statements to avoid collecting data
 for time intervals in which there is nothing interesting likely to be happening, that is,
 periods of low activity. The only real cost of collecting data in periods of low activity is
 wasted disk space and a minor amount of CPU consumed collecting the sample data.

 If you are only interested in collecting data at peak hours, say 10 AM to 11:30 AM and
 1:30 PM to 4 PM on weekdays, simply put the following statements into SIRTUNEI:

 INCLUDE 10 11:30 WEEKDAY
 INCLUDE 1:30 4 WEEKDAY

——
22 SirTune Reference Manual

——
 INTerval num_sec
——

 4.7 INTerval num_sec

 This statement is used to set the sampling rate, thus making it possible to limit the
 amount of sample data collected. The default for num_sec is 1, which means that
 sample data is collected at one-second intervals.

 The values specified for num_sec have a maximum resolution of 1/100 of a second so
 that

 INTERVAL 3.1415929

 is identical to

 INTERVAL 3.14

 This also means that the lowest legal value for num_sec is 0.01.

 The objective in setting the sampling interval should be to collect sufficient data to
 produce statistically significant results, without collecting unnecessarily huge amounts of
 data. Setting the sampling interval extremely low can also produce biased results.
 Generally, sampling intervals greater than 0.1 seconds should avoid any biasing
 problems.

 A reasonable rule of thumb is that 10,000 samples are sufficient to produce accurate
 reports. Thus to collect data on a batch job that generally takes half an hour to
 complete, samples should be collected every 1800/10000 seconds. To accomplish this,
 place the following statement into SIRTUNEI:

 INTERVAL 0.18

 If data is to be collected over 8 hours of a production ONLINE run, the default sampling
 interval of 1 second would result in 8*3600 or 28,800 samples being collected. In this
 case, it would not be unreasonable to place the following statement into SIRTUNEI to
 reduce the number of samples collected to 14,400:

 INTERVAL 2

 4.8 MIXed

 Status: This parameter is deprecated as of Version 7.2. If it is specified as an input
 parameter, it is ignored.

 This statement indicates that SirTune should issue all messages in mixed-case. The
 default is to issue messages in mixed-case except on Japanese operating systems. On
 these systems, the default is to issue all messages in uppercase only. This option
 should be used on Japanese operating systems when mixed-case messages are
 desired.

——
SirTune Reference Manual 23

——
Configuration Statements for the Data Collector
——

 4.9 NOSeq

 This statement indicates that SirTune should not consider characters in columns 73
 through 80 of SIRTUNEI as part of its input. If SIRTUNEI has RECFM=F and
 LRECL=80, SirTune ordinarily assumes that characters in columns 73 through 80 are
 sequence numbers, and therefore it ignores them. If SIRTUNEI has any other format,
 SirTune considers all characters in the input record as part of the SirTune statements.

 4.10 PGM pgm_name

 Effective in version 1.5 of SirTune and lower, this statement is ignored in versions after
 1.5.

 The PGM statement makes it possible to specify the name of the Model 204 ONLINE or
 BATCH204 load module to be loaded by the SIRTUNE module. The default for
 pgm_name is ONLINE under MVS, and it is M204ONLN under CMS.

 Thus, if SIRTUNE is to collect data for a job that should be run with BATCH204, put the
 following statement into SIRTUNEI:

 PGM BATCH204

 If the name of the load module for which SIRTUNE is to collect data is ONLINE22, put
 the following statement into SIRTUNEI:

 PGM ONLINE22

 4.11 PREComp

 This statement specifies that SirTune should only collect compilation data for pre-
 compiled APSY procedures; it is the inverse of the ALLCOMP command (“ALLComp” on
 page 13).

 The default for a single-user run (NUSERS = 1) is that SirTune collects compilation data
 for all procedures. The default for a multi-user run (NUSERS > 1) is that SirTune
 collects compilation data only for pre-compiled procedures. It is unnecessary to specify
 PRECOMP in a multi-user run, since it is the default.

 When PRECOMP is in effect, either because of an explicit PRECOMP statement or as
 the result of multi-user run defaults, the reporting module can produce line-by-line
 breakdowns for pre-compiled APSY procedures only.

——
24 SirTune Reference Manual

——
 SAMPle ON | OFF | AUTO
——

 4.12 SAMPle ON | OFF | AUTO

 This statement places SirTune in manual sampling mode. In this mode, SirTune ignores
 INCLUDE and EXCLUDE statements until a SAMPLE AUTO command is issued via a
 MODIFY or SMSG command issued by an authorized user. The default for this
 statement is SAMPLE AUTO, which places SirTune under the control of INCLUDE and
 EXCLUDE statements.

 For example, to have SirTune come up so that no sample data is collected until a user
 issues a (MODIFY or SMSG) SAMPLE command to turn sampling off or to put sampling
 in AUTO mode, simply place the following statement into SIRTUNEI:

 SAMPLE OFF

 To have SirTune come up so that sample data is collected until a user issues a MODIFY
 or SMSG SAMPLE command, place the following statement into SIRTUNEI:

 SAMPLE ON

 Note: If SAMPLE OFF is specified in SIRTUNEI and there are no AUTHORIZE
 statements in SIRTUNEI, it will be impossible to collect any sample data for the course
 of the run, because no user will have the authority to issue the MODIFY or SMSG
 SAMPLE command to set sampling to ON or to AUTO.

 4.13 UPper

 This statement indicates that SirTune should issue all messages in uppercase only. The
 default is to issue messages in mixed-case, except on Japanese operating systems. On
 these systems the default is to issue all messages in uppercase only.

 This option should be used on systems where mixed-case messages might not be
 displayed correctly on terminals or printers.

——
SirTune Reference Manual 25

——
Configuration Statements for the Data Collector
——

——
26 SirTune Reference Manual

——
 MODIFY and SMSG commands
——

——————
CHAPTER 5 MODIFY and SMSG commands

 Users outside the Model 204 or SIRTUNE/Model 204 address space can be authorized
 to issue certain commands to SirTune while the ONLINE or BATCH204 job is running.
 Users can be authorized to do this with SirTune's AUTHORIZE command. For more
 information on the AUTHORIZE command, see “Configuration Statements for the Data
 Collector” on page 13.

 Under MVS, these commands can be issued via the MODIFY operator command. This
 command can be issued at an operator console or under SDSF or an equivalent virtual
 console system. For example, to issue the STATUS command to SirTune running under
 job PRODONLN under SDSF's LOG screen, you can simply enter

 /MODIFY PRODONLN,STATUS

 or

 /F PRODONLN,STATUS

 Responses to MODIFY commands go to the system log and should be viewable under
 SDSF.

 Under CMS, these commands can be issued via the SMSG CP command. For
 example, to issue the STATUS command to SirTune running on a virtual machine
 named PRODONLN, you can enter

 SMSG PRODONLN STATUS

 or

 CP SMSG PRODONLN STATUS

 Responses to SMSG commands are sent via MSGNOH, if the SirTune/Model 204
 service machine is authorized to use MSGNOH, and they are sent via MSG otherwise.

 Available MODIFY/SMSG commands are listed here. Optional statement parameters
 are enclosed in brackets ([]). Alternatives are separated with a vertical line (|).

——
SirTune Reference Manual 27

——
MODIFY and SMSG commands
——

 5.1 BUMP user_num

 This command requests that SirTune issue the equivalent of the Model 204 BUMP
 command against the indicated user number. This command is useful if a high priority
 user is looping in an ONLINE, making it impossible for anyone else to do anything. To
 “bump” user number 18, issue this command:

 BUMP 18

 Unlike the Model 204 BUMP command, the SirTune BUMP command accepts only a
 single user number, and it does not accept userids or file names. To determine the user
 number of the running user, issue SirTune's MONITOR command. It is recommended
 that the MONITOR command be issued several times to ensure that a single user is
 indeed looping and that a performance problem is not simply the result of excess
 demand.

 If a loop situation is caused by a Model 204 bug, it is possible that a BUMP command
 will fail to force the looping user off the system. In this case, it might be necessary to
 issue the RESTART command to break the loop.

 5.2 CLOSE

 This command requests that SirTune close the sample dataset. This makes it possible
 to run the report generator against a sample data set that is still being updated by
 SirTune. This command has no effect on sampling activity in the Model 204 address
 space.

 5.3 MONITOR

 This command requests that SirTune return information about what is currently
 happening in Model 204 This command is especially useful if Model 204 appears to be
 hung or looping and, hence, it is impossible to log on to Model 204 to determine the
 cause of the problem.

 Information is returned for the main Model 204 task and any subtasks (if the MP/204
 feature is being used). The information returned indicates whether each task is running
 or waiting (corresponding to looping and hung situations respectively) and where in the
 Model 204 load module the task is running or waiting. This latter piece of information is
 most useful to Model 204 internals experts.

 If any Model 204 task is indicated as running, information is also provided on the user
 number and userid of the running user, the current activity (evaluating, compiling, etc.),
 and the name of the procedure that is currently running. This information can be used to
 determine whether a BUMP or RESTART command should be issued.

——
28 SirTune Reference Manual

——
 RESTART abend_code USER user_num | TASK task_num
——

 5.4 RESTART abend_code USER user_num | TASK
 task_num

 This command requests that SirTune issue the equivalent of a user abend in Model 204
 for the indicated user or task. This command should be used only as a last resort when
 a Model 204 ONLINE is looping or hung and all efforts to clear up the situation have
 failed (see the BUMP command). In this situation, the only options left are to cancel
 (FORCE under CMS) the run or to issue SirTune's RESTART command. The
 RESTART command is preferable because:

 ● The ONLINE might intercept the abend, possibly take a snap dump, and then
 continue running.

 ● Even if the ONLINE does not continue, it might at least intercept the abend and
 terminate “cleanly,” preventing files from being broken and eliminating the need to
 run recovery. Cancelling or forcing the ONLINE ensure that any files with active
 updating transactions will be left broken and that recovery will have to be run before
 the ONLINE can be used again.

 ● The RESTART command will generally result in a CCASNAP being taken rather
 than (or in addition to) a SYSMDUMP, SYSUDUMP, or VMDUMP. CCASNAPs are
 generally easier to deal with than other types of dumps.

 The abend_code value must be a 1- to 3-digit hexadecimal code that indicates the
 abend code to be used for the artificially generated abend. Under CMS the abend code
 must be between 0C1 and 0CF. Any dumps will indicate the specified abend code. It is
 important to inform support personnel examining the dump that the abend code was
 artificially generated by SirTune and that the situation was actually a hung or looping
 ONLINE.

 To prevent accidentally terminating a user or an ONLINE, a user number can be
 specified on the restart command. When a user number is specified on the RESTART
 command, no simulated abend will occur if the indicated user is not running in the
 ONLINE. For example, the following RESTART simulates a 0C4 abend if user 23 is
 running. If user 23 is not running, no abend will be simulated.

 RESTART 0C4 USER 23

 If no user is running (a hung ONLINE), it might be necessary to issue the RESTART
 command with a task number instead. Unless running MP/204, the task number must
 be specified as 0. If MP/204 is running, the task number must be 0 (for the maintask) or
 the subtask number (from 1 to NMPSUBS) to be restarted. For example, the following
 RESTART simulates a 0A9 abend on the Model 204 maintask:

 RESTART 0A9 TASK 0

 Note: It is almost always preferable to specify a user number on the RESTART
 command rather than a task number.

——
SirTune Reference Manual 29

——
MODIFY and SMSG commands
——

 5.5 SAMPLE ON | OFF | AUTO

 This command either places sampling back into automatic mode (SAMPLE AUTO),
 where sampling is controlled by INCLUDE/EXCLUDE statements in SIRTUNEI, or it
 initiates (SAMPLE ON) or terminates (SAMPLE OFF) collection of sample data. This
 command has no effect on the collection of compilation data: Compilation data is
 collected regardless of the sampling state.

 For example, to immediately start collecting data, the following command should be
 issued:

 SAMPLE ON

 To immediately stop collecting data, issue:

 SAMPLE OFF

 After a SAMPLE ON or SAMPLE OFF command is issued, SirTune is in “manual”
 sampling mode.

 5.6 STATUS

 This command requests the current sampling status of SirTune. SirTune's response to
 this command indicates the current sampling mode (AUTO or MANUAL), the current
 sampling state (ON or OFF), and the number of samples collected to this point.

 5.7 STOP

 This command requests that SirTune stop collecting both sampling and compilation data
 and that it close the sample dataset. After this command is issued, sampling cannot be
 restarted for the run. Since the sample dataset is closed by a STOP command, it is
 possible to use this dataset to generate reports after a STOP command, even while the
 ONLINE/BATCH204 job continues to run.

——
30 SirTune Reference Manual

——
 Generating Reports
——

——————
CHAPTER 6 Generating Reports

 As of version 7.2 of the Sirius Mods, the report generation portion of SirTune consists of
 two User Language programs which are distributed in the SIRIUS procedure file as part
 of UL/SPF.

 For versions of the Sirius Mods prior to 7.2, the report generation portion of SirTune
 consists of a single load module called SIRTUNER. For information about running
 SIRTUNER, see “Generating reports prior to Sirius Mods 7.2: MVS” on page 33 and
 “Generating reports prior to Sirius Mods 7.2: CMS” on page 34.

 The User Language reporting programs of SirTune are:

 SIRTUNEREPORT The "outer" SirTune report program.

 SHARED_REPORT Report methods used by SIRTUNEREPORT.

 To run SIRTUNEREPORT from a procedure file other than SIRIUS, move both these
 procedures to the new file, and update the single INCLUDE statement in
 SIRTUNEREPORT. A few UTABLE and environmental settings are executed at the top
 of SIRTUNEREPORT. These can be adjusted for performance or functional reasons at
 the client site.

 SIRTUNEREPORT requires two input files, and it accepts an optional output file. These
 files, described below, may be specified as DD cards or ALLOCATE statements on the
 job running SIRTUNEREPORT:

 TUNERPTI Input cards that specify the SirTune reports and other run
 characteristics.

 This file may contain older style input, with REPORT, RANGE,
 RESOLUTION, and other statements, or it may contain newer-style
 input in XML format. If old-style card images are input, a subroutine in
 SIRTUNEREPORT converts them to XML. For detailed information
 about this input, see “Configuring the Report Generator” on page 37.

 TUNERPTI is a required file.

 The file format of TUNERPTI is not critical: Since input lines should be
 shorter than 80 characters, a fixed 80-character file will work just fine.

 TUNERPTD This is the input data to SIRTUNEREPORT.

 TUNERPTD is a required file.

——
SirTune Reference Manual 31

——
Generating Reports
——

 This is the same file as SIRTUNED in the SirTune data collection run.

 Sample datasets from multiple runs may be concatenated. In fact,
 sample datasets from multiple runs may even be concatenated
 sequentially into a single dataset (with IEBGENER under MVS, or
 COPYFILE or an equivalent under CMS) and provided as a single
 dataset to SIRTUNEREPORT.

 When multiple sample datasets are concatenated in any way, the
 DATASET statement (“DATaset list” on page 40) must be provided in
 TUNERPTI to have TUNERPTR use any but the first sample dataset in
 the concatenation.

 TUNERPTO This is the output file for the SIRTUNEREPORT reports.

 The User Language is currently set to output 72 characters per line, so a
 fixed or fixed-block file with 80-character records is recommended.

 TUNERPTO is an optional file. If it is not present, report output will be
 redirected to standard output; generally, CCAPRINT.

 The names of these files are hard-coded in SIRTUNEREPORT, but they may be
 changed if you run SIRTUNEREPORT from another procedure file and decide to
 customize it. The names are chosen to differentiate them from the SIRTUNEx names
 used during SirTune data collection.

 Generally, SIRTUNEREPORT is run as a standalone batch job, though it is perfectly
 acceptable, if perhaps a little resource-intensive, to dynamically allocate the TUNERPTx
 files and run it from inside an Online.

 A basic TUNERPTR job under MVS would look like this:

 //TUNE JOB (0,0),CLASS=A,MSGCLASS=X
 //TUNERPT EXEC PGM=BATCH204,REGION=4096K,
 // PARM='SYSOPT=134,LIBUFF=1000,LOBUFF=1000',TIME=250
 //CCASTAT DD DSN=M204.CCASTAT,DISP=SHR
 //CCATEMP DD DSN=M204.TEMP1,DISP=SHR
 //CCAJRNL DD DSN=M204.CCAJRNL,DISP=SHR
 //SIRIUS DD DSN=ULSPF700.SIRIUS,DISP=SHR
 //TUNERPTI DD DSN=SIRTUNER.REPORT.INPUT,DISP=SHR
 //TUNERPTD DD DSN=SIRTUNER.DATA.INPUT,DISP=SHR
 //TUNERPTO DD DSN=SIRTUNER.REPORT.OUTPUT,DISP=SHR
 //CCAPRINT DD SYSOUT=*,OUTLIM=50000
 //CCAIN DD *
 NFILES=5,NDCBS=5,NDIR=5,MAXBUF=50,NGROUP=5,NORQS=4,LIBUFF=132, X
 LOBUFF=320,LPDLST=2400,LQTBL=1350,LSTBL=2000,LNTBL=1200
 LOGON me
 mepassword
 O SIRIUS
 INCLUDE SIRTUNEREPORT
 /*
 //

——
32 SirTune Reference Manual

——
 Generating Reports
——

 Under CMS, a similar Batch204 EXEC can be used to invoke SIRTUNEREPORT.

 Compatibility notes:

 ● As of release 7.2 of the Sirius mods, SirTune reports can only be generated using a
 User Language program invoking a call to the sirtuneReport method of the
 Dataset class, as implemented in the SIRTUNEREPORT User Language program
 described in this chapter.

 ● Due to format changes in the sample dataset, only releases 1.6 and later of
 SIRTUNER can process a SirTune version 7.0 and later sample dataset.

 ● Due to format changes in the sample dataset in SirTune version 1.5, earlier releases
 of SIRTUNER cannot process a SirTune 1.5 or higher sample dataset.

 6.1 Generating reports prior to Sirius Mods 7.2: MVS

 For pre-7.2 versions of the Sirius Mods, the report generation portion of SirTune consists
 of a single load module called SIRTUNER. To have SIRTUNER generate a report for a
 particular ONLINE or BATCH204 job, code JCL that invokes SIRTUNER with
 appropriate DD cards.

 Note: Due to format changes in the sample dataset, only releases 1.6 and later of
 SIRTUNER can process a SirTune version 7.0 and later sample dataset.

 Note: Due to format changes in the sample dataset in SirTune version 1.5, earlier
 releases of SIRTUNER cannot process a SirTune 1.5 or higher sample dataset.

 The DD names used by SIRTUNER are:

 SIRTUNED This DD should point to a sample dataset generated by SirTune. It
 corresponds to the SIRTUNED DD for the data collection part of SirTune.

 Sample datasets from multiple runs may be concatenated. In fact,
 sample datasets from multiple runs may even be concatenated
 sequentially into a single dataset (with IEBGENER or an equivalent) and
 provided as a single dataset to SIRTUNER.

 When multiple sample datasets are concatenated in any way, the
 DATASET statement (“DATaset list” on page 40) must be provided in
 SIRTUNEI to have SIRTUNER use any but the first sample dataset in the
 concatenation.

 SIRTUNEO This DD is the dataset that should receive SIRTUNER error messages or
 reports. It must have an LRECL greater than or equal to 80.

——
SirTune Reference Manual 33

——
Generating Reports
——

 SIRTUNEI This optional DD contains SIRTUNER statements that alter the
 SIRTUNER defaults. These statements allow control over which reports
 are produced and the time interval over which sample data is to be
 summarized. For a list of available statements, see “Configuring the
 Report Generator” on page 37.

 SIRTUNEI can have any format (RECFM=F or RECFM=V).

 The following is an example of JCL used to generate a report with SIRTUNER:

 //TUNER JOB (0),CLASS=C,MSGCLASS=A
 //SIRTUNER EXEC PGM=SIRTUNER,REGION=8M
 //STEPLIB DD DSN=SIRIUS.LOAD,DISP=SHR
 //SIRTUNEI DD *
 REPORT STATE WDISK EVAL
 /*
 //SIRTUNED DD DSN=SIRTUNE.SAMPLE.DATA,DISP=SHR
 //SIRTUNEO DD SYSOUT=*
 //

 6.2 Generating reports prior to Sirius Mods 7.2: CMS

 For pre-7.2 versions of the Sirius Mods, The report generation portion of SirTune
 consists of a single load module: SIRTUNER. To have SIRTUNER generate a report for
 a particular ONLINE or BATCH204 job, code an EXEC that invokes SIRTUNER with
 appropriate FILEDEF commands.

 Note: Due to format changes in the sample dataset, only releases 1.6 and later of
 SIRTUNER can process a SirTune version 7.0 and later sample dataset.

 Note: Due to format changes in the sample dataset in SirTune version 1.5, earlier
 releases of SIRTUNER cannot process a SirTune 1.5 or higher sample dataset.

 SIRTUNER can run under CMS or CMS/XA. Under CMS/XA, most of the storage used
 by SIRTUNER is “above the line,” so virtual storage constraints should not be an issue.

 The DD names used by SIRTUNER are:

 SIRTUNED This DD should point to a sample dataset generated by SirTune. It
 corresponds to the SIRTUNED DD for the data collection part of SirTune.

 Sample datasets from multiple runs may be concatenated. In fact,
 sample datasets from multiple runs can be concatenated sequentially into
 a single dataset (with COPYFILE or an equivalent) and provided as a
 single dataset to SIRTUNER.

——
34 SirTune Reference Manual

——
 Generating reports prior to Sirius Mods 7.2: CMS
——

 When multiple sample datasets are concatenated in any way, the
 DATASET statement (“DATaset list” on page 40) must be specified in
 SIRTUNEI to have SIRTUNER use any but the first sample dataset in the
 concatenation.

 SIRTUNEO This DD is the dataset that should receive SIRTUNER error message or
 reports. It must have an LRECL greater than or equal to 80.

 SIRTUNEI This optional DD contains SIRTUNER statements that alter the
 SIRTUNER defaults. These statements allow control over which reports
 are produced and the time interval over which sample data is to be
 summarized. For a list of available statements, see “Configuring the
 Report Generator” on page 37.

 SIRTUNEI must have fixed format, that is, RECFM=F or RECFM=FB.

 The following sample EXEC can be used to generate a report with SIRTUNER:

 /* */
 address command
 "FILEDEF SIRTUNEI DISK SIRTUNER INPUT A"
 "FILEDEF SIRTUNEO DISK SIRTUNER LISTING A"
 "FILEDEF SIRTUNED DISK PRODONLN DATA W",
 "(LRECL 512 BLOCK 4000 RECFM VB"

 "SIRTUNER"

 exit rc

——
SirTune Reference Manual 35

——
Generating Reports
——

——
36 SirTune Reference Manual

——
 Configuring the Report Generator
——

——————
CHAPTER 7 Configuring the Report Generator

 An optional DD card allows the reporting run to be customized. For SirTune 7.2, using
 the SIRTUNEREPORT User Language program to generate reports, this DD card is
 named TUNERPTI. For SirTune versions 6.9 and older, using the SIRTUNER module,
 the DD card is named SIRTUNEI.

 This input card must have fixed format, and it must use report configuration parameters
 specified in either of the following types of input format to define the characteristics of
 the reporting run:

 ● Control-card statements

 Report configuration parameters are specified in a set of statements (only one per
 line). There are no line continuations, and a line beginning with an asterisk
 character (*) is treated as a comment (that is, ignored).

 The individual statements are described in “Configuration parameters” on page 38.

 An example of control-card statement input follows:

 RANGE 9:30 12:30
 RESOLUTION 50
 REPORT CFRROOT
 REPORT STATE CFRBANY WHAT
 MAXD 10
 REPORT STATE RUNG QUAD
 REPORT STATE RUNG EVALI EVAL CHUNK 32
 REPORT STATE RUNG CHUNK 4 CHUNK 400 CHUNK 4000
 REPORT CSECT TOTAL CHUNK 512 CHUNK 64

 ● XML document format (must be SirTune 7.2 or later)

 Report parameters are case-sensitive XML elements or attributes contained in a
 SirtuneInput document node.

 Most of the parameters represented as single control-card statements (as described
 above) are available in XML, but they are represented in lowercase or mixed-case,
 and some are individual elements while others are attributes of elements. The
 details about the coding location of each parameter are in “Using XML input for
 report configuration” on page 53.

 Unlike the control-card input format, where multiple variations on a report can be
 specified on a single line, in XML format each <report> element specifies exactly
 one report.

——
SirTune Reference Manual 37

——
Configuring the Report Generator
——

 Here is an XML version of the control-card example above:

 <SirtuneInput maxDelay="10" top="100" title="ULSPFPRO">
 <range start="9:30" end="12:30"/>
 <resolution value="50"/>
 <reportFormat>
 <title>Sirtune Reports for ULSPFPRO</title>
 <charactersPerLine>78</charactersPerLine>
 <linesPerPage>55</linesPerPage>
 <tableOfContents>top</tableOfContents>
 </reportFormat>
 <report type="cfrroot"/>
 <report type="what" state="crfbany"/>
 <report type="quad" state="rung"/>
 <report type="evali" state="rung"/>
 <report type="eval" state="rung"/>
 <report type="eval" state="rung" chunk="32"/>
 <report type="eval" state="rung" chunk="4">
 <report type="eval" state="rung" chunk="400">
 <report type="eval" state="rung" chunk="4000">
 <report type="csect" chunk="total"/>
 <report type="csect" chunk="512"/>
 <report type="csect" chunk="64"/>
 </SirtuneInput>

 7.1 Configuration parameters

 The following subsections describe the individual parameters you can use to configure a
 SirTune report. Most of the parameter names and descriptions refer to the control-card
 statement format that was the only control-card option prior to SirTune version 7.2,
 although pertinent XML format information is also provided. For more information about
 using XML for the control-card input, see “Using XML input for report configuration” on
 page 53.

 Where applicable, the titles of the following subsections also show how to specify the
 parameter in control-card statement form:

 ● The minimum allowable abbreviation for each statement is indicated with uppercase
 characters, while optional characters are indicated with lowercase.

 Names are case-sensitive and these name abbreviations are not permitted in XML-
 formatted input.

 ● Optional statement keywords are enclosed in brackets ([]), and alternatives are
 separated with a vertical line (|).

——
38 SirTune Reference Manual

——
 Configuration parameters
——

 7.1.1 CHARACTERSPERLINE or CPL

 This statement determines the width of an output report line. For example, either of the
 following statements sets the report output width to 80 characters:

 CHARACTERSPERLINE 80

 CPL 80

 Valid line-width values are integers between 78 and 256. If a value outside this range is
 specified, CPL is set to 132.

 If you are using XML input to TUNERPTI, the <cpl> or <charactersPerLine>
 element specifies the line width. For more information about this, see “<reportFormat>:
 Controlling report format” on page 56.

 7.1.2 comp31

 Status: This parameter is new for Version 7.2. It can only be specified when using XML
 input to TUNERPTI, and it is only valid for Model 204 V6R3 and later.

 comp31 indicates the maximum size of compilation table for a procedure that will be
 stored in 31-bit storage. Above this size, compilations are moved to 64-bit storage. The
 default value is x'1FFFF', or 131,071.

 comp31 is specified as an attribute on the SirtuneInput element (see “Using XML
 input for report configuration” on page 53); for example:

 <SirtuneInput maxDelay="10" comp31="200000">

 The size of a saved compilation table for a procedure is the size of the procedure in
 QTBL bytes divided by the minimum QTBL chunk size, times 20:

 (QTBLsize/QTBLchunk)*20

 If a procedure's QTBL is 20,000 bytes and the smallest chunk size requested in a report
 is 200, this procedure will require (20,000/200)*20, or 2,000 bytes. More common are
 procedure sizes of around 800,000 bytes, with a chunk size of 4, theoretically requiring
 (800,000/4)*20, or 4,000,000 bytes. This is actually an upper bound, as you never get
 more than one chunk per line, and few lines of code generate only 4 bytes of QTBL.
 More typical is about 40 bytes per chunk (even with a chunk size of 4), which produces a
 compiled table of 200,000.

 There is no reason to set comp31 unless your site is running out of 31-bit storage under
 Model 204 V6R3 or later. Prior to V6R3, Model 204 did not support 64-bit storage, so
 comp31 has no effect.

——
SirTune Reference Manual 39

——
Configuring the Report Generator
——

 Note: As described in the Sirius Mods Command and Parameter Reference Manual,
 the CURREP31, CURREP64, HGHREP31, and HGHREP64 system parameters indicate
 the current and greatest amounts of 31-bit and 64-bit virtual storage used for a report.
 The MAXREP31 and MAXREP64 parameters indicate the maximum amount allowed.

 7.1.3 DATaset list

 Status: This parameter is deprecated as of Version 7.2. If it is specified as an input
 parameter, it is ignored.

 This statement indicates which sample datasets that make up SIRTUNED are to be
 included in the report. A separate INFO report is produced for each dataset selected,
 and all samples from the selected datasets are combined to produce composite results
 for other reports. Datasets are processed in order: if a dataset is selected and causes
 some TUNR error message, reporting ends without proceeding to other datasets.

 If the DATASET statement is not specified, only the first sample dataset is included in
 the report. This is true even if multiple sample datasets were physically concatenated
 into a single dataset with IEBGENER or COPYFILE before being passed to the reporting
 module.

 The list value is a list of dataset numbers or ranges of numbers. For example, the
 following indicates that datasets 1 through 4 are to be used:

 DATASET 1-4

 The following indicates that datasets 2, 4, and 5 through 6 are to be used:

 DATASET 2 5-6 4

 More than one DATASET statement can appear in SIRTUNEI, and their effect is
 cumulative, so

 DATASET 2
 DATASET 4-6

 is the same as

 DATASET 2 4-6

 If an asterisk (*) character appears after a DATASET statement, all datasets are used in
 the report. Thus the following

 DATASET 1 3-5 8 *

 is the same as

 DATASET *

——
40 SirTune Reference Manual

——
 Configuration parameters
——

 since in both cases, all datasets are used in the report.

 There is no harm in specifying dataset numbers greater than the number of sample
 datasets in SIRTUNED, though of course, these dataset numbers will not be included in
 the report.

 RANGE, SKIP, and FOR statements operate individually on each component sample
 dataset in a concatenation. For example, suppose SIRTUNED consists of three
 concatenated sample datasets collected over the following dates and times:

 Dataset 1 January 5 at 5:30 AM through January 8 at 11:00 PM

 Dataset 2 January 10 at 1:00 PM through January 15 at 10:00 PM

 Dataset 3 January 11 at 5:00 AM through January 14 at 10:00 PM

 In this example, datasets 2 and 3 are associated with two different Onlines that run
 concurrently. The SIRTUNEI statements

 RANGE 11:00 12:00 SKIP 3 FOR 2
 DATASET 1-3

 would result in the range of 11:00 AM to 12:00 noon being used on the following days for
 each dataset:

 Dataset 1 January 8
 Dataset 2 January 14-15
 Dataset 3 January 14-15

 To determine the time ranges and characteristics of each individual dataset in a
 concatenation, simply run a report against the concatenated SIRTUNED with the
 following commands in SIRTUNEI:

 REPORT NODEFAULT
 REPORT INFO

 It should be possible to produce most SirTune reports with any concatenation of
 datasets. There are certain reports, however, that require all sample datasets to have
 been produced with some consistency among the Onlines. These reports are:

 CSECT? The Model 204 load modules must be identical among
 runs (except for ZAPs or Early Warnings).

 STATE ???? QUAD The Model 204 load modules must be from the same
 release and must have run with identical $function tables.

 SERVIO The OnlineS must have run with identical numbers of
 server datasets (CCASERVR, CCASERV1, etc.).

——
SirTune Reference Manual 41

——
Configuring the Report Generator
——

 STATE RUNGM/RUNGS The OnlineS must have all run with NMPSUBS greater
 than 0 (the MP feature is turned on).

 Even though all other reports are allowed for concatenated sample datasets, use caution
 when interpreting the results. It is up to you interpret how changes between runs could
 affect the results. These changes might include:

 ● User Language code changes
 ● Changes in Model 204 parameters
 ● Changes in the Model 204 load module
 ● Changes in SirTune parameters
 ● Number of samples collected in each sample dataset

 In general, it is unlikely that concatenating datasets collected in different environments or
 many months apart will produce meaningful reports.

 Suppose, under MVS, the SIRTUNER or SIRTUNEREPORT job logically concatenates
 five sample datasets associated with the 5 weekdays as follows:

 //SIRTUNED DD DSN=SIRTUNE.SAMPLE.MON,DISP=SHR
 // DD DSN=SIRTUNE.SAMPLE.TUE,DISP=SHR
 // DD DSN=SIRTUNE.SAMPLE.WED,DISP=SHR
 // DD DSN=SIRTUNE.SAMPLE.THU,DISP=SHR
 // DD DSN=SIRTUNE.SAMPLE.FRI,DISP=SHR

 To produce a report for Tuesday and Wednesday simply code the following input
 statements:

 DATASET 2 3

 7.1.4 LINESPERPAGE or LPP

 This statement determines the page length for report output. Any integer value is valid.

 A header is printed at the top of each page. If 0, the default, is specified, no paging is
 performed, and headers are output at the beginning of each report.

 For example, either of the following statements sets report page length to 55 lines:

 LINESPERPAGE 55

 LPP 55

 When 55 lines have been printed, SIRTUNEREPORT prints a new header and resets
 the line counter to 0.

 If you are using XML input to TUNERPTI, the <lpp> or <linesPerPage> element
 specifies the report page length. For more information about this, see “<reportFormat>:
 Controlling report format” on page 56.
——
42 SirTune Reference Manual

——
 Configuration parameters
——

 7.1.5 MAPcore

 Status: This parameter is deprecated as of Version 7.2. If it is specified as an input
 parameter, it is ignored.

 When used in a CSECT breakdown report, this statement allows analysis of instructions
 outside the loaded Model 204 module.

 7.1.6 MAXDelay max_msec

 This statement makes it possible to change the criterion used by the reporting module to
 determine if a sample should be discarded.

 When the delay between the time a sample was supposed to be collected and the time it
 actually was collected is greater than max_msec milliseconds, the sample is assumed to
 be biased and hence discarded. The default for max_msec is 10, which means that any
 sample that was delayed by more than 10 milliseconds from its intended time will be
 discarded.

 If it is felt that reports are biased, with I/O producing instructions appearing unbelievably
 frequently in the RUNG state (obviously, this is very subjective), it might be worth
 reducing MAXDELAY to 1 with the following statement:

 MAXDELAY 1

 If there was indeed a bias, one would expect after this change to see more samples
 discarded and the percentages for the RUNG state to change for certain procedures and
 chunks of procedures.

 If, on the other hand, SirTune was running in an environment where the Online was
 getting relatively slow service from the operating system, almost all samples might be
 discarded by the reporting module. In this situation, it might be worth increasing
 MAXDELAY to accept more samples, with the understanding that this might introduce
 biases in the reported data.

 To increase MAXDELAY to 1000 milliseconds (1 second), enter this statement:

 MAXDELAY 1000

 Generally, setting MAXDELAY greater than 100 is likely to produce severe biases in
 Sirtune reports.

 7.1.7 MIXed

 Status: This parameter is deprecated as of Version 7.2. If it is specified as an input
 parameter, it is ignored.

——
SirTune Reference Manual 43

——
Configuring the Report Generator
——

 This statement indicates that the reporting module should issue all reports in mixed
 case. The default is to issue messages in mixed case except on Japanese operating
 systems. On these systems, the default is to issue all message in uppercase only. This
 option should be used on Japanese operating systems when mixed case messages are
 desired.

 7.1.8 MPVirt

 Status: This parameter is deprecated as of Version 7.2. If it is specified as an input
 parameter, it is ignored.

 This statement has meaning only if generating a report for data collected in an Online
 running MP/204. It indicates that a running user is considered to be running in parallel if
 it is in virtual or logical parallel mode, whether or not it is actually running in an offload
 subtask. By default, the SirTune reports only consider a user to be running in parallel if
 it is actually running on an offload subtask.

 The MPVIRT statement is useful for estimating the “offloadability” of User Language
 code in systems that are not busy enough to force all offloadable code into a subtask.

 Note: MPVIRT only has an effect on reports that are specific to states RUNGM or
 RUNGS.

 It is not possible to split the reports in a run of SirTune so that some are generated with
 MPVIRT set and others are not. If MPVIRT appears anywhere in the input stream, all
 reports from that reporting run are generated using the MPVIRT option, whether the
 REPORT statements appear before or after the MPVIRT statement.

 7.1.9 NOSeq

 Status: This parameter is deprecated as of Version 7.2. If it is specified as an input
 parameter, it is ignored.

 This statement indicates that reporting module should not consider characters in
 columns 73 through 80 of SIRTUNEI as part of its input. If the input file has RECFM=F
 and LRECL=80, the reporting module ordinarily assumes that characters in columns 73
 through 80 are sequence numbers and ignores them. If the input stream has any other
 format, the reporting module considers all characters in the input record as part of the
 control statements.

 7.1.10 RANge start_time end_time [FOR for_num] [SKIP
 skip_num]

 This statement makes it possible to limit the reports to a subset of the collected sample
 data. This is useful for solving performance problems that have different characteristics
 during different times of the day.

——
44 SirTune Reference Manual

——
 Configuration parameters
——

 start_time and end_time can have the format HH, HH:MM or HH:MM:SS, where HH
 represents an hour of the day, MM represents minutes, and SS represents seconds.
 The maximum allowable time is 24 or 24:00 or 24:00:00, which corresponds to midnight.
 For example, the following statement indicates that only sample data collected in the first
 1 PM to 3 PM range in the run should be used to generate the reports:

 RANGE 13 15

 When using XML format, RANGE is specified in lowercase as a child element of the
 document element, with "start", "end", "skip", and "for" as optional attributes:

 <SirtuneInput top="50">
 <range start="13" end="15">

 If the run came up in the middle of the specified range, the time from the start of the run
 to the end of the range is considered the first range. In the preceding example, if the run
 came up at 2:30 PM, the first range would extend from 2:30 PM to 3 PM. The following
 example indicates that only sample data collected in the first 11:30 AM to 1:30 PM range
 in the run should be used to generate the reports:

 RANGE 11:30 13:30

 This example indicates that only sample data collected in the first 30 seconds before 12
 noon through 50 seconds after 1 PM range in the run should be used to generate the
 reports:

 RANGE 11:59:30 13:00:50

 If start_time is greater than end_time the times are assumed to wrap. For example. the
 following statement indicates that only sample data collected in the first 11:00 PM to
 1:00 AM range in the run should be used to generate the reports:

 RANGE 23:00 1:00

 If sample data for a run was collected over more than 24 hours, a range might occur
 more than once in the sample dataset. Ordinarily, only the first range is included in the
 reports. To include a specific number of occurrences of the indicated range, the FOR
 clause should be included on the RANGE statement, followed by for_num, where
 for_num can be either a whole number or an asterisk (*). A whole number indicates the
 number of occurrences of the range are to be included in the report. An asterisk
 indicates that all occurrences of the range are to be included in the report.

 For example, the following statement indicates that the first 5 9:30 AM to 11:30 AM
 ranges are to be included in the reports:

 RANGE 9:30 11:30 FOR 5

——
SirTune Reference Manual 45

——
Configuring the Report Generator
——

 The data in these ranges are combined to produce a single set of reports. The following
 statement indicates that all 10 AM to 3 PM ranges are to be included in the report:

 RANGE 10 15 FOR *

 To exclude the first occurrence or occurrences of the indicated range from the reports,
 include the SKIP clause on the RANGE statement, followed by skip_num (where
 skip_num must be a non-negative integer indicating the number of occurrences of the
 indicated range to skip). For example, to indicate that the second 10 AM to 12 noon
 range is to be included in the reports:

 RANGE 10 12 SKIP 1

 To indicate that the third, fourth, and fifth 1:30 PM to 3:30 PM ranges are to be included
 in the reports:

 RANGE 13:30 15:30 SKIP 2 FOR 3

 While multiple RANGE statements may be specified only the last one is used when
 specified as control cards. Conversely, only the first one is used when specified in XML
 input Thus,

 RANGE 9:30 11:30
 RANGE 13:30 15:30

 is functionally equivalent to

 RANGE 13:30 15:30

 The position of RANGE statements relative to other statements is irrelevant.

 7.1.11 REPort report_desc | NODEFAULT

 This statement either requests a specified report or reports, or it indicates that the
 default reports are not to be generated (REPORT NODEFAULT). The actual reports
 that can be requested are listed in “SirTune Reports” on page 59.

 If REPORT NODEFAULT is specified, it must be the first REPORT statement in the
 input stream (if input is XML formatted, the position of REPORT NODEFAULT is not
 critical).

 The default reports produced by SIRTUNEI are the ones that are produced by the
 following statements:

 REPORT INFO
 REPORT SUMMARY
 REPORT STATE RUNG WHAT EVAL CHUNK 4000
 REPORT STATE RUNG EVAL CHUNK 400 CHUNK 4

——
46 SirTune Reference Manual

——
 Configuration parameters
——

 In XML format, these default reports are specified like this:

 <SirtuneInput maxDelay="10" top="50">
 <report type="info">
 <report type="state">
 <report type="waittype">
 <report type="what" state="rung">
 <report type="eval" state="rung">
 <report type="eval" state="rung" chunk="4000">
 <report type="eval" state="rung" chunk="400">
 <report type="eval" state="rung" chunk="4">
 </SirtuneInput>

 For more information about XML formatting for an individual report, see “<report>:
 Specifying individual reports” on page 57.

 7.1.12 RESolution res_num [PROC pname] [FILE fname]
 [SUBSYS sname]

 This statement makes it possible to reduce the reporting module's virtual storage
 utilization at the cost of reducing the resolution possible in producing procedure chunk
 reports. This statement should be of interest only to users for whom virtual and real
 storage use is a major concern.

 Note: As described in the Sirius Mods Command and Parameter Reference Manual,
 the CURREP31, CURREP64, HGHREP31, and HGHREP64 system parameters indicate
 the current and greatest amounts of 31-bit and 64-bit virtual storage used for a report.
 The MAXREP31 and MAXREP64 parameters indicate the maximum amount allowed.

 Storage use by the reporting module is directly related to the total number of chunks for
 all procedures for which compilation information is saved. The number of chunks
 required for each such procedure is inversely related to its minimum resolution. Thus by
 increasing the minimum resolution for a procedure, it is possible to decrease the amount
 of virtual storage used for that procedure. The default resolution for all procedures is 4.

 The res_num value specifies the minimum chunk resolution in QTBL bytes for all or the
 indicated procedures. For a discussion of chunks and resolution, see “REPORT STATE
 state_name activity” on page 67.

 If not followed by any other keywords, this statement sets the default minimum resolution
 for all procedures. For example, this sets the default minimum resolution for all
 procedures to 100:

 RESOLUTION 100

——
SirTune Reference Manual 47

——
Configuring the Report Generator
——

 There can be an unlimited number of this kind of RESOLUTION statements, but only the
 last one is used to set the default minimum resolution when the input stream is formatted
 as control cards. When XML input is used, only the first RESOLUTION statement is
 used. Thus,

 RESOLUTION 50
 RESOLUTION 100
 RESOLUTION 150

 is functionally equivalent to

 RESOLUTION 150

 Likewise, this XML input

 <resolution value="150">
 <resolution value="100">
 <resolution value="50">

 is functionally equivalent to

 <resolution value="150">

 res_num may optionally be followed by one or more keywords (PROC, FILE, or
 SUBSYS), with each keyword followed by a resolution that applies only to procedures
 that meet the keyword's criterion. For example, this statement indicates that a resolution
 of 1000 should be used for all procedures in subsystem HOHO:

 RESOLUTION 1000 SUBSYS HOHO

 Using XML input, the keywords are the same except in lowercase:

 <resolution value="1000" subsys="HOHO">

 This statement indicates that a resolution of 500 should be used for all procedures in
 procedure file PROCA:

 RESOLUTION 500 FILE PROCA

 Or, in XML mode:

 <resolution value="500" file="PROCA">

 The following indicates that a resolution of 700 should be used for the procedure named
 PRE-PROC.A:

 RESOLUTION 700 PROC PRE-PROC.A

——
48 SirTune Reference Manual

——
 Configuration parameters
——

 Wildcards can also be used. To indicate that a resolution of 100 should be used for any
 procedure whose name begins with PRE-, you can specify:

 RESOLUTION 100 PROC PRE-*

 The following statement indicates that a resolution of 300 should be used for any
 procedure in a subsystem whose name ends with XREF:

 RESOLUTION 300 SUBSYS *XREF

 For more details on the use of wildcards, see “Wildcard Strings in SirTune and
 SIRTUNER Statements” on page 95.

 More than one condition can be specified on a single RESOLUTION statement, in which
 case the resolution specified applies only to procedures that match all the keyword
 criteria. For example, the following statement sets a resolution of 1000 for any
 procedure whose name ends in TEST and is in a procedure file whose name begins with
 SIR:

 RESOLUTION 1000 FILE SIR* PROC *TEST

 In XML mode, the previous statement is:

 <resolution value="1000" file="SIR*" proc="*TEST">

 An unlimited number of qualified RESOLUTION statements may appear in the report
 configuration input. If more than one does occur in the input stream, each procedure for
 which compilation data is encountered is compared against each RESOLUTION
 statement, in the order in which they appear. As soon as a match is found, the
 resolution is set for the procedure, and no more RESOLUTION statements are scanned.

 Thus, if SIRTUNEI contains

 RESOLUTION 1000 SUBSYS SIR*
 RESOLUTION 500 FILE TEST*
 RESOLUTION 200 PROC *TEMP*

 any procedure in a subsystem whose name begins with SIR would have a resolution of
 1000, even if it ran out of a procedure file whose name begins with TEST, or if the
 procedure name contains the characters T E M P.

 The resolution used for specific procedures with the resolution statements in the
 preceding example are listed below:

——
SirTune Reference Manual 49

——
Configuring the Report Generator
——

 Subsystem Procfile Procedure name Resolution

 TOOLSYS GENFILE BOP.PROD.L default
 SIRJUNK JUNKPROC P.JUNK.PROC 1000
 BIGSYS TESTFILE P.BARTLIST 500
 BIGSYS PROCX EXPER.TEMP.P 200
 SIRJUNK TESTFILE P.BARTLIST 1000
 SIRJUNK PROCX EXPER.TEMP.P 1000
 BIGSYS TESTFILE EXPER.TEMP.P 500
 SIRJUNK TESTFILE EXPER.TEMP.P 1000

 The suggested use of the RESOLUTION command is that the default is left at 4 and that
 resolution is set to a high value for procedures that are known to be compiled but are not
 likely to show much activity. If one or more of these procedures shows up on a CHUNK
 report at a resolution smaller than that set by the RESOLUTION commands for the
 procedures, do either of the following:

 ● Modify the RESOLUTION command.

 ● Add extra RESOLUTION commands to explicitly set the resolution at a lower value
 for the procedures that appear on the CHUNK report.

 For example, suppose the following statement is specified, and a procedure named
 PRE.JUNK.PROC in subsystem TEST appears on a report for chunk size 100:

 RESOLUTION 400 SUBSYS TEST

 Since the minimum chunk size that SIRTUNER or SIRTUNEREPORT can use for
 procedures in subsystem TEST is 400 (because of the RESOLUTION statement), the
 report with chunk size 100 is comparing chunks of size approximately 100 with a chunk
 of size 400 in PRE.JUNK.PROC. Thus, a much larger segment of code is being totalled
 for PRE.JUNK.PROC than other procedures on this report, making this procedure look
 more important than it really is.

 To correct this situation, you can either remove the RESOLUTION statement from
 SIRTUNEI or TUNERPTI and lose its virtual storage savings benefits, or you can add
 another RESOLUTION statement to override the subsystem wide RESOLUTION
 statement for the specific procedure in question. The following sequence would
 accomplish this.

 RESOLUTION 4 SUBSYS TEST PROC PRE.JUNK.PROC
 RESOLUTION 400 SUBSYS TEST

——
50 SirTune Reference Manual

——
 Configuration parameters
——

 7.1.13 TITle title_string

 This command makes it possible to specify a title to appear on the top line of each page
 of the SirTune report. The default for title_string is SIRTUNE.

 TITLE makes it easy to distinguish the output from multiple SIRTUNER reports. The title
 string can be made up of an arbitrary number of characters, including blanks. Only the
 first 62 characters of title_string are used to generate the title.

 An example of a valid TITLE statement follows:

 TITLE Production run after first round of changes

 When using XML input in version 7.2 and later, you can specify the title as either a child
 element of the document node, like this:

 <SirtuneInput>
 <title>Sirtune June 16, 2010 for THX1138</title>
 ...

 Or you can specify it as a child element of the reportFormat node, like this:

 <SirtuneInput>
 <reportFormat>
 <title>Sirtune June 16, 2010 for THX1138</title>
 </reportFormat
 ...

 If specified in both places, the child element of reportFormat will override the child
 element of the document node. The reporting module only pays attention to the first title
 specified in either location in the input document.

 7.1.14 TOP num_top

 This statement specifies the number of top entities to be displayed on any report that
 ranks multiple entities. The default for num_top is 50. This default can be overridden by
 a TOP keyword on a REPORT statement (“The TOP parameter” on page 73).

 For example, if you want to report on the top 100 procedures or chunks of procedures on
 all reports, place this statement in the input stream:

 TOP 100

 Or, with XML input in 7.2 and later, enter top as an attribute on the document node:

 <SirtuneInput top="100">

——
SirTune Reference Manual 51

——
Configuring the Report Generator
——

 Generally, it is not profitable to look at anything past the top 50 entities in any report,
 since less than 2% of resource usage can be attributed to any entity not in the top 50. It
 is generally not worth optimizing something that accounts for so little resource usage.

 7.1.15 TABLEOFCONTENTS or TOC

 This statement determines whether a table of contents is produced and where it is
 placed in the report. Although TWOPASS can still be used to specify the table of
 contents placement, the TABLEOFCONTENTS statement provides more control.

 Valid values for TABLEOFCONTENTS are TOP, BOTTOM and NONE. By default, the
 table of contents is placed at the end of the report.

 If you are using XML input to TUNERPTI, the <toc> or <tableOfContents> element
 specifies characteristics of the table of contents. For more information, see
 “<reportFormat>: Controlling report format” on page 56.

 7.1.16 TWOpass

 This statement indicates that the reporting module should place the table of contents for
 the output report at the start of the report rather than at the end. By default, the table of
 contents is placed at the end of the report.

 As of version 7.2, this parameter is misnamed: the reporting module no longer needs to
 make two passes of the data, regardless of where the table of contents is positioned.

 If you are using XML input to TUNERPTI, the <toc> or <tableOfContents> element
 specifies characteristics of the table of contents. See “<reportFormat>: Controlling
 report format” on page 56.

 7.1.17 UPper

 Status: This parameter is deprecated as of Version 7.2. If it is specified as an input
 parameter, it is ignored.

 This statement indicates that the reporting module should issue all messages in
 uppercase only. The default is to issue messages in mixed case, except on Japanese
 operating systems, where the default is to issue messages in uppercase only.

 This option should be used on systems where mixed-case messages might not be
 displayed correctly on terminals or printers.

——
52 SirTune Reference Manual

——
 Using XML input for report configuration
——

 7.2 Using XML input for report configuration

 As of version 7.2, it is recommended that the control parameters described in
 “Configuration parameters” on page 38 be formatted as an XML document in
 TUNERPTI. As shown in the example that follows, this XML document is characterized
 by:

 ● A root node, <SirtuneInput>, whose attributes are report parameters.

 ● Optional sub-elements (“child” elements) for other parameters, including
 <reportFormat>, which provides output formatting not available prior to version
 7.2.

 ● A <report> element for each report, specified with appropriate attributes as
 described in “REPort report_desc | NODEFAULT” on page 46.

 A sample TUNERPTI input document follows. The entire set of TUNERPTI XML
 document element and attribute options is shown in “A template for the XML input” on
 page 54.

 <SirtuneInput maxDelay="10" top="100">
 <title>ULSPFPRO on Sirius</title>
 <reportFormat>
 <linesPerPage>55</linesPerPage>
 <charactersPerLine>78</charactersPerLine>
 <tableOfContents>top</tableOfContents>
 </reportFormat>
 <report type="info"/>
 <report type="waittype"/>
 <report type="state"/>
 <report type="sysparm"/>
 <report type="csect" top="100"/>
 <report type="csect" chunk="64" top="100"/>
 <report type="csect" chunk="4" top="100"/>
 <report type="csect" task="maintask" top="100"/>
 <report type="csect" chunk="64" task="maintask" top="100"/>
 <report type="eval" chunk="400" state="wchkpo"/>
 <report type="eval" chunk="4" state="wchkpo"/>
 <report type="eval" state="wbuff"/>
 <report type="eval" chunk="400" state="wbuff"/>
 <report type="eval" chunk="4" state="wbuff"/>
 <report type="whatc"/>
 <report type="whatc" chunk="64"/>
 <report type="servuse" chunk="10000"/>
 <report type="servio"/>
 </SirtuneInput>

——
SirTune Reference Manual 53

——
Configuring the Report Generator
——

 7.2.1 General notes on TUNERPTI formatting

 The following notes further describe the format of a TUNERPTI XML document like the
 example above.

 ● As with all XML, the element and attribute names in a TUNERPTI XML document
 are case sensitive. “SirtuneInput” is not validly entered as “SirTuneInPut” or as any
 other combination of uppercase and lowercase letters except “SirtuneInput”.
 Element and attribute values are case-insensitive.

 A few of the parameter names are in mixed case, but for ease of coding, most
 elements and attributes are restricted to lowercase characters.

 ● While multiple reports can be specified on a single line in the older control card
 format, each <report> element in the XML input represents a single report.

 ● The configuration parameters top, maxDelay, and comp31 are specified as
 attributes of the <SirtuneInput> document element.

 The configuration parameters title, range, and resolution are specified as
 sub-elements of <SirtuneInput>, and their values are element content.

 title can alternately be specified as a sub-element of <reportFormat>.

 ● Parameters affecting the report layout are specified as sub-elements of the
 <reportFormat> element.

 ● While the old-style card-image input format will continue to be supported after
 version 7.2, newer features are only available via XML input. Features such as
 user-specified characters-per-line and lines-per-page are already available only
 when using XML input to TUNERPTI.

 7.2.2 A template for the XML input

 This is a fully-qualified template for the TUNERPTI input XML document. It shows the
 document format and its possible XML elements, attributes, and content.

 Square brackets ([]) enclose values you supply. The type, format, or explicit set of
 valid options for these values is indicated within the brackets. “Guidelines for the three
 main XML elements” on page 56 provides additional details.

 <SirtuneInput top="[integer]"
 maxDelay="[integer]"
 comp31="[integer]">

 <range start="[HH|HH:MM|HH:MM:SS]"
 end="[HH|HH:MM|HH:MM:SS]"
 for="[integer]"
 skip="[integer]" />
——
54 SirTune Reference Manual

——
 Using XML input for report configuration
——

 <resolution value="[integer]"
 subsys="[subsysname]"
 file="[filename]"
 proc="[procname]" />

 <title>[62-character title]</title>

 <reportFormat>
 <title>[62-character title]</title>
 <charactersPerLine>[integer]</charactersPerLine>
 <linesPerPage>[integer]</linesPerPage>
 <tableOfContents>[top|bottom|none]</tableOfContents>
 </reportFormat>

 <report type="[cfroot|csect|csectm|csects|diskio|info|
 quad|quadcm|quadcs|servio|servuse|state|
 summary|sysparm|whatc|whatcm|whatcs|
 waittype|nodefault]"
 top="[integer]"
 chunk="[total|table|integer]"
 task="[subtask|maintask]"

 <!--if a REPORT STATE, the following are the "type"-->
 <!--and "state" attribute options-->
 type="[what|comp|load|eval|evali|quad|chunk|
 ifjob|ifcomp|ifjcomp|iffunc|ifchunk]"
 <!--"state" options include primary states:->
 state="[blkin|blkiu|blkon|blkou|redy|rung|rungm|
 rungs|swpgi|swpgobn|swpgobu|swpgow|wpst|
 wtsv|
 <!--composite states:->
 all|alli|alln|blk|blki|blkn|blko|blku|
 oservn|oservu|oservw|redyr|runbl|swpg|
 swpgo|swpgob|
 <!--wait types:->
 wmisc|wdisk|wusero|wuseri|woperi|wdumpo|
 wdumpi|wenque|wbuff|wpst|wifam|wsleep|
 wjrnlo|wchkpo|wwrite|warbmo|wchkpr|wdisk|
 wdead|wvsami|wlogin|wcfrex|wcfrsh|wvtbuf|
 wconvi|wconvo|wsctyi|ws$wai|wn$wai|wuldb2|
 wcfr|wlog|
 <!--critical file resources:->
 cfrhany|cfrhdir|cfrhind|cfrhexs|cfrhrec|
 cfrbany|cfrbdir|cfrbind|cfrbexs|cfrbrec]">
 </SirtuneInput>

——
SirTune Reference Manual 55

——
Configuring the Report Generator
——

 7.2.3 Guidelines for the three main XML elements

 This section shows how to assemble the principal elements of the XML format supported
 as control input to SirTune Version 7.2 and later.

 7.2.3.1 <SirtuneInput>: Document root element

 The root element (which is the outermost element) of the input XML document is
 <SirtuneInput>. The optional report parameters maxDelay, top, and comp31 are
 entered as attributes of this element:

 <SirtuneInput maxDelay="10" top="100" comp31="200000">

 7.2.3.2 <reportFormat>: Controlling report format

 This element is optional; if specified, it must be a child of the document element.
 <reportFormat> contains child elements that control the formatting of report output.
 Specifically, you can define the number of lines per page and characters per line, and
 the position of the table of contents. For example:

 <reportFormat>
 <linesPerPage>0</linesPerPage>
 <charactersPerLine>72</charactersPerLine>
 <tableOfContents>Bottom</tableOfContents>
 </reportFormat>

 ● <linesPerPage> accepts integer values, 0 or greater. When the reporting module
 reaches linesPerPage output lines, a new header is printed and a new page is
 begun. A 0 setting turns off paging; in that case, a header line is produced at the
 beginning of the report only.

 ● <charactersPerLine> accepts integer values 40 or larger. A non-numeric value
 or a value lower than 40 is converted to 40. The default value is 78.

 If the report needs to print a line longer than charactersPerLine, the line wraps at
 charactersPerLine+1.

 ● <tableOfContents> (or its synonym <toc>) can be set to Top, Bottom, or
 None, specifying the location of the table of contents of the SirTune report. The
 default location is the bottom of the report.

——
56 SirTune Reference Manual

——
 Using XML input for report configuration
——

 7.2.3.3 <report>: Specifying individual reports

 Each report is specified as a single, self-terminating, child element of
 <SirtuneInput>. Report details are specified as attributes of the <report>
 element:

 <SirtuneInput>
 <report type="csect" chunk="64" task="maintask" top="100"/>
 </SirtuneInput>

 All <report> elements are self-terminating. All reports except STATE reports are
 formatted as in the above example: the report type is specified on the type attribute,
 and any sub-parameters are specified (in lowercase) as attributes of the <report>
 element. Report details and sub-parameters are described in “SirTune Reports” on
 page 59.

 STATE reports (“REPORT STATE state_name activity” on page 67) are specified with
 an activity as the type attribute and the user state as the state attribute, as shown in
 the following example:

 <SirtuneInput>
 <report type="quad" state="cfrbexs"/>
 <report type="eval" state="cfrbany"/>
 <report type="eval" chunk="4" state="rungm"/>
 <report type="evali" state="rung"/>
 <report type="evali" state="rungm"/>
 <report type="comp" state="rung"/>
 </SirtuneInput>

 Valid type activity values and state values are discussed or referred to in “REPORT
 STATE state_name activity” on page 67, and they are also summarized in “A template
 for the XML input” on page 54.

 The order in which attributes are specified in the <report> element is not important.

——
SirTune Reference Manual 57

——
Configuring the Report Generator
——

——
58 SirTune Reference Manual

——
 SirTune Reports
——

——————
CHAPTER 8 SirTune Reports

 The SirTune reporting module produces a listing that is made up of one or more reports.
 These reports can be used to tune problem areas in an Online or BATCH204 job.

 In SirTune versions prior to 7.2, reporting is done via SIRTUNER, an assembler module
 that is separately distributed and installed. In version 7.2 and later, reporting is done by
 SIRTUNEREPORT, a User Language program that is distributed in the UL/SPF file
 SIRIUS.

 SIRTUNER cannot be used with SirTune 7.2 and later. Conversely, the
 SIRTUNEREPORT program cannot be used with versions prior to 7.2 of the Sirius
 Mods, since it is based on the sirtuneReport method of the Dataset class which was
 first implemented in version 7.2.

 While it is possible to run SIRTUNEREPORT inside a Model 204 Online, it is strongly
 recommended that it be run in a standalone batch job, as it can consume considerable
 resources from an Online job. If the SIRIUS file cannot be allocated to a batch job,
 SIRTUNEREPORT can be moved to another procedure file.

 To run SIRTUNEREPORT from another file:

 1. Move SIRTUNEREPORT and the included procedure SHARED_REPORT to the
 new file.

 2. Change the single reference to SIRIUS to the new file name (this reference is an
 INCLUDE statement near the top of the procedure, after the variable declarations).

 SIRTUNER accepts report specifications in control-card format on the SIRTUNEI input
 DD card. SIRTUNEREPORT accepts report specifications either in control-card format
 or in XML format on the TUNERPTI input DD card.

 If not suppressed with the REPORT NODEFAULT statement (see “Report” on page 46),
 the reporting module always produces a default set of reports. Additional reports are
 requested with the REPORT statement.

 The default reports produced are identical to the reports you get with the following
 REPORT statements:

 REPORT INFO
 REPORT SUMMARY
 REPORT STATE RUNG WHAT EVAL CHUNK 4000
 REPORT STATE RUNG EVAL CHUNK 400 CHUNK 4

——
SirTune Reference Manual 59

——
SirTune Reports
——

 In XML format, these default reports are specified like this:

 <SirtuneInput maxDelay="10" top="50">
 <report type="info">
 <report type="state">
 <report type="waittype">
 <report type="what" state="rung">
 <report type="eval" state="rung">
 <report type="eval" state="rung" chunk="4000">
 <report type="eval" state="rung" chunk="400">
 <report type="eval" state="rung" chunk="4">
 </SirtuneInput>

 Note: The XML equivalent to the REPORT SUMMARY control-card statement is two
 elements:

 <report type="state">
 <report type="waittype">

 In addition to these, a variety of other reports can be produced upon request. These
 reports can are requested via the REPORT statement (see example in “Generating
 reports prior to Sirius Mods 7.2: MVS” on page 33 or “Generating reports prior to Sirius
 Mods 7.2: CMS” on page 34). The reports appear in the same order in the output
 (TUNERPTO) as they appear in the input (TUNERPTI).

 The main considerations to use in determining which reports to produce are (in
 descending order of importance):

 ● The completeness of the reports in pointing out problem areas.
 ● The ease with which the reports can be read.
 ● The CPU and storage costs of producing the reports.

 Put another way, one should strive to get as much data as possible in SIRTUNER's
 listing without increasing the number of reports to such an extent that the listing
 becomes unwieldy and overwhelming to work with.

 Sirtune reports are described in the following subsections. Optional parameters are
 listed in brackets ([]) and alternative parameters are separated by vertical bars (|).

 Note: Due to format changes in the sample dataset, only the SIRTUNEREPORT
 program can process a SirTune version 7.2 and later sample dataset.

 Note: Due to format changes in the sample dataset, only releases 1.6 and later of
 SIRTUNER can process a SirTune version 7.0 and later sample dataset.

 Note: Due to format changes in the sample dataset in SirTune version 1.5, earlier
 releases of SIRTUNER cannot process a SirTune 1.5 or higher sample dataset.

——
60 SirTune Reference Manual

——
 REPORT CFRROOT
——

 8.1 REPORT CFRROOT

 The CFRROOT report can be used to determine the root bottleneck behind critical file
 resource enqueuing. Since critical file resource enqueuing is never a bottleneck in itself
 but will exacerbate some other bottleneck, this report can be useful in determining what
 is actually behind most of the critical file resource enqueuing on a system.

 Generally, one would expect disk I/O to be the root bottleneck behind critical file
 resource enqueuing. Unfortunately, this is also usually the most complex bottleneck to
 correct. If disk I/O shows up as the top root bottleneck on the CFRROOT report, the
 next step should probably be to look at the STATE CFRB??? reports to try to locate the
 programs or statements that produce the disk I/O that results in critical file resource
 enqueuing. It might also be useful to look at STATE WDISK reports and DISKIO reports
 to get information on the cause of all waits for disk I/O.

 Other than disk I/O, the most likely root causes of critical file resource enqueuing are:

 Journal I/O This cause might be reduced by placing the journal on a faster device
 (DASD fast write is especially helpful here) or by reducing the
 quantity of journal data being produced (a REPORT STATE
 WJRNLO might help isolate code that is flooding the journal).

 Checkpoint I/O This cause might be reduced by placing the checkpoint dataset on a
 faster device (DASD fast write is especially helpful here).

 Arbitration This shows up as ARBMO and is most likely caused by journal I/O or
 checkpoint I/O. A reasonable guess for which of these is the most
 likely culprit is provided by the positions of journal and checkpoint I/O
 in the CFRROOT report.

 CPU A CPU bottleneck can exacerbate the effect of I/O waits on critical file
 resource enqueuing. CPU tuning, processor upgrades and the
 MP/204 feature are all options in correcting CPU bottlenecks.

 SERVER A server bottleneck can exacerbate the effect of I/O waits and/or a
 CPU bottleneck on critical file resource enqueuing. In fact, a server
 bottleneck can interact with another I/O bottleneck and critical file
 resource enqueuing in a positive feedback loop that turns a minor
 bottleneck into a disastrous performance problem. While it is
 possible that increasing the number of servers might break this
 feedback loop it is more likely that attacking the I/O bottleneck will
 improve performance more, even if SERVER shows up at the top of
 the CFRROOT report.

 If anything else appears as a significant root cause of critical file resource enqueuing, it
 is likely to indicate a severe but possibly easily correctable problem. Sirius Software
 support should be able to help diagnose and correct such a problem.

——
SirTune Reference Manual 61

——
SirTune Reports
——

 8.2 REPORT CSECT | CSECTM | CSECTS TOTAL |
 CHUNK ch_size

 The CSECT/CSECTM/CSECTS reports break down Model 204 CPU usage by CSECT.
 These reports are generally only of interest to Model 204 internals experts, though they
 might be of interest in shops that have extensive in-house $function libraries.

 The CSECT report shows CPU usage by CSECT. When running the MP/204 feature,
 the CSECTM report shows maintask CPU usage by CSECT, and the CSECTS report
 shows subtask CPU usage by CSECT. If not running the MP/204 feature or running the
 feature with 0 subtasks, CSECT is equivalent to CSECTM, and CSECTS is always 0.

 Note: If using XML for the parameters (“Using XML input for report configuration” on
 page 53), a single convention can handle these different CSECT report variations:
 specify a “task=maintask” or “task=subtask” attribute for a “type=csect” report to invoke,
 repectively, a CSECTM or a CSECTS report. For example, to get a CSECTM report:

 <report type="csect" task="maintask">

 The CSECT|M|S reports are further qualified by a TOTAL or CHUNK keyword:

 ● TOTAL requests a breakdown of CPU usage by whole CSECTs. For example, to
 produce a breakdown of CPU usage where each entry in the report is an entire
 CSECT, you use:

 REPORT CSECT TOTAL

 Since TOTAL is the default, a REPORT CSECT statement is equivalent to REPORT
 CSECT TOTAL.

 If using XML in the report configuration input, REPORT CSECT TOTAL is equivalent
 to <report type="csect" chunk="total"/>.

 ● CHUNK request a breakdown of CPU usage by pieces of each CSECT. The size of
 each piece or chunk is ch_size bytes of object code. Thus to get a breakdown of
 CPU usage by 128-byte chunks of object code, code the following in SIRTUNEI:

 REPORT CSECT CHUNK 128

 You can specify multiple breakdown types on a single REPORT CSECT statement. For
 example, this statement requests a breakdown of CPU usage by entire CSECTs, by
 chunks of 512 bytes, and by chunks of 64 bytes:

 REPORT CSECT TOTAL CHUNK 512 CHUNK 64

 Note: You can use the MAPCORE statement (“MAPcore” on page 43) in the report
 configuration input to specify that instructions outside of the loaded Model 204 module
 are to be treated as a “CSECT,” allowing analysis of CPU usage in the entire address
 space.

——
62 SirTune Reference Manual

——
 REPORT DISKIO TOTAL | TABLE | CHUNK ch_size
——

 8.3 REPORT DISKIO TOTAL | TABLE | CHUNK ch_size

 The DISKIO report provides a breakdown of waits on Model 204 disk I/O (database I/O).
 The possible breakdowns available are:

 TOTAL This breaks down waits on Model 204 disk I/O by database file. This is
 useful for determining which files have the heaviest I/O activity.

 TABLE This breaks down waits on Model 204 disk I/O by tables within each
 database file. The five database file tables are the FCT, Table A, Table B,
 Table C, and Table D. This breakdown is useful for determining if it is worth
 tuning the use of specific tables in the database files.

 CHUNK This breaks down waits on Model 204 disk I/O by groups or chunks of a
 specific number (ch_size) of pages within each file table. This can be
 particularly useful in isolating device performance or contention problems
 that affect part of a table that resides on multiple disks. In addition, it can be
 useful in isolating “hot” areas of activity that might benefit from being placed
 on a cached or faster DASD.

 This breakdown is generally only useful when using extremely large tables.
 Even in these cases, it is recommended that ch_size be set to a large value
 (>1000) to produce meaningful results.

 To produce the DISKIO reports, COLLECT DISKIO must have been specified in the
 SirTune data collection facilities input stream (SIRTUNEI).

 To produce a report breaking down waits on disk I/O by files, code the following in
 SIRTUNEI:

 REPORT DISKIO TOTAL

 To produce a report breaking down waits on disk I/O by tables within files, code the
 following in SIRTUNEI:

 REPORT DISKIO TABLE

 To produce a report breaking down waits on disk I/O by chunks of 10000 pages within
 each table within files, code the following in SIRTUNEI:

 REPORT DISKIO CHUNK 10000

 Multiple breakdown types can be specified on a single REPORT DISKIO statement. For
 example, the following SIRTUNEI specification requests reports breaking down waits on
 Model 204 disk I/O by file, tables within file and chunks of 5000 pages within tables:

 REPORT DISKIO TOTAL TABLE CHUNK 5000

——
SirTune Reference Manual 63

——
SirTune Reports
——

 8.4 REPORT INFO

 The INFO report provides environmental information about the Model 204 ONLINE or
 BATCH204 program and SirTune data collection settings used in producing the sample
 dataset. This report includes settings of key Model 204 parameters (NUSERS,
 NSERVS, NJBUFF, etc.) and SirTune parameters (sampling interval, COLLECT
 settings, etc.).

 This is one of the default reports produced by SIRTUNER. It is recommended that this
 report always be included in SIRTUNER output, because it establishes the context of all
 other reports.

 8.5 REPORT QUADC | QUADCM | QUADCS TOTAL |
 CHUNK ch_size

 The QUADC/QUADCM/QUADCS reports break down Model 204 CPU usage by quad
 and CSECT. These reports are generally only of interest to Model 204 internals experts,
 though they might be of interest in shops that have extensive in-house $function
 libraries.

 The QUADC report breaks down all CPU usage by quad and the CSECTs. Since the
 breakdown is a CSECT-level breakdown, the MPVIRT configuration parameter (“MPVirt”
 on page 44) has no effect on the QUADCM and QUADCS reports — only the real task
 on which a request was running is used to distinguish CSECTS and CSECTM.

 When running the MP/204 feature, the QUADCM report shows maintask CPU usage by
 quad and CSECT, and the QUADCS report shows subtask CPU usage by quad and
 CSECT. If not running the MP/204 feature or running the feature with 0 subtasks,
 QUADC is equivalent to QUADCM, and QUADCS is always 0.

 Note: If using XML for the parameters (“Using XML input for report configuration” on
 page 53), a single convention can handle these different QUADC report variations:
 specify a “task=maintask” or “task=subtask” attribute for a “type=quadc” report to invoke,
 repectively, a QUADCM or a QUADCS report. For example, to get a QUADCM report:

 <report type="quadc" task="maintask">

 These quad reports are further qualified by a TOTAL or CHUNK keyword:

 ● TOTAL requests a breakdown of CPU usage by quads and entire CSECT. For
 example, to produce a breakdown of CPU usage where each entry in the report is
 an entire CSECT/quad combination, you use:

 REPORT QUADC TOTAL

——
64 SirTune Reference Manual

——
 REPORT QUADC | QUADCM | QUADCS TOTAL | CHUNK ch_size
——

 Since TOTAL is the default, a REPORT QUADC statement is equivalent to REPORT
 QUADC TOTAL.

 If using XML in the report configuration input, REPORT QUADC TOTAL is equivalent
 to <report type="quadc" chunk="total"/>.

 ● CHUNK requests a breakdown of CPU usage by pieces of each CSECT for each
 quad. The size of each piece or chunk is ch_size bytes of object code. Thus to get
 a breakdown of CPU usage by 128-byte chunks of object code, code the following in
 SIRTUNEI:

 REPORT QUADC CHUNK 128

 You can specify multiple breakdown types on a single REPORT QUADC statement. For
 example, this statement requests a breakdown of CPU usage by entire CSECT/quad
 combination, and by CSECT chunks of 512 bytes, and by chunks of 64 bytes:

 REPORT QUADC TOTAL CHUNK 512 CHUNK 64

 Note: The MAPCORE statement (“MAPcore” on page 43) in the report configuration
 input specifies that instructions outside of the loaded Model 204 module should be
 treated as a “CSECT,” allowing analysis of CPU usage in the entire address space.

 8.6 REPORT REPSTAT [RESET]

 The REPSTAT report provides information on the performance of the report generator
 itself. The REPSTAT report breaks down the time for the report generation process into
 its individual components, CPU time, waiting for input buffer time, waiting for report
 buffer time, etc. In addition, the REPSTAT report provides information on above-the-line
 (31 bit) and below-the-line (24 bit) storage usage.

 Note: This report is only of interest if the performance or storage usage of SIRTUNER
 is a concern. It is not supported in SirTune 7.2 and later (using the SIRTUNEREPORT
 User Language program), and a repstat keyword is not supported as a report type
 option in the XML format for specifying report configuration parameters (“A template for
 the XML input” on page 54).

 The RESET parameter requests that usage counters be reset after the REPSTAT report.
 This makes it easy to determine the cost of actually producing a particular report. For
 example, in the following sequence the counters reported in the second REPSTAT
 report will show the cost of producing the REPORT STATE RUNG CHUNK 100 report:

 REPORT REPSTAT RESET
 REPORT STATE RUNG CHUNK 100
 REPORT REPSTAT

——
SirTune Reference Manual 65

——
SirTune Reports
——

 Note that this report will not indicate the cost of actually collecting the data required by
 this report. This latter cost will often be significantly greater than the cost of actually
 generating the report.

 When the REPSTAT report is used with the TWOPASS statement, the REPSTAT report
 will show results only in the second report-generation pass.

 8.7 REPORT SERVIO

 The SERVIO report provides a breakdown of waits on Model 204 server I/O by server
 datasets (CCASERVR, CCASERV1, etc.). This is useful in identifying server datasets
 on disks that are not performing well because of contention problems, hardware
 problems, or server datasets with an unusually low level of activity, perhaps because of
 underallocated extents.

 In general, ideal performance is achieved when all Model 204 server datasets show the
 same level of activity and response. Model 204's round robin, user-to-server, dataset
 allocation scheme ensures this on a gross level. Disparities in number of users waiting
 on specific server datasets could be indicative of a problem.

 8.8 REPORT SERVUSE [CHUNK ch_size]

 The SERVUSE report provides a breakdown of users in particular states by server size.
 This can be useful in determining optimal server size allocations. The states for which
 information is provided is a subset of all states described in “Model 204 States” on page
 75.

 Server sizes are grouped by chunk size (ch_size). The default for ch_size is 10000.
 This default results in 100 possible categories of server sizes between 0 and 1,000,000
 bytes.

 Groups with no observations are not displayed on the SERVUSE report.

 The breakdowns are provided by the following states:

 ● REDYR

 Running or ready users. If state REDY was not collected, this is displayed as
 RUNG, meaning running users.

 ● SWPGI

 Users swapping into a server. If this state was not collected, it is not displayed on
 the SERVUSE report.

——
66 SirTune Reference Manual

——
 REPORT SERVUSE [CHUNK ch_size]
——

 ● OSERVW

 Users waiting on server or swapping out to wait for server. If neither state
 SWPGOW or WTSV was collected, this state is not listed on the SERVUSE report.
 If only one of these states was collected, the header appears as the collected state
 rather than “OSERVW”.

 This state is of particular interest in this report because it indicates the size of server
 that users required but were not able to get immediately. Thus, a large average for
 number-of-users in state OSERVW for server sizes 190000-199999 would indicate
 a requirement for more 200K servers.

 ● BLKIN

 Users blocked in server waiting on something other than user input. If this state was
 not collected, it is not displayed on the SERVUSE report.

 ● BLKIU

 Users blocked in server waiting on user input. If this state was not collected, it is not
 displayed on the SERVUSE report.

 ● OSERVN

 Users blocked out of server or swapping out to wait for something other than user
 input. If neither state BLKON or SWPGOBN was collected, this state is not listed on
 the SERVUSE report. If only one of these states was collected, the header appears
 as the collected state rather than “OSERVN”.

 ● OSERVU

 Users blocked out of server or swapping out to wait for user input. If neither state
 BLKOU or SWPGOBU was collected, this state is not listed on the SERVUSE
 report. If only one of these states was collected, the header appears as the
 collected state rather than “OSERVU”.

 8.9 REPORT STATE state_name activity

 The STATE report sorts users in a specified state (state_name) by their current
 processing activity (activity).

 state_name can be any valid SirTune state, and the states are described in “Model 204
 States” on page 75.

 The activities are described below:

——
SirTune Reference Manual 67

——
SirTune Reports
——

 WHAT By the generic activity groupings used by Model 204 in its “WHAT”
 flag settings. The most common of these activities is compiling,
 loading, and evaluating User Language procedures.

 COMP By the name of the procedure(s) being compiled. Generally, this
 report is not of interest unless the WHAT report indicates a
 significant amount of resource usage in compilation.

 LOAD By the name of the pre-compiled APSY procedure(s) being
 loaded. Generally, this report is not of interest unless the WHAT
 report indicates a significant amount of resource usage in loading.

 EVAL By the name of the procedure(s) being evaluated. This report is
 useful in determining:

 ● Which procedures are worth looking at in more detail
 ● Whether any non-precompiled or non-APSY procedures are
 significant resource consumers.

 This is important because, unless the ALLCOMP option
 (“ALLComp” on page 13) was specified for the data collection
 portion of SirTune, non-precompiled or non-APSY procedures will
 not show up on chunk reports.

 EVALI By the name of the innermost procedure(s) being evaluated. This
 report is useful in environments where the same procedure(s) are
 INCLUDE'd in in several different pre-compiled APSY procedures.
 By getting a state breakdown by EVALI, all resource usage that
 occurs while running an INCLUDE'd procedure gets assigned to
 the INCLUDE'd procedure. This makes it possible to determine
 the possible gains from tuning such a procedure.

 QUAD By the current Model 204 quad being evaluated. Quads are the
 internal representation of User Language. Every User Language
 statement maps to one or more quads. Each $function is
 considered a separate quad in this breakdown.

 While a breakdown by quad might generally only be of interest to
 a Model 204 internals expert, these breakdowns might provide
 some hints about overall application characteristics, even to
 programmers unfamiliar with Model 204 internals. The $function
 breakdown could be of particular interest in shops that have many
 and/or complex in-house $functions.

 CHUNK ch_size By pieces of evaluating procedures. Every User Language
 procedure can be broken up into an arbitrary number of pieces.
 SirTune allows grouping lines of procedure in “chunks.” A chunk is
 a group of lines in User Language that are compiled to produce

——
68 SirTune Reference Manual

——
 REPORT STATE state_name activity
——

 object code (quads) of a specific number of bytes. This number of
 bytes is known as the chunk size (ch_size).

 Thus a REPORT STATE RUNG CHUNK 300 breaks up
 procedures into chunks that correspond to approximately 300
 bytes of compiled code (quads). A user in a particular state while
 evaluating a procedure is always in exactly one chunk. A “chunk”
 report will present each chunk as the corresponding line numbers
 of the source procedure.

 Chunks can never cross INCLUDE statement boundaries. In
 addition, chunks can be terminated by the end of a procedure.
 For this reason, some chunks in a CHUNK report might actually
 be smaller than the chunk size specified.

 A chunk in a procedure will also generally be larger than the size
 specified on a RESOLUTION statement applicable to the
 procedure.

 Since different User Language statements compile to different
 numbers of bytes, the actual size of the chunks will generally not
 be exactly the chunk size specified on the REPORT statement.
 For this reason, the actual size of each chunk is displayed on all
 CHUNK reports. Since the smallest possible User Language
 chunk is 4 bytes, a chunk size of 1 is equivalent to a chunk size of
 4 and a chunk size of 30 is equivalent to a chunk size of 32.

 IFJOB By originating IFAM2 jobname. This can be useful in determining
 which IFAM jobs are generating a lot of activity. This report is not
 likely to be of interest unless IFAM2 shows up as significant on a
 REPORT STATE ??? WHAT report.

 IFCOMP By originating IFAM2 compilation name. Caution must be used in
 this report, because the same compilation name can be used by
 many different programs for many different purposes. This report
 is not likely to be of interest unless IFAM2 shows up as significant
 on a REPORT STATE ??? WHAT report.

 IFJCOMP By originating IFAM2 compilation and jobname. This has an
 advantage over the IFCOMP report: it will not combine two
 identically named but different compilations for two different jobs.
 It has the disadvantage that if an identical compilation is used by
 two jobs, the totals for these compilations will not be combined.

 This report is not likely to be of interest unless IFAM2 shows up as
 significant on a REPORT STATE ??? WHAT report.

——
SirTune Reference Manual 69

——
SirTune Reports
——

 IFFUNC By IFAM2 function name (IFFIND, IFPUT, etc.). This report is not
 likely to be of interest unless IFAM2 shows up as significant on a
 REPORT STATE ??? WHAT report.

 IFCHUNK ch_size By pieces of IFAM2 load modules. Every IFAM2 load module can
 be broken up into an arbitrary number of pieces. SirTune allows
 grouping bytes of code in “chunks.” A chunk is a range of offsets
 in the load module of a specific number of bytes. This number of
 bytes is known as the chunk size (ch_size). Thus a REPORT
 STATE RUNG IFCHUNK 256 breaks up load modules into chunks
 of 256 bytes.

 This report lists usage by IFAM2 load module name and offset
 within the load module. For this report to be useful, the offsets
 withing the load modules must be converted to offsets within
 specific CSECTs. This can be done use a load map for the load
 module. Offsets within CSECTs must then be converted to source
 statement offsets, using compiler listings if a higher level language
 was used to generate the CSECTs.

 This report is not likely to be of interest unless IFAM2 shows up as
 significant on a REPORT STATE ??? WHAT report.

 This report will produce no useful data on CMS. Under MVS, the
 IFINTF object deck shipped in the SirTune object library must be
 linked with the IFAM2 load modules of interest for this report to
 produce useful information.

 For example, to get a breakdown of running users by procedure being compiled, enter
 the following in SIRTUNEI or TUNERPTI:

 REPORT STATE RUNG COMP

 Or, using XML, specify this:

 <report type="comp" state="rung">

 Since a user is using CPU if and only if the user is running, that is, in state RUNG, this
 report gives an estimate of CPU usage by procedure being compiled.

 To get a breakdown of swapping users by individual lines within a procedure, enter the
 following in SIRTUNEI or TUNERPTI:

 REPORT STATE SWPG CHUNK 4

 Since a chunk size of 4 is the smallest possible chunk size, this guarantees that no two
 lines of User Language will be grouped together in the report. Note that to produce this
 report, data must be collected for state SWPG by SirTune. This would require a

——
70 SirTune Reference Manual

——
 REPORT STATE state_name activity
——

 COLLECT statement (“COLLect state [extra_data]” on page 15) in SIRTUNEI for
 SirTune.

 To get a breakdown of users waiting for journal I/O by evaluating procedure, enter the
 following in SIRTUNEI or TUNERPTI:

 REPORT STATE WJRIO EVAL

 To produce this report, data must be collected for state BLKIN by SirTune.

 It is possible to specify several breakdowns on a single REPORT STATE statement. For
 example,

 REPORT STATE WDISK WHAT EVAL CHUNK 1000
 REPORT STATE WDISK EVAL CHUNK 100 CHUNK 10

 requests breakdown of users waiting for disk I/O by general activity category (WHAT),
 procedure being evaluated, and chunks of 1000, 100, and 10 in the procedures being
 evaluated.

 8.10 REPORT SUMMARY

 The SUMMARY report provides a summary of the average number of users in each
 sample, broken down by user state and wait type.

 If using XML to configure the report, the XML equivalent to a REPORT SUMMARY
 control-card statement is two elements:

 <report type="state">
 <report type="waittype">

 This report is of particular interest in determining potential problem areas. For example,
 a large average for number of users in the WTSV (waiting for server) state might be
 indicative of a server shortage. And a large average for number of users waiting for
 checkpoint I/O might be indicative of problems with the checkpoint dataset.

 Use caution when interpreting this report, especially when making negative conclusions
 (that is, deciding that something is not a problem area). For example, if WTSV does not
 show up on this report, it could mean one of two things:

 ● There are never any users waiting for server.

 ● No COLLECT statements were coded to tell SirTune to collect data for users in
 state WTSV.

——
SirTune Reference Manual 71

——
SirTune Reports
——

 8.11 REPORT SYSPARM

 The SYSPARM report provides the values of all system and scheduler parameters in the
 Online associated with the sample dataset. This report provides identical output to a
 VIEW SYSTEM CWAIT command issued in the Online associated with the sample
 dataset.

 This report is only available in the SirTune report writer versions 1.6 and later. In
 addition, the data presented by this report is only provided in sample datasets collected
 with the SirTune data collecter version 7.0 and later. For sample datasets created with
 earlier SirTune data collectors, the REPORT SYSPARM report will be empty.

 While this is not one of the default reports produced by the report generator, it is
 recommended that this report always be included in report output, because it provides
 information about system settings that might prove useful in interpreting the other
 reports.

 8.12 REPORT WHATC | WHATCM | WHATCS TOTAL |
 CHUNK ch_size

 The WHATC/WHATCM/WHATCS reports break down Model 204 CPU usage by
 Model 204 “activity” and CSECT. The most common Model 204 activities are evaluating
 and compiling. These reports are generally only of interest to Model 204 internals
 experts, though they might be of interest in shops that have extensive in-house $function
 libraries.

 The WHATC report breaks down all CPU usage by Model 204 activity and CSECTs.
 Since the breakdown is a CSECT-level breakdown, the setting of the MPVIRT parameter
 (“MPVirt” on page 44) has no effect on the WHATCM and WHATCS reports — only the
 real task on which a request was running is used to distinguish CSECTS and CSECTM.

 When running the MP/204 feature, the WHATCM report breaks down maintask CPU
 usage by activity and CSECT, and the WHATCS report breaks down subtask CPU
 usage by activity and CSECT. If not running the MP/204 feature or running the feature
 with 0 subtasks, WHATC is equivalent to WHATCM, and WHATCS is always 0.

 Note: If using XML for the parameters (“Using XML input for report configuration” on
 page 53), a single convention can handle these different WHATC report variations:
 specify a “task=maintask” or “task=subtask” attribute for a “type=whatc” report to invoke,
 repectively, a WHATCM or a WHATCS report. For example, to get a WHATCS report:

 <report type="whatc" task="subtask">

——
72 SirTune Reference Manual

——
 REPORT WHATC | WHATCM | WHATCS TOTAL | CHUNK ch_size
——

 WHATC|M|S reports are further qualified by the TOTAL or CHUNK keyword:

 ● TOTAL requests a breakdown of CPU usage by Model 204 activities and entire
 CSECT. For example, to produce a breakdown of CPU usage where each entry in
 the report is an entire CSECT/Model 204 activity combination, you use:

 REPORT WHATC TOTAL

 Since TOTAL is the default, a REPORT WHATC statement is equivalent to REPORT
 WHATC TOTAL.

 If using XML in the report configuration input, REPORT WHATC TOTAL is equivalent
 to <report type="whatc" chunk="total"/>.

 ● CHUNK requests a breakdown of CPU usage by pieces of each CSECT for each
 Model 204 activity. The size of each piece or chunk is ch_size bytes of object
 code. Thus to get a breakdown of CPU usage by 128-byte chunks of object code,
 code the following in SIRTUNEI or TUNERPTI:

 REPORT WHATC CHUNK 128

 You can specify multiple breakdown types on a single REPORT WHATC statement. For
 example, this statement requests a breakdown of CPU usage by entire
 CSECT/Model 204 activity combination, and by CSECT chunks of 512 bytes, and by
 chunks of 64 bytes:

 REPORT WHATC TOTAL CHUNK 512 CHUNK 64

 Note: The MAPCORE statement (“MAPcore” on page 43) in the report configuration
 input specifies that instructions outside of the loaded Model 204 module should be
 treated as a “CSECT,” allowing analysis of CPU usage in the entire address space.

 8.13 The TOP parameter

 Many reports produce a listing of entities ranked in order of the number of samples for
 which data was found. The number of entities listed on these reports is either 50 or the
 value indicated on the last TOP statement before the REPORT statement. Thus, the
 following would list the top 50 evaluating procedures if no TOP statements appear in
 SIRTUNEI:

 REPORT STATE RUNG EVAL

——
SirTune Reference Manual 73

——
SirTune Reports
——

 The first report below would list the top 10 evaluating procedures, while the second
 report would list the top 100:

 TOP 10
 REPORT STATE RUNG EVAL
 TOP 100
 REPORT STATE RUNG EVAL

 You can also explicitly specify the number of top entities to be listed on certain REPORT
 statements. The report statements on which this can be done are:

 ● REPORT CSECT | CSECTM | CSECTS
 ● REPORT DISKIO
 ● REPORT QUADC | QUADCM | QUADCS
 ● REPORT SERVIO
 ● REPORT STATE
 ● REPORT WHATC | WHATCM | WHATCS

 For example, to list the top 100 evaluating procedures for state RUNG, simply code:

 REPORT STATE RUNG EVAL TOP 100

 To list the top 75 Model 204 database file tables with waits on disk I/O, code:

 REPORT DISKIO TABLE TOP 75

 On REPORT statements with multiple breakdowns, the TOP statement must come after
 the breakdown description, and it applies only to the immediately preceding breakdown.
 Thus, the following is invalid:

 REPORT STATE RUNG TOP 100 EVAL

 The following would result in the top 60 chunks for the CHUNK 1000 breakdown, and the
 top 100 chunks for the CHUNK 100 breakdown:

 TOP 60
 REPORT STATE RUNG CHUNK 1000 CHUNK 100 TOP 100

——
74 SirTune Reference Manual

——
 Model 204 States
——

——————
CHAPTER 9 Model 204 States

 When the SirTune sampling program is collecting a sample it scans all logged on users.
 Each user is classified by its state. The user's state is a general indication of the type of
 activity occurring in a user thread. These states roughly correspond to the states
 reported by the Model 204 performance monitor, though broken down to a finer level of
 detail.

 The following primary states are distinguished by SirTune:

 BLKIN This includes any user that is blocked, that is waiting for something, in a
 server and not waiting for user input. This is distinguished from BLKIU
 because waits for things other than user input are generally viewed as a
 performance problem while waits for user input are not.

 BLKIU This includes any user that is blocked, that is waiting for something, in a
 server and waiting for user input. This is distinguished from BLKIN
 because waits for things other than user input are generally viewed as a
 performance problem while waits for user input are not.

 BLKON This includes any user that is blocked, that is waiting for something, not in
 a server and not waiting for user input. This is distinguished from BLKOU
 because waits for things other than user input are generally viewed as a
 performance problem while waits for user input are not.

 BLKOU This includes any user that is blocked, that is waiting for something, not in
 a server and waiting for user input. This is distinguished from BLKON
 because waits for things other than user input are generally viewed as a
 performance problem while waits for user input are not.

 REDY This includes any user that is ready to run, that is, in a server and not
 waiting on anything but not actually being run. Generally a user is in state
 REDY because another user is currently running.

 RUNG This includes any user that is running, that is, using CPU. Unless MP/204
 is installed, there can never be more than one user in state RUNG per
 sample.

 RUNGM If MP/204 is installed, this includes any user that is running, that is, using
 CPU, in maintask mode. There can never be more than one user in state
 RUNGM per sample. See “The RUNGM and RUNGS states” on page 79.

 RUNGS If MP/204 is installed, this includes any user that is running, that is, using
 CPU, in subtask mode. See “The RUNGM and RUNGS states” on page
 79.
——
SirTune Reference Manual 75

——
Model 204 States
——

 SWPGI This includes any user that is in the process of being swapped into a
 server.

 SWPGOBN This includes any user that is in the process of being swapped out of a
 server because it is waiting on something other than user input. If what
 the user was waiting on is still not completed at the point the user is
 swapped out, the user switches to state BLKON.

 SWPGOBU This includes any user that is in the process of being swapped out of a
 server because it is waiting on user input. If what the user was waiting on
 is still not completed at the point the user is swapped out, the user
 switches to state BLKOU.

 SWPGOW This includes any user that is in the process of being swapped out of a
 server because it is has been server sliced. If no servers of appropriate
 size are available at the point the user is swapped out, the user switches
 to state WTSV.

 WPST This includes any PST that is not running.

 WTSV This includes any user that is waiting for a server to become available so
 that the user could be run. The only reason a user would be in the WTSV
 state is that all servers of appropriate size are occupied by other users
 that cannot be swapped out of server.

 In this list the term “waiting for user input” refers to a thread waiting for terminal or line
 input. In addition, a wait for a response to the console message issued by user 0 on a
 HALT command is also considered a user input wait. “Sleep” waits, that is, waits
 resulting from the *SLEEP command and the PAUSE statement, are not considered
 user input waits.

 In addition to the above primary states, several composite states are provided for
 convenience and report generation. For example, composite state SWPG is made up of
 primary states SWPGI, SWPGOBN, SWPGOBU and SWPGOW. Thus any user in any
 of the indicated primary states is also considered to be in state SWPG. The following
 are the available composite states, their component primary states and an explanation
 that provides an intuitive feel for the meaning of the composite state.

 ALL This is a composite state that includes all primary states. Any logged on
 user or PST is considered in state ALL.

 ALLI This state is made up of RUNG, REDY, BLKIN and BLKIU. It includes any
 user currently in a server and not being swapped out. It does not include
 non-running PSTs.

 ALLN This state is made up of RUNG, REDY, BLKIN, BLKON, WTSV, SWPGI,
 SWPGOBN and SWPGOW. It includes any user in not blocked for user
 input. It does not include non-running PSTs.

——
76 SirTune Reference Manual

——
 Model 204 States
——

 BLK This state is made up of BLKIN, BLKIU, BLKON, BLKOU, SWPGOBN and
 SWPGOBU. It includes any user that is blocked on anything.

 BLKI This state is made up of BLKIN and BLKIU. It includes any user that is in a
 server and blocked on anything.

 BLKN This state is made up of BLKIN, BLKON and SWPGOBN. It includes any
 user that is blocked for something other than user input.

 BLKO This state is made up of BLKON and BLKOU. It includes any user that is
 not in a server but is blocked on something.

 BLKU This state is made up of BLKIU, BLKOU and SWPGOBU. It includes any
 user that is waiting for user input.

 OSERVN This state is made up of SWPGOBN and BLKON. It includes any user that
 is either not in a server or being swapped out of a server because it is
 blocked on something other than user input.

 OSERVU This state is made up of SWPGOBU and BLKOU. It includes any user that
 is either not in a server or being swapped out of a server because it is
 blocked on user input.

 OSERVW This state is made up of SWPGOW and WTSV. It includes any user that is
 either waiting for a server or being swapped out of a server so that it can
 wait for a server to free up. This latter case only happens when a user is
 server sliced.

 REDYR This state is made up of RUNG and REDY. It includes any user that is not
 blocked on anything and is in a server. Users in state REDYR can either
 running or waiting for the Model 204 scheduler to provide CPU to run.

 RUNBL This state is made up of RUNG, REDY, WTSV and SWPGOW. It includes
 any user that is not blocked on anything, that is, is runnable. Users in state
 RUNBL can either running or waiting for the Model 204 scheduler to
 provide the resources (CPU and/or server) to run.

 SWPG This state is made up of SWPGI, SWPGOBN, SWPGOBU and SWPGOW.
 It includes any user that is being swapped into or out of a server.

 SWPGO This state is made up of SWPGOBN, SWPGOBU and SWPGOW. It
 includes any user that is being swapped out of a server.

 SWPGOB This state is made up of SWPGOBN and SWPGOBU. It includes any user
 that is being swapped out of a server because it is blocked on something.

 Any of the above primary or composite states can be included on COLLECT statements
 for input to SirTune and REPORT STATE statements for input to SIRTUNER. Some
 valid COLLECT statements are:

——
SirTune Reference Manual 77

——
Model 204 States
——

 COLLECT BLKN SWPG
 COLLECT ALLN
 COLLECT BLKIN BLKON SWPGOBN WTSV SWPGOW SWPGI

 Some valid REPORT STATE statements are

 REPORT STATE BLKIN EVAL
 REPORT STATE SWPG CHUNK 100
 REPORT STATE ALLN EVAL CHUNK 1000 CHUNK 4

 In addition to user states, SirTune's COLLECT statement allows you to request
 information about DISKIO and CFR. The following is a valid COLLECT statement

 COLLECT DISKIO CFR

 but there is no REPORT STATE statement which allows DISKIO nor CFR.

 Any state requested in a REPORT STATE statement must have had the corresponding
 primary states explicitly or implicitly specified on COLLECT statements for SirTune. The
 simplest way to ensure this is by explicitly specifying any state to be used in a REPORT
 STATE statement on a COLLECT statement. For example, if one intends to produce the
 following reports with SIRTUNER:

 REPORT STATE BLKN CHUNK 10
 REPORT STATE SWPG CHUNK 10

 one can code the following COLLECT statement for SirTune:

 COLLECT BLKN SWPG

 This statement is functionally equivalent to

 COLLECT BLKIN BLKON SWPGOBN SWPGOBU SWPGOW SWPGI

 In general, if running a relatively small ONLINE (an average of less than 20 logged on
 users)

 COLLECT ALL

 should not produce a prohibitively large amount of data and makes all reports possible.
 If running a midsize to large ONLINE (an average 20+ logged on users), the following

 COLLECT ALLN BLKIU SWPGOBU

 should collect a sufficient quantity of data to produce most interesting STATE reports
 without generating a prohibitively large sample dataset.

——
78 SirTune Reference Manual

——
 The RUNGM and RUNGS states
——

 9.1 The RUNGM and RUNGS states

 When running the MP/204 feature with Model 204 a user that is in state RUNG can be
 further distinguished to be either running in maintask mode (RUNGM) or subtask mode
 (RUNGS) for the purposes of reporting. For example, the SIRTUNER statements

 REPORT STATE RUNGM EVAL
 REPORT STATE RUNGS EVAL

 generate two reports. The first is a breakdown of users running in maintask mode by
 evaluating procedure and the second is a breakdown of users running in subtask mode
 by evaluating procedure. Maintask mode is often referred to as “serial” mode, and
 subtask mode is often referred to as “parallel” mode. The total observations for state
 RUNG in any sample is always equal to the total observations for state RUNGM plus the
 total observations for state RUNGS.

 The distinction between maintask and subtask mode can be made either on the basis of
 the task on which a user is running (maintask or subtask), or on its virtual (or logical) MP
 mode (that is, whether it is capable of running in a subtask or not). The default
 distinction is made on the basis of the actual task on which a user is running. This can
 be changed with the SIRTUNER MPVIRT statement. This is generally the preferred
 setting when using the REPORT STATE RUNGM report to try to reduce the amount of
 maintask (serial) User Language code.

 9.2 Wait types

 Users in state BLK (blocked on anything), always have a wait type associated with them.
 These wait types are the same wait types that appear next to the users in a Model 204
 MONITOR command or in the SIRMON WAITTYP statistic. STATE reports can be
 requested by these wait types. To produce these STATE reports by wait type,
 COLLECT statements (collecting data for all states in which a wait type might occur)
 must be added to SirTune's input stream (SIRTUNEI).

 For example, disk I/O wait types are not swappable, so it is only necessary to collect
 state BLKIN to produce a REPORT STATE WDISK report. Since critical file resource
 waits are swappable, states BLKIN, BLKON, and SWPGOBN must all be collected to
 produce a REPORT STATE WCFREX report.

 The available wait type reports along with the corresponding Model 204 wait type
 number, a description of the wait type, and the required states to be collected are listed
 here:

 WMISC 0 - Miscellaneous waits. Requires BLKN.

 WDISK 1 - Wait for disk I/O. Requires BLKIN.

 WUSERO 2 - Wait for user output. Requires BLKU.

——
SirTune Reference Manual 79

——
Model 204 States
——

 WUSERI 3 - Wait for user input. Requires BLKU.

 WOPERI 4 - Wait for operator input. Requires BLKU.

 WDUMPO 5 - Wait for dump write. Requires BLKIN.

 WDUMPI 6 - Wait for restore read. Requires BLKIN.

 WENQUE 7 - Wait for miscellaneous enqueue. Requires BLKN.

 WBUFF 8 - Wait for disk buffer. Requires BLKIN.

 WPST 10 - Wait on PST. Requires BLKN.

 WIFAM 11 - IFAM waits. Requires BLKN.

 WSLEEP 12 - Waits for a time interval, including PAUSE and SLEEP statements.
 Requires BLKN.

 WJRNLO 15 - Wait for journal output. Requires BLKIN.

 WCHKPO 16 - Wait for checkpoint output. Requires BLKIN.

 WWRITE 17 - Wait for a checkpoint DECB. Requires BLKIN.

 WARBMO 18 - Waits for output arbitration. Requires BLKN.

 WCHKPR 19 - Waits for a checkpoint request. Requires WPST.

 WDISK 20 - Waits for checkpoint completion. Requires BLKIN.

 WDEAD 21 - Wait forever (dead thread). Requires BLKU.

 WVSAMI 22 - Wait for VSAM input. Requires BLKN.

 WLOGIN 23 - Wait after login failure. Requires BLKN.

 WCFREX 24 - Wait for critical file resource in exclusive mode. Requires BLKN.

 WCFRSH 25 - Wait for critical file resource in share mode. Requires BLKN.

 WVTBUF 26 - Wait for VTAM buffer. Requires BLKN.

 WCONVI 27 - Wait for inter-process input. Requires BLKN.

 WCONVO 28 - Wait for inter-process output. Requires BLKN.

 WSCTYI 29 - Wait for security interface. Requires BLKN.

——
80 SirTune Reference Manual

——
 Wait types
——

 WS$WAI 30 - Swappable $WAIT call. Requires BLKN.

 WN$WAI 31 - Non-swappable $WAIT call. Requires BLKIN.

 WULDB2 32 - Wait for DB2 subtask. Requires BLKN.

 Thus to produce a breakdown of disk I/O waits by evaluating procedure and by individual
 lines within the procedures, code the following in SIRTUNEI:

 REPORT STATE WDISK EVAL CHUNK 4

 To get a breakdown of waits for miscellaneous enqueues (including record locks) by
 evaluating procedure and by individual lines within the procedures, code the following in
 SIRTUNEI:

 REPORT STATE WENQUE EVAL CHUNK 4

 In addition to these primary wait types, there are a few composite wait types for which
 reports can be generated. These composite wait types, their component primary wait
 types, and a description of what the composite wait types measure are listed here:

 WCFR This is made up of WCFREX and WCFRSH. It measures all waits on critical
 file resources whether for exclusive or share control.

 WLOG This is made up of WJRNLO, WCHKPO, WWRITE, and WARBMO. It
 measures all waits on activities associated with logging for Model 204
 recovery, that is, all checkpoint and journal I/O related waits.

 To get a breakdown of waits for critical file resources by evaluating procedure and by
 individual lines with the procedures, code the following in SIRTUNEI:

 REPORT STATE WCFR EVAL CHUNK 4

 9.3 Critical file resource states

 Critical file resources are used by Model 204 to provide multi-user concurrency control
 on a file level. This control mechanism will sometimes exacerbate some other
 performance bottleneck. A high value for number of users per sample with wait types
 CFREX and CFRSH in the SUMMARY report suggests that critical file resource
 enqueuing bears closer examination.

 There are four different critical file resources:

 DIRECT Protects table B updates and accesses.

 INDEX Protects accesses and updates of table C and the ordered index.

——
SirTune Reference Manual 81

——
Model 204 States
——

 EXISTS Protects accesses and updates of the existence bit map.

 RECENQ Protects accesses and updates of the record enqueuing table. This is the
 only critical file resource that can be eliminated by the use of the FIND
 WITHOUT LOCKS User Language statement.

 A first step to investigating a critical file resource enqueueing problem is to produce
 reports for STATE WCFR. This will help isolate the programs or lines of code that
 encounter frequent or long critical file resource waits. Probably the most useful report
 would be produced by this statement:

 REPORT STATE WCFR CHUNK 4

 This will break down critical file resource waits by individual lines of User Language
 code. Unfortunately, the problem with this type of analysis is that it focuses on the
 “victims” of critical file resource waits rather than the “culprits,” the lines of code holding
 critical file resources causing other users to wait. While in some situations, the lines of
 code causing the critical file resource waits are the same lines that suffer from the waits,
 there is no way to be certain from the STATE WCFR report that this is indeed the case.

 To determine the actual cause of critical file resource enqueuing, more data needs to be
 collected by the SirTune data collector. To have this additional data collected, simply
 specify the parameter CFR on a COLLECT statement for SirTune. This parameter can
 be specified alone or with other COLLECT parameters as in this statement:

 COLLECT BLKN DISKIO CFR

 After this additional CFR (Critical File Resource) data is collected, SIRTUNER is able to
 produce several additional reports to help isolate the cause of critical file resource
 enqueuing. The first report that might be useful is the CFRROOT report. This report
 indicates the base wait types that are behind critical file resource waits. The CFRROOT
 report does not provide information on which lines of code cause critical file resource
 waits, so it is not helpful for application tuning.

 The CFRROOT report might indicate that application tuning (rather than system tuning)
 might be required to reduce critical file resource enqueuing. This would be indicated by
 a primary root cause of DISK (disk I/O waits) or maybe JRNLO (journal I/O waits).

 You can attack a primary root cause for critical file resource waits either by trying to
 reduce overall disk I/O's or journal I/O's (with application tuning), or by specifically
 targeting those instructions that hold critical file resources.

 To facilitate this latter option, several CFR states can be requested on SIRTUNER
 reports if CFR data had been collected by SirTune. These states are:

 CFRHANY The state where a user holds any critical file resource.

 CFRHDIR The state where a user holds the DIRECT critical file resource.

——
82 SirTune Reference Manual

——
 Critical file resource states
——

 CFRHIND The state where a user holds the INDEX critical file resource.

 CFRHEXS The state where a user holds the EXISTS critical file resource.

 CFRHREC The state where a user holds the RECENQ critical file resource.

 CFRBANY The state where a user holds any critical file resource and is preventing
 (blocking) another user from obtaining a critical file resource.

 CFRBDIR The state where a user holds the DIRECT critical file resource and is
 preventing (blocking) another user from obtaining the DIRECT resource.

 CFRBIND The state where a user holds the INDEX critical file resource and is
 preventing (blocking) another user from obtaining the INDEX resource.

 CFRBEXS The state where a user holds the EXISTS critical file resource and is
 preventing (blocking) another user from obtaining the EXISTS resource.

 CFRBREC The state where a user holds the RECENQ critical file resource and is
 preventing (blocking) an other user from obtaining the RECENQ resource.

 It should be noted that the CFRB??? states are weighted based on the number of other
 users holding the resource and the number of users waiting for the resource. For
 example, if a user at a line of code holds the DIRECT resource and 3 other users are
 waiting for the resource, that line of code is considered to have 3 observations in the
 CFRBDIR state.

 On the other hand, if a user at a line of code holds the DIRECT resource (in share
 mode) along with 4 other users, and a single user is waiting for the DIRECT resource,
 the line of code is considered to have 1/5th of an observation in the CFRBDIR state.

 Generally, the most useful reports for reducing critical file resource waits are the CFRB
 reports. The statement

 REPORT STATE CFRBANY CHUNK 4

 will break down the state where a user is blocking another user from any critical file
 resource by lines of User Language code. This is probably the most useful of the
 STATE CFR???? reports. Once critical file resource blocking is isolated to specific User
 Language instructions, critical file resource enqueuing can be reduced by

 ● Reducing the number of times the offending instructions are executed.

 ● Reducing the amount of disk I/O performed by the offending instructions.

 ● Reducing the amount of CPU used by the offending instructions.

——
SirTune Reference Manual 83

——
Model 204 States
——

 It might be tempting to use the FIND WITHOUT LOCKS User Language statement to
 reduce the critical file resource enqueuing associated with a statement. This will only
 work if the resource causing conflicts is the RECENQ resource. All other critical file
 resources are processed exactly the same way, whether or not a locked record set is
 being used.

 However, if the resource causing the conflict is indeed the RECENQ resource, it is still
 not recommended that the solution be FIND WITHOUT LOCKS. A high conflict rate on
 the RECENQ resource indicates that the environment has a high update activity level,
 which means that operating on unenqueued found sets is a questionable tactic at best.
 A high conflict rate on the RECENQ resource might suggest examination of strategies
 for releasing found sets before any terminal I/O occurs.

 The CFRH??? reports can be useful for tracking potential critical file resource enqueuing
 problems (perhaps in a test environment) before they actually happen. These states
 include any user that holds a critical file resource, whether or not it is blocking anyone.
 These reports are difficult to interpret, however, since they require a fairly good estimate
 of expected future usage patterns to have any predictive value.

——
84 SirTune Reference Manual

——
 Model 204 Quad Types
——

——————
CHAPTER 10 Model 204 Quad Types

 The basic unit of work in compiled User Language is the “quad.” Every User Language
 statement generates one or more quads. By breaking down Model 204 processing by
 quad types (using the QUAD parameter on STATE reports), one can get an idea of the
 general type of work occurring in an Online. To interpret a QUAD report, it is important
 to know what the individual quads do. $Function quads are easy to interpret since they
 are listed by function name. Other quads are listed here with a brief description of their
 function.

 ADDAV Add a fieldname/value pair to a record. Can be an ADD statement, part
 of a CHANGE statement or one line in a STORE RECORD statement.

 INSERT Add a fieldname/value pair to a record for the INSERT statement.

 ANDQ Perform a logical AND in a 204 expression (possibly in an IF statement).

 ARADD Perform an arithmetic addition in an expression.

 ARDIV Perform an arithmetic division in an expression.

 ARMUL Perform an arithmetic multiplication in an expression.

 ARSUB Perform an arithmetic subtraction in an expression.

 ASSQ Assigns result (possibly intermediate) of an expression to a result
 variable.

 ASSQCN Assigns integer constant to a (possibly intermediate) fixed result
 variable.

 ASSQEE Assigns result (possibly intermediate) of a string expression to a string
 result variable.

 ASSQNN Assigns result (possibly intermediate) of a numeric expression to a
 numeric result variable.

 ASSQO Assigns Blob field value to the user buffer.

 AUDITUS The part of the AUDIT statement that actually moves data into the
 journal.

 BACKOUT The BACKOUT statement.

——
SirTune Reference Manual 85

——
Model 204 Quad Types
——

 BAND Boolean AND. Combine two bit maps as part of FIND statement or in
 list manipulation.

 BASE Handles the SFGE$ and SFL$ conditions in a FIND statement.

 BEQVAL Handles the field = VALUE IN label condition for an ordered character
 field, where label refers to an enclosing FOR EACH VALUE loop or to a
 NOTE statement.

 BLIKE Handles the IS LIKE condition on a FIND statement for an ordered
 character field.

 BNOT Boolean NOT. Invert a bit map as part of FIND statement or in list
 manipulation.

 BOPER The part of a FIND statement associated with looking up a a
 fieldname/value pair in the ordered index. Never occurs in a group
 context FIND.

 BOR Boolean OR. Combine two bit maps as part of FIND statement or in list
 manipulation.

 BRANGE Handles a range find condition for an ordered index field on a FIND
 statement.

 BRNCH Branch used in computed JUMP statement or to branch around
 subroutine.

 BVAL The FIND ALL VALUES statement.

 CHGAV Delete a fieldname/value pair from a record for the CHANGE statement.

 CLGLOB The CLEAR GLOBALS statement.

 COMMIT The COMMIT statement.

 COUNT Count number of entries in found set. Used in COUNT and FIND AND
 PRINT COUNT statements. Also used in FIND statement to determine
 if a DYRWT message should be issued for a table B (direct) search.

 CSORT Copy data to CCATEMP for SORT or FOR EACH VALUE IN ORDER
 statement.

 CTO The COUNT OCCURRENCES statement.

 DEDB2 The EXEC DB2 ... END EXEC statement.

——
86 SirTune Reference Manual

——
 Model 204 Quad Types
——

 DEQSET Unlock a record set after deleting them in a DELETE RECORDS IN/ON
 statement.

 DIS Handles IS =, IS ALPHA =, and IS NUM = conditions on a FIND
 statement.

 DLIKE Handles a IS LIKE condition on a FIND statement for a non-ordered
 character field.

 DOPER Part of a Find that looks up a fieldname/value pair in table C, the
 ordered index, or table B (direct search or hash key). The table C,
 ordered index, and hash key lookups show up as DOPER instead of
 POPER/NOPER, BOPER/NOPER, and HOPER/NOPER pairs in a
 group context find. The only time DOPER shows up in a non-group
 context is when a table B (direct) search is performed.

 DOTEST Increments and tests index in a FOR index loop (FOR I FROM ...)

 DPRES Handles an IS PRESENT condition on a FIND statement.

 DRANGE Handles a range find condition for an non-ordered field on a FIND
 statement.

 DROPA Deletes each occurrence of a field in a record (DELETE EACH
 statement).

 DROPAV Delete a fieldname/value pair from a record. Used for the DELETE
 statement.

 D2DELRS A DELETE RECORDS statement on a remote file.

 D2EFIND A FIND statement on a remote file.

 D2ESORT A SORT statement on a remote file.

 D2FILR A FILE RECORDS statement on a remote file.

 D2LIST A PLACE RECORDS or REMOVE RECORDS statement on a remote
 file.

 D2OPCUR “Open cursor” on a remote file, to fetch sorted records or values to
 handle FOR EACH RECORD/VALUE in remote group context.

 ECALL The CALL statement.

 EICLOSE The CLOSE statement.

 EICLRGO Handles CLEAR GLOBAL statement for global images.

——
SirTune Reference Manual 87

——
Model 204 Quad Types
——

 EICLRT The CLEAR TAG statement.

 EIMOD The MODIFY statement.

 EIOPEN The OPEN statement.

 EIPOS The POSITION statement.

 EIPREP The PREPARE SCREEN statement. This includes PREPARE
 statements where the word SCREEN is implied.

 EIPREPI The PREPARE IMAGE statement. This includes PREPARE statements
 where the word IMAGE is implied.

 EIREAD The READ SCREEN statement. This includes READ statements where
 the word SCREEN is implied.

 EIREADI The READ IMAGE statement. This includes READ statements where
 the word IMAGE is implied.

 EIRPOS The RELEASE POSITION statement.

 EITAG The TAG statement.

 EIWRITE The WRITE IMAGE statement. This includes WRITE statements where
 the word IMAGE is implied.

 ELCLOSE The CLOSE PROCESS statement.

 ELCNFRM The CONFIRM statement.

 ELCNFRMD The CONFIRMED statement.

 ELFLUSH The FLUSH statement.

 ELINVITE The INVITE statement.

 ELOPEN The OPEN PROCESS statement.

 ELQUERY The QUERY PROCESS statement.

 ELRCV The RECEIVE statement.

 ELSEND The SEND statement.

 ELSIGNL The SIGNAL statement.

 ELSNDERR The SEND ERROR statement.

——
88 SirTune Reference Manual

——
 Model 204 Quad Types
——

 ELTEST The TEST statement.

 ELTRNSFR The TRANSFER statement.

 ELWAIT The WAIT statement.

 EMID The IDENTIFY statement.

 ENQSET Lock a record set about to be deleted in a DELETE RECORDS IN/ON
 statement.

 ENRA Extract the value of a field. Mostly used for IS LIKE and IS NOT LIKE
 clauses.

 ENRACO Copies a value in a field used in an expression into STBL.

 ENRAPR Print a field value for a PRINT statement.

 ENRASSF Assign the value of a field to a percent variable.

 EQQ Perform a numeric or string equality test to produce a logical true or
 false (0 or 1) result (possibly in an IF statement).

 ERETRN The RETURN, BYPASS PENDING, or RETRY statements and implied
 RETURNs at the end of a subroutine.

 EVCRLOC IFAM only.

 EVIFONT Font switch produced by *FONT keyword on a PRINT statement. Only
 used in DBCS environment.

 EVOPCUR IFAM only.

 FEO Finds next occurrence of a field for FOR EACH OCCURRENCE
 statement.

 FILEDOL Handles the FILE$ in a group context FIND statement.

 FMCMD File maintenance commands (DEFINE FIELD, REDEFINE FIELD,
 DELETE FIELD, RENAME FIELD, SECURE, DESECURE, ALLOCATE,
 DELETE GROUP). Only allowed to be used by CCA products.

 FOR FOR EACH RECORD, FOR n RECORDS, and FOR EACH VALUE
 loops. Finds the next record number or value to process in loop.

 FOREMOTE Get next record in a FOR EACH RECORD or FOR EACH VALUE loop
 against a remote file.

 FOREV The start of a REPEAT FOREVER or REPEAT WHILE loop.

——
SirTune Reference Manual 89

——
Model 204 Quad Types
——

 FORNO The FOR RECORD NUMBER statement.

 FORNOREM The FOR RECORD NUMBER statement against a remote file.

 F2LKI FLOD only.

 GETMORE IFAM only.

 GETNN IFAM only.

 GLOOP Group LOOP. Switch to next file in group in any group related operation
 including FIND statements.

 HOPER Hash OPERation. Looks up records in table B in a hash key file when
 the hash key appears in a FIND statement.

 INTQ Converts a string or floating point value in an expression to a fixed-point
 value.

 ISNTPRES Check for absence of a field in a record for an IS NOT PRESENT test in
 an expression to produce a logical true or false (0 or 1) result (possibly
 in an IF statement).

 ISORT Initialization for SORT or FOR EACH VALUE IN ORDER statement.

 ISPRES Check for presence of a field in a record for an IS PRESENT test in an
 expression to produce a logical true or false (0 or 1) result (possibly in
 an IF statement).

 ITSQ Used for SoftSpy.

 JUMP Branch associated with JUMP TO or IF/THEN/ELSE statement.

 JUMPTEST Branches to correct computed jump label in computed JUMP statement.

 LIKE Perform a wildcard character test for an IS LIKE clause in an expression
 to produce a logical true or false (0 or 1) result (possibly in an IF
 statement).

 LOCDOL Evaluate LOCATION$ FIND condition for Parallel Query Option/204.

 LOOP Get the next file segment in a multi-segment statement. Used in FIND,
 FILE RECORDS, PLACE RECORDS, REMOVE RECORDS, and
 DELETE RECORDS statements.

 LOOPEND Branch associated with LOOP END statement.

 LOOPENDC Conditionally exit a loop for a REPEAT WHILE statement.

——
90 SirTune Reference Manual

——
 Model 204 Quad Types
——

 MSORT Sort data in CCATEMP for SORT or FOR EACH VALUE IN ORDER
 statement.

 NEGQ Unary minus sign, for example, %I=-%I.

 NEWPAGE The NEWPAGE statement.

 NMEVEQ Evaluates equality condition for numeric range field on a FIND
 statement.

 NMEVGE Evaluates greater than or equal condition for numeric range field on a
 FIND statement.

 NMEVGT Evaluates greater than condition for numeric range field on a FIND
 statement.

 NMEVLE Evaluates less than or equal condition for numeric range field on a FIND
 statement.

 NMEVLT Evaluates less than condition for numeric range field on a FIND
 statement.

 NOPER Normalize OPERation. Converts a single record entry, record list (in
 table D) or a bit map (in table D) into a bit map in CCATEMP. Part of a
 FIND statement.

 NOTDSET Inverts a found set or list for the DELETE RECORDS statement.

 NOTE Note a value for the NOTE statement.

 NOTQ Perform a logical NOT in a Model 204 expression (possibly in an IF
 statement).

 NTIMES The start of a REPEAT n TIMES loop.

 NUMQ Converts a string value in an expression to a floating point value.

 ONQ Sets ON unit address and branches around ON unit for the ON
 statement.

 ORQ Perform a logical OR in a Model 204 expression (possibly in an IF
 statement).

 PAFN Prints all field names for the PRINT ALL FIELD NAMES (PAFN)
 statement.

 PAUSE The PAUSE statement.

 PID Prints the record ID for the *ID clause of a PRINT or AUDIT statement.

——
SirTune Reference Manual 91

——
Model 204 Quad Types
——

 PLAREM PLACE/REMOVE RECORDS ON/FROM LIST statement. Turn bits
 on/off in list bitmaps.

 PNUM Print a number; used in PRINT and FIND AND PRINT COUNT
 statements.

 POINT Evaluates POINT$ condition in a FIND statement.

 POPER The part of a FIND statement associated with looking up a a
 fieldname/value pair in table C. Never occurs in a group context FIND.

 POSNEV The POSITION statement.

 POSQ Unary plus sign, for example, %S=+%S.

 PRINTALL The PRINT ALL INFORMATION (PAI) statement.

 PRTNCOL Prints a field value in the PRINT statement if the fieldname was
 immediately preceded by a number indicating a maximum number of
 lines.

 PSNOP Copying a bit map page. Use in PLACE RECORDS and REMOVE
 RECORDS statements and in FIND statements on previously created
 found sets or lists.

 PSNOPEBM Part of FIND statement; copies (sometimes) existence bit map to
 CCATEMP.

 PSTRG Print a string; used in PRINT statements.

 PTALL EACH fieldname parameter in a PRINT statement.

 QEND End of most multi-part or multiple file segment statements. Occurs in
 FIND, DELETE RECORDS IN, SORT, FILE RECORDS, PLACE,
 REMOVE, and many other statements.

 QENDF Ends a FOR loop.

 QENDG End of group loop. Occurs in FIND and other statements in group
 context. Associated with a GLOOP quad.

 RELALL The RELEASE ALL RECORDS statement.

 RELSERQ The RELEASE RECORDS IN statement.

 REMBREV The REMEMBER statement.

 RESHTR The RESET HEADER/TRAILER statement.

——
92 SirTune Reference Manual

——
 Model 204 Quad Types
——

 RRECD Remove a record from table B for a DELETE RECORD statement.

 RSPOPER The part of a FIND statement associated with looking up a
 fieldname/value pair in table C. Never occurs in a group context FIND.
 RSPOPER is used instead of POPER when using record security in an
 APSY pre-compiled proc.

 SAVE Save invisible key data in table C or in the ordered index for a FILE
 RECORDS statement.

 SETHIO Start of SET HEADER/TRAILER statement.

 SITEM Start of STORE RECORD statement. Creates empty record in table B
 and adds hash or sort key in hash or sort key file.

 SITEMREM Start of STORE RECORD statement for remote file.

 SOLOOP Not used.

 SOPER Set OPERation. Sets a segments bit map in a found set for a FIND
 statement (or a PLACE/REMOVE statement). Also responsible for
 enqueuing on the found set unless doing FIND WITHOUT LOCKS.

 SOPEREBM Part of DELETE RECORDS statement; copies existence bit map to
 CCATEMP.

 SOR Find next record in a SORT KEY file for a FOR EACH RECORD IN
 ORDER BY sort key statement.

 STOREND Not used.

 STPIF The STOP IF COUNT statement.

 STRGQ Converts a floating point value in an expression to a string value.

 SUBS Retrieves a value in an array based on a subscript.

 TAB TAB parameter in a PRINT, SET HEADER, or SET TRAILER statement.

 UITEM Start of UPDATE RECORD statement.

 UITEMREM Start of UPDATE RECORD statement for remote file.

 WCARDX Output a PRINT or AUDIT line.

 WCARDW SKIP n LINES, where n > 1.

——
SirTune Reference Manual 93

——
Model 204 Quad Types
——

 WITHQ WITH parameter in a PRINT, AUDIT, SET HEADER, or SET TRAILER
 statement.

——
94 SirTune Reference Manual

——
 Wildcard Strings in SirTune and SIRTUNER Statements
——

——————
CHAPTER 11 Wildcard Strings in SirTune and SIRTUNER
 Statements

 There are several SirTune statements that allow the use of wildcard strings to specify a
 set of matching strings with a single string. These statements and the associated
 component of SirTune are:

 AUTHORIZE SIRTUNE
 RESOLUTION SIRTUNER or SIRTUNEREPORT
 SIRTUNED A CMS command

 The special characters and their meanings in wildcard strings are:

 * Matches any group of characters including a null string.

 ? Matches any single character.

 " Indicates that the next character in the wildcard string is to be treated literally,
 even if it is a double-quotation mark ("), asterisk (*), or question mark (?).

 For example, to match any string, use:

 *

 To match ABCDEFG and no other strings, use:

 ABCDEFG

 To match ABC, ABCXXX, ABC22, ABCDEFG, etc. and not match ABXCD, CAB, etc.,
 use:

 ABC*

 To match XYZ, AXYZ, XYZA, AXYZB, etc. and not match XAYBZ, XYAZ, etc., use:

 XYZ

 To match ABC1, ABCD, ABCZ etc. and not match ABC, ABCDE, ABXC, etc., use:

 ABC?

 To match any string with exactly four characters and not match anything else, use:

 ????

——
SirTune Reference Manual 95

——
Wildcard Strings in SirTune and SIRTUNER Statements
——

 To match the string ABC* and nothing else, use:

 ABC"*

 To match the string ABC? and nothing else, use:

 ABC"?

 To matches the string ABC" and nothing else, use:

 ABC""

 To match ABC, ABD, A1BC, A123B?, etc. and not match ABCD, XABC, AXXXXX, etc.,
 use:

 A*B?

——
96 SirTune Reference Manual

——
 Estimating SIRTUNED Size Requirements
——

——————
CHAPTER 12 Estimating SIRTUNED Size Requirements

 It is recommended that you do not spend a lot of time trying to size SIRTUNED, because
 the consequences of under- or over-estimating the SIRTUNED space requirements are
 relatively benign. However, if you want to size SIRTUNED, this chapter provides some
 basic rules of thumb for estimating the correct size.

 12.1 A formula for the estimate

 The size of SIRTUNED is mainly determined by these factors:

 ● The number of lines of compilations saved. This is the number of lines in pre-
 compiled APSY procedures compiled in the run, or if the ALLCOMP statement is
 specified for SirTune, the number of lines of all compiled procedures. In any case, a
 line counts as 1 each time it is compiled.

 ● The number of samples collected.

 ● The average number of users for which data is collected per sample.

 To estimate the number of lines of compilations saved when the ALLCOMP statement
 has not been specified, and when subsystems are not START'ed and STOP'ed multiple
 times in a run, simply total the number of lines in all pre-compiled procedures in
 START'ed subsystems. To get an estimate of this:

 1. Count the total number of pre-compiled procedures.
 2. Estimate the average number of lines per pre-compiled procedure by entering the
 editor for a representative sample of them.
 3. Multiply these two values.

 Call the number of compiled lines COMP_LINES.

 To estimate the number of samples, divide the number of seconds over which data is to
 be collected, by the sample interval length (1 or whatever was specified on the
 INTERVAL statement). Call this value NUM_SAMP.

 The best guide to estimating the number of users for which data is collected per sample
 is the Model 204 performance monitor. There are certain worst case values that one
 can assume, however:

 ● If only state RUNG is being collected, at most 1 user will have data collected per
 sample, unless MP/204 is installed (in which case, the upper limit is 1 plus the
 number of subtasks).
——
SirTune Reference Manual 97

——
Estimating SIRTUNED Size Requirements
——

 ● If only REDY, RUNG, BLKIN, BLKIU, SWPGI, SWPGOW, SWPGOBN, and/or
 SWPGOBU states are being collected, the upper limit is the number of servers.
 ● Otherwise, a crude upper limit is the number of users.

 Call whatever value one comes up with AVG_USERS.

 The total number of bytes required for SIRTUNED can be estimated by this:

 100,000 + (12 * COMP_LINES) +
 (NUM_SAMP * 64 * (1 + AVG_USERS))

 This estimator provides a fairly generous estimate without being excessive. To
 determine the number of disk tracks required, divide the number of bytes produced by
 this estimator by the number of bytes per track at the block size for SIRTUNED (46,952
 is the default bytes per track on a 3380, and 55,996 is the default on a 3390).

 12.2 An example estimate

 Suppose a shop has 100,000 lines of pre-compiled User Language code, expects to
 collect samples over 8 hours at 1 per second, is collecting data for states RUNG, REDY,
 and BLKIN, and has 30 servers defined in the ONLINE. These factors are clear:

 COMP_LINES = 100,000

 NUM_SAMP = 8 * 60 * 60 / 1 = 28,800

 Since all the users in a collected state must be in a server, use the number of servers as
 a gross estimator for AVG_USERS, that is:

 AVG_USERS = 30

 This means that the estimated space requirements in this case is:

 100,000 + (12 * 100,000) +
 28,800 * 64 * (1 + 30) = 58,439,200

 If the sample data was going to a 3380 with the SirTune default block size, it would
 require 1245 tracks or 83 cylinders.

 The number of samples collected in this example is fairly extreme: generally there is not
 much benefit to collecting more than 10,000 samples. If sampling is limited to some key
 hours to restrict the number of samples collected to 10,000, the estimator becomes:

 100,000 + (12 * 100,000) +
 10,000 * 64 * (1 + 30) = 21,140,000

——
98 SirTune Reference Manual

——
 An example estimate
——

 If the sample data in this case was going to a 3380 with the SirTune default block size, it
 would require 451 tracks or 31 cylinders.

——
SirTune Reference Manual 99

——
Estimating SIRTUNED Size Requirements
——

——
100 SirTune Reference Manual

——
 SirTune Data Collector Messages
——

——————
APPENDIX A SirTune Data Collector Messages

 The following messages are issued by the data collection part of SirTune (in version 1.5
 or earlier, the SIRTUNE load module).

TUNE0001 SIRTUNE version version started date time on CPU cpu at site site.

 This indicates the version of SirTune that is running (version), the date and time at which
 it started (date time), the CPU ID that is running (cpu) and the site ID of the customer
 (site).

TUNE0002 Invalid command command.

 This indicates that an invalid statement was found in SIRTUNEI, or an invalid command
 was issued via SMSG or MODIFY. If the error was in SIRTUNEI, the line with the invalid
 statement is echoed before this message, and SirTune will not come up. In this case
 SIRTUNEI must be corrected before the ONLINE or BATCH204 job will come up.

TUNE0003 Unable to open SIRTUNED.

 This indicates that SirTune was unable to open the file SIRTUNED. This probably
 means that no DD statement was coded for SIRTUNED.

TUNE0004 Invalid format for SIRTUNED.

 This indicates that the SIRTUNED has an invalid format. This could mean that
 SIRTUNED does not have record format VB or that the LRECL is less than 512. Correct
 the DD card to specify a valid format.

TUNE0005 Parameter missing for cmd command.

 This indicates that a parameter was missing for a statement in SIRTUNEI, or a
 parameter was missing for a command issued via SMSG or MODIFY. If the error was in
 SIRTUNEI, the line with the invalid statement is echoed before this message, and
 SirTune will not come up. In this case, SIRTUNEI must be corrected before the ONLINE
 or BATCH204 job will come up. In any case, the correct format of the statement or
 command can be found in “Configuration Statements for the Data Collector” on page 13
 or “MODIFY and SMSG commands” on page 27.

——
SirTune Reference Manual 101

——
SirTune Data Collector Messages
——

TUNE0006 Invalid cmd parameter - parm.

 This indicates that an invalid parameter was found for a statement in SIRTUNEI or for a
 command issued via SMSG or MODIFY. If the error was in SIRTUNEI, the line with the
 invalid statement is echoed before this message, and SirTune will not come up. In this
 case, SIRTUNEI must be corrected before the ONLINE, or BATCH204 job will come up.
 The correct format of the statement or command can be found in “Configuration
 Statements for the Data Collector” on page 13 or “MODIFY and SMSG commands” on
 page 27.

TUNE0007 Invalid inc_exc range r_val.

 This indicates that an invalid range was specified on an INCLUDE or EXCLUDE
 statement in SIRTUNEI. The line with the invalid statement is echoed before this
 message, and SirTune will not come up. SIRTUNEI must be corrected before the
 ONLINE or BATCH204 job will come up. In any case, the correct format of the
 statement or command can be found in “Configuration Statements for the Data
 Collector” on page 13.

TUNE0008 Getmain request failed, RC=ret_code. SIRTUNE terminated.

 This indicates that there was insufficient storage to initialize SirTune. Increase the
 amount of storage allocated to the region, using the REGION parameter on the EXEC
 card under MVS or using the DEFINE STORAGE command under CP.

TUNE0009 Unable to load loadmod.

 This indicates that SirTune was unable to load the Model 204 load module called
 loadmod.

 ● Under MVS, this means the indicated load module is not in any of the STEPLIBs for
 the SirTune step. This could indicate that the Model 204 load module is not called
 ONLINE, and a PGM statement is required, the load module name was misspelled
 on the PGM statement, or the STEPLIB statement was coded incorrectly.

 ● Under CMS this means that the indicated load module is not on any accessed disk.
 This could indicate that the Model 204 load module is not called M204ONLN, and a
 PGM statement is required, the load module name was misspelled on the PGM
 statement, or the disk with the Model 204 load module was never accessed or has
 been released.

TUNE0010 loadmod did not complete initialization with SIRTUNE.

 This indicates that the Model 204 load module did not make it through initialization. This
 means that no SirTune samples are collected. Check the output from the Model 204 run
 to determine the problem(s), and correct them.

——
102 SirTune Reference Manual

——
 SirTune Data Collector Messages
——

TUNE0011 Unable to determine release of loadmod (reason hex_info).

 This indicates that SirTune could not determine the release of the Model 204 load
 module. This could be because the load module loadmod is not a Model 204 load
 module, or because it is an unsupported release of Model 204. If it is the latter case and
 it is impossible to switch to another release of Model 204, contact Sirius Software
 product support.

TUNE0012 vm_id is not logged on.

 This message, which only occurs under CMS, means that the SIRTUNED service
 machine is not logged on. Either log the SIRTUNED service machine on, or correct the
 CMSOUT statement in SIRTUNEI if vm_id is not the name of the SIRTUNED service
 machine.

TUNE0013 vm_id is not ready for IUCV.

 This message, which only occurs under CMS, means that the SIRTUNED service
 machine is not initialized. Either intialize the SIRTUNED service machine, or correct the
 CMSOUT statement in SIRTUNEI if vm_id is not the name of the SIRTUNED service
 machine.

TUNE0014 Maximum IUCV connections exceeded.

 This message, which only occurs under CMS, means that the Model 204 service
 machine with SirTune has exceeded its maximum allowed IUCV connections. Increase
 the value for OPTION MAXCONN in the user directory entry for the Model 204 service
 machine.

TUNE0015 Maximum IUCV connections exceeded for vm_id.

 This message, which only occurs under CMS, means that the SIRTUNED service
 machine has exceeded its maximum allowed IUCV connections. Increase the value for
 OPTION MAXCONN in the user directory entry for the SIRTUNED service machine.

TUNE0016 Not authorized to connect to vm_id.

 This message, which only occurs under CMS, means that the Model 204 service
 machine is not authorized to connect to the SIRTUNED service machine via IUCV. Add
 an appropriate IUCV entry to the user directory entry for either the Model 204 service
 machine or the SIRTUNED service machine to allow IUCV communications between the
 two.

TUNE0017 Sampling set to setting.

 This is an informational response to the SAMPLE command issued via MODIFY or
 SMSG that indicates the new sampling setting.

——
SirTune Reference Manual 103

——
SirTune Data Collector Messages
——

TUNE0018 Sampling terminating.

 This is an informational response to the STOP command issued via MODIFY or SMSG
 that indicates that sampling is terminating.

TUNE0019 Sample data set closed.

 This is an informational response to the CLOSE command issued via MODIFY or SMSG
 that indicates that the sample dataset has been closed and can be processed with
 SIRTUNER. Data continues to be collected to the sample dataset.

TUNE0020 Sampling is mode - num samples collected.

 This is an informational response to the STATUS command issued via MODIFY or
 SMSG that indicates the current state of sampling and the number of samples that have
 been collected.

TUNE0021 Sampling is already terminated.

 This is a response to the STOP command issued via MODIFY or SMSG that indicates
 that sampling has already been terminated. Sampling could have been terminated
 either because of a previous STOP command or because of a severe error in SirTune.

TUNE0022 Not authorized.

 This is a response to any command issued via MODIFY or SMSG that indicates that the
 issuing user is not allowed to issue such commands. Under MVS, this means no users
 are authorized to issue MODIFY commands. For a user to get privilege to issue SMSG
 or MODIFY commands, an appropriate AUTHORIZE statement must be placed in
 SIRTUNEI.

TUNE0023 SirTune Expired... date.

 This message appears when trying to bring up the SirTune data collection module after
 a trial period has expired. The message shows the date of expiration of the trial. Call
 Sirius Software support for a new expiration ZAP if the trial has been extended or
 SirTune has been purchased. Otherwise, deinstall SirTune.

TUNE0024 SIRTUNE not authorized for CPU cpu_id.

 This message appears when trying to bring up the SirTune data collection module on a
 CPU for which it is not authorized. Call Sirius Software support for a new CPU ZAP if
 the new CPU is a replacement for an old one. Note that processor upgrade fees might
 be required for a new CPU. The cpu_id indicated in this message is the processor ID
 that should be given to Sirius Software for a new CPU ZAP.

——
104 SirTune Reference Manual

——
 SirTune Data Collector Messages
——

TUNE0025 Task task_num - status at address.

 This message is received in response to the MONITOR command for each task in the
 ONLINE. task_num is 0 for the Model 204 maintask and the subtask number if it is an
 offload subtask for the MP/204 feature. status will be either WAITING or RUNNING, and
 address will be either an absolute address in the Model 204 address space or a CSECT
 name and offset. If status is RUNNING, this message will be followed by message
 TUNE0026.

TUNE0026 User user_num (userid) What = what Last = last Proc = proc.

 This message is received in response to the MONITOR command for each task in the
 ONLINE. It is always preceded by message TUNE0025. user_num and userid identify
 the user running in the ONLINE. what and last identify the current user activity, and
 proc identifies the procedure currently being run.

TUNE0027 Invalid user number - user_num.

 This message is received in response to a RESTART or BUMP command. It indicates
 that the user number specified on one of these commands was either not a non-negative
 integer or it was greater than NUSERS for the ONLINE.

TUNE0028 User user_num not logged on.

 This message is received in response to a RESTART or BUMP command. It indicates
 that the user number specified on one of these commands was inactive. That is, no user
 was logged on to the indicated user number.

TUNE0029 User user_num not running.

 This message is received in response to the RESTART command. It indicates that the
 user number specified on one of these commands was not running.

TUNE0030 Invalid abend code code.

 This message is received in response to the RESTART command. It indicates that a
 non-hexadecimal abend code was specified, or the abend code was greater than
 hexadecimal FFF.

TUNE0031 0C1-0CF are the only valid abend codes under CMS.

 This message is received in response to the RESTART command. It indicates that an
 abend code less than 0C1 or greater than 0CF was specified to a SirTune running under
 CMS. Only abend codes between 0C1 and 0CF are valid under CMS.

TUNE0032 User user_num bumped.

 This message is received in response to the BUMP command. It indicates that SirTune
 has indicated to Model 204 that user number user_num should be “bumped.”

——
SirTune Reference Manual 105

——
SirTune Data Collector Messages
——

TUNE0033 User user_num restarted.

 This message is received in response to the RESTART command. It indicates that
 SirTune has simulated an abend for the user number user_num.

TUNE0034 Invalid task number - task_num.

 This message is received in response to a RESTART command. It indicates that the
 task number specified on one of these commands was not an integer, was negative, or
 was greater than NMPSUBS for the ONLINE. If the MP/204 feature is not being used,
 the task number must always be 0 (the maintask number).

TUNE0035 Task task_num restarted.

 This message is received in response to the RESTART command. It indicates that
 SirTune has simulated an abend for the indicated task number.

TUNE0036 Not APF authorized, can't do restart.

 This message is received in response to the RESTART command. It indicates that the
 SirTune load module is not APF authorized, hence it cannot issue simulated abends
 under MVS. See “MVS installation” on page 116 for more information.

TUNE0037 Not running in Model 204, can't restart.

 This message is received in response to the RESTART command, and it only occurs
 under CMS. It indicates that the address space was not running in the Model 204 load
 module at the time the RESTART command was issued. This means that the virtual
 machine was probably running CMS system code, hence it is extremely unlikely to
 successfully intercept the RESTART command. Issue the RESTART command several
 times (until this message is not received) to try to catch the virtual machine in the
 Model 204 load module. If this proves impossible, more drastic measures must be
 taken. These measures might include logging on to the virtual machine, issuing a CP
 VMDUMP command, and logging off.

TUNE0038 Call Sirius Software for a new authorization.

 This message indicates that the authorization zap applied to SirTune is inconsistent.
 Probably, it was not applied correctly, or you have attempted to apply an authorization
 zap for an older version of SirTune. If this is preceded by message TUNE0040, follow
 the steps outlined for that message. Otherwise, please call Sirius Software.

TUNE0039 Authorization zap produced date time.
 This informational message indicates the date and time that the SirTune authorization
 zap was created at Sirius Software. It is shown as date time, and it may help determine
 if the proper zap was applied.

——
106 SirTune Reference Manual

——
 SirTune Data Collector Messages
——

TUNE0040 Invalid checksum in authorization zap.
 This message indicates that the SirTune authorization zap was incorrectly entered. If
 the zap was manually entered, double check the contents from the original copy. If the
 zap was received electronically from Sirius Software, either it was modified during
 receipt or it was incorrectly transmitted. You should double check your steps for
 receiving it, or obtain a new zap from Sirius Software.

TUNE0041 PTCH usage.

 This informational message indicates the offsets in the PTCH CSECT which have been
 changed from the initial value of zero, which approximates the maintenance level of the
 executing load module. PTCH usage can have one of the following forms:

 ● No PTCH used , which indicates that the entire patch space is zero.

 ● PTCH usage: beg-end ... , which indicates the ranges (in hexadecimal) in the patch
 area that have been changed from zero.

TUNE0042 SIRTUNE Expiration status.

 This informational message indicates when, if ever, SirTune will expire on the current
 CPU. Expiration status will be one of the following:

 Permanently authorized This indicates that SirTune has been purchased, and it will
 never expire on the current CPU.

 Expires mm/dd/yy This indicates that SirTune is under a trial or rental
 agreement for the current CPU, and it will expire at the date
 indicated.

——
SirTune Reference Manual 107

——
SirTune Data Collector Messages
——

——
108 SirTune Reference Manual

——
 SirTune Report Writer Messages
——

——————
APPENDIX B SirTune Report Writer Messages

 The following messages are issued by the report generation part of SirTune (the
 SIRTUNER load module). After any of these errors, SIRTUNER processing is
 terminated and no reports are produced.

TUNR0002 Invalid command cmd.

 This indicates that an invalid statement was found in SIRTUNEI. The line with the
 invalid statement is echoed before this message. Valid SIRTUNER statements are
 listed in “Configuring the Report Generator” on page 37.

TUNR0003 Unable to open ddname.

 This indicates that SirTune was unable to open the indicated ddname. This error can
 occur for ddnames SIRTUNED or SIRTUNEO. This probably means that no DD
 statement was coded for SIRTUNED or SIRTUNEO.

TUNR0004 Invalid format for SIRTUNED.

 This indicates that the DDNAME SIRTUNED has an invalid format. A SIRTUNED with
 invalid format could not have been created by SirTune so the SIRTUNED DD card or
 FILEDEF statement must be pointing to an incorrect dataset.

TUNR0005 Parameter missing for cmd command.

 This indicates that a parameter was missing for a statement in SIRTUNEI. The line with
 the invalid statement is echoed before this message. SIRTUNEI must be corrected to
 produce any reports. The correct format of the statement can be found in “Configuring
 the Report Generator” on page 37.

TUNR0006 Invalid cmd parameter - parm.

 This indicates that an invalid parameter was found for a statement in SIRTUNEI. The
 line with the invalid parameter is echoed before this message. SIRTUNEI must be
 corrected to produce any reports. The correct format of the statement can be found in
 “Configuring the Report Generator” on page 37.

——
SirTune Reference Manual 109

——
SirTune Report Writer Messages
——

TUNR0008 Getmain request failed, RC=ret_code. SIRTUNER terminated.

 This indicates that there was not sufficient storage to produce the SIRTUNER reports.
 Increase the amount of storage allocated to the region with the REGION parameter on
 the EXEC card under MVS or with the DEFINE STORAGE command under CP. If
 under CMS/XA or CMS/ESA and 16 megabytes of storage are not sufficient, DEFINE
 STORAGE for a value greater than 16 megabytes, set the virtual machine to XA mode
 with the SET MACHINE XA command and run SIRTUNER under this configuration. If
 none of these options are available, try reducing SIRTUNER's storage requirements with
 the RESOLUTION command or by reducing the number of reports produced in a single
 run.

TUNR0009 REPORT NODEFAULT must be first REPORT command.

 This indicates that the REPORT NODEFAULT was found in SIRTUNEI but it was not the
 first REPORT statement in SIRTUNEI. Move the REPORT NODEFAULT statement to
 the top of SIRTUNEI or remove it from SIRTUNEI.

TUNR0010 SIRTUNED is not in SIRTUNE format.

 This indicates that SIRTUNER has determined that SIRTUNED does not contain valid
 SirTune data. This is most likely caused by coding the incorrect dataset name of the DD
 card or FILEDEF statement for SIRTUNED.

TUNR0011 SIRTUNED data is from obsolete SIRTUNE.

 This indicates that SIRTUNER has determined that the data in SIRTUNED was
 produced by a no longer supported SirTune load module. Ensure that the SirTune load
 module is upgraded to the newer release. To produce a report from the already created
 SIRTUNED dataset, find an older version of the SIRTUNER load module and use it to
 generate the report.

TUNR0012 SIRTUNED data is from future version of SIRTUNE.

 This indicates that SIRTUNER has determined that the data in SIRTUNED was
 produced by release of the SirTune load module that is too new for SIRTUNER to
 process. Ensure that the SIRTUNER load module is upgraded to the newer release and
 try generating the reports again.

TUNR0013 No samples in SIRTUNED.

 This indicates that SIRTUNER has determined that no samples were collected into
 SIRTUNED. This could have occurred if INCLUDE/EXCLUDE statements or a SAMPLE
 OFF statement for SirTune prevented samples from being collected. It could also
 happen if the run that produced SIRTUNED never made it through Model 204
 initialization.

——
110 SirTune Reference Manual

——
 SirTune Report Writer Messages
——

TUNR0014 state data not collected, cannot produce requested report(s).

 This indicates that reports were requested in SIRTUNEI that require SirTune to have
 collected data for user states for which SirTune did not collect data. See “Model 204
 States” on page 75 for more information on these requirements. The offending
 REPORT statement is either a REPORT STATE or a REPORT DISKIO statement. The
 requested reports cannot be produced with the existing samples dataset identified by
 SIRTUNED. To produce any reports from the current SIRTUNED, remove the offending
 REPORT statements from SIRTUNEI. To be able to produce the offending reports for
 future runs, add the appropriate COLLECT statements to SIRTUNEI for SirTune.

TUNR0015 No samples in requested range.

 This indicates that a RANGE statement was specified in SIRTUNEI that eliminated all
 samples in SIRTUNED. Correct the RANGE statement or collect data in the appropriate
 time range with SirTune.

TUNR0016 No non-discarded samples in SIRTUNED.

 This indicates that while samples were found in SIRTUNED they were all discarded as
 being biased because of the MAXDELAY value. Either change the value of MAXDELAY
 or correct your system tuning parameters so that the ONLINE receives adequate service
 from the operating system.

TUNR0017 No non-discarded samples in requested range.

 This indicates that a RANGE statement was specified in SIRTUNEI that limited
 SIRTUNED to samples that were all discarded as being biased because of the
 MAXDELAY value. Either change the requested time range, collect data in the
 appropriate time range with SirTune, change the value of MAXDELAY or correct your
 system tuning parameters so that the ONLINE receives adequate service from the
 operating system.

TUNR0018 Different Model204 load modules in sample datasets.

 This indicates that a DATASET statement was specified in SIRTUNEI that requested
 combining two sample datasets that were produced with different Model 204 load
 modules. Ordinarily this is not a problem unless certain reports are requested in
 SIRTUNEI. The problematic report is indicated by a TUNR0024 message that
 immediately follows this message. Either eliminate the problematic report or change the
 DATASET statement to ensure that all datasets to be included in the report were created
 with identical Model 204 load modules.

——
SirTune Reference Manual 111

——
SirTune Report Writer Messages
——

TUNR0019 Different function tables in sample datasets.

 This indicates that a DATASET statement was specified in SIRTUNEI that requested
 combining two sample datasets that were produced with different Model 204 load
 module function tables. Ordinarily this is not a problem unless certain reports are
 requested in SIRTUNEI. The problematic report is indicated by a TUNR0024 message
 that immediately follows this message. Either eliminate the problematic report or change
 the DATASET statement to ensure that all datasets to be included in the report were
 created with identical Model 204 load module function tables.

TUNR0020 Different server layouts in sample datasets.

 This indicates that a DATASET statement was specified in SIRTUNEI that requested
 combining two sample datasets that were produced with different Model 204 server size
 allocations. Ordinarily this is not a problem unless certain reports are requested in
 SIRTUNEI. The problematic report is indicated by a TUNR0024 message that
 immediately follows this message. Either eliminate the problematic report or change the
 DATASET statement to ensure that all datasets to be included in the report were created
 with identical Model 204 server size allocations.

TUNR0021 Different server dataset layouts in sample datasets.

 This indicates that a DATASET statement was specified in SIRTUNEI that requested
 combining two sample datasets that were produced with different Model 204 server
 dataset allocations (CCASERVR, CCASERV1, etc.). Ordinarily this is not a problem
 unless certain reports are requested in SIRTUNEI. The problematic report is indicated
 by a TUNR0024 message that immediately follows this message. Either eliminate the
 problematic report or change the DATASET statement to ensure that all datasets to be
 included in the report were created with identical Model 204 server dataset allocations.

TUNR0022 MP and non-MP runs in sample datasets.

 This indicates that a DATASET statement was specified in SIRTUNEI that requested
 combining two sample datasets one of which was produced using MP (NMPSUBS > 0)
 and the other not. Ordinarily this is not a problem unless certain reports are requested in
 SIRTUNEI. The problematic report is indicated by a TUNR0024 message that
 immediately follows this message. Either eliminate the problematic report or change the
 DATASET statement to ensure that all datasets to be included in the report were created
 with consistent use or non-use of the MP feature.

TUNR0023 Different Model204 versions in sample datasets.

 This indicates that a DATASET statement was specified in SIRTUNEI that requested
 combining two sample datasets that were produced with different Model 204 versions
 (e.g. 2.2 and 3.2). Ordinarily this is not a problem unless certain reports are requested
 in SIRTUNEI. The problematic report is indicated by a TUNR0024 message that
 immediately follows this message. Either eliminate the problematic report or change the
 DATASET statement to ensure that all datasets to be included in the report were created
 with identical Model 204 versions.

——
112 SirTune Reference Manual

——
 SirTune Report Writer Messages
——

TUNR0024 Can't produce rep_name report.

 This indicates that a DATASET statement was specified in SIRTUNEI that requested
 combining two sample datasets that were inconsistent in some way. The inconsistency
 is identified by the immediately preceding error message. The report requiring
 consistency is indicated by this message. Either eliminate the problematic report or
 change the DATASET statement to ensure that all datasets to be included in the report
 have the required consistency.

TUNR0025 No sample datasets selected.

 This indicates that a DATASET statement was specified in SIRTUNEI that did not
 specify any sample dataset that was actually in the SIRTUNED concatenation. Either,
 correct the DATASET statement or add the appropriate sample datasets to the
 SIRTUNED concatenation.

TUNR0026 type data not collected, cannot produce rep_name report.

 This indicates that reports were requested in SIRTUNEI that require SIRTUNE to have
 collected data for user states for which SIRTUNE did not collect data. See “Model 204
 States” on page 75 for more information on these requirements. The requested reports
 cannot be produced with the existing SIRTUNED. To produce any reports from the
 current SIRTUNED, remove the offending REPORT statements from SIRTUNEI. To be
 able to produce the offending reports for future runs, add the appropriate COLLECT
 statements to SIRTUNEI for SirTune.

——
SirTune Reference Manual 113

——
SirTune Report Writer Messages
——

——
114 SirTune Reference Manual

——
 Installation
——

——————
APPENDIX C Installation

 SirTune can be installed from a product tape or can be installed from an object deck
 downloaded from the Sirius Software web site. Installation from tape is described in
 “MVS installation” on page 116 and “CMS Installation” on page 118, while installation
 from the web is described in “Installation from the web”. In any case, all SirTune
 distributions come with all maintenance pre-applied: up to the time the tape was cut for
 tape installations, and up to the time the object deck was downloaded for web
 installations.

 As of Version 7.2, reporting is performed by a User Language program that is distributed
 in the SIRIUS file as part of the UL/SPF product family. If your site uses UL/SPF, verify
 both of the following:

 1. You have UL/SPF Version 7.2 or later installed,
 2. File SIRIUS contains the program SIRTUNEREPORT.

 If your site is not licensed for UL/SPF, you are still authorized (as a user of SirTune) to
 download the SIRIUS file. You can download the SIRIUS file from the Sirius website
 using the “Download User Language files” link on the Support page (http://sirius-
 software.com/support.html). If you are not a UL/SPF customer, you don't need to do
 the entire UL/SPF installation: just download and restore the SIRIUS file, and make it
 available to your SIRTUNE Report jobs.

 If you are a user of a previous version of SirTune, see the SirTune Release Notes for
 the version you are installing. This document is available on the Sirius Software web
 site Documentation page (http://sirius-software.com/maint/manlist). The Release
 Notes highlight changes in the new version, and they list any compatibility issues with
 the previous version.

 C.1 Installation from the web

 You can download the SirTune object files from the Sirius Software web site
 (http://sirius-software.com). The download process requires a userid and password.

 1. Click the Support navigation link to go to the Customer Service page
 (http://sirius-software.com/support.html), a public page that explains how to get
 the required userid and password and that also contains links to the various
 download pages.

 2. Click the Download object files link to go to a protected page
 (https://sirius-software.com/maint/objlist) that contains a dynamically-generated
 list of the various Sirius products that you may download.
——
SirTune Reference Manual 115

——
Installation
——

 The page also contains a Click here link that causes the page to be re-displayed
 with detailed download and installation instructions. These instructions supercede
 any information in this manual.

 3. On the Download object files page, select the link(s) to the currently available
 SirTune object file(s) for the version you require.

 Clicking a link generates an object file for SirTune that is pre-configured for your
 site, with all maintenance and authorization ZAPs applied. The “Save As” dialog
 that displays lets you indicate where the object files are to be saved.

 Note: As of Sirius Mods version 6.9, the “SirTune” object file is integrated into the
 “Sirius Mods” object file, so to install the latest version of the SirTune components:

 a. Select the “Sirus Mods” link (V6.9 or higher) for the appropriate version of
 Model 204.
 b. Select the most recent “SirTune Report Generator” link.
 c. If you are running under CMS, select the most recent “SirTune Data Logger”
 link.

 For earlier versions of the SirTune components, select the appropriate V1.x
 “SirTune” and “SirTune Report Generator” links, and optionally, for CMS users, the
 V1.x “SirTune Data Logger” link.

 Running an earlier version of SirTune with Sirius Mods version 6.9 or later is not
 recommended, since older versions of SirTune are not upgraded to work with new
 versions of Sirius Mods or Model 204.

 C.2 MVS installation

 SirTune is distributed on a magnetic tape. This magnetic tape has three standard
 labeled files. These three tape files are:

 ● SIRIUS.LIB
 ● SIRIUS.LOAD
 ● SIRIUS.ULSPF (this file is not used by SirTune)

 To install SirTune, load the files from tape onto disk. The tape contains SirTune and any
 other Sirius products you have ordered. The space allocations are sufficient regardless
 of how many products you will be loading.

——
116 SirTune Reference Manual

——
 MVS installation
——

 The following JCL performs the load:

 //SIRTUNEL JOB (0),'Bart
 Simpson',MSGCLASS=A,CLASS=C,NOTIFY=BART
 //*
 //* Load Sirius products from tape
 //*
 //IEBCOPY EXEC PGM=IEBCOPY,REGION=0M
 //T1 DD
 UNIT=TAPE,VOL=SER=SIRIUS,LABEL=(1,SL),DISP=(OLD,PASS),
 // DSN=SIRIUS.LIB
 //T2 DD
 UNIT=TAPE,VOL=SER=SIRIUS,LABEL=(2,SL),DISP=(OLD,PASS),
 // DSN=SIRIUS.LOAD
 //T3 DD
 UNIT=TAPE,VOL=SER=SIRIUS,LABEL=(3,SL),DISP=(OLD,PASS),
 // DSN=SIRIUS.ULSPF
 //*
 //D1 DD DISP=(,CATLG),DSN=SIRIUS.LIB,UNIT=SYSDA,
 // SPACE=(CYL,(10,2,5))
 //D2 DD DISP=(,CATLG),DSN=SIRIUS.LOAD,UNIT=SYSDA,
 // SPACE=(CYL,(5,0,2))
 //D3 DD DISP=(,CATLG),DSN=SIRIUS.ULSPF,UNIT=SYSDA,
 // SPACE=(CYL,(25,0,2))
 //SYSPRINT DD SYSOUT=*
 //SYSIN DD *
 COPY I=T1,O=D1
 COPY I=T2,O=D2
 COPY I=T3,O=D3
 /*

 The job card and possibly the output data set names must be changed to conform to
 local standards.

 After loading the two tape files, SirTune is ready to use. The first tape file contains some
 sample jobs, object decks used in building SirTune, and a member called ZAP that
 contains a list of all ZAPs that have been pre-applied to the object decks and load
 modules. The sample jobs in SIRIUS.LIB are:

 LNKTUNE A job that can be used to relink the SIRTUNE load module if necessary.
 A pre-linked version is shipped in SIRIUS.LOAD.

 LNKTUNER A job that can be used to relink the SIRTUNER load module if
 necessary. A pre-linked version is shipped in SIRIUS.LOAD This
 module is deprecated as of Version 7.2 because SIRTUNER is no
 longer supported.

 RUNTUNER A sample job that can be used to run SIRTUNER.

 All these sample jobs should be modified to conform to local requirements.

——
SirTune Reference Manual 117

——
Installation
——

 As part of the installation process for SirTune version 1.5 and earlier: This module is
 deprecated as of Version 7.2 because SIRTUNER is no longer supported.

 ● It might be desirable to move the SIRTUNE load module in SIRIUS.LOAD into a
 library that will allow access from ONLINE and BATCH204 jobs.

 ● If the ONLINE(s) to be monitored run APF authorized, move SIRTUNE to an APF
 authorized library so SIRTUNE's monitoring of the ONLINE(s) does not remove the
 Model 204 load module's APF authorization. If SIRTUNE's RESTART command is
 to be available, both SIRTUNE and the Model 204 load module must be APF
 authorized.

 ● If the ONLINE(s) to be monitored run non-swappable, add SIRTUNE to the program
 properties table (defined in SCHEDxx in SYS1.PARMLIB) as non-swappable, or
 rename SIRTUNE to something that is already non-swappable.

 ● If SIRTUNE is to be used to monitor both swappable and non-swappable load
 modules, an alias should be created for SIRTUNE. Either the name SIRTUNE or its
 alias must then be added to the program properties table as non-swappable. The
 name (SIRTUNE or its alias) that is added to the program properties table should be
 used to invoke SIRTUNE for the non-swappable load modules, and the other name
 should be used to invoke SIRTUNE for swappable load modules.

 An object deck called IFINTF is distributed in SIRIUS.LIB that, if linked with one or more
 IFAM2 programs, will allow the IFCHUNK reports to be produced for any jobs using
 those IFAM2 programs.

 C.3 CMS Installation

 SirTune is distributed on a magnetic tape. This magnetic tape has one physical file
 made up of multiple logical files. The SirTune distribution tape is in VMFPLC2 format.

 To install SirTune:

 1. Allocate a minidisk with sufficient space to contain all the Sirius products you
 ordered. Refer to the tapemap shipped with your installation package for the actual
 number of blocks required, or allocate a minidisk large enough to hold all Sirius
 products (about 3,400 4K blocks).

 2. Mount the SirTune distribution tape on a tape drive, and attach that tape drive to the
 installing virtual machine as virtual address 181.

 3. Access the SirTune minidisk as A, then type the following to load all the files
 required to run SirTune:

 TAPE REW
 VMFPLC2 LOAD

——
118 SirTune Reference Manual

——
 CMS Installation
——

 Included in the loaded files are object decks (with filetype TXTTUNE), load modules
 (with filetype MODULE), and installation and sample execs (with filetype EXEC).

 The execs on the distribution tape are listed below.

 Note: It is essential that the CMICONV exec (described below) be run before
 running SIRTUNE.

 BLDTUNE An exec that can be used to relink the SIRTUNE load module, if
 necessary. A pre-linked version is shipped on the tape. Since
 SIRTUNE is linked for XA or ESA versions of CMS, run this exec if
 running a 370 version (Release 5 and earlier) of CMS.

 BLDTUNED An exec that can be used to relink the SIRTUNED load module, if
 necessary. A pre-linked version is shipped on the tape. Since
 SIRTUNED is linked for XA or ESA versions of CMS, run this exec
 if running a 370 version (Release 5 and earlier) of CMS.

 BLDTUNER An exec that can be used to relink the SIRTUNER load module, if
 necessary. A pre-linked version is shipped on the tape. Since
 SIRTUNER is linked for XA or ESA versions of CMS, run this exec
 if running a 370 version (Release 5 and earlier) of CMS. As
 SIRTUNER is no longer used as of Version 7.2, this feature is
 deprecated.

 RUNTUNER A sample exec that can be used to run SIRTUNER. As SIRTUNER
 is no longer used as of Version 7.2, this feature is deprecated.

 SIRTUNED A sample exec that can be used as the PROFILE EXEC for the
 SIRTUNED virtual machine.

 SIRTUNEF A sample exec that can be used on the SIRTUNED virtual machine.
 For more information, see “Collecting Data Under CMS: SIRTUNE”
 on page 7.

 SIRTUNEA A sample exec that can be used on the SIRTUNED virtual machine.
 For more information, see “Collecting Data Under CMS: SIRTUNE”
 on page 7.

 CMICONV An exec that modifies the load addresses of 'M204CMI TXTLIB'
 members. It must be run once, before you bring up SirTune. The
 TXTLIB created by this exec should replace the original, or it should
 be moved to a disk accessed before the original M204CMI TXTLIB.

 If SIRTUNE is run against a version 3.2 or later ONLINE without
 running CMICONV, a member from M204CMI TXTLIB will overlay
 part of the Model 204 load module, resulting in a likely 0C4 or 0C1.

 4. After loading the tape files:

——
SirTune Reference Manual 119

——
Installation
——

 a. If SirTune is version 1.5 or earlier, move SIRTUNE MODULE to a disk that can
 be accessed by the Model 204 service machines.

 b. Move SIRTUNER MODULE SIRTUNER is not used as of Version 7.2, so this is
 no longer necessary. to a disk that can be accessed by any user that might
 wish to produce SIRTUNER reports.

 5. Create virtual machine SIRTUNED, and give it access to the appropriate load
 modules and execs.

 a. SIRTUNED requires the following:

 ● PROFILE EXEC (similar to SIRTUNED EXEC from the tape)
 ● SIRTUNEA EXEC (similar to SIRTUNEA EXEC from the tape)
 ● SIRTUNEF EXEC (similar to SIRTUNEF EXEC from the tape)
 ● SIRTUNED MODULE

 b. To run SIRTUNED under the CMS interface (making it possible to write sample
 data to OS format minidisks), give SIRTUNED access to the M204CMS module
 shipped with Model 204.

 For more details on setting up SIRTUNED, see “Collecting Data Under CMS:
 SIRTUNE” on page 7.

——
120 SirTune Reference Manual

——
 Date Processing
——

——————
APPENDIX D Date Processing

 SirTune uses dates in the following ways:

 ● To examine the CPU clock (as returned by the STCK hardware instruction) to
 determine the current date, in case SirTune is under a rental or trial agreement

 ● To display the current date, as returned by the TIME SVC, as page headers in
 various end-user displays

 ● To display the date and time of various samples, as returned by the TIME SVC

 For headers on pages or rows that occur on printed pages or displayed screens, Sirius
 Software products generally use a full four-digit year format, although they may display
 dates with two-digit years in circumstances where the proper century can be inferred
 from the context.

——
SirTune Reference Manual 121

——
Date Processing
——

——
122 SirTune Reference Manual

——
 Index
——

——————
 Index

A D
ALL state ... 76 DATASET statement, report configuration ... 40
ALLCOMP statement, collector Date processing ... 121
 configuration ... 13 DISKIO report ... 63
ALLI state ... 76
ALLN state ... 76 E
AUTHORIZE statement, collector Error messages ... 101, 109
 configuration ... 14 SirTune data collector messages ... 101

 SIRTUNER messages ... 109
B EVAL, processing activity ... 68
BLK state ... 76 EVALI, processing activity ... 68
BLKI state ... 77 EXCLUDE statement, collector
BLKIN state ... 67, 75 configuration ... 17
BLKIU state ... 67, 75
BLKN state ... 77 I
BLKO state ... 77 IFCHUNK, processing activity ... 70
BLKON state ... 67, 75 IFCOMP, processing activity ... 69
BLKOU state ... 67, 75 IFFUNC, processing activity ... 69
BLKU state ... 77 IFJCOMP, processing activity ... 69
BUMP command ... 28 IFJOB, processing activity ... 69

INCLUDE statement, collector
C configuration ... 20
CFRROOT report ... 61 INFO report ... 64
Characters per line, report ... 39, 56 Installation ... 115-116, 118
CHARACTERSPERLINE (CPL) statement, CMS ... 118
 report configuration ... 39 Download from web ... 115
Chunk, procedure ... 68 MVS ... 116
CHUNK, processing activity ... 68 INTERVAL statement, collector
CLOSE command ... 28 configuration ... 23
CMSOUT statement, collector
 configuration ... 14 L
COLLECT statement, collector Line width, report ... 39
 configuration ... 15, 77, 79 Lines per page, report ... 42, 56
COMP, processing activity ... 68 LINESPERPAGE (LPP) statement, report
comp31 attribute, report configuration ... 39 configuration ... 42
Critical file resources (CFR) ... 16 LOAD, processing activity ... 68
CSECT report ... 62
CSECTM report ... 62 M
CSECTS report ... 62 MAPcore statement

 report configuration ... 43, 73

——
SirTune Reference Manual 123

——
Index
——

MAXDELAY statement, report S
 configuration ... 43 SAMPLE command ... 30
Messages ... 101, 109 SAMPLE statement, collector
 SirTune data collector messages ... 101 configuration ... 25
 SIRTUNER messages ... 109 SERVIO report ... 66
MIXed statement SERVUSE report ... 66
 data collection ... 23 SHARED_REPORT program ... 31
 report configuration ... 43 SIRIUS file ... 2, 31, 59
MONITOR command ... 28 SIRTUNE load module, CMS ... 8
MPVIRT statement, report configuration ... 44 SIRTUNE load module, MVS ... 5

SIRTUNE parameter, JCL EXEC
N statement ... 3, 7
NOSEQ statement SIRTUNEA EXEC ... 12
 data collection ... 24 SIRTUNED data set ... 4
 report configuration ... 44 SIRTUNED EXEC ... 9

SIRTUNED load module, CMS ... 8-9, 14
O SIRTUNEF EXEC ... 10

SIRTUNEI data set ... 4, 37OSERVN state ... 67, 77
SIRTUNER load module ... 1, 31, 33-34, 59OSERVU state ... 67, 77
SirtuneReport method, Dataset class ... 59OSERVW state ... 67, 77
SIRTUNEREPORT program ... 1-2, 31, 59
STATE report ... 67P
STATUS command ... 30Page length, report ... 42
STOP command ... 30PGM statement, data collection ... 3, 7, 24
Storage, report ... 39, 47PRECOMP statement, collector
SUMMARY report ... 71 configuration ... 24
SWPG state ... 77
SWPGI state ... 66, 75Q
SWPGO state ... 77

QUAD, processing activity ... 68 SWPGOB state ... 77
QUADC report ... 64 SWPGOBN state ... 67, 76
QUADCM report ... 64 SWPGOBU state ... 67, 76
QUADCS report ... 64 SWPGOW state ... 76
Quads, User Language ... 69, 85 SYSPARM report ... 72

R T
RANGE statement, report configuration ... 44 Table of contents, report ... 52, 56
REDY state ... 75 TABLEOFCONTENTS (TOC) statement, report
REDYR state ... 66, 77 configuration ... 52
REPORT statement, report configuration ... 46 Task attribute, report input ... 55, 62, 64, 72
REPSTAT report ... 65 TITLE statement, report configuration ... 51
RESOLUTION statement, report TOP statement, report configuration ... 51
 configuration ... 47 TUNERPTI file ... 37, 56
RESTART command ... 29 TWOPASS statement, report
RUNBL state ... 77 configuration ... 52
RUNG state ... 66, 75
RUNGM state ... 75
RUNGS state ... 75

——
124 SirTune Reference Manual

——
 Index
——

U WHATCM report ... 72
WHATCS report ... 72UPPER statement
WPST state ... 76 data collection ... 25
WTSV state ... 76 report configuration ... 52

XW
XML input format, TUNERPTI ... 53WHAT, processing activity ... 67

WHATC report ... 72

——
SirTune Reference Manual 125

——
Index
——

——
126 SirTune Reference Manual

	Title
	Notices
	Contacting Global Technical Support
	Contents
	Summary of Changes
	SirTune Version 7.2
	SirTune Version 7.0
	SirTune Version 1.6/6.9
	SirTune Version 1.5
	SirTune Version 1.4
	SirTune Version 1.3

	1. Introduction
	1.1. Versions
	1.2. System requirements

	2. Collecting Data Under MVS: SIRTUNE
	2.1. Versions of SirTune after 1.5
	2.1.1. JCL for SirTune
	2.1.2. The SirTune DD statements

	2.2. Version 1.5 or earlier of SirTune
	2.2.1. Invoking the SIRTUNE module
	2.2.2. The SIRTUNE DD statements
	2.2.3. JCL example

	3. Collecting Data Under CMS: SIRTUNE
	3.1. Versions of SirTune after 1.5
	3.1.1. Invoking SirTune
	3.1.2. Optional SirTune DD name

	3.2. Version 1.5 or earlier of SirTune
	3.2.1. Invoking the SIRTUNE module
	3.2.2. Optional SIRTUNE DD names

	3.3. The SIRTUNED virtual machine

	4. Configuration Statements for the Data Collector
	4.1. ALLComp
	4.2. AUTHorize userid1 [userid2] ...
	4.3. CMSout vmid [ddname]
	4.4. COLLect state [extra_data]
	4.5. EXClude [start_time end_time] [days_of_week]
	4.6. INClude [start_time end_time] [days_of_week]
	4.7. INTerval num_sec
	4.8. MIXed
	4.9. NOSeq
	4.10. PGM pgm_name
	4.11. PREComp
	4.12. SAMPle ON | OFF | AUTO
	4.13. UPper

	5. MODIFY and SMSG commands
	5.1. BUMP user_num
	5.2. CLOSE
	5.3. MONITOR
	5.4. RESTART abend_code USER user_num | TASK task_num
	5.5. SAMPLE ON | OFF | AUTO
	5.6. STATUS
	5.7. STOP

	6. Generating Reports
	6.1. Generating reports prior to Sirius Mods 7.2: MVS
	6.2. Generating reports prior to Sirius Mods 7.2: CMS

	7. Configuring the Report Generator
	7.1. Configuration parameters
	7.1.1. CHARACTERSPERLINE or CPL
	7.1.2. comp31
	7.1.3. DATaset list
	7.1.4. LINESPERPAGE or LPP
	7.1.5. MAPcore
	7.1.6. MAXDelay max_msec
	7.1.7. MIXed
	7.1.8. MPVirt
	7.1.9. NOSeq
	7.1.10. RANge start_time end_time [FOR for_num] [SKIP skip_num]
	7.1.11. REPort report_desc | NODEFAULT
	7.1.12. RESolution res_num [PROC pname] [FILE fname] [SUBSYS sname]
	7.1.13. TITle title_string
	7.1.14. TOP num_top
	7.1.15. TABLEOFCONTENTS or TOC
	7.1.16. TWOpass
	7.1.17. UPper

	7.2. Using XML input for report configuration
	7.2.1. General notes on TUNERPTI formatting
	7.2.2. A template for the XML input
	7.2.3. Guidelines for the three main XML elements
	7.2.3.1. <SirtuneInput>: Document root element
	7.2.3.2. <reportFormat>: Controlling report format
	7.2.3.3. <report>: Specifying individual reports

	8. SirTune Reports
	8.1. REPORT CFRROOT
	8.2. REPORT CSECT | CSECTM | CSECTS TOTAL | CHUNK ch_size
	8.3. REPORT DISKIO TOTAL | TABLE | CHUNK ch_size
	8.4. REPORT INFO
	8.5. REPORT QUADC | QUADCM | QUADCS TOTAL | CHUNK ch_size
	8.6. REPORT REPSTAT [RESET]
	8.7. REPORT SERVIO
	8.8. REPORT SERVUSE [CHUNK ch_size]
	8.9. REPORT STATE state_name activity
	8.10. REPORT SUMMARY
	8.11. REPORT SYSPARM
	8.12. REPORT WHATC | WHATCM | WHATCS TOTAL | CHUNK ch_size
	8.13. The TOP parameter

	9. Model 204 States
	9.1. The RUNGM and RUNGS states
	9.2. Wait types
	9.3. Critical file resource states

	10. Model 204 Quad Types
	11. Wildcard Strings in SirTune and SIRTUNER Statements
	12. Estimating SIRTUNED Size Requirements
	12.1. A formula for the estimate
	12.2. An example estimate

	A. SirTune Data Collector Messages
	TUNE0001 - TUNE0009
	TUNE0001
	TUNE0002
	TUNE0003
	TUNE0004
	TUNE0005
	TUNE0006
	TUNE0007
	TUNE0008
	TUNE0009

	TUNE0010 - TUNE0019
	TUNE0010
	TUNE0011
	TUNE0012
	TUNE0013
	TUNE0014
	TUNE0015
	TUNE0016
	TUNE0017
	TUNE0018
	TUNE0019

	TUNE0020 - TUNE0029
	TUNE0020
	TUNE0021
	TUNE0022
	TUNE0023
	TUNE0024
	TUNE0025
	TUNE0026
	TUNE0027
	TUNE0028
	TUNE0029

	TUNE0030 - TUNE0039
	TUNE0030
	TUNE0031
	TUNE0032
	TUNE0033
	TUNE0034
	TUNE0035
	TUNE0036
	TUNE0037
	TUNE0038
	TUNE0039

	TUNE0040 - TUNE0042
	TUNE0040
	TUNE0041
	TUNE0042

	B. SirTune Report Writer Messages
	TUNR0002 - TUNR0009
	TUNR0002
	TUNR0003
	TUNR0004
	TUNR0005
	TUNR0006
	TUNR0008
	TUNR0009

	TUNR0010 - TUNR0019
	TUNR0010
	TUNR0011
	TUNR0012
	TUNR0013
	TUNR0014
	TUNR0015
	TUNR0016
	TUNR0017
	TUNR0018
	TUNR0019

	TUNR0020 - TUNR0026
	TUNR0020
	TUNR0021
	TUNR0022
	TUNR0023
	TUNR0024
	TUNR0025
	TUNR0026

	C. Installation
	C.1. Installation from the web
	C.2. MVS installation
	C.3. CMS Installation

	D. Date Processing
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue true
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

