
Rocket Model 204 Sir2000
User Language Tools

Reference Manual

July 2013
S2K-0704-RM-01

Notices

Edition

Publication date: July 2013

Book number: S2K-0704-RM-01

Product version: Rocket Model 204 Sir2000 User Language Tools

Copyright

© Rocket Software, Inc. or its affiliates 1997-2013. All Rights Reserved.

Trademarks

Rocket is a registered trademark of Rocket Software, Inc. For a list of Rocket registered
trademarks go to: www.rocketsoftware.com/about/legal. All other products or services
mentioned in this document may be covered by the trademarks, service marks, or product
names of their respective owners.

Examples

This information might contain examples of data and reports. The examples include the
names of individuals, companies, brands, and products. All of these names are fictitious and
any similarity to the names and addresses used by an actual business enterprise is entirely
coincidental.

License agreement

This software and the associated documentation are proprietary and confidential to Rocket
Software, Inc. or its affiliates, are furnished under license, and may be used and copied only in
accordance with the terms of such license.

Note

This product may contain encryption technology. Many countries prohibit or restrict the use, import, or
export of encryption technologies, and current use, import, and export regulations should be followed
when exporting this product.

Contact information

Website: www.rocketsoftware.com

Rocket Software, Inc. Headquarters
77 4th Avenue, Suite 100
Waltham, MA 02451–1468
USA
Tel: +1 781 577 4321
Fax: +1 617 630 7100

Contacting Global Technical Support
If you have current support and maintenance agreements with Rocket Software and CCA,
contact Global Technical Support by email or by telephone:

Email: m204support@rocketsoftware.com

Telephone:

North America +1 800 755 4222

United Kingdom/Europe +44 (0) 20 8867 6153

Alternatively, you can access the Rocket Customer Portal and report a problem, download an
update, or read answers to FAQs. You will be prompted to log in with the credentials supplied as
part of your product maintenance agreement.

To log in to the Rocket Customer Portal, go to:

www.rocketsoftware.com/support

——
Proprietary Notices
——

——
iv Sir2000 User Language Tools Reference Manual

——
 Contents
——

———————
 Contents

 Proprietary Notices . ii

 Contents . v

 Summary of Changes . ix
 Sirius Mods Version 5.4 . ix
 Sirius Mods Version 5.2 . ix
 Sirius Mods Version 5.0 . ix
 Sirius Mods Version 4.6 . ix

 Chapter 1: Background . 1

 The Year 2000 . 1
 Sir2000 . 1
 Versions, Compatibility and Installation . 2
 Related products . 3
 Related manuals . 3
 System requirements . 3

 Chapter 2: Overview . 5

 APPDATE Command . 5
 Date $Functions . 5
 Datetime Formats . 6
 Processing two digit years (CENTSPAN/SPANSIZE) 6
 Error handling . 7
 Subroutines for FUNU . 7
 SirPro . 8
 SirLib . 8

 Chapter 3: The APPDATE Command . 9

 Setting the Clocks With the APPDATE Command 10
 Error Handling Control with DATE_ERR . 13
 Setting Default Error Handling with the APPDATE Command 15
 Setting Default Error Handling with the $SIR_DATE_ERR Function 16
 Examining the APPDATE Information . 16
 APPDATE DISPLAY Command . 16
 Retrieving Last Non-null $SIR_DATE_ERR Setting 17
 Privileges, Disabling, and Pre-User 0 APPDATE Command 18
 Complete Syntax of the APPDATE Command 19
 Values affected by the APPDATE clocks . 20

——
Sir2000 User Language Tools Reference Manual v

——
Contents
——

 APPDATE Command Usage Notes . 20

 Chapter 4: $Functions . 23

 Errors in Datetime $Functions . 23
 $SIR_DATE: Get current datetime . 26
 $SIR_DATE_ERR: Set and query default error handling at request level 27
 $SIR_DATECHG: Add some days to datetime 28
 $SIR_DATECHK: Check if datetime matches format 30
 $SIR_DATECNV: Convert datetime to different format 32
 $SIR_DATEDIF: Difference between two dates 33
 $SIR_DATEFMT: Validate datetime format 35
 $SIR_DATEN/ND/NM/NS: Current date and time as integer 36
 $SIR_DATE2N/ND/NM/NS: Convert datetime string to integer 37
 $SIR_ND2DATE/NM2DATE/NS2DATE/N2DATE: Convert datetime
 integer to string . 38

 Chapter 5: Datetime Processing Considerations 39

 Datetime Formats . 41
 Valid Datetimes . 45
 Processing Dates With Two-Digit Year Values 46
 CENTSPAN . 46
 SPANSIZE . 47
 Strict and non-strict format matching . 48
 Datetime and format examples . 48
 $SIR_DATExxx Functions CENTSPAN Argument 52
 Benefits of Sirius datetime processing . 53

 Chapter 6: Assembler Language Subroutines for FUNU 55

 Appendix A: Messages . 57

 Index . 59

 Figures

 Figure 1: Source of date returned to $function 10

 Figure 2: APPDATE syntax to set USER or SYSTEM clock 11

 Figure 3: APPDATE syntax to change state of USER or SYSTEM clock . 11

 Figure 4: Datetime $function argument error handling 13

——
vi Sir2000 User Language Tools Reference Manual

——
 Contents
——

 Figure 5: APPDATE syntax to set or change default error handling . . . 15

 Figure 6: APPDATE syntax to display settings 16

 Figure 7: Complete syntax of APPDATE command 19

——
Sir2000 User Language Tools Reference Manual vii

——
Contents
——

——
viii Sir2000 User Language Tools Reference Manual

——
 Summary of Changes
——

——————
 Summary of Changes

 This section describes significant changes to the documentation. In most cases these
 changes correspond to enhancements made to the underlying product.

 Sirius Mods Version 5.4

 ● APPDATE RESRICT command.

 ● Customization zaps to disable or restrict APPDATE.

 Sirius Mods Version 5.2

 ● Datetime processing general doc improvement and examples.

 Sirius Mods Version 5.0

 ● SPANSIZE parameter introduced.

 ● CENTSPAN default changed from -75 to -50.

 ● Appropriate APPDATE clock passed to Fast/Unload.

 Sirius Mods Version 4.6

 First release of this product.

——
Sir2000 User Language Tools Reference Manual ix

——
Summary of Changes
——

——
x Sir2000 User Language Tools Reference Manual

——
 Background
——

——————
CHAPTER 1 Background

 1.1 The Year 2000

 Computer applications that use two-digit years will encounter problems beginning with
 dates starting on January 1, 2000. This is because, the two-digit year value for the year
 2000 is “00” which is less than the previous year “99”. This violates a seemingly
 reasonable assumption that time constantly moves forward and, more specifically, that
 year numbers are constantly increasing. There are millions of lines of codes that
 depend on this assumption many of them using two-digit years. When these millions of
 lines of code are faced with dates on or after January 1, 2000 they will cease to work
 correctly. This is known as the “Year 2000 Bug”,

 Strictly speaking, the 21st century does not begin until January 1, 2001. The day of
 reckoning for computer software, however, is January 1, 2000. Moreover, the popular
 perception is that a new century begins on that date. Given these two considerations,
 this document freely uses the vernacular meaning of the start of the next century (that is,
 January 1, 2000) rather than the pedantically correct "January 1, 2001".

 Since the term "Year 2000" appears frequently in any discussion of computer software
 problems with years spanning the 20th and 21 centuries, it is often abbreviated "Y2K".
 One might, for example, see references to an application being "Y2K compliant" to mean
 that an application will work correctly with a mix of dates from the 20th and 21st
 centuries. Obviously, the "K" in "Y2K" refers to the vernacular meaning of "K", namely
 1000, rather than the computer industry meaning of "K", namely 1024. As far as is
 known, there is no "Year 2048" problem with most software.

 1.2 Sir2000

 Sir2000 is a suite of add-on products for Model 204 that addresses all aspects of
 preparing for the millennium rollover. Sir2000 operates in conjunction with
 enhancements to existing Model 204 related products to dramatically reduce the
 resources required to achieve year 2000 compliance for Model 204 applications.
 Sir2000 supports a low-risk incremental approach, allowing the coexistence of current
 applications and databases with the parallel development of enhanced versions.

 Sir2000 comprises an improved method for converting two-digit year values to four-digit
 year values, new and improved formats for date values, new facilities for manipulating
 date values, and three separately-packaged product sets:

 ● Sir2000 User Language Tools

 ● Sir2000 Database Analysis Tools
——
Sir2000 User Language Tools Reference Manual 1

——
Background
——

 ● Sir2000 Field Migration Facility

 Several other Sirius products have been enhanced to address specific aspects of the
 year 2000 problem. In addition, all Sirius products are fully year-2000 compliant.
 Sir2000 supports all current releases of Model 204, since and including Version 2.2.

 1.3 Versions, Compatibility and Installation

 The Sir2000 User Language Tools is delivered as object code enhancements to
 Model 204 as part the Sirius Mods, as well as Model 204 User Language subsystems
 packaged as part of UL/SPF. The Sirius Mods also includes products such as
 Fast/Backup, Fast/Reload, and the Fast/Unload User Language Interface that have
 nothing to do with the Sir2000 User Language Tools. None of these additional products
 are required to run the Sir2000 User Language Tools.

 Therefore, to install Sir2000 User Language Tools, the Sirius Mods must be installed.
 When the Sirius Mods are installed, all other products owned by the installing site that
 are part of the Sirius Mods will also be (re)installed.

 Since the Sir2000 User Language Tools is part of the Sirius Mods the version number of
 the Sir2000 User Language Tools is considered to be the version of the Sirius Mods in
 which it is contained. The Sir2000 User Language Tools was first available in version
 4.6 of the Sirius Mods, so the first version of Sir2000 User Language Tools was called
 version 4.6. This document assumes that a site is running Sirius Mods version 4.6 or
 later. Any documented feature or facility that requires a later version of the Sirius Mods
 will be clearly marked to indicate this. For example, a parameter that is only available in
 versions 5.0 and later of the Sirius Mods will have a sentence such as "This parameter is
 only available in version 5.0 or later of the Sirius Mods" in its documentation. If a feature
 or parameter is not indicated as requiring any specific version of the Sirius Mods, it can
 be assumed that it is available in all versions of the Sir2000 User Language Tools; that
 is, all versions since version 4.6 of the Sirius Mods.

 Any application that uses the Sirius Mods will run correctly on subsequent versions of
 the Sirius Mods. It is, therefore, always possible to upgrade the Sirius Mods without
 having to worry about significant changes to applications that use it.

 Minor compatibility issues that have been introduced are explicitly listed for each release
 in “Summary of Changes” on page ix and in the Release Notes published for the Sirius
 Mods.

——
2 Sir2000 User Language Tools Reference Manual

——
 Related products
——

 1.4 Related products

 Another useful product for helping with year 2000 conversion is the Sir2000 Field
 Migration Facility. The Sir2000 Field Migration Facility dramatically decreases the costs,
 complexities, and risks associated with making large Model 204 applications Year 2000
 compliant.

 Fast/Unload can be used to generate test data for year 2000 testing, since it is generally
 not sufficient for year 2000 testing to simply set the apparent clock forward to the 21st
 century. Model 204 files must also be populated with large volumes of data that span
 the century boundary for thorough testing.

 1.5 Related manuals

 Since the Sir2000 User Language Tools requires the installation of the Sirius Mods, the
 person responsible for the installation of Sir2000 User Language Tools should refer to
 the Sirius Mods Installation Guide. The documentation of the Sirius Mods error
 messages
 (http://m204wiki.rocketsoftware.com/index.php/Category:Sirius_Mods_messages)
 might be useful to application programmers as well as installers. See
 http://m204wiki.rocketsoftware.com/index.php/UL/SPF_installation_guide for
 instructions for installing the User Language components of the Sir2000 User Language
 Tools.

 The Sir2000 Field Migration Facility is documented in the Sir2000 Field Migration Facility
 Reference Manual.

 Fast/Unload is documented in the Fast/Unload Reference Manual.

 There are a number of Sirius date $functions that you are authorized to use in addition to
 the date $functions in the Sir2000 User Language Tools. These are documented in
 M204wiki at http://m204wiki.rocketsoftware.com/index.php/List_of_$functions.

 1.6 System requirements

 Sir2000 User Language Tools requires the following components to run:

 ● Mainframe operating systems:

 z/OS

 CMS (releases currently supported by IBM) running under:

 z/VM

——
Sir2000 User Language Tools Reference Manual 3

——
Background
——

 ● Model 204 Version 6.1 or later

——
4 Sir2000 User Language Tools Reference Manual

——
 Overview
——

——————
CHAPTER 2 Overview

 The Sir2000 User Language Tools is a package of products designed to help you
 change and test User Language applications for correct operation across the millennium
 rollover. The package consists of several components that are described below.

 2.1 APPDATE Command

 The APPDATE command allows you to control the operation of date and time oriented
 User Language $functions, in the following two ways:

 1. You can specify a system-wide or user-level clock that is used to obtain date and
 time values for User Language $functions. For application testing, this is preferred
 to the Model 204 SYSDATE parameter, which is much less flexible and which
 greatly complicates the ability to do things such as share procedure files or read-
 only data files in the testing environment.

 The APPDATE command affects only date and time oriented User Language
 $functions; it does not affect any other date or time in the Model 204 environment.

 2. You can use the DATE_ERR clause to set switches that control the default system
 behaviour when errors are encountered in date and time oriented User Language
 $functions. The choices are to produce an error message along with request
 cancellation, produce a warning message, or silently continue with the request. This
 control is available at the system and user level, and can also be set for the duration
 of a User Language request, via the $SIR_DATE_ERR function. At the system and
 user level, you can also control whether procedure names and line numbers are
 available for error messages.

 2.2 Date $Functions

 Sir2000 User Language Tools includes $functions that manipulate datetime values,
 support improved datetime formats, while providing enhanced 2-digit year handling
 (CENTSPAN/SPANSIZE) and improved error handling. These $functions either replace
 and/or augment some standard Model 204 date-related functions.

——
Sir2000 User Language Tools Reference Manual 5

——
Overview
——

 2.2.1 Datetime Formats

 The $functions included with the Sir2000 User Language Tools allow you to specify
 formats for datetime values that include all of the tokens and separator characters for
 any common application, including mixed case, variable length, and day of week. Date
 and time are handled uniformly, and there are no special $function names, special
 arguments, nor customization parameters to control the date formats.

 To get the current date in a different format with the standard Model 204 date $functions,
 you must either specify a special switch and/or use combinations of different $functions,
 frequently involving string concatenation or substring to deal with composite date and
 time formats. With the Sirius date $functions, each function performs some datetime-
 related calculation, and you can specify a combination of tokens to determine the format,
 which may include time of day. For example, the following User Language code
 fragment would be required to print the current day of the week using the CCA
 $functions provided with Version 4.1 of Model 204:

 PRINT $DAY($DAYI($DATECNV('CYY-MM-DD', -
 'CYYDDD', $DATE(2))))

 With the Sir2000 User Language Tools, this set of nested $function calls would become:

 PRINT $SIR_DATE('Wkday')

 You can also get the current date and time conveniently for a report:

 %D STRING LEN 40
 %D = $SIR_DATE('Wkday, DAY Month YYYY @ HH:MI:SS AM')
 SET HEADER 1 %D

 This would set a line such as the following at the top of each page:

 Monday, 1 January 2001 @ 01:11:10 PM

 2.2.2 Processing two digit years (CENTSPAN/SPANSIZE)

 The $functions included with the Sir2000 User Language Tools provide a robust
 technique for handling 2-digit years. An optional CENTSPAN argument supplies the
 beginning of year of the up to 100-year range of dates covered by the two-digit years.
 CENTSPAN provides both an absolute specification, in which the full 4 digit start year is
 specified, and a relative specification, in which the start year is specified relative to the
 current time, for example, 50 years ago. The default CENTSPAN is -50.

 To reduce the ambiguities caused by mapping two-digit years into four digit years,
 SPANSIZE is used to limit the number of years mapped. SPANSIZE and its relationship
 to CENTSPAN is explained in “CENTSPAN” on page 46. The default SPANSIZE is 90.
——
6 Sir2000 User Language Tools Reference Manual

——
 Date $Functions
——

 2.2.3 Error handling

 The Sirius datetime $functions that process user-provided datetime format strings or
 datetime values accept an optional last argument that is a character string specifying the
 action to be taken if the function detects an error. When this argument is omitted, the
 action taken upon an error is determined by the current state of the USER and SYSTEM
 DATE_ERR switches. The DATE_ERR switches can be set by an APPDATE command
 with a DATE_ERR clause or the $SIR_DATE_ERR function. DATE_ERR allows the
 interception of date processing errors at their source, making it much easier to perform
 ad-hoc testing and validation of date processing. The following error actions can be
 specified:

 CANCEL If a datetime $function (including the non-Sirius functions) detects an error,
 an error message is produced describing the nature of the error and the
 current request is cancelled. Sirius datetime $functions produce detailed
 error messages describing the precise nature of the error.

 REPORT If a datetime $function detects an error, a warning message is produced
 describing the nature of the error and the appropriate standard error value
 is returned by the $function.

 IGNORE If a datetime $function detects an error, the appropriate standard error
 value is returned by the $function.

 The errors that are detected include:

 ● Invalid datetime format specification
 ● Datetime string not matching format
 ● Datetime out of range for the format
 ● Invalid CENTSPAN value
 ● Datetime out of range for CENTSPAN/SPANSIZE combination.

 In addition, an APPDATE command with a DATE_ERR clause can specify that warning
 and error messages should include the procedure name and line number of the failing
 $function.

 2.3 Subroutines for FUNU

 Included with the Sir2000 User Language Tools is a set of subroutines that can be
 invoked by user-provided assembly language (FUNU) $functions to obtain the current
 date and time using the appropriate APPDATE clock, if any. They are compatible with
 the similar set of subroutines CCA provides for current date only, with an additional entry
 point which allows you to obtain the current date and time using any of the Sirius
 datetime formats.

——
Sir2000 User Language Tools Reference Manual 7

——
Overview
——

 2.4 SirPro

 SirPro provides a highly productive integrated environment for the development and
 maintenance of Model 204 applications. SirPro efficiently manages very large procedure
 files while providing high performance search and global replace features. SirPro also
 provides a full screen interface for commonly used Model 204 commands. SirPro is
 documented in the SirPro User's Guide.

 2.5 SirLib

 SirLib is a comprehensive change management system for Model 204 User Language
 applications. SirLib enables multiple programmers to simultaneously work on the same
 procedures, with tools for resolving update conflicts and backing out individual changes
 or projects. SirLib is modelled on the change control system used by IBM and virtually
 all large scale mainframe product developers. SirLib support is integrated within SirPro
 to minimize its intrusion into the development process. SirLib is documented in the
 SirLib User's Guide.

——
8 Sir2000 User Language Tools Reference Manual

——
 The APPDATE Command
——

——————
CHAPTER 3 The APPDATE Command

 The APPDATE command provides control over the operation of date and time oriented
 User Language $functions. It supports a system-wide or user-level clock that is used to
 obtain date and time values. It can be used to control the default handling of errors
 detected by datetime $functions, allowing the logging of error messages and request
 cancellation. The APPDATE command allows you to control these defaults at a user
 and system level, significantly reducing your effort to detect some date errors.

 For application testing, the APPDATE clocks are preferred to the Model 204 SYSDATE
 parameter, which is much less flexible and which greatly complicates the ability to do
 things such as share procedure files or read-only data files in the testing environment.

 See “Values affected by the APPDATE clocks” on page 20 for a list of the values that
 are affected by the APPDATE command. See “APPDATE Command Usage Notes” on
 page 20 for descriptions of several common testing scenarios and how to use APPDATE
 to handle them, including testing the effect of changing the date into the future for any of
 the following:

 ● a single user's session
 ● all users' sessions
 ● all users' sessions except selected ones
 ● all users of a given APSY
 ● all users of all APSYs, except selected APSYs

 In most contexts when describing APPDATE, this document speaks of a "date and time"
 or simply of a "time" (which is the same thing). Generally, for Y2K testing, you are only
 concerned about setting a "date," that is, setting the clock to a particular day.

 APPDATE addresses many of your needs to test a User Language application at some
 date in the future, notably beyond the end of the 1900s. APPDATE allows you to make
 these tests with your current version of Model 204, and without modifying the Model 204
 internal date-related data structures, such as the File Parameter List, page trailers, and
 the Procedure Dictionary. APPDATE will not affect any file level operations such as
 recovery or DUMP, or the ability to open a file with different application date settings.

 The system-wide and user-level clocks specified by the APPDATE command are called
 APPDATE clocks. In order to use these clocks, you must set the date (and optionally
 the time) of either the system level or user level clock. The syntax associated with
 setting these APPDATE clocks is described in “Setting the Clocks With the APPDATE
 Command” on page 10.

 Another important component in a testing environment, or indeed in a production
 environment, is the ability to detect unanticipated errors. The APPDATE command with

——
Sir2000 User Language Tools Reference Manual 9

——
The APPDATE Command
——

 a DATE_ERR clause and the $SIR_DATE_ERR function allow you to change the default
 error handling of arguments to date and time oriented $functions. The syntax associated
 with DATE_ERR is described in “Error Handling Control with DATE_ERR” on page 13.

 A single invocation of the APPDATE command can either set APPDATE values or
 display APPDATE values. If you wish to examine the APPDATE values in effect, use
 the syntax described in “Examining the APPDATE Information” on page 16. The
 detailed explanation of setting APPDATE values is described separately for clock values
 and datetime argument error handling, but for a single level you can specify both clock
 values and error handling, in that order, in a single command. The complete syntax of
 the APPDATE command is shown in “Complete Syntax of the APPDATE Command” on
 page 19.

 3.1 Setting the Clocks With the APPDATE Command

 The two APPDATE clocks (user and system) effectively run in parallel with the internal
 clock, that is, the time that Model 204 obtains from the CPU (note that the SYSDATE
 parameter cannot be specified if the APPDATE command is used). When you set either
 of the clocks, you are actually setting the amount that the clock runs ahead of the
 internal clock. The way you do that is to simply specify either the current time of the
 clock being set, or to specify the time which would be current when the internal clock is
 at some specific reference time.

 In addition to the time setting of the clocks, you control which clock an application uses.
 This is determined primarily by the "state" of the USER clock: INTERNAL means
 applications use the INTERNAL clock, ON means applications use the USER clock, and
 OFF (which is the default) means that applications use the INTERNAL clock unless the
 SYSTEM clock is ON (the default SYSTEM clock is OFF).

 The clock used to satisfy an application request for date or time is determined as shown
 in the following figure:

——
10 Sir2000 User Language Tools Reference Manual

——
 Setting the Clocks With the APPDATE Command
——

 --
 * Application code requests date *
 * (datetime $functions) *
 --
 |
 |-> Gets date/time from the USER clock
 | if it is ON
 | (e.g. APPDATE USER ON 2001/01/01)
 |
 |-> Else from SYSTEM clock if it is ON
 | and USER clock is OFF
 | e.g., APPDATE USER OFF (default)
 | and APPDATE SYSTEM ON 1999/12/31
 |
 |-> Else from INTERNAL clock:
 e.g., APPDATE USER INTERNAL
 or
 APPDATE USER OFF
 and APPDATE SYSTEM OFF
 or
 APPDATE USER OFF
 and APPDATE SYSTEM INTERNAL

 Source of date returned to $function

 The time of the USER or SYSTEM clock may be set by the APPDATE command:

 APPDATE [USER|SYSTEM] [ON|OFF|INTERNAL] -
 targdate [targtime] -
 [AT refdate [reftime]]

 APPDATE syntax to set USER or SYSTEM clock

 Whether or not a particular clock is used can be controlled by the APPDATE command,
 without changing the time of the USER or SYSTEM clock:

 APPDATE [USER|SYSTEM] {ON|OFF|INTERNAL}

 APPDATE syntax to change state of USER or SYSTEM clock

 where

 USER | SYSTEM
 Optional specification of which clock is being modified. Defaults to USER.
 The USER clock specifies the running user's APPDATE clock; the SYSTEM
 clock specifies the APPDATE clock used for any user with an APPDATE
 USER clock which is OFF.

——
Sir2000 User Language Tools Reference Manual 11

——
The APPDATE Command
——

 ON | OFF | INTERNAL
 Optional. APPDATE USER ON indicates that the user clock is used by the
 current user; APPDATE SYSTEM ON indicates that the system clock is used
 by all users whose user clock is OFF. OFF and INTERNAL both indicate
 that the specified clock is not visible. If the user-level clock is set to ON,
 User Language $function values are obtained from the user-level clock. If
 the user-level clock is set to INTERNAL, User Language $function values
 are obtained from the internal clock. If the user-level clock is set to OFF,
 User Language $function values depend on the setting of the system-wide
 clock: if it is ON, they are obtained from the system-wide clock; otherwise (it
 is OFF or INTERNAL) they are obtained from the internal clock.

 If this phrase is omitted in an APPDATE command that sets the time of a
 clock, the state of that clock is set to ON.

 You can specify ON, OFF, or INTERNAL without a date, in which case the
 date/time in a clock is not changed, but the visibility of the corresponding
 clock is affected.

 targdate [targtime] [AT refdate [reftime]]
 targdate is required, the rest are optional. These phrases allow you to
 specify the date and time of the application clock. The dates are specified in
 YYYY/MM/DD format, and the times are specified in HH:MI:SS format. The
 application clocks continue to run so that they are a constant difference from
 the internal date and time. This difference is the difference between the
 target datetime, as specified by targdate and the optional targtime, and the
 reference datetime. The reference datetime can be omitted, in which case
 the reference datetime is the datetime when the APPDATE command is
 issued.

 If reftime is specified, then targtime must be. If targtime is specified, then
 either refdate must be omitted or reftime must be specified. If targtime is
 omitted, the clock is shifted the number of days between targdate and
 refdate.

 A successful APPDATE SYSTEM command has an immediate effect upon the date/time
 returned by User Language $functions for all threads which have user-level clocks set or
 defaulted to the OFF state.

 The default value of the system-wide clock and all user-level clocks is OFF, with the
 same datetime as the internal clock. Hence, if the only command you issue is
 APPDATE SYSTEM yyyy/mm/dd, you will immediately shift the value returned as the
 current date by User Language $functions. The APPDATE USER clock is reset to OFF,
 with the same time as the INTERNAL clock, when a user logs off.

——
12 Sir2000 User Language Tools Reference Manual

——
 Error Handling Control with DATE_ERR
——

 3.2 Error Handling Control with DATE_ERR

 The APPDATE command with the DATE_ERR keyword and the $SIR_DATE_ERR
 function let you decide what default action the system should take when an error is
 detected by a datetime $function. This allows you to control validation of dates in your
 applications, significantly reducing your effort to detect and correct date errors.
 APPDATE DATE_ERR and $SIR_DATE_ERR detect the following errors:

 ● Invalid datetime format specification
 ● Datetime string not matching format
 ● Datetime out of range for the format
 ● Invalid CENTSPAN value
 ● Datetime out of range for CENTSPAN/SPANSIZE combination

 You can set the default error handling for all $functions in the system with APPDATE
 SYSTEM DATE_ERR command; you can override this setting for an individual user with
 the APPDATE USER DATE_ERR command; you can override both settings for the
 duration of a User Language request with the $SIR_DATE_ERR function. If you are
 using the Sirius datetime $functions, you can also supply a parameter on the individual
 function call to control error handling, overriding the default set by $SIR_DATE_ERR or
 APPDATE.

 The processing performed when a datetime function encounters an error is determined
 using the precedence indicated in the following figure:

——
Sir2000 User Language Tools Reference Manual 13

——
The APPDATE Command
——

 --
 * Datetime $function argument error *
 --
 |
 |-> IGNORE is error handling handling arg:
 | return error value
 |
 |-> REPORT is error handling arg:
 | issue message, return error value
 |
 |-> Error handling supplied, and not OFF:
 | issue message, cancel request
 |
 ++ Else OFF is error handling arg, or none:
 |
 |-> $SIR_DATE_ERR('REPORT') last invoked:
 | issue message, return error value
 |
 |-> $SIR_DATE_ERR('IGNORE') last invoked:
 | return error value
 |
 |-> $SIR_DATE_ERR('CANCEL') last invoked:
 | issue message, cancel request
 |
 ++ Else error handling controlled by APPDATE:
 |
 |-> USER DATE_ERR REPORT:
 | issue message, return error value
 |
 |-> USER DATE_ERR IGNORE:
 | return error value
 |
 |-> USER DATE_ERR CANCEL:
 | issue message, cancel request
 |
 |-> USER DATE_ERR OFF (default) and
 | SYSTEM DATE_ERR REPORT
 | issue message, return error value
 |
 |-> USER DATE_ERR OFF (default) and
 | SYSTEM DATE_ERR IGNORE
 | return error value
 |
 |-> USER DATE_ERR OFF (default) and
 | SYSTEM DATE_ERR CANCEL
 | issue message, cancel request
 |
 ++ Else error handling not affected
 | by Sir2000 User Language Tools:
 |
 +---> return error value

——
14 Sir2000 User Language Tools Reference Manual

——
 Error Handling Control with DATE_ERR
——

 Datetime $function argument error handling

 3.2.1 Setting Default Error Handling with the APPDATE
 Command

 The APPDATE command may be used to set and change the default for processing
 performed when a datetime $function detects an error.

 APPDATE [USER|SYSTEM] DATE_ERR -
 [OFF | CANCEL | REPORT | IGNORE] -
 [DEBUG | NODEBUG]

 APPDATE syntax to set or change default error handling

 where

 USER | SYSTEM
 optional specification of the scope for the current command, defaults to
 USER. The USER error handling overrides the SYSTEM error handling.
 Both USER and SYSTEM error handling are initially OFF.

 OFF | CANCEL | REPORT | IGNORE
 This is optional. OFF indicates that there is no default error handling at the
 given level. CANCEL indicates that the default error handling at the given
 level is issuing an error message describing the error and cancelling the
 User Language request. REPORT indicates that the default error handling
 at the given level is issuing an error message describing the error and
 returning an error indicator. IGNORE indicates that the default error
 handling at the given level is returning an error indicator.

 DEBUG | NODEBUG
 If DEBUG is specified, then any datetime error message produced at the
 given level (user or system) will include the name of the procedure file, the
 procedure name, and the line number within the procedure for the affected
 $function invocation. If neither DEBUG nor NODEBUG is specified, then
 either OFF, CANCEL, REPORT, or IGNORE must be, in which case the
 default DEBUG | NODEBUG setting is determined from the following table:

 CANCEL DEBUG
 REPORT DEBUG
 IGNORE NODEBUG
 OFF There is no DEBUG | NODEBUG setting at the level.

 Since the initial DATE_ERR setting is OFF, there is no DEBUG | NODEBUG
 setting, at both SYSTEM and USER levels.

——
Sir2000 User Language Tools Reference Manual 15

——
The APPDATE Command
——

 Both the USER and SYSTEM level defaults can be overridden by the setting of the
 $SIR_DATE_ERR function, which in turn is overridden by supplying a non-default value
 for the error handling argument, if a Sirius date $function is in use. The
 $SIR_DATE_ERR error handling is initially OFF. If $SIR_DATE_ERR('OFF') is in effect,
 the USER level handling controls default error handling, unless it is OFF, in which case
 the SYSTEM level controls the default.

 Note that the APPDATE command and $SIR_DATE_ERR only set the default datetime
 argument error handling. It will affect the CCA date $functions, and it will affect the
 Sirius date $functions if they are coded without the error handling argument.

 3.2.2 Setting Default Error Handling with the $SIR_DATE_ERR
 Function

 The $SIR_DATE_ERR function provides the ability to set or override default datetime
 $function error handling at the request level:

 %S STRING LEN 8
 %S = $SIR_DATE_ERR('REPORT')

 The effect of a $SIR_DATE_ERR invocation persists until the end of the User Language
 request, at which time its setting is reset to OFF. Note that $SIR_DATE_ERR only sets
 the default datetime argument error handling. It will affect the CCA date $functions, and
 it will affect the Sirius date $functions if they are coded without the error handling
 argument.

 For a complete description of $SIR_DATE_ERR, see “$SIR_DATE_ERR: Set and query
 default error handling at request level” on page 27.

 3.3 Examining the APPDATE Information

 The Sir2000 User Language Tools provide mechanisms for displaying and saving the
 state of the APPDATE clocks and various DATE_ERR switches. Thus, it is possible for
 applications to retrieve the current states, temporarily change the states and then restore
 the previous states.

 3.3.1 APPDATE DISPLAY Command

 The following form of the APPDATE command allows you to view the setting of either
 the USER or SYSTEM clock, and to view the error handling setting:

 APPDATE DISPLAY [ALL|USER|SYSTEM]

 APPDATE syntax to display settings

——
16 Sir2000 User Language Tools Reference Manual

——
 Examining the APPDATE Information
——

 where

 ALL | USER | SYSTEM This is optional. It specifies to either display the current time
 and error handling setting for all levels, or to display either the
 USER or SYSTEM level in a form that is equivalent to the
 APPDATE command which set it.

 ALL is the default and prints the current internal time, the
 clock ON|OFF|INTERNAL settings for both USER and
 SYSTEM, the DATE_ERR settings of both USER and
 SYSTEM, what the current times would be for the clocks if
 they were in effect, and an indication of which clock and
 which error handling setting is active for the current user.
 Following this is the display of the USER and SYSTEM levels
 in the "command setting" form, that is, the command that was
 issued to set the level.

 APPDATE DISPLAY ALL is not suitable for placing in a global and re-invoking; you
 should use APPDATE DISPLAY {USER | SYSTEM} for that purpose. The display
 format of APPDATE DISPLAY ALL is shown in the following example:

 LEVEL CLOCK STATE/DATE_ERR CURRENT CLOCK
 -------- ----------------------- ------------------------
 INTERNAL 1997/05/14 11:27:51
 SYSTEM ON/OFF 2000/01/02 11:27:51 (@)
 USER OFF/CANCEL DEBUG 1997/05/14 11:27:51 (*)

 SYSTEM CLOCK ACTIVE (@); USER LEVEL IS ERROR HANDLING DEFAULT (*)
 COMMAND SETTINGS:
 APPDATE SYSTEM ON 2000/01/01 AT 1997/05/13 DATE_ERR OFF
 APPDATE USER OFF 1997/05/13 AT 1997/05/13 DATE_ERR CANCEL DEBUG

 The APPDATE DISPLAY {USER | SYSTEM} forms of the command produce results in
 the form of a legal APPDATE command which would set the levels to their current
 values. For example, the following lines would result from invocations of the APPDATE
 DISPLAY USER and APPDATE DISPLAY SYSTEM commands in the same context as
 above:

 APPDATE SYSTEM ON 2000/01/01 AT 1997/05/13 DATE_ERR OFF
 APPDATE USER OFF 1997/05/13 AT 1997/05/13 DATE_ERR CANCEL DEBUG

 3.3.2 Retrieving Last Non-null $SIR_DATE_ERR Setting

 If you call $SIR_DATE_ERR with no argument or the null string, $SIR_DATE_ERR will
 return a character string indicating the most recent valid and non-null value specified in a
 call to $SIR_DATE_ERR during the current request; it will return one of the following
 strings:

 ● 'OFF'
 ● 'CANCEL'

——
Sir2000 User Language Tools Reference Manual 17

——
The APPDATE Command
——

 ● 'REPORT'
 ● 'IGNORE'

 %S STRING LEN 8
 %S = $SIR_DATE_ERR(<no argument> | '')

 For a complete description of $SIR_DATE_ERR, see “$SIR_DATE_ERR: Set and query
 default error handling at request level” on page 27.

 3.4 Privileges, Disabling, and Pre-User 0 APPDATE
 Command

 The APPDATE SYSTEM form of the command can be issued only by user 0 (user zero,
 that is, in the CCAIN input stream) or by a user with system manager privileges;
 APPDATE USER and APPDATE DISPLAY can be issued by any user. APPDATE
 SYSTEM can also be used in the CCAIN input stream prior to the user 0 parameter line,
 so that the system-wide APPDATE clock and error handling can be set prior to any
 calculations performed by an IODEV 3 thread. Neither APPDATE USER nor APPDATE
 DISPLAY may be used prior to the user 0 parameter line.

 The APPDATE RESTRICT command can be used to prohibit any issuance of the
 APPDATE command except prior to the user 0 parameter line. This could be used if you
 do not want anyone to change the APPDATE settings after initialization of the Model 204
 run. The APPDATE RESTRICT command itself can only be issued prior to the user 0
 parameter line.

 You can also disable or restrict the APPDATE command by applying a customization
 zap, based on the examples in the “Customization Zaps” chapter in the Sirius Mods
 Installation Guide. You might use a customization zap if, for example, you wanted to
 disallow the use of the APPDATE command in a production load module, or if you
 wanted to only allow one system-wide APPDATE setting for the entire Model 204 run.

 Note:

 ● Lines are not sent to the Model 204 audit trail for commands, and subsequent error
 messages, issued prior to the user 0 parameter line. Output is, however, sent to
 CCAPRINT prior to the user 0 parameter line.

——
18 Sir2000 User Language Tools Reference Manual

——
 Complete Syntax of the APPDATE Command
——

 3.5 Complete Syntax of the APPDATE Command

 The detailed explanation of setting APPDATE values is described separately for clock
 values (see “Setting the Clocks With the APPDATE Command” on page 10) and
 datetime argument error handling (see “Error Handling Control with DATE_ERR” on
 page 13) but for either the USER or SYSTEM level you can specify both clock values
 and error handling, in that order, in a single command. The complete syntax of the
 APPDATE command is shown below.

 Appdate_cmd = APPDATE { Level Clock_set [Err_set] |
 Level Err_set |
 Display |
 RESTRICT }
 Clock_set = Clock_state | [Clock_state] Date_times
 Level = [USER | SYSTEM]
 Clock_state = ON | OFF | INTERNAL
 Date_times = {targdate [AT refdate] |
 targdate targtime [AT refdate reftime]}
 Err_set = DATE_ERR [OFF | CANCEL | REPORT | IGNORE]
 [DEBUG | NODEBUG]
 Display = DISPLAY [ALL | USER | SYSTEM]

 Note: Either {OFF | CANCEL | REPORT | IGNORE} or {DEBUG |
 NODEBUG} must be specified with DATE_ERR.

 Complete syntax of APPDATE command

 As discussed in “Privileges, Disabling, and Pre-User 0 APPDATE Command” on page
 18:

 ● The APPDATE SYSTEM command may only be issued in the user 0 input stream or
 by a system manager; an error message is produced if APPDATE SYSTEM is
 processed in other contexts.

 ● The APPDATE RESTRICT command may only be issued in the user 0 input stream;
 an error message is produced if APPDATE RESTRICT is processed in other
 contexts.

 ● The APPDATE command can also be completely disabled, or restricted to the user
 0 input stream prior to the user 0 parameter line, by using a customization zap.

 ● Issuing an APPDATE command in a disabled or restricted context produces an error
 message but does no checking or processing of the command.

——
Sir2000 User Language Tools Reference Manual 19

——
The APPDATE Command
——

 3.6 Values affected by the APPDATE clocks

 The active APPDATE clock affects the value returned by the following User Language
 $functions:

 ● $DATE, $DATEJ, $DATEP
 ● $DATEDIF, $DATECNV, and $DAYI (when obtaining the year for handling the
 CENTSPLT argument)
 ● $TIME
 ● $SIR_DATE, $SIR_DATEN, $SIR_DATEND, $SIR_DATENM, $SIR_DATENS,
 $SIRTIME and $WEB_DATE
 ● $WEB_LAST_MODIFIED (when ensuring last_modified date isn't future)
 ● $SIR_DATECHG, $SIR_DATECHK, $SIR_DATECNV, $SIR_DATEDIF,
 $SIR_DATE2N, $SIR_DATE2ND, $SIR_DATE2NM, $SIR_DATE2NS,
 $DB_RPCPARAM, $SRV_BIND, and $SRV_PARMSET (when obtaining the year
 for relative CENTSPAN handling)

 The only Model 204 command affected by the APPDATE clock is the RESET command
 for changing the CENTSPLT user parameter. In this case, the BASECENT parameter,
 which is calculated using the current time, obtains the current time from the active
 APPDATE clock. The resulting value of BASECENT can be used to interpret 2-digit
 years passed to the following User Language $functions:

 ● $DATEDIF, $DATECNV, and $DAYI, if neither the CENTSPLT nor DEFCENT
 arguments are provided
 ● $DATECHG and $DATECHK

 Finally, the default value of DEFCENT is taken from the active APPDATE clock if the
 APPDATE command is issued prior to the user 0 parameter line.

 3.7 APPDATE Command Usage Notes

 1. One kind of application testing is simply to see what happens when dates into the
 21st century are returned by User Language $functions. This can be done in
 isolation by issuing a command such as the following:

 APPDATE USER 2000/01/01

 This can be simply issued by the user before entering the application, or it can be
 issued in the startup or logon proc of the application.

 2. If your application stores results that are retrieved later by the application, you
 should probably put a command such as the following into the startup proc:

 APPDATE USER 2000/01/01 AT 1997/05/01

——
20 Sir2000 User Language Tools Reference Manual

——
 APPDATE Command Usage Notes
——

 This indicates that the application clock will run ahead of the internal date and time
 so that on the 1st of May, 1997, the application clock will show the 1st of January,
 2000. Your application can thus run as if it were "shifted" ahead in time, and the
 shift amount will be consistent, even if you bring down the online and bring it up
 again. We recommend placing it in the startup proc in case any dates are
 referenced in it.

 3. If you want all applications (except those "shielded" as in 5. below) to use the same
 clock, you need not change any applications but simply code before the USER 0
 parameter line:

 APPDATE SYSTEM 2000/01/01 AT 1997/05/01

 Note that this also changes the default DEFCENT; see (6.) below.

 4. If you have an application that must use the internal date and time, even if the
 system-wide application clock is ON, you should enter a command such as the
 following in the startup proc:

 APPDATE USER INTERNAL

 This could be needed by an application that examines internal datetime values,
 such as those found in the audit trail. A robust application will preserve the
 APPDATE value and can do this using the $COMMNDL function
 (http://M204WIKI.ROCKETSOFTWARE.COM/index.php/$CommndL), since an
 SDAEMON thread initiated with $COMMxxx copies the application clock of its
 invoker.

 5. A good date for APPDATE testing might be 2000/02/29, since that is a valid date,
 but 1900/02/29 is not.

 6. The use of the APPDATE command is to establish a clock for all application-level
 operations. It does not affect static values that had been established prior to the
 APPDATE command. This is relevant to the value of the BASECENT parameter
 and the default value of the DEFCENT user parameter, as follows:

 ● If the DEFCENT parameter has not been set, its value is the first two digits of
 the year during M204 initialization. If you issue an APPDATE SYSTEM ON ...
 command before the user 0 parameter line, this will affect the default value of
 DEFCENT. All other invocations of the APPDATE command will leave
 DEFCENT unaffected.

 ● The BASECENT parameter is calculated based on the current time whenever
 the CENTSPLT parameer is set. This current time will be taken from the active
 APPDATE clock, but subsequent invocations of the APPDATE command will
 not affect the BASECENT parameter.

——
Sir2000 User Language Tools Reference Manual 21

——
The APPDATE Command
——

 7. The APPDATE command does not affect the date and time printed on header 0 of
 each output page.

 8. The APPDATE command and the use of the Model 204 SYSDATE parameter are
 mutually exclusive.

 9. $COMMAND, $COMMBG, and $COMMNDL (see
 http://m204wiki.rocketsoftware.com/index.php/List_of_$functions) provide a
 mechanism for passing a unit of work to an SDAEMON, or background thread that
 is different from the thread that issues the request. When the requested unit of work
 receives control, the APPDATE USER settings from the thread that invoked the
 $function will be in effect. If an APPDATE USER command is issued in the
 sdaemon thread, its effect will not be reflected back to the invoking thread.

 10. The current application date used by #DATExxx functions in FUEL is set to the
 active APPDATE clock when the $FUNLOAD function is used.

——
22 Sir2000 User Language Tools Reference Manual

——
 $Functions
——

——————
CHAPTER 4 $Functions

 This chapter lists the $functions provided with the Sir2000 User Language Tools. Each
 $function is presented here with a brief phrase denoting its use, a short explanation, the
 form and types of its arguments and the result (or "output value"), one or more
 examples, any error conditions, and special notes.

 Unless otherwise indicated, all arguments shown are required and are input arguments.

 In some instances the behavior of a $function will be compared to the behavior of a
 corresponding standard User Language $function described in M204wiki (see
 http://m204wiki.rocketsoftware.com/index.php/Category:SOUL_$functions).

 In addition to the $functions that are only available with the Sir2000 User Language
 Tools, this chapter includes documentation of some additional $functions described in
 M204wiki at http://m204wiki.rocketsoftware.com/index.php/List_of_$functions.

 In addition to the reference material in this chapter, the index contains a major heading
 labelled $Function prototypes. Under this heading are minor headings containing the
 form of the $functions, for your convenient reference.

 4.1 Errors in Datetime $Functions

 The Sir2000 User Language Tools provides you with several ways to detect datetime
 related errors and control the action taken by the system when these errors occur. You
 can control this on a system-wide or thread-only basis by using the APPDATE
 DATE_ERR command, on a request level by using the $SIR_DATE_ERR function, and
 in Sirius date $function calls by coding a special argument. You can control error
 handling in some standard User Language date $functions also, by using either
 APPDATE DATE_ERR or $SIR_DATE_ERR.

 The Sirius date $functions provide you with simple and flexible calls to manipulate
 date/time data, and to detect and report error conditions that may be the result of data or
 coding errors related to year 2000 processing.

 If you intend to use the $function error handling features of Sir2000 User Language
 Tools, you should also be sure to use the DEBUG feature of APPDATE. The DEBUG
 feature saves line number, procedure, and file information for date-related $functions.
 This information, along with argument values, is then displayed and reported to greatly
 simplify debugging.

——
Sir2000 User Language Tools Reference Manual 23

——
$Functions
——

 The Sirius date $functions provide an optional error control argument for some datetime
 $functions. If you omit the error control argument and an error is detected in the
 $function, the action taken depends upon the latest invocation of $SIR_DATE_ERR, if
 any, or the switches established by the relevant APPDATE command with DATE_ERR
 clause.

 See “Error Handling Control with DATE_ERR” on page 13 for a complete description of
 the type of errors encountered by date $functions, and for the control and detection
 approaches available to you with the Sir2000 User Language Tools.

 For example, since the input date doesn't match the provided format, the following
 fragment:

 %NEW_DT = $SIR_DATECHG('MM/DD/YY', '96/01/01',, -
 7, 'IGNORE')
 IF %NEW_DT EQ '' OR $SUBSTR(%NEW_DT, 1, 1) = '*' THEN
 PRINT 'Error incrementing date'
 END IF

 will print Error incrementing date, while the following fragment:

 %NEW_DT = $SIR_DATECHG('MM/DD/YY', '96/01/01',, -
 7, 'CANCEL')

 will cause the request to be cancelled with an error message:

 I DATERR
 *** 1 MSIR.0323: Error in $SIR_DATECHG call, no Sirius debug info
 - Invalid date
 *** MSIR.0326: $SIR_DATECHG - argument 1 = 'MM/DD/YY'
 *** MSIR.0326: $SIR_DATECHG - argument 2 = '96/01/01'
 *** MSIR.0326: $SIR_DATECHG - argument 3 = '7'
 *** MSIR.0326: $SIR_DATECHG - argument 5 = 'CANCEL'
 *** 2 CANCELLING REQUEST: MSIR.0324: Cancelling request because of
 $SIR_DATECHG error

 If the APPDATE DATE_ERR DEBUG option is in effect, the User Language procedure
 name and line number will be reported, along with more detail about the error:

 APPDATE USER DATE_ERR DEBUG
 I DATERR
 *** 1 MSIR.0321: Error in $SIR_DATECHG call in line 523, procedure
 DATERR, file PROCFILE - Invalid date
 *** MSIR.0326: $SIR_DATECHG - argument 1 = 'MM/DD/YY'
 *** MSIR.0326: $SIR_DATECHG - argument 2 = '96/01/01'
 *** MSIR.0326: $SIR_DATECHG - argument 3 = '7'
 *** MSIR.0326: $SIR_DATECHG - argument 5 = 'CANCEL'
 *** 2 CANCELLING REQUEST: MSIR.0324: Cancelling request because of
 $SIR_DATECHG error

——
24 Sir2000 User Language Tools Reference Manual

——
 Errors in Datetime $Functions
——

 Each $function description in this chapter has a figure showing the error conditions
 detected by the $function and the value returned by the $function in case of an error with
 'IGNORE' or 'REPORT' specified or defaulted.

——
Sir2000 User Language Tools Reference Manual 25

——
$Functions
——

 4.2 $SIR_DATE: Get current datetime

 For documentation of this $function, see
 http://M204wiki.rocketsoftware.com/index.php/$Sir_Date.

——
26 Sir2000 User Language Tools Reference Manual

——
 $SIR_DATE_ERR: Set and query default error handling at request level
——

 4.3 $SIR_DATE_ERR: Set and query default error
 handling at request level

 The $SIR_DATE_ERR function may be used to set or query the default request-level
 datetime error handling. For more information on datetime error control, refer to “Error
 Handling Control with DATE_ERR” on page 13.

 %oldvalue = $SIR_DATE_ERR(newvalue or '')

 where

 newvalue an optional error control string, which must contain one of the following
 values:

 OFF indicates that default datetime $function error handling is
 determined by the USER level setting or, if that is OFF, by the
 SYSTEM level setting.

 CANCEL indicates that when a datetime $function detects an error, the
 default behaviour will be to issue an error message and cancel
 the User Language request.

 REPORT indicates that when a datetime $function detects an error, the
 default behaviour will be to issue a warning message and
 return the appropriate error value to the function caller.

 IGNORE indicates that when a datetime $function detects an error, the
 default behaviour will be to silently return the appropriate error
 value to the function caller.

 '' or missing argument
 does not affect the current request-level error processing
 defaults. Provided as a method to obtain the current
 $SIR_DATE_ERR setting.

 %oldvalue set to the most recent valid non-null setting of $SIR_DATE_ERR.

 The request-level datetime error handling defaults set by a $SIR_DATE_ERR invocation
 persist until the end of the User Language request, at which time its setting is reset to
 OFF. Note that $SIR_DATE_ERR only sets the default datetime argument error
 handling. It will affect the standard User Language date $functions, and it will affect the
 Sirius date $functions only if they are coded without an error control argument.

——
Sir2000 User Language Tools Reference Manual 27

——
$Functions
——

 4.4 $SIR_DATECHG: Add some days to datetime

 The $SIR_DATECHG function expects a datetime format string, a datetime value string,
 and a number of days. It accepts an optional CENTSPAN value and an optional error
 control string. It returns the datetime string obtained by adding the indicated number of
 days to the input datetime; the return datetime string is in the same format as the input
 datetime string.

 The $SIR_DATECHG function is similar to the $DATECHG function provided by CCA.
 However, the $DATECHG function does not support the specification of a CENTSPLT
 (http://m204wiki.rocketsoftware.com/index.php/CENTSPLT_parameter) or
 DEFCENT (http://m204wiki.rocketsoftware.com/index.php/DEFCENT_parameter)
 argument.

 %odat = $SIR_DATECHG(fmt, dat, days, span, errctl)

 where

 fmt datetime format string, describes dat and %odat. Refer to “Datetime
 Formats” on page 41 for an explanation of valid datetime formats and valid
 datetime values. Strict matching is used for fmt.

 dat datetime value string.

 days number of days to add to dat.

 span optional CENTSPAN value, default is -50. Refer to “CENTSPAN” on page
 46.

 errctl optional error control string, refer to “Error Handling Control with
 DATE_ERR” on page 13.

 %odat set to dat plus days 24-hour periods, unless an error is detected.

 For example, the following fragment prints the date one week after the run date:

 %X = $SIR_DATE('DAY Month, YYYY')
 PRINT $SIR_DATECHG('DAY Month, YYYY', %X, 7)

 Error conditions are shown in the following figure (see the discussion in “Errors in
 Datetime $Functions” on page 23).

——
28 Sir2000 User Language Tools Reference Manual

——
 $SIR_DATECHG: Add some days to datetime
——

 $SIR_DATECHG returns a string composed of all asterisks ("*"), whose
 length is the shorter of the length of the input date format string or 32, in
 the following error cases:

 ● fmt is not a valid datetime format.
 ● date does not match fmt or result date out of range.
 ● days is omitted.
 ● span contains an invalid CENTSPAN specification.

——
Sir2000 User Language Tools Reference Manual 29

——
$Functions
——

 4.5 $SIR_DATECHK: Check if datetime matches format

 The $SIR_DATECHK function expects a datetime format string and a datetime value
 string. It accepts an optional CENTSPAN value, and an optional error control string.
 $SIR_DATECHK returns the value 1 if the datetime value is valid and matches the
 provided format, otherwise the value 0 is returned.

 The $SIR_DATECHK function is similar to the $DATECHK standard User language
 function. However, the $DATECHK function does not support the specification of a
 CENTSPLT (http://m204wiki.rocketsoftware.com/index.php/CENTSPLT_parameter)
 or DEFCENT (http://m204wiki.rocketsoftware.com/index.php/DEFCENT_parameter)
 argument.

 %tst = $SIR_DATECHK(fmt, dat, span, errctl)

 where

 fmt datetime format string. Refer to “Datetime Formats” on page 41 for an
 explanation of valid datetime formats and valid dates. Strict matching is
 used for fmt.

 dat datetime string.

 span optional CENTSPAN value, default is -50. Refer to “CENTSPAN” on page
 46.

 errctl optional error control string, refer to “Error Handling Control with
 DATE_ERR” on page 13.

 %tst set to 1 if dat matches fmt, otherwise set to 0.

 The following fragment prints the string Bad, since February cannot have thirty days.
 Note that the request is not cancelled, even though an optional error control string was
 provided:

 %X = $SIR_DATECHK('DAY Month, YYYY', -
 '30 February, 1997',,'CANCEL')
 IF %X = 1 THEN
 PRINT 'Good'
 ELSE
 PRINT 'Bad'
 END IF

 Error conditions are shown in the following figure (see the discussion in “Errors in
 Datetime $Functions” on page 23).

——
30 Sir2000 User Language Tools Reference Manual

——
 $SIR_DATECHK: Check if datetime matches format
——

 $SIR_DATECHK returns a value of 0 if any of the following errors are
 detected:

 ● fmt is not a valid datetime format.
 ● dat is not a valid date, or does not match fmt, or is
 outside of range permitted for fmt. Note that these
 cases are always treated as if an error control string
 of IGNORE had been specified.
 ● span is not a valid CENTSPAN value.

——
Sir2000 User Language Tools Reference Manual 31

——
$Functions
——

 4.6 $SIR_DATECNV: Convert datetime to different
 format

 The $SIR_DATECNV function expects a datetime format string for the input string, a
 datetime format for the output string, and a datetime value to be converted. It also
 accepts an optional CENTSPAN value and an optional error control string.
 $SIR_DATECNV returns the input datetime converted to the output format.

 %odat = $SIR_DATECNV(infmt, outfmt, dat, span, errctl)

 where

 infmt datetime format string for dat. Refer to “Datetime Formats” on page 41 for
 an explanation of valid datetime formats and valid dates. Strict matching is
 used for infmt.

 outfmt datetime format string for function output (%odat).

 dat input datetime string.

 span optional CENTSPAN value, default is -50. Refer to “CENTSPAN” on page
 46.

 errctl optional error control string, refer to “Error Handling Control with
 DATE_ERR” on page 13.

 %odat Set to the value of dat, converted from the format in infmt to the format in
 outfmt, unless an error is detected.

 For example, the following fragment prints the string 19970101:

 PRINT $SIR_DATECNV('YYMMDD', 'YYYYMMDD', '970101', 1950)

 Error conditions are shown in the following figure (see the discussion in “Errors in
 Datetime $Functions” on page 23).

 $SIR_DATECNV returns a string composed of all asterisks (*), whose
 length is the shorter of the length of the output date format string or 32, in
 the following error cases:

 ● infmt or outfmt is not a valid datetime format string.
 ● dat does not match infmt.
 ● dat is outside of range permitted for infmt or that
 permitted for outfmt.
 ● span is invalid.

——
32 Sir2000 User Language Tools Reference Manual

——
 $SIR_DATEDIF: Difference between two dates
——

 4.7 $SIR_DATEDIF: Difference between two dates

 The $SIR_DATEDIF function expects a datetime format string and two datetime value
 strings. It accepts a second optional datetime format string, an optional CENTSPAN
 value, and an optional error control string. $SIR_DATEDIF subtracts the second
 datetime value from the first datetime value, returning the number of complete days of
 difference. If an error is detected, the value 99999999 is returned.

 %dif = $SIR_DATEDIF(fmta, data, fmtb, datb, span, errctl)

 where

 fmta first datetime format string. Refer to “Datetime Formats” on page 41 for an
 explanation of valid datetime formats and valid datetime values. Strict
 matching is used for fmta.

 data first datetime value string.

 fmtb optional second datetime format string, default is to use fmta. Strict
 matching is used for fmtb.

 datb second datetime value string.

 span optional CENTSPAN value, default is -50. Refer to “CENTSPAN” on page
 46.

 errctl optional error control string, refer to “Error Handling Control with
 DATE_ERR” on page 13.

 %dif set to the number of days obtained from subtracting datb from data. If an
 error is detected, the value returned is 99999999.

 For example, the following fragment prints the string -7 days:

 PRINT $SIR_DATEDIF('YYMMDD', '970301', , -
 '970308') AND 'days'

 Error conditions are shown in the following figure (see the discussion in “Errors in
 Datetime $Functions” on page 23).

——
Sir2000 User Language Tools Reference Manual 33

——
$Functions
——

 $SIR_DATEDIF returns the value 99999999 in the following error cases:

 ● fmta or fmtb is not a valid datetime format.
 ● data or datb does not match the respective datetime
 format.
 ● data or datb is outside of range permitted for the
 respective datetime format..
 ● span is invalid.

 Notes:

 Time is ignored in the subtraction.

 In the example above, even though the input dates have 2-digit years, the correct
 answer would be given for any valid span argument, since the dates do not span the end
 of February.

 As in the standard User Language $DATEDIF function, the single span argument is
 used for both dates; if it is necessary to get the difference between two dates which both
 have 2-digit years and are in different 100-year windows, you must first use
 $SIR_DATECNV to convert one of them to some 4-digit year format. Alternatively, you
 could use $SIR_DATE2ND to convert both dates to number of days values, and subtract
 those values.

——
34 Sir2000 User Language Tools Reference Manual

——
 $SIR_DATEFMT: Validate datetime format
——

 4.8 $SIR_DATEFMT: Validate datetime format

 For documentation of this $function, see
 http://M204wiki.rocketsoftware.com/index.php/$Sir_DateFmt.

——
Sir2000 User Language Tools Reference Manual 35

——
$Functions
——

 4.9 $SIR_DATEN/ND/NM/NS: Current date and time as
 integer

 For documentation of these $functions, see for example,
 http://M204wiki.rocketsoftware.com/index.php/$Sir_DateN.

——
36 Sir2000 User Language Tools Reference Manual

——
 $SIR_DATE2N/ND/NM/NS: Convert datetime string to integer
——

 4.10 $SIR_DATE2N/ND/NM/NS: Convert datetime string
 to integer

 For documentation of these $functions, see for example,
 http://M204wiki.rocketsoftware.com/index.php/$Sir_Date2N.

——
Sir2000 User Language Tools Reference Manual 37

——
$Functions
——

 4.11 $SIR_ND2DATE/NM2DATE/NS2DATE/N2DATE:
 Convert datetime integer to string

 For documentation of these $functions, see for example,
 http://M204wiki.rocketsoftware.com/index.php/$Sir_ND2Date.

——
38 Sir2000 User Language Tools Reference Manual

——
 Datetime Processing Considerations
——

——————
CHAPTER 5 Datetime Processing Considerations

 This chapter presents date processing issues, including usage of the Sir2000 User
 Language Tools past the year 1999, an explanation of its processing of dates, and any
 rules and restrictions you must follow to achieve correct results using date values with
 the Sir2000 User Language Tools.

 The Sir2000 User Language Tools uses dates in the following ways:

 ● To examine the CPU clock (as returned by the STCK hardware instruction) to
 determine the current date, in case the Sir2000 User Language Tools is under a
 rental or trial agreement

 ● As arguments to various $functions, and returned values from them

 ● To set a date for testing with the APPDATE command

 ● See the SirLib User's Guide and the SirPro User's Guide for date processing
 considerations for those products as part of the Sir2000 User Language Tools.

 To correctly use the Sir2000 User Language Tools past the year 1999, version 5.0 of the
 Sirius Mods and version 5.0 of UL/SPF, or later, are required. For headers on pages or
 rows that occur on printed pages or displayed screens, Sirius Software products
 generally use a full four digit year format, although they may display dates with two digit
 years in circumstances where the proper century can be inferred from the context.

 Above and beyond the post-1999 requirements specific to the Sir2000 User Language
 Tools, you must examine all uses of date values in your applications to ensure that each
 of your applications produces correct results. Furthermore, both the operating system
 and Model 204 must correctly process and transmit dates beyond 1999 in order for the
 Sir2000 User Language Tools to operate properly.

 Most Sirius date processing involves the use of datetime $functions. This chapter refers
 to datetime $functions in two product groups:

 1. The Sirius Functions, which are documented in the M204wiki at
 http://m204wiki.rocketsoftware.com/index.php/List_of_$functions. All of these
 $functions that concern dates are available to users of the Sir2000 User Language
 Tools.

 2. The Sir2000 User Language Tools Functions, which are documented in the Sir2000
 User Language Tools Reference Manual. These $functions are only available to
 users of the Sir2000 User Language Tools.

——
Sir2000 User Language Tools Reference Manual 39

——
Datetime Processing Considerations
——

 The occasional references to "all Sirius datetime $functions" stand for all date
 processing $functions formerly delivered by Sirius Software, in any product.

 In operational terms, there are two classes of datetime $functions:

 1. $Functions using a numeric value to represent a datetime, where 0 represents
 12:00 AM, 1 January 1900; for example, $SIR_DATE2NM and $SIR_NM2DATE
 (number of milliseconds since the start of 1900).

 These $functions, and $SIR_DATE, have the following error return values:

 ● -9.E12 for numeric result $functions
 ● null string for string result $functions

 They also perform non-strict matching of date strings to date formats; for example,
 a leading blank is allowed for the HH token.

 All numeric datetime $functions, and $SIR_DATE, are part of the Sirius Functions.

 2. Other $functions that only manipulate strings and associated datetime formats
 ($SIR_DATE not included in this class); for example, $SIR_DATECHG (add number
 of days to given date).

 These $functions have error return values of a variable number of asterisks (or, in
 the case of $SIR_DATEDIF, the value 99,999,999). They also perform strict
 matching of date strings to date formats; for example, a leading blank is not allowed
 for the HH token. These $functions produce the same results as CCA $DATExxx
 functions, with additional enhancements.

 These string format datetime $functions are available only with the Sir2000 User
 Language Tools.

 See “Strict and non-strict format matching” on page 48 for a discussion of strict and non-
 strict format matching, including a technique for accomplishing strict date checking using
 the non-strict $functions.

 The rest of this chapter contains a discussion of datetime formats, valid datetime strings,
 and processing of two-digit year values. It also contains example datetime formats and
 corresponding example datetime strings. Finally, there is a list of benefits of Sirius
 datetime processing.

——
40 Sir2000 User Language Tools Reference Manual

——
 Datetime Formats
——

 5.1 Datetime Formats

 The representation of a date is determined by a datetime format. This value is a
 character string, composed of the concatenation of tokens (for example, "YYYY" for a
 four-digit year, and "MI" for minutes) and separator characters (for example, "/" in
 "MM/DD/YY" for two-digit month, day, and year separated by slashes).

 These datetime format strings are used in many products in addition to the Sir2000 User
 Language Tools. The products using datetime format strings are:

 ● Fast/Unload
 ● Janus Open Client
 ● Janus Open Server
 ● Janus Specialty Data Store
 ● Janus Web Server
 ● SirDBA
 ● Sirius Functions
 ● Sir2000 Field Migration Facility
 ● Sir2000 User Language Tools

 The rules for these datetime format strings are consistent throughout all these products,
 though certain uses of these strings might impose extra restrictions. For example, a
 leading blank is allowed for the HH, DD, and MM parts of a date argument using a non-
 strict date $function, such as $SIR_DATE2NS, but is not allowed for the strict date
 $functions (i.e., the Sir2000 User Language Tools Functions).

 There are certain rules applied to determine if a format is valid. The basic rules are:

 1. If a format string contains a numeric datetime token (i.e. "ND", "NM", or "NS"), then
 the format string must consist of only one token. Numeric datetime tokens are only
 supported in format strings for the Sir2000 Field Migration Facility.

 2. You must specify at least one time, weekday, or date token.

 3. Except for "weekday", you can't specify redundant information. More specifically
 this means

 ● Except for "I", no token can be specified twice.

 ● At most one year format (contains Y) can be specified.

 ● At most one month format (contains MON, Mon, or MM) can be specified.

 ● At most one day format (DD or Day) can be specified.

 ● At most one weekday format (WKD, Wkd, WKDAY, or Wkday) can be specified.

 ● If AM is specified, then PM can not be specified.

——
Sir2000 User Language Tools Reference Manual 41

——
Datetime Processing Considerations
——

 ● At most one fractions-of-a-second format (contains X) can be specified.

 ● If DDD is specified, then neither a day nor month format can be.

 4. If ZYY is specified in a format string, no other token that denotes a variable-length
 value may be used.

 5. If a format string contains other tokens that denote variable length values, then an *
 token may only appear as the last character of the format string.

 6. The DAY token may not be immediately followed by another token whose value may
 be numeric, regardless of whether the following token repsents a variable length
 value. Thus, DAY may not be followed by *, I, YY, YYYY, CYY, MM, HH, MI, SS, X,
 XX, or XXX; DAY may not be followed by a decimal digit separator, and DAY may
 not be followed by a quote followed by a decimal digit.

 7. When a pair of format strings are used for transforming date values, for example for
 $SIR_DATECNV or processing of updates to SIRFIELD RELATEd fields, additional
 rules apply to the pattern matching tokens:

 ● If one of the format strings includes one or more "I" tokens, then the other
 format string must contain the same number of "I" tokens. Note that the
 placement of "I" tokens within the format strings is not restricted. The "I" tokens
 are processed left to right, with each character from the input string that
 corresponds to the nth "I" token in the input format being copied unchanged to
 the character position in the output string that corresponds to the nth "I" token in
 the output format.

 ● If one of the format strings contains an asterisk (*) token, then the other format
 string must also contain an asterisk token. All of the characters from the input
 string that correspond to the asterisk token in the input format, if any, are
 copied unaltered to the output string, begining in the position that corresponds
 to the asterisk token in the output format.

 SIRFIELD is part of the Sir2000 Field Migration Facility.

 8. The maximum length of a format string is 100 characters.

 Note: A common mistake is to use "MM" for minutes; it should be "MI".

 The valid tokens in a date format are shown in the following list. In general, the output
 format rule for a token is shown. For some of the $functions, the input format rule for a
 token is the same as the output format rule; this is the definition of "strict date format
 matching". However, non-strict $functions sometimes allow a string to match a token on
 input that would not be produced by that token on output.

 All of the tokens that match alpabetic strings (for example, "MON") match any case for
 non-strict matching. All other tokens that have differing strict and non-strict matching

——
42 Sir2000 User Language Tools Reference Manual

——
 Datetime Formats
——

 rules are listed under "Special date format rules" in the index at the back of the manual,
 and usage notes for them are contained in “Datetime and format examples” on page 48.
 Each input datetime format argument in the description of a $function specificies
 whether the use of the format observes strict or non-strict format matching. See “Strict
 and non-strict format matching” on page 48.

 NM numeric datetime value containing the number of milliseconds (1/1000 of a
 second) since January 1, 1900 at 12:00 AM. (This token is allowed only in
 the Sir2000 Field Migration Facility.)
 NS numeric datetime value containing the number seconds since January 1,
 1900 at 12:00 AM. (This token is allowed only in the Sir2000 Field Migration
 Facility.)
 ND numeric date value containing the number of days since January 1, 1900.
 (This token is allowed only in the Sir2000 Field Migration Facility.)
 * Ignore entire variable-length substring matching pattern, if any, when only
 retrieving a date value. Substitute with null string when only creating a date
 value. When copying date values, copy entire variable-length substring
 matching pattern, if any, from input value to location identified by * token in
 output string. See “Datetime and format examples” on page 48.
 I Ignore corresponding input character when only retrieving a date value.
 Store a blank in corresponding output character when only creating a date
 value. When copying date values, copy each character matching an I token
 from from the input value to location in the output string identified by the
 corresping I token in the output format. See “Datetime and format examples”
 on page 48.
 " Following character is "quoted", that is, it acts as a separator character. See
 “Datetime and format examples” on page 48.
 YYYY Four-digit year
 YY Two-digit year
 CYY Year minus 1900 (three digits, including any leading zero). See “Datetime
 and format examples” on page 48.
 ZYY Year minus 1900, two-digit or three-digit year number, excluding any leading
 zero (variable length data). Non-strict $functions allow a three-digit number
 with leading zero on input, but any number less than 100 always produces a
 two-digit number on output. See “Datetime and format examples” on page
 48.
 MONTH Full-month name (uppercase variable length). Non-strict $functions allow
 any mixture of uppercase and lowercase on input, but all uppercase is
 always produced on output.
 Month Full-month name (mixed-case variable length). Non-strict $functions allow
 any mixture of upper and lowercase on input, but initial uppercase letter
 followed by all lowercase is always produced on output.
 MON Three-character month abbreviation (uppercase). Non-strict $functions allow
 any mixture of upper and lowercase on input, but all uppercase is always
 produced on output.
 Mon Three-character month abbreviation (mixed case). Non-strict $functions
 allow any mixture of upper and lowercase on input, but initial uppercase
 letter followed by all lowercase is always produced on output.

——
Sir2000 User Language Tools Reference Manual 43

——
Datetime Processing Considerations
——

 MM Two-digit month number. Non-strict $functions allow a two-character
 number with leading blank on input, but two decimal digits are always
 produced on output. See “Datetime and format examples” on page 48.
 BM Two-character month number; if less than 10, first character is blank. Non-
 strict $functions allow a two-digit number with leading zero on input, but any
 number less than 10 always produces a blank followed by a decimal digit on
 output. See “Datetime and format examples” on page 48.
 DDD Three-digit Julian day number
 DD Two-digit day number. Non-strict $functions allow a two-character number
 with leading blank on input, but two decimal digits are always produced on
 output. See “Datetime and format examples” on page 48.
 BD Two-character day number; if less than 10, first character is blank. Non-
 strict $functions allow a two-digit number with leading zero on input, but any
 number less than 10 always produces a blank followed by a decimal digit on
 output. See “Datetime and format examples” on page 48.
 DAY One-digit or two-digit day number (variable length data). Non-strict
 $functions allow a two-digit number with leading zero on input, but any
 number less than 10 always produces a one-digit number on output. See
 “Datetime and format examples” on page 48.
 WKDAY Full day of week name (uppercase variable length). Non-strict $functions
 allow any mixture of upper and lowercase on input, but all uppercase is
 always produced on output.
 Wkday Full day of week name (mixed case variable length). Non-strict $functions
 allow any mixture of upper and lowercase on input, but initial uppercase
 letter followed by all lowercase is always produced on output.
 WKD Three-character day of week abbreviation (uppercase). Non-strict $functions
 allow any mixture of upper and lowercase on input, but all uppercase is
 always produced on output.
 Wkd Three-character day of week abbreviation (mixed case). Non-strict
 $functions allow any mixture of upper and lowercase on input, but initial
 uppercase letter followed by all lowercase is always produced on output.
 HH Two-digit hour number. Non-strict $functions allow a two-character number
 with leading blank on input, but two decimal digits are always produced on
 output. See “Datetime and format examples” on page 48.
 BH Two-character hour number; if less than 10, first character is blank. Non-
 strict $functions allow a two-digit number with leading zero on input, but any
 number less than 10 always produces a blank followed by a decimal digit on
 output. See “Datetime and format examples” on page 48.
 MI Two-digit minute number
 SS Two-digit second number
 X Tenths of a second
 XX Hundredths of a second
 XXX Thousandths of a second (milliseconds)
 AM AM/PM indicator
 PM AM/PM indicator

 The valid separators in a date format are:

——
44 Sir2000 User Language Tools Reference Manual

——
 Datetime Formats
——

 blank (" ")
 apostrophe ("'")
 slash ("/")
 colon (":")
 hyphen ("-")
 back slash ("\")
 period (".")
 comma (",")
 underscore ("_")
 left parenthesis ("(")
 right parenthesis (")")
 plus ("+")
 vertical bar ("|")
 equals ("=")
 ampersand ("&")
 at sign ("@")
 sharp ("#")
 the decimal digits ("0" - "9").
 In addition, any character may be a separator character if preceeded by the quoting
 character (").

 See “Datetime and format examples” on page 48 for examples which include use of
 various separator characters.

 5.2 Valid Datetimes

 For a datetime string to be valid it must meet the following criteria:

 ● Its length must be less than 128 characters.
 ● It must be compatible with its corresponding format string.
 ● It must represent a valid date and/or time. For example, at most 23:59:59.999 for a
 time, 01-12 for a month, 01-31 or less (depending on the month) for a day, February
 29 is only valid in leap years (only centuries divisible by 4 are leap years: 2000 is
 but neither 1800, 1900, nor 2100 are). Note: weekdays are not checked for
 consistency against the date; for example, both Saturday, 02/15/97 and Friday,
 02/15/97 are valid.
 ● It must be within the date range allowed for the corresponding format. A datetime
 string used with a CYY or ZYY format can only represent dates from 1900 to 2899,
 inclusive. A datetime string used with a YY format can only represent dates in a
 range of 100 or less years, as determined by CENTSPAN and SPANSIZE. The
 valid range of dates for all other formats is from 1 January 1753 thru 31 December
 9999.

——
Sir2000 User Language Tools Reference Manual 45

——
Datetime Processing Considerations
——

 5.3 Processing Dates With Two-Digit Year Values

 A date field with only two digits for the year value is capable of representing a range of
 up to one hundred years. When we compare a pair of two-digit year values we are
 accustomed to thinking of the century as fixed, so that all dates are either “19xx” or
 "20xx". However, a date field with two-digit year values can actually represent dates
 from two different centuries, provided that the range of dates does not exceed 100
 years.

 5.3.1 CENTSPAN

 CENTSPAN provides a mechanism for unambiguously converting dates with two-digit
 year values into dates with four-digit year values. The CENTSPAN mechanism allows
 two-digit year values to span two centuries without confusion. CENTSPAN identifies the
 four-digit year value that is the start of a range of years represented by the two-digit
 year values.

 CENTSPAN may be specified as an absolute unsigned four digit value between 1753
 and 9999, or it may be specified as a relative signed value between -99 and +99,
 inclusive. A relative CENTSPAN value is dynamically converted to an effective absolute
 value before it is used to perform a YY to YYYY conversion. The effective CENTSPAN
 value is formed by adding the relative CENTSPAN to the current four-digit year value at
 the time the relative value is converted.

HHLL

Defines 100 year period

HHLL+99

Conversion rules, YY to YYYY
if YY < LL YYYY = (HH+1)YY
else YYYY = HHYY

HHLL = absolute or effective
CENTSPAN

1947 2046
19YY

2000
20YY

Example:

CENTSPAN = -50
current date = 1997
effective CENTSPAN = 1947

 A simple algorithm is used to convert a two-digit year value (YY) to a four-digit year
 value, using a four-digit absolute or effective CENTSPAN value (HHLL). If the two-digit
 year value is less than the low-order two digits of the CENTSPAN value, then the
 resulting century is one greater than the high-order two digits of the CENTSPAN value.
 Otherwise the resulting century is the same as the high-order two digits of the
 CENTSPAN value.

——
46 Sir2000 User Language Tools Reference Manual

——
 Processing Dates With Two-Digit Year Values
——

 Using all one hundred available years for mapping two-digit year values can cause
 significant confusion and result in data integrity errors. This is because dates just above
 and just below the 100-year window are mapped to the other end of the window. From
 our previous example, the date "47" will be intepreted as 1947, when it could have
 conceivably been 2047. Simlarly, the date "46" will be intepreted as 2046, when it might
 have been 1946.

100 year periodCENTSPAN CENTSPAN+99

ambiguity at each endpoint

CENTSPAN too low
CENTSPAN too high

(1947) (2046)

 If CENTSPAN is set to a value that is too high, dates that are just prior to CENTSPAN
 will appear to occur 100 years hence. If CENTSPAN is set to a value that is too low,
 dates that fall just after CENTSPAN+99 will appear to have occured 100 years earlier. A
 full one-hundred year window also can not detect attempts to represent more than one
 hundred years of values with a two-digit year.

 5.3.2 SPANSIZE

 There is a method to protect from the ambiguities that can occur at each end of the
 100-year window defined by CENTSPAN. SPANSIZE is used to restrict the size of the
 window used for mapping two-digit year values. The effect is to create two guard bands,
 one just below the date window and one just above. An attempt to represent a date
 value that lands in a guard band produces an error.

 Each guard band contains CENTSPAN-SPANSIZE years, hence a SPANSIZE of 100
 removes the protection. The default SPANSIZE is 90, which provides protection for two
 ten year windows: one below the CENTSPAN setting and one starting at
 CENTSPAN+90. From our previous example:

Example: CENTSPAN = -50
SPANSIZE = 90
current date = 1997

endpoint YY values illegal

19YY
1947 20362000

20YY
1937-1946 2037-2046

 An attempt to represent the values "37" through "46" will be rejected. This protects the
 range 1937 through 1946 as well as the range 2037 through 2046. Note that an
 intended value of 2047, expressed as "47" will be accepted and interpreted as 1947. In
 general a smaller SPANSIZE provides the highest assurance of correct mappings.
 However, any setting of SPANSIZE less than 100 will probably detect the case where a
 range greater than one hundred years is being used.

——
Sir2000 User Language Tools Reference Manual 47

——
Datetime Processing Considerations
——

 5.4 Strict and non-strict format matching

 As mentioned in “Datetime Formats” on page 41, for some of the $functions, the input
 format rule for a token is the same as the output format rule; this is the definition of "strict
 date format matching". However, non-strict $functions sometimes allow a string to
 match a token on input that would not be produced by that token on output. The types of
 strict matching are as follows:

 Alpha tokens For alphabetic tokens (for example, Month), a strict match requires the
 input value to be the correct case. For example, the "MON" token is
 strictly matched by "JAN" but not by "Jan", and the reverse is true for the
 "Mon" token. For non-strict matching, the alpabetic tokens are matched
 by any combination of upper and lowercase input.

 HH, MM, DD For these tokens, a strict match requires a leading zero for values less
 than 10. For non-strict matching, a value less than 10 can also be
 represented by a leading blank followed by a single numeric digit.

 BH, BM, BD For these tokens, a strict match requires a leading blank for values less
 than 10. For non-strict matching, a value less than 10 can also be
 represented by a leading zero followed by a numeric digit.

 DAY For this token, a strict match requires a single digit for values less than
 10. For non-strict matching, a value less than 10 can also be
 represented by a leading zero followed by a numeric digit.

 ZYY For this token, a strict match requires two digits for values less than 100.
 For non-strict matching, a value less than 100 can also be represented
 by a leading zero followed by a two numeric digits.

 If you want to check a datetime string using strict rules, you can use the following
 technique with the non-strict date $functions:

 IF <date> EQ '' OR <date> NE $SIR_NM2DATE(-
 $SIR_DATE2NM(<date>, <fmt>), -
 <fmt>) THEN
 <error handling>
 END IF

 5.5 Datetime and format examples

 There is an extensive set of format tokens, as shown in “Datetime Formats” on page 41.
 These tokens and the various separator characters can be combined in almost limitless
 possibility, giving rise to an extremely large set of datetime formats. This section
 provides examples of some common datetime formats, and also tries to explain the use
 of some of the format tokens which might not be obvious. It also has examples for

——
48 Sir2000 User Language Tools Reference Manual

——
 Datetime and format examples
——

 formats which have usage with the Sir2000 User Language Tools which differs from their
 usage with other Sirius products. These are noted in the examples and are indexed at
 the back of this manual under the heading “Special date format rules”. Each example
 format is explained and also presented with some matching datetimes; again, bear in
 mind that these tokens can be combined in very many ways and only a very few are
 shown here. It is assumed that these examples are invoked sometime between the
 years 1998-2040, as the basis for relative CENTSPAN calculations.

 YYMMDD This is the common 6-digit date format which supports sort order if all dates
 are within a single century. The following User Language fragment

 PRINT $SIR_DATECHK('YYMMDD', '960229')

 prints the value 1.

 YYYYMMDD
 This is the common 8-digit date format which supports sort order with dates
 in two centuries. The following User Language fragment

 PRINT $SIR_DATECNV('YYMMDD', -
 'YYYYMMDD', '921212')

 prints the value 19921212.

 MM/DD/YY
 This is the U.S. 6-digit date format for display. The following User Language
 fragment

 PRINT $SIR_DATECHK('MM/DD/YY', -
 '12/14/94')

 prints the value 1.

 Note:
 0

 ● With non-strict format matching, such as $SIR_DATE2ND, the leading
 zero corresponding to an MM token may be given as a blank, thus
 allowing " 7/15/98". With strict matching, however, such a leading blank
 is not allowed for MM; a leading blank month value with a strict $function
 (that is, one of the Sir2000 User Language Tools Functions) requires the
 BM token. If the data contains leading zeroes in some month instances
 and leading blanks in others, you must use a non-strict $function.

 DD.MM.YY
 This is a European 6-digit date format for display. The following User
 Language fragment

——
Sir2000 User Language Tools Reference Manual 49

——
Datetime Processing Considerations
——

 PRINT $SIR_DATECHK('DD.MM.YY', -
 '14.12.94')

 prints the value 1.

 Note:
 0

 ● With non-strict format matching, such as $SIR_DATE2ND, the leading
 zero corresponding to a DD token may be given as a blank, thus
 allowing " 1.01.00". With strict matching, however, such a leading blank
 is not allowed for DD; a leading blank day value with a strict $function
 (that is, one of the Sir2000 User Language Tools Functions) requires the
 BD token. If the data contains leading zero days in some instances and
 leading blanks in others, you must use a non-strict $function.

 Wkday, DAY Month YYYY "A"T HH:MI
 This is a format which could be used for report headers. The following User
 Language fragment

 PRINT $SIR_DATE(-
 'Wkday, DAY Month YYYY "A"T HH:MI')

 prints a value like "Friday, 7 February 1998 AT 21:33".

 Notes:

 ● If an input format contains AM or PM, then the time (HH:MI) must be
 between 00:01 and 12:00 and must be accompanied by either AM or
 PM.

 ● If an input format contains DAY (for example, "DAY MON YY") with non-
 strict format matching, such as $SIR_DATE2ND, the string matching it
 may have a leading zero, thus allowing "06 MAY 98". With strict
 matching $functions (that is, one of the Sir2000 User Language Tools
 Functions) however, such leading zero is not allowed for DAY; a single
 digit must be supplied for days 1 through 9.

 ● If an input format contains HH with non-strict format matching, such as
 $SIR_DATE2ND, the string matching it may have a leading blank, thus
 allowing " 8:30". With strict matching, however, such a leading blank is
 not allowed for HH; a leading blank hour value with a strict $function
 (that is, one of the Sir2000 User Language Tools Functions) requires the
 BH token. If the data contains leading zero hours in some instances
 and leading blanks in others, you must use a non-strict $function.

 YYIIII This is a format that could be used for data that contains a 2-digit year
 prefixing other information, such as a sequence number. The following User
 Language fragment

——
50 Sir2000 User Language Tools Reference Manual

——
 Datetime and format examples
——

 PRINT $SIR_DATECNV('YYIIII', -
 'YYYYIIII', '92ABCD')

 prints the value “1992ABCD”.

 Note:

 ● When a pair of format strings are used for transforming date values, for
 example for $SIR_DATECNV or processing of updates to SIRFIELD
 RELATEd fields, both formats must have the same number of I tokens.

 SIRFIELD is part of the Sir2000 Field Migration Facility.

 YY* This is a format which could be used for data which contains a 2-digit year
 prefixing other information, such as a sequence number, when the other
 information is variable length. The following User Language fragment

 PRINT $SIR_DATECNV('YY*', -
 'YYYY*', '92')
 PRINT $SIR_DATECNV('YY*', -
 'YYYY*', '92XYZ')

 prints the values "1992" and "1992XYZ".

 Notes:

 ● At most one occurrence of the * token may appear in a datetime format.

 ● When a pair of format strings are used for transforming date values, for
 example for $SIR_DATECNV or processing of updates to SIRFIELD
 RELATEd fields, then if a * token appears in one of the formats, a * must
 also appear in the other format.

 SIRFIELD is part of the Sir2000 Field Migration Facility.

 CYYDDD This is a compact 6-digit date format with explicit century information, from
 1900 through and including 2899. The following User Language fragment

 PRINT $SIR_DATECHK('CYYDDD', '097031')

 prints the value 1.

 ZYYMMDD
 This is a compact 6- or 7-digit date format with explicit century information,
 from 1900 through and including 2899, that can often be used with "old"
 YYMMDD date values in the 1900s. The following User Language fragment

——
Sir2000 User Language Tools Reference Manual 51

——
Datetime Processing Considerations
——

 * Check 1 Dec, 1997:
 PRINT $SIR_DATECHK('ZYYMMDD', -
 '971201')
 * Check 1 Dec, 2000:
 PRINT $SIR_DATECHK('ZYYMMDD', -
 '1001201')

 prints the values 1 and 1.

 Note:
 0

 ● With non-strict format matching (such as $SIR_DATE2ND), a three digit
 number with a leading zero may correspond to a ZYY token, thus
 allowing "0971201". With strict matching, however, a 3-digit value with
 leading zero is not allowed for ZYY; a 3-digit value less than 100 with a
 strict $function (that is, one of the Sir2000 User Language Tools
 Functions) requires the CYY token. If the data contains values less than
 100 as three digits in some instances and as two digits in others, you
 must use a non-strict $function.

 YY0000 Decimal digits can be used as separator characters. The following User
 Language fragment

 PRINT $SIR_DATECNV('YY0000', -
 'YYYY"N"A', '920000')

 prints the value "1992NA".

 Note:

 ● Numeric separators, unlike alphabetic separators, do not need to be
 preceeded by a quote character (").

 5.6 $SIR_DATExxx Functions CENTSPAN Argument

 Many of the $SIR_DATExxx functions accept an optional argument containing a
 CENTSPAN value to be used for the call. The default value of any CENTSPAN
 argument is -50, excepting the $WEB_DATE2xx functions without a format argument, in
 which case the CENTSPAN argument is ignored and a CENTSPAN of 1990 is used.
 The default value should be adequate in most cases; if you have carefully determined it
 should be different in some application, code the value on the relevant $function
 invocations.

 For a different approach, see the description of the CENTSPLT and DEFCENT
 parameters (for example,
 http://m204wiki.rocketsoftware.com/index.php/CENTSPLT_parameter) and
 $function arguments.
——
52 Sir2000 User Language Tools Reference Manual

——
 Benefits of Sirius datetime processing
——

 5.7 Benefits of Sirius datetime processing

 Following is a list of benefits offered by Sirius datetime processing. To provide concrete
 comparisons, there are some references to the standard User Language date
 $functions.

 SPANSIZE
 The SPANSIZE processing creates a very strong barrier to detecting
 otherwise un-noticed 2-digit year processing errors. This is unique to Sirius
 datetime processing.

 Relative CENTSPAN
 The relative CENTSPAN specification (for example, "-50") allows you to
 maintain a flexible "rolling" window for 2-digit year processing.

 Default CENTSPAN
 One significant advantage of a relative CENTSPAN is that it allows the
 default (1990 for $WEB_DATE2xx functions without a format, and -50
 otherwise) of a reasonable value without parameter changes in all batch and
 online jobs.

 Format tokens
 There is a very large set of tokens in the Sirius datetime formats. For
 example, there are 4 different tokens representing the day of the week, and
 time of day can be represented. Standard User Language date formats do
 not have any day of week nor time of day tokens, and other standard User
 Language token variations, for example, CYY vs. ZYY, is done by a complex
 argument setting.

 Pattern match tokens
 The Sirius datetime formats can contain single-character ("I") or variable
 length character ("*") match-any tokens in datetime formats. For example,
 you can specify that a string has an imbedded year, and process that year
 as a date.

 Format-free representations
 Non-string datetime values allow you to pass around dates simply as
 numbers, without the complexities of carrying the corresponding string
 format (you only need to establish the scale to operate on a value).

 Operating on numeric representations
 Numeric date values can be operated on directly with User Language,
 especially allowing you to add datetime differences (for example, "+"), rather
 than calling a DATECHG $function and providing a format.

 Time All Sirius datetime $functions allow any reference to a "date" to include time
 of day. The only standard User Language datetime $function which provides
 a time of day is $TIME, the current time of day, in one fixed format.

——
Sir2000 User Language Tools Reference Manual 53

——
Datetime Processing Considerations
——

 $SIR_DATE formats
 $SIR_DATE allows you to specify any format to return the current date and
 time; $DATE has only a few numeric codes for a few formats.

 Error control args
 The Sir2000 User Language Tools provides error handling control that
 applies to all datetime $functions &mdash. Sirius and standard User
 Language. Additionally, all Sirius datetime $functions (except
 $SIR_DATEFMT, of course) allow you to specify it for a single $function
 invocation.

 Error values of numeric date $functions
 The $functions that use non-string datetime values provide very uniform
 error return values: -9.E12 or a null string for numeric or string result
 $functions, respectively.

——
54 Sir2000 User Language Tools Reference Manual

——
 Assembler Language Subroutines for FUNU
——

——————
CHAPTER 6 Assembler Language Subroutines for FUNU

 If a site has coded its own dollar functions that obtain the system date or time, you will
 need to modify these functions to work correctly with the APPDATE clocks. The Sir2000
 User Language Tools provides four entry points to assist you in this conversion effort.

 Three of these entry points (SDATE4, SDATE3, and SDATE) are compatible with entry
 points provided by CCA in Model 204 V4R1 for FUNU (DATE4, DATE3, and DATE). In
 addition, a fourth entry point, SDATEF, allows you to obtain the current date and time
 using any of the Sirius datetime formats (described in “Datetime Formats” on page 41.)

 If a datetime argument error occurs during execution of these subroutines, the error
 handling performed will be controlled by T3 in the case of SDATEF, or by the
 $SIR_DATE_ERR or APPDATE DATE_ERR settings. The datetime argument errors
 which can occur are:

 ● Invalid format, for SDATEF

 ● Date out of range, for SDATE3 (if you have used APPDATE to set your application
 clock outside the range 1900-2899!)

 The subroutines are summarized below:

——
Sir2000 User Language Tools Reference Manual 55

——
Assembler Language Subroutines for FUNU
——

 SDATE4 — Datetime routine for FUNU, with 4-digit year.
 SDATE3 — Datetime routine for FUNU, with 3-digit year.
 SDATE — Datetime routine for FUNU, with 2-digit year.
 SDATEF — Datetime routine for FUNU, format specified by
 argument.

 All of the SDATE/3/4/F routines obtain the time based
 on the current active APPDATE clock.

 Input T1 — Address of area for result
 T2 — Address of counted format (SDATEF)
 T3 — Address of error handling string (SDATEF);
 values may be:
 CANCEL — Cancel request
 IGNORE — Return T4=1
 REPORT — Issue error message, return T4=1
 OFF — $SIR_DATE_ERR and APPDATE DATE_ERR
 determine error handling action

 Returns T4 — Month number (1-12) (SDATE/3/4)
 T4 — 0: format OK, 1 format bad (SDATEF)
 Output area set to current date & time:
 SDATE4: YYYY.DDD MON DD HH:MI:SS (26 bytes)
 SDATE3: CYY.DDD MON DD HH:MI:SS (25 bytes)
 SDATE: YY.DDD MON DD HH:MI:SS (24 bytes)
 SDATEF: Counted string datetime,
 in format requested.

 T1-T3, T5, R6-R1 preserved.

——
56 Sir2000 User Language Tools Reference Manual

——
 Messages
——

——————
APPENDIX A Messages

 Please refer to the M204wiki (see
 http://m204wiki.rocketsoftware.com/index.php/Category:Sirius_Mods_messages)
 for messages related to the Sir2000 User Language Tools.

——
Sir2000 User Language Tools Reference Manual 57

——
Messages
——

——
58 Sir2000 User Language Tools Reference Manual

——
 Index
——

——————
 Index

$ E
$SIR_DATE ... 26 Error handling ... 5-7, 15-16, 23, 27
$SIR_DATE_ERR ... 5, 7, 9, 13, 16, 27
$SIR_DATECHG ... 28 F
$SIR_DATECHK ... 30 Function prototypes ... 23, 27-28, 30, 32-33
$SIR_DATECNV ... 32 $SIR_DATECHG(fmt, dat, days, span, errctl)
$SIR_DATEDIF ... 33 -> %odat ... 28
$SIR_DATEFMT ... 35 $SIR_DATECHK(fmt, dat, span, errctl) ->
$SIR_DATEN/ND/NM/NS ... 36 %tst ... 30
$SIR_DATE2N/ND/NM/NS ... 37 $SIR_DATECNV(infmt, outfmt, dat, span,
$SIR_ND/NM/NS/N2DATE ... 38 errctl) -> %odat ... 32

 $SIR_DATEDIF(fmta, data, fmtb, datb, span,
A errctl) -> %dif ... 33
APPDATE command ... 5, 7, 9-10, 13, 15-16, Functions ... 5-7, 13, 23, 26-28, 30, 32-33,
 18, 20 35-38
APPDATE RESTRICT ... 18 Current date and time as integer:

 $SIR_DATEN/ND/NM/NS ... 36
B Current date and time: $SIR_DATE ... 26

 Datetime check against format:BASECENT parameter ... 20-21
 $SIR_DATECHK ... 30
 Datetime converted to different format:C
 $SIR_DATECNV ... 32CENTSPAN ... 5-6, 13, 32-33, 46, 52
 Datetime format validation:CENTSPLT argument ... 20, 28, 30, 52
 $SIR_DATEFMT ... 35CENTSPLT parameter ... 20, 52
 Datetime incremented by days:Customization zaps ... 18
 $SIR_DATECHG ... 28 Disabling or restricting ... 18
 Datetime integer converted to string:
 $SIR_ND/NM/NS/N2DATE ... 38D
 Datetime string converted to integer:

Date processing ... 32-33, 39, 52 $SIR_DATE2N/ND/NM/NS ... 37
 CENTSPAN ... 32-33 Datetime subtraction: $SIR_DATEDIF ... 33
DATE_ERR ... 5, 7, 9, 13, 15-16 FUNU ... 55
Datetime formats ... 5-7, 13 FUNU subroutines ... 7
DEBUG ... 7
DEBUG information for error messages ... 15 I
DEFCENT argument ... 20, 28, 30, 52

Installation ... 2DEFCENT parameter ... 20-21, 52
Disabling ... 18

N Customization zap ... 18
NODEBUG ... 7

——
Sir2000 User Language Tools Reference Manual 59

——
Index
——

P I ... 51
 MM with leading blank ... 49Privileges ... 18
 Numeric digit separators ... 52
 3 character ZYY with leading blank ... 52R
SYSDATE parameter ... 5, 9-10Restricting ... 18
System Requirements ... 3 Customization zap ... 18

US
User 0 (zero) ... 18SPANSIZE ... 5-6
user-provided $functions ... 55Special date format rules ... 42-44, 49-52

 * ... 51
2-Digit years ... 5-7, 13 BD with leading zero ... 50

 BH with leading zero ... 50
 BM with leading zero ... 49
 CYY with leading zero ... 52
 DAY with leading zero ... 50
 DD with leading blank ... 50
 HH with leading blank ... 50

——
60 Sir2000 User Language Tools Reference Manual

——
 Index
——

 Figures

 Figures

——
Sir2000 User Language Tools Reference Manual xi

——
Index
——

——
xii Sir2000 User Language Tools Reference Manual

	Title
	Notices
	Contacting Global Technical Support
	Contents
	Summary of Changes
	Sirius Mods Version 5.4
	Sirius Mods Version 5.2
	Sirius Mods Version 5.0
	Sirius Mods Version 4.6

	1. Background
	1.1. The Year 2000
	1.2. Sir2000
	1.3. Versions, Compatibility and Installation
	1.4. Related products
	1.5. Related manuals
	1.6. System requirements

	2. Overview
	2.1. APPDATE Command
	2.2. Date $Functions
	2.2.1. Datetime Formats
	2.2.2. Processing two digit years (CENTSPAN/SPANSIZE)
	2.2.3. Error handling

	2.3. Subroutines for FUNU
	2.4. SirPro
	2.5. SirLib

	3. The APPDATE Command
	3.1. Setting the Clocks With the APPDATE Command
	3.2. Error Handling Control with DATE_ERR
	3.2.1. Setting Default Error Handling with the APPDATE Command
	3.2.2. Setting Default Error Handling with the $SIR_DATE_ERR Function

	3.3. Examining the APPDATE Information
	3.3.1. APPDATE DISPLAY Command
	3.3.2. Retrieving Last Non-null $SIR_DATE_ERR Setting

	3.4. Privileges, Disabling, and Pre-User 0 APPDATE Command
	3.5. Complete Syntax of the APPDATE Command
	3.6. Values affected by the APPDATE clocks
	3.7. APPDATE Command Usage Notes

	4. $Functions
	4.1. Errors in Datetime $Functions
	4.2. $SIR_DATE: Get current datetime
	4.3. $SIR_DATE_ERR: Set and query default error handling at request level
	4.4. $SIR_DATECHG: Add some days to datetime
	4.5. $SIR_DATECHK: Check if datetime matches format
	4.6. $SIR_DATECNV: Convert datetime to different format
	4.7. $SIR_DATEDIF: Difference between two dates
	4.8. $SIR_DATEFMT: Validate datetime format
	4.9. $SIR_DATEN/ND/NM/NS: Current date and time as integer
	4.10. $SIR_DATE2N/ND/NM/NS: Convert datetime string to integer
	4.11. $SIR_ND2DATE/NM2DATE/NS2DATE/N2DATE: Convert datetime integer to string

	5. Datetime Processing Considerations
	5.1. Datetime Formats
	5.2. Valid Datetimes
	5.3. Processing Dates With Two-Digit Year Values
	5.3.1. CENTSPAN
	5.3.2. SPANSIZE

	5.4. Strict and non-strict format matching
	5.5. Datetime and format examples
	5.6. $SIR_DATExxx Functions CENTSPAN Argument
	5.7. Benefits of Sirius datetime processing

	6. Assembler Language Subroutines for FUNU
	A. Messages
	Index

