
Rocket M204 SirFact

Reference Manual

September 2013
SFT-0704-RM-01

Notices

Edition

Publication date: September 2013

Book number: SFT-0704-RM-01

Product version: Rocket M204 SirFact

Copyright

© Rocket Software, Inc. or its affiliates 2001-2013. All Rights Reserved.

Trademarks

Rocket is a registered trademark of Rocket Software, Inc. For a list of Rocket registered
trademarks go to: www.rocketsoftware.com/about/legal. All other products or services
mentioned in this document may be covered by the trademarks, service marks, or product
names of their respective owners.

Examples

This information might contain examples of data and reports. The examples include the
names of individuals, companies, brands, and products. All of these names are fictitious and
any similarity to the names and addresses used by an actual business enterprise is entirely
coincidental.

License agreement

This software and the associated documentation are proprietary and confidential to Rocket
Software, Inc. or its affiliates, are furnished under license, and may be used and copied only in
accordance with the terms of such license.

Note

This product may contain encryption technology. Many countries prohibit or restrict the use, import, or
export of encryption technologies, and current use, import, and export regulations should be followed
when exporting this product.

Contact information

Website: www.rocketsoftware.com

Rocket Software, Inc. Headquarters
77 Fourth Avenue
Waltham, MA 02451–1468
USA
Tel: +1 781 577 4321
Fax: +1 617 630 7100

Contacting Global Technical Support
If you have current support and maintenance agreements with Rocket Software and CCA,
contact Global Technical Support by email or by telephone:

Email: m204support@rocketsoftware.com

Telephone:

North America +1 800 755 4222

United Kingdom/Europe +44 (0) 20 8867 6153

Alternatively, you can access the Rocket Customer Portal and report a problem, download an
update, or read answers to FAQs. You will be prompted to log in with the credentials supplied as
part of your product maintenance agreement.

To log in to the Rocket Customer Portal, go to:

www.rocketsoftware.com/support

——
Proprietary Notices
——

——
iv SirFact Reference Manual

——
 Contents
——

———————
 Contents

 Proprietary Notices . ii

 Contents . v

 Summary of Changes . vii
 Sirius Mods Version 7.1 . vii
 Sirius Mods Version 6.8 . vii
 Sirius Mods Version 6.7 . vii
 Sirius Mods Version 6.6 . viii
 Sirius Mods Version 6.5 . viii
 Sirius Mods Version 6.4 . viii
 Sirius Mods Version 6.2 . ix
 Sirius Mods Version 6.0 . ix
 Sirius Mods Version 5.6 . ix
 Sirius Mods Version 5.5 . ix
 Sirius Mods Version 5.4 . x

 Chapter 1: Overview . 1

 Versions and compatibility . 1
 Related manuals . 2
 Related products . 3
 System Requirements . 3

 Chapter 2: Post Hoc Debugging with SirFact 5

 Ad Hoc vs. Post Hoc Debugging . 6

 Chapter 3: The SIRFACT Command . 9

 SIRFACT command summary . 10
 SIRFACT CANCEL . 11
 SIRFACT DISPLAY . 14
 SIRFACT DUMP . 16
 Procedure name substitutions . 18
 Managing SirFact dumps . 19
 SIRFACT IGNORE . 21
 SIRFACT MAXDUMP . 22
 SIRFACT QUIESCE . 23
 SIRFACT RESUME . 24
 SIRFACT RECNDUMP . 25
 SIRFACT SNAP . 26

——
SirFact Reference Manual v

——
Contents
——

 Chapter 4: The ASSERT Statement . 27

 Chapter 5: The SIRFACT Statement . 31

 Chapter 6: The TRACE Statement . 35

 Chapter 7: System Parameters . 37

 The SIRFACT Parameter . 37
 Subsystem procedure enqueues . 38
 SIRFACT compilation data collection . 38
 The SIRAPSYF Parameter . 40

 Chapter 8: SirFact $Functions . 43

 CALLing $functions . 44
 $FACT_CMD: Run a command on the SirFact SDAEMON 45
 $FACT_CONTEXT: Set subroutine context for $FACT_DATA 46
 $FACT_DATA: Retrieve data from a SirFact dump 47
 $FACT_DONE: Terminate a SirFact dump 48
 $FACT_INIT: Open a SirFact dump . 49
 $FACT_OPTION: Set or get SirFact display options 50
 $FACT_VNAME_WIDTH: Sets variable name width for $FACT_DATA 51
 $TRACE2LIST: Copy wrap-around trace table to $list 52

 Chapter 9: Other SirFact Facilities . 55

 Comment-initialized global variables . 55

 Chapter 10: The FACT Subsystem . 57

 C[ontext] command: Setting program context for data extraction 59
 D[isplay] command: Displaying data from the SirFact dump 60
 Additional syntax for VALUE and LIST 64
 Navigation and display commands . 68
 Program function keys . 69
 The FACT Print Screen . 70

 Appendix A: Date Processing . 73

 Appendix B: Terminal MODEL 6 Support . 75

 Index . 77

——
vi SirFact Reference Manual

——
 Summary of Changes
——

——————
 Summary of Changes

 This section describes significant changes to the documentation. Usually, these
 changes correspond to enhancements made to the underlying product, although they
 might be simple documentation improvements.

 Sirius Mods Version 7.1

 The following changes correspond to changes in SirFact since version 6.8:

 ● The SIRFACT DISPLAY MAXDUMP command output now includes a comment that
 reports the number of SirFact dumps taken since the Model 204 online initialization.
 See “SIRFACT DISPLAY” on page 14.

 Sirius Mods Version 6.8

 The following changes correspond to changes in SirFact since version 6.7:

 ● Support for Model 6 terminals (“Terminal MODEL 6 Support” on page 75).

 Sirius Mods Version 6.7

 The following changes correspond to changes in SirFact since version 6.6:

 ● The SirFact display of objects is enhanced, and some minor changes to existing
 syntax is included. See the “Objects” discussion in “Additional syntax for VALUE
 and LIST” on page 64.

 ● A new SirFact $function (“$FACT_OPTION: Set or get SirFact display options” on
 page 50) lets you change certain $FACT_DATA data retrieval options, including
 case-sensitivity.

 ● The Assert statement (“The ASSERT Statement” on page 27) is enhanced:
 ▪ A new Continue option lets Assert actions be performed without the request
 being canceled).
 ▪ The Info option will now display the value of a %variable in the Assert error
 message.

——
SirFact Reference Manual vii

——
Summary of Changes
——

 Sirius Mods Version 6.6

 The following changes correspond to changes in SirFact since version 6.5:

 The SirFact display of XmlDoc contents now uses the Compact form of the Janus SOAP
 XML API Print method.

 Sirius Mods Version 6.5

 The following changes correspond to changes in SirFact since version 6.4:

 ● You can now invoke many of the SirFact $functions using a User Language CALL
 statement instead of assigning the function result to a %variable. See “CALLing
 $functions” on page 44.

 ● Support is added for displaying the value of some types of object %variables in the
 SirFact dump data. See “Additional syntax for VALUE and LIST” on page 64.

 ● VERSIONS is added to the INFO data you can dynamically display in the SirFact
 dump data. INFO.VERSIONS retrieves the Model 204 version, the Sirius Mods
 version, and the SirFact internal dump format version in effect when the SirFact
 dump was produced. See “D[isplay] command: Displaying data from the SirFact
 dump” on page 60.

 Sirius Mods Version 6.4

 This release adds a variety of enhancements that simplify and improve APSY procedure
 maintenance:

 ● New SIRFACT parameter options (X'40' and X'80') for APSY maintenance (see
 “The SIRFACT Parameter” on page 37).

 ● New Sirius Mods system parameter: SIRAPSYF (see “The SIRAPSYF Parameter”
 on page 40).

 ● New SIRFACT command options: QUIESCE and RESUME (see “SIRFACT
 QUIESCE” on page 23 and “SIRFACT RESUME” on page 24).

——
viii SirFact Reference Manual

——
 Sirius Mods Version 6.2
——

 Sirius Mods Version 6.2

 ● “$TRACE2LIST: Copy wrap-around trace table to $list” on page 52.

 ● “The TRACE Statement” on page 35.

 ● New +D and +M substitution strings in SIRFACT DUMP command.

 ● SIRFACT available as operator command.

 ● REQUEST TOO LONG errors captured under certain circumstances.

 Sirius Mods Version 6.0

 ● Add documentation for the new SIRFACT RECNDUMP command.

 ● Add documentation for the new SIRFACT SNAP command.

 ● Add documentation for message number parameters on the SIRFACT DUMP
 command.

 ● Add documentation for the new DISPLAY RIN, RON and FIELD commands in the
 FACT subsystem.

 Sirius Mods Version 5.6

 ● Add documentation for the new SIRFACT parameter bits to trap FOR RECORD
 NUMBER (FRN) errors.

 Sirius Mods Version 5.5

 Following are features which were also released as zaps to one or more versions prior to
 version 5.4:

 ● Comment-initialized globals

——
SirFact Reference Manual ix

——
Summary of Changes
——

 Sirius Mods Version 5.4

 This is the initial release of SirFact.

——
x SirFact Reference Manual

——
 Overview
——

——————
CHAPTER 1 Overview

 1.1 Versions and compatibility

 SirFact is a post hoc debugging tool made up of two distinct components.

 First, there is a collection of object code enhancements to the Model 204 database-
 engine nucleus. These enhancements are distributed as components of the Sirius
 Mods, then as components of version 7.5 of Model 204, and they make up a collection of
 products including those in the Janus family. The Sirius Mods included many non-
 debugging related products such as Fast/Backup, Fast/Reload, Janus TCP/IP Base, and
 Janus Web Server. No other of these products are required to run SirFact.
 0

 The second component of SirFact is a collection of Model 204 procedure files that
 contain User Language, documentation and assorted other data. These Model 204
 procedures files are distributed as components of the User Language Structured
 Programming Facility also known as UL/SPF. UL/SPF includes a SIRFACT file which
 contains code useful for looking at SirFact dumps. UL/SPF also includes the definitions
 for the FACT subsystem which is useful for looking at SirFact dumps. UL/SPF also
 includes files that are components of non-SirFact related products such as SirPro,
 SirScan and SirMon. No other UL/SPF products are required to run SirFact, though
 SirPro (http://m204wiki.rocketsoftware.com/index.php/SirPro) makes it more convenient
 to look at a list of dumps and to select one to be viewed from the FACT subsystem.

 To install SirFact, the Sirius Mods (or Model 204 7.5 or higher) and UL/SPF must be
 installed. If the Sirius Mods are installed, all other products owned by the installing site
 that are part of the Sirius Mods will also be installed. Similarly, when UL/SPF is
 installed, all other products owned by the installing site that are part of UL/SPF will be
 installed.

 Because the Sirius Mods and UL/SPF have somewhat different release cycles, the
 version numbers for these two components will often differ in a distribution. For
 example, version 5.3 of the Sirius Mods might be shipped with version 5.0 of UL/SPF.
 All the products in UL/SPF depend on certain features being present in the version of the
 Sirius Mods that is installed in the Model 204 load module under which UL/SPF is
 running. This implies that the Sirius Mods must be installed for any UL/SPF component
 to operate correctly. Conversely, the Sirius Mods do not depend on any features being
 present in UL/SPF or even on the presence of UL/SPF.

 Any User Language application that uses the Sirius Mods (including UL/SPF) will run
 correctly on subsequent versions of the Sirius Mods It is always possible to upgrade the
 Sirius Mods without having to worry about upgrading UL/SPF. This is not to say that this
 is always a good idea, only that it is possible and that the installed version of UL/SPF
 products will continue to run as they had before the Sirius Mods upgrade.
——
SirFact Reference Manual 1

——
Overview
——

 While SirFact has a UL/SPF component, most of the critical code was actually in the
 Sirius Mods object code enhancements to the Model 204 nucleus (until version 7.5 of
 Model 204). The UL/SPF component of SirFact consists mostly of the FACT subsystem,
 which is a user interface for scanning SirFact dumps. Because of this, the version
 number of SirFact is generally considered to be the version of the Sirius Mods in which it
 is contained. SirFact was first available in version 5.4 of the Sirius Mods so the first
 version of SirFact was actually called version 5.4. This document, the SirFact
 Reference Manual, assumes that a site is running Sirius Mods version 5.4 or later and
 has installed UL/SPF version 5.4 or later. Any documentation that requires a later
 version of the Sirius Mods or UL/SPF will be clearly marked to indicate this. For
 example, a $function that is only available in versions 5.5 and later of the Sirius Mods
 will have a sentence such as “This function requires version 5.5 or later of the Sirius
 Mods” in its documentation. If a feature, $function, command, or parameter is not
 indicated as requiring any specific version of the Sirius Mods, it can be assumed that it is
 available as documented in all versions of the SirFact; that is, all versions since version
 5.4 of the Sirius Mods and version 5.4 of UL/SPF.

 1.2 Related manuals

 The person responsible for the installation of SirFact should refer to the Sirius Mods
 Installation Guide(until version 7.5 of Model 204) and the UL/SPF installation guide
 (http://m204wiki.rocketsoftware.com/index.php/UL/SPF_installation_guide). Also,
 http://m204wiki.rocketsoftware.com/index.php/Category:Sirius_Mods_messages
 contains documentation on SirFact error messages and so might be useful to system
 programmers or DBAs as well as installers.

 There are a number of Sirius $functions which you are authorized to use along with
 SirFact, including procedure processing $functions and $list processing $functions.
 These are documented in
 http://m204wiki.rocketsoftware.com/index.php/List_of_$functions, which does not
 contain documentation for the functions specific to SirFact. These functions are
 documented only in this manual in “SirFact $Functions” on page 43.

 The FACT subsystem, the subsystem used for looking at SirFact dumps, can be invoked
 from SirPro. While this capability is documented in this manual in “The FACT
 Subsystem” on page 57, the SirPro User's Guide documents the layout of and other
 useful facilities available in SirPro.

——
2 SirFact Reference Manual

——
 Related products
——

 1.3 Related products

 The FACT subsystem, the subsystem used for looking at SirFact dumps, can be invoked
 from SirPro. SirPro also provides a nice user interface for scanning lists of dumps and
 programs.

 SirFact does not address issues with tracking and distributing fixes to bugs once they
 are written. SirLib might prove useful to handle change control and fix distribution issues
 related to post hoc (and even ad hoc) debugging.

 SirFact provides a powerful post hoc debugging facility. It is always better, however, to
 catch bugs before they go into unit-testing or production. As such, ad hoc (interactive)
 debugging facilities are useful in reducing the number of dumps that get into production.
 The Rocket Model 204 Janus Debugger and the Rocket Model 204 TN/3270 Debugger
 are interactive debugging facilities that are useful for debugging code while it is being
 developed. SirScan can also be useful for debugging certain applications, especially
 those that are not associated with a terminal; for example, Janus or Connect* bugs.

 1.4 System Requirements

 SirFact requires the following components to run:

 ● Mainframe operating systems:

 z/OS

 CMS (releases currently supported by IBM) running under

 z/VM

 ● Model 204 Version 6 Release 1.0 or later

——
SirFact Reference Manual 3

——
Overview
——

——
4 SirFact Reference Manual

——
 Post Hoc Debugging with SirFact
——

——————
CHAPTER 2 Post Hoc Debugging with SirFact

 Debugging is the process of eliminating errors in software. Debugging essentially
 consists of three steps :

 1. Determining an error has occurred.

 2. Determining the cause of the error.

 3. Correcting the cause of the error.

 The last item is essentially a programming task and so is essentially beyond the scope
 of debugging tools and probably any other kinds of tools. Understanding the reason
 something is an error, the logic flaws that caused the error and how the logic needs to
 be corrected require understanding so are essentially human activities. It is not likely
 this process can be significantly improved by automation any time in the near future.

 One might also consider managing and distributing the fixes to errors to be part of the
 debugging process. Whether or not this is accurate, fix management and distribution
 are different enough in their nature that they are rarely handled by debugging facilities
 and are more typically handled by change control facilities such as SirLib which is
 available for Model 204.

 Software errors are typically referred to as bugs so that removing errors from software is
 called debugging. A bug is typically a problem with software that results in a display of
 incorrect data to the end-user or one that causes premature termination of a program.
 There is also a class of bugs that can cause poor software performance. In any case, if
 uncorrected, most bugs will ultimately be noticed by end-users as incorrect data,
 abnormal termination of a system, or poor performance.

 Software logic errors can cause immediately noticed problems or they can cause errors
 long after the original logic error. For example, a bug in a piece of code might cause a
 global to be incorrectly set. This incorrectly set global might cause another piece of
 code to store some invalid data in the database that months later might be loaded by a
 different piece of code which then might terminate abnormally because of the invalid
 data or display incorrect data on the end-user's screen. Clearly, in this sort of situation,
 especially if the incorrect data might have been stored by any one of dozens of
 procedures, determining the cause of the problem can be very difficult.

 This example illustrates the point that the further from the original logic error one catches
 the error the more difficult it is to determine the cause of the error. Because of this, one
 of the goals of debugging is to catch errors as early as possible. SirFact provides the
 “SIRFACT CANCEL” command (“The SIRFACT Command” on page 9) and the
 “ASSERT” (“The ASSERT Statement” on page 27) and “SIRFACT” (“The SIRFACT
 Statement” on page 31) statements to facilitate catching errors earlier rather than later.
——
SirFact Reference Manual 5

——
Post Hoc Debugging with SirFact
——

 A second goal of debugging is to collect as much information as possible when an error
 occurs. A classic example of the antithesis of this is the Model 204 message M204.0553
 SUBSCRIPT RANGE ERROR. This message causes request cancellation but provides
 virtually no information as to the cause of the problem. Until recently this message didn't
 even include the name of the array to which the invalid subscript applied; fortunately now
 it does. Nevertheless, there are still many key pieces of information missing, such as
 the line of code the error occurred on, the value of the array's subscript, the values of
 other variables or fields from which the subscript was derived, etc.. SirFact provides the
 “SIRFACT” system parameter (“The SIRFACT Parameter” on page 37) and the
 “SIRFACT MAXDUMP” and “SIRFACT DUMP” commands (“The SIRFACT Command”
 on page 9) to collect as much information about application errors as possible. A
 tremendous amount of information about the application at the time of an error is
 collected in SirFact dumps, under control of these commands. The data in these dumps
 can then be viewed via SirFact $functions (“SirFact $Functions” on page 43) or a ready-
 to-use application subsystem called FACT (“The FACT Subsystem” on page 57).

 2.1 Ad Hoc vs. Post Hoc Debugging

 When most people think of debugging tools they think of tools used by a programmer
 during the development process or perhaps when a programmer is trying to reproduce in
 a test environment a problem that occurred in a production environment. These types of
 tools are typically interactive and allow things like setting of breakpoints, examination
 and “manual” modification of values of variables and tracing of code paths. Because the
 user of such interactive debugging tools must be familiar with the code being debugged
 and because an application being debugged by such a tool must run “inside” the
 debugging environment, these tools are generally only useful when a programmer is
 running the application. Because of the interactive nature of these types of debugging
 tools, they are sometimes referred to as “ad hoc” debugging tools. The Rocket Model
 204 Janus Debugger and the Rocket Model 204 TN/3270 Debugger are full-fledged ad
 hoc debugging tools available for Model 204.

 As desirable as it is to catch all errors during the development process, this is simply not
 possible. All but the simplest code has just too many possible combinations of user and
 external inputs, database values and environmental variables for all possible
 combinations to be tested. Often a bug can only be induced by specific combinations of
 all these variables. Because of this bugs can and will be detected without a programmer
 present and so outside the environment of an ad hoc debugger. Even worse, some of
 these bugs will not be reproducible in a test environment so that a programmer could
 use an ad hoc debugger to attack the problem.

 Very often, a user will not remember the exact sequence of inputs she entered to cause
 an error or perhaps the error was caused by a combination of user inputs and
 environmental problems beyond the view of the user. Often, the combination of factors
 that caused a bug will not be understood until the actual cause of the bug is understood.
 Occasionally, with timing related bugs, even understanding all the factors required to
 cause a bug to happen might not be sufficient to consistently reproduce the problem.

——
6 SirFact Reference Manual

——
 Ad Hoc vs. Post Hoc Debugging
——

 Ad hoc debuggers are basically useless for problems that occur in production or unit-test
 away from the watchful gaze of a programmer. Instead, a different debugging tool is
 needed for these kinds of problems, namely a post hoc debugging tool. A post hoc
 debugging tool is useful in solving problems that occur outside of development because

 1. It contains facilities to trap errors earlier rather than later.

 2. It collects and stores as much information as possible at the time of an error.

 The only real full-fledged post hoc debugging tool available in the Model 204
 environment is SirFact.

 Even in the later stages of development a post hoc debugging facility might be
 preferable to an ad hoc debugger. This is because a programmer might wish to quickly
 go through many code paths without an intrusive ad hoc debugger in the way. Because
 they run in production systems post hoc debugging tools must be extremely unobtrusive.
 In any case, a programmer might be willing to pay a price in getting slightly less
 interactive debugging capabilities for the benefit of having the debugger “out of the way”
 most of the time.

——
SirFact Reference Manual 7

——
Post Hoc Debugging with SirFact
——

——
8 SirFact Reference Manual

——
 The SIRFACT Command
——

——————
CHAPTER 3 The SIRFACT Command

 The SIRFACT command has a variety of subcommands that serve a grab-bag of
 functions. All SIRFACT commands are global, that is system-wide, in nature and so
 require system manager or system administrator privileges to execute. SIRFACT
 commands can also be issued as operator commands, that is, on the Online virtual
 console under VM, or as the response to the HALT message under OS/390.

 Some SIRFACT subcommands make use of the wildcard characters asterisk (*),
 question mark (?), and double quotation mark ("):

 ? Represents any single character.

 * Represents any string of characters.

 " The escape flag that allows special characters to bypass wildcard translation.

 The following examples illustrate the use of the wildcard characters:

 ● This command requests a display of all the SIRFACT CANCEL subcommands in
 effect for $functions that begin with the letters “$LIST”:

 SIRFACT DISPLAY CAN $LIST*

 ● This command indicates that a SirFact dump should be created for any request
 cancellation errors that occur in a subsystem with a name that is seven characters
 long and ends in the letters “CUST”:

 SIRFACT DUMP DUMPROC DUMP.+T SUBSYS ???CUST

 ● This command indicates that a SirFact dump should be created for any request
 cancellation errors that occur for user ?WEIRD. The double-quote (") is required to
 prevent the question mark (?) from being interpreted as a wildcard character:

 SIRFACT DUMP DUMPROC DUMP.+T USER "?WEIRD

——
SirFact Reference Manual 9

——
The SIRFACT Command
——

 3.1 SIRFACT command summary

 The following table shows the SIRFACT subcommands and their functions.

 All subcommands are prefixed with “SIRFACT” (for example, SIRFACT CANCEL,
 SIRFACT MAXDUMP).

 CANCEL Indicates which return codes from $functions should result in
 request cancellation. Can be abbreviated “CAN”.

 DISPLAY Shows the currently active SIRFACT subcommands. Can be
 abbreviated “DISP.”.

 DUMP Indicates which request cancellations should cause a SirFact
 dump to be taken and where the dump is to go.

 IGNORE Indicates which request cancellation error messages are not to
 produce SirFact dumps. Can be abbreviated “IGN.”.

 MAXDUMP Places limits on the number of SirFact dumps that will be taken.
 The default system limit is 0 so a SIRFACT MAXDUMP must be
 issued to get any SIRFACT dumps. Can be abbreviated
 “MAXD”.

 NOCANCEL Indicates that certain return codes from $functions should not
 result in request cancellation. Cancels out the effect of a
 SIRFACT CANCEL command. Can be abbreviated “NOCAN”.

 NODUMP Indicates that certain request cancellations should not result in
 SirFact dumps being produced. Cancels out the effect of a
 SIRFACT DUMP command.

 NOIGNORE Indicates that certain request cancellation error messages are to
 produce SirFact dumps. Cancels out the effect of a SIRFACT
 IGNORE command. Can be abbreviated “NOIGN”.

 QUIESCE Facilitates updates of APSY subsystem procedures while the
 subsystem is up and in use.

 RECNDUMP Establishes the number of record numbers from each found set
 or LIST to be dumped. Can be abbreviated “RECND.”.

 RESUME Stops the effect of a SIRFACT QUIESCE command and returns
 the subsystem to normal operation.

 SNAP Requests that a SirFact dump be taken for another thread.

——
10 SirFact Reference Manual

——
 SIRFACT CANCEL
——

 3.2 SIRFACT CANCEL

 SIRFACT CANCEL function returncodes

 SIRFACT CANCEL command syntax

 The SIRFACT CANCEL subcommand requires a parameter that indicates the $function
 to which it applies, followed by return codes that should be intercepted and cause
 request cancellation when returned by the function. The subcommand “CANCEL” can
 be abbreviated to “CAN”.

 function The name of the function to which the command applies. This name
 cannot contain wildcard characters.

 returncodes A blank delimited set of return codes that will be intercepted and cause
 request cancellation.

 For example,

 SIRFACT CANCEL $SETG 1

 would cause cancellation of any request that gets a return code of 1 from $SETG.

 SIRFACT CAN $LISTADD -3 -5 -6 -7

 would cause cancellation of any request that gets a return code of -3, -5 -6 or -7 from
 $LISTADD.

 The rationale for SIRFACT CANCEL is that certain return codes from certain $functions
 indicate programming errors or severe environmental problems (return code 1 from
 $SETG, for example), so these codes should result in immediate request cancellation,
 even in adhoc or development procedures. For example, a return code of -6 from
 $LISTLOC, indicating an invalid $list identifier, suggests a severe problem in a program.
 Even in an adhoc procedure, there is little reason to go on after such an error.

 There is a distinction, however, between cancelling the request and creating a SirFact
 dump for the error. A dump would generally not be desirable for errors in adhoc or
 development procedure errors. Because of this, the creation of dumps is controlled by a
 different SIRFACT subcommand, the SIRFACT DUMP subcommand (“SIRFACT DUMP”
 on page 16). This subcommand limits the creation of dumps to specific subsystems,
 procedures, or users.

 It is strongly recommended that the collection of SIRFACT CANCEL commands in the
 development and test regions match the collection in production. Otherwise, things that
 work in development might not work in test or production and vice versa. It can't be
 overemphasized that SIRFACT CANCEL should be used for return codes that indicate
 programming errors or severe environmental problems that are as invalid in
 development as in production. In the rare cases where such a return code might be

——
SirFact Reference Manual 11

——
The SIRFACT Command
——

 considered “normal” or at least acceptable in a chunk of code, the SIRFACT statement
 (“The SIRFACT Statement” on page 31) can be used to temporarily disable SirFact
 $function error trapping for a specific user.

 A SIRFACT CAN can be disabled with a SIRFACT NOCAN command for the same
 function. If multiple SIRFACT CANCELs (or NOCANCELs) are issued for the same
 $function, only the last one is used. So the following would only trap return codes of -6
 from $LISTLOC:

 SIRFACT CAN $LISTLOC -5
 SIRFACT CAN $LISTLOC -6

 To trap return codes of -5 and -6 from $LISTLOC, you must issue

 SIRFACT CAN $LISTLOC -5 -6

 The implementation of SIRFACT CANCEL is very efficient and should cause no
 measurable performance degradation in the execution of functions for which return
 codes are being trapped. Performance of the SirFact error trapping is certainly
 significantly more efficient than testing for the same errors using User Language.

 Whether or not a SirFact dump is produced for an error trapped by the SIRFACT
 CANCEL command, these trapped errors are always accompanied by a message
 indicating the procedure and line number in which the error occurred, as well as the
 name of the function causing the error and the function arguments. SirFact will use any
 one of several mechanisms to collect the procedure and line number information, each
 of them having some cost in either QTBL, STBL, VTBL, or CCATEMP space. For a
 discussion of the costs and tradeoffs of the various approaches, see “The SIRFACT
 Parameter” on page 37.

 The following is a list of “reasonable” SIRFACT CANCEL commands for most Onlines:

 SIRFACT CAN $BLDPROC 1
 SIRFACT CAN $DATECHG *
 SIRFACT CAN $DATECNV *
 SIRFACT CAN $DATEDIF 99999999
 SIRFACT CAN $EDIT '' '#'
 SIRFACT CAN $INCRG 1 2
 SIRFACT CAN $LSTPROC 4
 SIRFACT CAN $RDPROC 2
 SIRFACT CAN $SETG 1
 SIRFACT CAN $UNBIN ''
 SIRFACT CAN $UNFLOAT ''
 SIRFACT CAN $UNPACK ''
 SIRFACT CAN $LISTADD -3 -5 -6 -7
 SIRFACT CAN $LISTADDI -3 -5 -6 -8
 SIRFACT CAN $LISTCNT -5 -6
 SIRFACT CAN $LISTCPY -3 -5 -6
 SIRFACT CAN $LISTDEL -5
 SIRFACT CAN $LISTFIND -5 -6 -7 -8
 SIRFACT CAN $LISTILN -5 -6 -7
——
12 SirFact Reference Manual

——
 SIRFACT CANCEL
——

 SIRFACT CAN $LISTIMG -5 -6 -8
 SIRFACT CAN $LISTINF -5 -6 -7 -9
 SIRFACT CAN $LISTINFI -5 -6 -7 -8
 SIRFACT CAN $LISTINS -3 -5 -6 -7 -9
 SIRFACT CAN $LISTINSI -3 -5 -6 -8 -9
 SIRFACT CAN $LISTLOC -3 -5 -6 -7 -9
 SIRFACT CAN $LISTLUP -3 -5 -6 -7 -9
 SIRFACT CAN $LISTMOVE -5 -6
 SIRFACT CAN $LISTOVL -5 -6 -7 -9
 SIRFACT CAN $LISTREM -5 -6 -7
 SIRFACT CAN $LISTRST -13
 SIRFACT CAN $LISTSAV -3 -5 -13
 SIRFACT CAN $LISTSAVE -3 -5 -13
 SIRFACT CAN $LISTSAVL -3 -5 -6
 SIRFACT CAN $LISTSRT -3 -5 -6 -10 -12
 SIRFACT CAN $LISTSORT -3 -5 -6 -10 -12
 SIRFACT CAN $LISTSUB -3 -5 -6 -7 -9
 SIRFACT CAN $LIST_GLOBAL -3 -14 -15
 SIRFACT CAN $LIST_CONV_ITEM -5 -6 -7
 SIRFACT CAN $LIST_COPY_ITEMS -3 -5 -6 -7 -8
 SIRFACT CAN $LIST_DIFF_ITEM -3 -5 -6 -7

 As might be apparent from these examples, there are a few $functions for which the
 return values are special-cased. These are:

 $DATECHG On errors, this function will return a number of asterisks (*) equal to the
 length of the second parameter (the output format). SirFact interprets a
 SIRFACT CANCEL $DATECHG '*' to require request cancellation for
 any $DATECHG call that returns one or more asterisks.

 $DATECNV On errors, this function will return a number of asterisks (*) equal to the
 length of the first parameter (the input format). SirFact interprets a
 SIRFACT CANCEL $DATECNV '*' to require request cancellation for
 any $DATECNV call that returns one or more asterisks.

 $EDIT On errors, this function will return a number of hashes (#) equal to the
 length of the second parameter (the edit mask). SirFact interprets a
 SIRFACT CANCEL $EDIT '#' to require request cancellation for any
 $EDIT call that returns one or more hashes.

 $LISTINF $LISTINF always returns a string value. To indicate an error, $LISTINF
 returns a string containing ‘-5’, ‘-6’, ‘-7’ or ‘-9’. Yet, in theory at least,
 these values could also be reasonable values of $list items. SIRFACT
 CANCEL provides a work-around for this design flaw in $LISTINF,
 because SIRFACT CANCEL will not cause request cancellation when a
 cancellation value is actually a value in a $list item. SIRFACT CANCEL
 will only cause cancellation when the return value is truly the result of an
 error.

——
SirFact Reference Manual 13

——
The SIRFACT Command
——

 It is strongly recommended that you set SIRFACT CANCEL as aggressively as possible.
 If a SIRFACT CANCEL should cause a problem with “dirty” use of $functions, the
 preferred solution is to clean up the use of the $functions. The next best solution is to
 wrap the “dirty” function calls in a SIRFACT OFF/SIRFACT ON bracket. Eliminating the
 SIRFACT CANCEL for a value is the least preferable solution, because:

 1. It reduces the benefit of SIRFACT CANCEL to encourage good programming
 practices.

 2. It eliminates the ability of SIRFACT CANCEL to catch unintentional misuses of
 $functions.

 3.3 SIRFACT DISPLAY

 SIRFACT DISPLAY [subcom [subset]]

 SIRFACT DISPLAY command syntax

 The SIRFACT DISPLAY subcommand displays many of the SIRFACT subcommands
 currently in effect. SIRFACT DISPLAY with no subcom displays all SIRFACT
 commands from the subcommand classes listed below that are currently in effect. The
 subcommand “DISPLAY” can be abbreviated to “DISP”.

 subcom The name of the class of subcommands to which the display is to apply.
 Valid values for subcom are:

 CANCEL Displays active SIRFACT CANCEL commands. Can be
 abbreviated CAN.

 CANCEL can be followed by a subset value that can contain
 wildcards indicating the $functions for which SIRFACT
 CANCEL settings are to be displayed. SIRFACT
 NOCANCEL commands are not displayed because these
 simply eliminate the SIRFACT CANCELs for the specified
 $functions.

 DUMP Displays active SIRFACT DUMP and NODUMP commands.

 IGNORE Displays active SIRFACT IGNORE commands. Can be
 abbreviated IGN.

 IGNORE can be followed by a subset that can contain
 wildcards indicating the messages for which SIRFACT
 IGNORE settings are to be displayed. SIRFACT
 NOIGNORE commands are not displayed because these

——
14 SirFact Reference Manual

——
 SIRFACT DISPLAY
——

 simply eliminate the SIRFACT IGNOREs for the specified
 messages.

 MAXDUMP Displays active SIRFACT MAXDUMP commands. Can be
 abbreviated MAXD.

 MAXDUMP can be followed by a subset indicating the type
 of limit to be displayed. This can be “TOTAL” or “USER”.

 A SIRFACT DISPLAY MAXDUMP output line is followed by
 a comment line that reports the number of SirFact dumps
 taken since the Model 204 Online initialization. For
 example:

 SIRFACT DISPLAY MAXDUMP
 SIRFACT MAXDUMP TOTAL 20
 * 11 Number of dumps taken

 RECNDUMP Displays active SIRFACT RECNDUMP command. Can be
 abbreviated RECND.

 subset A string indicating which values of the indicated subcommand should be
 displayed. For SIRFACT DISPLAY CANCEL and SIRFACT DISPLAY
 IGNORE, subset can contain wildcard characters. For SIRFACT DISPLAY
 MAXDUMP, it must be a specific limit type.

 subset is ignored for SIRFACT DISPLAY DUMP and SIRFACT DISPLAY
 RECNDUMP.

 The display format for the SIRFACT DISPLAY command repeats the format of the
 SIRFACT commands that are used to set SIRFACT controls. As such, they can be
 captured (for example with a USE statement) for subsequent reuse. If no SIRFACT
 controls are in effect at all or for the specific subcommand and subset requested,
 SIRFACT DISPLAY simply returns without issuing any messages.

 Examples of valid SIRFACT DISPLAY commands follow:

 SIRFACT DISPLAY
 SIRFACT DISPLAY CANCEL
 SIRFACT DISPLAY CAN $LIST*
 SIRFACT DISPLAY CANCEL $EDIT
 SIRFACT DISPLAY DUMP
 SIRFACT DISPLAY IGNORE
 SIRFACT DISPLAY IGN MSIR.*
 SIRFACT DISPLAY MAXDUMP
 SIRFACT DISPLAY MAXD USER

——
SirFact Reference Manual 15

——
The SIRFACT Command
——

 3.4 SIRFACT DUMP

 SIRFACT DUMP procfile procname [criteria]

 SIRFACT DUMP command syntax

 The SIRFACT DUMP subcommand indicates where SirFact dumps are to be taken and
 for which environments dumps are to be taken. All SirFact dumps are taken to
 procedures.

 Information contained in a SirFact dump is easily viewed using the FACT subsystem,
 described in “The FACT Subsystem” on page 57. You can also use a set of $functions,
 described in “SirFact $Functions” on page 43.

 procfile The name of the procedure file to which dumps are to be taken. If the
 procedure file is not open at the time a SirFact dump is to be taken, the
 procedure file is opened with the privileges required to create the dump
 (X'1239') and then closed after the dump. If the procedure file is already
 open it must be open with the privileges required to take the dump, or the
 dump will not be taken.

 procname The name of the procedure to be created in procfile for the SirFact dump.
 Procname can be a simple literal string or it can contain special substitution
 strings consisting of a plus sign (+) followed by a single character indicating
 what should be substituted into the dump procedure name. Because
 SirFact will never overwrite a procedure with the required procedure name,
 the use of substitution strings in procname is strongly encouraged.
 Procedure name substitution strings are described in greater detail in
 “Procedure name substitutions” on page 18.

 criteria A list of blank-delimited selection criteria that indicate to which
 “environments” the SIRFACT DUMP command is to apply. All these
 environments can also be specified on a SIRFACT NODUMP command
 and have the same meaning for that command. If criteria is not specified,
 the SIRFACT DUMP (or SIRFACT NODUMP) command applies to any
 request that receives a request cancellation message that is not being
 “ignored” by SirFact (“SIRFACT IGNORE” on page 21). Valid selection
 criteria are

 FILE The procedure file to which the DUMP rule applies. The
 file name can contain wildcard characters. FILE refers to
 the file in which the outer procedure being evaluated
 resides, whether or not the INCLUDE was done in group
 context.

 IODEV The IODEV number to which the DUMP rule applies.

——
16 SirFact Reference Manual

——
 SIRFACT DUMP
——

 msg number The Model 204 message number to which the DUMP rule
 applies. This message number must start with either a
 “M204.” for standard Model 204 error messages, “MSIR.”
 for Sirius Mods error messages or “USER.” for site-specific
 error messages. The message number could also be
 “SNAP” which means that the rule applies to SirFact
 dumps taken as a result of SIRFACT SNAP commands.
 For example:

 SIRFACT DUMP SUBSERR -
 OUCH.+P.+T M204.0553

 would send all dumps for subscript range errors to file
 SUBSERR and

 SIRFACT DUMP FACTSNAP -
 OOCH.+P.+T SNAP

 would send all dumps resulting from SIRFACT SNAP
 commands to file FACTSNAP.

 PROC The procedure name to which the DUMP rule applies. The
 procedure name can contain wildcard characters. PROC
 refers to the outer procedure being evaluated, not the
 INCLUDE'd procedure in which the error occurred.

 SUBSYS The APSY subsystem to which the DUMP rule applies.
 The subsystem can contain wildcard characters.

 USER The userid to which the DUMP rule applies. The userid
 can contain wildcard characters.

 For a DUMP rule to apply to an error being handled by SirFact, the error
 time environment must match all criteria specified in the SIRFACT DUMP
 command.

 SirFact dumps are taken for any request cancellation message that is not being
 “ignored” (“SIRFACT IGNORE” on page 21) if the following criteria are met:

 1. SIRFACT MAXDUMP has been set.

 2. None of the SIRFACT MAXDUMP limits has been exceeded.

 3. There is a SIRFACT DUMP command for which the current thread matches all
 criteria.

 4. The dump procedure file as determined by the appropriate SIRFACT DUMP
 command is either already open with the correct privileges (any superset of X'1239')
 or can be opened with the correct privileges.

——
SirFact Reference Manual 17

——
The SIRFACT Command
——

 5. The output procedure as determined by the appropriate SIRFACT DUMP command
 does not already exist.

 Dumps will be taken for request cancellations resulting from “M204.1332: LONG
 REQUEST” messages, even though technically this message is not a request
 cancellation message. Note that the dump will only be taken if the user is not given a
 chance to continue with a “DO YOU REALLY WANT TO CONTINUE?” message, that is,
 if the PROMPT X'10' bit is set or if the request is running in an APSY subsystem or the
 request is running on a batch thread.

 Of course, SirFact dumps can be terminated if there is insufficient space in the dump
 procedure file to hold the dump. In this case, the partial dump will be deleted because it
 is essentially useless.

 3.4.1 Procedure name substitutions

 The dump procedure name specified in the SIRFACT DUMP command can contain the
 special character plus (+) followed by a single character indicating a substitution string.
 The following characters will cause the following substitutions to take place:

 + A literal plus.

 1-9
 A single digit sequence number as in “+2” or “+6”. SirFact tries sequence numbers
 from 0 through the indicated number until it finds one that creates a procedure name
 that doesn't already exist in the target proc file.

 D The date that the error happened in “YYYYMMDD” format.

 F The file (not group) that contains the evaluating outer proc.

 J The jobname of the job in which the error occurred.

 M The number of the message that caused the request cancellation or the word SNAP
 if the dump was caused by a SIRFACT SNAP command. The substituted message
 number does not include the period so, for example, if the request cancellation was
 caused by a MSIR.0491, a “+M” would be replaced by a “MSIR0491”.

 P The name of the evaluating outer proc.

 S The name of the current subsystem.

 T The date and time that the error happened in “YYYYMMDDHHMISS” format.

 U The userid that encountered the error.

 Any other characters following a plus are simply dropped.

——
18 SirFact Reference Manual

——
 SIRFACT DUMP
——

 For example, if the SIRFACT DUMP command is

 SIRFACT DUMP FACTDUMP DUMP.+P.+T

 and a SirFact trapped error happens in procedure PRE.BADLY.CODED at 14:22:31 on
 May 12, 2001, the dump procedure name would be
 DUMP.PRE.BADLY.CODED.20010512142231. If the SIRFACT DUMP command is

 SIRFACT DUMP FACTDUMP DUMP.+J.+2

 and a SirFact trapped error happens in job DEVONLN, SirFact would try to take the
 dump to procedure “DUMP.DEVONLN.00”. If that procedure already exists, it will try
 taking the dump to “DUMP.DEVONLN.01”, and so on. If SirFact gets all the way to
 “DUMP.DEVONLN.99” without finding a proc that doesn't already exist, the dump is not
 taken.

 Because most of the substitution characters in a dump are likely to occur in multiple
 dumps it is recommended that most SIRFACT DUMP rules have a procedure name that
 contains a “+1”, “+2”, “+3” or a “+T”.

 3.4.2 Managing SirFact dumps

 Multiple “SIRFACT DUMP” commands might apply to a particular situation. For
 example, if the following two commands are in effect:

 SIRFACT DUMP DUMPCUST DUMP-+P-+2 SUBSYS CUSTOMER
 SIRFACT DUMP JUNKDUMP DUMP-+S-+P PROC *JUNK

 and a request cancellation occurs in procedure PCUST-MISCJUNK in subsystem
 CUSTOMER, both SIRFACT DUMP commands would seem applicable. In such cases,
 SirFact will always use the last applicable SIRFACT DUMP rule so that in this example,
 the SirFact dump would be taken to procedure DUMP-CUSTOMER-PCUST-MISCJUNK
 in file JUNKDUMP. Because SirFact uses the last applicable SIRFACT DUMP rule,
 these rules should be specified in most general first, most specific last order. For
 example

 SIRFACT DUMP SIRFACTD DMP.+P-+T
 SIRFACT DUMP INVDUMP DMP.+P-+T SUBSYS INVENTORY
 SIRFACT DUMP WIDGETD DMP.+P-+T SUBSYS INVENTORY -
 PROC *WIDGET

 requests that most dumps would go to file SIRFACTD but dumps for subsystem
 INVENTORY would go to file INVDUMP except for those in procedures the end in
 “WIDGET” which would go to file WIDGETD.

 If a SIRFACT DUMP command has criteria that are a superset of previous SIRFACT

——
SirFact Reference Manual 19

——
The SIRFACT Command
——

 DUMP commands, those previous criteria are discarded. For example, in

 SIRFACT DUMP JUNKDUMP +P.+1.DUMP SUBSYS INVENTORY
 SIRFACT DUMP DUMPDATA +P.+1.DUMP SUBSYS INVENTORY
 SIRFACT DUMP IDUMP +P.+1.DUMP SUBSYS I*

 the last SIRFACT DUMP command would always supersede the previous two so when
 SirFact encounters that command, it discards the previous two, so that a SIRFACT
 DISPLAY DUMP would only show the last SIRFACT DUMP command. An unqualified
 SIRFACT DUMP command, that is, one with just the procedure file and name,
 supersedes all previous SIRFACT DUMP commands.

 SirFact dumps are synchronous on a thread level but asynchronous on a system level.
 This means that the user or thread for which a SirFact dump is being taken will not be
 able to do anything while the dump is being taken but other users or threads will
 continue to run. This is different from CCASNAPs (and SYSMDUMPs) which stop the
 entire Online while they are being taken. In any case, even very large SirFact dumps
 should only take a few seconds to complete so should not have a severe negative
 impact on performance for either the affected user or any other user, for that matter.

 SirFact dumps do not log roll-forward information for the dump procedures even if the
 procedure file to which the dump is going is configured to log roll-forward information
 (the FRCVOPT X'04' bit is not set). This will not interfere with the roll-forward logging for
 any other data going to the dump procedure file and will not cause any recovery
 problems, it simply means that if the system crashes after a SirFact dump and the
 procedure file is rolled back to a checkpoint before the SirFact dump in recovery, the
 dump will be lost.

 Checkpoint logging is performed on the dump procedure file as indicated by FRCVOPT.
 If no checkpoint logging is being performed on the dump procedure file (FRCVOPT X'20'
 bit set) then there is no danger of losing a SirFact dump because of a roll-back during
 recovery but there is a very real chance of the file being left physically broken after an
 inopportune system crash. This might still be an acceptable risk since without
 checkpoint logging SirFact dumps will be extremely fast and have very little impact on
 system performance and because the procedure dictionary and table D allocations are
 fairly tolerant of physical inconsistencies. This latter point means that should the system
 crash and a SirFact dump procedure file be left physically inconsistent, most of the
 information in that file could be recovered after resetting FISTAT though after doing so,
 the file should be reorganized or re-INITIALIZED after moving the dump procs
 elsewhere. It is considerably more dodgy to depend on being able to do this if
 procedure deletions are being mixed with SirFact dump creation. Because of this, it is
 recommended that SirFact dump procedure file cleanup happen when SirFact dumps
 are unlikely (perhaps as part of a batch cycle) if the dump procedure file is being run with
 recovery turned off.

 Of course, while SirFact dumps are very useful, it is probably not a tragedy if a few are
 lost because of a system crash (in fact the system crash itself would probably cause
 greater damage) so it might make sense to run with recovery completely turned off for

——
20 SirFact Reference Manual

——
 SIRFACT DUMP
——

 the SirFact dump procedure file with no formal strategy for recovering from a system
 crash. In any case, because of the unusual nature of SirFact dumps, it is strongly
 recommended that no other data be stored in files that are to receive SirFact dumps.

 3.5 SIRFACT IGNORE

 SIRFACT IGNORE msg

 SIRFACT IGNORE command syntax

 The SIRFACT IGNORE subcommand indicates which request cancellation error
 messages are not to produce SirFact dumps.

 msg The message number of the request cancellation message for which dumps are
 to be suppressed. The message number must include the message prefix
 (“M204” for standard Model 204 messages, “MSIR” for Sirius messages, and
 “USER” for user messages).

 Usually a request cancellation error message is indicative of a programming error or a
 severe environmental problem. In the case of a programming error, it is very useful to
 get a SirFact dump to determine the cause of the error. In case of a severe
 environmental problem, it might be helpful to get a SirFact dump to determine the cause
 of the environmental problem (say a SIRFACT CANCEL intercepted $SETG error) but
 more often than not a dump would not be particularly helpful, especially for problems
 that affect structures that are shared among many users. Finally, there are even a few
 request cancellation messages that are actually a normal part of operation! A successful
 VTAM TRANSFER, for example, results in the cancellation of the request that initiated
 the TRANSFER.

 In any case, the SIRFACT IGNORE statement makes it possible to suppress SirFact
 dumps for messages for which the dumps would either be undesirable or useless.
 Examples of such error messages are

 M204.0441 CCATEMP FULL
 M204.0443 TABLE D FULL
 M204.1229 TABLE B FULL -- INSERTS
 M204.1230 TABLE B FULL -- APPENDS
 M204.1231 TABLE B FULL -- SPILLS
 M204.1270 TABLE C FULL - PROPERTY ENTRY
 M204.1272 TABLE C FULL - PAGE ENTRY
 M204.1273 TABLE C FULL - REDEFINE
 M204.1808 ERROR IN EXECUTING TRANSFER STATEMENT
 M204.1899 TRANSFER STATEMENT COMPLETE, ...
 MSIR.0517 Cancelling request because of $SIRPARM
 LISTFC setting (CCATEMP full)

——
SirFact Reference Manual 21

——
The SIRFACT Command
——

 Certainly, if CCATEMP or a file table fills up and SirFact dumps were not being
 suppressed for the associated message, a flood of SirFact dumps could occur as user
 after user trips over the same problem. To prevent getting SirFact dumps for these
 messages, simply issue the following commands during Online initialization:

 SIRFACT IGNORE M204.0441
 SIRFACT IGNORE M204.0443
 SIRFACT IGNORE M204.1229
 SIRFACT IGNORE M204.1230
 SIRFACT IGNORE M204.1231
 SIRFACT IGNORE M204.1270
 SIRFACT IGNORE M204.1272
 SIRFACT IGNORE M204.1273
 SIRFACT IGNORE M204.1808
 SIRFACT IGNORE M204.1899
 SIRFACT IGNORE MSIR.0517

 There might be other request cancellation errors for which a site might want to suppress
 SirFact dumps. Among these might be

 M204.0452 TTBL FULL
 M204.0562 REQUEST TOO LONG - table
 M204.0574 REQUEST TOO LONG - VTBL
 M204.0577 QTBL FULL -- DIRECT SEARCH
 M204.2126 USER'S PUSHDOWN LIST OVERFLOWED

 SoftSpy can issue some request cancellation errors which occur on the SoftSpy server
 thread; to ignore these errors, use the following command:

 SIRFACT IGNORE M204.0000

 3.6 SIRFACT MAXDUMP

 SIRFACT MAXDUMP [type] limit

 SIRFACT MAXDUMP command syntax

 The SIRFACT MAXDUMP command establishes limits on the number of SirFact dumps
 to be taken. The default for the maximum dumps for the entire system is 0, so at least
 one SIRFACT MAXDUMP command must be issued to get any SirFact dumps.

 type The type of limit being established. It can be one of the following values:

 USER Maximum SirFact dumps to be taken in a single user logon. The
 default is no limit.

——
22 SirFact Reference Manual

——
 SIRFACT MAXDUMP
——

 TOTAL Maximum SirFact dumps to be taken in the entire Online. The default
 is 0, so a “SIRFACT MAXUMP TOTAL” must be issued to get any
 SirFact dumps.

 If type is not specified, it is assumed to be “TOTAL”, so “SIRFACT MAXDUMP
 20” is the same as “SIRFACT MAXDUP TOTAL 20”.

 limit The maximum number of dumps to be taken for the indicated type.

 A SIRFACT MAXDUMP should be issued at the start of any Online run for which you
 want SirFact dumps. If for some reason an application or environmental error is causing
 a “flood” of SirFact dumps, further dumps can be prevented with a “SIRFACT
 MAXDUMP 0”. Of course, this should not be a concern if a reasonable limit is set by a
 SIRFACT MAXDUMP at the start of the run.

 You can view the number of SirFact dumps taken since the Model 204 Online
 initialization by issuing a SIRFACT DISPLAY MAXDUMP command (“SIRFACT
 DISPLAY” on page 14).

 3.7 SIRFACT QUIESCE

 SIRFACT QUIESCE subsys [WAIT sec] [BUMP]

 SIRFACT QUIESCE command syntax

 SIRFACT QUIESCE facilitates updates of APSY subsystem procedures while the
 subsystem is up and in use. This subcommand gets all subsystem users into a
 “quiescent” state where they are not likely to block procedure update operations or
 compile inconsistent copies of inner and outer subsystem procedures. Users are
 quiescent if they are evaluating a pre-compiled request (as determined by the request's
 prefix not its true pre-compilability) or between procedures in the subsystem driver loop.

 When SIRFACT QUIESCE is issued:

 ● Any user that is going to switch to the next procedure in the subsystem driver is
 stopped until the subsystem is resumed.
 ● Any user that exits a pre-compiled procedure is stopped at end of request.
 ● Other users continue to run until they encounter one of the preceding two points.
 ● A user that is evaluating a pre-compiled request or that is between procedures is
 already considered quiesced.

 The SIRFACT QUIESCE parameters are:

 subsys The name of the subsystem to be quiesced.

——
SirFact Reference Manual 23

——
The SIRFACT Command
——

 sec The number of seconds to wait for the subsystem to be quiesced. If the
 subsystem quiesces before this time, SIRFACT QUIESCE returns at that
 point. If the subsystem is not quiesced after sec seconds, SIRFACT
 QUIESCE returns with a message stating that the subsystem is not yet
 quiesced, unless BUMP was specified.

 The wait time cannot be set to 0. The default wait time is 3 seconds.

 BUMP A Model 204 BUMP, issued for any users still not quiesced after sec
 seconds. After bumping these users, SIRFACT QUIESCE waits another
 second for these users to notice the bump.

 Bumped users do not actually disappear from the system: The BUMP sets
 the user's next procedure to the APSY error procedure, but the error
 procedure does not run because in a quiescing subsystem, users do not go
 to the next procedure.

 If a SIRFACT QUIESCE does not completely quiesce a subsystem, it is quite likely that it
 will still allow for safe update and replacement of subsystem procedures — any user that
 hasn't quiesced within a reasonably long time will probably not cause or encounter any
 problems during an update operation. This is especially true if the X'40' bit of SIRFACT
 is set (see “The SIRFACT Parameter” on page 37). The BUMP option of SIRFACT
 QUIESCE offers further assurance that no subsystem users will impede or threaten
 procedure updates.

 SIRFACT QUIESCE can be issued multiple times by one or multiple users for the same
 subsystem. In either case, only a single invocation of the SIRFACT QUIESCE inverse
 operation, SIRFACT RESUME, is necessary to stop the quiescing and resume normal
 operation of the subsystem. If a user is waiting for the return from SIRFACT QUIESCE,
 another user can cancel the quiesce and cause the first user to return immediately (with
 a warning message) by issuing a SIRFACT RESUME for the same subsystem.

 As stated earlier, SIRFACT QUIESCE is valuable for doing APSY subsystem
 maintenance. Such maintenance probably requires appropriate settings of the
 SIRAPSYF parameter (as described in “The SIRAPSYF Parameter” on page 40) and of
 the SIRFACT parameter (as described in “The SIRFACT Parameter” on page 37).

 3.8 SIRFACT RESUME

 SIRFACT RESUME subsys

 SIRFACT RESUME command syntax

 SIRFACT RESUME counters the effect of SIRFACT QUIESCE (see “SIRFACT
 QUIESCE” on page 23): SIRFACT QUIESCE renders a currently operating subsystem

——
24 SirFact Reference Manual

——
 SIRFACT RESUME
——

 safe for updates by waiting for and stopping users until no users are inside a non-pre-
 compiled procedure or compiling pre-compiled procedures. SIRFACT RESUME stops
 this quiescing and returns the subsystem to normal operation.

 If a user is waiting for the return from SIRFACT QUIESCE, another user can cancel the
 quiesce and cause the first user to return immediately (with a warning message) by
 issuing a SIRFACT RESUME for the same subsystem.

 SIRFACT QUIESCE can be issued multiple times by one or multiple users for the same
 subsystem. In either case, only a single invocation of the SIRFACT QUIESCE inverse
 operation, SIRFACT RESUME, is necessary to stop the quiescing and resume normal
 operation of the subsystem.

 3.9 SIRFACT RECNDUMP

 SIRFACT RECNDUMP num

 SIRFACT RECNDUMP command syntax

 The SIRFACT RECNDUMP establishes the number of record numbers from each found
 set or LIST to be dumped. By default. SirFact dumps two record numbers from each
 found set or LIST, the first and the last. Note that SirFact does not actually dump the
 records in any found set or LIST unless a record in a found set or LIST is the current
 record in an active FOR EACH RECORD loop, in which case that single record is
 dumped.

 The maximum value for SIRFACT RECNDUMP is 256 and the minimum is 1. The count
 of records in a found set or LIST is always dumped. If a found set or LIST contains
 fewer or the same number of records as the SIRFACT RECNDUMP value then the
 entire found set or list is dumped. If a found set or LIST contains more records than the
 SIRFACT RECNDUMP value then the first (num+1)/2 and last num/2 record numbers in
 the found set or LIST are dumped. For example, if SIRFACT RECNDUMP is 1 then only
 the first record number in a found set or LIST will be dumped, if the value is 32 then the
 first 16 and last 16 will be dumped and if the value is 127 then the first 64 and last 63 will
 be dumped.

 The cost, of course, of a large SIRFACT RECNDUMP value is a somewhat larger dump
 if a request has many large found sets or LIST's though the cost is only about 6 bytes
 per record dumped per found set or LIST. So, for example, if there are 20 large founds
 sets and LIST's in a request that is dumped a RECNDUMP value of 100 would make the
 dump 98*20*6 or 11,760 bytes bigger than a dump with the default RECNDUMP value of
 2. The cost to keeping RECNDUMP small is that potentially useful information is lost
 about the records in a found set or a LIST.

——
SirFact Reference Manual 25

——
The SIRFACT Command
——

 3.10 SIRFACT SNAP

 SIRFACT SNAP usernum | userid [FORCE]

 SIRFACT SNAP command syntax

 The SIRFACT SNAP command requests that a SirFact dump is to be taken for another
 thread. This can be useful if a thread is looping or hung.

 The SIRFACT SNAP command must be followed by either a user number or a userid. If
 a userid is specified, the userid must only be logged in on a single thread or SirFact will
 not take the dump for the thread. If a userid is logged in on multiple threads the dump
 must be requested by user number.

 The optional FORCE parameter indicates that the SirFact dump is to be taken for the
 thread even if the thread holds one or more critical file resource locks. By default,
 SirFact will not take a dump for another thread on a SIRFACT SNAP command while the
 thread holds any critical file resource locks though it will try to wait a little bit (less than 3
 seconds) for a window in which the thread being snapped does not hold any critical file
 resource locks.

 There are certain cases where a SIRFACT SNAP command might fail for a looping
 thread. The most likely is when SirFact is unable to find a time when the thread being
 snapped does not hold a critical file resource lock. This behavior can be overridden by
 the specification of the FORCE parameter on the SIRFACT SNAP command. SirFact
 will also not take a dump for a thread if that thread is waiting on journal or checkpoint
 I/O. As with critical file resources locks, SirFact will try several times over the course of
 a few seconds to break in on the thread to be snapped when it is not waiting on
 checkpoint or journal I/O but if it fails, it gives up.

 In most such failure cases, the SIRFACT SNAP command can be retried until it
 succeeds. If a few consecutive SIRFACT SNAP commands fail, the chances of success
 might be improved by setting the target thread's priority to LOW.

 The SIRFACT SNAP command can be useful in diagnosing looping thread problems or
 problems where a user is presented with incorrect output. In both cases, help desk
 personnel or a system manager can get a SirFact dump for the thread with the problem
 and then do whatever is necessary to get the thread back on track.

 SIRFACT snaps can be taken for non-evaluating threads even the one issuing the
 SIRFACT SNAP command, though the dump in such cases will have precious little
 besides GTBL.

——
26 SirFact Reference Manual

——
 The ASSERT Statement
——

——————
CHAPTER 4 The ASSERT Statement

 Programming errors often cause symptoms that point directly to the error. For example,
 an incorrectly coded array assignment might result in a subscript range error on the very
 statement with the error. Alternatively, an assignment from the wrong variable to a
 screen item results in incorrect data appearing in the corresponding screen field. These
 kinds of programming errors are generally easy to isolate and fix, and they are usually
 caught during adhoc debugging or fairly quickly after a program goes into production.

 Yet many other programming errors can cause more subtle problems that cause
 completely unrelated statements to fail, or even cause corruption of data that might not
 be detected until long after the original error has occurred. This often happens because
 much code depends on assumptions about the current environment, including
 assumptions about values of variables. A coding error or a misunderstanding of the
 environmental requirements of a chunk of code can cause the code to be run with invalid
 data. The code may execute but produce invalid results, or perhaps it may set values
 incorrectly that can cause problems in yet another part of the code.

 There are several ways to deal with this problem with assumptions:

 ● Don't make assumptions in code. While it is an admirable goal to make code as
 flexible as possible, taken to the extreme, this approach produces code that is
 bloated by instructions to handle cases that never happen, setting return codes and
 status values that should never be set that then have to be checked elsewhere. Put
 another way, code has to do not only what is necessary but also has to perform
 many unnecessary tasks.

 ● Ignore the problem and hope for the best.

 ● Check key assumptions in code, and terminate the program with appropriate
 diagnostics to isolate the cause of the termination.

 The last solution looks the most appealing. However, without the ASSERT statement,
 collecting the appropriate diagnostic information can only be done in User Language, so
 it can be tedious (numerous AUDIT, PRINT, or $SETG statements), and it still provides
 only limited information.

 The Sirius Mods and version 7.5 or higher of Model 204 provide a User Language
 statement, ASSERT, to get around these problems. The ASSERT statement serves
 three functions:

 ● It tests the validity of an assumption.

——
SirFact Reference Manual 27

——
The ASSERT Statement
——

 ● It causes the current request to be cancelled if the assumption is incorrect. In an
 APSY subsystem, this causes transfer to the subsystem error procedure.

 ● It indicates the procedure and line number containing the failing ASSERT statement.
 Furthermore, in the presence of appropriate SIRFACT MAXDUMP and SIRFACT
 DUMP settings, it causes the creation of a SirFact dump that contains a wide variety
 of information about the program environment at the time of the error.

 Stated another way, the ASSERT statement allows testing of assumptions and extensive
 diagnostic data collection with a single, simple statement.

 ASSERT cond [, [SNAP] [INFO info] [CONTINUE]]

 ASSERT statement syntax

 cond The conditions that are being asserted as true. These conditions have
 exactly the same syntax as conditions on IF statements.

 SNAP Indicates a CCASNAP is to be taken on an assertion failure. A
 CCASNAP is taken in addition to, but before, any SirFact dump
 associated with the assertion failure.

 info Extra information that is included in the audit trail and terminal output for
 the assertion failure as part of a MSIR.0494 message. info must be
 enclosed in quotes if it contains spaces or other Model 204 separator
 characters.

 CONTINUE Indicates that an assertion failure will not cause the request to be
 cancelled. An MSIR.0494 message, and possibly a SirFact dump, will
 still be produced, but the request will continue.

 Some valid ASSERT statements are :

 ASSERT (%X GT 0) AND (%NAME NE '')
 ASSERT %X GT 0, SNAP
 ASSERT NOT $SETG('NAME', 'VALUE')
 ASSERT %X = 22, INFO %X
 ASSERT %X, INFO 'Zero %X' SNAP
 ASSERT %INCOME GT 10000, CONTINUE

 Note: A %variable in the Info clause is interpreted to mean the contents of the
 indicated variable. For example, the fourth ASSERT statement above (ASSERT %X =
 22, INFO %X) produces the following message if %X is 21:

 MSIR.0494: Assert info: 21

 An ASSERT statement uses the same expression handler as the IF statement, so it is
 exactly as efficient as an IF statement with the same conditions.

——
28 SirFact Reference Manual

——
 The ASSERT Statement
——

 To use an ASSERT, simply place it before any code that depends on some assumptions
 about variables or the environment. ASSERT statements should be coded to test values
 or relationships that are required for the code to run correctly, but whose values are not
 immediately apparent from the surrounding code.

 In addition to catching coding errors, the ASSERT statement provides the following
 benefits :

 ● It makes clear the assumptions that the code depends on to anyone scanning the
 program. This makes it easier to understand the surrounding code. Similarly, it
 makes the environmental requirements clear to someone wanting to re-use a code
 fragment or call a common subroutine. While these benefits can be achieved with
 comments, the ASSERT statement has the added benefit that it enforces the
 restrictions.

 ● It eliminates doubt when scanning code while trying to debug a problem, and it
 prevents wasted time on “what if” scenarios that can be ruled out with a simple
 ASSERT.

——
SirFact Reference Manual 29

——
The ASSERT Statement
——

——
30 SirFact Reference Manual

——
 The SIRFACT Statement
——

——————
CHAPTER 5 The SIRFACT Statement

 The SIRFACT CANCEL command (“SIRFACT CANCEL” on page 11) makes it possible
 to trap return codes from $functions that are indicative of programming errors or severe
 environmental problems. For simplicity and consistency, the scope of SIRFACT
 CANCEL for a $function is global, that is, it applies to every program running on every
 thread in the Online. This should not be a problem, as once again, SIRFACT CANCEL
 should only be used to trap severe problems.

 However, even the most unlikely return codes might be handled by User Language code
 in certain odd instances. For these cases, the SIRFACT User Language statement is
 provided to temporarily disable SirFact error trapping for all $functions or FRN errors.

 SIRFACT ON | OFF

 SIRFACT statement syntax

 ON | OFF OFF indicates that SirFact $function error trapping is to be temporarily
 disabled for the current thread. ON indicates that it is to be reenabled.

 Without the presence of a SIRFACT statement in a User Language program, SirFact
 $function error trapping is always enabled.

 The end of a User Language request automatically reenables SirFact $function error
 trapping. That is, a SIRFACT OFF only applies to the program in which it is executed.

 The SIRFACT OFF and SIRFACT ON statements are evaluated and are not compiler
 directives. This means that in the following chunk of code:

 IF %RECOVER THEN
 SIRFACT OFF
 END IF

 %RC = $SETG('NEXTPROC', 'XP.MAIN-MENU')

 IF %RECOVER THEN
 SIRFACT ON
 END IF

 the $SETG will be executed with SirFact error trapping disabled if %RECOVER is non-zero;
 otherwise, it will run with SirFact error trapping enabled.

——
SirFact Reference Manual 31

——
The SIRFACT Statement
——

 There is no harm in using SIRFACT ON if SirFact error checking is already enabled, nor
 in using SIRFACT OFF if SirFact error checking is already disabled. The previous
 example could just has easily have been coded:

 IF %RECOVER THEN
 SIRFACT OFF
 END IF

 %RC = $SETG('NEXTPROC', 'XP.MAIN-MENU')

 SIRFACT ON

 Also valid (but pointless) is this:

 SIRFACT OFF
 SIRFACT OFF

 %RC = $SETG('NEXTPROC', 'XP.MAIN-MENU')

 SIRFACT ON

 The SIRFACT OFF setting also disables SIRFACT FRN error trapping set by the X'08',
 X'10', or X'20' bits in the SIRFACT system parameter (“The SIRFACT Parameter” on
 page 37). This means that if SIRFACT FRN error trapping is turned on, but an FRN
 statement, by design, sometimes refers to a non-existent record, the FRN could be
 coded as follows:

 SIRFACT OFF
 %HAVEREC = 0
 IN FILE ODD FRN %RECNO
 %HAVEREC = 1
 END FOR
 SIRFACT ON

 It is good programming practice to minimize the number of User Language statements
 inside a SIRFACT OFF/SIRFACT ON bracket to prevent accidentally leaving SirFact
 $function error checking disabled. It is even better programming practice to avoid the
 use of SIRFACT OFF altogether. For example, suppose that a SIRFACT CANCEL has
 been set up to cancel requests on a return code of -6 from $LISTDEL. And suppose a
 procedure has the following chunk of code :

 %LIST = $LISTRST('SAVEDLIST')
 %RC = $LISTDEL(%LIST)

 Suppose sometimes this code is run where there is no $LISTSAV'ed $list under the
 name “SAVEDLIST”. Before SirFact, the $LISTRST would simply return a -14,
 indicating that no $list is saved under the indicated name. When the -14 is passed to
 $LISTDEL, $LISTDEL would return a -6, indicating that -14 is an invalid $list identifier
 (all $list identifiers are positive).

——
32 SirFact Reference Manual

——
 The SIRFACT Statement
——

 Probably this would not matter: since the ostensible purpose of this code is to make the
 name “SAVEDLIST” available to save another $list, the $LISTDEL “failure” is irrelevant.
 Unfortunately, with the SIRFACT CAN $LISTDEL -6 active, this code would often
 cause a request cancellation.

 One solution to this problem would be to simply stop trapping return code -6 from
 $LISTDEL. Unfortunately, this would mean that the benefits of SirFact error trapping
 would be lost for mis-coded $LISTDELs. Another option would be to change the above
 code to

 %LIST = $LISTRST('SAVEDLIST')
 SIRFACT OFF
 %RC = $LISTDEL(%LIST)
 SIRFACT ON

 This gets around the problem, but it is a bit sloppy and does not really make clear what
 is going on. A “cleaner” solution would be to change the code to

 %LIST = $LISTRST('SAVEDLIST')
 IF %LIST GT 0
 %RC = $LISTDEL(%LIST)
 END IF

 This solution actually uses slightly less QTBL space, uses no more CPU, and makes the
 code clearer.

 Ultimately, while the SIRFACT OFF statement can be very useful, it should be used with
 discretion.

——
SirFact Reference Manual 33

——
The SIRFACT Statement
——

——
34 SirFact Reference Manual

——
 The TRACE Statement
——

——————
CHAPTER 6 The TRACE Statement

 The TRACE statement acts very much like a PRINT or AUDIT statement with the
 exception that the target for the TRACE statement can be dynamically changed by
 RESET'ing the ULTRACE parameter. The ULTRACE parameter is a standard bit-
 oriented user parameter where the bits mean:

 X'01' Send TRACE output to terminal.

 X'02' Send TRACE output to audit trail.

 X'04' Send TRACE output to a CCATEMP wrap-around trace table.

 The default setting for ULTRACE is X'01' which means that the TRACE statement will
 act pretty much like a PRINT statement. The bits can be combined so that output could
 be sent to both the terminal and the audit trail or to the CCATEMP wrap-around trace
 table and to the terminal and to the audit trail. If a TRACE statement is executed when
 ULTRACE is set to 0, the request is cancelled.

 The CCATEMP wrap-around trace table is a user-specific trace table that consists of a
 set of CCATEMP pages up to a maximum specified by the ULTRACEP user parameter.
 If ULTRACEP pages are already in use when a TRACE statement is issued and output
 is being routed to the trace table (ULTRACE X'04' set), the trace data on the oldest page
 is discarded and the oldest page is re-used for the new trace data. The default value for
 ULTRACEP is 2.

 The wrap-around trace table is dumped in SirFact dumps, and it can be viewed with the
 following command when using the FACT subsystem to examine a dump:

 D[ISPLAY] T[RACE][.{* | N}]

 where N specifies that the last n entries are to be displayed. Specifying D T will display
 all trace entries, and specifying D T.20 will display the last 20.

 The wrap-around trace table can also be examined with the $TRACE2LIST function
 (“$TRACE2LIST: Copy wrap-around trace table to $list” on page 52).

 ULTRACE and ULTRACEP can both be RESET via the $RESETN function.

——
SirFact Reference Manual 35

——
The TRACE Statement
——

——
36 SirFact Reference Manual

——
 System Parameters
——

——————
CHAPTER 7 System Parameters

 SirFact makes use of two system parameters: SIRFACT and SIRAPSYF. These
 parameters are honored only if the Online is running with the SirFact product authorized.
 The parameters can only be set as a parameter on the EXEC card (or the Model 204 call
 under CMS) or as a User 0 parameter in the CCAIN stream.

 7.1 The SIRFACT Parameter

 The SIRFACT system parameter consists of several bits that can control the collection of
 compilation data and the trapping of certain User Language coding errors. The bits
 defined for the SirFact parameter are:

 X'01' Collect quad offset to procedure line number mapping information to
 CCATEMP.

 X'02' Collect quad offset to procedure line number mapping information to server
 tables even if it is also being collected to CCATEMP.

 X'04' Don't do comment initialized global dummy string substitution (“Comment-
 initialized global variables” on page 55).

 X'08' Cancel FOR RECORD NUMBER or FRN statements where the record
 number is a null string.

 X'10' Cancel FOR RECORD NUMBER or FRN statements where the record
 number is not a valid number.

 X'20' Cancel FOR RECORD NUMBER or FRN statements where the record
 number is not found.

 X'40' When a procedure is included (whether as part of an APSY subsystem or
 directly from Model 204 command mode), copy it to CCATEMP. After the
 copy, release the share enqueue on the procedure. As a result, a user who
 includes a procedure does not prevent others from updating the procedure.

 The copy of the procedure to CCATEMP incurs some extra (barely
 measurable) overhead.

 X'80' Enable the SirFact APSY maintenance enhancements you specify with the
 SIRAPSYF parameter (see “The SIRAPSYF Parameter” on page 40).

——
SirFact Reference Manual 37

——
System Parameters
——

 Also, regardless of the SIRAPSYF settings, release the share enqueue on a
 procedure when the last line of the procedure is read, not when the line after
 the last line is attempted to be read.

 7.1.1 Subsystem procedure enqueues

 Unless the SIRFACT X'80' bit is set, a procedure that ends in an END statement is
 locked in share mode until procedure evaluation completes and Model 204 attempts to
 get the next line from the procedure. If the evaluation takes a long time because the
 procedure does terminal I/O or contains a long-running program, or because of some
 other reason, the procedure is ordinarily not updateable until evaluation completes.

 Note: Cosmetic elements like blank lines or comments after an END nullify the benefit
 of this enhancement, because the lock remains until the last line is read.

 Should a procedure depend on the enqueue being held (because it does a $RDPROC,
 $PROCOPN, or something similar against itself and wants to avoid being deleted), either
 do not set the SIRFACT X'80' bit, or add a blank or comment line to the end of any such
 procedure. However, if the SIRFACT X'40' bit is on, all procedures are dequeued before
 they evaluate, so procedures cannot depend on $RDPROCs or $PROCOPNs against
 themselves working, unless they can depend on this because of local policies or rules.

 7.1.2 SIRFACT compilation data collection

 One of the most important pieces of information in determining the cause of an error is
 the code location of the error. Knowing the specific line of code in which an error
 occurred can be critical in determining the cause of the error. Yet typically, Model 204
 does not collect the information required to produce this information. This is because
 Model 204 actually runs quads, not User Language statements, at evaluation time.

 These evaluation time quads are built from the original User Language at compile time,
 but once built, there is generally no way to determine the line of User Language that
 created a particular quad. So when an error occurred, Model 204 would generally be
 able to report only the QTBL offset of the executing quad, which would be a fairly
 useless piece of information for most purposes.

 The solution to this problem is to collect information about the mapping of quads to User
 Language statements at compile time. There are several ways this is done, each with its
 own cost.

 ● The DEBUGUL parameter, when non-zero, causes the User Language statement-
 to-quad mapping to be stored in QTBL, VTBL, and STBL.

 The DEBUGUL parameter is a standard Model 204 user parameter. While using
 this parameter has little compile time overhead and no performance overhead, it
 does add 8 bytes to the length of each quad, which will tend to increase QTBL

——
38 SirFact Reference Manual

——
 The SIRFACT Parameter
——

 requirements by 30-50%. There would be more minor increases in VTBL and
 STBL, but it is the QTBL utilization expense that makes it difficult to use DEBUGUL
 in a production environment.

 ● The SIRFACT parameter, when the X'01' bit is set, causes the User Language
 statement-to-quad mapping to be stored in CCATEMP.

 Because accessing CCATEMP requires logical disk I/O, setting the SIRFACT X'01'
 bit will have a slight compilation time cost. It will also increase CCATEMP
 utilization, though probably by less than 10%. CCATEMP writes will also increase
 slightly, but since these are asynchronous, these will have minimal or no impact on
 system performance.

 Finally, since the mapping pages are not accessed at evaluation time, setting the
 SIRFACT X'01' bit will have no effect on evaluation time performance and, because
 all the information is stored in CCATEMP, no effect on server sizes.

 ● If DEBUGUL is 0 and the SIRFACT X'01' bit is not set, the ASSERT statement will
 store extra information in QTBL and STBL to identify the location of an ASSERT
 statement error.

 This causes the ASSERT statement to use 12 more bytes of QTBL and some
 additional STBL (to hold procedure names) in these cases. In any case, errors that
 happen as the result of ASSERT statements always produce a procedure and line
 number in the error message.

 ● If DEBUGUL is 0 and the SIRFACT X'01' bit is not set, $functions that are being
 “monitored” because of the SIRFACT CANCEL command (“SIRFACT CANCEL” on
 page 11) will store extra information in QTBL and STBL to identify the location of a
 $function error.

 This causes each monitored $function to use 12 more bytes of QTBL and some
 additional STBL (to hold procedure names). In any case, errors that happen as the
 result of SIRFACT CANCEL trapped $function errors always produce a procedure
 and line number in the error message.

 DEBUGUL and the SIRFACT X'01' bit cause the collection of the same information; the
 difference is where the information is stored, and the fact that DEBUGUL is a user
 parameter (so can be controlled on a user or application level, while the SIRFACT X'01'
 bit is a system parameter).

 In any case, all the mechanisms used to collect mappings of User Language to quads
 result in error time messages that indicate the following:

 ● The procedure (or command level indication)
 ● The file that contains the procedure
 ● The line number within the procedure where the error happened

——
SirFact Reference Manual 39

——
System Parameters
——

 The actual contents of the line of User Language are not saved in any case, and so they
 are not displayed. It is possible in many cases for the procedure to change after it's
 been compiled (especially for INCLUDE'd procedures), in which case the indicated line
 numbers might not match exactly what is in the updated procedure.

 No matter what the collection mechanism, the User Language to quad mapping is saved
 in SirFact dumps, so the location of the error can be retrieved from the dump. The User
 Language to quad mapping is also used by SirFact dump analysis to provide a
 subroutine callback trace, as in “subroutine at line whatever in proc whatever called from
 line whatever in proc whatever”. This is only available in SirFact dumps collected for
 programs compiled with the SIRFACT X'01' bit or with DEBUGUL set to a non-zero
 value.

 Note that even if the User Language to quad mappings were not collected, all other
 information such as %variable values, global variable values, and so on are still
 available in SirFact dumps. Nevertheless, the location of the error and subroutine
 callback trace are often crucial pieces of information, so it is suggested that if SirFact
 dumps are to be collected, either set DEBUGUL to a non-zero value, or set the
 SIRFACT X'01' bit.

 7.2 The SIRAPSYF Parameter

 The SIRAPSYF system parameter controls a number of APSY subsystem maintenance
 features. The bit options defined for the features are described below. X'00' (no options
 enabled) is the parameter's default value.

 Note: No SIRAPSYF features are enabled unless you also set the X'80' bit on the
 SIRFACT parameter (see “The SIRFACT Parameter” on page 37).

 X'01' Allows procedure compilations to be saved (pre-compiled) for unlocked
 procedure group members. If an outer or an inner procedure in an unlocked
 file in a procedure group is changed, or if an outer procedure is added to an
 unlocked file in a procedure group, the procedure is recompiled and that
 compilation is saved.

 Also allows the pre-compiling of a procedure with a pre-compile prefix that
 was not present in the procedure group when the subsystem was started.

 If this bit is not set, using unlocked files to facilitate the updating of procedures
 in a running subsystem has an efficiency cost because procedure
 compilations are not saved.

 This setting has no effect on procedures in subsystems that use a procedure
 file instead of a procedure group, and it has no effect on subsystems that use
 a procedure group but not unlocked files.

——
40 SirFact Reference Manual

——
 The SIRAPSYF Parameter
——

 X'02' Detects changes to included procedures that reside in a pre-compiled
 procedure in a subsystem procedure group. If such an included procedure is
 changed, the pre-compiled procedure is recompiled.

 This setting has no effect on procedures in subsystems that use a procedure
 file instead of a procedure group, and it has no effect on subsystems that use
 a procedure group but not unlocked files.

 X'04' Tracks in a bitmap the CCATEMP pages allocated to pre-compiled
 procedures in a subsystem. When the subsystem is stopped, this bitmap is
 used to free the pages rather than chaining through them, which requires
 considerable CCATEMP I/O. Although the bitmap method has more (but
 probably not measurable) overhead while saving compilations, it can make the
 STOP SUBSYSTEM process significantly faster.

 The bitmap is subsystem-wide and not procedure-specific. It does not reduce
 the time required for discarding the CCATEMP pages that are associated with
 a compilation that is being replaced.

 Usage notes:

 ● These SIRAPSYF features along with the SIRFACT X'40' and X'80' bits are
 designed to simplify the updating of procedures and the pre-compiling of these
 updated procedures while their subsystem is in use.

 Note: These settings do not eliminate the lock on outer procedures in locked
 procedure files. They are designed to suit a procedure group and the placement of
 updated procedures in unlocked file(s).

 The SIRFACT QUIESCE and RESUME subcommands supplement these features
 by preventing subsystem users from interfering with procedure update operations.
 For more information, see “SIRFACT QUIESCE” on page 23 and “SIRFACT
 RESUME” on page 24.

 ● For both the X'01' and X'02' bits, an inner or outer procedure is considered changed
 if the actual procedure is modified or if a new version of the procedure is added to
 an earlier file in the procedure group.

 ● When using temporary procedure groups, a request compilation is not saved if any
 of the outer or inner procedures came from a file not in the subsystem's permanent
 group. Furthermore, if the outer procedure is found in a file not in the subsystem's
 permanent group, it will always be recompiled. If an inner procedure (but not the
 outer) is found in a file not in the subsystem's permanent group, whether the
 procedure is recompiled depends on the X'02' bit setting:

 ▪ If the bit is off, the procedure might or might not be recompiled.
 ▪ If the bit is on, the procedure is always recompiled.

——
SirFact Reference Manual 41

——
System Parameters
——

 Hence, it is recommended that where temporary procedure groups are to be used,
 the X'02' bit is to be set.

 ● The SIRAPSYF features you specify apply on a system-wide basis. To specify an
 override for an individual subsystem, you can specify in CCASYS a special deferred
 update DD name for a procedure group that defines its particular SIRAPSYF option:

 SUBSYSMGMT Subsystem File Use
 Update Mode
 _
 Subsystem Name: SALES From:

 File/Group File Group Auto Mandatory Procs Deferred Ordered-index
 Name Location Y/N Y/N Y/N NUMLK Name Deferred Name
 PR SALESPRC N Y Y

 1: PAYROLL N Y Y

 2: EMPLOYEE N Y Y

 3: CLIENTS DALLAS N Y Y

 4: PRODUCTS DALLAS N Y Y

 5: SALESGRP Y Y Y TAPE*07
 ===>

 1=HELp 2= 3=QUIt 4=OPEration 5=PROcedure 6=
 7=BACkward 8=FORward 9=USErdef 10= 11=SYSclass 12=END

 SIRAPSYF override

 As shown for SALESGRP above, you must:

 ▪ In SUBSYSMGMT, specify the special deferred update DD name under
 “Deferred Name” on the Subsystem File Use screen. Or, if you use an ad hoc
 procedure, specify this special name for the APSFDN field in the SCLS records
 for the subsystem.

 ▪ Begin the deferred update DD name with the characters “TAPE*” and append
 the two hexadecimal digits that indicate the subsystem-specific bit settings you
 want for the SirFact APSY enhancements. “TAPE*07” would set the
 SIRAPSYF X'07' features for the group.

 Setting a deferred index update file name is completely harmless in systems that do
 not have the SirFact APSY facility or do not have the facility enabled (by specifying
 the SIRFACT X'80' bit).

——
42 SirFact Reference Manual

——
 SirFact $Functions
——

——————
CHAPTER 8 SirFact $Functions

 When a SirFact dump occurs, information from the time of the error is stored in a dump
 procedure as specified by the applicable SIRFACT DUMP command (“SIRFACT DUMP”
 on page 16). This information is binary data that includes the contents of the user's
 QTBL, STBL, VTBL, GTBL, NTBL, $lists, and several other user-specific structures. To
 simplify the movement of data to other regions, the data is base64-encoded.
 Base-64-encoding is a means of storing binary data by using only 64 displayable
 characters. Base-64-encoding does use lowercase characters, however, so to load a
 SirFact dump into an Online using the PROCEDURE statement, *LOWER must be set.

 SirFact dumps contain binary data for data structures that are interrelated in fairly
 complex ways. Modification of the data in these dumps, no matter how slight, could
 cause severe problems in analyzing the dump. Yet, the dumps are in Model 204
 procedures, which can be easily modified either intentionally or accidentally.

 To detect any modification of the data in a SirFact dump, all dumps contain a 16-byte
 checksum (really an MD5 digest) of the contents of the dump. Any modification of the
 data in a dump will be detected because of a mismatch between the checksum in the
 dump and that calculated from the data. If such a mismatch is detected when the dump
 is read, SirFact will not return data from the dump, because all data structures in the
 dump will be suspect.

 SirFact provides a set of $functions that can be used to analyze a dump. These
 $functions are used by the FACT subsystem (“The FACT Subsystem” on page 57) to
 provide a user interface for reading dumps. It is not necessary to explicitly use these
 $functions to analyze SirFact dumps, yet documentation for these $functions is provided
 in case a SirFact user wants to write a different user interface to SirFact dumps, perhaps
 one that takes advantage of site-specific facilities or standards.

 Although mixed-case User Language is available for use with many former-Sirius
 products, the SirFact Reference Manual retains the all-uppercase presentation for
 $function names and User Language entities. For more information about mixed-case
 User Language, see http://m204wiki.rocketsoftware.com/index.php/Mixed-
 case_User_Language.

 To use the SirFact $functions to look at a dump, you must first issue $FACT_INIT.
 $FACT_INIT starts an sdaemon (see the Sirius Mods Installation Guide), which then
 tries to read the dump procedure. If the dump procedure looks alright (it has the correct
 format and the checksum is correct), this sdaemon loads the data at the time of error
 into its own tables (and into CCATEMP where appropriate). Once the dump is loaded,
 this sdaemon remains logged on until one of the following events:

 ● A $FACT_DONE is issued.

——
SirFact Reference Manual 43

——
SirFact $Functions
——

 ● Another $FACT_INIT is issued by the same user. Only one SirFact dump can be
 opened by a single user at any time.

 ● The user that issued the $FACT_INIT logs off.

 ● The sdaemon is bumped.

 A SirFact sdaemon runs under the same userid and account ID as the invoking user.

 After a successful $FACT_INIT, the user that invoked the $FACT_INIT communicates
 with the SirFact sdaemon using these $functions:

 $FACT_CMD Issues a command that runs on the SirFact sdaemon.

 $FACT_CONTEXT Sets subroutine context for variable names.

 $FACT_DATA Requests error time data from the sdaemon.

 $FACT_DONE Tells sdaemon to go away.

 $FACT_OPTION Sets or gets SirFact display options.

 $FACT_VNAME_WIDTH Indicates how many characters to reserve for the variable
 names in the sdaemon output for $FACT_DATA.

 $TRACE2LIST Copies data from the SirFact wrap-around trace table in
 CCATEMP to a $list, facilitating use of the wrap-around
 trace table for interactive debugging.

 $FACT_CMD and $FACT_DATA return data into $lists. The functions to create and
 manipulate $lists are not documented here, but they are documented in the Sirius
 Functions Reference Manual. SirFact customers are automatically authorized to use all
 the base $list functions (and many more). In fact, SirFact customers can use these
 functions in applications that have nothing to do with SirFact or any other Rocket Model
 204 product.

 8.1 CALLing $functions

 You can invoke many $functions using a User Language CALL statement instead of
 assigning the function result to a %variable. For example:

 %L = $LISTNEW
 $LISTADD(%L, 'Once upon a midnight dreary')
 $LISTADD(%L, 'As I pondered weak and weary')
 CALL $LIST_PRINT(%L)

——
44 SirFact Reference Manual

——
 CALLing $functions
——

 You can CALL such $functions and still test for their return code, if necessary. For
 example:

 CALL $LIST_PRINT(%L)
 IF $LIST_PRINT(%L) THEN

 This "callability" is an optional approach; it does not replace %variable assignment.

 The callable $functions are indicated as such in their individual function descriptions in
 this document. Typically they are $functions that do more than simply return a value,
 and the value they return is primarily an indicator of whether the function completed
 successfully. $LISTCNT, for example, is a (non-callable) $function that just returns a
 value.

 8.2 $FACT_CMD: Run a command on the SirFact
 SDAEMON

 The $FACT_CMD function is used to run a command on the SirFact SDAEMON and
 capture the results. This $function is mainly used for the purpose of debugging SirFact.
 $FACT_CMD returns the command output to a $list.

 $FACT_CMD accepts two arguments and returns a numeric code. It is also callable
 (“CALLing $functions” on page 44).

 The first argument is the list identifier for the output $list. Data is appended to the end of
 this $list. The $list can be created with the $LISTNEW function as documented in the
 Sirius Functions Reference Manual. This is a required argument.

 The second argument is a Model 204 command. The only commands currently allowed
 are “*LOOK”, “*ZAP” and “VIEW”. The results of the “VIEW” command are the current
 settings on the SirFact SDAEMON, not the settings at the time of the error for the dump
 being examined.

 %RESULT = $FACT_CMD(listid, command)

 $FACT_CMD Function
 %RESULT is set to indicate the success of the function.

——
SirFact Reference Manual 45

——
SirFact $Functions
——

 0 - All is well, data returned
 1 - No active SirFact request
 2 - SirFact SDAEMON no longer around
 3 - Out of CCATEMP
 4 - $list limit exceeded
 5 - Required parameter not specified
 6 - Invalid list-identifier
 7 - Invalid command
 255 - Other severe error in SirFact SDAEMON

 $FACT_CMD return codes

 The statement

 %RC = $FACT_CMD(%OLIST, 'V LQTBL')

 requests the size of QTBL for the SirFact SDAEMON.

 8.3 $FACT_CONTEXT: Set subroutine context for
 $FACT_DATA

 The $FACT_CONTEXT function is used to set the subroutine context for value class
 requests for subsequent $FACT_DATA requests.

 $FACT_CONTEXT accepts one argument and returns a numeric code. It is also
 callable (“CALLing $functions” on page 44).

 The only argument is the name of the complex subroutine to use as the context for
 subsequent value class $FACT_DATA requests. A period (.) indicates the error time
 context and an asterisk (*) indicates non-subroutines or main program context.

 %RESULT = $FACT_CONTEXT(context)

 $FACT_CONTEXT Function
 %RESULT is set to indicate the success of the function.

 0 - All is well
 1 - No active SirFact request
 2 - SirFact SDAEMON no longer around
 5 - Required parameter not specified
 6 - Context is invalid
 255 - Other severe error in SirFact SDAEMON

 $FACT_CONTEXT return codes

——
46 SirFact Reference Manual

——
 $FACT_CONTEXT: Set subroutine context for $FACT_DATA
——

 The following statement sets the context for subsequent value class requests for
 $FACT_DATA to subroutine “NASTY.ALGORITHM”:

 %RC = $FACT_CONTEXT('NASTY.ALGORITHM')

 Following are the valid input values to $FACT_CONTEXT:

 * (asterisk) Switches FACT context to the mainline of the executing
 program.

 . (period) Switches to whichever context the program was in at the time
 of the SirFact error.

 <subroutine name> Switches to the context of the named complex subroutine.
 Simple subroutines are not valid contexts, as they share the
 same context as the main body of the program.

 8.4 $FACT_DATA: Retrieve data from a SirFact dump

 The $FACT_DATA function is used to retrieve data about the environment of the error
 that caused the currently open SirFact dump to be taken. There must be a current
 active dump set up via $FACT_INIT. $FACT_DATA returns the value(s) of the
 requested data to a $list.

 $FACT_DATA accepts two arguments and returns a numeric code. It is also callable
 (“CALLing $functions” on page 44).

 The first argument is the list identifier for the output $list. Data is appended to the end of
 this $list. The $list can be created with the $LISTNEW function, as documented in the
 Sirius Functions Reference Manual. This is a required argument.

 The second argument is a blank-delimited list of data items whose values are to be
 returned to the $list. The format of each data item is:

 [X.]c[.s]

 where:

 X An optional flag specifying that the requested data should be displayed in
 hexadecimal format.

 c The class of data requested.

 s An optional selection pattern for data of class c.

——
SirFact Reference Manual 47

——
SirFact $Functions
——

 The classes and their formats are described in “D[isplay] command: Displaying data
 from the SirFact dump” on page 60.

 %RESULT = $FACT_DATA(listid, datalist)

 $FACT_DATA Function
 %RESULT is set to indicate the success of the function.

 0 - All is well, data returned
 1 - No active SirFact request
 2 - SirFact SDAEMON no longer around
 3 - Out of CCATEMP
 4 - $list limit exceeded
 5 - Required parameter not specified
 6 - Invalid list-identifier
 255 - Other severe error in SirFact SDAEMON

 $FACT_DATA return codes

 The statement

 %RC = $FACT_DATA(%OLIST, 'G.USER.* %SCR:CMD')

 requests values for all globals that begin with the five characters “USER.” and requests
 the value of screen item %SCR:CMD.

 8.5 $FACT_DONE: Terminate a SirFact dump

 The $FACT_DONE function is used to terminate the SirFact SDAEMON being used to
 access a dump procedure.

 $FACT_DONE accepts no arguments and returns a numeric code. It is also callable
 (“CALLing $functions” on page 44).

 %RESULT = $FACT_DONE

 $FACT_DONE Function
 %RESULT indicates whether SDAEMON had been active.

 0 - SirFact SDAEMON was not active for user
 1 - SirFact SDAEMON now terminated

 $FACT_DONE return codes

——
48 SirFact Reference Manual

——
 $FACT_DONE: Terminate a SirFact dump
——

 The following statement terminates processing of the active SirFact dump:

 %RC = $FACT_DONE

 8.6 $FACT_INIT: Open a SirFact dump

 The $FACT_INIT function is used to initiate a SirFact sdaemon and have it read and
 load the data from a dump procedure into its own tables.

 $FACT_INIT accepts three arguments and returns a numeric code.

 The first argument is the name of the file or group that contains the SirFact dump to be
 opened. Any of the words “FILE”, “GROUP”, “TEMP GROUP” or “PERM GROUP” may
 precede the name to make the context explicit. The file or group specified must be open
 with procedure display privileges (CURPRIV X'0200' bit set). If the first argument is not
 specified, the compile time context is used.

 The second argument is the name of the procedure that contains the dump. This is a
 required argument.

 The third argument is the output line width for data being returned to a $list by
 $FACT_DATA and $FACT_CMD. This must be a value between 32 and 4095 inclusive,
 and it defaults to 255 if not specified.

 %RESULT = $FACT_INIT(fgname, procname, owidth)

 $FACT_INIT Function
 %RESULT is set to indicate the success of the function.

 0 - All is well, SirFact SDAEMON set up
 1 - Dump file is not open
 2 - Insufficient privilege to open proc
 3 - Dump proc name missing or proc not found
 4 - Proc is enqueued exclusive
 5 - Invalid line width (arg 3)
 6 - Insufficient virtual storage
 7 - No SDAEMONs available
 8 - Not a valid dump proc
 9 - Backward compatibility problem
 10 - Forward compatibility problem
 11 - Model 204 release compatibility problem
 12 - Can't get table sizes
 255 - Severe error in SirFact SDAEMON

 $FACT_INIT return codes

——
SirFact Reference Manual 49

——
SirFact $Functions
——

 This statement opens a procedure called DUMP.JUNK.01 in file DUMPPROC:

 %RC = $FACT_INIT('FILE DUMPROC', 'DUMP.JUNK.01')

 8.7 $FACT_OPTION: Set or get SirFact display options

 The $FACT_OPTION function is used to set or get the values of options that affect the
 retrieval and display of $FACT_DATA output.

 $FACT_OPTION accepts two arguments and returns a numeric code or a string. It is
 also callable (“CALLing $functions” on page 44).

 ● The first argument, which is required, is the name of the option that is being updated
 or retrieved. Current options are:

 CASE Controls whether $FACT_DATA internally uppercases all non-quoted
 characters in its arguments before processing. Such auto-uppercasing
 provides case-insensitivity and mimics the way mixed-case User
 Language is supported.

 Valid CASE values are LEAVE (do not uppercase) and TOUPPER;
 TOUPPER is the default. LEAVE is useful for accommodating dumps
 created from code compiled with case-sensitive User Language, if case-
 sensitivity is necessary. Case-sensitive User Language is enabled by
 starting a User Language program with an all-uppercase BEGIN
 statement or by specifying the Sirius compiler directive Case Leave.

 Note: Formerly, the FACT subsystem uppercased all data passed to
 $FACT_DATA (which processes FACT system DISPLAY commands).
 However, this meant that mixed-case method arguments were also
 uppercased before $FACT_DATA processing (for example, d
 %myXmlDoc:print('/outer/inner'), became D
 %MYXMLDOC:PRINT('/OUTER/INNER')). This FACT subsystem
 uppercasing was replaced by the $FACT_DATA uppercasing (which
 correctly processes the example command as D
 %MYXMLDOC:PRINT('/outer/inner')).

 The option to change the default case handling is not available to FACT
 subsystem users.

 IMPLIM Sets the limit for the number of lines that $FACT_DATA can output for
 the implied-Print of an object variable's content. An implied Print is an
 automatic invocation of the Print method for the display of the content of
 an object variable, for those object classes for which such printing is
 enabled. For more information about implied printing, see the "Objects"
 discussion in “Additional syntax for VALUE and LIST” on page 64.

——
50 SirFact Reference Manual

——
 $FACT_OPTION: Set or get SirFact display options
——

 Valid IMPLIM values are numbers between 1 and 99999999. The
 default is 500.

 ● The second $FACT_OPTION argument is an optional new value for the option you
 specify as the first argument. If you specify a value for this parameter that changes
 the current setting of the first parameter, the $FACT_OPTION return depends on
 whether you are changing CASE or IMPLIM:

 ▪ If CASE is changed successfully, the return code is 0.
 ▪ If IMPLIM is changed, the return is the previous value of IMPLIM.

 %RESULT = $FACT_OPTION(option, value)

 $FACT_OPTION Function
 %RESULT is set to indicate the success of the function or the former value.

 Examples of valid $FACT_OPTION statements follow:

 $FACT_OPTION('CASE', 'LEAVE')

 print $FACT_OPTION('CASE')

 %oldLimit = $FACT_OPTION('IMPLIM', %newLimit)

 $FACT_OPTION('IMPLIM', 2)

 8.8 $FACT_VNAME_WIDTH: Sets variable name width
 for $FACT_DATA

 The $FACT_VNAME_WIDTH function is used to set the space allocated for variable
 names in $FACT_DATA output.

 $FACT_VNAME_WIDTH accepts one argument and returns a numeric code. It is also
 callable (“CALLing $functions” on page 44).

 The only argument is the width of the output space for variable names for subsequent
 $FACT_DATA requests. The value specified must be between these values:
 ● 8
 ● The output line width implied or specified on $FACT_INIT, minus 11.

 This is a required parameter.

 %RESULT = $FACT_VNAME_WIDTH(vwidth)

 $FACT_VNAME_WIDTH Function
 %RESULT is set to indicate the success of the function.

——
SirFact Reference Manual 51

——
SirFact $Functions
——

 0 - All is well
 1 - No active SirFact request
 2 - SirFact SDAEMON no longer around
 6 - Width is invalid

 $FACT_VNAME_WIDTH return codes

 The following statement sets the space for variable names for subsequent
 $FACT_DATA requests to 33 characters:

 %RC = $FACT_VNAME_WIDTH(33)

 8.9 $TRACE2LIST: Copy wrap-around trace table to
 $list

 The $TRACE2LIST function is used to copy data from the SirFact wrap-around trace
 table in CCATEMP (“The TRACE Statement” on page 35) to a $list. This $function can
 facilitate use of the wrap-around trace table for interactive debugging.

 $TRACE2LIST accepts two arguments and returns a numeric code. It is also callable
 (“CALLing $functions” on page 44).

 The first argument is the list identifier for the output $list. Data is appended to the end of
 this $list. The $list can be created with the $LISTNEW function, as documented in the
 Sirius Functions Reference Manual. This is a required argument.

 The second argument is a blank-delimited set of options. Valid options are:

 CLEAR Indicates that TRACE2LIST is to delete all the data in the wrap-around
 trace table after extracting it. By default $TRACE2LIST will leave the wrap-
 around trace table intact.

 CONT Indicates that when TRACE2LIST has to split a line onto multiple $list items
 (because the width indicated by the WIDTH parameter is exceeded), it will
 end each continued line with a hyphen (-) character. By default,
 $TRACE2LIST does not place a hyphen at the end of continued lines.

 DATE Include date of trace entries in the output $list. By default, only the time of
 the entries is included.

 MAXREC This must be followed by an integer value. It indicates the maximum
 number of trace entries to return. By default, all trace entries in the trace
 table are returned.

 NOTIME Do not include the trace entry time stamps in the output $list. By default,
 the time stamps are included.

——
52 SirFact Reference Manual

——
 $TRACE2LIST: Copy wrap-around trace table to $list
——

 WIDTH This must be followed by an integer value. It indicates the width of the
 output data in the output $list. By default, the output width is the maximum
 length of a $list item, that is, the value returned by $LIST_MAXIL. This
 parameter is useful to force $TRACE2LIST to format the trace entries to fit
 on the debugging user's screen.

 WORD Indicates that when $TRACE2LIST has to split a line onto multiple $list
 items (because the width indicated by the WIDTH parameter is exceeded),
 it will attempt to split lines so as not to split a word onto multiple lines. That
 is, WORD means to split lines at blanks.

 Extremely long words can still result in mid-word line continuation even if
 WORD is specified. By default, $TRACE2LIST will split a line at the
 maximum output line width, whether the split is in mid-word or not.

 %RESULT = $TRACE2LIST(listid, parms)

 $TRACE2LIST Function
 %RESULT is set to indicate the number of items added to the $list. All errors
 result in request cancellation.

 It is permissible to not specify an output $list ID, if and only if the CLEAR parameter is
 specified. Specifying the CLEAR parameter with no output $list ID is the most efficient
 way to clear the wrap-around trace table if the current contents are not required. Setting
 the output $list ID to zero is the same as not specifying that argument.

 The following statement retrieves the last 100 entries in the wrap-around trace table to
 the $list identified by %OLIST, and then it clears the wrap-around trace table.

 %RC = $TRACE2LIST(%OLIST, 'MAXREC 100 CLEAR')

 It is not permissible to specify both the DATE and NOTIME parameters.

——
SirFact Reference Manual 53

——
SirFact $Functions
——

——
54 SirFact Reference Manual

——
 Other SirFact Facilities
——

——————
CHAPTER 9 Other SirFact Facilities

 In addition to the SIRFACT command, the SirFact parameters, the User Language
 statements for SirFact, and the SirFact $functions, the following facilities are available in
 the Model 204 nucleus when SirFact is authorized.

 9.1 Comment-initialized global variables

 If a global variable begins with the backslash character (\), its initial value, (that is, the
 value if the variable does not have a value) is a single asterisk (*) when used for dummy
 string substitution (?&). These are also called “backslash globals.” The initial value for
 backslash globals returned by the $GETG function is unaffected by this feature (that is,
 the initial value is the null string).

 Backslash globals are provided primarily to allow you to place Model 204 commands
 and User Language statements in your applications under the control of a backslash
 global; these commands and statements are disabled unless the global is set to the null
 string (or some other non-asterisk value). This approach is more convenient than having
 to explicitly set the global variables to an asterisk in order to disable the commands and
 statements; it also reduces GTBL requirements.

 If you want to insert various statements (for example, ASSERT statements) in your User
 Language applications, leaving them disabled until a global variable is reset, you can
 use a backslash global as the first character of the statement.

 For example, the following ASSERT statement is disabled by default:

 ?&\INPCHK ASSERT %INPUT GT 0

 But the statement can be enabled by

 BEGIN
 %X = $SETG('\INPCHK', '')
 END

 This prefixing technique can also be useful in many applications other than SirFact.

 Note: To have the initial value of backslash globals become the null string, set the X'04'
 bit of the SIRFACT system parameter to 1. With this bit setting, global variables whose
 names start with a backslash are treated the same as any other global variable.

——
SirFact Reference Manual 55

——
Other SirFact Facilities
——

——
56 SirFact Reference Manual

——
 The FACT Subsystem
——

——————
CHAPTER 10 The FACT Subsystem

 The diagnostic dumps produced by SirFact are stored in base-64 encoded format in
 Model 204 procedures inside Model 204 files. Not readable in raw format, the dumps
 must have diagnostic information extracted from them with the $FACT_* functions
 described in the previous chapter.

 While users can write their own system using the $FACT_* functions, the FACT
 subsystem is a ready-to-run, full-screen interface for viewing SirFact dumps. The FACT
 subsystem can be accessed via the command line by specifying the file and procedure
 names in this format:

 FACT <filename> <procname>

 For example:

 FACT SAMPLFIL DUMP.PROC86.20040603120114

 The FACT subsystem can also be invoked from a subsystem that displays lists of
 procedures containing SirFact dumps. To transfer control from a local subsystem to
 FACT, use the standard APSY transfer facility (the XFER global). Make sure to:

 1. Set the global variable FACT.RETURN to the name of the APSY to which FACT
 should return control.

 2. Set the global variable COM to the source file and source procedure containing the
 SirFact dump.

 An example follows:

 %DUMMY = $SETG('COM',%FILENAME WITH ' ' WITH -
 %DUMP_PROC_NAME)
 %DUMMY = $SETG('NEXTPROC','XFER')
 %DUMMY = $SETG('XFER','FACT')
 %DUMMY = $SETG('FACT.RETURN','MYAPSY')
 STOP

——
SirFact Reference Manual 57

——
The FACT Subsystem
——

 The SirPro subsystem is already configured to perform this transfer when an "F" prefix
 command is entered on the SirPro Procedure List screen:

 ---- FILE: ALANPROC ------ ULSPF504/4.1.1H/CMS ----- 04-07-07 12:03:37 -----
 ==> Total Procs = 422
 Sel Procedure Name Account Bytes Date Time
 1 PUBLIC/HEADER.GIF ALAN 3072 04/06/30 16:44:43
 2 PUBLIC/INDEX.HTML ALAN 429 04/06/30 16:44:25
 3 PUBLIC/HEADER.HTML ALAN 217 04/06/30 16:44:13
 4 VERISIGNSEALMAROON.GIF ALAN 30498 04/06/30 8:56:11
 5 VERISIGN.TXT ALAN 4844 04/06/30 8:31:46
 6 TEXT.CONVERSION ALAN 1480 04/06/25 14:09:59
 7 GOLDEN.TXT ALAN 5948 04/06/24 11:27:44
 8 CREATE.GROUP4 ALAN 110 04/06/23 9:55:27
 9 SIRFACT2.TXT ALAN 1272 04/06/21 13:40:24
 10 DUMP.PUPR-EDIT2.20040525172149 ALAN 168232 04/06/15 17:25:15
 11 DUMP.0.20040526090031 ALAN 1596 04/06/15 17:25:09
 F 12 DDD.20040607161906.DEVPRO ALAN 137627 04/06/15 17:25:02
 13 DUMP..20040610173021 ALAN 990 04/06/15 17:24:55
 14 TEST.HTML ALAN 1872 04/06/06 16:48:14
 15 RAILROAD.HTML ALAN 738 04/06/06 14:32:55
 16 LAMEDUCK.JPG ALAN 19952 04/06/06 14:25:30
 17 CONTROL.ALANPROC ALAN 62 04/06/02 11:56:36
 --
 1/Help 2/Sort-Name 3/Quit 4/Sort-User 5/Sort-Date 6/Sort-Size
 7/Up 8/Down 9/Repeat 10/Refresh 11/*UPPER 12/FULLNAME

 SirPro Procedure List Screen

 The SirPro interface is further documented in the SirPro User's Guide. The F prefix
 command in SirPro only works for sites that own SirFact. If a non-SirFact procedure is
 selected with an F, an error message is posted to the screen.

 Whether the FACT system is accessed from the command line, from SirPro, or from a
 local subsystem, the main screen displayed is the same: a scrollable display of the
 basic dump information, extracted from the dump. As further commands are entered on
 the screen's command line, their output is appended to the display, and the user can
 scroll through the list. If a printed version of the output is required, PF12 can be used
 to send the list to a print device.

——
58 SirFact Reference Manual

——
 The FACT Subsystem
——

 ------------------------------- Fact ULSPF504----------------04/07/07 12:03:48
 ===> Line: 1 Cols: 1 To 79
 --------------------------Context: Error time context--------------------------
 I.TIME = '2004/05/25 17:21:49'
 I.ERRMSG = 'MSIR.0510: Cancelling request because of SIRFACT CANCEL
 I.SUBSYS = 'SIRPRO'
 I.FILE = 'SIRPRO'
 I.PROC = 'PUPR-EDIT2'
 I.JOBNM = 'ULSPF602'
 I.STEPNM = '046864'
 I.JESID = ''
 I.USERID = 'ALEX'
 I.ACCOUNT = 'ALEX'
 I.TERMID = 'ALEX2'
 I.USERNUM = '18'
 I.IODEV = '41'
 I.WHAT = 'Evaluating'
 I.WHERE = 'Error at line 573 of proc PUPR-EDIT2 in file SIRPRO'
 I.CALL = 'At main level: no subroutine calls'
 I.FORLEV = '0'
 I.VERSIONS = 'M204:5.3.0C Sirius Mods:6.5 Dump:6'
 --
 1/Help 2/Scale on 3/Quit 4/PFkey off
 7/Up 8/Down 9/Repeat 10/Left 11/Right 12/Print

 FACT Diagnostic Dump Extraction Screen

 The initial FACT screen shows default context information for the error condition,
 including a date/time stamp, source procedure and file, userid of the user for whom the
 error occurred, etc. Additional information is extracted from the dump via D[isplay] or
 C[ontext] commands. The output of each command is appended to the list of previously
 extracted data. The list of all this formatted dump information is scrollable and printable
 from the FACT scan screen.

 10.1 C[ontext] command: Setting program context for
 data extraction

 Information in a SirFact dump is categorized by context within the program that is
 executing when the error occurs. The “context” is either a complex subroutine or the
 main body of the executing program. You can switch contexts within the dump file via
 the C[ontext] command. The D[isplay] output (described below in “D[isplay] command:
 Displaying data from the SirFact dump” on page 60) is sensitive to the context set by the
 Context command for the values and attributes of %variables, screen items, and image
 items.

 Valid information contexts are the same as those documented for the
 $FACT_CONTEXT function (“$FACT_CONTEXT” on page 46):

 * (asterisk) Switches FACT context to the mainline of the executing
 program.

 . (period) Switches to whichever context the program was in at the time
 of the SirFact error.

——
SirFact Reference Manual 59

——
The FACT Subsystem
——

 <subroutine name> Switches to the context of the named complex subroutine.
 Simple subroutines are not valid contexts, as they share the
 same context as the main body of the program.

 The Context command adds a dividing line to the output list, and any D[isplay]
 information that follows applies to the current context until the context is switched again.

 10.2 D[isplay] command: Displaying data from the
 SirFact dump

 The Display command requests for specific kinds of data to be extracted from the
 current context in the SirFact dump.

 The Display command specifies a series of data items. It is formatted as follows:

 D[isplay] [X.]c[.s] [X.]c[.s] ...

 where:

 X An optional flag specifying that the requested data should be displayed in
 hexadecimal format

 c The class of data requested.

 s An optional selection pattern for data of class c.

 For example:

 ● To display global variables beginning with the string “STR”: DISPLAY G.STR*

 ● To display context information (user, job, program, error, etc.): D I 1li.To display
 the value of %B in hexadecimal:

 ● D X.%B

 The valid c values are described in the following list. They are the same as for the
 $FACT_DATA function (“$FACT_DATA” on page 47). All can be abbreviated to a single
 letter, except for RIN and ROUT, which require two letters. So V.%JUNK is the same as
 VALUE.%JUNK, and G.X* is the same as GLOBAL.X*.

 You can enter the Display command and c values in any case: all non-quoted values
 are translated to uppercase before being processed.

 ATTRIBUTE Attributes of a %variable, image item, or screen item. For %variables,
 wildcards are not allowed, and the percent character (%) must be
 present in the variable name (as in A.%I). ATTRIBUTE returns

——
60 SirFact Reference Manual

——
 D[isplay] command: Displaying data from the SirFact dump
——

 information like variable type, variable length and DP value, and, for
 object %variables (as of version 6.5), the object class name.

 FIELD Value of one or more fields in active FOR EACH RECORD loops.
 FIELD can be followed by a FOR EACH RECORD loop nesting level,
 where 0 is the innermost nesting level, -1 is the next innermost, and so
 on. FIELD, or the nesting level, or both, can then be followed by a
 fieldname, which can contain wildcards.

 The nesting level is only necessary to distinguish like-named fields in
 different FOR EACH RECORD loops, though they will be distinguished
 on display anyway.

 Examples of FIELD specifications follow:

 FIELD.FOO(3) returns the value(s) of the third occurrence of field
 FOO in every active FOR EACH RECORD loop

 FIELD.0.BAR(*) returns all occurrences of field BAR in the innermost
 (active) FOR EACH RECORD loop

 FIELD.-1.* returns all fields in the second innermost (active)
 FOR EACH RECORD loop

 FIELD.* returns all field values in all active FOR EACH
 RECORD loops

 GLOBAL Value of one or more global variables. Wildcards are allowed.

 The selection pattern can be left off, so GLOBAL or G is the same as
 GLOBAL.*

 INFO The following informational entities are available from the dump,
 displaying values that were in effect at the time the dump was taken.

 Although they are displayed by default at the beginning of the FACT
 subsystem dump output (see the second Figure in “The FACT
 Subsystem” on page 57), you can dynamically request an entity's
 display by entering at the command prompt the entity name preceded by
 INFO. (optionally preceded by X.).

 Wildcards are allowed for the entities (D INFO.W* returns informational
 data for the WHAT and WHERE entities); and the selection pattern can
 be left off entirely, returning information for all the entities for the current
 context (INFO or I is the same as INFO.*).

 Each entity returns one or more informational strings.

——
SirFact Reference Manual 61

——
The FACT Subsystem
——

 ACCOUNT Value of the Model 204 ACCOUNT parameter for the
 active user.

 CALL If applicable, the program location of the active ON unit or
 active subroutine, one line showing the location of the
 return point for each outer context.

 ERRMSG Error message that provoked the dump.

 FILE Name of the file that contains the executing procedure.

 FORLEV Nesting level of the active FOR EACH RECORD loop (0
 is innermost, -1 is next innermost, and so on)

 JESID For MVS only, the job number assigned the job by the
 spooling subsystem.

 JOBNM The name on the job card.

 IODEV Value of the Model 204 IODEV parameter of the active
 user.

 PROC Procedure active when the error occurred.

 STEPNM The identifier of the step within the job being executed.

 SUBSYS The name of the subsystem within which the error
 occurred.

 TIME The date and time the error occurred.

 TERMID Value of the Model 204 TERMID parameter of the active
 user.

 USERID Login user ID.

 USERNUM Thread number assigned the user by Model 204.

 VERSIONS The Model 204 version, the Sirius Mods version, and the
 SirFact internal dump format version in effect when the
 dump was produced.

 WHAT General activity category (Model 204 WHAT flag) of user
 when error occurred.

 WHERE Location within the code at which the error occurred.

——
62 SirFact Reference Manual

——
 D[isplay] command: Displaying data from the SirFact dump
——

 LIST Value of one or more $list items. LIST must be followed by a %variable
 that contains the list identifier. For specific list items, the list identifier
 can be followed by a parenthesis and an indication of the range of item
 numbers and columns required.

 Example LIST specifications follow:

 LIST.%LIST(5) returns list item number 5 in the $list
 identified by %LIST

 LIST.%LIST(3-4,10-29) returns columns 10 through 29 in items 3
 through 4 in a list identified by %LIST

 LIST.%LIST(3.2,10.20) returns columns 10 through 29 in items 3
 through 4 in a list identified by %LIST

 If a list identifier is in an array, the array item number must be specified
 and cannot be a range. For example, LIST.%LISTA(9)(10)
 requests list item 10 in the list identified by %LISTA(9).

 An asterisk wildcard is not allowed (D LIST.* is not valid). See
 “Additional syntax for VALUE and LIST” on page 64 for the complete
 syntax used with $lists.

 RIN The number of records and some of the record numbers in a found set
 label. The count of records in the found set is always returned, and the
 number of record numbers returned is the minimum of the number of
 records in the found set and the SIRFACT RECNDUMP (“SIRFACT
 RECNDUMP” on page 25) value at the time the dump was taken.

 Wildcards are not allowed.

 RON The number of records and some of the record numbers on a LIST. The
 count of records in the LIST is always returned, and the number of
 record numbers returned is the minimum of the number of records in the
 LIST and the SIRFACT RECNDUMP (“SIRFACT RECNDUMP” on page
 25) value at the time the dump was taken.

 Wildcards are not allowed.

 TRACE All or a specified number of the entries in the SirFact wrap-around
 tracetable in CCATEMP (see “The TRACE Statement” on page 35).
 TRACE can be followed by the number of entries to return: T.* and
 TRACE return all entries in the trace table; and T.20 returns the last 20
 entries.

 VALUE Value of a %variable, image item, or screen item. For %variables,
 wildcards are not allowed, and the percent character (%) must be
 present in the variable name (as in VALUE.%I).

——
SirFact Reference Manual 63

——
The FACT Subsystem
——

 The term VALUE can be left off, so %I is the same as VALUE.%I.

 Note:

 ● You must know the variable names you are looking for: SirFact
 cannot process a V.* command to show all variables that exist in a
 program or within a complex subroutine, because the variable
 names are not available to the program at runtime in plain text
 format.

 ● Image and Screen variables are not collected until they have been
 Prepare'd, Identify'd, or Read. If SirFact replies that the specified
 Image or Screen variable does not exist, then it was not referenced
 at the time of the SirFact dump.

 See “Additional syntax for VALUE and LIST” for additional syntax that
 can be used for arrays and objects. The support for object %variables
 began in version 6.5.

 After the D command is executed, a separator line is output to the screen, and the output
 of the command is appended to any previous output. FACT automatically scrolls the
 screen to the top of the new information.

 The returned values from the D command contain the requested data item followed by
 the value. The class requested is shown in its minimum abbreviated form, except for the
 VALUE class, which is omitted.

 10.2.1 Additional syntax for VALUE and LIST

 In addition to simply specifying a %variable in a VALUE or LIST display, there is syntax
 that can (or must) be used for arrays, structures, $lists, and objects. This section
 explains that syntax.

 Arrays Array variables must be followed (in parentheses) by as many subscript
 indicators as the dimension of the array. You specify a single digit or a
 range for each subscript; you can use the following:

 ● a dash (-), to indicate a range of array elements
 ● a period (.), to separate a starting subscript and number of elements
 ● an asterisk (*), to indicate all of, or the rest of, a dimension

 For example:

 ● VALUE.%DATA(11) returns array item 11 in array %DATA

 ● VALUE.%DATA(*) returns all array items in array %DATA

——
64 SirFact Reference Manual

——
 D[isplay] command: Displaying data from the SirFact dump
——

 ● VALUE.%DATA(5-*) and VALUE.%DATA(5.*) return array items 5
 through the last in array %DATA

 ● VALUE.%DATA(7-11) and VALUE.%DATA(7.5) return array items 7
 through 11 in array %DATA.

 These range qualifiers can be used in multiple dimensions as in
 VALUE.%MULTI(*,6-12,2.3).

 $lists $List items use a similar range and item number specification as that used
 for %variables. Currently you can only display information about $lists
 whose identifiers are stored in %variables:

 D L.%LIST(1-5)
 D L.%LIST(20.2)

 If %LIST is an array of $list identifiers you must specify the array item
 number and then the range of values to extract from the list, like this:

 D L.%LIST(5)(1-5)
 D L.%LIST(2)(20.2)

 SirFact currently doesn't support range for the array items in this case.

 To see only specific columns of $list items, add a second range as in

 D L.%LIST(1-5, 1.20)
 D L.%LIST(20.2 100-110)

 To see the number of $list items, use a single “subscript” of a number sign:

 D L.%LIST(#)

 For a single $list item, without a column restriction, you can also use a
 colon and the item number as a suffix; to see the number of items, you can
 use the “:#” suffix. For example, to see item number 3, and to see the
 number of items:

 D L.%LIST:3
 D L.%LIST:#

 Structures You display the value of structure variables by specifying the name of the
 variable after the structure. For example, to display the value of structure
 variable VAR in structure %STRUCT, you can use the following:

 D %STRUCT:VAR

 If the structure variable is an array, use the array syntax described on the
 previous page. For example, the following displays the value of items 7
 through 11 in array variable DATA of structure %STRUCT:
——
SirFact Reference Manual 65

——
The FACT Subsystem
——

 D %STRUCT:DATA(7-11)

 Objects The format for displaying the contents of a Janus SOAP system or user
 class member (variable or method) is as follows:

 D %object:member[(parms)]

 This format is very nearly the same as the format used in a User Language
 program to access the objects. Some examples follow:

 D %MG:MILEAGE
 Displays the value of a (user class) public or private variable: the
 content of class variable MILEAGE, when %MG is a user class
 object.

 Note: If MILEAGE were a shared variable in class CAR, it could
 also be displayed by the following command:

 D %(CAR):MILEAGE

 This use of the class name in parentheses instead of an object
 variable is valid for system class as well as user class shared
 variables.

 D %RS:COUNT
 Displays the value of a system class member: the return from the
 Count method, when %RS is a Recordset object variable, for
 example.

 D %SL:ITEM(5)
 Displays the value of a system class member: the return from the
 Item method applied to the fifth item, when %SL is a Stringlist
 object variable, for example.

 D %NAMES('Bush'):FIRSTNAME
 Displays the value of a (user class) NamedArraylist collection
 method: the content of the return from the FIRSTNAME method,
 when %NAMES('Bush') is a NamedArraylist collection item.

 D %NAMES('Bush'):LIST:COUNT
 Displays the value of strung-together class members: the content
 of the return from the COUNT method, when %NAMES('Bush') is
 a NamedArraylist collection item of a user class, and LIST is a
 variable that is a Stringlist object.

 D %DOC
 Displays the value of an object variable: the content of %DOC,
 when %DOC is an instance of a system XmlDoc object.

——
66 SirFact Reference Manual

——
 D[isplay] command: Displaying data from the SirFact dump
——

 The information displayed always includes whether or not the
 %variable is Null. If the object is not Null, the output from the Print
 method applied to the object is automatically included (for some
 classes, such as the Stringlist class or the XmlDoc class). For an
 XmlNodelist object variable, for example, which has no Print
 method in its class, the FACT display simply includes whether or
 not the variable is Null.

 As an example, if %L is a Stringlist object, a d %l command
 might produce:

 %L = Not null
 %L:PRINT = 'This is a test 1'
 = 'This is a test 2'
 = 'This is a test 3'

 This example also demonstrates that the SirFact display

 ● Uppercases non-quoted command input before processing
 (this is adjustable if you are using the SirFact $functions to
 look at dumps — see “$FACT_OPTION: Set or get SirFact
 display options” on page 50).

 ● Quotes the output values but not informational or error
 messages

 ● Uses the “terminal output” form (adding equal signs and
 quotation marks) for the Print method result and not its normal
 format.

 This Print output is truncated at 500 lines, a limit that is
 adjustable if you explicitly specify the Print method (see the
 following “Note”), or if you are using the SirFact $functions to
 look at dumps (see “$FACT_OPTION: Set or get SirFact
 display options” on page 50).

 Note: Some methods that produce terminal output (such as most
 Print methods or, for example, the Janus SOAP XML Serial
 method) can be invoked explicitly in the Display command. For
 example, if %xmlPier is an XmlDoc object, the following
 commands will provide the same information:

 D %XMLPIER
 D %XMLPIER:PRINT

 Advantages of invoking a Print method explicitly include:

 ● You can specify Print method parameters:

——
SirFact Reference Manual 67

——
The FACT Subsystem
——

 D %XMLPIER:PRINT('/outer/inner')

 ● The output is not subject to the 500-line (default) limit of an
 “implied” Print.

 Although object contents can be accessed from SirFact very much the
 same as they are accessed in User Language, the following restrictions
 apply:

 ● The special range, count, and wildcard syntaxes supported for some
 other display types are not supported for objects. For example, to
 request the display of the first three items in Stringlist %SL, you
 cannot use D %SL(1-3). You can get the result you want, however,
 by using Stringlist Print method parameters, as in:

 D %SL:PRINT(,,1,3)

 ● Not all system methods may be invoked in a Display command. In
 general, methods that update an object or that create a new object
 instance are not allowed. For example, if %SL is a Stringlist object, D
 %SL:ADD('A new item') is not allowed.

 10.3 Navigation and display commands

 The command descriptions follow:

 PFKEYS ON/OFF Toggles the display of the PFKey labels.

 SCALE ON/OFF Toggles the display of a scale line.

 RIGHT X Shifts the display to the right X columns.

 LEFT X Shifts the display to the left X columns.

 F xxxxx or /xxxxx Finds the string xxxxx in the formatted audit trail data, beginning
 on the current line.

 -F or -/ Same as above but performs the search backwards from the
 current line

 M (with PF7,8,10,11) Moves the screen to the Top, Bottom, 1st column or last
 depending upon PFKey pressed.

 L xxx Moves the current line to the requested line number xxx.

——
68 SirFact Reference Manual

——
 Program function keys
——

 10.4 Program function keys

 The key descriptions follow:

 PF1 Display help information for the current screen.

 PF2 Toggle on/off the horizontal scale.

 PF3 Exit the current screen and return to the previous screen or menu.

 PF4 Toggle on/off the display of pfkeys - when pfkeys are not displayed the
 extra two lines are used to display data.

 PF7 Scroll back to the previous page.

 PF8 Scroll forward to the next page.

 PF9 Repeat the last valid command entered in the command window.

 PF10 Scroll left.

 PF11 Scroll right.

 PF12 Print the extracted data. This key passes the list of retrieved diagnostic
 data to an internal print routine and presents a print option screen to the
 user.

——
SirFact Reference Manual 69

——
The FACT Subsystem
——

 10.5 The FACT Print Screen

 --------------------- SirFact Print 04-07-07 12:04:11 ----------------------
 ==>

 SirFact Dump from ULSPF504 source: DUMP.PUPR-EDIT2.20040525172149
 Enter Y (yes) or N (no) to use the above messages as the print header:

 You were viewing line 1 of 16
 Print from line 1 to line 16

 Destination ==> (Select from options 1 through 3 below)

 1. Dataset DDNAME ==> OUTALAN
 2. Printer ID ==> ALAN
 3. $PRINT Class ==> X

 with ==> COPIES=1
 ==>

 Lines Per Page ==> 60 (UDDLPP) Record Format ==> 12 (UDDRFM)
 Characters per Line ==> 133 (UDDCCC) Header Control ==> (HDRCTL)

 --
 1/Help 3/Quit

 FACT Print Screen

 The Print screen allows the user to specify how to route the formatted dump extract to a
 print device.

 To print, enter the following information in the screen fields:

 Print from and to line(s) The starting and ending lines within the SirFact extract to be
 printed.

 OUTPUT DESTINATION The destination of the procedure. Select 1 to print to a the
 printer named in the PRINTER field, 2 to output the
 procedures to the file named in the FILE field, and 3 to
 invoke a USE $PRINT, to the specified CLASS and
 PRINTER.

 PRINTER A valid predefined printer name. If this field is blank or
 invalid when a 1 is specified in the OUTPUT DESTINATION
 field, the print comes to the user's terminal.

 OUTFILE A valid preallocated sequential file.

 CLASS The job class to use for USE $PRINT requests. This job
 class should be a valid class at your site. USE $PRINT is
 an obsolete method of printing, and its use is discouraged.
 If the PRINTER is blank or invalid when a USE $PRINT is
 invoked, the print is routed to PRINTER=LOCAL by
 Model 204.

——
70 SirFact Reference Manual

——
 The FACT Print Screen
——

 WITH criteria Enter in these two fields any print routing criteria normally
 placed in the “WITH” clause of a USE statement (such as
 COPIES=xx, TAG or ID statements).

 UDDLPP The number of lines to be printed or displayed per page.
 The default is 60 lines per page.

 UDDCCC The number of characters to be printed or displayed per line.
 The default is 133 characters per line.

 HDRCTL Header control settings allow the user to suppress various
 levels of automatic print headers.

 UDDRFM The number of characters to be printed or displayed per line.
 The default is 133 characters per line.

 Function keys active on the Print screen:

 PF1 Display help information for the current screen.

 PF2 Toggle on/off the horizontal scale.

 PF3 Exit the current screen and return to the previous screen or menu.

——
SirFact Reference Manual 71

——
The FACT Subsystem
——

——
72 SirFact Reference Manual

——
 Date Processing
——

——————
APPENDIX A Date Processing

 This chapter presents date processing issues, including usage of SirFact past the year
 1999, an explanation of its processing of dates, and any rules and restrictions you must
 follow to achieve correct results using date values with SirFact. SirFact uses dates in
 the following ways:

 ● to examine the CPU clock (as returned by the STCK hardware instruction) to
 determine the current date, in case SirFact is under a rental or trial agreement

 ● to set the procedure name for a SirFact dump to contain the date and time at which
 the dump was created. These timestamps always use a four-digit year.

 ● to display the current date, as returned by the TIME SVC (if the Sir2000 User
 Language Tools is active, the date is obtained by temporarily switching the clock
 using the APPDATE INTERNAL command) as page headers in various end-user
 displays

 For headers on pages or rows that occur on printed pages or displayed screens, UL/SPF
 products generally use a full four digit year format, although they may display dates with
 two digit years in circumstances where the proper century can be inferred from the
 context.

 You must examine all uses of date values in your applications to ensure that each of
 your applications produces correct results. Furthermore, both the operating system and
 Model 204 must correctly process and transmit dates beyond 1999 in order for SirFact to
 operate properly.

——
SirFact Reference Manual 73

——
Date Processing
——

——
74 SirFact Reference Manual

——
 Terminal MODEL 6 Support
——

——————
APPENDIX B Terminal MODEL 6 Support

 SirPro users can take advantage of the additional available screen space offered by
 terminal models beyond the standard Mod 2 (24 X 80), Mod 3 (32 X 80), Mod 4 (43 X
 80), and Mod 5 (27 X 132). The new terminal models are supported by setting the
 terminal model to 6:

 RESET MODEL 6

 There's really no such thing as a Model 6 terminal, but setting the terminal model to 6
 tells Model 204 to issue a Write Structured Field Query to the terminal to have the
 terminal indicate its geometry (number of rows and columns) to Model 204. In this way,
 Model 204 can dynamically set a terminal's geometry, whether it's one of the standard
 geometries (Mod 2, 3, 4, or 5) or not. Many terminal emulators allow alternate 3270
 sizes to be set. This makes it possible to set the terminal geometry to match the optimal
 combination of font size and physical screen size for a particular workstation, rather than
 trying to set the emulator font size to work well with one of a limited number of screen
 geometries.

 Unfortunately, the standard User Language screen definitions don't allow the defining of
 fields that extend beyond column 79. However, $scrHide, $scrSize, and $scrWide make
 it possible for User Language screens to take advantage of columns beyond column 79.
 In addition, these functions make it possible to dynamically modify screen definitions to
 allow a single screen definition to work with an arbitrary variety of screen sizes. While
 these functions are a bit awkward to use and somewhat limited, they're not
 unreasonable for building dynamic scrolling screens — scrolling screens being
 particularly suited for larger screen geometries.

 To facilitate User Language applications for varying screen sizes, the VIEW command
 for the MODEL parameter is enhanced to show the screen geometry in addition to the
 model number for model 6 terminals:

 > V MODEL
 MODEL 6 34*142 TERMINAL MODEL

 So $view issued for the above terminal returns 6 34*142, from which a User Language
 application could readily determine that the screen has 34 rows and 142 columns.

 To enable model 6 support, the SIRTERM system parameter must be set in the CCAIN
 stream. This is a bitmask parameter with the following meanings for the bits:

 X'01' Enable MODEL 6 support.

——
SirFact Reference Manual 75

——
Terminal MODEL 6 Support
——

 X'02' Always issue a Write Structured Field Query for terminals connecting to
 Model 204 through VTAM. This allows Model 204 to dynamically determine the
 screen geometry of any terminal connecting to it through VTAM, without having
 to issue a RESET MODEL 6 command.

 The downside of this setting is that it could add a small amount of time to the
 initial connection process and a slight amount of extra network traffic.

 If a terminal is using a non-standard screen geometry via model 6 support, the
 Model 204 editor and command line will correctly use the available screen space.

——
76 SirFact Reference Manual

——
 Index
——

——————
 Index

$ F
$functions, see SirFact $functions FACT subsystem ... 57

Fact Subsystem PF keys ... 69
A

GASSERT statement ... 27-28
 testing assumptions ... 28 Global variables ... 55

 Backslash global variables ... 55
B Comment-initialized global variables ... 55

 \ global variables ... 55Backslash global variables ... 55

IC
IGNORE option, SIRFACT DISPLAY ... 14Callable $functions ... 44
IGNORE subcommand, SIRFACTCANCEL option, SIRFACT DISPLAY ... 14
 command ... 21CANCEL subcommand, SIRFACT
IMPLIM option, $FACT_OPTION ... 50 command ... 11

Canceling requests ... 11, 14
M development vs. production ... 11

 setting cancellations ... 14 MAXDUMP option, SIRFACT DISPLAY ... 15
CASE option, $FACT_OPTION ... 50 MAXDUMP subcommand, SIRFACT
Comment-initialized global variables ... 55 command ... 22
Context command, FACT Subsystem ... 59 Mixed-case User Language ... 43

MODEL parameter, VIEW command ... 75
D

PDEBUGUL parameter, Model 204 ... 39
Display command, FACT Subsystem ... 60 Performance issues ... 20
DISPLAY subcommand, SIRFACT Printing ... 70-71
 command ... 14 $PRINT CLASS ... 70
DUMP option, SIRFACT DISPLAY ... 14 Characters per line ... 71
DUMP subcommand, SIRFACT Header control ... 71
 command ... 16 Lines per page ... 71
Dumps, limiting number of ... 22 OUTFILE ... 70
Dumps, SirFact ... 16, 21-22, 25-26, 28, 47, 50, output designation ... 70
 60 PRINTER ... 70

 range specification ... 70
E Record format ... 71

 WITH criteria ... 70Errors, ignoring ... 21
Procedure updates, subsystem ... 23

——
SirFact Reference Manual 77

——
Index
——

Q SNAP subcommand, SIRFACT command ... 26
Subsystem procedure, updates to ... 23Quads, Model 204 ... 38

QUIESCE subcommand, SIRFACT
W command ... 23

Quiescing, subsystem ... 23-24 Wildcard characters, SIRFACT command ... 9

R
RECNDUMP ... 25
RECNDUMP option, SIRFACT DISPLAY ... 15
RECNDUMP subcommand, SIRFACT
 command ... 25
Record numbers, dumping ... 25
Recovery ... 20
 checkpoint logging ... 20
 recovering dumps ... 20
 roll-forward ... 20
RESUME subcommand, SIRFACT
 command ... 24

\
\ global variables ... 55

S
Sdaemon, SirFact ... 43, 49
SIRAPSYF parameter ... 40
SirFact $functions
 $FACT_CMD ... 45
 $FACT_CONTEXT ... 46
 $FACT_DATA ... 47
 $FACT_DONE ... 48
 $FACT_INIT ... 49
 $FACT_OPTION ... 50
 $FACT_VNAME_WIDTH ... 51
 $TRACE2LIST ... 52
SIRFACT command ... 9
 CANCEL subcommand ... 11
 DISPLAY subcommand ... 14
 DUMP subcommand ... 16
 IGNORE subcommand ... 21
 MAXDUMP subcommand ... 22
 NODUMP subcommand ... 16
 QUIESCE subcommand ... 23
 RECNDUMP subcommand ... 25
 RESUME subcommand ... 24
 SNAP subcommand ... 26
SIRFACT parameter ... 37
SIRFACT statement ... 31
SIRTERM system parameter ... 75

——
78 SirFact Reference Manual

	Title
	Notices
	Contacting Global Technical Support
	Contents
	Summary of Changes
	Sirius Mods Version 7.1
	Sirius Mods Version 6.8
	Sirius Mods Version 6.7
	Sirius Mods Version 6.6
	Sirius Mods Version 6.5
	Sirius Mods Version 6.4
	Sirius Mods Version 6.2
	Sirius Mods Version 6.0
	Sirius Mods Version 5.6
	Sirius Mods Version 5.5
	Sirius Mods Version 5.4

	1. Overview
	1.1. Versions and compatibility
	1.2. Related manuals
	1.3. Related products
	1.4. System Requirements

	2. Post Hoc Debugging with SirFact
	2.1. Ad Hoc vs. Post Hoc Debugging

	3. The SIRFACT Command
	3.1. SIRFACT command summary
	3.2. SIRFACT CANCEL
	3.3. SIRFACT DISPLAY
	3.4. SIRFACT DUMP
	3.4.1. Procedure name substitutions
	3.4.2. Managing SirFact dumps

	3.5. SIRFACT IGNORE
	3.6. SIRFACT MAXDUMP
	3.7. SIRFACT QUIESCE
	3.8. SIRFACT RESUME
	3.9. SIRFACT RECNDUMP
	3.10. SIRFACT SNAP

	4. The ASSERT Statement
	5. The SIRFACT Statement
	6. The TRACE Statement
	7. System Parameters
	7.1. The SIRFACT Parameter
	7.1.1. Subsystem procedure enqueues
	7.1.2. SIRFACT compilation data collection

	7.2. The SIRAPSYF Parameter

	8. SirFact $Functions
	8.1. CALLing $functions
	8.2. $FACT_CMD: Run a command on the SirFact SDAEMON
	8.3. $FACT_CONTEXT: Set subroutine context for $FACT_DATA
	8.4. $FACT_DATA: Retrieve data from a SirFact dump
	8.5. $FACT_DONE: Terminate a SirFact dump
	8.6. $FACT_INIT: Open a SirFact dump
	8.7. $FACT_OPTION: Set or get SirFact display options
	8.8. $FACT_VNAME_WIDTH: Sets variable name width for $FACT_DATA
	8.9. $TRACE2LIST: Copy wrap-around trace table to $list

	9. Other SirFact Facilities
	9.1. Comment-initialized global variables

	10. The FACT Subsystem
	10.1. C[ontext] command: Setting program context for data extraction
	10.2. D[isplay] command: Displaying data from the SirFact dump
	10.2.1. Additional syntax for VALUE and LIST

	10.3. Navigation and display commands
	10.4. Program function keys
	10.5. The FACT Print Screen

	A. Date Processing
	B. Terminal MODEL 6 Support
	Index

