
Rocket Model 204
User Language/
DATABASE2 Interface
Guide

Version 7 Release 4.0

May 2012
204-74-DB2-01

ii

Notices
Edition

Publication date: May 2012

Book number: 204-74-DB2-01

Product version: Rocket Model 204 User Language/DATABASE2 Interface Guide -

Version 7 Release 4.0

Copyright

© Computer Corporation of America 1989-2012. All Rights Reserved.

Computer Corporation of America is a wholly-owned subsidiary of Rocket Software, Inc.

Trademarks

Rocket is a registered trademark of Rocket Software, Inc. For a list of Rocket registered
trademarks go to: www.rocketsoftware.com/about/legal. All other products or services
mentioned in this document may be covered by the trademarks, service marks, or product
names of their respective owners.

License agreement

This software and the associated documentation are proprietary and confidential to Rocket
Software, Inc., are furnished under license, and may be used and copied only in accordance with
the terms of such license.

Note

This product may contain encryption technology. Many countries prohibit or restrict the use, import,
or export of encryption technologies, and current use, import, and export regulation should be
followed when exporting this product.

Contact information

Web Site: www.rocketsoftware.com

Rocket Software, Inc. Headquarters
77 4th Avenue, Suite 100
Waltham, MA 02451–1468
USA
Tel: +1.617.614.4321
Fax: +1.617.630.7100

iii

Contacting Technical Support
If you have current support and maintenance agreements with Rocket Software and CCA,
contact Rocket Software Technical support by email or by telephone:

Email: m204support@rocketsoftware.com

Telephone :

 North America +1.800.755.4222

 United Kingdom/Europe +44 (0) 20 8867 6153

Alternatively, you can access the Rocket Customer Portal and report a problem, download an
update, or read answers to FAQs. You will be prompted to log in with the credentials supplied as
part of your product maintenance agreement.

To log in to the Rocket Customer Portal, go to:

http://www.rocketsoftware.com/support

iv

Contents
About this Guide

Installation ...ix
Audience ...ix
Model 204 documentation set ...ix
Documentation conventions...x

1 User Language/DATABASE 2 Program Environment
In this chapter.. 1

Overview .. 1
UL/DB2 program environment ... 2

Requirements .. 2
Supported operating systems ... 2
Accessing DB2 address spaces.. 2
Limitations ... 3

2 Defining the Model 204 Environment
In this chapter.. 5

Overview .. 5
Preparing a Model 204 environment .. 6
Setting the UL/DB2 User 0 parameters.. 6

Setting the XMEMOPT and XMEMSVC parameters... 6
Setting the SPCORE parameter ... 6
Setting User 0 parameters in the CCAIN input stream.. 7
DB2THRD parameter .. 7
DB2PLAN parameter .. 8
DB2QUOTE parameter ... 8
DB2POINT parameter ... 8

Defining the LINK, PROCESSGROUP, and PROCESS.. 8
Guidelines for using the DEFINE commands.. 9

Controlling links.. 9
Placing the LINK commands... 9
Required privileges ... 9

Security processing.. 10
No external security in place ... 10
External security in place .. 10

Granting PLAN and table privileges ... 11
Using the BUMP command with UL/DB2... 11
Using the MONITOR command with UL/DB2 .. 12

3 Coding SQL Statements in a User Language Procedure
In this chapter.. 13

Overview .. 13
Prerequisite knowledge of SQL... 14
Contents v

Requirements for writing SQL statements ... 14
Components of an SQL statement in a User Language procedure 14
EXEC DB2... END EXEC delimiters.. 14
Continuing SQL statements .. 14
Using quotation marks .. 15
SQL comments not supported .. 15
Using multiple SQL statements in a procedure... 15
Checking $STATUS .. 15

Connecting a User Language procedure to DB2 ... 16
DISCONNECT FROM statement .. 16

Defining and using cursors... 17
Supported cursor statements .. 17
Managing cursors.. 17
DECLARE statement .. 17
OPEN statement ... 18
FETCH statement ... 18
CLOSE statement ... 19

Modifying DB2 tables ... 20
INSERT statement .. 20
Searched UPDATE statement... 22
Searched DELETE statement ... 22
UPDATE... CURRENT statement ... 23
DELETE... CURRENT statement .. 24

Using %variables in SQL statements... 24
%variables... 25
Using %variables for Input .. 25
Using %variables for output (FETCH statement) .. 25

Terminating transactions.. 27
COMMIT statement ... 27
ROLLBACK statement .. 28

$SPIFY interface .. 28

4 Interpreting Codes and Messages
In this chapter.. 31

Overview .. 31
UL/DB2 error processing... 31
Using tracing ... 32

Errors involving Call Attach Facility calls.. 32
$STATUS and $STATUSD ... 32
$ERRMSG .. 32

Errors involving SQL statements.. 34
Using the $STATUS and $STATUSD functions.. 34
Understanding the $DB2EMSG function... 34

5 Sample UL/DB2 Request
In this chapter.. 37

Overview .. 37
Sample request described ... 37

DB2PRC procedure .. 38
SPIFY procedure... 38
vi Rocket Model 204 User Language/DATABASE 2 Interface Guide

Sample request code ... 39
Sample request output ... 40

A UL/DB2 Internals
In this appendix ... 41

Overview .. 41
How UL/DB2 communicates between Model 204 and DB2... 41

Data and message transfer ... 42
Call Attach Facility... 42
Accessing DB2.. 42

How UL/DB2 manages threads.. 42
Recovery and restart.. 43

Index
Contents vii

viii Rocket Model 204 User Language/DATABASE 2 Interface Guide

About this Guide

The User Language/DATABASE 2 Interface (UL/DB2) provides a
multithreaded connection from a Model 204 User Language procedure to a
DB2 database to retrieve DB2 data or manipulate DB2 tables.

This guide describes:

• UL/DB2 Interface program environment

• Preparing a Model 204 environment to support the interface

• SQL statements supported by the interface, and how to include these
statements in a User Language procedure

• Messages returned by the interface

Installation

This guide does not describe how to install UL/DB2. UL/DB2 is installed using
INS204, the Model 204 automated installation facility. See the Model 204 z/OS
Installation Guide for more information on installing UL/DB2.

Audience

This guide addresses three audiences:

Model 204 documentation set

The complete commercially released documentation for the latest version of
Model 204 is available for download from the Rocket M204 customer portal.

To access the Rocket Model 204 documentation:

Audience Responsible for...

Model 204 system
managers

Making a Model 204 environment ready to support the
interface, and defining and controlling security. System
managers should know how to set up Model 204 Online and
BATCH204 environments.

DB2 database
administrators

Granting PLAN and table privileges. DB2 database
administrators should know how to precompile and bind a
PLAN, and grant access to a PLAN.

Application
programmers

Developing User Language procedures that use embedded
SQL statements. Application programmers should know
User Language and SQL syntax.
 About this Guide ix

1. Navigate to:

http://www.rocketsoftware.com/m204

2. From the drop-down menu, select Products > Model 204 >
Documentation.

3. Click the link to the current release and select the document you want from
the list.

4. Click the .zip file containing the document.

5. Choose whether to open or save the document:

– Select Open and double-click the pdf file to open the document.

– Select Save as and select a location to save the zip file to.

Documentation conventions

This guide uses the following standard notation conventions in statement
syntax and examples:

Convention Description

TABLE Uppercase represents a keyword that you must enter exactly as
shown.

TABLE tablename In text, italics are used for variables and for emphasis. In examples,
italics denote a variable value that you must supply. In this example,
you must supply a value for tablename.

READ [SCREEN] Square brackets ([]) enclose an optional argument or portion of an
argument. In this case, specify READ or READ SCREEN.

UNIQUE | PRIMARY KEY A vertical bar (|) separates alternative options. In this example,
specify either UNIQUE or PRIMARY KEY.

TRUST | NOTRUST Underlining indicates the default. In this example, NOTRUST is the
default.

IS {NOT | LIKE} Braces ({ }) indicate that one of the enclosed alternatives is
required. In this example, you must specify either IS NOT or IS
LIKE.

item ... An ellipsis (. . .) indicates that you can repeat the preceding item.

item ,... An ellipsis preceded by a comma indicates that a comma is required
to separate repeated items.

All other symbols In syntax, all other symbols (such as parentheses) are literal
syntactic elements and must appear as shown.

nested-key ::=
column_name

A double colon followed by an equal sign indicates an equivalence.
In this case, nested-key is equivalent to column_name.
x Rocket Model 204 User Language/DATABASE 2 Interface Guide

Enter your account:

sales11

In examples that include both system-supplied and user-entered
text, or system prompts and user commands, boldface indicates
what you enter. In this example, the system prompts for an account
and the user enters sales11.

File > Save As A right angle bracket (>) identifies the sequence of actions that you
perform to select a command from a pull-down menu. In this
example, select the Save As command from the File menu.

EDIT Partial bolding indicates a usable abbreviation, such as E for EDIT
in this example.

Convention Description
 About this Guide xi

xii Rocket Model 204 User Language/DATABASE 2 Interface Guide

1
User Language/DATABASE 2
Program Environment

In this chapter

• Overview

• UL/DB2 program environment

Overview

The User Language/DATABASE 2 Interface (UL/DB2) allows a Model
204 User Language procedure to use embedded SQL statements to
access a DB2 database. User Language becomes, in effect, a host
language for DB2. SQL statements embedded in a User Language
procedure can update a DB2 database or return selected values from
DB2 to Model 204.

The following example is an SQL statement embedded in a User
Language procedure:

EXEC DB2
 DECLARE BAR CURSOR FOR
 SELECT CHA FROM DVPJB.TEST2
END EXEC
User Language/DATABASE 2 Program Environment 1

UL/DB2 program environment

Figure 1-1. UL/DB2 program environment

Requirements

The requirements for the User Language/DATABASE 2 Interface are:

• IBM z/OS 1.01 or higher

• Model 204

• DATABASE 2 Version 2 Release 1 or higher

• To use a Model 204 user ID as the DB2 authorization ID, the Model 204
security interface for ACF2 must be installed.

Supported operating systems

UL/DB2 runs under only IBM z/OS. It does not run under IBM z/VM or IBM
z/VSE operating systems.

Accessing DB2 address spaces

Model 204 uses the Call Attach Facility (CAF) to communicate with a single
local DB2 subsystem that is on the same physical machine as Model 204.

z/OS

MODEL 204 Address Space MAINTASK DB2 Address Space
MVS Subsystem Name = ‘DSN’

MVS
Cross
Memory
Service

DB2THRD

C
all A

ttach
 F

acility

M204

plan lib
M204PLA
2 Rocket Model 204 User Language/DATABASE 2 Interface Guide

However, this local DB2 subsystem can use DATABASE 2’s Distributed Data
Facility (DDF) to communicate with one or more remote DB2 databases. These
remote databases can be on the same CPU as the local database or on a
different CPU.

Limitations

The following limitations apply to the UL/DB2 Interface:

• UL/DB2 Interface is for only z/OS DB2.

• JCL to run Model 204 must include DSNvrm.DSNLOAD in the STEPLIB in
order to load DSNALI and DSNTIAR, unless the module is in the Link
Lookaside Area.

• UL/DB2 Interface is for a single machine implementation.

• No support for singleton SELECT statements, although singleton SELECT
statements can be issued using the $SPIFY function.

• No system manager commands to control the subtasks.

• Number of threads, or subtasks, is defined statically.

• Model 204 address space can have a link open to only one local DB2
subsystem.

• Maximum number of cursors that you can have open simultaneously is ten.
User Language/DATABASE 2 Program Environment 3

4 Rocket Model 204 User Language/DATABASE 2 Interface Guide

2
Defining the Model 204
Environment

In this chapter

• Overview

• Preparing a Model 204 environment

• Setting the UL/DB2 User 0 parameters

• Defining the LINK, PROCESSGROUP, and PROCESS

• Controlling links

• Security processing

• Granting PLAN and table privileges

• Using the BUMP command with UL/DB2

• Using the MONITOR command with UL/DB2

Overview

The UL/DB2 Interface is supported in the Online and BATCH204
environments.

An Online is a multiuser program that runs in its own address space.
Each Online is a separate entity, requiring its own system files, buffers,
control tables, and servers.
Defining the Model 204 Environment 5

BATCH204 is a single-user Model 204 job, therefore, there are no terminal
interfaces. Input is only possible from the User 0 input stream. BATCH204
requires its own system files, buffers, control tables, and servers.

Preparing a Model 204 environment

To prepare a Model 204 environment to support UL/DB2, you must:

1. Set the User 0 parameters.

2. Define the LINK, PROCESSGROUP, and PROCESS.

3. Open the link.

These tasks are described in the following sections.

Setting the UL/DB2 User 0 parameters

Model 204 uses User 0 parameters to configure its address space (Online or
BATCH204). User 0 parameters are specified in the input stream of the job
invoking Model 204.

UL/DB2 has two required and two optional User 0 parameters.

The required UL/DB2 User 0 parameters are:

• DB2THRD

• DB2PLAN

You must explicitly set a value for both DB2THRD and DB2PLAN.

The optional UL/DB2 User 0 parameters are:

• DB2QUOTE, which has a default of an apostrophe (’)

• DB2POINT, which has a default of a decimal point (.)

You can set a value for either or both DB2QUOTE and DB2POINT. If you do
not set a value for either DB2QUOTE or DB2POINT, that parameter assumes
a default value.

Setting the XMEMOPT and XMEMSVC parameters

If your site uses the ACF2 external security package and you want to take
advantage of operating system Cross-Memory Services, you must set two
additional User 0 parameters, XMEMOPT and XMEMSVC. See “Security
processing” on page 10 for more information about setting these parameters.

Setting the SPCORE parameter

Each UL/DB2 user requires 1300 bytes of SPCORE.
6 Rocket Model 204 User Language/DATABASE 2 Interface Guide

Setting User 0 parameters in the CCAIN input stream

You set the UL/DB2 User 0 parameters on the first line of the CCAIN input
stream. The User 0 parameter line is the first line of the CCAIN input data set,
after any DEFINE commands, in a Batch or Online system.

The following example shows the positioning of the User 0 parameter line
within the CCAIN input stream:

//CCAIN DD *
* User 0 parameters
.
.
.

See the Model 204 System Manager’s Guide and the Model 204 Command
Reference Manual for more information on setting User 0 parameters.

RESET command not supported

You cannot use the RESET command to reset the UL/DB2 User 0 parameters.
You can set them only on the User 0 parameter line in the CCAIN input stream.

VIEW command supported

You can use the VIEW command during an Online run to display the current
User 0 parameter settings. See the Model 204 Command Reference Manual
for more information.

DB2THRD parameter

The DB2THRD parameter specifies the number of DB2 threads (TCBs) to
allocate for a Model 204 run.

Syntax DB2THRD=nnnnn

Where:

nnnnn is a number that specifies the maximum number of DB2 threads to
allocate for a Model 204 run. The number that is best for your site depends on
the types of transactions that you process. If you typically perform complex
tasks, you might want to allocate a thread for each user. If you typically perform
simple tasks, you might want to allocate one thread for every ten users.

Note: If the value of DB2THRD is greater than the value of the NUSERS
parameter, Model 204 resets the value of DB2THRD to the value of NUSERS
and writes an error message in the job log.
Defining the Model 204 Environment 7

DB2PLAN parameter

The DB2PLAN parameter indicates the PLAN name created by the DBRM
BIND.

Syntax DB2PLAN=name

where:

name is the PLAN name created by the DBRM BIND. For more information on
the PLAN name, see “Granting PLAN and table privileges” on page 11.

DB2QUOTE parameter

Note: The DB2QUOTE parameter depends on the systemwide definitions
made by your DB2 DBA. Consult with your DBA before setting this parameter.

DB2QUOTE is an optional parameter that specifies the symbol to be used as
the DB2 string delimiter. DB2QUOTE has a default value of an apostrophe (’).

Syntax DB2QUOTE=symbol

where:

symbol is the character to be used as the DB2 string delimiter.

For more information on the DB2 string delimiter, see the IBM DATABASE 2
Install Guide.

DB2POINT parameter

Note: The DB2POINT parameter depends on the systemwide definitions made
by your DB2 DBA. Consult with your DBA before setting this parameter.

DB2POINT is an optional parameter that specifies the symbol to be used as the
decimal point. DB2POINT has a default value of period (.).

Syntax DB2POINT=symbol

where:

symbol is the character to be used as the DB2 decimal point.

For more information on the DB2 decimal point, see the IBM DATABASE 2
Install Guide.

Defining the LINK, PROCESSGROUP, and PROCESS

The following DEFINE commands are required for UL/DB2. The DEFINE
commands identify the entities that underlie UL/DB2.
8 Rocket Model 204 User Language/DATABASE 2 Interface Guide

These commands are fully documented in the Model 204 Command Reference
Manual:

• DEFINE LINK: UL/DB2

• DEFINE PROCESSGROUP: UL/DB2

• DEFINE PROCESS: User Language to DATABASE 2

Guidelines for using the DEFINE commands

The following guidelines apply when using the DEFINE commands.

• User zero or system manager privileges are required

• Typically, you place the DEFINE commands in the User 0 stream in the
CCAIN input file. This placement allows the entities to be defined when
Model 204 starts.

Alternatively, you can place the DEFINE commands inside a Model 204
procedure that is invoked within the User 0 stream. This allows you to set
up or change the definitions without restarting Model 204.

• You can specify the DEFINE commands in any order.

Controlling links

The following commands that you use to control links between Model 204 and
DB2 are fully documented in the Model 204 Command Reference Manual:

• The OPEN LINK command enables the link specified in the DEFINE LINK
command. It is required to establish the connection between Model 204 and
DB2.

• The CLOSE LINK command disables an open link to prohibit users from
accessing DB2 after initialization has completed.

• The STOP LINK command sets the link entity in a drain state. That is, no
new users are allowed to access DB2, and current users can continue until
they end the connection normally.

Placing the LINK commands

You can place these commands in the User 0 stream, within a User Language
procedure, or you can issue them at the command level.

Required privileges

To issue these commands, you must have User 0, system manager, or system
administrator privileges.
Defining the Model 204 Environment 9

Security processing

To use DB2 resources, a Model 204 user must be authorized to access the
DB2 subsystem and, once that connection has been established, to access
specific DB2 resources. This section describes how DB2 determines if a
Model 204 user has access authorization, both with and without an external
security package installed.

To access the DB2 subsystem, Model 204 supplies a primary authorization ID
to DB2 at connection time. How this processing is done depends on whether
an external security package is in place.

No external security in place

If there is no external security system, DB2 uses the USER parameter on the
JOB statement as the primary authorization identifier. If there is no USER
parameter, the primary authorization ID is set to the default authorization ID,
which was set when DB2 was installed (UNKNOWN AUTHID on install panel
DSNTIPP).

External security in place

An external security system can be used to validate DB2 requests.

To fully use an external security subsystem to validate the DB2 requests, one
of the Model 204 security interfaces must be installed and the Model 204 load
member must be in an APF-authorized load library. If the load library is not
authorized, then DB2 validates the request as if there were no external security
system in place. See the previous section, “No external security in place”.

Taking advantage of operating system Cross-Memory Services

If you have an external security subsystem installed and are running Model 204
from an authorized library, then you can take advantage of operating system
Cross-Memory Services. To do so, you must:

• Have Cross-Memory SVC installed. See the Model 204 z/OS Installation
Guide for information on installing XMEMSVC.

• Set two User 0 parameters to ensure that a Model 204 run uses cross-
memory. These User 0 parameters are XMEMOPT and XMEMSVC.

– Set XMEMOPT to X’04’ to force Model 204 to initialize the Cross-
Memory environment.

– Set XMEMSVC to the SVC number used when XMEMSVC was
installed.

Note: If XMEMOPT has already been set for another Model 204 feature,
then you do not need to set it again.
10 Rocket Model 204 User Language/DATABASE 2 Interface Guide

Authorization exit DSN3@ATH

The authorization exit DSN3@ATH is provided by DB2 for security checking
during CONNECT processing. The exit as distributed checks for security
subsystem installation, and uses the security subsystem to validate the primary
authorization ID and acquire any secondary authorization ID. CA-ACF2
replaces this exit with one of their own, which does identical work, albeit by
calling on ACF2 functions.

As part of UL/DB2, Rocket Software distributes its own version of the
DSN3@ATH authorization exit. You must install this Model 204-supplied
authorization exit, which is stored in the MACLIB as ACF3SATH, over the
existing DSN3@ATH. Refer to Chapter 3 of the DATABASE 2 Administration
Guide Volume 1 for instructions on installing the Model 204-distributed
DSN3@ATH over the existing copy.

Note: If you have modified the existing DSN3@ATH, you must make the same
modifications to the Model 204 DSN3@ATH authorization exit.

When this exit is invoked, the active TCB is checked to see if it is a Model 204
subtask. If this TCB is recognizable as Model 204’s, the Model 204 user ID is
used as the DB2 primary authorization ID (AIDLPRIM) and the default SQL ID.

The authorization exit is driven at connection time, that is, during the Call Attach
Facility CONNECT call. CONNECT processing is expensive, so user switching
requires careful consideration. A user procedure acquires a subtask TCB at the
first EXEC DB2 request and keeps it until the procedure finishes. A long-
running procedure can effectively remove the TCB from the pool of available
TCBs.

Granting PLAN and table privileges

To execute a program containing SQL statements, a Model 204 user must have
execution privileges on the PLAN that was created by the BIND. The DB2 DBA
can grant privileges to individual user IDs, can make the PLAN public, or do
whatever is standard at the site. Also, to access specific DB2 tables, the
Model 204 user must have appropriate table privilege for that table. Again, the
DB2 DBA grants table privileges to users.

Using the BUMP command with UL/DB2

You can use the Model 204 BUMP command to terminate a UL/DB2 user.

Depending on the state of that user, however, the BUMP command might have
to wait to complete processing. A procedure that is accessing DB2 runs under
the subtask’s TCB. Model 204 considers that user to be in a swappable WAIT
state. When you issue a BUMP against such a user, UL/DB2 waits until the
user is swapped in and active before executing the BUMP. The user is then
restarted, which frees the subtask TCB.

See the Model 204 Command Reference Manual for more information on the
BUMP command.
Defining the Model 204 Environment 11

Using the MONITOR command with UL/DB2

Use the MONITOR command to see the current usage of a Model 204 link,
processgroup, or process.

Syntax MONITOR {LINK | PROCESSGROUP | PROCESS} entityname
 [[EVERY] n]

where:

entityname is the name specified on the DEFINE LINK, DEFINE
PROCESSGROUP, or DEFINE PROCESS command.

n is the number of seconds Model 204 waits after completing a display before
beginning the next display.

Output The output of the MONITOR command for UL/DB2 is a single line that contains
the items listed in Table 2-1.

See the Model 204 Command Reference Manual for more information about
the MONITOR command.

Table 2-1. MONITOR command output

Term Meaning

LOCAL ID Blank (no meaning)

MAXSES Maximum number of threads allowed. The value of the
DB2THRD parameter.

BNDSES Number of threads currently in use. (Threads that are in use
or on the chain.)

CONVS Threads currently active to DB2. (WAIT type 32. Model 204
WAIT, the thread is talking to DB2.)

FLGS Link status flags:

A — Active

S — Stopped

C — Being closed

TRAN Type of transport:

LOCL — Local

PROTO Type of communication protocol:

CAF — Call Attach Facility
12 Rocket Model 204 User Language/DATABASE 2 Interface Guide

3
Coding SQL Statements in a User
Language Procedure

In this chapter

• Overview

• Requirements for writing SQL statements

• Connecting a User Language procedure to DB2

• Defining and using cursors

• Modifying DB2 tables

• Using %variables in SQL statements

• Terminating transactions

• $SPIFY interface

Overview

This chapter describes the specific SQL statements that you can use in
a User Language procedure, and the rules and guidelines that apply
when using those statements.

The chapter also describes the $SPIFY interface, which lets a User
Language programmer test an SQL statement before it is used in a
procedure.
Coding SQL Statements in a User Language Procedure 13

Prerequisite knowledge of SQL

This chapter assumes that you are familiar with SQL syntax. It does not explain
what a particular SQL statement does; rather, it explains how you use that
statement in a User Language procedure.

Requirements for writing SQL statements

This section describes the general requirements that apply when you code an
SQL statement in a User Language procedure.

Components of an SQL statement in a User Language procedure

An SQL statement can contain constants, SQL column names, and Model 204
%variables. An SQL statement cannot contain image names, screen names, or
Model 204 field names.

EXEC DB2... END EXEC delimiters

You must precede each SQL statement in a User Language procedure with the
keywords “EXEC DB2”, and you must end each SQL statement with the
keywords “END EXEC”.

You can put the EXEC DB2 and END EXEC on a separate line from the rest of
the statement, or you can include it on the same line. You cannot, however,
break either the EXEC DB2 or the END EXEC strings onto more than one line.

Two valid SQL statements are shown below (the indentation has been added
for legibility):

EXEC DB2
 COMMIT WORK
END EXEC

EXEC DB2 FETCH P INTO %POLN END EXEC

Continuing SQL statements

You do not need to use a continuation character to continue an SQL statement
onto the following line.

Examples EXEC DB2
DECLARE FOO CURSOR FOR SELECT
S#,SNAME,STATUS,CITY FROM S
END EXEC

You can continue a literal by placing a hyphen at the end of the line:

EXEC DB2
14 Rocket Model 204 User Language/DATABASE 2 Interface Guide

 DELETE FROM DVPJB.S
 WHERE NAME = ’ALFRED E. -
 NEWMAN’
END EXEC

Using quotation marks

Use single quotation marks (’) around literal text in an SQL statement.

Example EXEC DB2
 DELETE FROM DVPJB.S
 WHERE NAME = ’ALFRED E. -
 NEWMAN’
END EXEC

Note: This example assumes the default value of the DB2QUOTE parameter,
which is an apostrophe (’). If your site has changed the value of DB2QUOTE,
use that value instead.

SQL comments not supported

The UL/DB2 Interface does not support SQL comments.

Using multiple SQL statements in a procedure

You can have any number of SQL statements in a single User Language
procedure. However, you can code only one SQL statement in each EXEC
DB2... END EXEC block.

Example EXEC DB2
 SQL statement
END EXEC
...
EXEC DB2
 SQL statement
 statement continued
END EXEC
...
EXEC DB2
 SQL statement
END EXEC

Checking $STATUS

Check $STATUS after each EXEC DB2... END EXEC block to make sure that
the processing completed correctly. See “$STATUS and $STATUSD” on
page 32 for more information on checking $STATUS in a User Language
procedure.
Coding SQL Statements in a User Language Procedure 15

Connecting a User Language procedure to DB2

This section describes the CONNECT TO and DISCONNECT FROM
statements that you use to create and terminate a connection, or thread,
between a User Language procedure and DB2.

Strictly speaking, CONNECT TO and DISCONNECT FROM are not SQL
statements, but Call Attach Facility calls. However, the same rules apply to
using these statements in a User Language procedure that were described in
the section “Requirements for writing SQL statements” on page 14.

You issue the CONNECT TO and DISCONNECT FROM statements relative to
the way that you have defined the process for your UL/DB2 environment. See
the DEFINE PROCESS command for User Language to DATABASE 2 in the
Model 204 Command Reference Manual.

CONNECT TO statement

Use the CONNECT TO statement to create a thread between a User Language
procedure and DB2.

CONNECT TO must be the first EXEC DB2 statement in the procedure. If
CONNECT TO is not the first EXEC DB2 statement in a procedure, the results
are unpredictable.

Syntax EXEC DB2
 CONNECT TO symbolic_name
END EXEC

where:

symbolic_name is the symbolic name from the DESTINATION parameter of
the DEFINE PROCESS command.

Errors connecting to DB2

If the CONNECT TO statement within a User Language procedure fails,
Model 204 displays an error message. See “Errors involving Call Attach Facility
calls” on page 32 for more information.

DISCONNECT FROM statement

The DISCONNECT FROM statement is optional, but is highly recommended if
the procedure is long running and you do not require any more access to DB2.
The DISCONNECT statement releases system resources for other users.

Syntax EXEC DB2
 DISCONNECT FROM symbolic_name
END EXEC
16 Rocket Model 204 User Language/DATABASE 2 Interface Guide

where:

symbolic_name is the symbolic name from the DESTINATION parameter of
the DEFINE PROCESS command.

A DISCONNECT is performed for the user at user logout time, or when the
subtask control block is “stolen” for use by another DB2 request. Issue the
DISCONNECT command only when no more DB2 requests are required by the
running procedure.

See Appendix A for more information.

Defining and using cursors

This section describes the SQL statements that you can use to define a cursor
and to manipulate the row at which the cursor points. This section also
discusses multiple cursor support.

Supported cursor statements

The SQL cursor operation statements supported by UL/DB2 are:

• DECLARE

• OPEN

• FETCH

• CLOSE

In addition, two other supported statements use cursors:

• UPDATE ... CURRENT (positioned UPDATE)

• DELETE ... CURRENT (positioned DELETE)

These statements are described in “Modifying DB2 tables” on page 20.

Managing cursors

You must place statements that declare a cursor before any statement that
references that cursor.

Try to close cursors in your application as soon as they are no longer needed.
Closing a cursor minimizes the system resources required by your application.

DECLARE statement

Use the DECLARE statement to declare a cursor and its associated query.

Syntax EXEC DB2
 DECLARE cursor_name CURSOR
Coding SQL Statements in a User Language Procedure 17

 FOR SELECT query_expression
END EXEC

where:

cursor_name is from 1-18 characters.

See “Using %variables in SQL statements” on page 24 for more information
about the use of %variables in a query_expression.

Example EXEC DB2
 DECLARE FOO CURSOR FOR
 SELECT P#,PNAME,CITY
 FROM DVPJB.P
END EXEC

This block of code associates a cursor “FOO” named with the results that are
returned by the SELECT statement “SELECT P#, PNAME, CITY FROM
DVPJB.P”.

OPEN statement

Use the OPEN statement to prepare a cursor for processing.

Syntax EXEC DB2
 OPEN cursor_name
END EXEC

where:

cursor_name is a cursor that has been declared earlier in the procedure. When
the OPEN statement is executed, the values of any %variables are substituted
in the cursor declaration.

Example EXEC DB2
 OPEN FOO
END EXEC

This block opens the cursor FOO, declared in the previous example.

Multiple cursor support

You can open and use more than one cursor simultaneously. The maximum
number of cursors that you can have open simultaneously is 10.

A request for more than 10 cursors results in a compile-time error.

FETCH statement

Use the FETCH statement to place a single row of returned values into a
%variable.
18 Rocket Model 204 User Language/DATABASE 2 Interface Guide

Syntax EXEC DB2
 FETCH cursor_name INTO
 %variable {{{INDICATOR} %variable},…}
END EXEC

where:

• cursor_name is the name of a cursor previously declared and opened.

• INDICATOR keyword is optional when the Indicator %variable is present

• %variable is a User Language %variable that has been previously
declared. The number of %variables must match number of SQL columns
named in the query.

See “Using %variables in SQL statements” on page 24 for more
information.

Example The following block of code fetches P#, PNAME, and CITY from the table
PVBJB.P and assigns them to the User Language variables %A, %B, and %C:

REPEAT FOREVER
 EXEC DB2
 FETCH FOO INTO %A,%B,%C
 END EXEC
 IF $STATUS NE 0 AND $STATUS NE 100 THEN
 JUMP TO ERROR
 END IF
 PRINT ’NUMBER:’ AND %A AND ’ NAME:’ AND %B AND
 ’ CITY:’ AND %C
END REPEAT

A $STATUS of 100 indicates that the FETCH found no rows or no more rows.
After each FETCH, test for a $STATUS of 100 and move out of the loop when
you encounter it. See Chapter 4 for more information on $STATUS and error
processing.

Also, test for $STATUS NE 0 and $STATUS NE 100 for a real error condition
(an exceptional case).

CLOSE statement

The CLOSE statement closes a cursor that has been previously opened. To
reduce the overhead of your program, close a cursor as soon as it is no longer
required for your program.

Syntax EXEC DB2
 CLOSE cursor_name
END EXEC

Example The following example closes the cursor FOO:
Coding SQL Statements in a User Language Procedure 19

EXEC DB2
 CLOSE FOO
END EXEC

Modifying DB2 tables

This section describes the SQL statements that you can use in a User
Language procedure to insert, update, or delete data in a DB2 table.

The supported SQL statements that modify a DB2 table are:

• INSERT

• UPDATE (searched UPDATE)

• DELETE (searched DELETE)

• UPDATE ... CURRENT (positioned UPDATE)

• DELETE ... CURRENT (positioned DELETE)

INSERT statement

Use the INSERT statement to insert rows into a table one at a time, or to copy
data from one table to another, processing multiple rows with a single
statement.

Inserting Large Object fields

In this release the INSERT statement is not supported for Large Object fields.

Inserting a single row

Use the following syntax of the INSERT statement to processes a single row at
a time.

Syntax EXEC DB2
 INSERT INTO table_name VALUES ([%variable|lit-
eral|NULL],...)
END EXEC

where:

%variable is a User Language %variable.

Example The following code inserts the values “LONDON”, “BUDDHA”, “S9”, and “3”
into the table DVPJB.S:

DECLARE %ERR STRING LEN 240
DECLARE %NAME STRING LEN 20
20 Rocket Model 204 User Language/DATABASE 2 Interface Guide

DECLARE %CITY STRING LEN 10
DECLARE %STAT FIXED
DECLARE %SER STRING LEN 5
%CITY = ’LONDON’
%NAME = ’BUDDHA’
%SER = ’S9’
%STAT = 3
EXEC DB2
 CONNECT TO BOSTON
END EXEC
IF $STATUS NE 0 THEN
 JUMP TO CONERROR
END IF
EXEC DB2
 INSERT INTO DVPJB.S
 VALUES (%SER)
END EXEC
IF $STATUS NE 0 THEN
 JUMP TO ERROR
END IF

Inserting multiple rows

The following syntax of the INSERT statement that processes multiple rows.

Syntax EXEC DB2
 INSERT INTO table_name column_list
 SELECT query_specification
END EXEC

See “Using %variables in SQL statements” on page 24 for more information
about the use of %variables in a query_specification.

You can use this construct to copy data from one DB2 table to another.

Example The following code selects the SNAME, STATUS, and CITY fields from the S
table and copies them into the table DVPJB.S:

EXEC DB2
 CONNECT TO BOSTON
END EXEC
IF $STATUS NE 0 THEN
 JUMP TO CONERROR
END IF
EXEC DB2
 INSERT INTO DVPJB.S (SNAME, STATUS, CITY)
 SELECT SNAME, STATUS, CITY FROM S
END EXEC
IF $STATUS NE 0 THEN
 JUMP TO ERROR
Coding SQL Statements in a User Language Procedure 21

END IF

Searched UPDATE statement

Use the searched UPDATE statement to update one row of a table at a time.

Syntax EXEC DB2
 UPDATE table_name
 SET {column = [%variable|literal|NULL]},...
 WHERE search_condition
END EXEC

where:

%variable is a previously declared User Language %variable.

See “Using %variables in SQL statements” on page 24 for more information
about the use of %variables in a search_condition.

Example PRINT ’UPDATE’
EXEC DB2
 UPDATE S SET SNAME = ’BILL’, CITY = ’SAN DIEGO’ WHERE
S# = %S
END EXEC
IF $STATUS NE 0 THEN
 JUMP TO ERROR
END IF

Searched DELETE statement

Use the searched DELETE statement to delete one row or a table at a time.

Syntax EXEC DB2
 DELETE FROM table_name
 WHERE column = search_condition
END EXEC

where:

%variable is a previously declared User Language %variable.

See “Using %variables in SQL statements” on page 24 for more information
about the use of %variables in a search_condition.

Example DECLARE %ERR STRING LEN 240
DECLARE %NAME STRING LEN 20
DECLARE %CITY STRING LEN 10
DECLARE %STAT FIXED
DECLARE %SER STRING LEN 5
%CITY = ’LONDON’
22 Rocket Model 204 User Language/DATABASE 2 Interface Guide

%NAME = ’BUDDHA’
%SER = ’S9’
%STAT = 3
EXEC DB2
 DELETE FROM DVPJB.S
 WHERE CITY = %CITY
END EXEC
IF $STATUS NE 0 THEN
 JUMP TO ERROR
END IF

UPDATE... CURRENT statement

Use the UPDATE... CURRENT, as follows.

Syntax EXEC DB2
 UPDATE table_name
 SET {column = [%variable|literal|NULL]},...
 WHERE CURRENT OF cursor_name
END EXEC

where:

%variable is a previously declared User Language %variable.

Example EXEC DB2
 DECLARE FOO CURSOR FOR
 SELECT S#,SNAME,CITY FROM DVPJB.S
 WHERE CITY = %CITY
 FOR UPDATE of SNAME
END EXEC
*
EXEC DB2
 OPEN FOO
END EXEC
IF $STATUS NE 0 THEN
 JUMP TO ERROR
END IF
*
REPEAT FOREVER
 EXEC DB2
 FETCH FOO INTO %A,%B,%C
 END EXEC
 IF $STATUS = 100 THEN LOOP END
 END IF
 IF $STATUS NE 0 THEN
 JUMP TO ERROR
 END IF
 PRINT ’NUMBER:’ AND %A AND ’ NAME:’ AND %B AND ’
Coding SQL Statements in a User Language Procedure 23

 CITY:’ AND %C
 EXEC DB2
 UPDATE DVPJB.S
 SET SNAME = %NAME
 WHERE CURRENT OF FOO
 END EXEC
 IF $STATUS NE 0 THEN
 JUMP TO ERROR
 END IF
END REPEAT

DELETE... CURRENT statement

Use the DELETE... CURRENT statement as follows.

Syntax EXEC DB2
 DELETE FROM table_name
 WHERE CURRENT OF cursor_name
END EXEC

Example REPEAT FOREVER
 EXEC DB2
 FETCH FOO INTO %A,%B,%C
 END EXEC
 IF $STATUS = 100 THEN LOOP END
 END IF
 IF $STATUS NE 0 THEN
 JUMP TO ERROR
 END IF
 PRINT ’NUMBER:’ AND %A AND ’ NAME:’ AND %B AND ’ CITY:’
 AND %C
 IF $DEBLANK(%B,1) EQ %NAME THEN
 PRINT ’DELETING’ AND %B
 EXEC DB2
 DELETE FROM DVPJB.S
 WHERE CURRENT OF FOO
 END EXEC
 IF $STATUS NE 0 THEN
 JUMP TO ERROR
 END IF
 END IF
END REPEAT

Using %variables in SQL statements

This section explains how you use User Language %variables in SQL
statements. It also discusses how to specify the INDICATOR type with the
FETCH command.
24 Rocket Model 204 User Language/DATABASE 2 Interface Guide

%variables

You can use a User Language %variable in an SQL statement to provide a
value to DB2, or to receive the result of an SQL’s statement processing.

Do not place a colon before a %variable.

Using %variables for Input

The SQL statements that use a %variable to provide a value to DB2 are:

• UPDATE... SET.. CURRENT

• UPDATE... SET ... WHERE

• INSERT... VALUES

• DELETE ... WHERE

• DECLARE .. CURSOR

UL/DB2 parses the input %variables to determine type and value. You can use
a numeric %variable wherever a number can appear in an SQL statement. You
can use a string %variable wherever a quoted string can appear in an SQL
statement.

Example The %CITY variable adds the value “LONDON” to the DVPJB.S table:

DECLARE %CITY STRING LEN 10
%CITY = ’LONDON’
EXEC DB2
 CONNECT TO BOSTON
END EXEC
IF $STATUS NE 0 THEN
 JUMP TO CONERROR
END IF
EXEC DB2
 INSERT INTO DVPJB.S (CITY)
 VALUES (%CITY)
END EXEC

Using %variables for output (FETCH statement)

The SQL FETCH statement uses a %variable to receive output.

The output is assigned to the %variables in the order in which it is returned from
DB2. If data is truncated when assigned to the %variable, $STATUS and
$STATUSD indicate that truncation occurred. If more columns are available
from the query row than there are %variables specified, the output data is still
put in the %variables in the order returned, but the $STATUS and $STATUSD
indicate that more data was available.
Coding SQL Statements in a User Language Procedure 25

Example %A, %B, and %C in the following code receive the values of the P#, PNAME,
and CITY columns from the table PVBJB.P:

REPEAT FOREVER
 EXEC DB2
 FETCH FOO INTO %A,%B,%C
 END EXEC
 IF $STATUS NE 0 AND $STATUS NE 100 THEN
 JUMP TO ERROR
 END IF
 PRINT ’NUMBER:’ AND %A AND ’ NAME:’ AND %B AND ’ CITY:’
 AND %C
END REPEAT

Stripping blanks from string values returned by DB2

When DB2 returns a string to a User Language %variable, that string contains
the number of blanks necessary to make the value equal to the defined
maximum length of the %variable.

Example In the following code, if the string being fetched by CUR1 into %BAR is three
characters (“Joe”), that value is padded with enough blanks to make it 20
characters long (“Joe ”):

DECLARE %BAR STRING LEN 20
FETCH CUR1 INTO %BAR
$LEN(%BAR) = 20

A User Language string with a length of 20, that is assigned a 3-character value
(“Joe”) has a length of three:

DECLARE %FOO STRING LEN 20
%FOO =’ JOE’
$LEN (%FOO) = 3

As a result, an equality comparison between the values of %FOO and %BAR
is false. If you want a string value returned by DB2 to conform to the way that
User Language construes string variables, you must use the $DEBLANK
function to strip the extraneous blanks:

$DEBLANK(%BAR)

Data types

The User Language/DATABASE 2 Interface supports string, float, and fixed
data types; these are all Model 204 data types. The assignment to and from
these variable types follows the rules outlined in the IBM DATABASE 2 SQL
Reference.
26 Rocket Model 204 User Language/DATABASE 2 Interface Guide

Specifying a numeric type when a string type is expected, or specifying a string
type when a numeric type is expected, generates an error. The error code is
returned by $STATUS and $STATUSD.

Specifying the INDICATOR type with the FETCH command

You can specify the INDICATOR type on FETCH commands.

Syntax EXEC DB2
 FETCH cursor_name
 INTO %variablea INDICATOR %indica, %variableb
 INDICATOR %indicb,...
END EXEC

where:

%indica in this statement is the indicator variable for %variablea.

INDICATOR is an optional keyword; if a %variable is followed directly by a
%variable with no intervening comma, it is assumed to be an indicator variable.

Example EXEC DB2
FETCH cursor_name
INTO %variablea %indica, %variableb
END EXEC

Here, %indica is the indicator variable for %variablea.

Querying the INDICATOR variable

In UL/DB2, the User Language procedure must query the INDICATOR variable
to see if the NULL indicator was set (-1). If the column is NULL and no indicator
variable is present, $STATUSD is set to -305 (the SQLCODE). Retrieving
$DB2EMSG displays the text associated with SQLCODE -305. The receiving
%variable is not set when a null value is fetched.

Terminating transactions

UL/DB2 supports the COMMIT and ROLLBACK statements to terminate
transactions.

COMMIT statement

A commit point occurs when you issue the COMMIT statement, or when the
request ends normally.

Syntax EXEC DB2
 COMMIT WORK
END EXEC
Coding SQL Statements in a User Language Procedure 27

The exception to this rule is the APSY AUTOCOMMIT=NO condition. In this
case, there is no implicit COMMIT at procedure end; a DB2 COMMIT is issued
only if a Model 204 User Language COMMIT statement is issued.

ROLLBACK statement

UL/DB2 issues a ROLLBACK statement if either Model 204 or DB2 terminates
abnormally.

Syntax EXEC DB2
 ROLLBACK WORK
END EXEC

$SPIFY interface

$SPIFY is a Model 204 function that you can use in a User Language request
to issue SQL commands. $SPIFY is designed to give the User Language
programmer an environment similar to the one that SQL Processor Using File
Input (SPUFI) provides to DB2 application programmers in the TSO
environment. $SPIFY gives you, in effect, a DB2 command line.

Using $SPIFY, you can issue Data Definition commands to set up tables and
views, and process SELECT statements. You can include multiple $SPIFY
functions in a procedure.

$SPIFY takes any valid SQL statement as an argument; the string must follow
Model 204 string conventions. The argument can be either a quoted string or a
string %variable.

Syntax PRINT $SPIFY(DB2-command-string)

Example EXEC DB2
CONNECT TO BOSTON
END EXEC
PRINT $SPIFY(’SELECT * FROM DVPJB.S’)

Output The result of the $SPIFY function is a series of print lines. The last line is printed
without an end-of-line; therefore, the recommended usage is PRINT
$SPIFY(DB2-command-string). The output produced depends on whether the
DB2-command-string is a valid SELECT statement.

Valid SELECT statement

The output produced for a valid SELECT statement is:

• Printed copy of the argument, that is, the SELECT statement

• Column headers

• Selected rows
28 Rocket Model 204 User Language/DATABASE 2 Interface Guide

• Number of rows printed

• Line indicating successful execution and the final SQLCODE (100,
indicating the end of the selected rows)

Valid statement other than SELECT

The output produced for a valid statement other than SELECT is:

• Printed copy of the argument, that is, the DB2 request

• Line indicating successful execution and the final SQLCODE (0)

• Line indicating that the call has finished

Invalid statement

The output produced for an invalid statement is:

• Printed copy of the argument, that is, the invalid statement, preceded by
’SQL REQUEST:’

• Several lines containing the DB2 error message

Note: In $SPIFY, a dash (-) in the output indicates that the column has the
NULL indicator set.

You can use the Model 204 USE PRINTER command to direct the output. See
the Model 204 Command Reference Manual for more information about the
USE PRINTER command.
Coding SQL Statements in a User Language Procedure 29

30 Rocket Model 204 User Language/DATABASE 2 Interface Guide

4
Interpreting Codes and
Messages

In this chapter

• Overview

• Errors involving Call Attach Facility calls

• Errors involving SQL statements

Overview

This chapter describes how you interpret the return codes and
messages returned by the User Language/DATABASE 2 Interface.

UL/DB2 error processing

When a UL/DB2 statement executes, UL/DB2 sets status information
that indicates whether the statement completed normally. UL/DB2
communicates this status information through the User Language
$STATUS and $STATUSD functions. UL/DB2 communicates the error
message associated with an abnormal status code through the
$ERRMSG function for Call Attach Facility (CAF) calls, and the
$DB2EMSG function for SQL statements.
Interpreting Codes and Messages 31

Using tracing

UL/DB2 error processing is handled by CAF. If you allocate a DSNTRACE data
set for the job, CAF sends diagnostic messages to the DSNTRACE data set.

Typically, you do not want to turn DSNTRACE on. If you turn DSNTRACE on
and have multiple users, you might get a S013E ABEND. This is an IBM
problem that is caused by DSNTRACE not being able to work with multiple
tasks. There is an APAR — a suggestion for IBM to fix the problem.

Turn DSNTRACE on only when debugging in a single user environment. To
turn DSNTRACE on, add a DD card to the startup JCL.

See the IBM DATABASE 2 Call Attach Facility User’s Guide and Reference for
more information.

Errors involving Call Attach Facility calls

This section describes the diagnostic information returned by UL/DB2 when
there is an error that involves a CAF call. The CAF calls that you can use in a
User Language procedure are:

• CONNECT TO

• DISCONNECT FROM

$STATUS and $STATUSD

When there is an error involving a CAF call, CAF places a return code in R15,
and a reason code in R0. $STATUS retrieves the return code, the contents of
R15, after each CAF call. A value of one ($STATUS=1) or greater indicates that
an error occurred and identifies the error as belonging to a particular category.

If the return code does not equal zero ($STATUS NE 0), then $STATUSD
retrieves the reason code (the contents of R0). $STATUSD indicates the
specific error condition within a particular $STATUS category.

Table 4-1 on page 33 lists some of the more common return and reason codes.
You can find a complete list of reason and return codes in the IBM DATABASE
2 Call Attach Facility User’s Guide and Reference, and the IBM DATABASE 2
Messages and Codes Manual.

If the return code is equal to zero ($STATUS = 0), $STATUSD returns
unpredictable codes.

$ERRMSG

Use the User Language $ERRMSG function to retrieve the error message for
an error with a CAF call, that is, CONNECT TO or DISCONNECT FROM. The
string returned by $ERRMSG can be up to 80 characters long.
32 Rocket Model 204 User Language/DATABASE 2 Interface Guide

Table 4-1. Common return and reason codes

Example The following code fragment shows how you can test the value of $STATUS
after a CAF call:

EXEC DB2
 CONNECT TO BOSTON
END EXEC
IF $STATUS NE 0 THEN
 PRINT ’ $STATUS=’ AND $STATUS
 PRINT ’$STATUSD=’ AND $STATUSD
 PRINT $ERRMSG
JUMP TO FINI:
END IF

$STATUS $STATUSD Description
Hexadecimal Decimal

0 0 0 Successful completion

4 00C10823 12650531 Release level mismatch
4 00C10824 12650532 CAB Reset complete
4 00F30025 15925285 Subsystem is stopping

8 00000014 20 No MODEL 204 link OPENed
8 00000015 21 MODEL 204 link STOPped
8 00000016 22 MODEL 204 link CLOSEd
8 0000001F 31 CONNECT must be the first DB2 command
8 00000020 32 Second CONNECT from the same procedure
8 00000028 40 No available virtual memory
8 00000032 50 No threads available
8 0000005A 90 DB2 Terminate ECB was posted
8 00F30002 15925250 DB2 subsystem is not available
8 00F30013 15925267 User not authorized to DB2
8 00F30040 15925312 Resource allocation error: unavailable
8 00F30049 15925321 TCB already connected
8 00F30055 15925333 Max connections reached

12 00F30006 15925254 DB2 subsystem name invalid
12 00F30040 15925312 Resource allocation error: invalid

200 00C10201 12648961 Second CONNECT from one TCB
200 00C10202 12648962 Second OPEN from one TCB
200 00C10203 12648963 CLOSE issued with no active OPEN
200 00C10204 12648964 DISCONNECT issued with no active OPEN
200 00C10205 12648965 TRANSLATE issued with no connection
200 00C10206 12648966 Wrong number of parameters
200 00C10207 12648967 Unrecognized action parameter
200 00C10208 12648968 Request to talk to two SSIDs from one TCB

256 00F30018 15925272 TCB not connected to DB2
Interpreting Codes and Messages 33

Errors involving SQL statements

This section describes the diagnostic information returned by UL/DB2 when
there is an error involving an SQL statement.

Using the $STATUS and $STATUSD functions

After invoking an SQL statement, $STATUS indicates whether an error
occurred processing the statement. If no errors occurred, $STATUS is equal to
zero. If an error occurred, $STATUS is not equal to zero and the value of
STATUSD contains more specific information about the error.

When DB2 executes an SQL statement, it places the SQL return code in the
SQLCODE field of the SQL Communication Area (SQLCA). $STATUSD
retrieves the value of the SQLCODE field after an SQL statement. Typically, a
negative SQL return code indicates an error, a positive return code indicates
an exceptional but valid condition, and zero indicates successful execution.

Note: In one special case, $STATUS has the same value as SQLCODE. A
$STATUS of 100 indicates table empty or completed; in this case, $STATUSD,
which contains SQLCODE, is also 100.

Understanding the $DB2EMSG function

If the SQL return code does not equal zero (SQLCODE NE 0), then DB2 also
returns tokens in the SQLCA. UL/DB2 processes the tokens internally, and
returns them via $DB2EMSG. The string returned by $DB2EMSG can be up to
240 characters long.

For example, attempting to access a column that does not exist returns an
SQLCA with the SQLCODE set to -205, and SQLERRM contains two tokens:
the column name and the table name. Looking up the SQLCODE in the
DATABASE 2 Messages and Codes Manual gives the following error
message:

-205column-name IS NOT A COLUMN OF TABLE table-name

Retrieving the value of $DB2EMSG returns:

DSNT408I SQLCODE = -205, ERROR: FOO IS NOT A COLUMN OF
TABLE M204.BAR

(This example assumes that DB2 contains table M204.BAR, which does not
contain column FOO.)

You can find all the SQL return codes in the IBM DATABASE 2 Messages and
Codes Manual.

Example The following code fragment shows how you can test the value of $STATUS
after executing an SQL statement:
34 Rocket Model 204 User Language/DATABASE 2 Interface Guide

EXEC DB2
 OPEN BAR
END EXEC
IF $STATUS NE 0 THEN
 PRINT ’ $STATUS=’ AND $STATUS
 PRINT ’$STATUSD=’ AND $STATUSD
 PRINT $DB2EMSG
END IF
Interpreting Codes and Messages 35

36 Rocket Model 204 User Language/DATABASE 2 Interface Guide

5
Sample UL/DB2 Request

In this chapter

• Overview

• Sample request described

• Sample request code

• Sample request output

Overview

This chapter provides a complete UL/DB2 request that connects to a
DB2 subsystem and uses the $SPIFY function to access a DB2 table.
The sample request illustrates much of the material discussed in the
earlier chapters. Specifically, the sample request demonstrates using:

• Model 204 DEFINE and OPEN LINK commands

• CAF CONNECT TO call

• User Language $STATUS, $STATUSD, and $ERRMSG functions

• UL/DB2 $SPIFY function

Sample request described

The example contains two procedures: DB2PRC and SPIFY. The
function of each procedure is described in the following sections.
Sample UL/DB2 Request 37

DB2PRC procedure

The DB2PRC procedure defines the required UL/DB2 entities and enables the
link to DB2. Specifically, the DB2PRC procedure:

• Uses the DEFINE commands to establish the link, processgroup, and
process

• Uses the OPEN LINK command to enable the link between the User
Language procedure and the DB2 subsystem

In the following example, note that the link name specified in the DEFINE LINK,
DEFINE PROCESSGROUP, and OPEN LINK commands must be the same
(in this example, DB2LNK).

Also, note that the processgroup name specified in the DEFINE
PROCESSGROUP and DEFINE PROCESS commands must be the same (in
this example, DB2GRP).

SPIFY procedure

The SPIFY procedure connects the User Language request to a DB2
subsystem and retrieves data from a DB2 table. Specifically, the SPIFY
procedure:

• Uses the CONNECT TO call to create a thread between a User Language
procedure and DB2.

The value specified in the CONNECT TO call must be the same value given
in the DESTINATION parameter of the DEFINE PROCESS command (in
this example, BOSTON).

Also, the CONNECT TO call must be the first EXEC DB2 statement in the
procedure.

• Uses the $STATUS function to determine if the CONNECT was successful.
If it failed, the procedure returns diagnostic information through the
$STATUS, $STATUSD, and $ERRMSG functions.

• Uses the $SPIFY function to select data from a DB2 table.
38 Rocket Model 204 User Language/DATABASE 2 Interface Guide

Sample request code

Note: Before running this procedure, you must set the required UL/DB2 User 0
parameters, DB2THRD and DB2PLAN, in the CCAIN input stream. See
“Setting the UL/DB2 User 0 parameters” on page 6 for more information on
User 0 parameters.

The code for the sample request is:

PROCEDURE DB2PRC
DEFINE LINK DB2LNK WITH SCOPE=SYSTEM TRANSPORT=INTERNAL -
 PROTOCOL=CAF
DEFINE PROCESSGROUP DB2GRP WITH SCOPE=SYSTEM LINK=DB2LNK -
 DB2ID=DSN
DEFINE PROCESS CCADB2 WITH SCOPE=SYSTEM -
 DESTINATION=(DB2GRP,BOSTON)
OPEN LINK DB2LNK
END PROCEDURE

PROCEDURE SPIFY
B
*
EXEC DB2
 CONNECT TO BOSTON
END EXEC
IF $STATUS NE 0 THEN
 PRINT ’ $STATUS=’ AND $STATUS
 PRINT ’$STATUSD=’ AND $STATUSD
 PRINT $ERRMSG
 JUMP TO FINI
END IF
*
PRINT $SPIFY(’SELECT * FROM ??TABLE’)
*
FINI:
END
END PROCEDURE

The SPIFY procedure uses the User Language ?? construct. When the request
is run, the user is prompted to supply a value for the table name.

The output from this request is shown in the section “Sample request output”
on page 40.
Sample UL/DB2 Request 39

Sample request output

The output from the sample request is shown in Figure 5-1. A value of “TDEPT”
was supplied for the table name.

Figure 5-1. Sample request output

SELECT * FROM TDEPT
---------+---------+---------+---------+---------+---------+----
DEPTNO DEPTNAME MGRNO ADMRDEPT
---------+---------+---------+---------+---------+---------+----
A00 SPIFFY COMPUTER SERVICE DIV. 000010 A00
B01 PLANNING 000020 A00
C01 INFORMATION CENTER 000030 A00
D01 DEVELOPMENT CENTER ------ A00
E01 SUPPORT SERVICES 000050 A00
D11 MANUFACTURING SYSTEMS 000060 D01
D21 ADMINISTRATION SYSTEMS 000070 D01
E11 OPERATIONS 000090 E01
E21 SOFTWARE SUPPORT 000100 E01
---------+---------+---------+---------+---------+---------+----
NUMBER OF ROWS DISPLAYED IS 9
STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100
SQL CALL FINISHED
40 Rocket Model 204 User Language/DATABASE 2 Interface Guide

A
UL/DB2 Internals

In this appendix

• Overview

• How UL/DB2 communicates between Model 204 and DB2

• How UL/DB2 manages threads

• Recovery and restart

Overview

This appendix describes certain aspects of the internal processing done by
UL/DB2. Its purpose is to provide background information.

How UL/DB2 communicates between Model 204 and DB2

Before Model 204 can access DB2, UL/DB2 must:

• Establish a connection from Model 204 to DB2

• Create one or more threads on the connection

This connection establishes a communication link between Model 204 and
DB2. Within this connection, a thread establishes a two-way path between a
Model 204 user and a specific DB2 resource, the application PLAN. Multiple
threads can be active within a single connection.

UL/DB2 maintains the thread until the request ends and all changes have been
committed or rolled back.
UL/DB2 Internals 41

Data and message transfer

Data and status information is passed over these threads between the
Model 204 user and DB2.

• Status information generated by DB2 is returned by the User Language
$STATUS and $STATUSD functions

• Call Attach Facility messages are returned by the $ERRMSG function

• SQL messages are returned the $DB2EMSG function.

Call Attach Facility

UL/DB2 uses the Call Attach Facility (CAF) to manage the communication
between Model 204 and DB2. CAF is an IBM-supplied attachment facility that
gives UL/DB2 tight control over the connection between Model 204 and DB2.
Using CAF, UL/DB2 monitors and controls the threads connecting Model 204
and DB2. UL/DB2 calls the CAF entry point DSNALI, which gives CAF, and
therefore DB2, the appearance of a subroutine.

Accessing DB2

Each time that Model 204 requests access to DB2, UL/DB2 passes program
control to DSNALI, a language interface module that is part of CAF. At this
point, Model 204 is no longer in control. For this reason, each thread
connecting a User Language procedure to DB2 executes under its own Task
Control Block (TCB). This TCB is itself a subtask of the Model 204 maintask
TCB. This approach avoids having a Model 204 TCB wait for DB2, and
provides additional throughput in a multiprocessing environment.

How UL/DB2 manages threads

UL/DB2 provides no system manager commands to control subtasks. This
section describes the thread manager component of the UL/DB2 Interface.

After a Model 204 Online initializes, a subtask TCB can be in one of four states:

• Available

• Active, meaning allocated and in use

• Inactive, meaning allocated, but not in use

• Dead, meaning unusable

When a user requests DB2 service, the thread manager assigns the next
available subtask TCB to the user task. If no subtasks are available, the thread
manager searches for subtasks on the inactive queue.
42 Rocket Model 204 User Language/DATABASE 2 Interface Guide

A TCB is on the inactive queue, because the procedure that initially activated it
has ended and issued a CLOSE. Because CONNECT processing is
expensive, however, no DISCONNECT is issued. Instead, the subtask control
block is placed on the inactive queue as the most recently used control block.

If the user requests DB2 services again, and the subtask control block is
available, no CONNECT processing is needed, and the user does not have to
be revalidated.

If a new user requests DB2 services and no subtask control blocks are free, the
thread manager steals a control block from the inactive chain, starting with the
least recently used control block. This “stolen” control block address is
removed from the user control block of the last active user. A DISCONNECT is
requested for this control block, so that a CONNECT request can be driven to
validate the new user ID.

Reusing the same control block is particularly useful for APSY subsystems.
Even though a CLOSE is issued at procedure end, the next procedure most
probably gets the same subtask control block back, and CONNECT processing
can be avoided.

However, if the APSY is defined with an AUTOCOMMIT of NO, the subtask
TCB is considered active even through procedure end(s). This is necessary,
because the normal CLOSE of a DB2 thread causes a DB2 COMMIT. With an
AUTOCOMMIT of NO, commit processing is deferred until the user specifies a
Model 204 COMMIT. If there is no Model 204 COMMIT, then a DB2 CLOSE
with an ABRT is generated to ensure that DB2 does a ROLLBACK.

Recovery and restart

The Call Attach Facility has no abend recovery routines. Instead, Model 204
provides abend exit routines. These recovery routines use tracking indicators
to determine if an abend occurs during DB2 processing.

If an abend occurs while DB2 has control, UL/DB2 issues a CLOSE with the
ABRT (abort) option. DB2 detects task termination and terminates the thread.
The user loses all database changes since the last COMMIT point, and is also
restarted. Any subtask that abends cannot be re-used.

During a user restart, if the user subtask control block has an associated
subtask, restart releases the subtask back to the pool of free TCBs. This
release terminates the DB2 connection with an ABRT request in order to
rollback any uncommitted updates. The DB2 transaction is not atomic with the
Model 204 transaction. There is no SYNCPOINT functionality.

Using the ACEE

For security processing, RACHECK processing first checks for an ACEE
associated with the TCB. If there is none (TCBSENV = 0), RACHECK then
checks the ACEE associated with the Address Space Control Block
(ASXBSENV). All subtasks TCBs attached at initialization have the identifier
‘M204’ inserted into the TCB in the TCBUSER field. During CONNECT
UL/DB2 Internals 43

processing, the requestor’s user ID is copied into an ACEE, and the address of
that ACEE is placed in the TCB at TCBSENV for the DB2 authorization exit to
use for validation.
44 Rocket Model 204 User Language/DATABASE 2 Interface Guide

Index
Symbols

$DB2EMSG 34, 42
$DEBLANK 26
$ERRMSG 32, 42
$SPIFY 28
$STATUS 15, 42

on CAF call 32
on SQL statement 34

$STATUSD 42
on CAF call 32
on SQL statement 34

%variables 24 to 27
for input 25
for output 25

A

ABEND
S013E 31

authorization exit DSN3@ATH 11
AUTOCOMMIT command 43

B

BATCH204 6
BUMP command 11

C

CA-ACF2 10
Call Attach Facility (CAF) 2, 42
CA-TOPSECRET 10
CCAIN input stream 7
CLOSE statement 19, 43
commands

BUMP 11
DEFINE 8
MONITOR 12
RESET 7
VIEW 7

comments 15
COMMIT command 27, 43
communication

between UL and DB2 41
CONNECT TO statement 16, 32, 43
connecting procedure to DB2 16 to 17
continuing SQL statements 14
cross memory 10
cursors 17 to 20

CLOSE statement 19
DECLARE statement 17
DELETE... CURRENT statement 17
FETCH statement 18
multiple 18
OPEN statement 18
supported statements 17
UPDATE... CURRENT statement 17

D

data types
supported 26

DB2PLAN parameter 8
DB2POINT parameter 8
DB2QUOTE parameter 8
DB2THRD parameter 7
DECLARE statement 17
DEFINE commands 8

guidelines for using 9
DEFINE LINK command 9
DEFINE PROCESS command 9
DEFINE PROCESSGROUP command 9
DELETE statement 22
DELETE... CURRENT statement 24
DELETE... WHERE statement 25
delimiters

EXEC DB2... END EXEC 14
DISCONNECT FROM statement 16, 32, 43
Distributed Data Facility (DDF) 3
DSN3@ATH 11

E

environments
BATCH204 6
ONLINE 5

error processing 31 to 35
Index 45

CAF calls 32 to 33
SQL statements 34 to 35

example of UL/DB2 request 37 to 40
EXEC DB2... END EXEC delimiters 14

F

FETCH statement 18, 25
with INDICATOR type 27

G

granting PLAN privileges 11
granting table privileges 11

I

INDICATOR type
with FETCH statement 27

INSERT statement 20
not supported for Large Object fields 20

INSERT... VALUES statement 25

L

limitations 3
links 9

M

modifying DB2 tables 20 to 24
DELETE statement 22
DELETE... CURRENT statement 24
INSERT statement 20
inserting a single row 20
inserting multiple rows 21
UPDATE statement 22
UPDATE... CURRENT statement 23

MONITOR command 12
multiple cursors 18
MVS/370 2
MVS/ESA 2
MVS/XA 2

O

ONLINE 5
OPEN statement 18
operating systems

MVS/370 2
MVS/ESA 2
MVS/XA 2

supported 2

P

PLAN privileges 11
privileges

PLAN 11
table 11

program environment 2 to 3

Q

quotation marks 15

R

recovery 43
requirements

SQL statements 14 to 15
RESET command 7
restart 43
ROLLBACK command 27, 43

S

S013E ABEND 32
sample UL/DB2 request 37 to 40
security 10 to 11

XMEMOPT parameter 6
XMEMSVC parameter 6

Security Server (formerly RACF) 10
setting User 0 parameters 6 to 8
SPCORE 6
SQL statements

comments 15
continuing 14
delimiting 14
error processing 34
quotation marks 15
requirements 14 to 15

stripping blanks 26
supported data types 26
SYNCPOINT 43

T

table privileges 11
TCB 42, 43
terminating transactions 27
threads 41, 42
TopSecret 10
tracing 32
46 Rocket Model 204 User Language/DATABASE 2 Interface Guide

transactions
terminating 27

U

UL/DB2
sample request 37 to 40

UPDATE statement 22
UPDATE... CURRENT statement 23, 25
UPDATE... SET statement 25
User 0 parameters 6 to 8

DB2PLAN 8
DB2POINT 8
DB2QUOTE 8
DB2THRD 7
XMEMOPT 10
XMEMSVC 10

User Language statements
INSERT 20

V

VIEW command 7

X

XMEMOPT parameter 6, 10
XMEMSVC parameter 6, 10
 Index 47

48 Rocket Model 204 User Language/DATABASE 2 Interface Guide

	Contents
	About this Guide
	1: User Language/DATABASE 2 Program Environment
	In this chapter
	Overview
	UL/DB2 program environment
	Requirements
	Supported operating systems
	Accessing DB2 address spaces
	Limitations

	2: Defining the Model 204 Environment
	In this chapter
	Overview
	Preparing a Model 204 environment
	Setting the UL/DB2 User 0 parameters
	Setting the XMEMOPT and XMEMSVC parameters
	Setting the SPCORE parameter
	Setting User 0 parameters in the CCAIN input stream
	DB2THRD parameter
	DB2PLAN parameter
	DB2QUOTE parameter
	DB2POINT parameter

	Defining the LINK, PROCESSGROUP, and PROCESS
	Guidelines for using the DEFINE commands

	Controlling links
	Placing the LINK commands
	Required privileges

	Security processing
	No external security in place
	External security in place

	Granting PLAN and table privileges
	Using the BUMP command with UL/DB2
	Using the MONITOR command with UL/DB2

	3: Coding SQL Statements in a User Language Procedure
	In this chapter
	Overview
	Prerequisite knowledge of SQL

	Requirements for writing SQL statements
	Components of an SQL statement in a User Language procedure
	EXEC DB2... END EXEC delimiters
	Continuing SQL statements
	Using quotation marks
	SQL comments not supported
	Using multiple SQL statements in a procedure
	Checking $STATUS

	Connecting a User Language procedure to DB2
	DISCONNECT FROM statement

	Defining and using cursors
	Supported cursor statements
	Managing cursors
	DECLARE statement
	OPEN statement
	FETCH statement
	CLOSE statement

	Modifying DB2 tables
	INSERT statement
	Searched UPDATE statement
	Searched DELETE statement
	UPDATE... CURRENT statement
	DELETE... CURRENT statement

	Using %variables in SQL statements
	%variables
	Using %variables for Input
	Using %variables for output (FETCH statement)

	Terminating transactions
	COMMIT statement
	ROLLBACK statement

	$SPIFY interface

	4: Interpreting Codes and Messages
	In this chapter
	Overview
	UL/DB2 error processing
	Using tracing

	Errors involving Call Attach Facility calls
	$STATUS and $STATUSD
	$ERRMSG

	Errors involving SQL statements
	Using the $STATUS and $STATUSD functions
	Understanding the $DB2EMSG function

	5: Sample UL/DB2 Request
	In this chapter
	Overview
	Sample request described
	DB2PRC procedure
	SPIFY procedure

	Sample request code
	Sample request output

	A: UL/DB2 Internals
	In this appendix
	Overview
	How UL/DB2 communicates between Model 204 and DB2
	Data and message transfer
	Call Attach Facility
	Accessing DB2

	How UL/DB2 manages threads
	Recovery and restart

	Index

