Difference between revisions of "Antilog and AntilogE (Float functions)"

From m204wiki
Jump to navigation Jump to search
m (match syntax diagram to revised template; fix tags and some links; still some incomplete / unfound links)
Line 11: Line 11:
 
<table class="syntaxTable">
 
<table class="syntaxTable">
 
<tr><th>%number </th>
 
<tr><th>%number </th>
<td>A numeric variable to receive the <var>antilog</var>  / <var>antiloge</var> of the method object. </td></tr>
+
<td>A numeric variable to receive the <var>antilog</var>  / <var>antilogE</var> of the method object. </td></tr>
 
<tr><th>float </th>
 
<tr><th>float </th>
 
<td>A <var>Float</var> value.</td></tr>
 
<td>A <var>Float</var> value.</td></tr>

Revision as of 15:01, 4 February 2011

Antilog base e of a number (Float class)


The AntiLog and AntiLogE intrinsic functions return a number that is the natural anti-logarithm (or exponential) of the method object value. The result is the natural logarithmic base (e) raised to the power of the method object value.

AntiLog and AntiLogE are synonyms.

Syntax

%number = float:Antilog

%number = float:AntilogE

Syntax terms

%number A numeric variable to receive the antilog / antilogE of the method object.
float A Float value.

Usage notes

  • Although you might expect '%x:log:antilog' to return the value in %x, the good fit techniques used by the Log and AntiLog methods make the result not quite exact, as shown in the following example:

    2:log:antilog = 2.00000000023047 3:log:antilog = 3.00000000017113 4:log:antilog = 4.00000000047426 5:log:antilog = 5.00000000057644 6:log:antilog = 6.00000000069796 7:log:antilog = 7.00000000056701 8:log:antilog = 8.00000000047046 9:log:antilog = 9.0000000010268 10:log:antilog = 10.0000000005553

  • Available as of Sirius Mods Version 7.3.

Examples

  1. The following statement returns '1:antilog = 2.71828182845905'.

    printText {~} = {1:antilog}

See also

  • For details of the printtext statement, please see printText
  • AntiLog / AntiLogE are an object-oriented version of the $Exp function function.