Antilog and AntilogE (Float functions): Difference between revisions
mNo edit summary |
mNo edit summary |
||
Line 1: | Line 1: | ||
{{Template:Float:Antilog subtitle}} | |||
{{Template:Float:AntilogE subtitle}} | |||
These [[Intrinsic classes|intrinsic]] functions return a number that is the natural [http://en.wikipedia.org/wiki/Antilog#Antilogarithms anti-logarithm] (or exponential) of the method object value. | These [[Intrinsic classes|intrinsic]] functions return a number that is the natural [http://en.wikipedia.org/wiki/Antilog#Antilogarithms anti-logarithm] (or exponential) of the method object value. | ||
The result is the natural logarithmic base (''[http://en.wikipedia.org/wiki/E_%28mathematical_constant%29 e]'') raised to the power of the method object value. | The result is the natural logarithmic base (''[http://en.wikipedia.org/wiki/E_%28mathematical_constant%29 e]'') raised to the power of the method object value. | ||
Line 7: | Line 11: | ||
an object-oriented version of the [[$Exp|$Exp function]] function. | an object-oriented version of the [[$Exp|$Exp function]] function. | ||
===AntiLog syntax=== | ===AntiLog syntax=== | ||
{{Template:Float:Antilog syntax}} | |||
{{Template:Float:AntilogE syntax}} | |||
====Syntax terms==== | ====Syntax terms==== | ||
<dl> | <dl> |
Revision as of 13:29, 19 January 2011
Template:Float:Antilog subtitle
Template:Float:AntilogE subtitle
These intrinsic functions return a number that is the natural anti-logarithm (or exponential) of the method object value. The result is the natural logarithmic base (e) raised to the power of the method object value.
AntiLog and AntiLogE are synonyms.
Available as of version 7.3 of the Sirius Mods, the AntiLog function is an object-oriented version of the $Exp function function.
AntiLog syntax
%number = float:Antilog
%number = float:AntilogE
Syntax terms
- %value
- A numeric variable to receive the antilog of the method object.
- number
- A Float value.
Usage Notes
Although you might expect '%x:log:antilog' to return the value in %x, the good fit techniques used by the Log and AntiLog methods make the result not quite exact, as shown in the following example:
2:log:antilog = 2.00000000023047 3:log:antilog = 3.00000000017113 4:log:antilog = 4.00000000047426 5:log:antilog = 5.00000000057644 6:log:antilog = 6.00000000069796 7:log:antilog = 7.00000000056701 8:log:antilog = 8.00000000047046 9:log:antilog = 9.0000000010268 10:log:antilog = 10.0000000005553
Examples
The following statement returns '1:antilog = 2.71828182845905'.
PrintText {~} = {1:antilog}
See also
List of intrinsic Float methods